WorldWideScience

Sample records for early cretaceous cauvery

  1. Syn-sedimentary tectonics and facies analysis in a rift setting: Cretaceous Dalmiapuram Formation, Cauvery Basin, SE India

    Directory of Open Access Journals (Sweden)

    Nivedita Chakraborty

    2018-04-01

    Full Text Available The Cretaceous (Albian–Cenomanian Dalmiapuram Formation is one of the economically significant constituents in the hydrocarbon-producing Cauvery rift basin, SE India that opened up during the Late Jurassic–Early Cretaceous Gondwanaland fragmentation. The fossil-rich Dalmiapuram Formation, exposed at Ariyalur within the Pondicherry sub-basin of Cauvery Basin, rests in most places directly on the Archean basement and locally on the Lower Cretaceous (Barremian–Aptian Basal Siliciclastic Formation. In the Dalmiapuram Formation, a facies association of tectonically-disturbed phase is sandwiched between two drastically quieter phases. The early syn-rift facies association (FA 1, records the first carbonate marine transgression within the basin, comprising a bar–lagoon system with occasionally storms affecting along the shore and a sheet-like non-recurrent biomicritic limestone bed on the shallow shelf that laterally grades into pyrite–glauconite-bearing dark-colored shale in the deeper shelf. Spectacular breccias together with varied kinds of mass-flow products comprise the syn-rift facies association (FA 2. While the breccias occur at the basin margin area, the latter extend in the deeper inland sea. Clast composition of the coarse clastics includes large, even block-sized limestone fragments and small fragments of granite and sandstone from the basement. Marl beds of quieter intervals between tectonic pulses occur in alternation with them. Faulted basal contact of the formation, and small grabens filled by multiple mass-flow packages bear the clear signature of the syntectonic activity localized contortions, slump folds, and pillow beds associated with mega slump/slide planes and joints, which corroborates this contention further. This phase of tectonic intervention is followed by another relatively quieter phase and accommodates the late syn-rift facies association (FA 3. A tidal bar–interbar shelf depositional system allowed a

  2. Origin of Cretaceous phosphorites from the onshore of Tamil Nadu ...

    Indian Academy of Sciences (India)

    Cretaceous phosphorites occur as light brown to yellow- ish brown or white nodules in Karai Shale of the Uttatur Group in the onshore Cauvery basin. Nodules exhibit phosphatic nucleus encrusted by a chalky shell of carbonate. The nucleus of the nodules consists of light and dark coloured laminae, phosphate ...

  3. Petroleum source-rock potentials of the cretaceous transgressive-regressive sedimentary sequences of the Cauvery Basin

    Science.gov (United States)

    Chandra, Kuldeep; Philip, P. C.; Sridharan, P.; Chopra, V. S.; Rao, Brahmaji; Saha, P. K.

    The present work is an attempt to contribute to knowledge on the petroleum source-rock potentials of the marine claystones and shales of basins associated with passive continental margins where the source-rock developments are known to have been associated with the anoxic events in the Mesozoic era. Data on three key exploratory wells from three major depressions Ariyallur-Pondicherry, Thanjavur and Nagapattinam of the Cauvery Basin are described and discussed. The average total organic carbon contents of the transgressive Pre-Albian-Cinomanian and Coniacian/Santonian claystones/shales range from 1.44 and 1.16%, respectively. The transgressive/regressive Campanian/Maastrichtian claystones contain average total organic carbon varying from 0.62 to 1.19%. The kerogens in all the studied stratigraphic sequences are classified as type-III with Rock-Eval hydrogen indices varying from 30 to 275. The nearness of land masses to the depositional basin and the mainly clastic sedimentation resulted in accumulation and preservation of dominantly type-III kerogens. The Pre-Albian to Cinomanian sequences of peak transgressive zone deposited in deep marine environments have kerogens with a relatively greater proportion of type-II components with likely greater contribution of planktonic organic matters. The global anoxic event associated with the Albian-Cinomanian marine transgression, like in many other parts of the world, has pervaded the Cauvery Basin and favoured development of good source-rocks with type-III kerogens. The Coniacian-Campanian-Maastrichtian transgressive/regressive phase is identified to be relatively of lesser significance for development of good quality source-rocks.

  4. Tribosphenic mammal from the North American Early Cretaceous.

    Science.gov (United States)

    Cifelli, R L

    1999-09-23

    The main groups of living mammals, marsupials and eutherians, are presumed to have diverged in the Early Cretaceous, but their early history and biogeography are poorly understood. Dental remains have suggested that the eutherians may have originated in Asia, spreading to North America in the Late Cretaceous, where an endemic radiation of marsupials was already well underway. Here I describe a new tribosphenic mammal (a mammal with lower molar heels that are three-cusped and basined) from the Early Cretaceous of North America, based on an unusually complete specimen. The new taxon bears characteristics (molarized last premolar, reduction to three molars) otherwise known only for Eutheria among the tribosphenic mammals. Morphometric analysis and character comparisons show, however, that its molar structure is primitive (and thus phylogenetically uninformative), emphasizing the need for caution in interpretation of isolated teeth. The new mammal is approximately contemporaneous with the oldest known Eutheria from Asia. If it is a eutherian, as is indicated by the available evidence, then this group was far more widely distributed in the Early Cretaceous than previously appreciated. An early presence of Eutheria in North America offers a potential source for the continent's Late Cretaceous radiations, which have, in part, proven difficult to relate to contemporary taxa in Asia.

  5. Rates of morphological evolution are heterogeneous in Early Cretaceous birds

    Science.gov (United States)

    Lloyd, Graeme T.

    2016-01-01

    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap between Archaeopteryx and crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds. PMID:27053742

  6. The origin and early evolution of metatherian mammals: the Cretaceous record

    Directory of Open Access Journals (Sweden)

    Thomas E. Williamson

    2014-12-01

    Full Text Available Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  7. A new Early Cretaceous eutherian mammal from the Sasayama Group, Hyogo, Japan.

    Science.gov (United States)

    Kusuhashi, Nao; Tsutsumi, Yukiyasu; Saegusa, Haruo; Horie, Kenji; Ikeda, Tadahiro; Yokoyama, Kazumi; Shiraishi, Kazuyuki

    2013-05-22

    We here describe a new Early Cretaceous (early Albian) eutherian mammal, Sasayamamylos kawaii gen. et sp. nov., from the 'Lower Formation' of the Sasayama Group, Hyogo Prefecture, Japan. Sasayamamylos kawaii is characterized by a robust dentary, a distinct angle on the ventral margin of the dentary at the posterior end of the mandibular symphysis, a lower dental formula of 3-4 : 1 : 4 : 3, a robust lower canine, a non-molariform lower ultimate premolar, and a secondarily reduced entoconid on the molars. To date, S. kawaii is the earliest known eutherian mammal possessing only four premolars, which demonstrates that the reduction in the premolar count in eutherians started in the late Early Cretaceous. The occurrence of S. kawaii implies that the relatively rapid diversification of eutherians in the mid-Cretaceous had already started by the early Albian.

  8. Early Cretaceous greenhouse pumped higher taxa diversification in spiders.

    Science.gov (United States)

    Shao, Lili; Li, Shuqiang

    2018-05-24

    The Cretaceous experienced one of the most remarkable greenhouse periods in geological history. During this time, ecosystem reorganizations significantly impacted the diversification of many groups of organisms. The rise of angiosperms marked a major biome turnover. Notwithstanding, relatively little remains known about how the Cretaceous global ecosystem impacted the evolution of spiders, which constitute one of the most abundant groups of predators. Herein, we evaluate the transcriptomes of 91 taxa representing more than half of the spider families. We add 23 newly sequenced taxa to the existing database to obtain a robust phylogenomic assessment. Phylogenetic reconstructions using different datasets and methods obtain novel placements of some groups, especially in the Synspermiata and the group having a retrolateral tibial apophysis (RTA). Molecular analyses indicate an expansion of the RTA clade at the Early Cretaceous with a hunting predatory strategy shift. Fossil analyses show a 7-fold increase of diversification rate at the same period, but this likely owes to the first occurrences spider in amber deposits. Additional analyses of fossil abundance show an accumulation of spider lineages in the Early Cretaceous. We speculate that the establishment of a warm greenhouse climate pumped the diversification of spiders, in particular among webless forms tracking the abundance of insect prey. Our study offers a new pathway for future investigations of spider phylogeny and diversification. Copyright © 2018. Published by Elsevier Inc.

  9. A new genus and species of enantiornithine bird from the Early Cretaceous of Brazil

    Directory of Open Access Journals (Sweden)

    Ismar de Souza Carvalho

    Full Text Available The fossil record of birds in Gondwana is almost restricted to the Late Cretaceous. Herein we describe a new fossil from the Araripe Basin, Cratoavis cearensis nov. gen et sp., composed of an articulated skeleton with feathers attached to the wings and surrounding the body. The present discovery considerably extends the temporal record of the Enantiornithes birds at South America to the Early Cretaceous. For the first time, an almost complete and articulated skeleton of an Early Cretaceous bird from South America is documented.

  10. Middle Jurassic - Early Cretaceous rifting of the Danish Central Graben

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, J.J.; Rasmussen, E.S.

    1998-12-01

    During the Jurassic-early Cretaceous, the Danish Central Graben developed as a N-S to NNW-SSE trending Graben bounded by the Ringkoebing-Fyn High towards the east and the Mid North Sea High towards the west. The Graben consists of a system of half-Grabens and evolved by fault-controlled subsidence; three main rift pulses have been recognized. The first pulse ranged from the Callovian to the early Oxfordian, the second pulse was initiated in the latest Late Kimmeridgian and Early Volgian, and the third and final pulse occurred within the Valanginian in the Early Cretaceous. The first pulse was characterized by subsidence along N-S trending faults. During the second pulse, in early Volgian times, subsidence was concentrated along new NNW-SSE trending faults and the main depocentre shifted westward, being most marked within the Tail End Graben, the Arne-Elin Graben, and the Feda Graben. This tectonic event was accompanied by the accumulation of a relatively thick sediment load resulting in the development of salt diapers, especially within the Salt Dome Province. The third tectonic pulse was essentially a reactivation of the NNW-SSE trending structures. This tectonic pulse also shows clear evidence of combined fault-controlled subsidence and salt movements. (EG) 12 figs.; 45 refs.

  11. Rhinochelys amaberti Moret (1935, a protostegid turtle from the Early Cretaceous of France

    Directory of Open Access Journals (Sweden)

    Isaure Scavezzoni

    2018-04-01

    Full Text Available Modern marine turtles (chelonioids are the remnants of an ancient radiation that roots in the Cretaceous. The oldest members of that radiation are first recorded from the Early Cretaceous and a series of species are known from the Albian-Cenomanian interval, many of which have been allocated to the widespread but poorly defined genus Rhinochelys, possibly concealing the diversity and the evolution of early marine turtles. In order to better understand the radiation of chelonioids, we redescribe the holotype and assess the taxonomy of Rhinochelys amaberti Moret (1935 (UJF-ID.11167 from the Late Albian (Stoliczkaia dispar Zone of the Vallon de la Fauge (Isère, France. We also make preliminary assessments of the phylogenetic relationships of Chelonioidea using two updated datasets that widely sample Cretaceous taxa, especially Rhinochelys. Rhinochelys amaberti is a valid taxon that is supported by eight autapomorphies; an emended diagnosisis proposed. Our phylogenetic analyses suggest that Rhinochelys could be polyphyletic, but constraining it as a monophyletic entity does not produce trees that are significantly less parsimonious. Moreover, support values and stratigraphic congruence indexes are fairly low for the recovered typologies, suggesting that missing data still strongly affect our understanding of the Cretaceous diversification of sea turtles.

  12. Early cretaceous zircon SHRIMP U-Pb age of the trachyte and its significances of the Gan-Hang belt

    International Nuclear Information System (INIS)

    Liu Feiyu; Wu Jianhua; Liu Shuai

    2009-01-01

    The Shixi basin was located at Gan-Hang tectonic volcanic uranium deposit of rock-magma belt which belong to a part of the Mesozoic volcanic rocks in the northeastern of China. The appearance of the trachyte in Shixi basin have the majoy elements characteristic of the shoshonite series volcanic rocks. To determine the geological age of trachyte have very important significance on the geodynamics research and the study on the cause of uranium mineralization. The zircons of the trachyte have clear ring and high Th/U ratio which belong to the typical magmatic zircons. The zircon SHRIMP U-Pb dating resules show that 14points' age range is very smaller is 132-144 Ma and the weighted average age is (137.00±0.94)Ma which represents the diagenetic age of volcanic rocks. Accronding to the latest International Stratigraphic Chart the boundary of Jurassic and Cretaceous is (145.4±4.0)Ma. So the trachyte of Shixi Group belong to early Cretaceous. The large-scale acidic volcanic activity occurred in the Early Cretaceous in Southeastern China, and the Volcanic uranium deposit of Gan-Hang tectonic belt relate to Alkali metasomatism Uranium mineralization also occurred in the Early Cretaceous (120-130 Ma). The determined of trachyte in Shixi Group in the Early Cretaceous show that the acidic volcanic activity have connection with magma activity and the early Uranium mineralization consistent with the Alkali magma activity. (authors)

  13. Early cretaceous dinosaurs from the sahara.

    Science.gov (United States)

    Sereno, P C; Wilson, J A; Larsson, H C; Dutheil, D B; Sues, H D

    1994-10-14

    A major question in Mesozoic biogeography is how the land-based dinosaurian radiation responded to fragmentation of Pangaea. A rich fossil record has been uncovered on northern continents that spans the Cretaceous, when continental isolation reached its peak. In contrast, dinosaur remains on southern continents are scarce. The discovery of dinosaurian skeletons from Lower Cretaceous beds in the southern Sahara shows that several lineages of tetanuran theropods and broad-toothed sauropods had a cosmopolitan distribution across Pangaea before the onset of continental fragmentation. The distinct dinosaurian faunas of Africa, South America, and Asiamerica arose during the Cretaceous by differential survival of once widespread lineages on land masses that were becoming increasingly isolated from one another.

  14. A New Sail-Backed Styracosternan (Dinosauria: Ornithopoda) from the Early Cretaceous of Morella, Spain.

    Science.gov (United States)

    Gasulla, José Miguel; Escaso, Fernando; Narváez, Iván; Ortega, Francisco; Sanz, José Luis

    2015-01-01

    A new styracosternan ornithopod genus and species is here described based on a partial postcranial skeleton and an associated dentary tooth of a single specimen from the Arcillas de Morella Formation (Early Cretaceous, late Barremian) at the Morella locality, (Castellón, Spain). Morelladon beltrani gen. et sp. nov. is diagnosed by eight autapomorphic features. The set of autapomorphies includes: very elongated and vertical neural spines of the dorsal vertebrae, midline keel on ventral surface of the second to fourth sacral vertebrae restricted to the anterior half of the centrum, a posterodorsally inclined medial ridge on the postacetabular process of the ilium that meets its dorsal margin and distal end of the straight ischial shaft laterally expanded, among others. Phylogenetic analyses reveal that the new Iberian form is more closely related to its synchronic and sympatric contemporary European taxa Iguanodon bernissartensis and Mantellisaurus atherfieldensis, known from Western Europe, than to other Early Cretaceous Iberian styracosternans (Delapparentia turolensis and Proa valdearinnoensis). The recognition of Morelladon beltrani gen. et sp. nov. indicates that the Iberian Peninsula was home to a highly diverse medium to large bodied styracosternan assemblage during the Early Cretaceous.

  15. A complete skull of an early cretaceous sauropod and the evolution of advanced titanosaurians.

    Directory of Open Access Journals (Sweden)

    Hussam Zaher

    Full Text Available Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought.

  16. A nearly modern amphibious bird from the Early Cretaceous of northwestern China.

    Science.gov (United States)

    You, Hai-Lu; Lamanna, Matthew C; Harris, Jerald D; Chiappe, Luis M; O'connor, Jingmai; Ji, Shu-An; Lü, Jun-Chang; Yuan, Chong-Xi; Li, Da-Qing; Zhang, Xing; Lacovara, Kenneth J; Dodson, Peter; Ji, Qiang

    2006-06-16

    Three-dimensional specimens of the volant fossil bird Gansus yumenensis from the Early Cretaceous Xiagou Formation of northwestern China demonstrate that this taxon possesses advanced anatomical features previously known only in Late Cretaceous and Cenozoic ornithuran birds. Phylogenetic analysis recovers Gansus within the Ornithurae, making it the oldest known member of the clade. The Xiagou Formation preserves the oldest known ornithuromorph-dominated avian assemblage. The anatomy of Gansus, like that of other non-neornithean (nonmodern) ornithuran birds, indicates specialization for an amphibious life-style, supporting the hypothesis that modern birds originated in aquatic or littoral niches.

  17. Low ecological disparity in Early Cretaceous birds

    Science.gov (United States)

    Mitchell, Jonathan S.; Makovicky, Peter J.

    2014-01-01

    Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (= pygostylians) from the Jehol Biota (≈ 125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem. PMID:24870044

  18. Early Cretaceous paleomagnetic results from Marie Byrd Land, West Antarctica: Implications for the Weddellia collage of crustal blocks

    Science.gov (United States)

    Divenere, Vic; Kent, Dennis V.; Dalziel, Ian W. D.

    1995-05-01

    A new approximately 117 Ma paleomagnetic pole has been defined from the study of volcanic and plutonic rocks from the eastern portion Marie Byrd Land (MBL). The new pole (185.6 deg E/56.8 deg S, A(sub 95) = 8.7 deg) implies that the eastern portion of MBL was an integral part of Weddellia, which included the ancestral Antarctic Peninsula, Thurston Island, and Ellsworth-Whitmore Mountains blocks of West Antarctica. This pole is generally similar to a approximately 125 Ma pole from Thurston Island. Both poles call for major clockwise rotation and poleward motion of eastern MBL and Thurston Island between the Early Cretaceous (125-117 Ma) and the mid-Cretaceous (110-100 Ma). We propose that in the Early Cretaceous, eastern MBL and the Eastern Province of New Zealand were part of a continuous active Pacific margin of Gondwana, connecting with the Antarctic Peninsula, and distinct from western MBL, the Western Province of New Zealand, and North Victoria Land. These western terranes are thought to have accreted to Gondwana in the Devonian. Eastern MBL and the Eastern Province of New Zealand amalgamated with western MBL and the Western Province of New Zealand by the mid-Cretaceous. Major Early Cretaceous motions of the Weddellia blocks postdate the estimated initiation of seafloor spreading in the Weddell Sea and therefore may be the result of plate reorganization during the Cretaceous Quiet Zone.

  19. Paleomagnetic tests for tectonic reconstructions of the Late Jurassic-Early Cretaceous Woyla Group, Sumatra

    Science.gov (United States)

    Advokaat, Eldert; Bongers, Mayke; van Hinsbergen, Douwe; Rudyawan, Alfend; Marshal, Edo

    2017-04-01

    SE Asia consists of multiple continental blocks, volcanic arcs and suture zones representing remnants of closing ocean basins. The core of this mainland is called Sundaland, and was formed by accretion of continental and arc fragments during the Paleozoic and Mesozoic. The former positions of these blocks are still uncertain but reconstructions based on tectonostratigraphic, palaeobiogeographic, geological and palaeomagnetic studies indicate the continental terranes separated from the eastern margin of Gondwana. During the mid-Cretaceous, more continental and arc fragments accreted to Sundaland, including the intra-oceanic Woyla Arc now exposed on Sumatra. These continental fragments were derived from Australia, but the former position of the Woyla Arc is unconstrained. Interpretations on the former position of the Woyla Arc fall in two end-member groups. The first group interprets the Woyla Arc to be separated from West Sumatra by a small back-arc basin. This back arc basin opened in the Late Jurassic, and closed mid-Cretaceous, when the Woyla Arc collided with West Sumatra. The other group interprets the Woyla Arc to be derived from Gondwana, at a position close to the northern margin of Greater India in the Late Jurassic. Subsequently the Woyla Arc moved northwards and collided with West Sumatra in the mid-Cretaceous. Since these scenarios predict very different plate kinematic evolutions for the Neotethyan realm, we here aim to place paleomagnetic constraints on paleolatitudinal evolution of the Woyla Arc. The Woyla Arc consists mainly of basaltic to andesitic volcanics and dykes, and volcaniclastic shales and sandstones. Associated limestones with volcanic debris are interpreted as fringing reefs. This assemblage is interpreted as remnants of an Early Cretaceous intra-oceanic arc. West Sumatra exposes granites, surrounded by quartz sandstones, shales and volcanic tuffs. These sediments are in part metamorphosed. This assemblage is interpreted as a Jurassic-Early

  20. EVOLUTION. A four-legged snake from the Early Cretaceous of Gondwana.

    Science.gov (United States)

    Martill, David M; Tischlinger, Helmut; Longrich, Nicholas R

    2015-07-24

    Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana. Copyright © 2015, American Association for the Advancement of Science.

  1. Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.

    Science.gov (United States)

    Jacobs, L L; Winkler, D A; Murry, P A

    1989-07-01

    Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribosphenic molars, which characterize marsupials and placentals, the two most abundant and diverse extant groups of mammals. A tooth from the Early Cretaceous (110 million years before present) of Texas tests previous predictions (based on lower molars) of the morphology of upper molars in early tribosphenic dentitions. The lingual cusp (protocone) is primitively without shear facets, as expected, but the cheek side of the tooth is derived (advanced) in having distinctive cusps along the margin. The tooth, although distressingly inadequate to define many features of the organism, demonstrates unexpected morphological diversity at a strategic stage of mammalian evolution and falsifies previous claims of the earliest occurrence of true marsupials.

  2. A diplodocid sauropod survivor from the early cretaceous of South America.

    Directory of Open Access Journals (Sweden)

    Pablo A Gallina

    Full Text Available Diplodocids are by far the most emblematic sauropod dinosaurs. They are part of Diplodocoidea, a vast clade whose other members are well-known from Jurassic and Cretaceous strata in Africa, Europe, North and South America. However, Diplodocids were never certainly recognized from the Cretaceous or in any other southern land mass besides Africa. Here we report a new sauropod, Leikupal laticauda gen. et sp. nov., from the early Lower Cretaceous (Bajada Colorada Formation of Neuquén Province, Patagonia, Argentina. This taxon differs from any other sauropod by the presence of anterior caudal transverse process extremely developed with lateroventral expansions reinforced by robust dorsal and ventral bars, very robust centroprezygapophyseal lamina in anterior caudal vertebra and paired pneumatic fossae on the postzygapophyses in anterior-most caudal vertebra. The phylogenetic analyses support its position not only within Diplodocidae but also as a member of Diplodocinae, clustering together with the African form Tornieria, pushing the origin of Diplodocoidea to the Middle Jurassic or even earlier. The new discovery represents the first record of a diplodocid for South America and the stratigraphically youngest record of this clade anywhere.

  3. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis.

    Science.gov (United States)

    Pan, Yanhong; Zheng, Wenxia; Moyer, Alison E; O'Connor, Jingmai K; Wang, Min; Zheng, Xiaoting; Wang, Xiaoli; Schroeter, Elena R; Zhou, Zhonghe; Schweitzer, Mary H

    2016-12-06

    Microbodies associated with feathers of both nonavian dinosaurs and early birds were first identified as bacteria but have been reinterpreted as melanosomes. Whereas melanosomes in modern feathers are always surrounded by and embedded in keratin, melanosomes embedded in keratin in fossils has not been demonstrated. Here we provide multiple independent molecular analyses of both microbodies and the associated matrix recovered from feathers of a new specimen of the basal bird Eoconfuciusornis from the Early Cretaceous Jehol Biota of China. Our work represents the oldest ultrastructural and immunological recognition of avian beta-keratin from an Early Cretaceous (∼130-Ma) bird. We apply immunogold to identify protein epitopes at high resolution, by localizing antibody-antigen complexes to specific fossil ultrastructures. Retention of original keratinous proteins in the matrix surrounding electron-opaque microbodies supports their assignment as melanosomes and adds to the criteria employable to distinguish melanosomes from microbial bodies. Our work sheds new light on molecular preservation within normally labile tissues preserved in fossils.

  4. Inversion of the Erlian Basin (NE China) in the early Late Cretaceous: Implications for the collision of the Okhotomorsk Block with East Asia

    Science.gov (United States)

    Guo, Zhi-Xin; Shi, Yuan-Peng; Yang, Yong-Tai; Jiang, Shuan-Qi; Li, Lin-Bo; Zhao, Zhi-Gang

    2018-04-01

    A significant transition in tectonic regime from extension to compression occurred throughout East Asia during the mid-Cretaceous and has stimulated much attention. However, the timing and driving mechanisms of the transition remain disputed. The Erlian Basin, a giant late Mesozoic intracontinental petroliferous basin located in the Inner Mongolia, Northeast China, contains important sedimentary and structural records related to the mid-Cretaceous compressional event. The stratigraphical, sedimentological and structural analyses reveal that a NW-SE compressional inversion occurred in the Erlian Basin between the depositions of the Lower Cretaceous Saihan and Upper Cretaceous Erlian formations, causing intense folding of the Saihan Formation and underlying strata, and the northwestward migration of the depocenters of the Erlian Formation. Based on the newly obtained detrital zircon U-Pb data and previously published paleomagnetism- and fossil-based ages, the Saihan and Erlian formations are suggested as latest Aptian-Albian and post-early Cenomanian in age, respectively, implying that the inversion in the Erlian Basin occurred in the early Late Cretaceous (Cenomanian time). Apatite fission-track thermochronological data record an early Late Cretaceous cooling/exhuming event in the basin, corresponding well with the aforementioned sedimentary, structural and chronological analyses. Combining with the tectono-sedimentary evolutions of the neighboring basins of the Erlian Basin, we suggest that the early Late Cretaceous inversional event in the Erlian Basin and the large scale tectonic transition in East Asia shared the common driving mechanism, probably resulting from the Okhotomorsk Block-East Asia collisional event at about 100-89 Ma.

  5. Early Cretaceous climate change (Hauterivian - Early Aptian): Learning from the past to prevent modern reefs decline

    Science.gov (United States)

    Godet, Alexis; Bodin, Stéphane; Adatte, Thierry; Föllmi, Karl B.

    2010-05-01

    In the last decades, the anthropogenic increase pCO2atm has been considered as one of the main contributors for the decline of modern coral reefs, and nearly 60% of these marine ecosystems are presently threatened (Bryant et al., 1998). Interactions between anthropogenic change and reef growth can, however, not be reduced to a single factor, and it is essential to look at the Earth's history to understand and counterbalance. During the Early Cretaceous, enhanced pCO2atm may have been responsible, at least in part, for the demise of the carbonate platform along the northern margin of the Tethys through climatic feedback mechanisms. From the Hauterivian to the Early Aptian, increased rainfalls are documented from the clay-mineral association, by a change from a smectite-dominated (most of the Hauterivian), to a kaolinite-dominated assemblage (latest Hauterivian up to the early Late Barremian). This switch is dated to the Pseudothurmannia ohmi ammonozone in the Vocontian Trough of southeastern France (Angles section, Godet et al., 2008). It is immediately followed in time by major nutrient input, as is illustrated by the substantial increase in phosphorus accumulation rates (PAR), not only in this section, but also in the Ultrahelvetic area of Switzerland and in the Umbria-Marche basin of Italy (Bodin et al., 2006). On the other hand, the remainder of the Hauterivian is characterized by PAR mean values characteristic of mesotrophic conditions, whereas the Late Barremian witnesses the return to oligotrophic environments (lower PAR values). Synchronously, these perturbations are mirrored on the platform by changes in the type of carbonate ecosystems. Indeed, a stronger continental runoff, and a subsequent input in the oceanic domain of nutrients (e.g., phosphorus) and clastic material modified marine palaeoenvironmental conditions and triggered changes in ecosystems. A unique archive of the Early Cretaceous carbonate platform is preserved in the Helvetic Alps, where the

  6. The evolution of Early Cretaceous shallow-water carbonate platforms in times of frequent oceanic anoxia

    Science.gov (United States)

    Föllmi, Karl; Morales, Chloé; Stein, Melody; Bonvallet, Lucie; Antoine, Pictet

    2014-05-01

    The Early Cretaceous greenhouse world witnessed different episodes of pronounced paleoenvironmental change, which were associated with substantial shifts in the global carbon and phosphorus cycles. They impacted the growth of carbonate platforms on the shelf, lead to the development of widespread anoxic zones in deeper water, and influenced evolutionary pattern in general. A first phase (the Weissert episode) occurred during the Valanginian, which is indicated by a positive shift in the carbon-isotope record, widespread platform drowning, and evolutionary change. The spreading of anoxic conditions was limited to marginal basins and the positive change in carbon isotopes is linked to the storage of vegetal carbon in coal deposits rather than to organic matter in marine sediments. A second phase (the Faraoni episode) of important environmental change is observed near the end of the Hauterivian, where short and repetitive episodes of anoxia occurred in the Tethyan realm. This phase goes along with a decline in platform growth, but is barely documented in the carbon-isotope record. A third and most important episode (the Selli episode) took place in the early Aptian, and resulted in the widespread deposition of organic-rich sediments, a positive carbon-isotope excursion and the disappearance of Urgonian-type carbonate platforms. Often considered to represent short and singular events, these Early Cretaceous phases are in fact preceded by periods of warming, increased continental weathering, and increased nutrient throughput. These preludes in environmental change are important in that they put these three Early Cretaceous episodes into a longer-term, historic perspective, which allow us to better understand the mechanisms leading to these periods of pronounced global change.

  7. Early Cretaceous ribbed aptychi - a proposal for a new systematic classification

    Czech Academy of Sciences Publication Activity Database

    Měchová, L.; Vašíček, Zdeněk; Houša, Václav

    2010-01-01

    Roč. 85, č. 2 (2010), s. 219-274 ISSN 1214-1119 Institutional research plan: CEZ:AV0Z30860518; CEZ:AV0Z30130516 Keywords : Late Jurassic * J/K boundary * Early Cretaceous * aptychi Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.202, year: 2010 http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=6&SID=Z1P9aiFnKb7Ka2PiKmk&page=1&doc=2

  8. Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: An overview

    Science.gov (United States)

    Cavin, L.; Tong, H.; Boudad, L.; Meister, C.; Piuz, A.; Tabouelle, J.; Aarab, M.; Amiot, R.; Buffetaut, E.; Dyke, G.; Hua, S.; Le Loeuff, J.

    2010-07-01

    Fossils of vertebrates have been found in great abundance in the continental and marine early Late Cretaceous sediments of Southeastern Morocco for more than 50 years. About 80 vertebrate taxa have so far been recorded from this region, many of which were recognised and diagnosed for the first time based on specimens recovered from these sediments. In this paper, we use published data together with new field data to present an updated overview of Moroccan early Late Cretaceous vertebrate assemblages. The Cretaceous series we have studied encompasses three Formations, the Ifezouane and Aoufous Formations, which are continental and deltaic in origin and are often grouped under the name "Kem Kem beds", and the Akrabou Formation which is marine in origin. New field observations allow us to place four recognised vertebrate clusters, corresponding to one compound assemblage and three assemblages, within a general temporal framework. In particular, two ammonite bioevents characterise the lower part of the Upper Cenomanian ( Calycoceras guerangeri Zone) at the base of the Akrabou Formation and the upper part of the Lower Turonian ( Mammites nodosoides Zone), that may extend into the Middle Turonian within the Akrabou Formation, and allow for more accurate dating of the marine sequence in the study area. We are not yet able to distinguish a specific assemblage that characterises the Ifezouane Formation when compared to the similar Aoufous Formation, and as a result we regard the oldest of the four vertebrate "assemblages" in this region to be the compound assemblage of the "Kem Kem beds". This well-known vertebrate assemblage comprises a mixture of terrestrial (and aerial), freshwater and brackish vertebrates. The archosaur component of this fauna appears to show an intriguingly high proportion of large-bodied carnivorous taxa, which may indicate a peculiar trophic chain, although collecting biases alter this palaeontological signal. A small and restricted assemblage, the

  9. Early Cretaceous Archaeamphora is not a carnivorous angiosperm

    Directory of Open Access Journals (Sweden)

    William Oki Wong

    2015-05-01

    Full Text Available Archaeamphora longicervia H.Q.Li was described as an herbaceous, Sarraceniaceae-like pitcher plant from the mid Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Here, a re-investigation of A. longicervia specimens from the Yixian Formation provides new insights into its identity and the morphology of pitcher plants claimed by Li. We demonstrate that putative pitchers of Archaeamphora are insect-induced leaf galls that consist of three components: (1 an innermost larval chamber with a distinctive outer wall; (2 an intermediate zone of nutritive tissue; and (3 an outermost zone of sclerenchyma. Archaeamphora is not a carnivorous, Sarraceniaceae-like angiosperm, but represents insect-galled leaves of the formerly reported gymnosperm Liaoningocladus boii G.Sun et al. from the Yixian Formation.

  10. Post-early cretaceous landform evolution along the western margin of the banca~nnia trough, western nsw

    Science.gov (United States)

    Gibson, D.L.

    2000-01-01

    Previously undated post-Devonian sediments outcropping north of Fowlers Gap station near the western margin of the Bancannia Trough are shown by plant macro- and microfossil determinations to be of Early Cretaceous (most likely Neocomian and/or Aptian) age, and thus part of the Eromanga Basin. They are assigned to the previously defined Telephone Creek Formation. Study of the structural configuration of this unit and the unconformably underlying Devonian rocks suggests that the gross landscape architecture of the area results from post-Early Cretaceous monoclinal folding along blind faults at the western margin of the trough, combined with the effects of differential erosion. This study shows that, while landscape evolution in the area has been dynamic, the major changes that have occurred are on a geological rather than human timescale.

  11. Early Cretaceous trypanosomatids associated with fossil sand fly larvae in Burmese amber

    Directory of Open Access Journals (Sweden)

    George Poinar Jr

    2007-08-01

    Full Text Available Early Cretaceous flagellates with characters typical of trypanosomatids were found in the gut of sand fly larvae, as well as in surrounding debris, in Burmese amber. This discovery supports a hypothesis in which free-living trypanosomatids could have been acquired by sand fly larvae in their feeding environment and then carried transtadially into the adult stage. At some point in time, specific genera were introduced into vertebrates, thus establishing a dixenous life cycle.

  12. Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.

    OpenAIRE

    Jacobs, L L; Winkler, D A; Murry, P A

    1989-01-01

    Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribo...

  13. Pinaceae-like reproductive morphology in Schizolepidopsis canicularis sp. nov. from the Early Cretaceous (Aptian-Albian) of Mongolia.

    Science.gov (United States)

    Leslie, Andrew B; Glasspool, Ian; Herendeen, Patrick S; Ichinnorov, Niiden; Knopf, Patrick; Takahashi, Masamichi; Crane, Peter R

    2013-12-01

    Seed cone scales assigned to the genus Schizolepidopsis are widespread in Late Triassic to Cretaceous Eurasian deposits. They have been linked to the conifer family Pinaceae based on associated vegetative remains, but their exact affinities are uncertain. Recently discovered material from the Early Cretaceous of Mongolia reveals important new information concerning Schizolepidopsis cone scales and seeds, and provides support for a relationship between the genus and extant Pinaceae. Specimens were collected from Early Cretaceous (probable Aptian-Albian) lignite deposits in central Mongolia. Lignite samples were disaggregated, cleaned in hydrofluoric acid, and washed in water. Specimens were selected for further study using light and electron microscopy. Schizolepidopsis canicularis seed cones consist of loosely arranged, bilobed ovulate scales subtended by a small bract. A single inverted seed with an elongate micropyle is borne on each lobe of the ovulate scale. Each seed has a wing formed by the separation of the adaxial surface of the ovulate scale. Schizolepidopsis canicularis produced winged seeds that formed in a manner that is unique to Pinaceae among extant conifers. We do not definitively place this species in Pinaceae pending more complete information concerning its pollen cones and vegetative remains. Nevertheless, this material suggests that Schizolepidopsis may be important for understanding the early evolution of Pinaceae, and may potentially help reconcile the appearance of the family in the fossil record with results based on phylogenetic analyses of molecular data.

  14. Cretaceous paleogeography and depositional cycles of western South America

    Science.gov (United States)

    Macellari, C. E.

    The western margin of South America was encroached upon by a series of marine advances that increased in extent from the Early Cretaceous to a maximum in the early Late Cretaceous for northern South America (Venezuela to Peru). In southern South America, however, the area covered by the marine advances decreased from a maximum in the Early Cretaceous to a minimum during mid-Cretaceous time, followed by a widespread advance at the end of the period. A series of unconformity-bounded depositional cycles was recognized in these sequences: five cycles in northern South America, and six (but not exactly equivalent) cycles in the Cretaceous back-arc basins of southern South America (Neuquén and Austral, or Magallanes, Basins). Both widespread anoxic facies and maximum flooding of the continent in northern South America coincide in general terms with recognized global trends, but this is not the case in southern South America. Here, anoxic facies are restricted to the Lower Cretaceous and seem to be controlled by local aspects of the basin evolution and configuration. The contrasts observed between northern and southern South America can be explained by differences in tectonic setting and evolution. To the north, sediments were deposited around the tectonically stable Guayana-Brazilian Massifs, and thus registered global "signals" such as anoxic events and major eustatic changes. The southern portion of the continent, on the contrary, developed in an active tectonic setting. Here, the mid-Cretaceous Peruvian Orogeny overprinted, to a large extent, world-wide trends and only the earliest and latest Cretaceous conform to global depositional patterns.

  15. A gravid lizard from the Cretaceous of China and the early history of squamate viviparity

    Science.gov (United States)

    Wang, Yuan; Evans, Susan E.

    2011-09-01

    Although viviparity is most often associated with mammals, roughly one fifth of extant squamate reptiles give birth to live young. Phylogenetic analyses indicate that the trait evolved more than 100 times within Squamata, a frequency greater than that of all other vertebrate clades combined. However, there is debate as to the antiquity of the trait and, until now, the only direct fossil evidence of squamate viviparity was in Late Cretaceous mosasauroids, specialised marine lizards without modern equivalents. Here, we document viviparity in a specimen of a more generalised lizard, Yabeinosaurus, from the Early Cretaceous of China. The gravid female contains more than 15 young at a level of skeletal development corresponding to that of late embryos of living viviparous lizards. This specimen documents the first occurrence of viviparity in a fossil reptile that was largely terrestrial in life, and extends the temporal distribution of the trait in squamates by at least 30 Ma. As Yabeinosaurus occupies a relatively basal position within crown-group squamates, it suggests that the anatomical and physiological preconditions for viviparity arose early within Squamata.

  16. The conchostracan subgenus Orthestheria (Migransia) from the Tacuarembó Formation (Late Jurassic-?Early Cretaceous, Uruguay) with notes on its geological age

    Science.gov (United States)

    Yanbin, Shen; Gallego, Oscar F.; Martínez, Sergio

    2004-04-01

    Conchostracans from the Tacuarembó Formation s.s. of Uruguay are reassigned to the subgenus Orthestheria (Migransia) Chen and Shen. They show more similarities to genera of Late Jurassic age in the Congo Basin and China than to those of Early Cretaceous age. On the basis of the character of the conchostracans, we suggest that the Tacuarembó Formation is unlikely to be older than Late Jurassic. It is probably Kimmeridgian, but an Early Cretaceous age cannot be excluded. This finding is consistent with isotopic dating of the overlying basalts, as well as the age range of recently described fossil freshwater sharks.

  17. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution

    Science.gov (United States)

    Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Cui, Jianjun; Chen, Xuanhua; Zhang, Shuanhong; Miao, Laicheng; Li, Jianhua; Shi, Wei; Li, Zhenhong; Huang, Shiqi; Li, Hailong

    2015-12-01

    The basic tectonic framework of continental East Asia was produced by a series of nearly contemporaneous orogenic events in the late Middle Jurassic to Early Cretaceous. Commonly, the Late Mesozoic orogenic processes were characterized by continent-continent collision, large-scale thrusting, strike-slip faulting and intense crustal shortening, crustal thickening, regional anatexis and metamorphism, followed by large-scale lithospheric extension, rifting and magmatism. To better understand the geological processes, this paper reviews and synthesizes existing multi-disciplinary geologic data related to sedimentation, tectonics, magmatism, metamorphism and geochemistry, and proposes a two-stage tectono-thermal evolutionary history of East Asia during the late Middle Jurassic to Early Cretaceous (ca. 170-120 Ma). In the first stage, three orogenic belts along the continental margins were formed coevally at ca. 170-135 Ma, i.e., the north Mongol-Okhotsk orogen, the east paleo-Pacific coastal orogen, and the west Bangong-Nujiang orogen. Tectonism related to the coastal orogen caused extensive intracontinental folding and thrusting that resulted in a depositional hiatus in the Late Jurassic, as well as crustal anatexis that generated syn-kinematic granites, adakites and migmatites. The lithosphere of the East Asian continent was thickened, reaching a maximum during the latest Jurassic or the earliest Cretaceous. In the second stage (ca. 135-120 Ma), delamination of the thickened lithosphere resulted in a remarkable (>120 km) lithospheric thinning and the development of mantle-derived magmatism, mineralization, metamorphic core complexes and rift basins. The Middle Jurassic-Early Cretaceous subduction of oceanic plates (paleo-Pacific, meso-Tethys, and Mongol-Okhotsk) and continent-continent collision (e.g. Lhasa and Qiangtang) along the East Asian continental margins produced broad coastal and intracontinental orogens. These significant tectonic activities, marked by

  18. A basal thunnosaurian from Iraq reveals disparate phylogenetic origins for Cretaceous ichthyosaurs

    Science.gov (United States)

    Fischer, Valentin; Appleby, Robert M.; Naish, Darren; Liston, Jeff; Riding, James B.; Brindley, Stephen; Godefroit, Pascal

    2013-01-01

    Cretaceous ichthyosaurs have typically been considered a small, homogeneous assemblage sharing a common Late Jurassic ancestor. Their low diversity and disparity have been interpreted as indicative of a decline leading to their Cenomanian extinction. We describe the first post-Triassic ichthyosaur from the Middle East, Malawania anachronus gen. et sp. nov. from the Early Cretaceous of Iraq, and re-evaluate the evolutionary history of parvipelvian ichthyosaurs via phylogenetic and cladogenesis rate analyses. Malawania represents a basal grade in thunnosaurian evolution that arose during a major Late Triassic radiation event and was previously thought to have gone extinct during the Early Jurassic. Its pectoral morphology appears surprisingly archaic, retaining a forefin architecture similar to that of its Early Jurassic relatives. After the initial latest Triassic radiation of early thunnosaurians, two subsequent large radiations produced lineages with Cretaceous representatives, but the radiation events themselves are pre-Cretaceous. Cretaceous ichthyosaurs therefore include distantly related lineages, with contrasting evolutionary histories, and appear more diverse and disparate than previously supposed. PMID:23676653

  19. Inter-Basin Water Transfer Impact Assessment on Environment of Pennar to Cauvery Link Canal

    Science.gov (United States)

    Rajesh, S. V. J. S. S.; Prakasa Rao, B. S.; Niranjan, K.

    2016-07-01

    Owing to its striking differences in its climatic conditions, India is frequently facing with extremities such as heavy rain fall in some regions where as some other regions endure little rainfall. The regions receiving heavy precipitation are facing floods resulting in huge amount of water runs into the sea. Contrarily, the regions, without adequate rainfall are suffering from persistent droughts. To overcome such disparities in the distribution of water, National Water Development Agency (NWDA) put a proposal to transfer water through link canals between rivers. The current study is limited to two river basins, Pennar and Cauvery. The present study is confined to Pennar (somasila) to Cauvery (Grand Anicut) whose length is 483 km. The study consist of10 km. buffer on either side of the canal and it occupies 17,215.68 sq. km. out of these 10,105.96 sq.km.is proposed command area which falls in Chittoor, Chengalpattu, North Arcott and South Arcott districts. Using IRS-P6, LISS-III data the characteristics of the rocks, lineaments, drainage, settlements and land use/land cover are mapped for better analysis and the environmental impact. The study indicated that Current fallow land of 5340.14 km2 and 6307.98 km2 of cropland will be brought under cultivation which is more than what is NWDA estimated land that will be benefited. The canal will provide water for irrigation and drinking to 4597 villages and 244 villages to be rehabilitated. 119 culverts/canal bridges and 24 aqueducts have to be constructed across the canal.

  20. Early Cretaceous I-type granites in the Tengchong terrane: New constraints on the late Mesozoic tectonic evolution of southwestern China

    Directory of Open Access Journals (Sweden)

    Yi Fang

    2018-03-01

    Full Text Available The Early Cretaceous granitoids that are widespread in the Tengchong terrane of Southwest China play a critical role in understanding the tectonic framework associated with the Tethyan oceans. In this study, we present a detailed description of zircon U–Pb ages, whole-rock geochemistry and Hf isotopes for the Laoxiangkeng pluton in the eastern Tengchong terrane and elucidate their petrogenesis and geodynamic implications. Zircon U–Pb dating of the Laoxiangkeng pluton yields ages of 114 ± 1 Ma and 115 ± 1 Ma, which imply an Early Cretaceous magmatic event. The Laoxiangkeng pluton enriched in Si and Na, is calc-alkaline and metaluminous, and has the characteristics of highly fractionated I-type granites. Zircons from the pluton have calculated εHf(t values of −12.7 to −3.7 and two-stage model ages of 1327–1974 Ma, respectively, indicating a mixed source of partial melting of Paleo-Neoproterozoic crust-derived compositions with some inputs of mantle-derived magmas. By integrating all available data for the regional tectonic evolution of the eastern Tethys tectonic domain, we conclude that the Early Cretaceous magmatism in the Tengchong terrane was produced by the northeastward subduction of the Meso-Tethyan Bangong–Nujiang Ocean.

  1. New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography

    Science.gov (United States)

    Poropat, Stephen F.; Mannion, Philip D.; Upchurch, Paul; Hocknull, Scott A.; Kear, Benjamin P.; Kundrát, Martin; Tischler, Travis R.; Sloan, Trish; Sinapius, George H. K.; Elliott, Judy A.; Elliott, David A.

    2016-01-01

    Australian dinosaurs have played a rare but controversial role in the debate surrounding the effect of Gondwanan break-up on Cretaceous dinosaur distribution. Major spatiotemporal gaps in the Gondwanan Cretaceous fossil record, coupled with taxon incompleteness, have hindered research on this effect, especially in Australia. Here we report on two new sauropod specimens from the early Late Cretaceous of Queensland, Australia, that have important implications for Cretaceous dinosaur palaeobiogeography. Savannasaurus elliottorum gen. et sp. nov. comprises one of the most complete Cretaceous sauropod skeletons ever found in Australia, whereas a new specimen of Diamantinasaurus matildae includes the first ever cranial remains of an Australian sauropod. The results of a new phylogenetic analysis, in which both Savannasaurus and Diamantinasaurus are recovered within Titanosauria, were used as the basis for a quantitative palaeobiogeographical analysis of macronarian sauropods. Titanosaurs achieved a worldwide distribution by at least 125 million years ago, suggesting that mid-Cretaceous Australian sauropods represent remnants of clades which were widespread during the Early Cretaceous. These lineages would have entered Australasia via dispersal from South America, presumably across Antarctica. High latitude sauropod dispersal might have been facilitated by Albian–Turonian warming that lifted a palaeoclimatic dispersal barrier between Antarctica and South America. PMID:27763598

  2. Lower Cretaceous Puez key-section in the Dolomites - towards the mid-Cretaceous super-greenhouse

    Science.gov (United States)

    Lukeneder, A.; Halásová, E.; Rehákova, D.; Józsa, Š.; Soták, J.; Kroh, A.; Jovane, L.; Florindo, F.; Sprovieri, M.; Giorgioni, M.; Lukeneder, S.

    2012-04-01

    Investigations on different fossil groups in addition to isotopic, paleomagnetic and geochemical analysis are combined to extract the Early Cretaceous history of environmental changes, as displayed by the sea level and climate changes. Results on biostratigraphy are integrated with other dating methods as magnetostraigraphy, correlation and cyclostratigraphy. The main investigation topics of the submitted project within the above-described framework are the biostratigraphic (Lukeneder and Aspmair, 2006, 2012), palaeoecological (Lukeneder, 2008, 2012), palaeobiogeographic, lithostratigraphic (Lukeneder, 2010, 2011), cyclostratigraphic and magnetostratigraphic development of the Early Cretaceous in the Puez area. The main sections occur in expanded outcrops located on the southern margin of the Puez Plateau, within the area of the Puez-Geisler Natural Park, in the northern part of the Dolomites (South Tyrol, North Italy). The cephalopod, microfossil and nannofossil faunas and floras from the marly limestones to marls here indicates Hauterivian to Albian/Cenomanian age. Oxygen isotope values from the Lower Cretaceous Puez Formation show a decreasing trend throughout the log, from -1.5‰ in the Hauterivian to -4.5‰ in the Albian/Cenomanian. The decreasing values mirror an increasing trend in palaeotemperatures from ~ 15-18°C in the Hauterivian up to ~25-30 °C in the Albian/Cenomanian. The trend probably indicates the positive shift in temperature induced by the well known Mid Cretaceous Ocean warming (e.g., Super-Greenhouse). The cooperative project (FWF project P20018-N10; 22 international scientists): An integrative high resolution project. Macro- and microfossils, isotopes, litho-, cyclo-, magneto-and biostratigraphy as tools for investigating the Lower Cretaceous within the Dolomites (Southern Alps, Northern Italy) -The Puez area as a new key region of the Tethyan Realm), is on the way since 2008 by the Natural History Museum in Vienna and the 'Naturmuseum S

  3. Apatite fission-track thermochronometric constraints on the exhumation and evolution of the southeastern Indian (Tamil Nadu) passive margin and the role of structural inheritance

    Science.gov (United States)

    De Grave, Johan; Glorie, Stijn; Singh, Tejpal; Van Ranst, Gerben; Nachtergaele, Simon

    2017-04-01

    After rifting from Gondwana in the Late Jurassic - Early Cretaceous, and subsequent opening of the Indian Ocean basin, the continental margins of India developed into typical passive margins. Extensional tectonic forces and thermal subsidence gave rise to the formation of both on-shore and off-shore basins along the southeastern passive margin of the Indian continent, along the Tamil Nadu coast. There, basins such as the Cauvery and Krishna-Godavari basin, accumulated Meso- and Cenozoic (Early Cretaceous to recent) detrital sediments coming off the rifted blocks and the Tamil Nadu hinterland. In places, deep rift basins have accumulated up to over 3000 m of sediments. The continental basement of Tamil Nadu is chiefly composed of metamorphic rocks of the Archean to Palaeoproterozoic Eastern Dharwar Craton and the coeval Southern Granulite Terrane (e.g. Peucat et al., 2013). Several crustal scale shear zones crosscut this assemblage and at least some are considered to represent Gondwanan sutures (Santosh et al., 2012). Smaller, younger granitoid plutons intrude the basement at several locations and most of these are of Late Neoproterozoic age (Glorie et al., 2014). In this work metamorphic basements rocks and the younger granitoids were sampled for a apatite fission-track (AFT) thermochronometric study. A North-South profile from Chennai to Thanjavur mainly transects the Salem block of the Southern Granulite Terrane, and crosscuts several crustal scale shear zones, such as the Cauvery, Salem-Attur and Gangavalli shear zones. Apatites from over 30 samples were used in this study. AFT ages all range between about 190 and 120 Ma (Jurassic - Early Cretaceous). These mainly represent the slow, shallow exhumation of the basement during the rift and early drift phase of the Indian plate from Gondwana. AFT mean track lengths vary between 11 and 13 µm and are typical of slowly exhumed basement. Thermal history modelling (using the QTQt software by Gallagher, 2012) confirms

  4. Early and late cretaceous magmatism from Sao Sebastiao island (SE-Brazil): geochemistry and petrology

    International Nuclear Information System (INIS)

    Bellieni, G.; Cavazzini, G.; Montes-Lauar, C.R.; Melfi, A.J.; Pacca, I.G.; De Min, A.; Piccirillo, E.M.

    1990-01-01

    The Sao Sebastiao island (236 km 2 ), located along the coast of the Sao Paulo State (Southern Brazil), is characterized by precambrian granitic affected by the Brasiliano tectonic-metamorphic cycle. This crystalline basement is intruded by Early Cretaceous (EC) sub alkaline basic and acid dykes, as well as by Late Cretaceous (LC) alkaline stocks (syenites) and dykes (basanite to phonolite). Geochemical, Sr-isotopic and mineral chemistry data point out that: EC-dykes reveal a basic-acid bimodal character, similar to that of the 'coeval' Parana basin flood volcanics; the acid dykes correspond, in composition, to the acid volcanics of the northern Parana basin: the EC-dykes can represent the eastern extension of the inland Santos-Rio de Janeiro dyke swarm, and LC alkaline stocks and dykes constitute distinct groups, characterized by different Sr-isotope initial ratios (syenites: av. 0.7052 and basanites + tephrites = av. 0.7045), which indicate that they are related to different time-integrated mantle source materials. (author)

  5. Micropaleontology and palaeoclimate during the early Cretaceous in the Lishu depression, Songliao basin, Northeast China

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2017-01-01

    Full Text Available Diverse and abundant microfossils, such as palynomorphs, algae and Ostracoda, were collected from lower Cretaceous strata of Lishu depression, located in southeastern Songliao basin, and were identified and classified in order to provide relevant, detailed records for paleoclimate research. The early Cretaceous vegetation and climate of southeastern Songliao basin have been inferred from the analysis of palynomorph genera, algae and Ostracoda of the LS1 and SW110 wells. The lower Cretaceous strata include, in ascending stratigraphic order, the Shahezi, Yingcheng and Denglouku formations. Palynological assemblages for each formation, based on biostratigraphic and statistical analyses, provide an assessment of their longitudinal variations. During deposition of the Shahezi Formation, the climate was mid-subtropical. Vegetation consisted of coniferous forest and herbage. During deposition of the Yingcheng Formation, the climate was south Asian tropical. Vegetation consisted mainly of coniferous forest and herbal shrub. In addition, fresh and saline non-marine water dominated the lacustrine setting during deposition of these formations. Deposition of the Denglouku Formation, however, occurred under a hot and dry tropical climate. The vegetation was mostly coniferous forest and lake waters became saline. Palaeoclimate variation is correlated by the lake level change and the development of sedimentary facies. Palaeoclimate contribute to the formation of hydrocarbon source rocks and reservoir.

  6. A new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds

    Directory of Open Access Journals (Sweden)

    Jiandong Huang

    2016-03-01

    Full Text Available Despite the increasing number of exceptional feathered fossils discovered in the Late Jurassic and Cretaceous of northeastern China, representatives of Ornithurae, a clade that includes comparatively-close relatives of crown clade Aves (extant birds and that clade, are still comparatively rare. Here, we report a new ornithurine species Changzuiornis ahgmi from the Early Cretaceous Jiufotang Formation. The new species shows an extremely elongate rostrum so far unknown in basal ornithurines and changes our understanding of the evolution of aspects of extant avian ecology and cranial evolution. Most of this elongate rostrum in Changzuiornis ahgmi is made up of maxilla, a characteristic not present in the avian crown clade in which most of the rostrum and nearly the entire facial margin is made up by premaxilla. The only other avialans known to exhibit an elongate rostrum with the facial margin comprised primarily of maxilla are derived ornithurines previously placed phylogenetically as among the closest outgroups to the avian crown clade as well as one derived enantiornithine clade. We find that, consistent with a proposed developmental shift in cranial ontogeny late in avialan evolution, this elongate rostrum is achieved through elongation of the maxilla while the premaxilla remains only a small part of rostral length. Thus, only in Late Cretaceous ornithurine taxa does the premaxilla begin to play a larger role. The rostral and postcranial proportions of Changzuiornis suggest an ecology not previously reported in Ornithurae; the only other species with an elongate rostrum are two marine Late Cretacous taxa interpreted as showing a derived picivorous diet.

  7. Taxonomic diversity dynamics of early cretaceous brachiopods and gastropods in the Azerbaijanian domains of the Lesser Caucasus (Neo-Tethys Ocean

    Directory of Open Access Journals (Sweden)

    Ruban Dmitry A.

    2014-01-01

    Full Text Available Palaeontological data available from the Azerbaijanian domains (Somkhit-Agdam, Sevan-Karabakh, and Miskhan-Kafan tectonic zones of the Lesser Caucasus permit reconstruction of the regional taxonomic diversity dynamics of two groups of Early Cretaceous marine benthic invertebrates. Stratigraphical ranges of 31 species and 14 genera of brachiopods and 40 species and 31 genera of gastropods are considered. The total number of species and genera of brachiopods was low in the Berriasian-Valanginian and then rose to peak in the Barremian. Then, the diversity declined in the Aptian, and brachiopods are not known regionally from the Albian. Gastropods appeared in the Hauterivian and experienced a strong radiation in the Barremian. The diversity of species and genera declined in the Aptian (with a minor radiation in the Middle Aptian, and no gastropods are reported from the Albian. Globally, the number of brachiopod genera remained stable through the Early Cretaceous, and the number of gastropod genera increased stepwise with the maximum in the Albian. The regional and global patterns of the diversity dynamics differed for the both groups of marine benthic invertebrates. The Barremian maximum of the taxonomic diversity coincided with the regional flourishing of reefal ecosystems. The taxonomic diversity dynamics of brachiopods in the Azerbaijanian domains of the Lesser Caucasus is very similar to those of the Northern Caucasus, which is an evidence of proximity of these regions during the Early Cretaceous.

  8. Origin of cretaceous phosphorites from the onshore of Tamil Nadu, India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Kessarkar, P.M.; Nagendra, R; Babu, E.V.S.S.K.

    Group in the onshore Cauvery basin. Nodules exhibit phosphatic nucleus encrusted by a chalky shell of carbonate. The nucleus of the nodules consists of light and dark coloured laminae, phosphate peloids/coated grains and detrital particles interspersed...

  9. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    Directory of Open Access Journals (Sweden)

    Michael P Donovan

    Full Text Available Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia.

  10. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    Science.gov (United States)

    Donovan, Michael P; Wilf, Peter; Labandeira, Conrad C; Johnson, Kirk R; Peppe, Daniel J

    2014-01-01

    Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg) boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma) in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia.

  11. Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya: Insights into the Neotethyan paleogeography and the India-Asia collision.

    Science.gov (United States)

    Ma, Yiming; Yang, Tianshui; Bian, Weiwei; Jin, Jingjie; Zhang, Shihong; Wu, Huaichun; Li, Haiyan

    2016-02-17

    To better understand the Neotethyan paleogeography, a paleomagnetic and geochronological study has been performed on the Early Cretaceous Sangxiu Formation lava flows, which were dated from ~135.1 Ma to ~124.4 Ma, in the Tethyan Himalaya. The tilt-corrected site-mean characteristic remanent magnetization (ChRM) direction for 26 sites is Ds = 296.1°, Is = -65.7°, ks = 51.7, α95 = 4.0°, corresponding to a paleopole at 5.9°S, 308.0°E with A95 = 6.1°. Positive fold and reversal tests prove that the ChRM directions are prefolding primary magnetizations. These results, together with reliable Cretaceous-Paleocene paleomagnetic data observed from the Tethyan Himalaya and the Lhasa terrane, as well as the paleolatitude evolution indicated by the apparent polar wander paths (APWPs) of India, reveal that the Tethyan Himalaya was a part of Greater India during the Early Cretaceous (135.1-124.4 Ma) when the Neotethyan Ocean was up to ~6900 km, it rifted from India sometime after ~130 Ma, and that the India-Asia collision should be a dual-collision process including the first Tethyan Himalaya-Lhasa terrane collision at ~54.9 Ma and the final India-Tethyan Himalaya collision at ~36.7 Ma.

  12. Exploring Early Angiosperm Fire Feedbacks using Coupled Experiments and Modelling Approaches to Estimate Cretaceous Palaeofire Behaviour

    Science.gov (United States)

    Belcher, Claire; Hudpsith, Victoria

    2016-04-01

    Using the fossil record we are typically limited to exploring linkages between palaeoecological changes and palaeofire activity by assessing the abundance of charcoals preserved in sediments. However, it is the behaviour of fires that primarily governs their ecological effects. Therefore, the ability to estimate variations in aspects of palaeofire behaviour such as palaeofire intensity and rate of spread would be of key benefit toward understanding the coupled evolutionary history of ecosystems and fire. The Cretaceous Period saw major diversification in land plants. Previously, conifers (gymnosperms) and ferns (pteridophytes) dominated Earth's ecosystems until flowering plants (angiosperms) appear in the fossil record of the Early Cretaceous (~135Ma). We have created surface fire behaviour estimates for a variety of angiosperm invasion scenarios and explored the influence of Cretaceous superambient atmospheric oxygen levels on the fire behaviour occurring in these new Cretaceous ecosystems. These estimates are then used to explore the hypothesis that the early spread of the angiosperms was promoted by the novel fire regimes that they created. In order to achieve this we tested the flammability of Mesozoic analogue fuel types in controlled laboratory experiments using an iCone calorimeter, which measured the ignitability as well as the effective heat of combustion of the fuels. We then used the BehavePlus fire behaviour modelling system to scale up our laboratory results to the ecosystem scale. Our results suggest that fire-angiosperm feedbacks may have occurred in two phases: The first phase being a result of weedy angiosperms providing an additional easily ignitable fuel that enhanced both the seasonality and frequency of surface fires. In the second phase, the addition of shrubby understory fuels likely expanded the number of ecosystems experiencing more intense surface fires, resulting in enhanced mortality and suppressed post-fire recruitment of gymnosperms

  13. Phylogenetic diversification of Early Cretaceous seed plants: The compound seed cone of Doylea tetrahedrasperma.

    Science.gov (United States)

    Rothwell, Gar W; Stockey, Ruth A

    2016-05-01

    Discovery of cupulate ovules of Doylea tetrahedrasperma within a compact, compound seed cone highlights the rich diversity of fructification morphologies, pollination biologies, postpollination enclosure of seeds, and systematic diversity of Early Cretaceous gymnosperms. Specimens were studied using the cellulose acetate peel technique, three-dimensional reconstructions (in AVIZO), and morphological phylogenetic analyses (in TNT). Doylea tetrahedrasperma has bract/fertile short shoot complexes helically arranged within a compact, compound seed cone. Complexes diverge from the axis as a single unit and separate distally into a free bract tip and two sporophylls. Each sporophyll bears a single, abaxial seed, recurved toward the cone axis, that is enveloped after pollinaton by sporophyll tissue, forming a closed cupule. Ovules are pollinated by bisaccate grains captured by micropylar pollination horns. The unique combination of characters shown by D. tetrahedrasperma includes the presence of cupulate seeds borne in conifer-like compound seed cones, an ovuliferous scale analogue structurally equivalent to the ovulate stalk of Ginkgo biloba, gymnospermous pollination, and nearly complete enclosure of mature seeds. These features characterize the Doyleales ord. nov., clearly distinguish it from the seed fern order Corystospermales, and allow for recognition of another recently described Early Cretaceous seed plant as a second species in genus Doylea. A morphological phylogenetic analysis highlights systematic relationships of the Doyleales ord. nov. and emphasizes the explosive phylogenetic diversification of gymnosperms that was underway at the time when flowering plants may have originated and/or first began to radiate. © 2016 Botanical Society of America.

  14. Under Cover at Pre-Angiosperm Times: A Cloaked Phasmatodean Insect from the Early Cretaceous Jehol Biota

    Science.gov (United States)

    Wang, Maomin; Béthoux, Olivier; Bradler, Sven; Jacques, Frédéric M. B.; Cui, Yingying; Ren, Dong

    2014-01-01

    Background Fossil species that can be conclusively identified as stem-relatives of stick- and leaf-insects (Phasmatodea) are extremely rare, especially for the Mesozoic era. This dearth in the paleontological record makes assessments on the origin and age of the group problematic and impedes investigations of evolutionary key aspects, such as wing development, sexual size dimorphism and plant mimicry. Methodology/Principal Findings A new fossil insect species, Cretophasmomima melanogramma Wang, Béthoux and Ren sp. nov., is described on the basis of one female and two male specimens recovered from the Yixian Formation (Early Cretaceous, ca. 126±4 mya; Inner Mongolia, NE China; known as ‘Jehol biota’). The occurrence of a female abdominal operculum and of a characteristic ‘shoulder pad’ in the forewing allows for the interpretation of a true stem-Phasmatodea. In contrast to the situation in extant forms, sexual size dimorphism is only weakly female-biased in this species. The peculiar wing coloration, viz. dark longitudinal veins, suggests that the leaf-shaped plant organ from the contemporaneous ‘gymnosperm’ Membranifolia admirabilis was used as model for crypsis. Conclusions/Significance As early as in the Early Cretaceous, some stem-Phasmatodea achieved effective leaf mimicry, although additional refinements characteristic of recent forms, such as curved fore femora, were still lacking. The diversification of small-sized arboreal insectivore birds and mammals might have triggered the acquisition of such primary defenses. PMID:24646906

  15. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean

    Science.gov (United States)

    Fan, Jian-Jun; Li, Cai; Sun, Zhen-Ming; Xu, Wei; Wang, Ming; Xie, Chao-Ming

    2018-04-01

    New zircon U-Pb ages, major- and trace-element data, and Hf isotopic compositions are presented for bimodal volcanic rocks of the Zhaga Formation (ZF) in the western-middle segment of the Bangong-Nujiang suture zone (BNSZ), northern Tibet. The genesis of these rocks is described, and implications for late-stage evolution of the Bangong-Nujiang Tethyan Ocean (BNTO) are considered. Detailed studies show that the ZF bimodal rocks, which occur as layers within a typical bathyal to abyssal flysch deposit, comprise MORB-type basalt that formed at a mid-ocean ridge, and low-K calc-alkaline A-type rhyolite derived from juvenile crust. The combination of MORB-type basalt, calc-alkaline A-type rhyolite, and bathyal to abyssal flysch deposits in the ZF leads us to propose that they formed as a result of ridge subduction. The A-type ZF rhyolites yield LA-ICP-MS zircon U-Pb ages of 118-112 Ma, indicating formation during the Early Cretaceous. Data from the present study, combined with regional geological data, indicate that the BNTO underwent conversion from ocean opening to ocean closure during the Late Jurassic-Early Cretaceous. The eastern segment of the BNTO closed during this period, while the western and western-middle segments were still at least partially open and active during the Early Cretaceous, accompanied by ridge subduction within the Bangong-Nujiang Tethyan Ocean.

  16. Late cretaceous to early eocene foraminiferal biostratigraphy of the Rakhi Nala area, Sulaiman Range, Pakistan

    International Nuclear Information System (INIS)

    Afzal, J.

    1996-01-01

    Shaly intervals from late cretaceous to early eocene sediments of the Rakhi Nala Section (Sulaiman Range) were analysed for the foraminiferal micro fauna (Planktons, smaller and larger benthics). The faunal record is interpreted for the precise age and paleo environments. These fresh results, in the light of modern bio stratigraphic knowledge, are compared with the previous bio stratigraphic information available about this area. Several discrepancies regarding the litho and biostratigraphy from the previous literature were addressed and tried to remove. (author)

  17. Molecular fossils in Cretaceous condensate from western India

    Science.gov (United States)

    Bhattacharya, Sharmila; Dutta, Suryendu; Dutta, Ratul

    2014-06-01

    The present study reports the biomarker distribution of condensate belonging to the early Cretaceous time frame using gas chromatography-mass spectrometry (GC-MS). The early Cretaceous palaeoenvironment was inscribed into these molecular fossils which reflected the source and conditions of deposition of the condensate. The saturate fraction of the condensate is characterized by normal alkanes ranging from n-C9 to n-C29 (CPI-1.13), cycloalkanes and C14 and C15 sesquiterpanes. The aromatic fraction comprises of naphthalene, phenanthrene, their methylated derivatives and cyclohexylbenzenes. Isohexylalkylnaphthalenes, a product of rearrangement process of terpenoids, is detected in the condensate. Several aromatic sesquiterpenoids and diterpenoids have been recorded. Dihydro- ar-curcumene, cadalene and ionene form the assemblage of sesquiterpenoids which are indicative of higher plant input. Aromatic diterpenoid fraction comprises of simonellite and retene. These compounds are also indicative of higher plants, particularly conifer source which had been a predominant flora during the Cretaceous time.

  18. Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya: Insights into the Neotethyan paleogeography and the India–Asia collision

    Science.gov (United States)

    Ma, Yiming; Yang, Tianshui; Bian, Weiwei; Jin, Jingjie; Zhang, Shihong; Wu, Huaichun; Li, Haiyan

    2016-01-01

    To better understand the Neotethyan paleogeography, a paleomagnetic and geochronological study has been performed on the Early Cretaceous Sangxiu Formation lava flows, which were dated from ~135.1 Ma to ~124.4 Ma, in the Tethyan Himalaya. The tilt-corrected site-mean characteristic remanent magnetization (ChRM) direction for 26 sites is Ds = 296.1°, Is = −65.7°, ks = 51.7, α95 = 4.0°, corresponding to a paleopole at 5.9°S, 308.0°E with A95 = 6.1°. Positive fold and reversal tests prove that the ChRM directions are prefolding primary magnetizations. These results, together with reliable Cretaceous-Paleocene paleomagnetic data observed from the Tethyan Himalaya and the Lhasa terrane, as well as the paleolatitude evolution indicated by the apparent polar wander paths (APWPs) of India, reveal that the Tethyan Himalaya was a part of Greater India during the Early Cretaceous (135.1–124.4 Ma) when the Neotethyan Ocean was up to ~6900 km, it rifted from India sometime after ~130 Ma, and that the India-Asia collision should be a dual-collision process including the first Tethyan Himalaya-Lhasa terrane collision at ~54.9 Ma and the final India-Tethyan Himalaya collision at ~36.7 Ma. PMID:26883692

  19. Dinosaur trackways from the early Late Cretaceous of western Cameroon

    Science.gov (United States)

    Martin, Jeremy E.; Menkem, Elie Fosso; Djomeni, Adrien; Fowe, Paul Gustave; Ntamak-Nida, Marie-Joseph

    2017-10-01

    Dinosaur trackways have rarely been reported in Cretaceous strata across the African continent. To the exception of ichnological occurrences in Morocco, Tunisia, Niger and Cameroon, our knowledge on the composition of Cretaceous dinosaur faunas mostly relies on skeletal evidence. For the first time, we document several dinosaur trackways from the Cretaceous of the Mamfe Basin in western Cameroon. Small and medium-size tridactyl footprints as well as numerous large circular footprints are present on a single horizon showing mudcracks and ripple marks. The age of the locality is considered Cenomanian-Turonian and if confirmed, this ichnological assemblage could be younger than the dinosaur footprints reported from northern Cameroon, and coeval with or younger than skeletal remains reported from the Saharan region. These trackways were left in an adjacent subsiding basin along the southern shore of the Benue Trough during a time of high-sea stand when the Trans-Saharan Seaway was already disconnecting West Africa from the rest of the continent. We predict that other similar track sites may be occurring along the margin of the Benue Trough and may eventually permit to test hypotheses related to provincialism among African dinosaur faunas.

  20. Basement control in the development of the early cretaceous West and Central African rift system

    Science.gov (United States)

    Maurin, Jean-Christophe; Guiraud, René

    1993-12-01

    The structural framework of the Precambrian basement of the West and Central African Rift System (WCARS) is described in order to examine the role of ancient structures in the development of this Early Cretaceous rift system. Basement structures are represented in the region by large Pan-African mobile belts (built at ca. 600 Ma) surrounding the > 2 Ga West African, Congo and Sao Francisco cratons. Except for the small Gao trough (eastern Mali) located near the contact nappe of the Pan-African Iforas suture zone along the edge of the West African craton, the entire WCARS is located within the internal domains of the Pan-African mobile belts. Within these domains, two main structural features occur as the main basement control of the WCARS: (1) an extensive network of near vertical shear zones which trend north-south through the Congo, Brazil, Nigeria, Niger and Algeria, and roughly east-west through northeastern Brazil and Central Africa. The shear zones correspond to intra-continental strike-slip faults which accompanied the oblique collision between the West African, Congo, and Sao Francisco cratons during the Late Proterozoic; (2) a steep metamorphic NW-SE-trending belt which corresponds to a pre-Pan-African (ca. 730 Ma) ophiolitic suture zone along the eastern edge of the Trans-Saharian mobile belt. The post-Pan-African magmatic and tectonic evolution of the basement is also described in order to examine the state of the lithosphere prior to the break-up which occurred in the earliest Cretaceous. After the Pan-African thermo-tectonic event, the basement of the WCARS experienced a long period of intra-plate magmatic activity. This widespread magmatism in part relates to the activity of intra-plate hotspots which have controlled relative uplift, subsidence and occasionally block faulting. During the Paleozoic and the early Mesozoic, this tectonic activity was restricted to west of the Hoggar, west of Aïr and northern Cameroon. During the Late Jurassic-Early

  1. Late Jurassic-Early Cretaceous episodic development of the Bangong Meso-Tethyan subduction: Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China

    Science.gov (United States)

    Zhang, Yu-Xiu; Li, Zhi-Wu; Yang, Wen-Guang; Zhu, Li-Dong; Jin, Xin; Zhou, Xiao-Yao; Tao, Gang; Zhang, Kai-Jun

    2017-03-01

    The Bangong Meso-Tethys plays a critical role in the development of the Tethyan realm and the initial elevation of the Tibetan Plateau. However, its precise subduction polarity, and history still remain unclear. In this study, we synthesize a report for the Late Jurassic-Early Cretaceous two-phase magmatic rocks in the Gaize region at the southern margin of the Qiangtang block located in central Tibet. These rocks formed during the Late Jurassic-earliest Cretaceous (161-142 Ma) and Early Cretaceous (128-106 Ma), peaking at 146 Ma and 118 Ma, respectively. The presence of inherited zircons indicates that an Archean component exists in sediments in the shallow Qiangtang crust, and has a complex tectonomagmatic history. Geochemical and Sr-Nd isotopic data show that the two-phase magmatic rocks exhibit characteristics of arc magmatism, which are rich in large-ion incompatible elements (LIIEs), but are strongly depleted in high field strength elements (HFSEs). The Late Jurassic-earliest Cretaceous magmatic rocks mixed and mingled among mantle-derived mafic magmas, subduction-related sediments, or crustally-derived felsic melts and fluids, formed by a northward and steep subduction of the Bangong Meso-Tethys ocean crust. The magmatic gap at 142-128 Ma marks a flat subduction of the Meso-Tethys. The Early Cretaceous magmatism experienced a magma MASH (melting, assimilation, storage, and homogenization) process among mantle-derived mafic magmas, or crustally-derived felsic melts and fluids, as a result of the Meso-Tethys oceanic slab roll-back, which triggered simultaneous back-arc rifting along the southern Qiangtang block margin.

  2. Reappraisal of Europe’s most complete Early Cretaceous plesiosaurian: Brancasaurus brancai Wegner, 1914 from the “Wealden facies” of Germany

    Directory of Open Access Journals (Sweden)

    Sven Sachs

    2016-12-01

    Full Text Available The holotype of Brancasaurus brancai is one of the most historically famous and anatomically complete Early Cretaceous plesiosaurian fossils. It derived from the Gerdemann & Co. brickworks clay pit near Gronau (Westfalen in North Rhine-Westphalia, northwestern Germany. Stratigraphically this locality formed part of the classic European “Wealden facies,” but is now more formally attributed to the upper-most strata of the Bückeberg Group (upper Berriasian. Since its initial description in 1914, the type skeleton of B. brancai has suffered damage both during, and after WWII. Sadly, these mishaps have resulted in the loss of substantial information, in particular many structures of the cranium and limb girdles, which are today only evidenced from published text and/or illustrations. This non-confirmable data has, however, proven crucial for determining the relationships of B. brancai within Plesiosauria: either as an early long-necked elasmosaurid, or a member of the controversial Early Cretaceous leptocleidid radiation. To evaluate these competing hypotheses and compile an updated osteological compendium, we undertook a comprehensive examination of the holotype as it is now preserved, and also assessed other Bückeberg Group plesiosaurian fossils to establish a morphological hypodigm. Phylogenetic simulations using the most species-rich datasets of Early Cretaceous plesiosaurians incorporating revised scores for B. brancai, together with a second recently named Bückeberg Group plesiosaurian Gronausaurus wegneri (Hampe, 2013, demonstrated that referral of these taxa to Leptocleididae was not unanimous, and that the topological stability of this clade is tenuous. In addition, the trait combinations manifested by B. brancai and G. wegneri were virtually identical. We therefore conclude that these monotypic individuals are ontogenetic morphs and G. wegneri is a junior synonym of B. brancai. Finally, anomalies detected in the diagnostic features

  3. Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models

    Science.gov (United States)

    Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.

    2006-01-01

    In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in

  4. Faunal turnover of marine tetrapods during the Jurassic-Cretaceous transition.

    Science.gov (United States)

    Benson, Roger B J; Druckenmiller, Patrick S

    2014-02-01

    Marine and terrestrial animals show a mosaic of lineage extinctions and diversifications during the Jurassic-Cretaceous transition. However, despite its potential importance in shaping animal evolution, few palaeontological studies have focussed on this interval and the possible climate and biotic drivers of its faunal turnover. In consequence evolutionary patterns in most groups are poorly understood. We use a new, large morphological dataset to examine patterns of lineage diversity and disparity (variety of form) in the marine tetrapod clade Plesiosauria, and compare these patterns with those of other organisms. Although seven plesiosaurian lineages have been hypothesised as crossing the Jurassic-Cretaceous boundary, our most parsimonious topology suggests the number was only three. The robust recovery of a novel group including most Cretaceous plesiosauroids (Xenopsaria, new clade) is instrumental in this result. Substantial plesiosaurian turnover occurred during the Jurassic-Cretaceous boundary interval, including the loss of substantial pliosaurid, and cryptoclidid diversity and disparity, followed by the radiation of Xenopsaria during the Early Cretaceous. Possible physical drivers of this turnover include climatic fluctuations that influenced oceanic productivity and diversity: Late Jurassic climates were characterised by widespread global monsoonal conditions and increased nutrient flux into the opening Atlantic-Tethys, resulting in eutrophication and a highly productive, but taxonomically depauperate, plankton. Latest Jurassic and Early Cretaceous climates were more arid, resulting in oligotrophic ocean conditions and high taxonomic diversity of radiolarians, calcareous nannoplankton and possibly ammonoids. However, the observation of discordant extinction patterns in other marine tetrapod groups such as ichthyosaurs and marine crocodylomorphs suggests that clade-specific factors may have been more important than overarching extrinsic drivers of faunal

  5. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet

    Science.gov (United States)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; McInnes, Brent I. A.; Li, JinXiang; Zhao, JunXing

    2018-03-01

    Arc magmas are more oxidized than mid-ocean ridge basalts; however, there is continuing debate as to whether this higher oxidation state is inherited from the source magma or developed during late-stage magmatic differentiation processes. Well-constrained Late Jurassic to Early Cretaceous arc-related intermediate to felsic rocks derived from distinct magma sources provide us with a good opportunity to resolve this enigma. A series of granitoids from the western Central Lhasa subterrane were analyzed for whole-rock magnetic susceptibility, Fe2O3/FeO ratios, and trace elements in zircon. Compared to Late Jurassic samples (1.8 ± 2.0 × 10-4 emu g-1 oe-1, Fe3+/Fetotal = 0.32 ± 0.07, zircon Ce4+/Ce3+* = 15.0 ± 13.4), Early Cretaceous rocks show higher whole-rock magnetic susceptibility (5.8 ± 2.5 × 10-4 emu g-1 oe-1), Fe3+/Fetotal ratios (0.43 ± 0.04), and zircon Ce4+/Ce3+* values (23.9 ± 22.3). In addition, positive correlations among whole-rock magnetic susceptibility, Fe3+/Fetotal ratios, and zircon Ce4+/Ce3+* reveal a slight increase in oxidation state from fO2 = QFM to NNO in the Late Jurassic to fO2 = ˜NNO in the Early Cretaceous. Obvious linear correlation between oxidation indices (whole-rock magnetic susceptibility, zircon Ce4+/Ce3+*) and source signatures (zircon ɛHf(t), TDM C ages) indicates that the oxidation state was predominantly inherited from the source with only a minor contribution from magmatic differentiation. Thus, the sources for both the Late Jurassic and Early Cretaceous rocks were probably influenced by mantle wedge-derived magma, contributing to the increased fO2. Compared to ore-forming rocks at giant porphyry Cu deposits, the relatively low oxidation state (QFM to NNO) and negative ɛHf(t) (-16 to 0) of the studied granitoids implies relative infertility. However, this study demonstrates two potential fast and effective indices ( fO2 and ɛHf(t)) to evaluate the fertility of granitoids for porphyry-style mineralization. In an

  6. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica.

    Science.gov (United States)

    Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix

    2015-09-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.

  7. Diverse dinosaur-dominated ichnofaunas from the Potomac Group (Lower Cretaceous) Maryland

    Science.gov (United States)

    Stanford, Ray; Lockley, Martin G.; Weems, Robert E.

    2007-01-01

    Until recently fossil footprints were virtually unknown from the Cretaceous of the eastern United States. The discovery of about 300 footprints in iron-rich siliciclastic facies of the Patuxent Formation (Potomac Group) of Aptian age is undoubtedly one of the most significant Early Cretaceous track discoveries since the Paluxy track discoveries in Texas in the 1930s. The Patuxent tracks include theropod, sauropod, ankylosaur and ornithopod dinosaur footprints, pterosaur tracks, and miscellaneous mammal and other vertebrate ichnites that collectively suggest a diversity of about 14 morphotypes. This is about twice the previous maximum estimate for any known Early Cretaceous vertebrate ichnofauna. Among the more distinctive forms are excellent examples of hypsilophodontid tracks and a surprisingly large mammal footprint. A remarkable feature of the Patuxent track assemblage is the high proportion of small tracks indicative of hatchlings, independently verified by the discovery of a hatchling-sized dinosaur. Such evidence suggests the proximity of nest sites. The preservation of such small tracks is very rare in the Cretaceous track record, and indeed throughout most of the Mesozoic.This unusual preservation not only provides us with a window into a diverse Early Cretaceous ecosystem, but it also suggests the potential of such facies to provide ichnological bonanzas. A remarkable feature of the assemblage is that it consists largely of reworked nodules and clasts that may have previously been reworked within the Patuxent Formation. Such unusual contexts of preservation should provide intriguing research opportunities for sedimentologists interested in the diagenesis and taphonomy of a unique track-bearing facies.

  8. Early cretaceous Obernirchen and Bentheim sandstones from Germany used as dimension stone in the Netherlands: geology physical properties, architectural use and comparative weathering

    NARCIS (Netherlands)

    Dubelaar, C.W.; Nijland, T.G.

    2015-01-01

    The Netherlands, with only scarce occurrences of outcropping or shallow buried natural stone, has over centuries imported huge quantities of Early Cretaceous Bentheim Sandstone and Obernkirchen Sandstone from Germany. The present paper provides an overview of their distribution and properties

  9. Palaeomagnetic time and space constraints of the Early Cretaceous Rhenodanubian Flysch zone (Eastern Alps)

    Science.gov (United States)

    Dallanave, Edoardo; Kirscher, Uwe; Hauck, Jürgen; Hesse, Reinhard; Bachtadse, Valerian; Wortmann, Ulrich Georg

    2018-06-01

    The Rhenodanubian Flysch zone (RDF) is a Lower Cretaceous-lower Palaeocene turbidite succession extending for ˜500 km from the Danube at Vienna to the Rhine Valley (Eastern Alps). It consists of calcareous and siliciclastic turbidite systems deposited in a trench abyssal plain. The age of deposition has been estimated through micropalaeontologic dating. However, palaeomagnetic studies constraining the age and the palaeolatitude of deposition of the RDF are still missing. Here, we present palaeomagnetic data from the Early Cretaceous Tristel and Rehbreingraben Formations of the RDF from two localities in the Bavarian Alps (Rehbrein Creek and Lainbach Valley, southern Germany), and from the stratigraphic equivalent of the Falknis Nappe (Liechtenstein). The quality of the palaeomagnetic signal has been assessed by either fold test (FT) or reversal test (RT). Sediments from the Falknis Nappe are characterized by a pervasive syntectonic magnetic overprint as tested by negative FT, and are thus excluded from the study. The sediments of the Rehbreingraben Formation at Rehbrein Creek, with positive RT, straddle magnetic polarity Chron M0r and the younger M΄-1r΄ reverse event, with an age of ˜127-123 Ma (late Barremian-early Aptian). At Lainbach Valley, no polarity reversals have been observed, but a positive FT gives confidence on the reliability of the data. The primary palaeomagnetic directions, after correction for inclination shallowing, allow to precisely constrain the depositional palaeolatitude of the Tristel and Rehbreingraben Formations around ˜28°N. In a palaeogeographic reconstruction of the Alpine Tethys at the Barremian/Aptian boundary, the RDF is located on the western margin of the Briançonnais terrain, which was separated from the European continent by the narrow Valais Ocean.

  10. Growth ring analysis of fossil coniferous woods from early cretaceous of Araripe Basin (Brazil

    Directory of Open Access Journals (Sweden)

    Etiene F. Pires

    2011-06-01

    Full Text Available Growth ring analysis on silicified coniferous woods from the Missão Velha Formation (Araripe Basin - Brazil has yielded important information about periodicity of wood production during the Early Cretaceous in the equatorial belt. Despite warm temperatures, dendrological data indicate that the climate was characterized by cyclical alternation of dry and rainy periods influenced by cyclical precipitations, typical of tropical wet and dry or savanna climate. The abundance of false growth rings can be attributed to both occasional droughts and arthropod damage. The present climate data agree with palaeoclimatic models that inferred summer-wet biomes for the Late Jurassic/Early Cretaceous boundary in the southern equatorial belt.A partir de análise de anéis de crescimento em lenhos de coníferas silicificadas provenientes da Formação Missão Velha(Bacia do Araripe - Brasil, obteve-se importantes informações a respeito da periodicidade de produção lenhosa duranteo início do Cretáceo, na região do equador. Apesar das estimativas de temperatura apresentarem-se elevadas, os dados dendrológicos indicam que o clima foi caracterizado pela alternância cíclica de períodos secos e chuvosos, influenciado por precipitações periódicas, típico das condições atuais de climatropical úmido e seco ou savana. A abundância de falsosanéis de crescimento pode ser atribuída tanto a secas ocasionais quanto a danos causados por artrópodes. Os dados paleoclimáticos aqui obtidos corroboram com modelos paleoclimáticos que inferem a ocorrência de um bioma de verões úmidos para o limite Neojurássico/Eocretáceo ao sul do equador.

  11. An early cretaceous phase of accelerated erosion on the south-western margin of Africa: evidence from apatite fission track analysis and the offshore sedimentary record

    International Nuclear Information System (INIS)

    Brown, R.W.; Gleadow, A.J.W.; Rust, D.J.; Summerfield, M.A.; De Wit, M.C.J.

    1990-01-01

    Apatite fission track ages and confined track length distributions have been determined for rock samples from the south-western continental margin of Africa. The apatite ages fall into two groups, one having early Cretaceous ages and mean confined track lengths of ∼ 14 μm with very few short tracks, and the other having older ages with confined track length distributions containing a significant proportion of strongly annealed tracks (<10 μm). In any particular area the older apatite ages only occur above a critical threshold elevation, forming a regional pattern in the data and indicating cooling of the upper few kilometres of the crust during the early cretaceous. This episode of cooling is shown to have been the consequence of an accelerated phase of erosion associated with the early stages of rifting and break-up of Gondwana, and correlates with sedimentation patterns derived from borehole data for the adjacent offshore basin. (author)

  12. An early cretaceous phase of accelerated erosion on the south-western margin of Africa: evidence from apatite fission track analysis and the offshore sedimentary record

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.W.; Gleadow, A.J.W. (La Trobe Univ., Bundoora (Australia)); Rust, D.J.; Summerfield, M.A. (Edinburgh Univ. (UK)); De Wit, M.C.J. (De Beers Consolidated Mines Ltd., Kimberley (South Africa))

    1990-01-01

    Apatite fission track ages and confined track length distributions have been determined for rock samples from the south-western continental margin of Africa. The apatite ages fall into two groups, one having early Cretaceous ages and mean confined track lengths of {approx} 14 {mu}m with very few short tracks, and the other having older ages with confined track length distributions containing a significant proportion of strongly annealed tracks (<10 {mu}m). In any particular area the older apatite ages only occur above a critical threshold elevation, forming a regional pattern in the data and indicating cooling of the upper few kilometres of the crust during the early cretaceous. This episode of cooling is shown to have been the consequence of an accelerated phase of erosion associated with the early stages of rifting and break-up of Gondwana, and correlates with sedimentation patterns derived from borehole data for the adjacent offshore basin. (author).

  13. Insight on the anatomy, systematic relationships, and age of the Early Cretaceous ankylopollexian dinosaur Dakotadon lakotaensis

    Directory of Open Access Journals (Sweden)

    Clint A. Boyd

    2015-09-01

    Full Text Available Knowledge regarding the early evolution within the dinosaurian clade Ankylopollexia drastically increased over the past two decades, in part because of an increase in described taxa from the Early Cretaceous of North America. These advances motivated the recent completion of extensive preparation and conservation work on the holotype and only known specimen of Dakotadon lakotaensis, a basal ankylopollexian from the Lakota Formation of South Dakota. That specimen (SDSM 8656 preserves a partial skull, lower jaws, a single dorsal vertebra, and two caudal vertebrae. That new preparation work exposed several bones not included in the original description and revealed that other bones were previously misidentified. The presence of extensive deformation in areas of the skull is also noted that influenced inaccuracies in prior descriptions and reconstructions of this taxon. In addition to providing an extensive re-description of D. lakotaensis, this study reviews previously proposed diagnoses for this taxon, identifies two autapomorphies, and provides an extensive differential diagnosis. Dakotadon lakotaensis is distinct from the only other ankylopollexian taxon known from the Lakota Formation, Osmakasaurus depressus, in the presence of two prominent, anteroposteriorly oriented ridges on the ventral surfaces of the caudal vertebrae, the only overlapping material preserved between these taxa. The systematic relationships of D. lakotaensis are evaluated using both the parsimony and posterior probability optimality criteria, with both sets of analyses recovering D. lakotaensis as a non-hadrosauriform ankylopollexian that is more closely related to taxa from the Early Cretaceous (e.g., Iguanacolossus, Hippodraco, and Theiophytalia than to more basally situated taxa from the Jurassic (e.g., Camptosaurus, Uteodon. This taxonomic work is supplemented by field work that relocated the type locality, confirming its provenance from unit L2 (lower Fuson Member

  14. Highly specialized mammalian skulls from the Late Cretaceous of South America.

    Science.gov (United States)

    Rougier, Guillermo W; Apesteguía, Sebastián; Gaetano, Leandro C

    2011-11-02

    Dryolestoids are an extinct mammalian group belonging to the lineage leading to modern marsupials and placentals. Dryolestoids are known by teeth and jaws from the Jurassic period of North America and Europe, but they thrived in South America up to the end of the Mesozoic era and survived to the beginnings of the Cenozoic. Isolated teeth and jaws from the latest Cretaceous of South America provide mounting evidence that, at least in western Gondwana, dryolestoids developed into strongly endemic groups by the Late Cretaceous. However, the lack of pre-Late Cretaceous dryolestoid remains made study of their origin and early diversification intractable. Here we describe the first mammalian remains from the early Late Cretaceous of South America, including two partial skulls and jaws of a derived dryolestoid showing dental and cranial features unknown among any other group of Mesozoic mammals, such as single-rooted molars preceded by double-rooted premolars, combined with a very long muzzle, exceedingly long canines and evidence of highly specialized masticatory musculature. On one hand, the new mammal shares derived features of dryolestoids with forms from the Jurassic of Laurasia, whereas on the other hand, it is very specialized and highlights the endemic, diverse dryolestoid fauna from the Cretaceous of South America. Our specimens include only the second mammalian skull known for the Cretaceous of Gondwana, bridging a previous 60-million-year gap in the fossil record, and document the whole cranial morphology of a dryolestoid, revealing an unsuspected morphological and ecological diversity for non-tribosphenic mammals.

  15. From nappe stacking to exhumation: Cretaceous tectonics in the Apuseni Mountains (Romania)

    Science.gov (United States)

    Reiser, Martin Kaspar; Schuster, Ralf; Spikings, Richard; Tropper, Peter; Fügenschuh, Bernhard

    2017-03-01

    New Ar-Ar muscovite and Rb-Sr biotite age data in combination with structural analyses from the Apuseni Mountains provide new constraints on the timing and kinematics of deformation during the Cretaceous. Time-temperature paths from the structurally highest basement nappe of the Apuseni Mountains in combination with sedimentary data indicate exhumation and a position close to the surface after the Late Jurassic emplacement of the South Apuseni Ophiolites. Early Cretaceous Ar-Ar muscovite ages from structurally lower parts in the Biharia Nappe System (Dacia Mega-Unit) show cooling from medium-grade conditions. NE-SW-trending stretching lineation and associated kinematic indicators of this deformation phase (D1) are overprinted by top-NW-directed thrusting during D2. An Albian to Turonian age (110-90 Ma) is proposed for the main deformation (D2) that formed the present-day geometry of the nappe stack and led to a pervasive retrograde greenschist-facies overprint. Thermochronological and structural data from the Bihor Unit (Tisza Mega-Unit) allowed to establish E-directed differential exhumation during Early-Late Cretaceous times (D3.1). Brittle detachment faulting (D3.2) and the deposition of syn-extensional sediments indicate general uplift and partial surface exposure during the Late Cretaceous. Brittle conditions persist during the latest Cretaceous compressional overprint (D4).

  16. The earliest evidence for a supraorbital salt gland in dinosaurs in new Early Cretaceous ornithurines.

    Science.gov (United States)

    Wang, Xia; Huang, Jiandong; Hu, Yuanchao; Liu, Xiaoyu; Peteya, Jennifer; Clarke, Julia A

    2018-03-05

    Supraorbital fossae occur when salt glands are well developed, a condition most pronounced in marine and desert-dwelling taxa in which salt regulation is key. Here, we report the first specimens from lacustrine environments of the Jehol Biota that preserve a distinct fossa above the orbit, where the salt gland fossa is positioned in living birds. The Early Cretaceous ornithurine bird specimens reported here are about 40 million years older than previously reported Late Cretaceous marine birds and represent the earliest described occurrence of the fossa. We find no evidence of avian salt gland fossae in phylogenetically earlier stem birds or non-avialan dinosaurs, even in those argued to be predominantly marine or desert dwelling. The apparent absence of this feature in more basal dinosaurs may indicate that it is only after miniaturization close to the origin of flight that excretory mechanisms were favored over exclusively renal mechanisms of salt regulation resulting in an increase in gland size leaving a bony trace. The ecology of ornithurine birds is more diverse than in other stem birds and may have included seasonal shifts in foraging range, or, the environments of some of the Jehol lakes may have included more pronounced periods of high salinity.

  17. The Jurassic-early Cretaceous Ilo batholith of southern coastal Peru: geology, geochronology and geochemistry

    Science.gov (United States)

    Boekhout, Flora; Sempere, Thierry; Spikings, Richard; Schaltegger, Urs

    2010-05-01

    The Ilo batholith (17°00 - 18°30 S) crops out in an area of about 20 by 100 km, along the coast of southern Peru. This batholith is emplaced into the ‘Chocolate‘ Formation of late Permian to middle Jurassic age, which consists of more than 1000 m of basaltic and andesitic lavas, with interbedded volcanic agglomerates and breccias. The Ilo Batholith is considered to be a rarely exposed fragment of the Jurassic arc in Peru. Our aim is to reconstruct the magmatic evolution of this batholith, and place it within the context of long-lasting magma genesis along the active Andean margin since the Paleozoic. Sampling for dating and geochemical analyses was carried out along several cross sections through the batholith that were exposed by post-intrusion eastward tilting of 20-30°. Sparse previous work postulates early to middle Jurassic and partially early Cretaceous emplacement, on the basis of conventional K/Ar and 40Ar/39Ar dating methods in the Ilo area. Twenty new U-Pb zircon ages (LA-ICP-MS and CA-ID-TIMS) accompanied by geochemical data suggests the Ilo batholith formed via the amalgamation of middle Jurassic and early Cretaceous, subduction-related plutons. Preliminary Hf isotope studies reveal a primitive mantle source for middle Jurassic intrusions. Additional Sr, Nd and Hf isotope analyses are planned to further resolve the source regions of different pulses of plutonic activity. We strongly suggest that batholith emplacement was at least partly coeval with the emplacement of the late Permian to middle Jurassic Chocolate Formation, which was deposited in an extensional tectonic regime. Our age results and geochemical signature fit into the scheme of episodic emplacement of huge amounts of subduction related magmatism that is observed throughout the whole Andean event, particularly during the middle Jurassic onset of the first Andean cycle (southern Peru, northern Chile and southern Argentina). Although the exact geodynamic setting remains to be precisely

  18. Late Jurassic–Early Cretaceous oysters from Siberia: A systematic review

    Directory of Open Access Journals (Sweden)

    Igor N. Kosenko

    2017-11-01

    Full Text Available The present study reviews the taxonomy of Late Jurassic–Early Cretaceous oysters from the Northern and the Subpolar Urals (Western Siberia and northern East Siberia. Previous studies have documented 10 species from the genus Liostrea (L. delta, L. cucurbita, L. praeanabarensis, L. anabarensis, L. plastica, L. gibberosa, L. planoconvexa, L. siberica, L. uralensis, L. lyapinensis, and 3 species from the genus Gryphaea (G. borealis and 2 species in open nomenclature. Liostrea gibberosa, L. planoconvexa, L. uralensis, and L. cucurbita are transferred in this study to the genus Pernostrea. Furthermore, two new species of Pernostrea are described: P. mesezhnikovi sp. nov. and P.? robusta sp. nov. Liostrea siberica is transferred to the genus Praeexogyra. Liostrea praeanabarensis and L. anabarensis are attributed to the subgenus Boreiodeltoideum (genus Deltoideum as well as L. delta sensu Zakharov (1966 which is described here as new species Deltoideum (Boreiodeltoideum borealis sp. nov. The similar shell morphology of the genera Deltoideum and Pernostrea provides a basis to establish the new tribe Pernostreini trib. nov. in the subfamily Gryphaeinae. Three species are recorded for the first time from Siberia: Nanogyra? cf. thurmanni, “Ostrea” cf. moreana and Gryphaea (Gryphaea curva.

  19. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution

    Science.gov (United States)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei

    2017-09-01

    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The

  20. Evolution of volcanically-induced palaeoenvironmental changes leading to the onset of OAE1a (early Aptian, Cretaceous)

    Science.gov (United States)

    Keller, Christina E.; Hochuli, Peter A.; Giorgioni, Martino; Garcia, Therese I.; Bernasconi, Stefano M.; Weissert, Helmut

    2010-05-01

    During the Cretaceous, several major volcanic events occurred that initiated climate warming, altered marine circulation and increased marine productivity, which in turn often resulted in the widespread black shale deposits of the Oceanic Anoxic Events (OAE). In the sediments underlying the early Aptian OAE1a black shales, a prominent negative carbon isotope excursion is recorded. Its origin had long been controversial (e.g. Arthur, 2000; Jahren et al., 2001) before recent studies attributed it to the Ontong Java volcanism (Méhay et al., 2009; Tejada et al., 2009). Therefore the negative C-isotope excursion covers the interval between the time, when volcanic activity became important enough to be recorded in the C-isotope composition of the oceans to the onset of widespread anoxic conditions (OAE1a). We chose this interval at the locality of Pusiano (N-Italy) to study the effect of a volcanically-induced increase in pCO2 on the marine palaeoenvironment and to observe the evolving palaeoenvironmental conditions that finally led to OAE1a. The Pusiano section (Maiolica Formation) was deposited at the southern continental margin of the alpine Tethys Ocean and has been bio- and magnetostratigraphically dated by Channell et al. (1995). We selected 18 samples from 12 black shale horizons for palynofacies analyses. Palynofacies assemblages consist of several types of particulate organic matter, providing information on the origin of the organic matter (terrestrial/marine) and conditions during deposition (oxic/anoxic). We then linked the palynofacies results to high-resolution inorganic and organic C-isotope values and total organic carbon content measurements. The pelagic Pusiano section consists of repeated limestone-black shale couplets, which are interpreted to be the result of changes in oxygenation of bottom waters. Towards the end of the negative C-isotope excursion we observe enhanced preservation of the fragile amorphous organic matter resulting in increased

  1. New Mid-Cretaceous (Latest Albian) Dinosaurs from Winton, Queensland, Australia

    Science.gov (United States)

    Hocknull, Scott A.; White, Matt A.; Tischler, Travis R.; Cook, Alex G.; Calleja, Naomi D.; Sloan, Trish; Elliott, David A.

    2009-01-01

    Background Australia's dinosaurian fossil record is exceptionally poor compared to that of other similar-sized continents. Most taxa are known from fragmentary isolated remains with uncertain taxonomic and phylogenetic placement. A better understanding of the Australian dinosaurian record is crucial to understanding the global palaeobiogeography of dinosaurian groups, including groups previously considered to have had Gondwanan origins, such as the titanosaurs and carcharodontosaurids. Methodology/Principal Findings We describe three new dinosaurs from the late Early Cretaceous (latest Albian) Winton Formation of eastern Australia, including; Wintonotitan wattsi gen. et sp. nov., a basal titanosauriform; Diamantinasaurus matildae gen. et sp. nov., a derived lithostrotian titanosaur; and Australovenator wintonensis gen. et sp. nov., an allosauroid. We compare an isolated astragalus from the Early Cretaceous of southern Australia; formerly identified as Allosaurus sp., and conclude that it most-likely represents Australovenator sp. Conclusion/Significance The occurrence of Australovenator from the Aptian to latest Albian confirms the presence in Australia of allosauroids basal to the Carcharodontosauridae. These new taxa, along with the fragmentary remains of other taxa, indicate a diverse Early Cretaceous sauropod and theropod fauna in Australia, including plesiomorphic forms (e.g. Wintonotitan and Australovenator) and more derived forms (e.g. Diamantinasaurus). PMID:19584929

  2. New Mid-Cretaceous (latest Albian dinosaurs fromWinton, Queensland, Australia.

    Directory of Open Access Journals (Sweden)

    Scott A Hocknull

    Full Text Available BACKGROUND: Australia's dinosaurian fossil record is exceptionally poor compared to that of other similar-sized continents. Most taxa are known from fragmentary isolated remains with uncertain taxonomic and phylogenetic placement. A better understanding of the Australian dinosaurian record is crucial to understanding the global palaeobiogeography of dinosaurian groups, including groups previously considered to have had Gondwanan origins, such as the titanosaurs and carcharodontosaurids. METHODOLOGY/PRINCIPAL FINDINGS: We describe three new dinosaurs from the late Early Cretaceous (latest Albian Winton Formation of eastern Australia, including; Wintonotitan wattsi gen. et sp. nov., a basal titanosauriform; Diamantinasaurus matildae gen. et sp. nov., a derived lithostrotian titanosaur; and Australovenator wintonensis gen. et sp. nov., an allosauroid. We compare an isolated astragalus from the Early Cretaceous of southern Australia; formerly identified as Allosaurus sp., and conclude that it most-likely represents Australovenator sp. CONCLUSION/SIGNIFICANCE: The occurrence of Australovenator from the Aptian to latest Albian confirms the presence in Australia of allosauroids basal to the Carcharodontosauridae. These new taxa, along with the fragmentary remains of other taxa, indicate a diverse Early Cretaceous sauropod and theropod fauna in Australia, including plesiomorphic forms (e.g. Wintonotitan and Australovenator and more derived forms (e.g. Diamantinasaurus.

  3. MORPHOLOGY, TAXONOMY AND DISTRIBUTION OF THE CRETACEOUS CORAL GENUS AULASTRAEOPORA (LATE BARREMIAN-EARLY CENOMANIAN; SCLERACTINIA

    Directory of Open Access Journals (Sweden)

    HANNES LÖSER

    2008-03-01

    Full Text Available The Cretaceous coral genus Aulastraeopora is being revised, mainly on the basis of sample material. This genus of solitary growth form is characterised by medium-sized to large specimens, compact septa in a regular hexameral or tetrameral symmetry and lonsdaleoid septa. Related genera are Preverastraea and Apoplacophyllia, which only differ by their cerioid-astreoid and phaceloid growth forms. There are four species of Aulastraeopora. The genus, which occurred world-wide, is restricted to the period from the Late Barremian to the Late Cenomanian, being most common in the Aptian to Early Albian. Forty-one samples are either known from the literature or have been to hand. This makes Aulastraeopora a rare genus. 

  4. High resolution chronology of late Cretaceous-early Tertiary events determined from 21,000 yr orbital-climatic cycles in marine sediments

    Science.gov (United States)

    Herbert, Timothy D.; Dhondt, Steven

    1988-01-01

    A number of South Atlantic sites cored by the Deep Sea Drilling Project (DSDP) recovered late Cretaceous and early Tertiary sediments with alternating light-dark, high-low carbonate content. The sedimentary oscillations were turned into time series by digitizing color photographs of core segments at a resolution of about 5 points/cm. Spectral analysis of these records indicates prominent periodicity at 25 to 35 cm in the Cretaceous intervals, and about 15 cm in the early Tertiary sediments. The absolute period of the cycles that is determined from paleomagnetic calibration at two sites is 20,000 to 25,000 yr, and almost certainly corresponds to the period of the earth's precessional cycle. These sequences therefore contain an internal chronometer to measure events across the K/T extinction boundary at this scale of resolution. The orbital metronome was used to address several related questions: the position of the K/T boundary within magnetic chron 29R, the fluxes of biogenic and detrital material to the deep sea immediately before and after the K/T event, the duration of the Sr anomaly, and the level of background climatic variability in the latest Cretaceous time. The carbonate/color cycles that were analyzed contain primary records of ocean carbonate productivity and chemistry, as evidenced by bioturbational mixing of adjacent beds and the weak lithification of the rhythmic sequences. It was concluded that sedimentary sequences that contain orbital cyclicity are capable of providing resolution of dramatic events in earth history with much greater precision than obtainable through radiometric methods. The data show no evidence for a gradual climatic deterioration prior to the K/T extinction event, and argue for a geologically rapid revolution at this horizon.

  5. Angolan ichnosite in a diamond mine shows the presence of a large terrestrial mammaliamorph, a crocodylomorph, and sauropod dinosaurs in the Early Cretaceous of Africa

    NARCIS (Netherlands)

    Mateus, Octávio; Marzola, Marco; Schulp, Anne S.; Jacobs, Louis L.; Polcyn, Michael J.; Pervov, Vladimir; Gonçalves, António Olímpio; Morais, Maria Luisa

    2017-01-01

    We report here new and the first mammaliamorph tracks from the Early Cretaceous of Africa. The tracksite, that also bears crocodylomorph and sauropod dinosaurian tracks, is in the Catoca diamond mine, Lunda Sul Province, Angola. The mammaliamorph tracks have a unique morphology, attributed to

  6. Identification of a New Hesperornithiform from the Cretaceous Niobrara Chalk and Implications for Ecologic Diversity among Early Diving Birds.

    Directory of Open Access Journals (Sweden)

    Alyssa Bell

    Full Text Available The Smoky Hill Member of the Niobrara Chalk in Kansas (USA has yielded the remains of numerous members of the Hesperornithiformes, toothed diving birds from the late Early to Late Cretaceous. This study presents a new taxon of hesperornithiform from the Smoky Hill Member, Fumicollis hoffmani, the holotype of which is among the more complete hesperornithiform skeletons. Fumicollis has a unique combination of primitive (e.g. proximal and distal ends of femur not expanded, elongate pre-acetabular ilium, small and pyramidal patella and derived (e.g. dorsal ridge on metatarsal IV, plantarly-projected curve in the distal shaft of phalanx III:1 hesperornithiform characters, suggesting it was more specialized than small hesperornithiforms like Baptornis advenus but not as highly derived as the larger Hesperornis regalis. The identification of Fumicollis highlights once again the significant diversity of hesperornithiforms that existed in the Late Cretaceous Western Interior Seaway. This diversity points to the existence of a complex ecosystem, perhaps with a high degree of niche partitioning, as indicated by the varying degrees of diving specializations among these birds.

  7. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae.

    Science.gov (United States)

    Prasad, V; Strömberg, C A E; Leaché, A D; Samant, B; Patnaik, R; Tang, L; Mohabey, D M; Ge, S; Sahni, A

    2011-09-20

    Rice and its relatives are a focal point in agricultural and evolutionary science, but a paucity of fossils has obscured their deep-time history. Previously described cuticles with silica bodies (phytoliths) from the Late Cretaceous period (67-65 Ma) of India indicate that, by the latest Cretaceous, the grass family (Poaceae) consisted of members of the modern subclades PACMAD (Panicoideae-Aristidoideae-Chloridoideae-Micrairoideae-Arundinoideae-Danthonioideae) and BEP (Bambusoideae-Ehrhartoideae-Pooideae), including a taxon with proposed affinities to Ehrhartoideae. Here we describe additional fossils and show that, based on phylogenetic analyses that combine molecular genetic data and epidermal and phytolith features across Poaceae, these can be assigned to the rice tribe, Oryzeae, of grass subfamily Ehrhartoideae. The new Oryzeae fossils suggest substantial diversification within Ehrhartoideae by the Late Cretaceous, pushing back the time of origin of Poaceae as a whole. These results, therefore, necessitate a re-evaluation of current models for grass evolution and palaeobiogeography.

  8. A long-lived Late Cretaceous-early Eocene extensional province in Anatolia? Structural evidence from the Ivriz Detachment, southern central Turkey

    Science.gov (United States)

    Gürer, Derya; Plunder, Alexis; Kirst, Frederik; Corfu, Fernando; Schmid, Stefan M.; van Hinsbergen, Douwe J. J.

    2018-01-01

    Central Anatolia exposes previously buried and metamorphosed, continent-derived rocks - the Kırşehir and Afyon zones - now covering an area of ∼300 × 400 km. So far, the exhumation history of these rocks has been poorly constrained. We show for the first time that the major, >120 km long, top-NE 'Ivriz' Detachment controlled the exhumation of the HP/LT metamorphic Afyon Zone in southern Central Anatolia. We date its activity at between the latest Cretaceous and early Eocene times. Combined with previously documented isolated extensional detachments found in the Kırşehir Block, our results suggest that a major province governed by extensional exhumation was active throughout Central Anatolia between ∼80 and ∼48 Ma. Although similar in dimension to the Aegean extensional province to the east, the Central Anatolian extensional province is considerably older and was controlled by a different extension direction. From this, we infer that the African slab(s) that subducted below Anatolia must have rolled back relative to the Aegean slab since at least the latest Cretaceous, suggesting that these regions were underlain by a segmented slab. Whether or not these early segments already corresponded to the modern Aegean, Antalya, and Cyprus slab segments remains open for debate, but slab segmentation must have occurred much earlier than previously thought.

  9. Palaeomagnetism of lower cretaceous tuffs from Yukon-Kuskokwim delta region, western Alaska

    Science.gov (United States)

    Globerman, B.R.; Coe, R.S.; Hoare, J.M.; Decker, J.

    1983-01-01

    During the past decade, the prescient arguments1-3 for the allochthoneity of large portions of southern Alaska have been corroborated by detailed geological and palaeomagnetic studies in south-central Alaska 4-9 the Alaska Peninsula10, Kodiak Island11,12 and the Prince William Sound area13 (Fig. 1). These investigations have demonstrated sizeable northward displacements for rocks of late Palaeozoic, Mesozoic, and early Tertiary age in those regions, with northward motion at times culminating in collision of the allochthonous terranes against the backstop of 'nuclear' Alaska14,15. A fundamental question is which parts of Alaska underwent significantly less latitudinal translation relative to the 'stable' North American continent, thereby serving as the 'accretionary nucleus' into which the displaced 'microplates'16 were eventually incorporated17,18? Here we present new palaeomagnetic results from tuffs and associated volcaniclastic rocks of early Cretaceous age from the Yukon-Kuskokwin delta region in western Alaska. These rocks were probably overprinted during the Cretaceous long normal polarity interval, although a remagnetization event as recent as Palaeocene cannot be ruled out. This overprint direction is not appreciably discordant from the expected late Cretaceous direction for cratonal North America. The implied absence of appreciable northward displacement for this region is consistent with the general late Mesozoic-early Tertiary tectonic pattern for Alaska, based on more definitive studies: little to no poleward displacement for central Alaska, though substantially more northward drift for the 'southern Alaska terranes' (comprising Alaska Peninsula, Kodiak Island, Prince William Sound area, and Matunuska Valley) since late Cretaceous to Palaeocene time. ?? 1983 Nature Publishing Group.

  10. Middle Jurassic-Early Cretaceous foraminiferal biozonation of the Amran Group, eastern Sana'a Basin, Yemen

    Science.gov (United States)

    Al-Wosabi, Mohammed; El-Anbaawy, Mohammed; Al-Thour, Khalid

    2017-06-01

    Two sections of strata assigned to the Amran Group at Jabal Salab and Jabal Yam in the eastern Sana'a governorate were sampled and correlated. These sections are part of a carbonate platform that extends from the city of Marib in the east to Naqil Ibn Ghailan, 20 km east of the city of Sana'a to the west. Palaeontological analysis of samples recovered has resulted in identification of 123 foraminiferal species, which are used to subdivide the sequence of the Amran Group into five biostratigraphic zones, aged between Bathonian (Middle Jurassic) and Berriasian (Early Cretaceous). The proposed biozones are those of Riyadhella rotundata, Kurnubia jurassica, Ammomarginulina sinaica, Alveosepta jaccardi and Pseudocyclammina sulaiyana/Furitilla caspianseis. These biozones were constructed and correlated with the equivalent zones reported from several localities.

  11. Middle Jurassic–Early Cretaceous foraminiferal biozonation of the Amran Group, eastern Sana’a Basin, Yemen

    Directory of Open Access Journals (Sweden)

    Al-Wosabi Mohammed

    2017-06-01

    Full Text Available Two sections of strata assigned to the Amran Group at Jabal Salab and Jabal Yam in the eastern Sana’a governorate were sampled and correlated. These sections are part of a carbonate platform that extends from the city of Marib in the east to Naqil Ibn Ghailan, 20 km east of the city of Sana’a to the west. Palaeontological analysis of samples recovered has resulted in identification of 123 foraminiferal species, which are used to subdivide the sequence of the Amran Group into five biostratigraphic zones, aged between Bathonian (Middle Jurassic and Berriasian (Early Cretaceous. The proposed biozones are those of Riyadhella rotundata, Kurnubia jurassica, Ammomarginulina sinaica, Alveosepta jaccardi and Pseudocyclammina sulaiyana/Furitilla caspianseis. These biozones were constructed and correlated with the equivalent zones reported from several localities.

  12. Water Resource Planning Under Future Climate and Socioeconomic Uncertainty in the Cauvery River Basin in Karnataka, India

    Science.gov (United States)

    Bhave, Ajay Gajanan; Conway, Declan; Dessai, Suraje; Stainforth, David A.

    2018-02-01

    Decision-Making Under Uncertainty (DMUU) approaches have been less utilized in developing countries than developed countries for water resources contexts. High climate vulnerability and rapid socioeconomic change often characterize developing country contexts, making DMUU approaches relevant. We develop an iterative multi-method DMUU approach, including scenario generation, coproduction with stakeholders and water resources modeling. We apply this approach to explore the robustness of adaptation options and pathways against future climate and socioeconomic uncertainties in the Cauvery River Basin in Karnataka, India. A water resources model is calibrated and validated satisfactorily using observed streamflow. Plausible future changes in Indian Summer Monsoon (ISM) precipitation and water demand are used to drive simulations of water resources from 2021 to 2055. Two stakeholder-identified decision-critical metrics are examined: a basin-wide metric comprising legal instream flow requirements for the downstream state of Tamil Nadu, and a local metric comprising water supply reliability to Bangalore city. In model simulations, the ability to satisfy these performance metrics without adaptation is reduced under almost all scenarios. Implementing adaptation options can partially offset the negative impacts of change. Sequencing of options according to stakeholder priorities into Adaptation Pathways affects metric satisfaction. Early focus on agricultural demand management improves the robustness of pathways but trade-offs emerge between intrabasin and basin-wide water availability. We demonstrate that the fine balance between water availability and demand is vulnerable to future changes and uncertainty. Despite current and long-term planning challenges, stakeholders in developing countries may engage meaningfully in coproduction approaches for adaptation decision-making under deep uncertainty.

  13. Early Cretaceous marine sediments of the Lower Saxony Basin. The Gildehaus Sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Dellepiane, S.; Weiel, D. [Wintershall Holding GmbH, Barnstorf (Germany); Gerwert, D.; Mutterlose, J. [Bochum Univ. (Germany). Inst. fuer Geologie, Mineralogie und Geophysik

    2013-08-01

    During the Early Cretaceous (Berriasian - Aptian) the Lower Saxony Basin (LSB) formed the southernmost extension of the North Sea Basin. Sedimentation patterns of the LSB were controlled by divergent dextral shear movement causing differential subsidence related to early rifting in the North Sea. Up to 2000m of fine grained mudstones accumulated in the basin centre, while marginal marine, coarser grained siliciclastics were deposited along the western and southern margins of the LSB. The western marginal facies, outcropping along the Dutch-German border, is characterised by shallow marine sandstones of Valanginian - Hauterivian age. These units, which are separated by clay rich intervals, include the Bentheim Sdst., the Dichotomites Sdst., the Grenz Sdst., the Noricum Sdst. and the Gildehaus Sdst. These sandstones form a series of overall backstepping units, controlled by a main transgressive trend. Economically important are the Bentheim Sdst. and the Gildehaus Sdst., with a long oil producing history. The Bentheim Sdst. (early Valanginian) has been interpreted as an overall retrograding unit related to an incised valley infill with material mainly coming from the South. Tidal processes dominated the deposition of the Bentheim Sdst. The origin and genesis of the Gildehaus Sdst. (mid Hauterivian) is, however, less well understood. Here we present data from two wells drilled to the Gildehaus Sdst. (Emlichheim oil field) which provide evidence for a two fold subdivision of the unit. A well sorted massive quartz sandstone is followed by an interval composed of reworked coarse clastics of massflow origin. Micropalaeontological evidence suggests a fully marine, hemi-pelagic origin of the mud dominated matrix throughout the Gildehaus Sdst. These findings indicate a depositional environment quite different from that of the Bentheim Sdst. Short termed pulses of substantial input of clastic material from two different sources in the West to Southwest punctuated the overall

  14. New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae)

    Science.gov (United States)

    Perrichot, Vincent; Nel, André; Néraudeau, Didier; Lacau, Sébastien; Guyot, Thierry

    2008-02-01

    Recent studies on the ant phylogeny are mainly based on the molecular analyses of extant subfamilies and do not include the extinct, only Cretaceous subfamily Sphecomyrminae. However, the latter is of major importance for ant relationships, as it is considered the most basal subfamily. Therefore, each new discovery of a Mesozoic ant is of high interest for improving our understanding of their early history and basal relationships. In this paper, a new sphecomyrmine ant, allied to the Burmese amber genus Haidomyrmex, is described from mid-Cretaceous amber of France as Haidomyrmodes mammuthus gen. and sp. n. The diagnosis of the tribe Haidomyrmecini is emended based on the new type material, which includes a gyne (alate female) and two incomplete workers. The genus Sphecomyrmodes, hitherto known by a single species from Burmese amber, is also reported and a new species described as S. occidentalis sp. n. after two workers remarkably preserved in a single piece of Early Cenomanian French amber. The new fossils provide additional information on early ant diversity and relationships and demonstrate that the monophyly of the Sphecomyrminae, as currently defined, is still weakly supported.

  15. Evidence of cretaceous to recent West African intertropical vegetation from continental sediment spore-pollen analysis

    Science.gov (United States)

    Salard-Cheboldaeff, M.; Dejax, J.

    The succession of spore-pollen assemblages during the Cretaceous and Tertiary, as defined in each of the basin from Senegal to Angola, gives the possibility to consider the intertropical African flora evolution for the past 120 M.a. During the Early Cretaceous, xeric-adapted gymnosperms and various ferns were predominant the flora which nevertheless comprises previously unknown early angiosperm pollen. During the Middle Cretaceous, gymnospers were gradually replaced by angiosperms; these became more and more abundant, along with the diversification of new genera and species. During the Paleocene, the radiation of the monocotyledons (mainly that of the palm-trees) as well as a greater diversification among the dicotyledons and ferms are noteworthy. Since gymnosperms had almost disappeared by the Eocene, the diversification of the dicotyledons went on until the neogene, when all extinct pollen types are already present. These important modifications of the vegetation reflect evolutionary trends as well as climatic changes during the Cretaceous: the climate, firstly hot, dry and perhaps arid, did probably induced salt deposition, and later became gradually more humid under oceanic influences which arose in connection with the Gondwana break-up.

  16. A large parasitengonid mite (Acari, Erythraeoidea from the Early Cretaceous Crato Formation of Brazil

    Directory of Open Access Journals (Sweden)

    J. A. Dunlop

    2007-08-01

    Full Text Available A new large, fossil mite (Arachnida: Acari, Pararainbowia martilli n. gen. n. sp., is described from the Early Cretaceous (Aptian Crato Formation from Ceará State, Brazil. It is assigned to the Cohort Parasitengona and the superfamily Erythraeoidea, some extant members of which can reach up to seven millimetres in body length. Given that doubts have been raised about the identity of putative Crato feather mite eggs, this new fossil represents the first unequivocal record of Acari from the Crato Formation, the first non-amber record of an erythraeoid mite and the oldest named example of this superfamily. Fossil erythraeoids from Mesozoic and Tertiary ambers are briefly reviewed – including a widely overlooked Late Cretaceous species – with comments on Mesozoic mites in general. Thirteen Baltic amber erythraeoids have been formally described, but much unstudied material from various amber sources remains. Ein neues großes Milbenfossil (Arachnida: Acari, Pararainbowia martilli n. gen. n. sp., wird aus der Crato Formation (Unterkreide, Aptium des Ceará Gebietes in Brasilien beschrieben. Es wird der Kohorte Parasitengona und der Überfamilie Erythraeoidea zugeordnet; die modernen Vertreter erreichen eine Körperlänge bis zu sieben mm. Weil die Identität von Federmilbeneiern aus der Crato Formation in Frage gestellt wurde, ist dieser Neufund der erste klare Hinweis von Acari aus der Crato Formation. Es ist die erste erythraeoide Milbe, die nicht aus dem Bernstein stammt sowie das älteste genannte Beispiel dieser Überfamilie. Fossile erythraeoide Milben aus dem Bernstein des Mesozoikum und des Tertiärs werden kurz zusammengefasst – u. a. eine weitgehend übersehene Art aus der Oberkreide – mit allgemeinen Anmerkungen zu den mesozoischen Milben. Dreizehn erythraeoide Milbenarten sind aus dem baltischen Bernstein genannt und beschrieben worden, aber weiteres unbearbeitetes Material von verschiedenen Bernstein-Fundpunkten liegt noch vor

  17. 118-115 Ma magmatism in the Tethyan Himalaya igneous province: Constraints on Early Cretaceous rifting of the northern margin of Greater India

    Science.gov (United States)

    Chen, Sheng-Sheng; Fan, Wei-Ming; Shi, Ren-Deng; Liu, Xiao-Han; Zhou, Xue-Jun

    2018-06-01

    Understanding the dynamics of Large Igneous Provinces (LIPs) is critical to deciphering processes associated with rupturing continental lithosphere. Microcontinental calving, the rifting of microcontinents from mature continental rifted margins, is particularly poorly understood. Here we present new insights into these processes from geochronological and geochemical analyses of igneous rocks from the Tethyan Himalaya. Early Cretaceous mafic dikes are widely exposed in the eastern and western Tethyan Himalaya, but no such rocks have been reported from the central Tethyan Himalaya. Here we present an analysis of petrological, geochronological, geochemical, and Sr-Nd-Hf-Os isotopic data for bimodal magmatic rocks from the center-east Tethyan Himalaya. Zircon U-Pb dating yields six weighted-mean concordant 206Pb/238U ages of 118 ± 1.2 to 115 ± 1.3 Ma. Mafic rocks display MORB-like compositions with flat to depleted LREE trends, and positive εNd(t) (+2.76 to +5.39) and εHf(t) (+8.0 to +11.9) values. The negative Nb anomalies and relatively high 187Os/188Os ratios (0.15-0.19) of these rocks are related to variable degrees (up to 10%) of crustal contamination. Geochemical characteristics indicate that mafic rocks were generated by variable degrees (2-20%) of partial melting of spinel lherzolites in shallow depleted mantle. Felsic rocks are enriched in Th and LREE, with negative Nb anomalies and decoupling of Nd (εNd(t) = -13.39 to -12.78) and Hf (εHf(t) = -4.8 to -2.0), suggesting that they were derived mainly from garnet-bearing lower continental crust. The geochemical characteristics of the bimodal magmatic associations are comparable to those of associations that form in a continental rift setting. Results indicate that Early Cretaceous magmatism occurred across the whole Tethyan Himalaya, named here as the "Tethyan Himalaya igneous province". Separation of the Tethyan Himalaya from the Indian craton may have occurred during ongoing Early Cretaceous extension

  18. Trap architecture of the Early Cretaceous Sarir Sandstone in the eastern Sirt Basin, Libya

    Energy Technology Data Exchange (ETDEWEB)

    Gras, R. [Schlumberger GeoQuest, Cedex (France); Thusu, B. [Arabian Gulf Oil Company, Benghazi (Libyan Arab Jamahiriya)

    1998-12-31

    The Sarir Sandstone is the principal reservoir for oil accumulations in the eastern Sirt Basin in Libya. The main phase of the rifting in this area took place in the Late Jurassic-Early Cretaceous, during which time the Sarir Sandstone was deposited as a non-marine, intra-continental clastic syn-rift sequence. Although successfully explored from 1959 onwards, the prolific eastern Sirt Basin is in a relatively immature stage of exploration regarding wildcat drilling and 3D seismic data acquisition. The most recent phase of exploration, utilizing 3D seismic techniques, revealed a complex structural development. The trap geometries are often related to E-W trending, basement-controlled fault systems, oblique to the NNW-SSE Sirt Basin trend. The fault systems were active during the Sarir Sandstone deposition, giving rise to structural as well as combined structural-traps. An increased understanding of trap architecture has led to both re-evaluation of older fields and new discoveries. (author)

  19. Heavy Metal Analysis of Cauvery River Water Around Krs Dam, Karnataka, India

    Directory of Open Access Journals (Sweden)

    J. Mahadev

    2010-07-01

    Full Text Available Water quality is an index of health and is one of the areas of major concern to environmentalists, since Industrialization, urbanization and modern agriculture practices have a direct impact on the water resources. Hence, the study of the reservoirs and river water quality monitoring is most essential aspect of sustainable development and river conservation. The Upstream and KRS reservoir both are the important sources of potable water supply for the Mysore city. The study area were selected the Upstream and KRS reservoir of Mysore District of Karnataka, India. In this paper an attempt has been made to evaluate water quality parameter and heavy metal of upstream and KRS Dam during 2008. Ecological parameters like Dissolved Oxygen, Chemical Oxygen Demand, Biochemical Oxygen Demand and Chemical parameters like Total Hardness, Total Alkalinity, Chloride, Nitrate, Phosphate and physical parameters like Temperature, pH, Turbidity and heavy metals were analyzed and the results were compared with standard permissible limits, WHO and they were studied to ascertain the drinking water quality. Results revealed that in three rivers of upstream (Hemavathi, Cauvery and Laxmanatheertha carried high loads of Arsenic, Iron, Nickel in Upstream. In other word, Arsenic is a dominant risk to more than the maximum permissible standard of water quality and is a risk factor in this river

  20. Geomagnetic Reversals of the Late Jurassic and Early Cretaceous Captured in a North China Core

    Science.gov (United States)

    Kuhn, T.; Fu, R. R.; Kent, D. V.; Olsen, P. E.

    2016-12-01

    The Tuchengzi formation in North China nominally spans nearly 20 million years of the Late Jurassic and Early Cretaceous, an interval during which age calibration of the Geomagnetic Polarity Time Scale (GPTS) based on seafloor magnetic anomalies is poorly known. The overlying Yixian formation is of special paleontological interest due to an abundance of spectacularly preserved macrofossils of feathered non-avian dinosaurs, birds, mammals, and insects. Scarce fossils in the Tuchengzi, sparse accurate radiometric dates on both the Tuchengzi and overlying Yixian formation, and scant previous paleomagnetic studies on these formations motivated our application of magnetostratigraphy as a geochronological tool. We constructed a geomagnetic reversal sequence from the upper 142m of a 200m core extracted in Liaoning Province at Huangbanjigou spanning the lower Yixian Formation and the unconformably underlying Tuchengzi Formation. Thermal demagnetization up to 680°C in steps of 25-50°C revealed predominantly normal overprints consistent with the modern day field with unblocking temperatures between 125°C and as high as 550°C, as well as normal and reverse characteristic components with unblocking temperatures between 500°C and 680°C. Going up from the base of the core, there is a reverse polarity magnetozone >6m thick, followed by a 5m normal magnetozone, a 10m reverse magnetozone, a 25m normal magnetozone, and a 6m reverse magnetozone truncated by the Yixian-Tuchengzi unconformity. Above the unconformity, all 81m of core were normal. These results indicate that a meaningful polarity stratigraphy can be recovered from the Tuchengzi and Yixian formations that will be invaluable for correlations across the Tuchengzi and potentially the Yixian formations, which span thousands of square kilometers and vary in thickness by many hundreds of meters. The results also demonstrate that, in combination with accurate and precise radiometric dates, the Tuchengzi Formation has the

  1. Petrogenesis of the late Early Cretaceous granodiorite - Quartz diorite from eastern Guangdong, SE China: Implications for tectono-magmatic evolution and porphyry Cu-Au-Mo mineralization

    Science.gov (United States)

    Jia, Lihui; Mao, Jingwen; Liu, Peng; Li, Yang

    2018-04-01

    Comprehensive petrological, zircon U-Pb dating, Hf-O isotopes, whole rock geochemistry and Sr-Nd isotopes data are presented for the Xinwei and Sanrao intrusions in the eastern Guangdong Province, Southeast (SE) China, with an aim to constrain the petrogenesis, tectono-magmatic evolution and evaluate the implication for porphyry Cu-Au-Mo mineralization. The Xinwei intrusion is composed of granodiorite and quartz diorite, whilst the Sanrao intrusion consists of granodiorite. Zircon U-Pb ages show that both intrusions were emplaced at ca. 106-102 Ma. All rocks are metaluminous to weakly peraluminous, high-K calc-alkaline in composition, and they are characterized by LREEs enrichment, depletion in Nb, Ta, P, and Ti, and strongly fractionated LREEs to HREEs. The initial 87Sr/86Sr ratios range from 0.7055 to 0.7059, and εNd(t) values range from -3.9 to -3.0. Together with the relatively high εHf(t) values (-3.2 to 3.3) and low δ18O values (4.9‰ to 6.6‰), these data suggest that the Xinwei and Sanrao intrusions were derived from a mixed source: including the mantle-derived mafic magmas and lower continental crustal magmas. Fractional crystallization played an important role in the magmatic evolution of the Xinwei and Sanrao intrusions. The elemental and isotopic compositions of the Xinwei and Sanrao intrusions, as well as the high water content and oxidation state of their parental magmas, are similar to those of the ore-bearing granodiorites of the Luoboling porphyry Cu-Mo deposit in the Fujian Province, neighbouring east to the Guangdong Province, indicating that the late Early Cretaceous granodioritic intrusions in the eastern Guangdong Province may also have Cu-Au-Mo mineralization potential. The late Early Cretaceous magmatic event is firstly reported in eastern Guangdong, and represents a positive response of large-scale lithosphere extension and thinning, triggered by the changing subduction direction of the Paleo-Pacific plate from oblique subduction to

  2. Cretaceous Crocodyliforms from the Sahara

    Directory of Open Access Journals (Sweden)

    Paul Sereno

    2009-11-01

    Full Text Available Diverse crocodyliforms have been discovered in recent years in Cretaceous rocks on southern landmasses formerly composing Gondwana.  We report here on six species from the Sahara with an array of trophic adaptations that significantly deepen our current understanding of African crocodyliform diversity during the Cretaceous period.  We describe two of these species (Anatosuchus minor, Araripesuchus wegeneri from nearly complete skulls and partial articulated skeletons from the Lower Cretaceous Elrhaz Formation (Aptian-Albian of Niger. The remaining four species (Araripesuchus rattoides sp. n., Kaprosuchus saharicus gen. n. sp. n., Laganosuchus thaumastos gen. n. sp. n., Laganosuchus maghrebensis gen. n. sp. n. come from contemporaneous Upper Cretaceous formations (Cenomanian in Niger and Morocco.

  3. Shallow magnetic inclinations in the Cretaceous Valle Group, Baja California: remagnetization, compaction, or terrane translation?

    Science.gov (United States)

    Smith, Douglas P.; Busby, Cathy J.

    1993-10-01

    Paleomagnetic data from Albian to Turonian sedimentary rocks on Cedros Island, Mexico (28.2° N, 115.2° W) support the interpretation that Cretaceous rocks of western Baja California have moved farther northward than the 3° of latitude assignable to Neogene oblique rifting in the Gulf of California. Averaged Cretaceous paleomagnetic results from Cedros Island support 20 ± 10° of northward displacement and 14 ± 7° of clockwise rotation with respect to cratonic North America. Positive field stability tests from the Vizcaino terrane substantiate a mid-Cretaceous age for the high-temperature characteristic remanent magnetization in mid-Cretaceous strata. Therefore coincidence of characteristic magnetization directions and the expected Quaternary axial dipole direction is not due to post mid-Cretaceous remagnetization. A slump test performed on internally coherent, intrabasinal slump blocks within a paleontologically dated olistostrome demonstrates a mid-Cretaceous age of magnetization in the Valle Group. The in situ high-temperature natural remanent magnetization directions markedly diverge from the expected Quaternary axial dipole, indicating that the characteristic, high-temperature magnetization was acquired prior to intrabasinal slumping. Early acquisition of the characteristic magnetization is also supported by a regional attitude test involving three localities in coherent mid-Cretaceous Valle Group strata. Paleomagnetic inclinations in mudstone are not different from those in sandstone, indicating that burial compaction did not bias the results toward shallow inclinations in the Vizcaino terrane.

  4. Laser Fluorescence Illuminates the Soft Tissue and Life Habits of the Early Cretaceous Bird Confuciusornis.

    Directory of Open Access Journals (Sweden)

    Amanda R Falk

    Full Text Available In this paper we report the discovery of non-plumage soft tissues in Confuciusornis, a basal beaked bird from the Early Cretaceous Jehol Biota in northeastern China. Various soft tissues are visualized and interpreted through the use of laser-stimulated fluorescence, providing much novel anatomical information about this early bird, specifically reticulate scales covering the feet, and the well-developed and robust pro- and postpatagium. We also include a direct comparison between the forelimb soft tissues of Confuciusornis and modern avian patagia. Furthermore, apparently large, fleshy phalangeal pads are preserved on the feet. The reticulate scales, robust phalangeal pads as well as the highly recurved pedal claws strongly support Confuciusornis as an arboreal bird. Reticulate scales are more rounded than scutate scales and do not overlap, thus allowing for more flexibility in the toe. The extent of the pro- and postpatagium and the robust primary feather rachises are evidence that Confuciusornis was capable of powered flight, contrary to previous reports suggesting otherwise. A unique avian wing shape is also reconstructed based on plumage preserved. These soft tissues combined indicate an arboreal bird with the capacity for short-term (non-migratory flight, and suggest that, although primitive, Confuciusornis already possessed many relatively advanced avian anatomical characteristics.

  5. AN APPROACH TO PROVENANCE, TECTONIC AND REDOX CONDITIONS OF JURASSIC-CRETACEOUS AKKUYU FORMATION, CENTRAL TAURIDS, TURKEY

    Directory of Open Access Journals (Sweden)

    Ali SARI

    2012-06-01

    Full Text Available - Late Jurassic-Early Cretaceous Akkuyu formation was deposited in a marine carbonate platform in Central Tarurids. The organic material of the unit is composed of Type III kerogen which is woody material transported from the land. Late Jurassic- Early Cretaceous is an important period which great anoxic events in deep sea bottom occurred due to the primary organic productivity in global sea surface. Use of several trace elements values (Ni, V, U, Cr, Co, Th revealed that Late Jurassic-Early Cretaceous Akkuyu formation shows oxic, disoxic and anoxic paleoredox conditions. In this period the primary productivity was considerably high. Examination of specimen derived from Akkuyu formation revealed that there exists a very good positive relationship between the major oxides of Al2O3, SiO2, Fe2O3, TiO2, and K2O. These combinations of major oxides indicate a detrital origin of source rock. Chemical weathering evaluations of Central Taurids in the Jurassic-Cretaceous period indicated moderate and strong weathering of source rock. K2O/Na2O versus SiO2; SiO2/Al2O3 versus K2O/Na2O; Al2O3/ SiO2 versus Fe2O3 + MgO ve TiO2 versus Fe2O3 + MgO diagrams indicated that Akkuyu formation was deposited along active and/or passive continental margin and derived from basalt and basalt+granite mixed rocks.

  6. Evidence of reworked Cretaceous fossils and their bearing on the existence of Tertiary dinosaurs

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, J.G. (Museum of Northern Arizona, Flagstaff (USA)); Kirkland, J.I. (Univ. of Nebraska, Lincoln (USA)); Doi, K. (Univ. of Colorado, Boulder (USA))

    1989-06-01

    The Paleocene Shotgun fauna of Wyoming includes marine sharks as well as mammals. It has been suggested that the sharks were introduced from the Cannonball Sea. It is more likely that these sharks were reworked from a Cretaceous rock sequence that included both marine and terrestrial deposits as there is a mixture of marine and freshwater taxa. These taxa have not been recorded elsewhere after the Cretaceous and are not known from the Cannonball Formation. Early Eocene localities at Raven Ridge, Utah, similarly contain teeth of Cretaceous marine and freshwater fish, dinosaurs, and Eocene mammals. The Cretaceous teeth are well preserved, variably abraded, and serve to cast doubts on criteria recently used to claim that dinosaur teeth recovered from the Paleocene of Montana are not reworked. Another Eocene locality in the San Juan Basin has produced an Eocene mammalian fauna with diverse Cretaceous marine sharks. Neither the nature of preservation nor the degree of abrasion could be used to distinguish reworked from contemporaneous material. The mixed environments represented by the fish taxa and recognition of the extensive pre-Tertiary extinction of both marine and freshwater fish were employed to recognize reworked specimens.

  7. Post Cretaceous cooling trend documented in the gastropods (Turritella Sp.) from the Cenozoic startigraphic successions of India

    Science.gov (United States)

    Banerjee, Y.; Ghosh, P.; Halder, K.; Malarkodi, N.; Pathak, P.

    2017-12-01

    The aftermath of the Himalyan orogeny and subsequent cooling is documented in the deep sea sedimentary record from the Oceanic realm (1). Here we attempt to reconstruct the temperature pattern based on marine gastropods i.e. Turritella sp. which became abundant during the post Cretaceous period and have successfully been used for the reconstruction of climate by measuring the stable isotopic composition (2,3,4). Well preserved specimens of Cretaceous Turritella from the Rajamundry Infratrappean beds and those from the Miocene, Holocene succession of Kutch, western India were analysed along with specimen from the modern time scale (also from Kutch). The Cretaceous, early to mid Miocene, early Holocene and modern shells recorded δ13C variability from 0.36 to 4.94‰, -1.83 to -4.83‰, -3.26 to 0.40‰, -1.47 to -4.70‰ respectively suggesting drop in the productivity during mid Miocene and subsequent period of rapid growth. The Variability in terms of δ18O ranges from -2.28 to -4.99‰, -2.66 to -7.06‰, -2.86 to 0.96‰, -1.05 to -3.23‰ for the Cretaceous, early to mid Miocene, early Holocene and modern shells respectively. Corbula sp. collected from the same strata with that of the early to mid Holocene Turritella showed a similar δ13C and δ18O values denoting similar environmental condition during deposition. Absence of any significant correlation between δ13C vs δ18O support equilibrium precipitation of shell growth bands. We used Epstein oxygen isotope thermometry to derive temperature from the oxygen isotope of carbonate and adopted water isotopic composition (1‰ for the Cretaceous and -0.7‰ for the Miocene) from the literature. Our observation captured an overall cooling trend from the Cretaceous to the Holocene time period (especially in between mid Miocene to Holocene) and a subsequent warming trend in modern time. Validation with other thermometry method will be displayed at the time of presentation. References: [1] Zachos et al., 2001

  8. New Patagonian Cretaceous theropod sheds light about the early radiation of Coelurosauria

    Directory of Open Access Journals (Sweden)

    Fernando E Novas

    2012-06-01

    Full Text Available Here we describe a new theropod, Bicentenaria argentina nov. gen. et nov. sp., from the early Late Cretaceous of Patagonia. It is represented by more than a hundred bones belonging to different sized individuals, which were buried together in disarticulation after little transportation. The available association of skeletal elements suggests a gregarious behaviour for Bicentenaria, an ethological trait also recorded among other theropod clades. Increasing documentation of monospecific assemblages of different groups of theropods suggests that a gregarious behaviour may have constituted the ancestral condition for Theropoda, at least. Bicentenaria characterizes for the surangular bone with a high dorsal margin and a prominent lateral shelf, a retroarticular process that is low, wide and spoon-shaped, and quadrate bone with its lateral condyle larger than the medial one. Phylogenetic analysis found the Chinese Tugulusaurus and the Patagonian Bicentenaria as successive sister taxa of all other coelurosaurs, thus revealing the importance of the new taxon in the understanding of the early diversification of Coelurosauria. In particular, Bicentenaria amplifies the array of basal coelurosaurs that inhabited Gondwana during the Cretaceous, also including compsognathids, Aniksosaurus and Santanaraptor. Although still restricted to a handful of forms, available information indicates that Gondwana was a cradle for the evolution of different lineages of basal coelurosaurs, different from those documented in Upper Cretaceous beds in the northern landmasses. Analysis of body size distribution in averostran theropods results in the identification of two main episodes of drastic size reduction in the evolutionary history of Coelurosauria: one occurred at the initial radiation of the group (as represented by Bicentenaria, Zuolong, Tugulusaurus, compsognathids, and Aniksosaurus, and a second episode occurred at the early diverification of Paraves or avialans

  9. Glendonites as a paleoenvironmental tool: Implications for early Cretaceous high latitudinal climates in Australia

    Science.gov (United States)

    De Lurio, Jennifer L.; Frakes, L. A.

    1999-04-01

    Glendonites, calcite pseudomorphs after the metastable mineral ikaite (CaCO 3 · 6H 2O), occur in the Late Aptian interval of the Bulldog Shale in the Eromanga Basin, Australia and in other Early Cretaceous basins at high paleolatitudes. Ikaite precipitation in the marine environment requires near-freezing temperatures (not higher than 4°C), high alkalinity, increased levels of orthophosphate, and high P CO2. The rapid and complete transformation of ikaite to calcite at temperatures between 5 and 8°C provides an upper limit on the oxygen isotopic composition of the pore waters: -2.6 ikaite precipitation. Data previously reported as 11 to 16°C (assuming δ w = 0.0‰SMOW) yield paleotemperatures ranging from -1 to 5°C, squarely in the range of ikaite stability. The low δ w indicates hyposaline conditions, most likely caused by mixing high latitude meteoric waters with seawater. The 18O depleted, low temperature waters suggest that the region was at least seasonally colder than previously accepted.

  10. Late Cenomanian - Early Turonian Hardgrounds and nearshore Depositional Environments (Bohemian Cretaceous Basin)

    Czech Academy of Sciences Publication Activity Database

    Žítt, Jiří; Bosák, Pavel; Hradecká, L.; Svobodová, Marcela

    Colloque sur le Cénomanien/Colloquium on the Cenomanian Stage, - (2001), s. 105-107 ISSN 0766-5946. [Colloque sur le Cénomanien/Colloquium on the Cenomanian Stage. Rouen, 20.10.2001-21.10.2001] R&D Projects: GA ČR GA205/99/1315 Institutional research plan: CEZ:AV0Z3013912 Keywords : Upper Cretaceous * Hardgrounds Subject RIV: DB - Geology ; Mineralogy

  11. Sedimentary basin analysis and petroleum potential of the Cretaceous and Tertiary strata in Korea.

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jin-Dam; Kwak, Young-Hoon; Bong, Pil-Yoon [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Since 1992 sedimentary basin analysis to assess petroleum potential of the Cretaceous and Tertiary strata in the Korean onshore and continental shelf have been carried out. The Cretaceous non-marine strata mainly occupy the Gyeongsang Basin in southeastern part of the Korean Peninsula and small basins such as Haenam and Gyeokpo depressions in western coastal areas. The Tertiary strata are mostly distributed in Domi, Cheju, Socotra subbasins, and Okinawa Trough in the South Continental Shelf, and Kunsan and Heuksan basins in the West. The basin evolution and petroleum potential for each basins are characterized as follow. The Cretaceous Gyeongsang sediments were deposited in three subbasins including Milyang, Euisung and Yongyang subbasins. The black shales in Nakdong and Jinju formations are interpreted to contain abundant organic matter during the deposition, thermal maturity reaching up to the zone of dry gas formation. Because porosity and permeability are too low, the sandstones can act as a tight gas reservoir rather than conventional oil and gas reservoir. The latest Cretaceous strata of Haenam and Kyeokpo depressions in western coastal area are correlated into the Yuchon Volcanic Group of the Gyeongsang Basin. Petroleum potential of the Early Cretaceous basin in the West Continental Shelf could be relatively high in terms of sedimentary basin filled with thick lacustrine sediments. The Kunsan basin in the West Continental Shelf originated in the Early Cretaceous time expanded during the Paleocene time followed by regional erosion at the end of Paleocene on which Neogene sediment have been accumulated. The Paleocene-Eocene sublacustrine shales may play an major role as a source and cap rocks. South Continental Shelf Basin is subdivided by Cheju subbasin in the center, Socotra Subbasin to the west, Domi Subbasin to the northeast and Okinawa Trough to the East. The potential hydrocarbon traps associated with anticline, titled fault blocks, fault, unconformity

  12. The clasts of Cretaceous marls in the conglomerates of the Konradsheim Formation (Pöchlau quarry, Gresten Klippen Zone, Austria)

    Science.gov (United States)

    Ślączka, Andrzej; Gasiñski, M. Adam; Bąk, Marta; Wessely, Godfrid

    2009-04-01

    Investigations were carried out on foraminiferids and radiolaria from redeposited clasts within the conglomerates of the Konradsheim Formation (Gresten Klippen Zone) in the area of the Pöchlau hill, east of Maria Neustift. These shales and marls are of Middle to Late Jurassic and Early Cretaceous age. In the latter clasts, foraminiferal assemblages with Tritaxia ex gr. gaultina as well as radiolaria species Angulobracchia portmanni Baumgartner, Dictyomitra communis (Squinabol), Hiscocapsa asseni (Tan), Pseudodictyomitra lodogaensis Pessagno, Pseudoeucyrtis hanni (Tan), Rhopalosyringium fossile (Squinabol) were found. In one block from the uppermost part of the sequence there is an assemblage with Caudammina (H) gigantea, Rotalipora appenninica and Globotruncana bulloides. However, the brecciated character of this block and occurrence near a fault suggest that it was probably wedged into the conglomerates of the Konradsheim Formation during tectonic movements. In pelitic siliceous limestones below the Konradsheim Limestone radiolarian assemblages of Middle Callovian to Early Tithonian age were found. They enable correlation with the Scheibbsbach Formation. In a marly sequence, above the conglomeratic limestone, the foraminiferal assemblages contain taxa from mid-Cretaceous up to Paleocene. The present biostratigraphic investigation confirmed the previous stratigraphic assignments and imply clearly that the sedimentation of deposits similar to the Konradsheim Formation also occurred at the end of the Early Cretaceous and deposition of conglomeratic limestones within the Gresten Klippen Zone, and especially within the Konradsheim Formation, was repeated several times during the Late Jurassic and Early Cretaceous.

  13. Depositional environments and oil potential of Jurassic/Cretaceous source rocks within the Seychelles microcontinent

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, P.S.; Joseph, P.R.; Samson, P.J. [Seychelles National Oil Co., Mahe (Seychelles)

    1998-12-31

    The Seychelles microcontinent became isolated between the Somali, Mascarene and Arabian basins of the Indian Ocean as a result of the Mesozoic fragmentation of Gondwana. Major rifting events occurred during the Triassic-Middle Jurassic and Late Cretaceous (Cenomanian-Santonian and Maastrichtian) during which shaly source rock facies accumulated in principally marginal marine/deltaic environments. Between these times, post-rift passive margin deposition within restricted to open marine environments produced shaly source rocks during late Middle Jurasic-Early Cretaceous, Campanian-Maastrichtian and Paleocene times. Recent geochemical analysis of cuttings from the Seagull Shoals-1 well has identified an oil-prone liptinitic (Type II) coaly shale within early Middle Jurassic abandoned deltaic deposits. This coaly source rock is regionally developed, having also been identified in the Majunja and Morondava basins of Madagascar. Oil-prone Type II organic matter has also been identified in the Owen Bank A-1 well within restricted marine shales of late Middle Jurassic age. These shales are part of a thick post-rift source rock sequence that extends into the Early Cretaceous and is in part correlative with the proven Late Jurassic Uarandab Shale of Somalia. Analysis of Campanian marine shales from Reith Bank-1 well identified significant dilution of total organic carbon content in composite, compared to picked, well cuttings samples. This finding supports a published inference that these post-rift shales have source rock potential. (author)

  14. A new dinosaur ichnotaxon from the Lower Cretaceous Patuxent Formation of Maryland and Virginia

    Science.gov (United States)

    Stanford, Ray; Weems, Robert E.; Lockley, Martin G.

    2004-01-01

    In recent years, numerous dinosaur footprints have been discovered on bedding surfaces within the Lower Cretaceous Patuxent Formation of Maryland and Virginia. Among these, distinctive small tracks that display a combination of small manus with five digit impressions and a relatively much larger pes with four toe impressions evidently were made by animals belonging to the ornithischian family Hypsilophodontidae. These tracks differ from any ornithischian ichnotaxon previously described. We here name them Hypsiloichnus marylandicus and provide a description of their diagnostic characteristics. Although hypsilophodontid skeletal remains have not been found in the Patuxent, their skeletal remains are known from Lower Cretaceous strata of similar age in both western North America and Europe. Therefore, it is not surprising to find that an Early Cretaceous representative of this family also existed in eastern North America.

  15. Stratigraphy, provenance, and diagenesis of the Cretaceous Horse Range Formation, east Otago, New Zealand

    International Nuclear Information System (INIS)

    Mitchell, M.; Craw, D.; Landis, C.A.; Frew, R.

    2009-01-01

    The Horse Range Formation is a structurally controlled late Early Cretaceous to early Late Cretaceous nonmarine unit in east Otago, South Island, New Zealand, containing immature lithic debris. Clasts are generally rounded, with only minor subangular material. The formation contains clasts derived from two principal basement sources: schist and greywacke. Schist debris is most abundant at the base of the described section, and this material is dominated (>60%) by quartz from the greenschist facies core of the Otago Schist belt. Conglomerates with >70% greywacke clasts constitute most of the upper part of the Horse Range Formation. These greywacke conglomerates have a matrix of sand derived mainly from schist. A 60 m thick wedge of quartz-rich, locally carbonaceous sand occurs interlayered with greywacke conglomerates. The Horse Range Formation rests on sub-greenschist facies semischist, which forms only a small proportion ( 18 O SMOW near +24 permil and δ 13 C PDB near -2 permil, and was partly dissolved and redeposited from the immature basement debris (metamorphic calcite) and partly introduced from overlying Late Cretaceous and Teriary marine sediments by groundwater. (author). 43 refs., 11 figs., 1 tab.

  16. Integrated geophysical and geological study and petroleum appraisal of Cretaceous plays in the Western Gulf of Gabes, Tunisia

    Science.gov (United States)

    Dkhaili, Noomen; Bey, Saloua; El Abed, Mahmoud; Gasmi, Mohamed; Inoubli, Mohamed Hedi

    2015-09-01

    An integrated study of available seismic and calibrated wells has been conducted in order to ascertain the structural development and petroleum potential of the Cretaceous Formations of the Western Gulf of Gabes. This study has resulted in an understanding of the controls of deep seated Tethyan tectonic lineaments by analysis of the Cretaceous deposits distribution. Three main unconformities have been identified in this area, unconformity U1 between the Jurassic and Cretaceous series, unconformity U2 separating Early from Late Cretaceous and known as the Austrian unconformity and the major unconformity U3 separating Cretaceous from Tertiary series. The seismic analysis and interpretation have confirmed the existence of several features dominated by an NE-SW extensive tectonic regime evidenced by deep listric faults, asymmetric horst and graben and tilted blocks structures. Indeed, the structural mapping of these unconformities, displays the presence of dominant NW-SE fault system (N140 to N160) bounding a large number of moderate sized basins. A strong inversion event related to the unconformity U3 can be demonstrated by the mapping of the unconformities consequence of the succession of several tectonic manifestations during the Cretaceous and post-Cretaceous periods. These tectonic events have resulted in the development of structural and stratigraphic traps further to the porosity and permeability enhancement of Cretaceous reservoirs.

  17. Tectonic Mechanism for the Mid-Cretaceous - Early Paleogene Intraplate Magmatism from the Gulf of Mexico to Northwestern Canada

    Science.gov (United States)

    Liu, Y.; Murphy, M. A.; Snow, J. E.; van Wijk, J.; Cannon, J. M.; Parsons, C.

    2017-12-01

    Tectonic mechanisms have remained controversial for a number of intraplate igneous suites of mid-Cretaceous - early Paleogene age across North America. They span the northern Gulf of Mexico (GoM), through Arkansas and Kansas in the US, to Saskatchewan and Northwestern Territories in Canada, resembling a belt that is located 1000+ km inboard from, and aligned sub-parallel to, the western margin of North America. The northern GoM magmatism is characterized by lamproites, carbonatites, nephelinites, with other alkaline rocks, whereas the rest igneous provinces are dominated by kimberlites. Their geochemical signatures, in general, point to a sub-lithospheric mantle origin. Hypotheses that explain the tectonic origin of these magmatic rocks include: (1) hotspots and mantle plumes, (2) edge-driven convection, (3) lithospheric reactivation, and (4) low-angle subduction. Evaluation based on our integration of published geological and geophysical data shows that contradictions exist in each model between observations and predictions. To explain this plate-scale phenomenon, we propose that the Farallon slab may have stagnated within or around the mantle transition zone during the Early Cretaceous, with its leading edge reaching ca. 1600 km inland beneath the North American plate. Dehydration and decarbonation of the slab produces sporadic, dense, low-degree partial melts at the mantle transition zone depths. As the slab descends into the lower mantle, Rayleigh-Taylor instabilities are induced at slab edges, causing passive upwelling that brings alkali-rich carbonate silicate melts to the base of the overriding plate. Subsequently, the North American lithosphere with varying thicknesses, discontinuities, and compositions interacts with the rising partial melts, generating a spectrum of igneous rocks. Fragments of the once-stagnated slab may still be detectable in the lower mantle beneath eastern US in seismic tomography models. This study highlights a profound plate

  18. Petroleum system elements within the Late Cretaceous and Early Paleogene sediments of Nigeria's inland basins: An integrated sequence stratigraphic approach

    Science.gov (United States)

    Dim, Chidozie Izuchukwu Princeton; Onuoha, K. Mosto; Okeugo, Chukwudike Gabriel; Ozumba, Bertram Maduka

    2017-06-01

    Sequence stratigraphic studies have been carried out using subsurface well and 2D seismic data in the Late Cretaceous and Early Paleogene sediments of Anambra and proximal onshore section of Niger Delta Basin in the Southeastern Nigeria. The aim was to establish the stratigraphic framework for better understanding of the reservoir, source and seal rock presence and distribution in the basin. Thirteen stratigraphic bounding surfaces (consisting of six maximum flooding surfaces - MFSs and seven sequence boundaries - SBs) were recognized and calibrated using a newly modified chronostratigraphic chart. Stratigraphic surfaces were matched with corresponding foraminiferal and palynological biozones, aiding correlation across wells in this study. Well log sequence stratigraphic correlation reveals that stratal packages within the basin are segmented into six depositional sequences occurring from Late Cretaceous to Early Paleogene age. Generated gross depositional environment maps at various MFSs show that sediment packages deposited within shelfal to deep marine settings, reflect continuous rise and fall of sea levels within a regressive cycle. Each of these sequences consist of three system tracts (lowstand system tract - LST, transgressive system tract - TST and highstand system tract - HST) that are associated with mainly progradational and retrogradational sediment stacking patterns. Well correlation reveals that the sand and shale units of the LSTs, HSTs and TSTs, that constitute the reservoir and source/seal packages respectively are laterally continuous and thicken basinwards, due to structural influences. Result from interpretation of seismic section reveals the presence of hanging wall, footwall, horst block and collapsed crest structures. These structural features generally aid migration and offer entrapment mechanism for hydrocarbon accumulation. The combination of these reservoirs, sources, seals and trap elements form a good petroleum system that is viable

  19. Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago

    OpenAIRE

    Csiki Sava,Zoltan; Buffetaut,Eric; Ősi,Attila; Pereda-Suberbiola,Xabier; Brusatte,Stephen

    2015-01-01

    Abstract The Late Cretaceous was a time of tremendous global change, as the final stages of the Age of Dinosaurs were shaped by climate and sea level fluctuations and witness to marked paleogeographic and faunal changes, before the end-Cretaceous bolide impact. The terrestrial fossil record of Late Cretaceous Europe is becoming increasingly better understood, based largely on intensive fieldwork over the past two decades, promising new insights into latest Cretaceous faunal evolution. We revi...

  20. Highly derived eutherian mammals from the earliest Cretaceous of southern Britain

    Directory of Open Access Journals (Sweden)

    Steven C. Sweetman

    2017-11-01

    Full Text Available Eutherian mammals (Placentalia and all mammals phylogenetically closer to placentals than to marsupials comprise the vast majority of extant Mammalia. Among these there is a phenomenal range of forms and sizes, but the origins of crown group placentals are obscure. They lie within the generally tiny mammals of the Mesozoic, represented for the most part by isolated teeth and jaws, and there is strongly conflicting evidence from phenomic and molecular data as to the date of origin of both Eutheria and Placentalia. The oldest purported eutherians are Juramaia from the Upper Jurassic of China, and Eomaia and Acristatherium from the Lower Cretaceous, also of China. Based on dental characters and analyses of other morphological and molecular data, doubt has recently been cast on the eutherian affinities of the Chinese taxa and consequently on the date of emergence of Eutheria. Until now, the only tribosphenic mammal recorded from the earliest Cretaceous (Berriasian Purbeck Group of Britain was the stem tribosphenidan Tribactonodon. Here we document two new tribosphenic mammals from the Purbeck Group, Durlstotherium gen. nov. and Durlstodon gen. nov., showing highly derived eutherian molar characters that support the early emergence of this clade, prior to the Cretaceous.

  1. A new crested pterosaur from the Early Cretaceous of Spain: the first European tapejarid (Pterodactyloidea: Azhdarchoidea.

    Directory of Open Access Journals (Sweden)

    Romain Vullo

    Full Text Available BACKGROUND: The Tapejaridae is a group of unusual toothless pterosaurs characterized by bizarre cranial crests. From a paleoecological point of view, frugivorous feeding habits have often been suggested for one of its included clades, the Tapejarinae. So far, the presence of these intriguing flying reptiles has been unambiguously documented from Early Cretaceous sites in China and Brazil, where pterosaur fossils are less rare and fragmentary than in similarly-aged European strata. METHODOLOGY/PRINCIPAL FINDINGS: Europejara olcadesorum gen. et sp. nov. is diagnosed by a unique combination of characters including an unusual caudally recurved dentary crest. It represents the oldest known member of Tapejaridae and the oldest known toothless pterosaur. The new taxon documents the earliest stage of the acquisition of this anatomical feature during the evolutionary history of the Pterodactyloidea. This innovation may have been linked to the development of new feeding strategies. CONCLUSION/SIGNIFICANCE: The discovery of Europejara in the Barremian of the Iberian Peninsula reveals an earlier and broader global distribution of tapejarids, suggesting a Eurasian origin of this group. It adds to the poorly known pterosaur fauna of the Las Hoyas locality and contributes to a better understanding of the paleoecology of this Konservat-Lagerstätte. Finally, the significance of a probable contribution of tapejarine tapejarids to the early angiosperm dispersal is discussed.

  2. Dinosaurs and the Cretaceous Terrestrial Revolution

    Science.gov (United States)

    Lloyd, Graeme T; Davis, Katie E; Pisani, Davide; Tarver, James E; Ruta, Marcello; Sakamoto, Manabu; Hone, David W.E; Jennings, Rachel; Benton, Michael J

    2008-01-01

    The observed diversity of dinosaurs reached its highest peak during the mid- and Late Cretaceous, the 50 Myr that preceded their extinction, and yet this explosion of dinosaur diversity may be explained largely by sampling bias. It has long been debated whether dinosaurs were part of the Cretaceous Terrestrial Revolution (KTR), from 125–80 Myr ago, when flowering plants, herbivorous and social insects, squamates, birds and mammals all underwent a rapid expansion. Although an apparent explosion of dinosaur diversity occurred in the mid-Cretaceous, coinciding with the emergence of new groups (e.g. neoceratopsians, ankylosaurid ankylosaurs, hadrosaurids and pachycephalosaurs), results from the first quantitative study of diversification applied to a new supertree of dinosaurs show that this apparent burst in dinosaurian diversity in the last 18 Myr of the Cretaceous is a sampling artefact. Indeed, major diversification shifts occurred largely in the first one-third of the group's history. Despite the appearance of new clades of medium to large herbivores and carnivores later in dinosaur history, these new originations do not correspond to significant diversification shifts. Instead, the overall geometry of the Cretaceous part of the dinosaur tree does not depart from the null hypothesis of an equal rates model of lineage branching. Furthermore, we conclude that dinosaurs did not experience a progressive decline at the end of the Cretaceous, nor was their evolution driven directly by the KTR. PMID:18647715

  3. New ophthalmosaurid ichthyosaurs from the European Lower Cretaceous demonstrate extensive ichthyosaur survival across the Jurassic-Cretaceous boundary.

    Directory of Open Access Journals (Sweden)

    Valentin Fischer

    Full Text Available BACKGROUND: Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic-Cretaceous boundary (JCB, and one (resulting in total extinction at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian-Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian-Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian-Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian-Barremian interval and the JCB records one of the highest survival rates of the interval. CONCLUSIONS/SIGNIFICANCE: There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle

  4. New Ophthalmosaurid Ichthyosaurs from the European Lower Cretaceous Demonstrate Extensive Ichthyosaur Survival across the Jurassic–Cretaceous Boundary

    Science.gov (United States)

    Fischer, Valentin; Maisch, Michael W.; Naish, Darren; Kosma, Ralf; Liston, Jeff; Joger, Ulrich; Krüger, Fritz J.; Pérez, Judith Pardo; Tainsh, Jessica

    2012-01-01

    Background Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. Methodology/Principal Findings Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval. Conclusions/Significance There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to

  5. Teeth of embryonic or hatchling sauropods from the Berriasian (Early Cretaceous of Cherves-de-Cognac, France

    Directory of Open Access Journals (Sweden)

    Paul M. Barrett

    2016-08-01

    Full Text Available The Cherves-de-Cognac site (Charente, France has yielded a diverse continental microvertebrate fauna of Berriasian (earliest Cretaceous age. Dinosaur remains are rare, but include three teeth that are referrable to an indeterminate sauropod, which might represent either a titanosauriform, a non-titanosauriform macronarian or a non-neosauropod. The small size of these teeth (with a maximum length of 3 mm, as preserved and the almost complete absence of emanel wrinkling suggests that they pertained to embryonic or hatchling individuals. The Cherves-de-Cognac sauropod represents a rare occurrence of sauropod embryos/hatchlings, a new sauropod record from the poorly-known terrestrial Berriasian and another possible instance of the persistence of non-diplodocoid, non-titanosauriform sauropods into the Cretaceous.

  6. Early Cretaceous Ductile Deformation of Marbles from the Western Hills of Beijing, North China Craton

    Science.gov (United States)

    Feng, H.; Liu, J.

    2017-12-01

    During the Early Cretaceous tectonic lithosphere extension, the pre-mesozoic rocks from the Western Hills in the central part of the North China Craton suffered from weak metamorphism but intense shear deformation. The prominent features of the deformation structures are the coexisting layer-parallel shear zones and intrafolia folds, and the along-strike thickness variations of the marble layers from the highly sheared Mesoproterozoic Jing'eryu Formation. Platy marbles are well-developed in the thinner layers, while intrafolia folds are often observed in the thicker layers. Most folds are tight recumbent folds and their axial planes are parallel to the foliations and layerings of the marbles. The folds are A-type folds with hinges being always paralleling to the stretching lineations consistently oriented at 130°-310° directions throughout the entire area. SPO and microstructural analyses of the sheared marbles suggest that the thicker layers suffered from deformations homogeneously, while strain localization can be distinguished in the thinner layers. Calcite twin morphology and CPO analysis indicate that the deformation of marbles from both thinner and thicker layers happened at temperatures of 300 to 500°C. The above analysis suggests that marbles in the thicker layers experienced a progressive sequence of thermodynamic events: 1) regional metamorphism, 2) early ductile deformation dominated by relatively higher temperature conditions, during which all the mineral particles elongated and oriented limitedly and the calcite grains are deformed mainly by mechanical twinning, and 3) late superimposition of relatively lower temperature deformation and recrystallization, which superposed the early deformation, and made the calcites finely granulated, elongated and oriented by dynamical recrystallization along with other grains. Marbles from the thinner layers, however, experienced a similar, but different sequence of thermo-dynamic events, i.e. regional

  7. New toothed flying reptile from Asia: close similarities between early Cretaceous pterosaur faunas from China and Brazil.

    Science.gov (United States)

    Wang, Xiaolin; Kellner, Alexander W A; Jiang, Shunxing; Cheng, Xin

    2012-04-01

    Despite the great increase in pterosaur diversity in the last decades, particularly due to discoveries made in western Liaoning (China), very little is known regarding pterosaur biogeography. Here, we present the description of a new pterosaur from the Jiufotang Formation that adds significantly to our knowledge of pterosaur distribution and enhances the diversity of cranial anatomy found in those volant creatures. Guidraco venator gen. et sp. nov. has an unusual upward-directed frontal crest and large rostral teeth, some of which surpass the margins of the skull and lower jaw when occluded. The new species is closely related to a rare taxon from the Brazilian Crato Formation, posing an interesting paleobiogeographic problem and supporting the hypothesis that at least some early Cretaceous pterosaur clades, such as the Tapejaridae and the Anhangueridae, might have originated in Asia. The association of the new specimen with coprolites and the cranial morphology suggest that G. venator preyed on fish.

  8. Paleoenvironments of the Jurassic and Cretaceous Oceans: Selected Highlights

    Science.gov (United States)

    Ogg, J. G.

    2007-12-01

    There are many themes contributing to the sedimentation history of the Mesozoic oceans. This overview briefly examines the roles of the carbonate compensation depth (CCD) and the associated levels of atmospheric carbon dioxide, of the evolution of marine calcareous microplankton, of major transgressive and regressive trends, and of super-plume eruptions. Initiation of Atlantic seafloor spreading in the Middle Jurassic coincided with an elevated carbonate compensation depth (CCD) in the Pacific-Tethys mega-ocean. Organic-rich sediments that would become the oil wealth of regions from Saudi Arabia to the North Sea were deposited during a continued rise in CCD during the Oxfordian-early Kimmeridgian, which suggests a possible increase in carbon dioxide release by oceanic volcanic activity. Deep-sea deposits in near-equatorial settings are dominated by siliceous shales or cherts, which reflect the productivity of siliceous microfossils in the tropical surface waters. The end-Jurassic explosion in productivity by calcareous microplankton contributed to the lowering of the CCD and onset of the chalk ("creta") deposits that characterize the Tithonian and lower Cretaceous in all ocean basins. During the mid-Cretaceous, the eruption of enormous Pacific igneous provinces (Ontong Java Plateau and coeval edifices) increased carbon dioxide levels. The resulting rise in CCD terminated chalk deposition in the deep sea. The excess carbon was progressively removed in widespread black-shale deposits in the Atlantic basins and other regions - another major episode of oil source rock. A major long-term transgression during middle and late Cretaceous was accompanied by extensive chalk deposition on continental shelves and seaways while the oceanic CCD remained elevated. Pacific guyots document major oscillations (sequences) of global sea level superimposed on this broad highstand. The Cretaceous closed with a progressive sea-level regression and lowering of the CCD that again enabled

  9. Identification of saline water intrusion in part of Cauvery deltaic region, Tamil Nadu, Southern India: using GIS and VES methods

    Science.gov (United States)

    Gnanachandrasamy, G.; Ramkumar, T.; Venkatramanan, S.; Chung, S. Y.; Vasudevan, S.

    2016-06-01

    We use electrical resistivity data arrayed in a 2715 km2 region with 30 locations to identify the saline water intrusion zone in part of Cauvery deltaic region, offshore Eastern India. From this dataset we are able to derive information on groundwater quality, thickness of aquifer zone, structural and stratigraphic conditions relevant to groundwater conditions, and permeability of aquifer systems. A total of 30 vertical electrode soundings (VES) were carried out by Schlumberger electrode arrangement to indicate complete lithology of this region using curve matching techniques. The electrical soundings exhibited that H and HK type curves were suitable for 16 shallow locations, and QH, KQ, K, KH, QQ, and HA curves were fit for other location. Low resistivity values suggested that saline water intrusion occurred in this region. According to final GIS map, most of the region was severely affected by seawater intrusion due to the use of over-exploitation of groundwater.The deteriorated groundwater resources in this coastal region should raise environmental and health concerns.

  10. Biotic and environmental dynamics through the Late Jurassic-Early Cretaceous transition: evidence for protracted faunal and ecological turnover.

    Science.gov (United States)

    Tennant, Jonathan P; Mannion, Philip D; Upchurch, Paul; Sutton, Mark D; Price, Gregory D

    2017-05-01

    The Late Jurassic to Early Cretaceous interval represents a time of environmental upheaval and cataclysmic events, combined with disruptions to terrestrial and marine ecosystems. Historically, the Jurassic/Cretaceous (J/K) boundary was classified as one of eight mass extinctions. However, more recent research has largely overturned this view, revealing a much more complex pattern of biotic and abiotic dynamics than has previously been appreciated. Here, we present a synthesis of our current knowledge of Late Jurassic-Early Cretaceous events, focusing particularly on events closest to the J/K boundary. We find evidence for a combination of short-term catastrophic events, large-scale tectonic processes and environmental perturbations, and major clade interactions that led to a seemingly dramatic faunal and ecological turnover in both the marine and terrestrial realms. This is coupled with a great reduction in global biodiversity which might in part be explained by poor sampling. Very few groups appear to have been entirely resilient to this J/K boundary 'event', which hints at a 'cascade model' of ecosystem changes driving faunal dynamics. Within terrestrial ecosystems, larger, more-specialised organisms, such as saurischian dinosaurs, appear to have suffered the most. Medium-sized tetanuran theropods declined, and were replaced by larger-bodied groups, and basal eusauropods were replaced by neosauropod faunas. The ascent of paravian theropods is emphasised by escalated competition with contemporary pterosaur groups, culminating in the explosive radiation of birds, although the timing of this is obfuscated by biases in sampling. Smaller, more ecologically diverse terrestrial non-archosaurs, such as lissamphibians and mammaliaforms, were comparatively resilient to extinctions, instead documenting the origination of many extant groups around the J/K boundary. In the marine realm, extinctions were focused on low-latitude, shallow marine shelf-dwelling faunas

  11. Mid-Cretaceous aeolian desert systems in the Yunlong area of the Lanping Basin, China: Implications for palaeoatmosphere dynamics and paleoclimatic change in East Asia

    Science.gov (United States)

    Li, Gaojie; Wu, Chihua; Rodríguez-López, Juan Pedro; Yi, Haisheng; Xia, Guoqing; Wagreich, Michael

    2018-02-01

    The mid-Cretaceous constitutes a period of worldwide atmospheric and oceanic change associated with slower thermohaline circulation and ocean anoxic events, possible polar glaciations and by a changing climate pattern becoming controlled by a zonal planetary wind system and an equatorial humid belt. During the mid-Cretaceous, the subtropical high-pressure arid climate belt of the planetary wind system controlled the palaeolatitude distribution of humid belts in Asia as well as the spatial distribution of rain belts over the massive continental blocks at mid-low latitudes in the southern and northern hemispheres. Additionally, the orographic effect of the Andean-type active continental margin in East Asia hindered the transportation of ocean moisture to inland regions. With rising temperatures and palaeoatmospheric conditions dominated by high pressure systems, desert climate environments expanded at the inland areas of East Asia including those accumulated in the mid-Cretaceous of the Simao Basin, the Sichuan Basin, and the Thailand's Khorat Basin, and leading the Late Cretaceous erg systems in the Xinjiang Basin and Jianghan Basin. This manuscript presents evidences that allow to reinterpret previously considered water-laid sediments to be accumulated as windblown deposits forming part of extensive erg (sandy desert) systems. Using a multidisciplinary approach including petrological, sedimentological and architectural observations, the mid-Cretaceous (Albian-Turonian) Nanxin Formation from the Yunlong region of Lanping Basin, formerly considered to aqueous deposits is here interpreted as representing aeolian deposits, showing local aeolian-fluvial interaction deposits. The palaeowind directions obtained from the analysis of aeolian dune cross-beddings indicates that inland deserts were compatible with a high-pressure cell (HPC) existing in the mid-low latitudes of East Asia during the mid-Cretaceous. Compared with the Early Cretaceous, the mid-Cretaceous had

  12. Previously Unrecognized Ornithuromorph Bird Diversity in the Early Cretaceous Changma Basin, Gansu Province, Northwestern China

    Science.gov (United States)

    Wang, Ya-Ming; O'Connor, Jingmai K.; Li, Da-Qing; You, Hai-Lu

    2013-01-01

    Here we report on three new species of ornithuromorph birds from the Lower Cretaceous Xiagou Formation in the Changma Basin of Gansu Province, northwestern China: Yumenornis huangi gen. et sp. nov., Changmaornis houi gen. et sp. nov., and Jiuquanornis niui gen. et sp. nov.. The last of these is based on a previously published but unnamed specimen: GSGM-05-CM-021. Although incomplete, the specimens can be clearly distinguished from each other and from Gansus yumenensis Hou and Liu, 1984. Phylogenetic analysis resolves the three new taxa as basal ornithuromorphs. This study reveals previously unrecognized ornithuromorph diversity in the Changma avifauna, which is largely dominated by Gansus but with at least three other ornithuromorphs. Body mass estimates demonstrate that enantiornithines were much smaller than ornithuromorphs in the Changma avifauna. In addition, Changma enantiornithines preserve long and recurved pedal unguals, suggesting an arboreal lifestyle; in contrast, Changma ornithuromorphs tend to show terrestrial or even aquatic adaptions. Similar differences in body mass and ecology are also observed in the Jehol avifauna in northeastern China, suggesting niche partitioning between these two clades developed early in their evolutionary history. PMID:24147058

  13. Geochemical and isotopic characteristics and magma sources of the early Cretaceous trachybasalts of the Goby-Altai rift zone: an example of grabens in the Arts-Bogdo range

    International Nuclear Information System (INIS)

    Samojlov, V.S.; Yarmolyuk, V.V.; Kovalenko, V.I.; Ivanov, V.G.; Pakhol'chenko, Yu.A.

    1998-01-01

    Geochemical and isotopic-geochemical characteristics of the basalts of Early Cretaceous (Hoby-Altai rift zone; Arts-Bogdo region, Mongolia). Atomic absorption spectroscopy, X-ray fluorescence spectroscopy, photometry, mass spectroscopy and other methods were used. Mantle nature of the basalt geochemical specificity is shown as well as their initial melts. Data on the rubidium-strontium isotopic composition of Neocomian basalts are the following ones: 87 Sr/ 86 Sr 87 Sr/ 86 Sr > 0.707 and Rb/Sr > 0.06 [ru

  14. Magnetic fabrics of arc plutons reveal a significant Late Jurassic to Early Cretaceous change in the relative plate motions of the Pacific Ocean basin and North America

    Czech Academy of Sciences Publication Activity Database

    Žák, J.; Verner, K.; Tomek, Filip; Johnson, K.; Schwartz, J. J.

    2017-01-01

    Roč. 13, č. 1 (2017), s. 11-21 ISSN 1553-040X Grant - others:AV ČR(CZ) MSM100131601 Program:Program na podporu mezinárodní spolupráce začínajících výzkumných pracovníků Institutional support: RVO:67985831 Keywords : PB geochronology * Late Jurassic/Early Cretaceous * Blue Mountains province Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.304, year: 2016

  15. Cretaceous plutonic rocks in the Donner Lake-Cisco Grove area, northern Sierra Nevada, California

    Science.gov (United States)

    Kulow, Matthew J.; Hanson, Richard E.; Girty, Gary H.; Girty, Melissa S.; Harwood, David S.

    1998-01-01

    The northernmost occurrences of extensive, glaciated exposures of the Sierra Nevada batholith occur in the Donner Lake-Cisco Grove area of the northern Sierra Nevada. The plutonic rocks in this area, which are termed here the Castle Valley plutonic assemblage, crop out over an area of 225 km2 and for the most part are shown as a single undifferentiated mass on previously published geological maps. In the present work, the plutonic assemblage is divided into eight separate intrusive units or lithodemes, two of which each consist of two separate plutons. Compositions are dominantly granodiorite and tonalite, but diorite and granite form small plutons in places. Spectacular examples of comb layering and orbicular texture occur in the diorites. U-Pb zircon ages have been obtained for all but one of the main units and range from ~120 to 114 Ma, indicating that the entire assemblage was emplaced in a narrow time frame in the Early Cretaceous. This is consistent with abundant field evidence that many of the individual phases were intruded penecontemporaneously. The timing of emplacement correlates with onset of major Cretaceous plutonism in the main part of the Sierra Nevada batholith farther south. The emplacement ages also are similar to isotopic ages for gold-quartz mineralization in the Sierran foothills west of the study area, suggesting a direct genetic relationship between the voluminous Early Cretaceous plutonism and hydrothermal gold mineralization.

  16. Geologic models and evaluation of undiscovered conventional and continuous oil and gas resources: Upper Cretaceous Austin Chalk

    Science.gov (United States)

    Pearson, Krystal

    2012-01-01

    The Upper Cretaceous Austin Chalk forms a low-permeability, onshore Gulf of Mexico reservoir that produces oil and gas from major fractures oriented parallel to the underlying Lower Cretaceous shelf edge. Horizontal drilling links these fracture systems to create an interconnected network that drains the reservoir. Field and well locations along the production trend are controlled by fracture networks. Highly fractured chalk is present along both regional and local fault zones. Fractures are also genetically linked to movement of the underlying Jurassic Louann Salt with tensile fractures forming downdip of salt-related structures creating the most effective reservoirs. Undiscovered accumulations should also be associated with structure-controlled fracture systems because much of the Austin that overlies the Lower Cretaceous shelf edge remains unexplored. The Upper Cretaceous Eagle Ford Shale is the primary source rock for Austin Chalk hydrocarbons. This transgressive marine shale varies in thickness and lithology across the study area and contains both oil- and gas-prone kerogen. The Eagle Ford began generating oil and gas in the early Miocene, and vertical migration through fractures was sufficient to charge the Austin reservoirs.

  17. The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution.

    Science.gov (United States)

    Caldwell, Michael W; Nydam, Randall L; Palci, Alessandro; Apesteguía, Sebastián

    2015-01-27

    The previous oldest known fossil snakes date from ~100 million year old sediments (Upper Cretaceous) and are both morphologically and phylogenetically diverse, indicating that snakes underwent a much earlier origin and adaptive radiation. We report here on snake fossils that extend the record backwards in time by an additional ~70 million years (Middle Jurassic-Lower Cretaceous). These ancient snakes share features with fossil and modern snakes (for example, recurved teeth with labial and lingual carinae, long toothed suborbital ramus of maxillae) and with lizards (for example, pronounced subdental shelf/gutter). The paleobiogeography of these early snakes is diverse and complex, suggesting that snakes had undergone habitat differentiation and geographic radiation by the mid-Jurassic. Phylogenetic analysis of squamates recovers these early snakes in a basal polytomy with other fossil and modern snakes, where Najash rionegrina is sister to this clade. Ingroup analysis finds them in a basal position to all other snakes including Najash.

  18. High diversity in cretaceous ichthyosaurs from Europe prior to their extinction.

    Directory of Open Access Journals (Sweden)

    Valentin Fischer

    Full Text Available BACKGROUND: Ichthyosaurs are reptiles that inhabited the marine realm during most of the Mesozoic. Their Cretaceous representatives have traditionally been considered as the last survivors of a group declining since the Jurassic. Recently, however, an unexpected diversity has been described in Upper Jurassic-Lower Cretaceous deposits, but is widely spread across time and space, giving small clues on the adaptive potential and ecosystem control of the last ichthyosaurs. The famous but little studied English Gault Formation and 'greensands' deposits (the Upper Greensand Formation and the Cambridge Greensand Member of the Lower Chalk Formation offer an unprecedented opportunity to investigate this topic, containing thousands of ichthyosaur remains spanning the Early-Late Cretaceous boundary. METHODOLOGY/PRINCIPAL FINDINGS: To assess the diversity of the ichthyosaur assemblage from these sedimentary bodies, we recognized morphotypes within each type of bones. We grouped these morphotypes together, when possible, by using articulated specimens from the same formations and from new localities in the Vocontian Basin (France; a revised taxonomic scheme is proposed. We recognize the following taxa in the 'greensands': the platypterygiines 'Platypterygius' sp. and Sisteronia seeleyi gen. et sp. nov., indeterminate ophthalmosaurines and the rare incertae sedis Cetarthrosaurus walkeri. The taxonomic diversity of late Albian ichthyosaurs now matches that of older, well-known intervals such as the Toarcian or the Tithonian. Contrasting tooth shapes and wear patterns suggest that these ichthyosaurs colonized three distinct feeding guilds, despite the presence of numerous plesiosaur taxa. CONCLUSION/SIGNIFICANCE: Western Europe was a diversity hot-spot for ichthyosaurs a few million years prior to their final extinction. By contrast, the low diversity in Australia and U.S.A. suggests strong geographical disparities in the diversity pattern of Albian-early

  19. Debris-carrying camouflage among diverse lineages of Cretaceous insects.

    Science.gov (United States)

    Wang, Bo; Xia, Fangyuan; Engel, Michael S; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A; Wappler, Torsten; Rust, Jes

    2016-06-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects.

  20. Internal structure of the Supragetic Unit basement in the Serbian Carpathians and its significance for the late Early Cretaceous nappe-stacking

    Directory of Open Access Journals (Sweden)

    Krstekanić Nemanja

    2017-01-01

    Full Text Available Fault-related folds and hanging-wall structures reflect the geometry of the main thrusts in foldthrust belts. The results of the structural analysis of the Supragetic Unit metamorphic basement in eastern Serbia at map-, outcrop- and thin-section scale, and its importance for the late Early Cretaceous nappe-stacking are presented in this paper. The Supragetic Unit metamorphic basement includes various volcano-sedimentary rocks of Ordovician-Silurian protolith age. They were metamorphosed to the low greenschist facies with temperatures reaching 300-350°C and pressure reaching 0.3-0.5 GPa. The microscale studies show that quartz and albite demonstrate dominantly bulging and locally subgrain rotation recrystallisation, while chlorite, sericite and muscovite define spaced to continuous foliation recognised both at the outcrop- and the thin-section-scale. The statistical analysis based on the available map data shows low- to high-angle west-dipping foliation which is interpreted as an indicator of flat-ramp geometry of the Supragetic thrust, rather than east-vergent tight to isoclinal folding. At the thin-section scale ductile to semi-ductile C’-S structures indicate top to ESE thrusting. Subsequent kinking, recognised both at the outcrop- and the thin-section-scale, deform the older foliation. Those kink bands are the result of WNW-ESE to NW-SE compression and could represent the later stage of a continuous deformation event during which C’-S structures were formed. The youngest, brittle deformation is represented by subvertical joints with no offset recognised in thin-sections. The structural characteristics of the Supragetic Unit low-grade metamorphic basement in the studied areas, combined with tectonothermal events recognised elsewhere in Dacia mega-unit, could imply a possible initiation of the late Early Cretaceous nappe-stacking in the ductile to semi-ductile/semi-brittle domain. [Project of the Serbian Ministry of Education, Science and

  1. Chemostratigraphy of Late Cretaceous deltaic and marine sedimentary rocks from high northern palaeolatitudes in the Nuussuaq Basin, West Greenland

    DEFF Research Database (Denmark)

    Lenniger, Marc; Pedersen, Gunver Krarup; Bjerrum, Christian J.

    The Nuussuaq Basin in the Baffin Bay area in West Greenland formed as a result of the opening of the Labrador Sea in Late Mesozoic to Early Cenozoic times. The first rifting and the development of the Nuussuaq Basin took place during the Early Cretaceous and was followed by a second rifting phase...

  2. High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals.

    Science.gov (United States)

    Tarduno, J A; Cottrell, R D; Smirnov, A V

    2001-03-02

    Recent numerical simulations have yielded the most efficient geodynamo, having the largest dipole intensity when reversal frequency is low. Reliable paleointensity data are limited but heretofore have suggested that reversal frequency and paleointensity are decoupled. We report data from 56 Thellier-Thellier experiments on plagioclase crystals separated from basalts of the Rajmahal Traps (113 to 116 million years old) of India that formed during the Cretaceous Normal Polarity Superchron. These data suggest a time-averaged paleomagnetic dipole moment of 12.5 +/- 1.4 x 10(22) amperes per square meter, three times greater than mean Cenozoic and Early Cretaceous-Late Jurassic dipole moments when geomagnetic reversals were frequent. This result supports a correlation between intervals of low reversal frequency and high geomagnetic field strength.

  3. Cretaceous to present paleothermal gradients, central Negev, Israel: constraints from fission track dating

    International Nuclear Information System (INIS)

    Kohn, B.P.; Feinstein, S.; Eyal, M.

    1990-01-01

    Apatite and zircon fission track ages (FTA), vitrinite reflectance (VR) data and burial history curves were integrated for reconstruction of Early Cretaceous to present maximum thermal gradients in four deep boreholes in the central Negev, Isreal. The most complete data set is available from the Ramon 1 borehole. Supplementary data were obtained from Hameishar 1, Makhtesh Qatan 2, and Kurnub 1 boreholes. Between ca. 122-90 Ma the constraints on thermal gradient obtained from apatite FTA overlap with those derived from zircon FT and VR data, restricting them to 0 C km -l . Apatite FTA between 90 and 80 Ma in Ramon 1 and Hameishar 1 suggest rapid cooling at the time recorded or earlier. Constraints on thermal gradient history derived from these ages are considerably strengthened over a short time span. From 80 Ma to the present, FTA data indicate that gradients had probably decayed to present-day regional levels (ca. 20 0 C km -1 ) by Early Tertiary time. Thermal constraints derived from apatite FTA and VR data in Makhtesh Qatan 2 and Kurnub 1 boreholes are consistent with those obtained post-56 Ma for Ramon 1. For pre-56 Ma, only VR data are available and these indicate considerably lower maximum gradients than those obtained for the same time period from Ramon 1. This dichotomy reflects different Early Cretaceous-Early Tertiary thermal regimes between the northern and southern parts of the study area. (author)

  4. Sedimentary Provenance Constraints on the Middle Jurassic to Late Cretaceous Paleogeography of the Sichuan Basin, SW China

    Science.gov (United States)

    Li, Y.; He, D.; Li, D.; Lu, R.

    2017-12-01

    Sedimentary provenance of the Middle Jurassic to Late Cretaceous sediments in the Sichuan Basin is constrained by sandstone petrology and detrital zircon U-Pb geochronology, which provides critical insights into mid-late Mesozoic paleogeographic evolution of the Sichuan Basin. Petrographic analyses of 22 sandstone samples indicate moderate to high mature sediments and are primarily derived from cratonic or recycled sources. U-Pb age data for the Middle Jurassic to Late Cretaceous detrital zircons generally show populations at 130-200, 200-330, 400-490, 680-890, 1730-1960, and 2360-2600 Ma, with up-section variations. The Middle Jurassic sediments contain a relatively high density of 1.85 and 2.5 Ga zircons and a low density of the 800 Ma zircons, which are consistent with derivation mainly from the Songpan-Ganzi terrane and the South Qinling belt, and secondarily from the Western Jiangnan Orogen. The Late Jurassic and Early Cretaceous sedimentation with a scattered age distribution shared common multiple-source to sink systems that were predominantly draining towards the south and southeast, but increasingly drained southward, and were later disrupted by a synchronous northeastward drainage capture. Late Cretaceous sediments have a distinct reduction in Block.

  5. Cretaceous Vertebrate Tracksites - Korean Cretaceous Dinosaur Coast World Heritage Nomination Site

    Science.gov (United States)

    Huh, M.; Woo, K. S.; Lim, J. D.; Paik, I. S.

    2009-04-01

    South Korea is one of the best known regions in the world for Cretaceous fossil footprints, which are also world-renowned. Korea has produced more scientifically named bird tracks (ichnotaxa) than any other region in the world. It has also produced the world's largest pterosaur tracks. Dinosaur tracksites also have the highest frequency of vertebrate track-bearing levels currently known in any stratigraphic sequence. Among the areas that have the best track records, and the greatest scientific significance with best documentation, Korea ranks very highly. Objective analysis of important individual tracksites and tracksite regions must be based on multiple criteria including: size of site, number of tracks, trackways and track bearing levels, number of valid named ichnotaxa including types, number of scientific publications, quality of preservation. The unique and distinctive dinosaur tracksites are known as one of the world's most important dinosaur track localities. In particular, the dinosaur track sites in southern coastal area of Korea are very unique. In the sites, we have excavated over 10,000 dinosaur tracks. The Hwasun sites show diverse gaits with unusual walking patterns and postures in some tracks. The pterosaur tracks are the most immense in the world. The longest pterosaur trackway yet known from any track sites suggests that pterosaurs were competent terrestrial locomotors. This ichnofauna contains the first pterosaur tracks reported from Asia. The Haenam Uhangri pterosaur assigns to a new genus Haenamichnus which accomodates the new ichnospecies, Haenamichnus uhangriensis. At least 12 track types have been reported from the Haman and Jindong Formations (probably late Lower Cretaceous). These include the types of bird tracks assigned to Koreanornis, Jindongornipes, Ignotornis and Goseongornipes. In addition the bird tracks Hwangsanipes, Uhangrichnus, the pterosaur track Haenamichnus and the dinosaur tracks, Brontopodus, Caririchnium, Minisauripus and

  6. TRANSITION FROM CARBONATE PLATFORM TO PELAGIC DEPOSITION (MID JURASSIC- LATE CRETACEOUS, VOURINOS MASSIF, NORTHERN GREECE

    Directory of Open Access Journals (Sweden)

    NICOLAOS CARRAS

    2004-03-01

    Full Text Available A Jurassic- Cretaceous carbonate succession crops out along the Zyghosti Rema, Kozani (Northern Greece. The substratum consists of the ophiolitic succession of the Vourinos Massif (Pelagonian Domain: serpentinites tectonically overlain by basalts, with thin lenses of radiolarian cherts of middle Bathonian age. The contact with the overlying Jurassic limestones is tectonic. Eight informal units have been distinguished within the Mesozoic limestones, from the base upwards. (A bioclastic, intraclastic and oolitic packstone (Callovian- Oxfordian. (B bioclastic packstone and coral boundstone (Oxfordian . (C bioclastic and oncoidal wackestone with Clypeina jurassica (Oxfordian- Upper Kimmeridgian. (D (Upper Kimmeridgian- Portlandian: oncoidal packstone and rudstone (facies D1; intraclastic and bioclastic grainstone and packstone (facies D2; neptunian dykes with intraclastic and bioclastic wackestone and packstone filling (facies D3; neptunian dykes with Fe-Mn rich laterite filling and with pink silty filling of early Late Cretaceous age. An unconformity surface, due to emersion and erosion of the platform during the latest Jurassic- Early Cretaceous, is overlain by (E intraclastic, bioclastic packstone and grainstone (Cenomanian. (F massive body of debrites with coral, echinoderm, algae and rudist large clasts (facies F1 (Cenomanian; turbiditic beds of bioclastic, intraclastic and lithoclastic rudstone and grainstone (facies F2. (G thin bedded bioclastic mudstone and wackestone with planktonic foraminifers and radiolarians, alternating with turbiditic beds of bioclastic, intraclastic packstone and rudstone and with conglomeratic levels and slumped beds of the previous turbidites (upper Santonian- lower Campanian. (H: bioclastic packstone with planktonic foraminifers (facies H1 (lower Campanian - ?Maastrichtian; amalgamated turbiditic beds of bioclastic wackestone and packstone with planktonic foraminifers (facies H2; turbiditic beds of bioclastic

  7. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks

    Science.gov (United States)

    Huang, Wentao; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Garzanti, Eduardo; Dupont-Nivet, Guillaume; Lippert, Peter C.; Li, Xiaochun; Maffione, Marco; Langereis, Cor G.; Hu, Xiumian; Guo, Zhaojie; Kapp, Paul

    2015-01-01

    The Tibetan Himalaya represents the northernmost continental unit of the Indian plate that collided with Asia in the Cenozoic. Paleomagnetic studies on the Tibetan Himalaya can help constrain the dimension and paleogeography of "Greater India," the Indian plate lithosphere that subducted and underthrusted below Asia after initial collision. Here we present a paleomagnetic investigation of a Jurassic (limestones) and Lower Cretaceous (volcaniclastic sandstones) section of the Tibetan Himalaya. The limestones yielded positive fold test, showing a prefolding origin of the isolated remanent magnetizations. Detailed paleomagnetic analyses, rock magnetic tests, end-member modeling of acquisition curves of isothermal remanent magnetization, and petrographic investigation reveal that the magnetic carrier of the Jurassic limestones is authigenic magnetite, whereas the dominant magnetic carrier of the Lower Cretaceous volcaniclastic sandstones is detrital magnetite. Our observations lead us to conclude that the Jurassic limestones record a prefolding remagnetization, whereas the Lower Cretaceous volcaniclastic sandstones retain a primary remanence. The volcaniclastic sandstones yield an Early Cretaceous paleolatitude of 55.5°S [52.5°S, 58.6°S] for the Tibetan Himalaya, suggesting it was part of the Indian continent at that time. The size of "Greater India" during Jurassic time cannot be estimated from these limestones. Instead, a paleolatitude of the Tibetan Himalaya of 23.8°S [21.8°S, 26.1°S] during the remagnetization process is suggested. It is likely that the remagnetization, caused by the oxidation of early diagenetic pyrite to magnetite, was induced during 103-83 or 77-67 Ma. The inferred paleolatitudes at these two time intervals imply very different tectonic consequences for the Tibetan Himalaya.

  8. A new Early Cretaceous relative of Gnetales: Siphonospermum simplex gen. et sp. nov. from the Yixian Formation of Northeast China

    Directory of Open Access Journals (Sweden)

    Friis Else

    2010-06-01

    Full Text Available Abstract Background Knowledge on fossil and evolutionary history of the Gnetales has expanded rapidly; Ephedra and ephedroids as well as the Gnetum-Welwitschia clade are now well documented in the Early Cretaceous. However, hypotheses on evolutionary relationships among living and fossil species are hampered by restricted knowledge of morphological variation in living groups and recent studies indicate that gnetalean diversity and character evolution may be more complex than previously assumed and involve additional extinct groups (Bennettitales, Erdtmanithecales and unassigned fossil taxa. Results Here we describe a new fossil related to Gnetales, Siphonospermum simplex from the Early Cretaceous Yixian Formation, an impression/compression of a reproductive shoot. The slender main axis bears one pair of opposite and linear leaves with primary parallel venation. The reproductive units are ovoid, without supporting bracts and borne on one median and two lateral branches. The most conspicuous feature of the fossil is the long, thread-like micropylar tube formed by the integument. Each ovule is surrounded by two different layers representing one or two seed envelopes; an inner sclerenchymatous layer and an outer probably parenchymatous layer. Conclusions The vegetative and reproductive features of Siphonospermum simplex exclude a relationship to any other group than the Gnetales. A combination of opposite phyllotaxis, linear leaves and ovules surrounded by seed envelope(s and with a long exposed micropylar tube are known only for extant and extinct Gnetales. Siphonospermum simplex constitutes a new lineage within the Gnetales. Its morphology cannot be directly linked to any previously known plant, but the organization of the reproductive units indicates that it belongs to the Gnetum-Welwitschia clade. Based on the absence of cone bracts and the inferred histology of the seed envelope(s it could be related to Gnetum, however, there are also

  9. Chemical Remagnetization of Jurassic Carbonates and a Primary Paleolatitude of Lower Cretaceous Volcaniclastic Rocks of the Tibetan Himalaya

    Science.gov (United States)

    Huang, W.; Van Hinsbergen, D. J. J.; Dekkers, M. J.; Garzanti, E.; Dupont Nivet, G.; Lippert, P. C.; Li, X.; Maffione, M.; Langereis, C. G.; Hu, X.; Guo, Z.; Kapp, P. A.

    2014-12-01

    Paleolatitudes for the Tibetan Himalaya Zone based on paleomagnetic inclinations provide kinematic constraints of the passive northern Indian margin and the extent of 'Greater India' before the India-Asia collision. Here, we present a paleomagnetic investigation of the Jurassic (carbonates) to Lower Cretaceous (volcaniclastic rocks) Wölong section of the Tibetan Himalaya in the Everest region. The carbonates yield positive fold tests, suggesting that the remanent magnetizations have a pre-folding origin. However, detailed paleomagnetic analyses, rock magnetic tests, end-member modeling of acquisition curves of isothermal remanent magnetization, and petrographic studies reveal that the magnetic carrier of the Jurassic carbonates is authigenic magnetite, whereas the dominant magnetic carrier of the Lower Cretaceous volcaniclastic rocks is detrital magnetite. We conclude that the Jurassic carbonates were remagnetized, whereas the Lower Cretaceous volcaniclastics retain a primary remanence. We hypothesize that remagnetization of the Jurassic carbonates was probably caused by the oxidation of early diagenetic pyrite to magnetite within the time interval at ~86-84 Ma during the latest Cretaceous Normal Superchron and earliest deposition of Cretaceous oceanic red beds in the Tibetan Himalaya. The remagnetization of the limestones prevents determining the size of 'Greater India' during Jurassic time. Instead, a paleolatitude of the Tibetan Himalaya of 23.8±2.1° S at ~86-84 Ma is suggested. This value is lower than the expected paleolatitude of India from apparent polar wander path (APWP). The volcaniclastic rocks with the primary remanence, however, yielded a Lower Cretaceous paleolatitude of Tibetan Himalaya of 55.5±3° S, fitting well with the APWP of India.

  10. Exhumation History Of Brasilian Highlands After Late Cretaceous Alcaline Magmatism

    Science.gov (United States)

    Doranti Tiritan, Carolina; Hackspacher, Peter Christian; Carina Siqueira Ribeiro, Marli; Glasmacher, Ulrich Anton; Françoso de Godoy, Daniel

    2017-04-01

    The southeast Brazilian margin recorded a long history of tectonic and magmatic events after the Gondwana continent break up. The drifting of the South American Platform over a thermal anomaly generated a series of alkaline intrusions that are distributed from the interior to the coast from west to east. Several exhumation events are recorded on the region and we are providing insights on the landscape evolution of the region since Late Cretaceous, comparing low temperature thermochronology results from two alkaline intrusions regions. Poços de Caldas Alkaline Massif (PCAM), is lied in the interior, 300km from the coastline, covering over 800km2 intruding the Precambrian basement around 83Ma, nepheline syenites, phonolites and tinguaites intruded in a continuous and rapid sequence lasting between 1 to 2 Ma. São Sebastião Island (SSI) on the other hand is located at the coast, 200 km southeast of São Paulo. It is characterized by an intrusion in Precambrian/Brazilian orogen and intruded by Early Cretaceous sub-alkaline basic and acid dykes, as well as by Late Cretaceous alkaline stocks (syenites) and dykes (basanite to phonolite). Will be presenting the apatite fission track (AFT) and (U-Th)/He results that shows the main difference between the areas is that PCAM region register older history then the coastal area of SSI, where thermal history starts register cooling event after the South Atlantic rifting process, while in the PCAM area register a previous history, since Carboniferous. The results are giving support to studies that indicate the development of the relief in Brazil being strongly influenced by the local and regional tectonic movements and the lithological and structural settings. The landscape at the Late Cretaceous was witness of heating process between 90 and 60Ma due the intense uplift of South American Platform. The elevation of the isotherms is associated with the mantellic plumes and the crustal thickness that caused thermal anomalies due

  11. Dinosaur morphological diversity and the end-Cretaceous extinction.

    Science.gov (United States)

    Brusatte, Stephen L; Butler, Richard J; Prieto-Márquez, Albert; Norell, Mark A

    2012-05-01

    The extinction of non-avian dinosaurs 65 million years ago is a perpetual topic of fascination, and lasting debate has focused on whether dinosaur biodiversity was in decline before end-Cretaceous volcanism and bolide impact. Here we calculate the morphological disparity (anatomical variability) exhibited by seven major dinosaur subgroups during the latest Cretaceous, at both global and regional scales. Our results demonstrate both geographic and clade-specific heterogeneity. Large-bodied bulk-feeding herbivores (ceratopsids and hadrosauroids) and some North American taxa declined in disparity during the final two stages of the Cretaceous, whereas carnivorous dinosaurs, mid-sized herbivores, and some Asian taxa did not. Late Cretaceous dinosaur evolution, therefore, was complex: there was no universal biodiversity trend and the intensively studied North American record may reveal primarily local patterns. At least some dinosaur groups, however, did endure long-term declines in morphological variability before their extinction.

  12. Ontong Java volcanism initiated long-term climate warming that caused substantial changes in terrestrial vegetation several tens of thousand years before the onset of OAE1a (Early Aptian, Cretaceous)

    Science.gov (United States)

    Keller, Christina E.; Hochuli, Peter A.; Giorgioni, Martino; Garcia, Therese I.; Bernasconi, Stefano M.; Weissert, Helmut

    2010-05-01

    During Cretaceous times, several intense volcanic episodes are proposed as trigger for episodic climate warming, for changes in marine circulation patterns and for elevated marine productivity, which resulted in the widespread black shale deposits of the Oceanic Anoxic Events (OAE). In the sediments underlying the early Aptian OAE1a black shales, a prominent negative carbon isotope excursion is recorded. Its origin had long been controversial (e.g. Arthur, 2000; Jahren et al., 2001) before recent studies attributed it to the Ontong Java volcanism (Méhay et al., 2009; Tejada et al., 2009). Volcanic outgassing results in an increased pCO2 and should lead to a rise in global temperatures. We therefore investigated if the volcanically-induced increase in pCO2 at the onset of OAE1a in the early Aptian led to a temperature rise that was sufficient to affect terrestrial vegetation assemblages. In order to analyse changes in terrestrial palynomorph assemblages, we examined 15 samples from 12 black shale horizons throughout the early Aptian negative C-isotope spike interval of the Pusiano section (Maiolica Formation; N-Italy). These sediments were deposited at the southern continental margin of the alpine Tethys Ocean and have been bio- and magnetostratigraphically dated by Channell et al. (1995). In order to obtain a continuous palynological record of the negative C-isotope spike interval and the base of OAE1a, we combined this pre-OAE1a interval of Pusiano with the OAE1a interval of the nearby Cismon section (Hochuli et al., 1999). The sporomorph assemblages at the base of this composite succession feature abundant bisaccate pollen, which reflects a warm-temperate climate. Rather arid conditions are inferred from low trilete spore percentages. Several tens of thousand years before the onset of OAE1a, C-isotope values started to decrease. Some thousand years later, bisaccate pollen began to decrease, whereas an increase of Classopollis spp. and Araucariacites spp

  13. Extending the fossil record of Polytrichaceae: Early Cretaceous Meantoinea alophosioides gen. et sp. nov., permineralized gametophytes with gemma cups from Vancouver Island.

    Science.gov (United States)

    Bippus, Alexander C; Stockey, Ruth A; Rothwell, Gar W; Tomescu, Alexandru M F

    2017-04-01

    Diverse in modern ecosystems, mosses are dramatically underrepresented in the fossil record. Furthermore, most pre-Cenozoic mosses are known only from compression fossils, lacking detailed anatomical information. When preserved, anatomy vastly improves resolution in the systematic placement of fossils. Lower Cretaceous deposits at Apple Bay (Vancouver Island, British Columbia, Canada) contain a diverse anatomically preserved flora that includes numerous bryophytes, many of which have yet to be characterized. Among them is a polytrichaceous moss that is described here. Fossil moss gametophytes preserved in four carbonate concretions were studied in serial sections prepared using the cellulose acetate peel technique. We describe Meantoinea alophosioides gen. et sp. nov., a polytrichaceous moss with terminal gemma cups containing stalked, lenticular gemmae. Leaves with characteristic costal anatomy, differentiated into sheathing base and free lamina and bearing photosynthetic lamellae, along with a conducting strand in the stem, place Meantoinea in family Polytrichaceae. The bistratose leaf lamina with an adaxial layer of mamillose cells, short photosynthetic lamellae restricted to the costa, and presence of gemma cups indicate affinities with basal members of the Polytrichaceae, such as Lyellia , Bartramiopsis , and Alophosia . Meantoinea alophosioides enriches the documented moss diversity of an already-diverse Early Cretaceous plant fossil assemblage. This is the third moss described from the Apple Bay plant fossil assemblage and represents the first occurrence of gemma cups in a fossil moss. It is also the oldest unequivocal record of Polytrichaceae, providing a hard minimum age for the group of 136 million years. © 2017 Botanical Society of America.

  14. Late Cretaceous extension and exhumation of the Stong Complex and Taku Schist, NE Peninsular Malaysia

    Science.gov (United States)

    François, Thomas; Afiq Md, Muhammad; Matenco, Liviu; Willingshofer, Ernst; Fatt Ng, Tham; Iskandar Taib, N.; Kamal Shuib, Mustaffa

    2017-04-01

    Dismembering large continental areas by post-orogenic extension requires favourable geodynamic conditions and frequently occurs along pre-existing suture zones or nappe contacts as exemplified by the Stong Complex and Taku Schist of northern Peninsular Malaysia. For this particular case we have employed a field and microstructural kinematic study combined with low temperature thermo-chronology to analyse the tectonic and exhumation history. The results show that the late Palaeozoic - Triassic Indosinian orogeny created successive phases of burial related metamorphism, shearing and contractional deformation. This orogenic structure was then dismembered during a Cretaceous thermal event that culminated in the formation of a large scale late Santonian - early Maastrichtian extensional detachment, genetically associated with crustal melting, the emplacement of syn-kinematic plutons and widespread migmatisation. The emplacement of these magmatic rocks led to an array of simultaneously formed structures that document deformation conditions over a wide temperature range, represented by amphibolite-facies mylonites and more brittle structures, such as cataclastic zones and normal faults that formed during exhumation in the footwall of the detachment. The formation of this detachment and a first phase of Late Cretaceous cooling was followed by renewed Eocene - Oligocene exhumation evidenced from our apatite fission track ages. We infer that an initial Cretaceous thermal anomaly was responsible for the formation of an extensional gneiss dome associated with simple shear and normal fault rotation. These Cretaceous processes played a critical role in the establishment of the presently observed crustal structure of Peninsular Malaysia.

  15. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time.

    Science.gov (United States)

    Graham, Alan

    2011-03-01

    Eight ecosystems that were present in the Cretaceous about 100 Ma (million years ago) in the New World eventually developed into the 12 recognized for the modern Earth. Among the forcing mechanisms that drove biotic change during this interval was a decline in global temperatures toward the end of the Cretaceous, augmented by the asteroid impact at 65 Ma and drainage of seas from continental margins and interiors; separation of South America from Africa beginning in the south at ca. 120 Ma and progressing northward until completed 90-100 Ma; the possible emission of 1500 gigatons of methane and CO(2) attributed to explosive vents in the Norwegian Sea at ca. 55 Ma, resulting in a temperature rise of 5°-6°C in an already warm world; disruption of the North Atlantic land bridge at ca. 45 Ma at a time when temperatures were falling; rise of the Andes Mountains beginning at ca. 40 Ma; opening of the Drake Passage between South America and Antarctica at ca. 32 Ma with formation of the cold Humboldt at ca. 30 Ma; union of North and South America at ca. 3.5 Ma; and all within the overlay of evolutionary processes. These processes generated a sequence of elements (e.g., species growing in moist habitats within an overall dry environment; gallery forests), early versions (e.g., mangrove communities without Rhizophora until the middle Eocene), and essentially modern versions of present-day New World ecosystems. As a first approximation, the fossil record suggests that early versions of aquatic communities (in the sense of including a prominent angiosperm component) appeared early in the Middle to Late Cretaceous, the lowland neotropical rainforest at 64 Ma (well developed by 58-55 Ma), shrubland/chaparral-woodland-savanna and grasslands around the middle Miocene climatic optimum at ca. 15-13 Ma, deserts in the middle Miocene/early Pliocene at ca. 10 Ma, significant tundra at ca. 7-5 Ma, and alpine tundra (páramo) shortly thereafter when cooling temperatures were augmented

  16. Definition of Greater Gulf Basin Lower Cretaceous and Upper Cretaceous Lower Cenomanian Shale Gas Assessment Unit, United States Gulf of Mexico Basin Onshore and State Waters

    Science.gov (United States)

    Dennen, Kristin O.; Hackley, Paul C.

    2012-01-01

    An assessment unit (AU) for undiscovered continuous “shale” gas in Lower Cretaceous (Aptian and Albian) and basal Upper Cretaceous (lower Cenomanian) rocks in the USA onshore Gulf of Mexico coastal plain recently was defined by the U.S. Geological Survey (USGS). The AU is part of the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico Basin. Definition of the AU was conducted as part of the 2010 USGS assessment of undiscovered hydrocarbon resources in Gulf Coast Mesozoic stratigraphic intervals. The purpose of defining the Greater Gulf Basin Lower Cretaceous Shale Gas AU was to propose a hypothetical AU in the Cretaceous part of the Gulf Coast TPS in which there might be continuous “shale” gas, but the AU was not quantitatively assessed by the USGS in 2010.

  17. Dental Disparity and Ecological Stability in Bird-like Dinosaurs prior to the End-Cretaceous Mass Extinction.

    Science.gov (United States)

    Larson, Derek W; Brown, Caleb M; Evans, David C

    2016-05-23

    The causes, rate, and selectivity of the end-Cretaceous mass extinction continue to be highly debated [1-5]. Extinction patterns in small, feathered maniraptoran dinosaurs (including birds) are important for understanding extant biodiversity and present an enigma considering the survival of crown group birds (Neornithes) and the extinction of their close kin across the end-Cretaceous boundary [6]. Because of the patchy Cretaceous fossil record of small maniraptorans [7-12], this important transition has not been closely examined in this group. Here, we test the hypothesis that morphological disparity in bird-like dinosaurs was decreasing leading up to the end-Cretaceous mass extinction, as has been hypothesized in some dinosaurs [13, 14]. To test this, we examined tooth morphology, an ecological indicator in fossil reptiles [15-19], from over 3,100 maniraptoran teeth from four groups (Troodontidae, Dromaeosauridae, Richardoestesia, and cf. Aves) across the last 18 million years of the Cretaceous. We demonstrate that tooth disparity, a proxy for variation in feeding ecology, shows no significant decline leading up to the extinction event within any of the groups. Tooth morphospace occupation also remains static over this time interval except for increased size during the early Maastrichtian. Our data provide strong support that extinction within this group occurred suddenly after a prolonged period of ecological stability. To explain this sudden extinction of toothed maniraptorans and the survival of Neornithes, we propose that diet may have been an extinction filter and suggest that granivory associated with an edentulous beak was a key ecological trait in the survival of some lineages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Geological and technological characterization of the Late Jurassic-Early Cretaceous clay deposits (Jebel Ammar, northeastern Tunisia) for ceramic industry

    Science.gov (United States)

    Ben M'barek-Jemaï, Moufida; Sdiri, Ali; Ben Salah, Imed; Ben Aissa, Lassaad; Bouaziz, Samir; Duplay, Joelle

    2017-05-01

    Late Jurassic-Lower Cretaceous clays of the Jebel Ammar study site were used as raw materials for potential applications in ceramic industry. Physico-chemical characterization of the collected samples was performed using atomic absorption spectroscopy, X-ray diffraction, thermogravimetry and dilatometry (Bugot's curve). Geotechnical study was also undertaken by the assessment of plasticity and liquidity limits. It was found that high concentrations of silica, alumina with SiO2/Al2O3 ratio characterized the studied clays; its high amounts of CaO and Fe2O3 in the Late Jurassic clays indicated their calcareous nature. In addition, technological tests indicated moderate to low plasticity values for the Late Jurassic and Lower Cretaceous clays, respectively. Clay fraction (<2 μm) reached 50% of the natural clay in some cases. Mineralogical analysis showed that Jurassic clays were dominated by smectite, illite and kaolinite, as clay mineral species; calcite was the main associated mineral. Lower Cretaceous clays were mainly composed of abundant illite accompanied by well-crystallized smectite and kaolinite. Kaolinite gradually increased upwards, reaching 70% of the total clay fraction (i.e. <2 μm). Quartz, calcite and feldspar were the main non-clay minerals. Based on these analyses, the clays meet technological requirements that would allow their use in the ceramic industry and for the manufacturing of ceramic tiles.

  19. New and revised maimetshid wasps from Cretaceous ambers (Hymenoptera, Maimetshidae

    Directory of Open Access Journals (Sweden)

    Vincent Perrichot

    2011-09-01

    Full Text Available New material of the wasp family Maimetshidae (Apocrita is presented from four Cretaceous amber deposits – the Neocomian of Lebanon, the Early Albian of Spain, the latest Albian/earliest Cenomanian of France, and the Campanian of Canada. The new record from Canadian Cretaceous amber extends the temporal and paleogeographical range of the family. New material from France is assignable to Guyotemaimetsha enigmatica Perrichot et al. including the first females for the species, while a series of males and females from Spain are described and figured as Iberomaimetsha Ortega-Blanco, Perrichot, and Engel gen. n., with the two new species Iberomaimetsha rasnitsyni Ortega-Blanco, Perrichot, and Engel sp. n. and I. nihtmara Ortega-Blanco, Delclòs, and Engel sp. n.; a single female from Lebanon is described and figured as Ahiromaimetsha najlae Perrichot, Azar, Nel, and Engel gen. et sp. n., and a single male from Canada is described and figured as Ahstemiam cellula McKellar and Engel gen. et sp. n. The taxa are compared with other maimetshids, a key to genera and species is given, and brief comments made on the family.

  20. Cretaceous origin and repeated tertiary diversification of the redefined butterflies.

    Science.gov (United States)

    Heikkilä, Maria; Kaila, Lauri; Mutanen, Marko; Peña, Carlos; Wahlberg, Niklas

    2012-03-22

    Although the taxonomy of the ca 18 000 species of butterflies and skippers is well known, the family-level relationships are still debated. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the superfamilies Papilionoidea, Hesperioidea and Hedyloidea to date based on morphological and molecular data. We reconstructed their phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification along lineages in order to reconstruct their evolutionary history. Our results suggest that the butterflies, as traditionally understood, are paraphyletic, with Papilionidae being the sister-group to Hesperioidea, Hedyloidea and all other butterflies. Hence, the families in the current three superfamilies should be placed in a single superfamily Papilionoidea. In addition, we find that Hedylidae is sister to Hesperiidae, and this novel relationship is supported by two morphological characters. The families diverged in the Early Cretaceous but diversified after the Cretaceous-Palaeogene event. The diversification of butterflies is characterized by a slow speciation rate in the lineage leading to Baronia brevicornis, a period of stasis by the skippers after divergence and a burst of diversification in the lineages leading to Nymphalidae, Riodinidae and Lycaenidae.

  1. Non-marine carbonate facies, facies models and palaeogeographies of the Purbeck Formation (Late Jurassic to Early Cretaceous) of Dorset (Southern England).

    Science.gov (United States)

    Gallois, Arnaud; Bosence, Dan; Burgess, Peter

    2015-04-01

    Non-marine carbonates are relatively poorly understood compared with their more abundant marine counterparts. Sedimentary facies and basin architecture are controlled by a range of environmental parameters such as climate, hydrology and tectonic setting but facies models are few and limited in their predictive value. Following the discovery of extensive Early Cretaceous, non-marine carbonate hydrocarbon reservoirs in the South Atlantic, the interest of understanding such complex deposits has increased during recent years. This study is developing a new depositional model for non-marine carbonates in a semi-arid climate setting in an extensional basin; the Purbeck Formation (Upper Jurassic - Lower Cretaceous) in Dorset (Southern England). Outcrop study coupled with subsurface data analysis and petrographic study (sedimentology and early diagenesis) aims to constrain and improve published models of depositional settings. Facies models for brackish water and hypersaline water conditions of these lacustrine to palustrine carbonates deposited in the syn-rift phase of the Wessex Basin will be presented. Particular attention focusses on the factors that control the accumulation of in-situ microbialite mounds that occur within bedded inter-mound packstones-grainstones in the lower Purbeck. The microbialite mounds are located in three units (locally known as the Skull Cap, the Hard Cap and the Soft Cap) separated by three fossil soils (locally known as the Basal, the Lower and the Great Dirt Beds) respectively within three shallowing upward lacustrine sequences. These complex microbialite mounds (up to 4m high), are composed of tabular small-scale mounds (flat and long, up to 50cm high) divided into four subfacies. Many of these small-scale mounds developed around trees and branches which are preserved as moulds (or silicified wood) which are surrounded by a burrowed mudstone-wackestone collar. Subsequently a thrombolite framework developed on the upper part only within

  2. Gateways and Water Mass Mixing in the Late Cretaceous North Atlantic

    Science.gov (United States)

    Asgharian Rostami, M.; Martin, E. E.; MacLeod, K. G.; Poulsen, C. J.; Vande Guchte, A.; Haynes, S.

    2017-12-01

    Regions of intermediate/deep water formation and water-mass mixing in the North Atlantic are poorly defined for the Late Cretaceous, a time of gateway evolution and cooler conditions following the Mid Cretaceous greenhouse. Improved proxy data combined with modeling efforts are required to effectively evaluate the relationship between CO2, paleogeography, and circulation during this cooler interval. We analyzed and compiled latest Cretaceous (79 - 66 Ma) ɛNd and δ13C records from seven bathyal (paleodepths 0.2 - 2 km) and eight abyssal (paleodepths > 2 km) sites in the North Atlantic. Data suggest local downwelling of Northern Component Water (NCW; ɛNd -9.5 and δ13C 1.7 ‰) is the primary source of intermediate/deep water masses in the basin. As this water flows southward and ages, δ13C values decrease and ɛNd values increase; however, additional chemical changes at several sites require mixing with contributions from several additional water masses. Lower ɛNd ( -10) and higher δ13C ( 1.9 ‰) values in the deep NW part of the basin indicate proximal contributions from a region draining old continental crust, potentially representing deep convection following opening of the Labrador Sea. In the deep NE Iberian Basin, higher ɛNd ( -7) and lower δ13C ( 0.8 ‰) during the Campanian suggest mixing with a Tethyan source (ɛNd -7 and δ13C 0.1 ‰) whose importance decreased with restriction of that gateway in the Maastrichtian. Data from bathyal sites suggest additional mixing. In the SE Cape Verde region, observed ɛNd variations from -10 in the Campanian to -13 and -12 in the early and late Maastrichtian, respectively, may record variations in output rates of Tethyan and/or NCW sources and Demerara Bottom Water (ɛNd -16), a proposed warm saline intermediate water mass formed in shallow, equatorial seas. Pacific inflow through the Caribbean gateway impacts intermediate sites at Blake Nose (ɛNd values -8), particularly the shallowest site during the late

  3. Petrogenesis of early cretaceous silicic volcanism in SE Uruguay. The role of mantle and crustal sources

    International Nuclear Information System (INIS)

    Lustrino, Michele; Morbidelli, Lucio; Marrazzo, Marianna; Melluso, Leone; Brotzu, Pietro; Tassinari, Colombo C.G.; Gomes, Celso B.; Ruberti, Excelso

    2010-01-01

    Early Cretaceous (∼129 Ma) silicic rocks crop out in SE Uruguay between the Laguna Merin and Santa Lucia basins in the Lascano, Sierra Sao Miguel, Salamanca and Minas areas. They are mostly rhyolites with minor quartz-trachytes and are nearly contemporaneous with the Parana-Etendeka igneous province and with the first stages of South Atlantic Ocean opening. A strong geochemical variability (particularly evident from Rb/Nb, Nb/Y trace element ratios) and a wide range of Sr-Nd isotopic ratios ( 143 Nd/ 144 Nd (129) =0.51178-0.51209; 87 Sr/ 86 Sr (129) =0.70840-0.72417) characterize these rocks. Geochemistry allows to distinguish two compositional groups, corresponding to the north-eastern (Lascano and Sierra Sao Miguel, emplaced on the Neo-Proterozoic southern sector of the Dom Feliciano mobile belt) and south-eastern localities (Salamanca, Minas, emplaced on the much older (Archean) Nico Perez terrane or on the boundary between the Dom Feliciano and Nico Perez terranes). These compositional differences between the two groups are explained by variable mantle source and crust contributions. The origin of the silicic magmas is best explained by complex processes involving assimilation and fractional crystallization and mixing of a basaltic magma with upper crustal lithologies, for Lascano and Sierra Sao Miguel rhyolites. In the Salamanca and Minas rocks genesis, a stronger contribution from lower crust is indicated. (author)

  4. Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran

    Directory of Open Access Journals (Sweden)

    M. Nasrabady

    2011-11-01

    Full Text Available The Iranian ophiolites are part of the vast orogenic suture zones that mark the Alpine-Himalayan convergence zone. Few petrological and geochronological data are available from these ophiolitic domains, hampering a full assessment of the timing and regimes of subduction zone metamorphism and orogenic construction in the region. This paper describes texture, geochemistry, and the pressure-temperature path of the Early Cretaceous mafic granulites that occur within the Tertiary Sabzevar ophiolitic suture zone of NE Iran. Whole rock geochemistry indicates that the Sabzevar granulites are likely derived from a MORB-type precursor. They are thus considered as remnants of a dismembered dynamo-thermal sole formed during subduction of a back-arc basin (proto-Sabzevar Ocean formed in the upper-plate of the Neotethyan slab. The metamorphic history of the granulites suggests an anticlockwise pressure-temperature loop compatible with burial in a hot subduction zone, followed by cooling during exhumation. Transition from a nascent to a mature stage of oceanic subduction is the geodynamic scenario proposed to accomplish for the reconstructed thermobaric evolution. When framed with the regional scenario, results of this study point to diachronous and independent tectonic evolutions of the different ophiolitic domains of central Iran, for which a growing disparity in the timing of metamorphic equilibration and of pressure-temperature paths can be expected to emerge with further investigations.

  5. Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction.

    Science.gov (United States)

    Dunne, Jennifer A; Labandeira, Conrad C; Williams, Richard J

    2014-05-07

    Generalities of food web structure have been identified for extant ecosystems. However, the trophic organization of ancient ecosystems is unresolved, as prior studies of fossil webs have been limited by low-resolution, high-uncertainty data. We compiled highly resolved, well-documented feeding interaction data for 700 taxa from the 48 million-year-old latest early Eocene Messel Shale, which contains a species assemblage that developed after an interval of protracted environmental and biotal change during and following the end-Cretaceous extinction. We compared the network structure of Messel lake and forest food webs to extant webs using analyses that account for scale dependence of structure with diversity and complexity. The Messel lake web, with 94 taxa, displays unambiguous similarities in structure to extant webs. While the Messel forest web, with 630 taxa, displays differences compared to extant webs, they appear to result from high diversity and resolution of insect-plant interactions, rather than substantive differences in structure. The evidence presented here suggests that modern trophic organization developed along with the modern Messel biota during an 18 Myr interval of dramatic post-extinction change. Our study also has methodological implications, as the Messel forest web analysis highlights limitations of current food web data and models.

  6. Lower Cretaceous fossils from China shed light on the ancestral body plan of crown softshell turtles (Trionychidae, Cryptodira).

    Science.gov (United States)

    Brinkman, Donald; Rabi, Márton; Zhao, Lijun

    2017-07-27

    Pan-trionychids or softshell turtles are a highly specialized and widespread extant group of aquatic taxa with an evolutionary history that goes back to the Early Cretaceous. The earliest pan-trionychids had already fully developed the "classic" softshell turtle morphology and it has been impossible to resolve whether they are stem members of the family or are within the crown. This has hindered our understanding of the evolution of the two basic body plans of crown-trionychids. Thus it remains unclear whether the more heavily ossified shell of the cyclanorbines or the highly reduced trionychine morphotype is the ancestral condition for softshell turtles. A new pan-trionychid from the Early Cretaceous of Zhejiang, China, Perochelys hengshanensis sp. nov., allows a revision of softshell-turtle phylogeny. Equal character weighting resulted in a topology that is fundamentally inconsistent with molecular divergence date estimates of deeply nested extant species. In contrast, implied weighting retrieved Lower Cretaceous Perochelys spp. and Petrochelys kyrgyzensis as stem trionychids, which is fully consistent with their basal stratigraphic occurrence and an Aptian-Santonian molecular age estimate for crown-trionychids. These results indicate that the primitive morphology for soft-shell turtles is a poorly ossified shell like that of crown-trionychines and that shell re-ossification in cyclanorbines (including re-acquisition of peripheral elements) is secondary.

  7. Are glendonites reliable indicators of cold conditions? Evidence from the Lower Cretaceous of Spitsbergen

    Science.gov (United States)

    Vickers, Madeleine; Price, Gregory; Watkinson, Matthew; Jerrett, Rhodri

    2017-04-01

    Glendonites are pseudomorphs after the mineral ikaite, and have been found in marine sediments throughout geological time. Ikaite is a metastable, hydrated form of calcium carbonate, which is only stable under specific conditions: between -2 and +5 °C, and with high alkalinity and phosphate concentrations. Glendonites are often associated with cold climates due to the strong temperature control on ikaite growth, and the coincidence in the geological record with episodes of global cooling. Glendonites are found in the Lower Cretaceous succession in Spitsbergen. During the Early Cretaceous, Spitsbergen was at a palaeolatitude of 60°N, and was part of a shallow epicontinental sea that formed during the Mesozoic as Atlantic rifting propagated northwards. Though the Early Cretaceous was generally characterised by greenhouse climate conditions, episodic cold snaps occurred during the Valanginian (the "Weissert Event") and during Aptian-Albian. Using high resolution carbon-isotope stratigraphy, we show that the first occurrences of glendonites are in the upper Lower Hauterivian and in the very upper Upper Hauterivian, stratigraphically higher than the Valanginian cooling event. Glendonites are also found in horizons in the Upper Aptian, coincident with the Aptian-Albian cold snap. Petrological analysis of the glendonite structure reveals differences between the Hauterivian and Aptian glendonites, with evidence for multiple diagenetic phases of growth in the Hauterivian glendonites, suggesting oscillating chemical conditions. This evidence suggests that local environmental conditions may have a stronger control on glendonite formation and preservation than global climate. We present a new model for ikaite growth and slow transformation to glendonite in marine sediments, which points to a more complex suite of diagenetic transformations than previously modelled. Furthermore, we critically assess whether such pseudomorphs after marine sedimentary ikaite may be indicators

  8. Estimating Latest Cretaceous and Tertiary Atmospheric PCO2 from Stomatal Indices

    Science.gov (United States)

    Royer, D. L.; Wing, S. L.; Beerling, D. J.

    2001-05-01

    Most modern C3 seed plants show an inverse relationship between PCO2 and stomatal index (SI), where SI is the proportion of epidermal cells that are stomatal packages. This plant-atmosphere response therefore provides a reliable approach for estimating paleo-CO2 levels. Since stomatal responses to CO2 are generally species-specific, one is limited in paleo-reconstructions to species that exist both in the fossil record and living today. Fossils morphologically similar to living Ginkgo biloba and Metasequoia glyptostroboides extend back to the early and late Cretaceous, respectively, indicating that the fossil and living forms are very closely related. Measurements of SI made on fossil Ginkgo and Metasequoia were calibrated with historical collections of G. biloba and M. glyptostroboides leaves from sites that developed during the anthropogenically-driven CO2 increases of the past 145 years (288-369 ppmv) and with saplings of G. biloba and M. glyptostroboides grown in CO2 controlled growth chambers (350-800 ppmv). Both nonlinear regressions are highly significant (Ginkgo: n = 40, r2 = 0.91; Metasequoia: n = 18; r2 = 0.85). Results from a sequence of 23 latest Cretaceous to early Eocene-aged Ginkgo-bearing sites indicate that CO2 remained between 300 and 450 ppmv with the exception of one high estimate ( ~800 ppmv) near the Paleocene/Eocene boundary, and results from 4 middle Miocene-aged Ginkgo- and Metasequoia-bearing sites indicate that CO2 was between 320 and 400 ppmv. If correct, the CO2 values estimated here are too low to explain via the CO2 greenhouse effect alone the higher global mean temperatures (e.g., 3-4 ° C for the early Eocene) inferred from models and geological data for these two intervals.

  9. A New Species of Pengornithidae (Aves: Enantiornithes) from the Lower Cretaceous of China Suggests a Specialized Scansorial Habitat Previously Unknown in Early Birds

    Science.gov (United States)

    Hu, Han; O’Connor, Jingmai K.; Zhou, Zhonghe

    2015-01-01

    We describe a new enantiornithine bird, Parapengornis eurycaudatus gen. et sp. nov. from the Lower Cretaceous Jiufotang Formation of Liaoning, China. Although morphologically similar to previously described pengornithids Pengornis houi, Pengornis IVPP V18632, and Eopengornis martini, morphological differences indicate it represents a new taxon of the Pengornithidae. Based on new information from this specimen we reassign IVPP V18632 to Parapengornis sp. The well preserved pygostyle of the new specimen elucidates the morphology of this element for the clade, which is unique in pengornithids among Mesozoic birds. Similarities with modern scansores such as woodpeckers may indicate a specialized vertical climbing and clinging behavior that has not previously been inferred for early birds. The new specimen preserves a pair of fully pennaceous rachis-dominated feathers like those in the holotype of Eopengornis martini; together with the unique morphology of the pygostyle, this discovery lends evidence to early hypotheses that rachis-dominated feathers may have had a functional significance. This discovery adds to the diversity of ecological niches occupied by enantiornithines and if correct reveals are remarkable amount of locomotive differentiation among Enantiornithes. PMID:26039693

  10. A new species of pengornithidae (aves: enantiornithes from the lower cretaceous of China suggests a specialized scansorial habitat previously unknown in early birds.

    Directory of Open Access Journals (Sweden)

    Han Hu

    Full Text Available We describe a new enantiornithine bird, Parapengornis eurycaudatus gen. et sp. nov. from the Lower Cretaceous Jiufotang Formation of Liaoning, China. Although morphologically similar to previously described pengornithids Pengornis houi, Pengornis IVPP V18632, and Eopengornis martini, morphological differences indicate it represents a new taxon of the Pengornithidae. Based on new information from this specimen we reassign IVPP V18632 to Parapengornis sp. The well preserved pygostyle of the new specimen elucidates the morphology of this element for the clade, which is unique in pengornithids among Mesozoic birds. Similarities with modern scansores such as woodpeckers may indicate a specialized vertical climbing and clinging behavior that has not previously been inferred for early birds. The new specimen preserves a pair of fully pennaceous rachis-dominated feathers like those in the holotype of Eopengornis martini; together with the unique morphology of the pygostyle, this discovery lends evidence to early hypotheses that rachis-dominated feathers may have had a functional significance. This discovery adds to the diversity of ecological niches occupied by enantiornithines and if correct reveals are remarkable amount of locomotive differentiation among Enantiornithes.

  11. Environmental change during the Late Berriasian - Early Valanginian: a prelude to the late Early Valanginian carbon-isotope event?

    Science.gov (United States)

    Morales, Chloé; Schnyder, Johann; Spangenberg, Jorge; Adatte, Thierry; Westermann, Stephane; Föllmi, Karl

    2010-05-01

    European basins show that the climate became more humid during the Late Berriasian (Hallam et al., 1991, Schnyder et al., 2009). The aim of this project is to precisely characterize and date paleoenvironmental and paleoclimatic change during the latest Berriasian-Early Valanginian time interval in order to decipher if they can be viewed as precursor events, linked with the late Early Valanginian δ13C event. Three key sections have been studied: Capriolo (N Italy), Montclus (SE France) and Musfallen (E Switzerland) located in the Lombardian and Vocontian basins and on the Helvetic platform, respectively. Phosphorus and stable-isotope analyses have been performed, in addition to clay-mineralogy and facies determinations. The three sections show similar and comparable trends: The phosphorus content (in ppm) is higher in Late Berriasian sediments (compared to Early Berriasian and Valanginian deposits) and this period is also characterised by a decrease in δ13C values. This is interpreted as the result of enhanced continental weathering, which would be coeval with a change to a more humid climate during the Late Berriasian (Schnyder et al., 2009). References: Bornemann, A. and Mutterlose, J. (2008). "Calcareous nannofossil and d13C records from the Early Cretaceous of the Western Atlantic ocean: evidence of enhanced fertilization accross the Berriasian-Valanginian transition." palaios 23: 821-832. Duchamp-Alphonse, S., Gardin, S., Fiet, N., Bartolini, A., Blamart, D. and Pagel, M. (2007). "Fertilization of the northwestern Tethys (Vocontian basin, SE France) during the Valanginian carbon isotope perturbation: Evidence from calcareous nannofossils and trace element data." Palaeogeography, Palaeoclimatology, Palaeoecology 243(1-2): 132-151. Föllmi, K.B., Weissert, H., Bisping, M. & Funk, H. 1994: Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern tethyan margin. Geological Society of America, Bulletin 106, 729

  12. Cretacic tectonics in Uruguay

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2012-01-01

    This work is about Cretacic tectonics in Uruguay, this formation is characterized by high level cortex because the basament is cratonized since Middle Devonian. There were formed two main grabens such as Santa Lucia and Mirim-Pelotas which are filled with basalt and sediments.

  13. Foraminiferal biostratigraphy of Upper Cretaceous (Campanian - Maastrichtian) sequences in the Peri-Tethys basin; Moghan area, NW Iran

    Science.gov (United States)

    Omidvar, Mahboobeh; Safari, Amrollah; Vaziri-Moghaddam, Hossain; Ghalavand, Hormoz

    2018-04-01

    The Upper Cretaceous sediments in the Moghan area, NW Iran, contain diverse planktonic and benthic foraminifera, with a total of 33 genera and 53 species (17 genera and 38 species of planktonic foraminifera and 16 genera and 15 species from benthic foraminifera), which led to the identification of six biozones spanning the middle Campanian to late Maastrichtian. A detailed paleontological study and biostratigraphic zonation of these sequences has been carried out in four surface sections. This study shows that there are two different facies in the Moghan area, based on the faunal content. A deep open marine condition exists in the Molok, Selenchai and Nasirkandi sections. In these sections, Upper Cretaceous sequences have diverse planktonic foraminiferal species including the Globotruncana ventricosa (middle to late Campanian), Globotruncanella havanensis (late Campanian), Globotruncana aegyptiaca (latest Campanian), Gansserina gansseri (latest Campanian to early Maastrichtian), Contusotruncana contusa- Racemiguembelina fructicosa (early to late Maastrichtian) and Abathomphalus mayaroensis (late Maastrichtian) zones. This deep open marine setting grades laterally into shallower marine condition dominated by large benthic foraminifera such as Orbitoides media, Orbitoides gruenbachensis, Orbitoides cf. apiculata, Lepidorbitoides minor, Pseudosiderolites sp., Siderolites praecalcitrapoides, Siderolites aff. calcitrapoides and Siderolites calcitrapoides. This facies is mainly recorded in the Hovay section. A detailed biostratigraphic zonation scheme is presented for the studied sections and correlated with the results of other studies in the Tethyan realm. This is the first biozonation scheme for Upper Cretaceous sequences of the Moghan area that can be used as a basis for ongoing studies in this area and other parts of Tethys basin.

  14. Geochemical evolution of Cenozoic-Cretaceous magmatism and its relation to tectonic setting, southwestern Idaho, U.S.A

    International Nuclear Information System (INIS)

    Norman, M.D.; Leeman, W.P.

    1989-01-01

    Magmatism in the western United States spanned a change in tectonic setting from Mesozoic and early Tertiary plate convergence to middle and late Tertiary crustal extension. This paper presents new major element, trace element, and isotopic (Sr, Nd, Pb) data on a diverse suite of Cretaceous to Neogene igneous rocks from the Owyhee area of southwestern Idaho to evaluate possible relationships between the evolving tectonic regime and temporal changes in igneous activity. The oldest studied rocks are Cretaceous granitic intrusives that probably formed by large-scale mixing of Precambrian crust with subduction-related magmas. Silicic Eocene tuffs are also rich in crustal components, but have isotopic compositions unlike the Cretaceous intrusives. These data require at least two crustal sources that may correspond to domains of significantly different age (Archean vs. Proterozoic). The oldest mafic lavas in the study area are Oligocene andesites and basalts compositionally similar to subduction-related magmas derived from asthenospheric mantle and erupted through thick continental crust. Direct crustal involvement during oligocene time was limited to minor interaction with the mafic magmas. Miocene activity produced bimodal basalt-rhyolite suites and minor volumes of hybrid lavas. Compositions of Miocene basalts demonstrate the decline of subduction-related processes, and increased involvement of subcontinental lithospheric mantle as a magma source. Crustally-derived Miocene rhyolites have isotopic compositions similar to those of the Cretaceous granitic rocks but trace element abundances more typical of within-plate magmas. (orig./WB)

  15. Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania

    Directory of Open Access Journals (Sweden)

    M. Aberhan

    2002-01-01

    Full Text Available The Late Jurassic to Early Cretaceous Tendaguru Beds (Tanzania, East Africa have been well known for nearly a century for their diverse dinosaur assemblages. Here, we present sedimentological and palaeontological data collected by the German-Tanzanian Tendaguru Expedition 2000 in an attempt to reconstruct the palaeo-ecosystems of the Tendaguru Beds at their type locality. Our reconstructions are based on sedimentological data and on a palaeoecological analysis of macroinvertebrates, microvertebrates, plant fossils and microfossils (ostracods, foraminifera, charophytes, palynomorphs. In addition, we included data from previous expeditions, particularly those on the dinosaur assemblages. The environmental model of the Tendaguru Beds presented herein comprises three broad palaeoenvironmental units in a marginal marine setting: (1 Lagoon-like, shallow marine environments above fair weather wave base and with evidence of tides and storms. These formed behind barriers such as ooid bar and siliciclastic sand bar complexes and were generally subject to minor salinity fluctuations. (2 Extended tidal flats and low-relief coastal plains. These include low-energy, brackish coastal lakes and ponds as well as pools and small fluvial channels of coastal plains in which the large dinosaurs were buried. Since these environments apparently were, at best, poorly vegetated, the main feeding grounds of giant sauropods must have been elsewhere. Presumably, tidal flats and coastal plains were visited by dinosaurs primarily during periods of drought. (3 Vegetated hinterland. Vegetation of this environment can only be inferred indirectly from plant material transported into the other depositional environments. Vegetation was dominated by a diverse conifer flora, which apparently formed part of the food source of large herbivorous sauropods. Evidence from various sources suggests a subtropical to tropical palaeoclimate, characterised by seasonal rainfall alternating with

  16. Toe-of-slope of a Cretaceous carbonate platform in outcrop, seismic model and offshore seismic data (Apulia, Italy)

    Science.gov (United States)

    Bracco Gartner, Guido; Morsilli, Michele; Schlager, Wolfgang; Bosellini, Alfonso

    Synthetic seismic models of outcrops in the Early Cretaceous slope of a carbonate platform on the Gargano Promontory (southern Italy) were compared to an offshore seismic section south of the Promontory. Outcrops of the same age on the promontory have the same sequence stratigraphic characteristics as their offshore equivalent, and are the only areas where the transition from platform to basin of Early Cretaceous is exposed on land. Two adjacent outcrop areas were combined into one seismic-scale lithologic model with the aid of photo mosaics, measured sections, and biostratigraphic data. Velocity, density, and porosity measurements on spot samples were used to construct the impedance model. Seismic models were generated by vertical incidence and finite difference programs. The results indicate that the reflections in the seismic model are controlled by the impedance contrast between low porous intervals rich in debris from the platform and highly porous intervals of pelagic lime mudstone, nearly devoid of debris. Finite difference seismic display showed best resemblance with the real seismic data, especially by mapping a drowning unconformity.

  17. Late Cretaceous vicariance in Gondwanan amphibians.

    Directory of Open Access Journals (Sweden)

    Ines Van Bocxlaer

    Full Text Available Overseas dispersals are often invoked when Southern Hemisphere terrestrial and freshwater organism phylogenies do not fit the sequence or timing of Gondwana fragmentation. We used dispersal-vicariance analyses and molecular timetrees to show that two species-rich frog groups, Microhylidae and Natatanura, display congruent patterns of spatial and temporal diversification among Gondwanan plates in the Late Cretaceous, long after the presumed major tectonic break-up events. Because amphibians are notoriously salt-intolerant, these analogies are best explained by simultaneous vicariance, rather than by oceanic dispersal. Hence our results imply Late Cretaceous connections between most adjacent Gondwanan landmasses, an essential concept for biogeographic and palaeomap reconstructions.

  18. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds.

    Science.gov (United States)

    Zhang, Fucheng; Kearns, Stuart L; Orr, Patrick J; Benton, Michael J; Zhou, Zhonghe; Johnson, Diane; Xu, Xing; Wang, Xiaolin

    2010-02-25

    Spectacular fossils from the Early Cretaceous Jehol Group of northeastern China have greatly expanded our knowledge of the diversity and palaeobiology of dinosaurs and early birds, and contributed to our understanding of the origin of birds, of flight, and of feathers. Pennaceous (vaned) feathers and integumentary filaments are preserved in birds and non-avian theropod dinosaurs, but little is known of their microstructure. Here we report that melanosomes (colour-bearing organelles) are not only preserved in the pennaceous feathers of early birds, but also in an identical manner in integumentary filaments of non-avian dinosaurs, thus refuting recent claims that the filaments are partially decayed dermal collagen fibres. Examples of both eumelanosomes and phaeomelanosomes have been identified, and they are often preserved in life position within the structure of partially degraded feathers and filaments. Furthermore, the data here provide empirical evidence for reconstructing the colours and colour patterning of these extinct birds and theropod dinosaurs: for example, the dark-coloured stripes on the tail of the theropod dinosaur Sinosauropteryx can reasonably be inferred to have exhibited chestnut to reddish-brown tones.

  19. Sedimentology and Reservoir Characteristics of Early Cretaceous Fluvio-Deltaic and Lacustrine Deposits, Upper Abu Gabra Formation, Sufyan Sub-basin, Muglad Rift Basin, Sudan

    Science.gov (United States)

    Yassin, Mohamed; Abdullatif, Osman; Hariri, Mustafa

    2017-04-01

    Sufyan Sub-basin is an East-West trending Sub-basin located in the northwestern part of the Muglad Basin (Sudan), in the eastern extension of the West and Central Africa Rift System (WCARS). The Early Cretaceous Abu Gabra Formation considered as the main source rock in the Muglad Basin. In Sufyan Sub-basin the Early Cretaceous Upper Abu Gabra Formation is the main oil-producing reservoir. It is dominated by sandstone and shales deposited in fluvio-deltaic and lacustrine environment during the first rift cycle in the basin. Depositional and post-depositional processes highly influenced the reservoir quality and architecture. This study investigates different scales of reservoir heterogeneities from macro to micro scale. Subsurface facies analysis was analyzed based on the description of six conventional cores from two wells. Approaches include well log analysis, thin sections and scanning electron microscope (SEM) investigations, grain-size, and X-ray diffraction (XRD) analysis of the Abu Gabra sandstone. The cores and well logs analyses revealed six lithofacies representing fluvio-deltaic and lacustrine depositional environment. The sandstone is medium to coarse-grained, poorly to moderately sorted and sub-angular to subrounded, Sub-feldspathic arenite to quartz arenite. On macro-scale, reservoir quality varies within Abu Gabra reservoir where it shows progressive coarsening upward tendencies with different degrees of connectivity. The upper part of the reservoir showed well connected and amalgamated sandstone bodies, the middle to lower parts, however, have moderate to low sandstone bodies' connectivity and amalgamation. On micro-scale, sandstone reservoir quality is directly affected by textures and diagenesis.The XRD and SEM analyses show that kaolinite and chlorite clay are the common clay minerals in the studied samples. Clay matrix and quartz overgrowth have significantly reduced the reservoir porosity and permeability, while the dissolution of feldspars

  20. Recycling of Amazonian detrital zircons in the Mixteco terrane, southern Mexico: Paleogeographic implications during Jurassic-Early Cretaceous and Paleogene times

    Science.gov (United States)

    Silva-Romo, Gilberto; Mendoza-Rosales, Claudia Cristina; Campos-Madrigal, Emiliano; Morales-Yáñez, Axél; de la Torre-González, Alam Israel; Nápoles-Valenzuela, Juan Ivan

    2018-04-01

    In the northeastern Mixteco terrane of southern Mexico, in the Ixcaquixtla-Atzumba region, the recycling of Amazonian detrital zircons records the paleogeography during the Mesozoic period in the context of the breakup of Pangea, a phenomenon that disarticulated the Sanozama-La Mora paleo-river. The clastic units of southern Mexico in the Ayuquila, Otlaltepec and Zapotitlán Mesozoic basins, as well as in the Atzumba Cenozoic basin, are characterized by detrital zircon contents with ages specific to the Amazonian craton, ranging between 3040 and 1278 Ma. The presence of zircons of Amazonian affinity suggests a provenance by recycling from carrier units such as the La Mora Formation or the Ayú Complex. In the area, the Ayú and Acatlán complexes form the Cosoltepec block, a paleogeographic element that during Early Cretaceous time acted as the divide between the slopes of the paleo-Gulf of Mexico and the paleo-Pacific Ocean. The sedimentological characteristics of the Jurassic-Cenozoic clastic successions in the Ixcaquixtla-Atzumba region denote relatively short transport in braided fluvial systems and alluvial fans. In this way, several basins are recognized around the Cosoltepec block. At the southeastern edge of the Cosoltepec block, the Ayuquila and Tecomazúchil formations accumulated in the Ayuquila continental basin on the paleo-Pacific Ocean slope. On the other hand, within the paleo-Gulf of Mexico slope, in the Otlaltepec continental basin, the Piedra Hueca and the Otlaltepec formations accumulated. The upper member of the Santa Lucía Formation accumulated in a transitional environment on the southwestern shoulder of the Zapotitlán basin, as well as on the paleo-Gulf of Mexico slope. In the Ayuquila basin, a marine transgression is recognized that advanced from south to north during the Late Jurassic. At the northeastern edge of the Cosoltepec block, we propose that the Santa Lucía formation attests to a transgression from the paleo-Gulf of Mexico

  1. Recurrent Early Cretaceous, Indo-Madagascar (89-86 Ma) and Deccan (66 Ma) alkaline magmatism in the Sarnu-Dandali complex, Rajasthan: 40Ar/39Ar age evidence and geodynamic significance

    Science.gov (United States)

    Sheth, Hetu; Pande, Kanchan; Vijayan, Anjali; Sharma, Kamal Kant; Cucciniello, Ciro

    2017-07-01

    The Sarnu-Dandali alkaline complex in Rajasthan, northwestern India, is considered to represent early, pre-flood basalt magmatism in the Deccan Traps province, based on a single 40Ar/39Ar age of 68.57 Ma. Rhyolites found in the complex are considered to be 750 Ma Malani basement. Our new 40Ar/39Ar ages of 88.9-86.8 Ma (for syenites, nephelinite, phonolite and rhyolite) and 66.3 ± 0.4 Ma (2σ, melanephelinite) provide clear evidence that whereas the complex has Deccan-age (66 Ma) components, it is dominantly an older (by 20 million years) alkaline complex, with rhyolites included. Basalt is also known to underlie the Early Cretaceous Sarnu Sandstone. Sarnu-Dandali is thus a periodically rejuvenated alkaline igneous centre, active twice in the Late Cretaceous and also earlier. Many such centres with recurrent continental alkaline magmatism (sometimes over hundreds of millions of years) are known worldwide. The 88.9-86.8 Ma 40Ar/39Ar ages for Sarnu-Dandali rocks fully overlap with those for the Indo-Madagascar flood basalt province formed during continental breakup between India (plus Seychelles) and Madagascar. Recent 40Ar/39Ar work on the Mundwara alkaline complex in Rajasthan, 120 km southeast of Sarnu-Dandali, has also shown polychronous emplacement (over ≥ 45 million years), and 84-80 Ma ages obtained from Mundwara also arguably represent post-breakup stages of the Indo-Madagascar flood basalt volcanism. Remnants of the Indo-Madagascar province are known from several localities in southern India but hitherto unknown from northwestern India 2000 km away. Additional equivalents buried under the vast Deccan Traps are highly likely.

  2. Structure of an inverted basin from subsurface and field data: the Late Jurassic-Early Cretaceous Maestrat Basin (Iberian Chain)

    Energy Technology Data Exchange (ETDEWEB)

    Nebot, M.; Guimera, J.

    2016-07-01

    The Maestrat Basin experienced two main rifting events: Late Permian-Late Triassic and Late Jurassic-Early Cretaceous, and was inverted during the Cenozoic Alpine orogeny. During the inversion, an E-W-trending, N-verging fold-and-thrust belt developed along its northern margin, detached in the Triassic evaporites, while southwards it also involved the Variscan basement. A structural study of the transition between these two areas is presented, using 2D seismic profiles, exploration wells and field data, to characterize its evolution during the Mesozoic extension and the Cenozoic contraction. The S-dipping Maestrat basement thrust traverses the Maestrat Basin from E to W; it is the result of the Cenozoic inversion of the lower segment–within the acoustic basement–of the Mesozoic extensional fault system that generated the Salzedella sub-basin. The syn-rift Lower Cretaceous rocks filling the Salzedella sub-basin thicken progressively northwards, from 350m to 1100m. During the inversion, a wide uplifted area –40km wide in the N-S direction– developed in the hanging wall of the Maestrat basement thrust. This uplifted area is limited to the North by the E-W-trending Calders monocline, whose limb is about 13km wide in its central part, dips about 5ºN, and generates a vertical tectonic step of 800-1200m. We interpreted the Calders monocline as a fault-bend fold; therefore, a flat-ramp-flat geometry is assumed in depth for the Maestrat basement thrust. The northern synformal hinge of the Calders monocline coincides with the transition from thick-skinned to thin-skinned areas. The vast uplifted area and the low-dip of the monocline suggest a very low-dip for the basement ramp, rooted in the upper crust. The Calders monocline narrows and disappears laterally, in coincidence with the outcrop of the Maestrat basement thrust. The evaporitic Middle Muschelkalk detachment conditioned the structural style. Salt structures are also related to it; they developed during the

  3. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry

    Science.gov (United States)

    Rau, G.H.; Arthur, M.A.; Dean, W.E.

    1987-01-01

    At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds ("black shales") were found to have significantly lower ??15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have ??15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphotic zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment. ?? 1987.

  4. Paleomagnetism of Jurassic and Cretaceous rocks in central Patagonia: a key to constrain the timing of rotations during the breakup of southwestern Gondwana?

    Science.gov (United States)

    Geuna, Silvana E.; Somoza, Rubén; Vizán, Haroldo; Figari, Eduardo G.; Rinaldi, Carlos A.

    2000-08-01

    A paleomagnetic study in Jurassic and Cretaceous rocks from the Cañadón Asfalto basin, central Patagonia, indicates the occurrence of about 25-30° clockwise rotation in Upper Jurassic-lowermost Cretaceous rocks, whereas the overlying mid-Cretaceous rocks do not show evidence of rotation. This constrains the tectonic rotation to be related to a major regional unconformity in Patagonia, which in turn seems to be close in time with the early opening of the South Atlantic Ocean. The sense and probably the timing of this rotation are similar to those of other paleomagnetically detected rotations in different areas of southwestern Gondwana, suggesting a possible relationship between these and major tectonic processes related with fragmentation of the supercontinent. On the other hand, the mid-Cretaceous rocks in the region yield a paleopole located at Lat. 87° South, Long. 159° East, A95=3.8°. This pole position is consistent with coeval high-quality paleopoles of other plates when transferred to South American coordinates, implying it is an accurate determination of the Aptian (circa 116 Ma) geomagnetic field in South America.

  5. The bivalve Anopaea (Inoceramidae) from the Upper Jurassic-lowermost Cretaceous of Mexico

    Science.gov (United States)

    Zell, Patrick; Crame, J. Alistair; Stinnesbeck, Wolfgang; Beckmann, Seija

    2015-07-01

    In Mexico, the Upper Jurassic to lowermost Cretaceous La Casita and coeval La Caja and La Pimienta formations are well-known for their abundant and well-preserved marine vertebrates and invertebrates. The latter include conspicuous inoceramid bivalves of the genus Anopaea not formally described previously from Mexico. Anopaea bassei (Lecolle de Cantú, 1967), Anopaea cf. stoliczkai (Holdhaus, 1913), Anopaea cf. callistoensis Crame and Kelly, 1995 and Anopaea sp. are rare constituents in distinctive Tithonian-lower Berriasian levels of the La Caja Formation and one Tithonian horizon of the La Pimienta Formation. Anopaea bassei was previously documented from the Tithonian of central Mexico and Cuba, while most other members of Anopaea described here are only known from southern high latitudes. The Mexican assemblage also includes taxa which closely resemble Anopaea stoliczkai from the Tithonian of India, Indonesia and the Antarctic Peninsula, and Anopaea callistoensis from the late Tithonian to ?early Berriasian of the Antarctic Peninsula. Our new data expand the palaeogeographical distribution of the high latitude Anopaea to the Gulf of Mexico region and substantiate faunal exchange, in the Late Jurassic-earliest Cretaceous, between Mexico and the Antarctic Realm.

  6. First complete sauropod dinosaur skull from the Cretaceous of the Americas and the evolution of sauropod dentition.

    Science.gov (United States)

    Chure, Daniel; Britt, Brooks B; Whitlock, John A; Wilson, Jeffrey A

    2010-04-01

    Sauropod dinosaur bones are common in Mesozoic terrestrial sediments, but sauropod skulls are exceedingly rare--cranial materials are known for less than one third of sauropod genera and even fewer are known from complete skulls. Here we describe the first complete sauropod skull from the Cretaceous of the Americas, Abydosaurus mcintoshi, n. gen., n. sp., known from 104.46 +/- 0.95 Ma (megannum) sediments from Dinosaur National Monument, USA. Abydosaurus shares close ancestry with Brachiosaurus, which appeared in the fossil record ca. 45 million years earlier and had substantially broader teeth. A survey of tooth shape in sauropodomorphs demonstrates that sauropods evolved broad crowns during the Early Jurassic but did not evolve narrow crowns until the Late Jurassic, when they occupied their greatest range of crown breadths. During the Cretaceous, brachiosaurids and other lineages independently underwent a marked diminution in tooth breadth, and before the latest Cretaceous broad-crowned sauropods were extinct on all continental landmasses. Differential survival and diversification of narrow-crowned sauropods in the Late Cretaceous appears to be a directed trend that was not correlated with changes in plant diversity or abundance, but may signal a shift towards elevated tooth replacement rates and high-wear dentition. Sauropods lacked many of the complex herbivorous adaptations present within contemporaneous ornithischian herbivores, such as beaks, cheeks, kinesis, and heterodonty. The spartan design of sauropod skulls may be related to their remarkably small size--sauropod skulls account for only 1/200th of total body volume compared to 1/30th body volume in ornithopod dinosaurs.

  7. Late Cretaceous extension and exhumation of the Stong and Taku magmatic and metamorphic complexes, NE Peninsular Malaysia

    Science.gov (United States)

    François, T.; Md Ali, M. A.; Matenco, L.; Willingshofer, E.; Ng, T. F.; Taib, N. I.; Shuib, M. K.

    2017-08-01

    Fragmentation of large continental areas by post-orogenic extension requires favourable geodynamic conditions and frequently occurs along pre-existing suture zones or nappe contacts, as exemplified by the Stong and Taku magmatic and metamorphic complexes of northern Peninsular Malaysia. For this case, we have employed a field and microstructural kinematic study combined with low temperature thermo-chronology to analyse the tectonic and exhumation history. The results show that the Late Palaeozoic - Triassic Indosinian orogeny created successive phases of burial related metamorphism, shearing and contractional deformation. This orogenic structure was subsequently dismembered during a Cretaceous thermal event that culminated in the formation of a large scale Late Santonian - Early Maastrichtian extensional detachment, genetically associated with crustal melting, the emplacement of syn-kinematic plutons and widespread migmatisation. The emplacement of these magmatic rocks led to an array of simultaneously formed structures that document deformation conditions over a wide temperature range, represented by amphibolite- and greenschist- facies mylonites and as well as brittle structures, such as cataclastic zones and normal faults that formed during exhumation in the footwall of the detachment. The formation of this detachment and a first phase of Late Cretaceous cooling was followed by renewed Eocene - Oligocene exhumation, as evidenced from our fission track ages. We infer that an initial Cretaceous thermal anomaly was responsible for the formation of an extensional gneiss dome associated with simple shear and rotation of normal faults. These Cretaceous processes played a critical role in the establishment of the presently observed crustal structure of Peninsular Malaysia.

  8. Early diagenetic dolomitization and dedolomitization of Late Jurassic and earliest Cretaceous platform carbonates: A case study from the Jura Mountains (NW Switzerland, E France)

    Science.gov (United States)

    Rameil, Niels

    2008-12-01

    Early diagenetic dolomitization is a common feature in cyclic shallow-water carbonates throughout the geologic record. After their generation, dolomites may be subject to dedolomitization (re-calcification of dolomites), e.g. by contact with meteoric water during emersion. These patterns of dolomitization and subsequent dedolomitization frequently play a key role in unravelling the development and history of a carbonate platform. On the basis of excellent outcrops, detailed logging and sampling and integrating sedimentological work, high-resolution sequence stratigraphic interpretations, and isotope analyses (O, C), conceptual models on early diagenetic dolomitization and dedolomitization and their underlying mechanisms were developed for the Upper Jurassic / Lower Cretaceous Jura platform in north-western Switzerland and eastern France. Three different types of early diagenetic dolomites and two types of dedolomites were observed. Each is defined by a distinct petrographic/isotopic signature and a distinct spatial distribution pattern. Different types of dolomites are interpreted to have been formed by different mechanisms, such as shallow seepage reflux, evaporation on tidal flats, and microbially mediated selective dolomitization of burrows. Depending on the type of dolomite, sea water with normal marine to slightly enhanced salinities is proposed as dolomitizing fluid. Based on the data obtained, the main volume of dolomite was precipitated by a reflux mechanism that was switched on and off by high-frequency sea-level changes. It appears, however, that more than one dolomitization mechanism was active (pene)contemporaneously or several processes alternated in time. During early diagenesis, percolating meteoric waters obviously played an important role in the dedolomitization of carbonate rocks that underlie exposure surfaces. Cyclostratigraphic interpretation of the sedimentary succession allows for estimates on the timing of early diagenetic (de

  9. Reinvestigating an enigmatic Late Cretaceous monocot: morphology, taxonomy, and biogeography of Viracarpon

    Directory of Open Access Journals (Sweden)

    Kelly K.S. Matsunaga

    2018-04-01

    Full Text Available Angiosperm-dominated floras of the Late Cretaceous are essential for understanding the evolutionary, ecological, and geographic radiation of flowering plants. The Late Cretaceous–early Paleogene Deccan Intertrappean Beds of India contain angiosperm-dominated plant fossil assemblages known from multiple localities in central India. Numerous monocots have been documented from these assemblages, providing a window into an important but poorly understood time in their diversification. One component of the Deccan monocot diversity is the genus Viracarpon, known from anatomically preserved infructescences. Viracarpon was first collected over a century ago and has been the subject of numerous studies. However, resolution of its three-dimensional (3D morphology and anatomy, as well as its taxonomic affinities, has remained elusive. In this study we investigated the morphology and taxonomy of genus Viracarpon, combining traditional paleobotanical techniques and X-ray micro-computed tomography (μCT. Re-examination of type and figured specimens, 3D reconstructions of fruits, and characterization of structures in multiple planes of section using μCT data allowed us to resolve conflicting interpretations of fruit morphology and identify additional characters useful in refining potential taxonomic affinities. Among the four Viracarpon species previously recognized, we consider two to be valid (Viracarpon hexaspermum and Viracarpon elongatum, and the other two to be synonyms of these. Furthermore, we found that permineralized infructescences of Coahuilocarpon phytolaccoides from the late Campanian of Mexico correspond closely in morphology to V. hexaspermum. We argue that Viracarpon and Coahuilocarpon are congeneric and provide the new combination, Viracarpon phytolaccoides (Cevallos-Ferriz, Estrada-Ruiz & Perez-Hernandez Matsunaga, S.Y. Smith, & Manchester comb. nov. The significant geographic disjunction between these two occurrences indicates that the

  10. A transitional snake from the Late Cretaceous period of North America.

    Science.gov (United States)

    Longrich, Nicholas R; Bhullar, Bhart-Anjan S; Gauthier, Jacques A

    2012-08-09

    Snakes are the most diverse group of lizards, but their origins and early evolution remain poorly understood owing to a lack of transitional forms. Several major issues remain outstanding, such as whether snakes originated in a marine or terrestrial environment and how their unique feeding mechanism evolved. The Cretaceous Coniophis precedens was among the first Mesozoic snakes discovered, but until now only an isolated vertebra has been described and it has therefore been overlooked in discussions of snake evolution. Here we report on previously undescribed material from this ancient snake, including the maxilla, dentary and additional vertebrae. Coniophis is not an anilioid as previously thought a revised phylogenetic analysis of Ophidia shows that it instead represents the most primitive known snake. Accordingly, its morphology and ecology are critical to understanding snake evolution. Coniophis occurs in a continental floodplain environment, consistent with a terrestrial rather than a marine origin; furthermore, its small size and reduced neural spines indicate fossorial habits, suggesting that snakes evolved from burrowing lizards. The skull is intermediate between that of lizards and snakes. Hooked teeth and an intramandibular joint indicate that Coniophis fed on relatively large, soft-bodied prey. However, the maxilla is firmly united with the skull, indicating an akinetic rostrum. Coniophis therefore represents a transitional snake, combining a snake-like body and a lizard-like head. Subsequent to the evolution of a serpentine body and carnivory, snakes evolved a highly specialized, kinetic skull, which was followed by a major adaptive radiation in the Early Cretaceous period. This pattern suggests that the kinetic skull was a key innovation that permitted the diversification of snakes.

  11. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo

    Science.gov (United States)

    Breitfeld, H. Tim; Hall, Robert; Galin, Thomson; Forster, Margaret A.; BouDagher-Fadel, Marcelle K.

    2017-01-01

    Metamorphic rocks in West Sarawak are poorly exposed and studied. They were previously assumed to be pre-Carboniferous basement but had never been dated. New 40Ar/39Ar ages from white mica in quartz-mica schists reveal metamorphism between c. 216 to 220 Ma. The metamorphic rocks are associated with Triassic acid and basic igneous rocks, which indicate widespread magmatism. New U-Pb dating of zircons from the Jagoi Granodiorite indicates Triassic magmatism at c. 208 Ma and c. 240 Ma. U-Pb dating of zircons from volcaniclastic sediments of the Sadong and Kuching Formations confirms contemporaneous volcanism. The magmatic activity is interpreted to represent a Triassic subduction margin in westernmost West Sarawak with sediments deposited in a forearc basin derived from the magmatic arc at the Sundaland-Pacific margin. West Sarawak and NW Kalimantan are underlain by continental crust that was already part of Sundaland or accreted to Sundaland in the Triassic. One metabasite sample, also previously assumed to be pre-Carboniferous basement, yielded Early Cretaceous 40Ar/39Ar ages. They are interpreted to indicate resumption of subduction which led to deposition of volcaniclastic sediments and widespread magmatism. U-Pb ages from detrital zircons in the Cretaceous Pedawan Formation are similar to those from the Schwaner granites of NW Kalimantan, and the Pedawan Formation is interpreted as part of a Cretaceous forearc basin containing material eroded from a magmatic arc that extended from Vietnam to west Borneo. The youngest U-Pb ages from zircons in a tuff layer from the uppermost part of the Pedawan Formation indicate that volcanic activity continued until c. 86 to 88 Ma when subduction terminated.

  12. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics.

    Science.gov (United States)

    Zhang, Shu-Dong; Jin, Jian-Jun; Chen, Si-Yun; Chase, Mark W; Soltis, Douglas E; Li, Hong-Tao; Yang, Jun-Bo; Li, De-Zhu; Yi, Ting-Shuang

    2017-05-01

    Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Causes and consequences of short-term sea-level changes in the Cretaceous green- and "hothouse": Topics and context of IGCP Project 609

    Science.gov (United States)

    Sames, Benjamin; Wagreich, Michael

    2015-04-01

    In contrast to the well-understood process of glacial eustasy, controlled mainly by waxing and waning of continental ice sheets, significant short-term, i.e. 10s kyr to a few myr (3rd to 4th order cycles) sea-level changes during the Cretaceous major greenhouse episode remain enigmatic. Such cyclic changes are often explained by the presence of ephemeral ice sheets even during the hottest greenhouse phases ("hothouse periods"), such as the mid-Cretaceous. Though Cretaceous global eustasy involves processes like brief glacial episodes (glacio-eustasy) for which evidence was given - at least for the Early Cretaceous and the late Late Cretaceous - other mechanisms have to be taken into consideration for the "hothouse periods" during which continental ice shields are highly improbable, like the storage and release of groundwater (termed "limno-eustasy" or "aquifer-eustasy"), the possible effect and magnitude of which might have been highly underestimated. Investigation of the timing, the causes, and the consequences of significant short-term (i.e. mainly kyr to 100s of kyr) sea-level changes during the last major greenhouse episode of Earth history, the Cretaceous, is the ultimate goal of the UNESCO IGCP (International Geoscience Programme) project number 609 "Climate-environmental deteriorations during greenhouse phases: Causes and consequences of short-term Cretaceous sea-level changes" (2013-2017; http://www.univie.ac.at/igcp609/). This also comprises the global versus regional correlation and extent of the sequences, their cyclicities, as well as the processes and triggering mechanisms for these, and marine to non-marine correlations. Recent refinements of the geological time scale have made major advances for the Cretaceous to yield a resolution comparable to that of younger Earth history. It is now for the first time possible to correlate and date short-term Cretaceous sea-level records with a resolution appropriate for their detailed analysis. Recognized

  14. NEW ABELISAURID MATERIAL FROM THE UPPER CRETACEOUS (CENOMANIAN OF MOROCCO

    Directory of Open Access Journals (Sweden)

    SIMONE D'ORAZI PORCHETTI

    2011-11-01

    Full Text Available Fragmentary cranial bones of dinosaur origin have been recently recovered from the Kem Kem beds (Upper Cretaceous, Cenomanian of Morocco. They include two incompletely preserved maxillary bones evidencing diagnostic features of abelisaurid theropods. These new finds provide further evidence of Abelisauridae in the Late Cretaceous of Morocco. 

  15. The mid-Cretaceous super plume, carbon dioxide, and global warming

    Science.gov (United States)

    Caldeira, Ken; Rampino, Michael R.

    1991-01-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. A carbonate-silicate cycle model is developed to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern preindustrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 C over today's glogal mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 C, within the 6 to 14 C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20 percent of the mid-Cretaceous increase in atmospheric CO2.

  16. Cretaceous choristoderan reptiles gave birth to live young

    Science.gov (United States)

    Ji, Qiang; Wu, Xiao-Chun; Cheng, Yen-Nien

    2010-04-01

    Viviparity (giving birth to live young) in fossil reptiles has been known only in a few marine groups: ichthyosaurs, pachypleurosaurs, and mosasaurs. Here, we report a pregnant specimen of the Early Cretaceous Hyphalosaurus baitaigouensis, a species of Choristodera, a diapsid group known from unequivocal fossil remains from the Middle Jurassic to the early Miocene (about 165 to 20 million years ago). This specimen provides the first evidence of viviparity in choristoderan reptiles and is also the sole record of viviparity in fossil reptiles which lived in freshwater ecosystems. This exquisitely preserved specimen contains up to 18 embryos arranged in pairs. Size comparison with small free-living individuals and the straight posture of the posterior-most pair suggest that those embryos were at term and had probably reached parturition. The posterior-most embryo on the left side has the head positioned toward the rear, contrary to normal position, suggesting a complication that may have contributed to the mother’s death. Viviparity would certainly have freed species of Hyphalosaurus from the need to return to land to deposit eggs; taking this advantage, they would have avoided intense competition with contemporaneous terrestrial carnivores such as dinosaurs.

  17. New information on the anatomy of the Chinese Early Cretaceous Bohaiornithidae (Aves: Enantiornithes from a subadult specimen of Zhouornis hani

    Directory of Open Access Journals (Sweden)

    Yuguang Zhang

    2014-05-01

    Full Text Available Enantiornithines are the most diverse avian clade in the Cretaceous. However, morphological specializations indicative of specific ecological roles are not well known for this clade. Here we report on an exquisitely well-preserved specimen from the Lower Cretaceous Jehol Group of northeastern China, which pedal morphology is suggestive of a unique ecological specialization within Enantiornithes. The morphology of the new specimen is largely indistinguishable from that of the holotype of the bohaiornithid enantiornithine Zhouornis hani, albeit the latter is somewhat larger. The new specimen provides important and previously unknown details of the skull of Zhouornis hani, which add to the limited knowledge about the cranial anatomy and evolution of enantiornithines. The information offered by the new specimen also augments our understanding of the postcranial morphology of bohaiornithid enantiornithines, a clade that has been only recently recognized. With the description of this specimen, Zhouornis hani becomes one of the most anatomically complete known enantiornithine species, which will facilitate future morphological studies.

  18. Late Cretaceous seasonal ocean variability from the Arctic.

    Science.gov (United States)

    Davies, Andrew; Kemp, Alan E S; Pike, Jennifer

    2009-07-09

    The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.

  19. Sedimentary succesion of the Lower Cretaceous deposits from the north-western part of Pădurea Craiului (Apuseni Mountains, Romania

    Directory of Open Access Journals (Sweden)

    Daniel F. Lazar

    2012-01-01

    Full Text Available Within the general succession of the Lower Cretaceous deposits from the Vârciorog-Dobreşti area (Pădurea Craiului Mountains, carbonate and terrigenous deposits were identified. The limestones were assigned to two distinctive lithostratigraphic units: the Valea Măgurii and Vârciorog formations. Based on the orbitolinids Palorbitolina lenticularis and Mesorbitolina texana their ages are assigned to the early Aptian, and respectively late Aptian–Albian. The terrigenous facies mainly include fine grained deposits (clays, siltites, marls and, to a lesser extent, coarser ones (glauconitic sandstones and conglomerates, and they are attributed to the Ecleja and Vârciorog formations. The marls of the Ecleja Formation have been observed in a single section. The lack of fossils prevents assigning an age to this marl succession. Based on their relative location, i.e., at the base of the late Bedoulian Valea Măgurii Limestones, they may be assigned to the early Aptian (early Bedoulian. The siliciclastic deposits of Vârciorog Formation cover the largest areas in the region. Their late Aptian–Albian age is established based on the presence of Mesorbitolina texana. Additional arguments are represented by an ammonite fauna assigned to the terminal Bedoulian–early Gargasian. This fauna is located at the base of the Vârciorog Formation. The Lower Cretaceous deposits cropping out in this area have been investigated in seven geological sections. The data interpretation allowed a synthetic reconstruction of the succession and of the depositional environments.

  20. The mid-Cretaceous North Atlantic nutrient trap: black shales and OAEs

    NARCIS (Netherlands)

    Trabucho Alexandre, J.; Tuenter, E.; Henstra, G.A.; Zwan, C.J. van der; Wal, R.S.W. van de; Dijkstra, H.A.; Boer, P.L. de

    2010-01-01

    Organic-rich sediments are the salient marine sedimentation product in the mid-Cretaceous of the ocean basins formed in the Mesozoic. Oceanic anoxic events (OAEs) are discrete and particularly organic-rich intervals within these mid-Cretaceous organic-rich sequences and are defined by pronounced

  1. Palynological and iridium anomalies at Cretaceous-Tertiary boundary, south-central Saskatchewan

    Science.gov (United States)

    Nichols, D.J.; Jarzen, D.M.; Orth, C.J.; Oliver, P.Q.

    1986-01-01

    The Cretaceous-Tertiary boundary in south-central Saskatchewan is marked by coincident anomalies in abundance of iridium and fern spores at the extinction level of a suite of Cretaceous pollen taxa. Evidence of disruption of the terrestrial flora includes the fern-spore abundance anomaly and local extinction of as much as 30 percent of angiosperm species. The reorganized earliest Tertiary flora is made up largely of surviving species that assumed new roles of dominance. Persistence of climatically sensitive taxa across the boundary indicates that if paleoclimate was altered by the terminal Cretaceous event, it returned quickly to the pre-event condition.

  2. Investigations of a Cretaceous limestone with spectral induced polarization and scanning electron microscopy

    DEFF Research Database (Denmark)

    Johansson, Sara; Sparrembom, Charlotte; Fiandaca, Gianluca

    2017-01-01

    limestone was carried out in the Kristianstad basin, Sweden. The time domain IP data was processed with a recently developed method in order to suppress noise from the challenging urban setting in the survey area. The processing also enabled extraction of early decay times resulting in broader spectra...... in early time ranges for bedrock characterization. The inverted sections showed variations within the limestone that could be caused by variations in texture and composition. Samples from a deep drilling in the Kristianstad basin were investigated with scanning electron microscopy and energy dispersive X......Characterization of varying bedrock properties is a common need in various contexts, ranging from large infrastructure pre-investigations to environmental protection. A direct current resistivity and time domain induced polarization (IP) survey aiming to characterize properties of a Cretaceous...

  3. Cretaceous and Eocene Adakites in the Sikhote-Alin area (Russian Far East) and their correlation with adakitic rocks in the East Asia continental margin

    Science.gov (United States)

    Wu, T. J.; Jahn, B. M.

    2017-12-01

    Adakitic rocks of the Sikhote-Alin area were emplaced during two main periods: the Cretaceous (132-98 Ma) and Eocene (46-39 Ma). These rocks primarily occur in the Khanka Block and, less commonly, in the Sikhote-Alin Orogenic Belt. The adakitic rocks record the following chemical compositions: SiO2 = 57-74%, Al2O3 = 15-18%, Na2O = 3.5-6.1%, K2O = 0.7-3.2%, Na2O/K2O = 1.1-3.9, Sr/Y = 33-145, and (La/Yb)N = 11-53. The HREE and HFSE in these rocks are remarkably depleted. The Early Cretaceous adakites record ɛNd(T) = -1.0 to +3.2 and ISr = 0.7040-0.7090, and the Eocene adakitic rocks record Nd(T) = -2.0 to +2.2 and ISr = 0.7042-0.7058. Adakitic features suggest different modes of magma generation; a comparison of the Sr/Y and La/Yb ratios and geochemical data on Harker diagrams between the two periods of adakitic rocks reveals differences in their petrogenesis. The Cretaceous adakites may have been generated by the partial melting of meta-basic rocks in a subduction zone, accompanied by the emplacement of volcanic arc granitoids. Therefore, the subduction of the Paleo-Pacific Plate beneath the Sikhote-Alin was probably initiated during this time. The Eocene rocks, which record increasing adakitic features with increasing silica content, are most likely the product of andesite that underwent fractionation of mineral assemblage including clinopyoxene, orthopyroxene, garnet and amphibole. These rocks and associated basalts and rhyolite were formed after Cretaceous arc magmatism in the Sikhote-Alin area and were most likely generated by rollback of the subducting Pacific Plate after the Eocene. Abundant adakitic granitoids of Early Cretaceous and Eocene age occur in the Kitakami and Abukuma Mountains of NE Japan. Consequently, it is highly probable that a geological correlation existed between Sikhote-Alin and North Japan, particularly before the opening of the Japan Sea.

  4. Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous oceans.

    Science.gov (United States)

    Loewen, Mark A; Irmis, Randall B; Sertich, Joseph J W; Currie, Philip J; Sampson, Scott D

    2013-01-01

    The Late Cretaceous (∼95-66 million years ago) western North American landmass of Laramidia displayed heightened non-marine vertebrate diversity and intracontinental regionalism relative to other latest Cretaceous Laurasian ecosystems. Processes generating these patterns during this interval remain poorly understood despite their presumed role in the diversification of many clades. Tyrannosauridae, a clade of large-bodied theropod dinosaurs restricted to the Late Cretaceous of Laramidia and Asia, represents an ideal group for investigating Laramidian patterns of evolution. We use new tyrannosaurid discoveries from Utah--including a new taxon which represents the geologically oldest member of the clade--to investigate the evolution and biogeography of Tyrannosauridae. These data suggest a Laramidian origin for Tyrannosauridae, and implicate sea-level related controls in the isolation, diversification, and dispersal of this and many other Late Cretaceous vertebrate clades.

  5. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America.

    Science.gov (United States)

    Mitchell, Jonathan S; Roopnarine, Peter D; Angielczyk, Kenneth D

    2012-11-13

    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America.

  6. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin

    Science.gov (United States)

    Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.

    2012-01-01

    Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming

  7. Isotopic evaluation of ocean circulation in the Late Cretaceous North American seaway

    Science.gov (United States)

    Coulson, Alan B.; Kohn, Matthew J.; Barrick, Reese E.

    2011-12-01

    During the mid- and Late Cretaceous period, North America was split by the north-south oriented Western Interior Seaway. Its role in creating and maintaining Late Cretaceous global greenhouse conditions remains unclear. Different palaeoceanographic reconstructions portray diverse circulation patterns. The southward extent of relatively cool, low-salinity, low-δ18O surface waters critically distinguishes among these models, but past studies of invertebrates could not independently assess water temperature and isotopic compositions. Here we present oxygen isotopes in biophosphate from coeval marine turtle and fish fossils from western Kansas, representing the east central seaway, and from the Mississippi embayment, representing the marginal Tethys Ocean. Our analyses yield precise seawater isotopic values and geographic temperature differences during the main transition from the Coniacian to the early Campanian age (87-82 Myr), and indicate that the seaway oxygen isotope value and salinity were 2‰ and 3‰ lower, respectively, than in the marginal Tethys Ocean. We infer that the influence of northern freshwater probably reached as far south as Kansas. Our revised values imply relatively large temperature differences between the Mississippi embayment and central seaway, explain the documented regional latitudinal palaeobiogeographic zonation and support models with relatively little inflow of surface waters from the Tethys Ocean to the Western Interior Seaway.

  8. Lower Cretaceous smarl turbidites of the Argo Abyssal Plain, Indian Ocean

    Science.gov (United States)

    Dumoulin, Julie A.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.

    1992-01-01

    Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter to centimeter-thick, radiolarian-rich laminae occur in both fine and coarse-grained Valanginian-Hauterivian turbidites.AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau.Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early

  9. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    Science.gov (United States)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or

  10. Cretaceous rocks of the Western Interior basin

    International Nuclear Information System (INIS)

    Molenaar, C.M.; Rice, D.D.

    1988-01-01

    The Cretaceous rocks of the conterminous United States are discussed in this chapter. Depositional facies and lithology are reviewed along with economic resources. The economic resources include coal, hydrocarbons, and uranium

  11. Small theropod teeth from the Late Cretaceous of the San Juan Basin, northwestern New Mexico and their implications for understanding latest Cretaceous dinosaur evolution.

    Science.gov (United States)

    Williamson, Thomas E; Brusatte, Stephen L

    2014-01-01

    Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian - Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately coeval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod diversity were lost

  12. Current oil and gas production from North American Upper Cretaceous chalks

    Science.gov (United States)

    Scholle, Peter A.

    1977-01-01

    Production of oil and natural gas from North American chalks has increased significantly during the past five years, spurred by the prolific production from North Sea chalks, as well as by higher prices and improved production technology. Chalk reservoirs have been discovered in the Gulf Coast in the Austin Group, Saratoga and Annona Chalks, Ozan Formation, Selma Group, Monroe gas rock (an informal unit of Navarro age), and other Upper Cretaceous units. In the Western Interior, production has been obtained from the Cretaceous Niobrara and Greenhorn Formations. Significant, though subcommercial, discoveries of natural gas and gas condensate also have been made in the Upper Cretaceous Wyandot Formation on the Scotian Shelf of eastern Canada. All North American chalk units share a similar depositional and diagenetic history. The chalks consist primarily of whole and fragmented coccoliths with subordinate planktonic and benthonic Foraminifera, inoceramid prisms, oysters, and other skeletal grains. Most have between 10 and 35 percent HCl-insoluble residue, predominantly clay. Deposition was principally below wave base in tens to hundreds of meters of water. The diagenetic history of a chalk is critical in determining its reservoir potential. All chalk has a stable composition (low-Mg calcite) and very high primary porosity. With subsequent burial, mechanical and chemical (solution-transfer) compaction can reduce or completely eliminate pore space. The degree of loss of primary porosity in chalk sections is normally a direct function of the maximum depth to which it has been buried. Pore-water chemistry, pore-fluid pressures, and tectonic stresses also influence rates of cementation. Oil or gas reservoirs of North American chalk fall into three main groups: 1. Areas with thin overburden and significant primary porosity retention (for example, Niobrara Formation of Kansas and eastern Colorado). 2. Areas with thicker overburden but considerable fracturing. Here primary

  13. Astronomically Forced Hydrology of the Late Cretaceous Sub-tropical Potosí Basin, Bolivia

    Science.gov (United States)

    Tasistro-Hart, A.; Maloof, A. C.; Schoene, B.; Eddy, M. P.

    2017-12-01

    Orbital forcings paced the ice ages of the Pleistocene, demonstrating that periodic variations in the latitudinal distribution of insolation amplified by ice-albedo feedbacks can guide global climate. How these forcings operate in the hot-houses that span most of the planet's history, however, is unknown. The lacustrine El Molino formation of the late Cretaceous-early Paleogene Potosí Basin in present-day Bolivia contains carbonate-mud parasequences that record fluctuating hydrological conditions from 73 to 63 Ma. This study presents the first cyclostratigraphic analysis using high-resolution drone-derived imagery and 3D elevation models, combined with conventional stratigraphic measurements and magnetic susceptibility data. The drone-derived data are integrated over the entire outcrop at two field areas using a novel application of stratigraphic potential field modeling that increases signal-to-noise ratios prior to spectral analysis. We demonstrate that these parasequences exhibit significant periodicities consistent with eccentricity (400 and 100 kyr), obliquity (50 kyr, 40 kyr, and 29 kyr), precession (17-23 kyr), and semi-precession (9-11 kyr). New U-Pb ID-TIMS zircon ages from intercalacted ash beds corroborate the interpreted sedimentation rates at two sites, indicating that the Potosí Basin contains evidence for hot-house astronomical forcing of sub-tropical lacustrine hydrology. Global climate simulations of late Cretaceous orbital end-member configurations demonstrate precessional-eccentricity and obliquity driven modulation of basin hydrology. In model simulations, the forcings drive long-term shifts in the location of the intertropical convergence zone, changing precipitation along the northern extent of the Potosí Basin's catchment area. This study is the first to demonstrate orbital forcing of a lacustrine system during the Maastrichtian and could ultimately contribute to a precise age for the Cretaceous-Paleogene boundary.

  14. Mass Wasting during the Cretaceous/Tertiary Transition in the North Atlantic: Relationship to the Chicxulub Impact?

    Science.gov (United States)

    Mateo, Paula; Keller, Gerta; Adatte, Thierry; Spangenberg, Jorge

    2015-04-01

    Deep-sea sections in the North Atlantic are claimed to contain the most complete sedimentary records and ultimate proof that the Chicxulub impact is Cretaceous-Tertiary boundary (KTB) in age and caused the mass extinction. A multi-disciplinary study of North Atlantic DSDP Sites 384, 386 and 398, based on high-resolution planktonic foraminiferal biostratigraphy, carbon and oxygen stable isotopes, clay and whole-rock mineralogy and granulometry, reveals the age, stratigraphic completeness and nature of sedimentary disturbances. Results show a major KTB hiatus at Site 384 with zones CF1, P0 and P1a missing, spanning at least ~540 ky, similar to other North Atlantic and Caribbean localities associated with tectonic activity and Gulf Stream erosion. At Sites 386 and 398, discrete intervals of disturbed sediments with mm-to-cm-thick spherule layers have previously been interpreted as KTB age impact-generated earthquakes destabilizing continental margins prior to settling of impact spherules. However, improved age control based on planktonic foraminifera indicates deposition in the early Danian zone P1a(2) (upper Parvularugoglobigerina eugubina zone) more than 100 ky after the KTB. At Site 386, two intervals of white chalk contain very small (winnowing via distal turbidites. At Site 398, convoluted red to tan sediments with early Danian and reworked Cretaceous species represent slumping of shallow water sediments as suggested by dominance of mica and low smectite compared to in situ deposition. We conclude that mass wasting was likely the result of earthquakes associated with increased tectonic activity in the Caribbean and the Iberian Peninsula during the early Danian well after the Chicxulub impact.

  15. Tectonic evolution of the Sicilian Maghrebian Chain inferred from stratigraphic and petrographic evidences of Lower Cretaceous and Oligocene flysch

    Directory of Open Access Journals (Sweden)

    Puglisi Diego

    2014-08-01

    Full Text Available The occurrence of a Lower Cretaceous flysch group, cropping out from the Gibraltar Arc to the Balkans with a very similar structural setting and sedimentary provenance always linked to the dismantling of internal areas, suggests the existence of only one sedimentary basin (Alpine Tethys s.s., subdivided into many other minor oceanic areas. The Maghrebian Basin, mainly developed on thinned continental crust, was probably located in the westernmost sector of the Alpine Tethys. Cretaceous re-organization of the plates triggered one (or more tectonic phases, well recorded in almost all the sectors of the Alpine Tethys. However, the Maghrebian Basin seems to have been deformed by Late- or post-Cretaceous tectonics, connected with a “meso-Alpine” phase (pre-Oligocene, already hypothesized since the beginning of the nineties. Field geological evidence and recent biostratigraphic data also support this important meso- Alpine tectonic phase in the Sicilian segment of the Maghrebian Chain, indicated by the deformations of a Lower Cretaceous flysch sealed by Lower Oligocene turbidite deposits. This tectonic development is emphasized here because it was probably connected with the onset of rifting in the southern paleomargin of the European plate, the detaching of the so-called AlKaPeCa block (Auct.; i.e. Alboran + Kabylian + Calabria and Peloritani terranes and its fragmentation into several microplates. The subsequent early Oligocene drifting of these microplates led to the progressive closure of the Maghrebian Basin and the opening of new back-arc oceanic basins, strongly controlled by extensional processes, in the western Mediterranean (i.e. Gulf of Lion, Valencia Trough, Provençal Basin and Alboran Sea.

  16. Explosive Radiation of Malpighiales Supports a Mid-Cretaceous Origin of Modern Tropical Rain Forests

    OpenAIRE

    Wurdack, Kenneth J.; Jaramillo, Carlos A.; Davis, Charles; Webb, Campbell O.; Donoghue, Michael J.

    2005-01-01

    Fossil data have been interpreted as indicating that Late Cretaceous tropical forests were open and dry adapted and that modern closed-canopy rain forest did not originate until after the Cretaceous-Tertiary (K/T) boundary. However, some mid-Cretaceous leaf floras have been interpreted as rain forest. Molecular divergence-time estimates within the clade Malpighiales, which constitute a large percentage of species in the shaded, shrub, and small tree layer in tropical rain forests worldwide, p...

  17. A new pterosaur (Pterodactyloidea: Azhdarchidae from the Upper Cretaceous of Morocco.

    Directory of Open Access Journals (Sweden)

    Nizar Ibrahim

    Full Text Available The Kem Kem beds in South Eastern Morocco contain a rich early Upper (or possibly late Lower Cretaceous vertebrate assemblage. Fragmentary remains, predominantly teeth and jaw tips, represent several kinds of pterosaur although only one species, the ornithocheirid Coloborhynchus moroccensis, has been named. Here, we describe a new azhdarchid pterosaur, Alanqa saharica nov. gen. nov. sp., based on an almost complete well preserved mandibular symphysis from Aferdou N'Chaft. We assign additional fragmentary jaw remains, some of which have been tentatively identified as azhdarchid and pteranodontid, to this new taxon which is distinguished from other azhdarchids by a remarkably straight, elongate, lance-shaped mandibular symphysis that bears a pronounced dorsal eminence near the posterior end of its dorsal (occlusal surface. Most remains, including the holotype, represent individuals of approximately three to four meters in wingspan, but a fragment of a large cervical vertebra, that probably also belongs to A. saharica, suggests that wingspans of six meters were achieved in this species. The Kem Kem beds have yielded the most diverse pterosaur assemblage yet reported from Africa and provide the first clear evidence for the presence of azhdarchids in Gondwana at the start of the Late Cretaceous. This, the relatively large size achieved by Alanqa, and the additional evidence of variable jaw morphology in azhdarchids provided by this taxon, indicates a longer and more complex history for this clade than previously suspected.

  18. Paleomagnetism of the Cretaceous Galula Formation and implications for vertebrate evolution

    Science.gov (United States)

    Widlansky, Sarah J.; Clyde, William C.; O'Connor, Patrick M.; Roberts, Eric M.; Stevens, Nancy J.

    2018-03-01

    This study uses magnetostratigraphy to help constrain the age of the paleontologically important Galula Formation (Rukwa Rift Basin, southwestern Tanzania). The formation preserves a Cretaceous vertebrate fauna, including saurischian dinosaurs, a putative gondwanatherian mammal, and notosuchian crocodyliforms. With better dating, the Galula Formation and its fossils help fill a temporal gap in our understanding of vertebrate evolution in continental Africa, enabling better evaluation of competing paleobiogeographic hypotheses concerning faunal exchange throughout Gondwana during the Cretaceous. Paleomagnetic samples for this study were collected from the Namba (higher in section) and Mtuka (lower in section) members of the Galula Formation and underwent stepwise thermal demagnetization. All samples displayed a strong normal magnetic polarity overprint, and maximum unblocking temperatures at approximately 690 °C. Three short reversed intervals were identified in the Namba Member, whereas the Mtuka Member lacked any clear reversals. Given the relatively limited existing age constraints, one interpretation correlates the Namba Member to Chron C32. An alternative correlation assigns reversals in the Namba Member to recently proposed short reversals near the end of the Cretaceous Normal Superchron (Chron C34), a time that is traditionally interpreted as having stable normal polarity. The lack of reversals in the Mtuka Member supports deposition within Chron C34. These data suggest that the Namba Member is no older than Late Cretaceous (Cenomanian-Campanian), with the Mtuka Member less well constrained to the middle Cretaceous (Aptian-Cenomanian). The paleomagnetic results are supported by the application of fold and reversal tests for paleomagnetic stability, and paleomagnetic poles for the Namba (246.4°/77.9°, α95 5.9°) and Mtuka (217.1°/72.2°, α95 11.1°) members closely matching the apparent polar wander path for Africa during the Late Cretaceous. These

  19. CARBONATE FACIES ZONATION OF THE UPPER JURASSIC-LOWER CRETACEOUS APULIA PLATFORM MARGIN (GARGANO PROMONTORY, SOUTHERN ITALY

    Directory of Open Access Journals (Sweden)

    MICHELE MORSILLI

    1997-07-01

    Full Text Available The Late Jurassic-Early Cretaceous Apulia platform margin and the transition to adjacent basinal deposits (inner platform to basin are well exposed in the Gargano Promontory. Detailed field work has allowed to recognize eight main facies associations which reflect various depositional environments, and which document a differentiated zonation, from the inner platform to the basin. A shallow lagoon existed in the internal part of the Gargano Promontory with a transition to tidal flat areas (F1. Oolitic shoals (F2 bordered this internal peritidal area passing seaward to a reef-flat with abundant corals (F3. A reef-front, associated with a coral rubble zone, has been found in some areas (F4. In the external margin zone, massive wackestones with Ellipsactinia occur (F5 and pass gradually to a rudstone facies on the proximal slope (F6. The base-of-slope facies association consists of pelagic sediments interbedded with gravity-displaced deposits (F7 and F8. The depositional profile of the Apulia Platform is typical of the Tethyan Jurassic-Early Cretaceous platforms, with slope declivities in the order of 25°-28°. The remarkable progradation of the platform in the northern tract of the Gargano (Lesina and Varano lakes area and its substantial stability east- and southwards (Mattinata area suggest a possible windward position of the margin in this latter portion and, in contrast, a leeward position of the northern portion.   

  20. High resolution carbon isotope stratigraphy and glendonite occurrences of the Christopher Formation, Sverdrup Basin (Axel Heiberg Island, Canada): implications for mid Cretaceous high latitude climate change

    Science.gov (United States)

    Herrle, Jens O.; Schröder-Adams, Claudia J.; Galloway, Jennifer M.; Pugh, Adam T.

    2013-04-01

    glendonites are concentrated in regular beds during the late Aptian to early Albian of the Christopher Formation supporting the idea of a cold snap (Kemper, 1987; Herrle & Mutterlose 2003; Mutterlose et al. 2009) within the mid-Cretaceous greenhouse period. References Herrle, J.O., Mutterlose, J., 2003. Calcareous nannofossils from the Aptian - early Albian of SE France: Paleoecological and biostratigraphic implications. Cretaceous Research 24, 1-22. Kemper, E., 1987. Das Klima der Kreide-Zeit. Geologisches Jahrbuch 96, 185 pp. Mutterlose, J., Bornemann, A., Herrle, J.O., 2009. The Aptian - Albian cold snap: Evidence for "mid" Cretaceous icehouse interludes. Neues Jahrbuch für Geologie und Palaeontologie, Abhandlungen 252, 217-225.

  1. Marine reptiles from the Late Cretaceous of northern Patagonia

    Science.gov (United States)

    Gasparini, Z.; Casadio, S.; Fernández, M.; Salgado, L.

    2001-04-01

    During the Campanian-Maastrichtian, Patagonia was flooded by the Atlantic and reduced to an archipelago. Several localities of northern Patagonia have yielded marine reptiles. Analysis of several assemblages suggests that the diversity and abundance of pelagic marine reptiles in northern Patagonia was higher by the end of the Cretaceous than previously thought. Several plesiosaurids, including Aristonectes parvidens and the polycotylid Sulcusuchus, and the first remains of mosasaurinae have been found. The Cretaceous marine reptile record from South America is scanty. Nevertheless, materials described here suggest that Tethyan and Weddelian forms converged in northern Patagonia, as seen with invertebrates.

  2. New age data and geothermobarometric estimates from the Apuseni Mountains (Romania); evidence for Cretaceous amphibolite-facies metamorphism

    Science.gov (United States)

    Reiser, Martin; Schuster, Ralf; Spikings, Richard; Tropper, Peter; Fügenschuh, Bernhard

    2014-05-01

    New Ar-Ar ms, Rb-Sr bt and Sm-Nd grt age data in combination with microprobe analyses and structural data from the Apuseni Mountains provide new constraints for the tectonic evolution of the Tisza and Dacia Mega-Units during the Late Jurassic-Late Cretaceous time interval, which is of special importance for the present day arrangement of tectonic units in the Alpine-Carpathian-Dinaridic region. Late Jurassic obduction of Transylvanian Ophiolites (155 Ma) partially reset Ar-Ar ms ages at the top of the Biharia Nappe System in the Dacia Mega-Unit. New Sm-Nd grt ages and P-T estimates yielded amphibolite-facies conditions of 500°C and about 0.8 GPa during the Early Cretaceous (125 Ma Sm-Nd age) for the Dacia Mega-Unit and during late Early Cretaceous times (104 Ma Sm-Nd age) for the Tisza Mega-Unit. This implies that not only the Dacia Mega-Unit, but also the Tisza Mega-Unit experienced a strong regional metamorphic overprint accompanying Alpine deformation. New 95 Ma Ar-Ar ms and 81 Ma Rb-Sr bt ages from the Bihor Nappe (Tisza Mega-Unit), in combination with fission track ages constrain rapid cooling of more than 20°C/Ma after the thermal maximum. The amplitude of cooling corresponds to data from the Dacia Mega-Unit, which started cooling 20 Ma earlier, but at a rate of only about 12°C/Ma. Kinematic indicators and stretching lineations show NE-directed, in-sequence nappe stacking for the Tisza and Dacia Mega-Units during "Austrian Phase" deformation (125-100 Ma). Following the Austrian Phase, the Dacia Mega-Unit was thrust over the Tisza Mega-Unit during the Turonian Phase (93-89 Ma). Constrained through NW-directed kinematic indicators and 94-80 Ma Rb-Sr bt ages, this tectonic phase is responsible for a pervasive retrograde greenschist-facies overprint and the geometry of the present-day nappe stack in the Apuseni Mountains.

  3. Discovery of fossil lamprey larva from the Lower Cretaceous reveals its three-phased life cycle.

    Science.gov (United States)

    Chang, Mee-mann; Wu, Feixiang; Miao, Desui; Zhang, Jiangyong

    2014-10-28

    Lampreys are one of the two surviving jawless vertebrate groups and one of a few vertebrate groups with the best exemplified metamorphosis during their life cycle, which consists of a long-lasting larval stage, a peculiar metamorphosis, and a relatively short adulthood with a markedly different anatomy. Although the fossil records have revealed that many general features of extant lamprey adults were already formed by the Late Devonian (ca. 360 Ma), little is known about the life cycle of the fossil lampreys because of the lack of fossilized lamprey larvae or transformers. Here we report the first to our knowledge discovery of exceptionally preserved premetamorphic and metamorphosing larvae of the fossil lamprey Mesomyzon mengae from the Lower Cretaceous of Inner Mongolia, China. These fossil ammocoetes look surprisingly modern in having an eel-like body with tiny eyes, oral hood and lower lip, anteriorly positioned branchial region, and a continuous dorsal skin fin fold and in sharing a similar feeding habit, as judged from the detritus left in the gut. In contrast, the larger metamorphosing individuals have slightly enlarged eyes relative to large otic capsules, thickened oral hood or pointed snout, and discernable radials but still anteriorly extended branchial area and lack a suctorial oral disk, which characterize the early stages of the metamorphosis of extant lampreys. Our discovery not only documents the larval conditions of fossil lampreys but also indicates the three-phased life cycle in lampreys emerged essentially in their present mode no later than the Early Cretaceous.

  4. Cretaceous and Paleogene Fagaceae from North America and Greenland: evidence for a Late Cretaceous split between Fagus and the remaining Fagaceae

    Directory of Open Access Journals (Sweden)

    Grímsson Friðgeir

    2016-12-01

    Full Text Available Modern lineages of the beech family, Fagaceae, one of the most important north-temperate families of woody flowering plants, have been traced back to the early Eocene. In contrast, molecular differentiation patterns indicate that the Fagus lineage, Fagoideae, with a single modern genus, evolved much earlier than the remaining lineages within Fagaceae (Trigonobalanoideae, Castaneoideae, Quercoideae. The minimum age for this primary split in the Fagaceae has been estimated as 80 ± 20 Ma (i.e. Late Cretaceous in recently published, time-calibrated phylogenetic trees including all Fagales. Here, we report fagaceous fossils from the Campanian of Wyoming (82-81 Ma; Eagle Formation [Fm], the Danian of western Greenland (64-62 Ma; Agatdal Fm, and the middle Eocene of British Columbia (ca 48 Ma; Princeton Chert, and compare them to the Fagaceae diversity of the recently studied middle Eocene Hareøen Fm of western Greenland (42-40 Ma. The studied assemblages confirm that the Fagus lineage (= Fagoideae and the remainder of modern Fagaceae were diverged by the middle Late Cretaceous, together with the extinct Fagaceae lineage(s of Eotrigonobalanus and the newly recognised genus Paraquercus, a unique pollen morph with similarities to both Eotrigonobalanus and Quercus. The new records push back the origin of (modern Fagus by 10 Ma and that of the earliest Fagoideae by 30 Ma. The earliest Fagoideae pollen from the Campanian of North America differs from its single modern genus Fagus by its markedly thicker pollen wall, a feature also seen in fossil and extant Castaneoideae. This suggests that a thick type 1 foot layer is also the plesiomorphic feature in Fagoideae although not seen in any of its living representatives. The Danian Fagus pollen of Greenland differs in size from those of modern species but is highly similar to that of the western North American early Eocene F. langevinii, the oldest known beech so far. Together with the Quercus pollen record

  5. Larger miliolids of the Late Cretaceous and Paleogene seen through space and time

    Directory of Open Access Journals (Sweden)

    Vlasta Ćosović

    2002-12-01

    Full Text Available Spatial and temporal occurrences of the larger (complex miliolids are discussed to give more light on biostratigraphy and paleobiogeographic provinces distribution. Seven generaand 47 species from the Late Cretaceous to Oligocene inhabited shallow marine settings in the Indo-Pacific, Tethyan and Caribbean regions. Of all genera only four (Idalina, Periloculina, Pseudolacazina, Lacazina widespread throughout Tethys in theLate Cretaceous and Paleogene. Single occurrence of Lacazina was recorded further to east (Moluccas. By now the Late Cretaceous genus Adrahentina is known only from the Spain. The newcomer’s Eocene genera were Fabularia and Lacazinella. Fabularia reachedhigh diversity in species term in the Central and Western Tethys and occured as unique genus in Caribbean realm, too. Conversely, during the same period, Lacazinella spread over the southern border of Neo-Tethys reaching New Guinea.On the Adriatic – Dinaric Carbonate Platform, larger miliolids occurred from the Late Cretaceous to Cuisian, having the same biostratigraphically trends and distribution as contemporaneous larger miliolids from the Tethys.

  6. Lamellaptychi from the Lower Cretaceous of south-east Spain (Murcia and Jaen provinces)

    Czech Academy of Sciences Publication Activity Database

    Vašíček, Zdeněk; Company, M.; Měchová, L.

    2015-01-01

    Roč. 276, č. 3 (2015), s. 335-351 ISSN 0077-7749 Institutional support: RVO:68145535 Keywords : Lower Cretaceous * aptychi * ammonite zonation * Betic Cordillera Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.719, year: 2015 http://cretaceous.ru/files/pub/temp3/vasicek_et_al_2015_lamellaptychi.pdf

  7. Using Clumped Isotopes to Understand Early Diagenetic Processes in Carbonate Microbialites of Mid-Cretaceous Codó Formation, NE Brazil

    Science.gov (United States)

    Bahniuk, A. M.; Vasconcelos, C.; McKenzie, J. A.; Franca, A. B.; Matsuda, N.; Eiler, J.

    2010-12-01

    , the δ18O values of the bulk carbonate (-5.8 to -1.5 ‰ PDB) imply precipitation from water with calculated δ18O values ranging between approximately -2.5 and 1.5 ‰ SMOW, possibly reflecting precipitation from a variably modified Cretaceous sea water with a strong meteoric influence. The δ13C values of the bulk carbonate (-9.5 to -7.2 ‰ PDB) indicate a significant input of carbon derived from aerobic or anaerobic respiration of organic matter, suggesting precipitation in a semi-enclosed or isolated water body. These preliminary results demonstrate that a combination of clumped isotope and stable isotope methods can provide new insights to study ancient environmental conditions and early diagenetic processes.

  8. Strongly foliated garnetiferous amphibolite clasts in ophiolitic melanges, Yarlung Zangbo Suture Zone, Tibet; Early Cretaceous disruption of a back-arc basin?

    Science.gov (United States)

    Guilmette, C.; Hebert, R.; Wang, C.; Indares, A. D.; Ullrich, T. D.; Dostal, J.; Bedard, E.

    2007-12-01

    Metre to decameter-size clasts of amphibolite are found embedded in ophiolitic melanges underlying the Yarlung Zangbo Suture Zone Ophiolites, South Tibet, China. These ophiolites and melanges occur at the limit between Indian and Tibetan-derived rocks and represent remnants of an Early Cretaceous intraoceanic supra-subduction zone domain, the Neo-Tethys. In the Saga-Dazuka segment (500 km along-strike), we discovered new occurrences of strongly foliated amphibolites found as clasts in the ophiolitic melange. In garnet-free samples, hornblende is green-blue magnesio-hornblende and cpx is low-Al diopside. In garnet- bearing samples, garnet is almandine with a strong pyrope component (up to 30 mol%) whereas coexisting hornblende is brown Ti-rich tschermakite and clinopyroxene is Al-diopside. Plagioclase composition was ubiquitously shifted to albite during a late metasomatic event. Geochemistry of these rocks indicates that their igneous protoliths crystallized from a slightly differentiated tholeiitic basaltic liquid that did not undergo major fractionation. Trace element patterns reveal geochemical characteristics identical to those of the overlying ophiolitic crust. These are 1) trace element abundances similar to that of N-MORBs or BABBs, 2) a slight depletion of LREE and 3) a moderate to strong Ta-Nb negative anomaly and a slight Ti anomaly. Such characteristics suggest genesis over a spreading center close to a subduction zone, possibly a back-arc basin. Step-heating Ar/Ar plateau ages were obtained from hornblende separates. All ages fall in the range of 123-128 Ma, overlapping the crystallization ages from the overlying ophiolite (126-131 Ma). Pseudosections were built with the THERMOCALC software in the system NCFMASH. Results indicate that the observed assemblage Hb+Pl+Gt+Cpx is stable over a wide range of P-T conditions, between 10-18 kbars and at more than 800°C. Measured mineral modes and solid solution compositions were successfully modeled, indicating

  9. The Rise of Flowering Plants and Land Surface Physics: The Cretaceous and Eocene Were Different

    Science.gov (United States)

    Upchurch, G. R.; Feild, T.

    2010-12-01

    The Cretaceous and Eocene have served as the poster children of past greenhouse climates. One difference between the two time periods is that angiosperms (flowering plants) underwent a major diversification and rise to dominance during the mid-Cretaceous to Paleocene. Flowering plants differ from all other living and fossil plants in having significantly higher rates of transpiration and photosynthesis, which in modern leaves correlate with the density of venation (Dv), a feature that can be measured directly from fossils. This increase in Dv, coupled with an increase in the abundance of angiosperms, is thought to have had major impact on the climate system. This is, in part, because transpiration plays an important role in determining the ratio of sensible to latent heat flux from the land surface and in determining precipitation rate in regions such as the equatorial rainforest. Analysis of Dv in fossil leaves indicates two phases of increase in transpiration rate for angiosperms during the Cretaceous-Paleocene. The oldest known angiosperms (Aptian-early Albian) have a low Dv characteristic of extant and fossil ferns and gymnosperms. At this time angiosperms are low-stature plants of minor importance in terms of relative abundance and diversity (ferns, and maximum Dv reaches levels characteristic of many trees from the temperate zone. This first phase coincides with the first local dominance of angiosperms, the first occurrence of moderate to large angiosperm trees (up to 1 m in diameter) , and the first common occurrence of angiosperms in the Arctic. The second phase of Dv increase occurs during the Maastrichtian to Paleocene, where average Dv reaches levels characteristic of modern tropical forests and maximum Dv reaches the level found in highly productive modern vegetation. This second phase coincides with the rise to dominance of angiosperms in regional vegetation, a corresponding decline of conifers and ferns, and the modernization of hydraulic architecture

  10. parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages.

    Science.gov (United States)

    Peñalver, Enrique; Arillo, Antonio; Delclòs, Xavier; Peris, David; Grimaldi, David A; Anderson, Scott R; Nascimbene, Paul C; Pérez-de la Fuente, Ricardo

    2017-12-12

    Ticks are currently among the most prevalent blood-feeding ectoparasites, but their feeding habits and hosts in deep time have long remained speculative. Here, we report direct and indirect evidence in 99 million-year-old Cretaceous amber showing that hard ticks and ticks of the extinct new family Deinocrotonidae fed on blood from feathered dinosaurs, non-avialan or avialan excluding crown-group birds. A †Cornupalpatum burmanicum hard tick is entangled in a pennaceous feather. Two deinocrotonids described as †Deinocroton draculi gen. et sp. nov. have specialised setae from dermestid beetle larvae (hastisetae) attached to their bodies, likely indicating cohabitation in a feathered dinosaur nest. A third conspecific specimen is blood-engorged, its anatomical features suggesting that deinocrotonids fed rapidly to engorgement and had multiple gonotrophic cycles. These findings provide insight into early tick evolution and ecology, and shed light on poorly known arthropod-vertebrate interactions and potential disease transmission during the Mesozoic.

  11. Late Cretaceous tectonothermal evolution of the southern Lhasa terrane, South Tibet: Consequence of a Mesozoic Andean-type orogeny

    Science.gov (United States)

    Dong, Xin; Zhang, Ze-ming; Klemd, Reiner; He, Zhen-yu; Tian, Zuo-lin

    2018-04-01

    The Lhasa terrane of the southern Tibetan Plateau participated in a Mesozoic Andean-type orogeny caused by the northward subduction of the Neo-Tethyan oceanic lithosphere. However, metamorphic rocks, which can unravel details of the geodynamic evolution, are rare and only exposed in the south-eastern part of the Lhasa terrane. Therefore, we conducted a detailed petrological, geochemical and U-Pb zircon geochronological study of the late Cretaceous metamorphic rocks and associated gabbros from the Nyemo inlier of the southern Lhasa terrane. The Nyemo metamorphic rocks including gneisses, schists, marbles and calc-silicate rocks, experienced peak amphibolite-facies contact metamorphism under P-T conditions of 3.5-4.0 kbar and 642-657 °C with a very high geothermal gradient of 45-50 °C/km, revealing a distinct deflection from the steady-state geotherm during low-pressure metamorphism. Inherited magmatic zircon cores from the metamorphic rocks yielded protolith ages of 197-194 Ma, while overgrowth zircon rims yielded metamorphic ages of ca. 86 Ma. Whole-rock chemistry and zircon Hf isotopes suggest that the protoliths of the gneisses and schists are andesites and tuffs of the early Jurassic Sangri Group, which were derived from a depleted mantle source of a continental arc affinity. The coeval intimately-associated gabbro (ca. 86 Ma) crystallized under P-T conditions of 3.5-5.3 kbar and 914-970 °C, supplying the heat flux high enough to cause the contact metamorphism of the Sangri Group rock types. We propose that the intrusion of the gabbro and a simultaneous pressure increase of up to 4.0 kbar, which is related to crustal thickening due to crustal overthrusting and the intrusion of mafic material, resulted in the late Cretaceous metamorphism of the early Jurassic Sangri Group during an Andean-type orogeny. Furthermore the Nyemo metamorphic rocks, which have previously been considered to represent slivers of the Precambrian metamorphic basement of the Lhasa terrane

  12. Pre-Cretaceous Agaricomycetes yet to be discovered: Reinvestigation of a putative Triassic bracket fungus from southern Germany

    Directory of Open Access Journals (Sweden)

    A. P. Kiecksee

    2012-08-01

    Full Text Available Agaricomycetes are major components of extant terrestrial ecosystems; however, their fruiting bodies are exceedingly rare as fossils. Reinvestigation of a peculiar fossil from Late Triassic sediments of southern Germany interpreted as a bracket fungus revealed that this fossil in fact represents a wood abnormality, resulting from injury to the cambium and subsequent callus growth in a Baieroxylon -like ginkgoalean wood. As a result, the fossil record of the Agaricomycetes does not yet pre-date the Early Cretaceous, suggesting a late diversification of basidiomycetes possessing large fruiting bodies. doi:10.1002/mmng.201200006

  13. High-resolution leaf-fossil record spanning the Cretaceous/Tertiary boundary

    Science.gov (United States)

    Johnson, K.R.; Nichols, D.J.; Attrep, M.; Orth, C.J.

    1989-01-01

    THEORIES that explain the extinctions characterizing the Cretaceous/Tertiary (K/T) boundary1-3 need to be tested by analyses of thoroughly sampled biotas. Palynological studies are the primary means for stratigraphic placement of the terrestrial boundary and for estimates of plant extinction4-12, but have not been combined with quantitative analyses of fossil leaves (megaflora). Megafloral studies complement palynology by representing local floras with assemblages capable of high taxonomic resolution13, but have previously lacked the sample size and stratigraphic spacing needed to resolve latest Cretaceous floral history5,14-18. We have now combined megafloral data from a 100-m-thick composite K/T boundary section in North Dakota with detailed palynological analysis. Here the boundary is marked by a 30% palynofloral extinction coincident with iridium and shocked-mineral anomalies and lies ???2 m above the highest dinosaur remains. The megaflora undergoes a 79% turnover across the boundary, and smaller changes 17- and 25-m below it. This pattern is consistent with latest Cretaceous climatic warming preceding a bolide impact. ?? 1989 Nature Publishing Group.

  14. Diagenesis and reservoir properties of Cretaceous-Lower Tertiary sandstones: the GANT-1 well, western Nuussuaq, central West Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Kierkegaard, Thomas

    1998-08-01

    The main purpose of this study is to describe the diagenetic alterations occurring in the Cretaceous to Lower Paleocene sedimentary succession of the GANT-1 well, and to determine the diagenetic and detrital factors which control present porosity and permeability. The GANT-1 well is located on north-western Nuussuaq, central West Greenland. The West Greenland margin is a continental margin subdivided into linked basins where Cretaceous to Lower Tertiary and probably older sediments have been deposited. In the Nuussuaq area these sediments are overlain by a succession of Early Tertiary basaltic volcanic rocks which reaches a combined thickness of around 2-2.5 km. Although the reservoir properties of the sandstone intervals in the GANT-1 and GANE-1 wells are generally relatively poor, it is suggested that moderate to good properties may be found in certain intervals within the Maastrichtian-Paleocene succession. However, the reason for the locally enhanced reservoir properties in GANT-1 was not clarified by this study due to the lack of regional petrographical data. (EG) EFP-96. 41 refs., 3 maps

  15. A stem acrodontan lizard in the Cretaceous of Brazil revises early lizard evolution in Gondwana.

    Science.gov (United States)

    Simões, Tiago R; Wilner, Everton; Caldwell, Michael W; Weinschütz, Luiz C; Kellner, Alexander W A

    2015-08-26

    Iguanians are one of the most diverse groups of extant lizards (>1,700 species) with acrodontan iguanians dominating in the Old World, and non-acrodontans in the New World. A new lizard species presented herein is the first acrodontan from South America, indicating acrodontans radiated throughout Gondwana much earlier than previously thought, and that some of the first South American lizards were more closely related to their counterparts in Africa and Asia than to the modern fauna of South America. This suggests both groups of iguanians achieved a worldwide distribution before the final breakup of Pangaea. At some point, non-acrodontans replaced acrodontans and became the only iguanians in the Americas, contrary to what happened on most of the Old World. This discovery also expands the diversity of Cretaceous lizards in South America, which with recent findings, suggests sphenodontians were not the dominant lepidosaurs in that continent as previously hypothesized.

  16. Fossils in Late Cretaceous to early Palaeocene flint nodules embedded in pleistocene glaciofluvial sediments near Fukov (Děčín District, Northern Bohemia)

    Czech Academy of Sciences Publication Activity Database

    Pokorný, R.; Kaše, J.; Kvaček, J.; Zágoršek, K.; Kočí, T.; Žítt, Jiří

    2012-01-01

    Roč. 68, 3/4 (2012), s. 119-131 ISSN 0036-5343 Institutional support: RVO:67985831 Keywords : Erratic boulders * Flint * Glaciofluvial sediments * Late Cretaceous * Northern Bohemia * Palaeocene * Pleistocene glaciation * Taphocoenosis Subject RIV: DB - Geology ; Mineralogy http://www.nm.cz/publikace/archiv.php?id=4&rok=68&kcislu=3-4&f_=Zobrazit

  17. Geochronology and geochemistry constraints of the Early Cretaceous Taibudai porphyry Cu deposit, northeast China, and its tectonic significance

    Science.gov (United States)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Wu, Xin-Li; Ouyang, Hen-Gen

    2015-05-01

    The southern Great Xing'an Range (SGXR), located in the southeastern part of Inner Mongolia, China, shows intense Mesozoic tectono-magmatic activity and hosts economically important polymetallic (Cu-Pb-Zn-Sn-Fe-Ag-Au-Mo) mineralization. Here, we present new zircon U-Pb ages, whole-rock geochemical data, Nd-Sr-Hf isotopic data and Re-Os ages for the Taibudai deposit in the SGXR. The Taibudai granitoids show high SiO2 (70.62-72.13 wt.%) and alkali (Na2O + K2O = 7.04-8.60 wt.%) concentrations, low MgO (0.89-1.37 wt.%) and Al2O3 (∼14 wt.%), ASI ratios molybdenite from the deposit yield an ore-forming age of 137.1 ± 1.4 Ma. Re contents range from 4.37 to 41.77 ppm, implying ore material components have a mixed crust-mantle origin. SHRIMP analysis of zircons show that the monzogranitic porphyry and biotite granite in the Taibudai deposit were formed at 137.0 ± 0.9 Ma and 138.3 ± 0.9 Ma, respectively, indicating a temporal link between granitic magmatism and Cu mineralization. This result, combined with the regional geology, tectonic evolution, and age data from the literature, suggests that the Early Cretaceous (∼140 Ma) was the peak metallogenic epoch for the Great Xing'an Range, and the mineralization in this period generally takes the form of porphyry, skarn, or hydrothermal polymetallic ore deposits in an active extensional continental margin environment. The Taibudai porphyry and associated mineralization provides a typical example of magmatism and metallogeny associated with a Paleo-Pacific plate subduction, continental margin, back-arc extensional setting.

  18. The Late Cretaceous frog Gobiates from Central Asia: its evolutionary status and possible phylogenetic relationships

    Czech Academy of Sciences Publication Activity Database

    Roček, Zbyněk

    2008-01-01

    Roč. 29, č. 4 (2008), s. 577-591 ISSN 0195-6671 Institutional research plan: CEZ:AV0Z30130516 Keywords : Amphibia * Anura * Gobiatidae * Cretaceous * Cretaceous (Mongolia) Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.938, year: 2008

  19. Diversity patterns amongst herbivorous dinosaurs and plants during the Cretaceous: implications for hypotheses of dinosaur/angiosperm co-evolution.

    Science.gov (United States)

    Butler, R J; Barrett, P M; Kenrick, P; Penn, M G

    2009-03-01

    poor sampling in the Turonian-Santonian interval. Stegosauria shows a significant negative correlation with flowering plants and a significant positive correlation with the nonflowering cycadophytes (cycads, Bennettitales). This interesting pattern is worthy of further investigation, and it reflects the decline of both stegosaurs and cycadophytes during the Early Cretaceous.

  20. Rib fracture in Prognathodon saturator (Mosasauridae, Late Cretaceous)

    NARCIS (Netherlands)

    Schulp, Anne S.; Walenkamp, G. H I M; Hofman, P.A.M.; Rothschild, B. M.; Jagt, J. W M

    2004-01-01

    Two unusual bumps occur on the internal surface of a rib of the marine reptile Prognathodon saturator from the Upper Cretaceous (Maastrichtian) of Maastricht, The Netherlands. These bumps are interpreted as stress fractures, possibly related to agonistic behaviour.

  1. STRATIGRAPHY, SEDIMENTOLOGY AND SYNDEPOSITIONAL TECTONICS OF THE JURASSIC-CRETACEOUS SUCCESSION AT THE TRANSITION BETWEEN PROVENÇAL AND DAUPHINOIS DOMAINS (MARITIME ALPS, NW ITALY

    Directory of Open Access Journals (Sweden)

    LUCA BARALE

    2017-08-01

    Full Text Available The Provençal and Dauphinois Mesozoic successions cropping out at the southeastern margin of the Argentera Massif (Maritime Alps, NW Italy were deposited at the transition between the Provençal platform and the Dauphinois basin, marked in the study area by a partly preserved Mesozoic palaeoescarpment. These successions show important lateral variations occurring over relatively short distances, probably related to syndepositional tectonics. Different stratigraphic intervals of the pelagic-hemipelagic Dauphinois succession contain resedimented deposits, made up of both intra- and extrabasinal material, which provide a twofold evidence of syndepositional tectonics indicating both tectonically-triggered gravitational processes and a tectonically-driven evolution of the source areas. Two stages of syndepositional tectonics have been recognized: the first in the earliest Cretaceous, which is related to the deposition of carbonate breccias in the Dauphinois succession and to hydrothermal dolomitization of the Middle Triassic-Jurassic Provençal carbonates, and the second in the Late Cretaceous, which triggered the deposition of different detrital lithozones in the Upper Cretaceous Puriac Limestone. The cited evidence indicates that syndepositional tectonics continued to influence the evolution of the Alpine Tethys European passive margin long after the Late Triassic-Early Jurassic syn-rift stage, which caused the differentiation between the Dauphinois basin and the Provençal platform.

  2. The Lower Cretaceous Way Group of northern Chile: An alluvial fan-fan delta complex

    Science.gov (United States)

    Flint, S.; Clemmey, H.; Turner, P.

    1986-01-01

    Alluvial fan sediments of the Lower Cretaceous Coloso Basin in northern Chile were deposited in a half-graben and derived from andesitic volcanics of a former island arc. Transport directions were towards the east, away from the present-day Peru-Chile trench. Grain flow, density modified grain flow and sheetflow processes were responsible for most of the sediment deposition with cohesive debris flows playing only a minor part. An early phase of conglomerate deposition (Coloso Formation) into a restricted basin records the transition from proximal fan facies with abundant grain flows and remobilized screes to mid-fan facies dominated by sheetflows. Stratiform copper mineralization near the top of the lower conglomerates is related to the unroofing of the Jurassic island arc. This mineralization comprises copper sulphide-cemented sands and gravels and formed by the reaction of mineralized detritus with diagenetic and hydrothermal solutions. A later phase of deposition (Lombriz Formation) includes sandstones, siltstones and conglomerates with a source area different from the Coloso Formation. This change in source may be related to strike-slip tectonics as the basin extended. The Lombriz conglomerates pass distally (eastwards) into red sandstones and purple siltstones with thin limestones deposited under marine conditions. This sequence is interpreted as a major fan delta complex. It passes conformably into marine carbonates of the Tableado Formation signifying the complete drowning of the basin in lower Cretaceous times.

  3. Heavy mineral delineation of the Cretaceous, Paleocene, and Eocene stratigraphic sections at the Savannah River Site, Upper Coastal Plain of South Carolina

    International Nuclear Information System (INIS)

    Cathcart, E.M.; Sargent, K.A.

    1994-01-01

    The Upper Atlantic Coastal Plain of South Carolina consists of a fluvial-deltaic and shallow marine complex of unconsolidated sediments overlying the crystalline basement rocks of the North American continent. Because of the lateral and vertical variability of these sediments, stratigraphic boundaries have been difficult to distinguish. Portions of the Cretaceous, Paleocene, and eocene stratigraphic sections from cores recovered during the construction of two monitoring wells at the Savannah River Site were studied to determine if heavy mineral suites could be utilized to distinguish boundaries. The stratigraphic sections include: the Late Cretaceous Middendorf, Black Creek, and Steel Creek Formations, the Paleocene Snapp Formation, the late Paleocene-Early Eocene Fourmile Branch Formation, and the Early Eocene Congaree formation. In previous studies composite samples were taken over 2.5 ft. intervals along the cores and processed using a heavy liquid for heavy mineral recovery. During this study, heavy mineral distributions were determined by binocular microscope and the mineral identifications confirmed by x-ray diffraction analysis of hand-picked samples. The heavy mineral concentration data and grain size data were then compared to the stratigraphic boundary positions determined by other workers using more classical methods. These comparisons were used to establish the utility of this method for delineating the stratigraphic boundaries in the area of study

  4. Leaf economic traits from fossils support a weedy habit for early angiosperms.

    Science.gov (United States)

    Royer, Dana L; Miller, Ian M; Peppe, Daniel J; Hickey, Leo J

    2010-03-01

    Many key aspects of early angiosperms are poorly known, including their ecophysiology and associated habitats. Evidence for fast-growing, weedy angiosperms comes from the Early Cretaceous Potomac Group, where angiosperm fossils, some of them putative herbs, are found in riparian depositional settings. However, inferences of growth rate from sedimentology and growth habit are somewhat indirect; also, the geographic extent of a weedy habit in early angiosperms is poorly constrained. Using a power law between petiole width and leaf mass, we estimated the leaf mass per area (LMA) of species from three Albian (110-105 Ma) fossil floras from North America (Winthrop Formation, Patapsco Formation of the Potomac Group, and the Aspen Shale). All LMAs for angiosperm species are low (240 g/m(2); mean = 291 g/m(2)). On the basis of extant relationships between LMA and other leaf economic traits such as photosynthetic rate and leaf lifespan, we conclude that these Early Cretaceous landscapes were populated with weedy angiosperms with short-lived leaves (<12 mo). The unrivalled capacity for fast growth observed today in many angiosperms was in place by no later than the Albian and likely played an important role in their subsequent ecological success.

  5. Preliminary stratigraphy and facies analysis of the Upper Cretaceous Kaguyak Formation, including a brief summary of newly discovered oil stain, upper Alaska Peninsula

    Science.gov (United States)

    Wartes, Marwan A.; Decker, Paul L.; Stanley, Richard G.; Herriott, Trystan M.; Helmold, Kenneth P.; Gillis, Robert J.

    2013-01-01

    The Alaska Division of Geological and Geophysical Surveys has an ongoing program aimed at evaluating the Mesozoic forearc stratigraphy, structure, and petroleum systems of lower Cook Inlet. Most of our field studies have focused on the Jurassic component of the petroleum system (this report). However, in late July and early August of 2012, we initiated a study of the stratigraphy and reservoir potential of the Upper Cretaceous Kaguyak Formation. The Kaguyak Formation is locally well exposed on the upper Alaska Peninsula (fig. 25) and was named by Keller and Reiser (1959) for a sequence of interbedded siltstone and sandstone of upper Campanian to Maastrichtian age that they estimated to be 1,450 m thick.Subsequent work by Detterman and Miller (1985) examined 900 m of section and interpreted the unit as the record of a prograding submarine fan.This interpretation of deep-water deposition contrasts with other Upper Cretaceous rocks exposed along the Alaska Peninsula and lower Cook Inlet that are generally described as nonmarine to shallow marine (Detterman and others, 1996; LePain and others, 2012).Based on foraminifera and palynomorphs from the COST No. 1 well, Magoon (1986) concluded that the Upper Cretaceous rocks were deposited in a variety of water depths and environments ranging from upper bathyal to nonmarine. During our recent fieldwork west and south of Fourpeaked Mountain, we similarly encountered markedly varying lithofacies in the Kaguyak Formation (fig. 25), and we also found oil-stained rocks that are consistent with the existence of an active petroleum system in Upper Cretaceous rocks on the upper Alaska Peninsula and in lower Cook Inlet. These field observations are summarized below.

  6. Evidence of Egg Diversity in Squamate Evolution from Cretaceous Anguimorph Embryos.

    Directory of Open Access Journals (Sweden)

    Vincent Fernandez

    Full Text Available Lizards are remarkable amongst amniotes, for they display a unique mosaic of reproduction modes ranging from egg-laying to live-bearing. Within this patchwork, geckoes are believed to represent the only group to ever have produced fully calcified rigid-shelled eggs, contrasting with the ubiquitous parchment shelled-eggs observed in other lineages. However, this hypothesis relies only on observations of modern taxa and fossilised gecko-like eggshells which have never been found in association with any embryonic or parental remains. We report here the first attested fossil eggs of lizards from the Early Cretaceous of Thailand, combining hard eggshells with exquisitely preserved embryos of anguimoph (e.g. Komodo dragons, mosasaurs. These fossils shed light on an apparently rare reproduction strategy of squamates, demonstrate that the evolution of rigid-shelled eggs are not an exclusive specialization of geckoes, and suggest a high plasticity in the reproductive organs mineralizing eggshells.

  7. A diverse ant fauna from the mid-cretaceous of Myanmar (Hymenoptera: Formicidae.

    Directory of Open Access Journals (Sweden)

    Phillip Barden

    Full Text Available A new collection of 24 wingless ant specimens from mid-Cretaceous Burmese amber (Albian-Cenomanian, 99 Ma comprises nine new species belonging to the genus Sphecomyrmodes Engel and Grimaldi. Described taxa vary considerably with regard to total size, head and body proportion, cuticular sculpturing, and petiole structure while all species are unified by a distinct shared character. The assemblage represents the largest known diversification of closely related Cretaceous ants with respect to species number. These stem-group ants exhibit some characteristics previously known only from their extant counterparts along with presumed plesiomorphic morphology. Consequently, their morphology may inform hypotheses relating to basal relationships and general patterns of ant evolution. These and other uncovered Cretaceous species indicate that stem-group ants are not simply wasp-like, transitional formicids, but rather a group of considerable adaptive diversity, exhibiting innovations analogous to what crown-group ants would echo 100 million years later.

  8. Arctic black shale formation during Cretaceous Oceanic Anoxic Event 2

    DEFF Research Database (Denmark)

    Lenniger, Marc; Nøhr-Hansen, Henrik; Hills, Len V.

    2014-01-01

    The Late Cretaceous Oceanic Anoxic Event 2 (OAE2) represents a major perturbation of the global carbon cycle caused by the widespread deposition of organic-rich black shales. Although the paleoceanographic response and the spatial extent of bottom-water anoxia in low and mid-paleolatitudes are re......The Late Cretaceous Oceanic Anoxic Event 2 (OAE2) represents a major perturbation of the global carbon cycle caused by the widespread deposition of organic-rich black shales. Although the paleoceanographic response and the spatial extent of bottom-water anoxia in low and mid...... caused massive organic-carbon burial on the Arctic shelf in general, with important implications for hydrocarbon source-rock distribution in the Arctic region....

  9. Source rock potential of middle cretaceous rocks in Southwestern Montana

    Science.gov (United States)

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J.; Pawlewicz, M.J.

    1996-01-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S1+S2) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% Ro. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% Ro, and at Big Sky Montana, where vitrinite reflectance averages 2.5% Ro. At both localities, high Ro values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  10. Final results on the Jurassic-Cretaceous boundary in the Gresten Klippenbelt (Austria): Macro-, micro-, nannofossils, isotopes, geochemistry, susceptibility, gamma-log and palaeomagnetic data as environmental proxies of the early Penninic Ocean history

    Science.gov (United States)

    Lukeneder, A.; Halásová, E.; Kroh, A.; Mayrhofer, S.; Pruner, P.; Reháková, D.; Schnabl, P.; Sprovieri, M.

    2009-04-01

    Jurassic to Lower Cretaceous pelagic sediments are well known to form a major element of the northernmost tectonic units of the Gresten Klippenbelt (Lower Austria). The Penninic Ocean was a side tract of the Central Atlantic Oceanic System intercalated between the European and the Austroalpine plates. Its opening started during the Mid Jurrasic, as rifting of the of the oceanic crust between the European and the Austroalpine plates. The turnover of the deposition on the European shelf (Helvetic Zone) from deep-water siliciclastics into pelagic carbonates is correlated with the deepening of this newly arising ocean. Within the Gresten Klippenbelt Unit, this transition is reflected by the lithostratigraphic boundary between the Tithonian marl-limestone succession and the Berriasian limestones of the Blassenstein Formation. This boundary is well exposed in a newly discovered site at Nutzhof, in the heart of Lower Austria (Kroh and Lukeneder 2009, Lukeneder 2009, Pruner, Schnabl, and Lukeneder 2009, Reháková, Halásová and Lukeneder 2009). Biostratigraphy. According to microfossil (calcareous dinoflagellates, calpionellids) and palaeomagnetic data, the association indicates that the cephalopod-bearing beds of the Nutzhof section belong to the Carpistomiosphaera tithonica-Zone of the Early Tithonian up to the Calpionella Zone of the Middle Berriasian. This interval corresponds to the ammonoid zones from the Early Tithonian Hybonoticeras hybonotum-Zone up to the Middle Berriasian Subthurmannia occitanica-Zone. Ammonoids. Late Jurassic to Early Cretaceous ammonoids were collected at the Nutzhof locality in the eastern part of the Gresten Klippenbelt in Lower Austria. The cephalopod fauna from the Blassenstein Formation, correlated with micro- and nannofossil data from the marly unit and the limestone unit, indicates Early Tithonian to Middle Berriasian age (Hybonoticeras hybonotum Zone up to the Subthurmannia occitanica Zone). According to the correlation of the fossil

  11. Uranium distribution and sandstone depositional environments: oligocene and upper Cretaceous sediments, Cheyenne basin, Colorado

    International Nuclear Information System (INIS)

    Nibbelink, K.A.; Ethridge, F.G.

    1984-01-01

    Wyoming-type roll-front uranium deposits occur in the Upper Cretaceous Laramie and Fox Hills sandstones in the Cheyenne basin of northeastern Colorado. The location, geometry, and trend of specific depositional environments of the Oligocene White River and the Upper Cretaceous Laramie and Fox Hills formations are important factors that control the distribution of uranium in these sandstones. The Fox Hills Sandstone consists of up to 450 ft (140 m) of nearshore marine wave-dominated delta and barrier island-tidal channel sandstones which overlie offshore deposits of the Pierre Shale and which are overlain by delta-plain and fluvial deposits of the Laramie Formation. Uranium, which probably originated from volcanic ash in the White River Formation, was transported by groundwater through the fluvial-channel deposits of the White River into the sandstones of the Laramie and Fox Hills formations where it was precipitated. Two favorable depositional settings for uranium mineralization in the Fox Hills Sandstone are: (1) the landward side of barrier-island deposits where barrier sandstones thin and interfinger with back-barrier organic mudstones, and (2) the intersection of barrier-island and tidal channel sandstones. In both settings, sandstones were probably reduced during early burial by diagenesis of contained and adjacent organic matter. The change in permeability trends between the depositional strike-oriented barrier sandstones and the dip-oriented tidal-channel sandstones provided sites for dispersed groundwater flow and, as demonstrated in similar settings in other depositional systems, sites for uranium mineralization

  12. Cretaceous magmatism in North-Eastern India and Gondwanaland ...

    Indian Academy of Sciences (India)

    jsray

    Cretaceous magmatism of NEI: Major Objectives. • Age and duration of Sylhet Traps and its connection to Kerguelene hotspot and Gondwanaland breakup? • Age of carbonatite magmatism associated with the traps? • Relationship of basaltic-carbonatite magmatism with. Aptian (~116 Ma) Mass Extinction event? • Nature of ...

  13. Stable Isotopes Reveal Rapid Enamel Elongation (Amelogenesis) Rates for the Early Cretaceous Iguanodontian Dinosaur Lanzhousaurus magnidens.

    Science.gov (United States)

    Suarez, Celina A; You, Hai-Lu; Suarez, Marina B; Li, Da-Qing; Trieschmann, J B

    2017-11-10

    Lanzhousaurus magnidens, a large non-hadrosauriform iguanodontian dinosaur from the Lower Cretaceous Hekou Group of Gansu Province, China has the largest known herbivorous dinosaur teeth. Unlike its hadrosauriform relatives possessing tooth batteries of many small teeth, Lanzhousaurus utilized a small number (14) of very large teeth (~10 cm long) to create a large, continuous surface for mastication. Here we investigate the significance of Lanzhousaurus in the evolutionary history of iguanodontian-hadrosauriform transition by using a combination of stable isotope analysis and CT imagery. We infer that Lanzhousaurus had a rapid rate of tooth enamel elongation or amelogenesis at 0.24 mm/day with dental tissues common to other Iguanodontian dinosaurs. Among ornithopods, high rates of amelogenesis have been previously observed in hadrosaurids, where they have been associated with a sophisticated masticatory apparatus. These data suggest rapid amelogenesis evolved among non-hadrosauriform iguanodontians such as Lanzhousaurus, representing a crucial step that was exapted for the evolution of the hadrosaurian feeding mechanism.

  14. Constraints on deformation of the Southern Andes since the Cretaceous from anisotropy of magnetic susceptibility

    Science.gov (United States)

    Maffione, Marco; Hernandez-Moreno, Catalina; Ghiglione, Matias C.; Speranza, Fabio; van Hinsbergen, Douwe J. J.; Lodolo, Emanuele

    2015-12-01

    The southernmost segment of the Andean Cordillera underwent a complex deformation history characterized by alternation of contractional, extensional, and strike-slip tectonics. Key elements of southern Andean deformation that remain poorly constrained, include the origin of the orogenic bend known as the Patagonian Orocline (here renamed as Patagonian Arc), and the exhumation mechanism of an upper amphibolite facies metamorphic complex currently exposed in Cordillera Darwin. Here, we present results of anisotropy of magnetic susceptibility (AMS) from 22 sites in Upper Cretaceous to upper Eocene sedimentary rocks within the internal structural domain of the Magallanes fold-and-thrust belt in Tierra del Fuego (Argentina). AMS parameters from most sites reveal a weak tectonic overprint of the original magnetic fabric, which was likely acquired upon layer-parallel shortening soon after sedimentation. Magnetic lineation from 17 sites is interpreted to have formed during compressive tectonic phases associated to a continuous N-S contraction. Our data, combined with the existing AMS database from adjacent areas, show that the Early Cretaceous-late Oligocene tectonic phases in the Southern Andes yielded continuous contraction, variable from E-W in the Patagonian Andes to N-S in the Fuegian Andes, which defined a radial strain field. A direct implication is that the exhumation of the Cordillera Darwin metamorphic complex occurred under compressive, rather than extensional or strike-slip tectonics, as alternatively proposed. If we agree with recent works considering the curved Magallanes fold-and-thrust belt as a primary arc (i.e., no relative vertical-axis rotation of the limbs occurs during its formation), then other mechanisms different from oroclinal bending should be invoked to explain the documented radial strain field. We tentatively propose a kinematic model in which reactivation of variably oriented Jurassic faults at the South American continental margin controlled

  15. Accreted fragments of the Late Cretaceous Caribbean Colombian Plateau in Ecuador

    Science.gov (United States)

    Mamberti, Marc; Lapierre, Henriette; Bosch, Delphine; Jaillard, Etienne; Ethien, Raynald; Hernandez, Jean; Polvé, Mireille

    2003-02-01

    The eastern part of the Western Cordillera of Ecuador includes fragments of an Early Cretaceous (≈123 Ma) oceanic plateau accreted around 85-80 Ma (San Juan-unit). West of this unit and in fault contact with it, another oceanic plateau sequence (Guaranda unit) is marked by the occurrence of picrites, ankaramites, basalts, dolerites and shallow level gabbros. A comparable unit is also exposed in northwestern coastal Ecuador (Pedernales unit). Picrites have LREE-depleted patterns, high ɛNd i and very low Pb isotopic ratios, suggesting that they were derived from an extremely depleted source. In contrast, the ankaramites and Mg-rich basalts are LREE-enriched and have radiogenic Pb isotopic compositions similar to the Galápagos HIMU component; their ɛNd i are slightly lower than those of the picrites. Basalts, dolerites and gabbros differ from the picrites and ankaramites by flat rare earth element (REE) patterns and lower ɛNd; their Pb isotopic compositions are intermediate between those of the picrites and ankaramites. The ankaramites, Mg-rich basalts, and picrites differ from the lavas from the San Juan-Multitud Unit by higher Pb ratios and lower ɛNd i. The Ecuadorian and Gorgona 88-86 Ma picrites are geochemically similar. The Ecuadorian ankaramites and Mg-rich basalts share with the 92-86 Ma Mg-rich basalts of the Caribbean-Colombian Oceanic Plateau (CCOP) similar trace element and Nd and Pb isotopic chemistry. This suggests that the Pedernales and Guaranda units belong to the Late Cretaceous CCOP. The geochemical diversity of the Guaranda and Pedernales rocks illustrates the heterogeneity of the CCOP plume source and suggests a multi-stage model for the emplacement of these rocks. Stratigraphic and geological relations strongly suggest that the Guaranda unit was accreted in the late Maastrichtian (≈68-65 Ma).

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Thefaulted Moho geometry with maximum stretching in the Cauvery basin indicates shearing or low angle rifting at the time of breakup between India–Sri Lanka and the East Antarctica. However, the additional stretching observed in the Cauvery basin region could be ascribed to the subsequent rifting of Sri Lanka from India ...

  17. Redescription of Tijubina pontei, an Early Cretaceous lizard (Reptilia; Squamata from the Crato Formation of Brazil

    Directory of Open Access Journals (Sweden)

    Tiago R. Simões

    2012-03-01

    Full Text Available The record of Gondwanan Mesozoic lizards is very poor. Among the few species described for this region there is Tijubina pontei, an Early Cretaceous lizard from the Crato Formation (late Aptian of northeast Brazil. Its description is very brief and lacks most of its diagnostic characters and clear delimitation from other lizard species. Here, a full redescription of the holotype is provided. T. pontei is demonstrated to be a valid species and a new diagnosis is provided with reference to Olindalacerta brasiliensis, a contemporary species of the Crato Formation. It lacks the posteroventral and posterodorsal processes of the dentary; the tibial/fibular length equals the femoral length and its posterior dentary teeth are robust, cylindrically based, unsculptured and bear no cuspids. The systematic position of T. pontei still needs further clarification, but preliminary analyses indicate that it lies in a rather basal position among the Squamata, similarly to O. brasiliensis.O registro de lagartos do Mesozóico de Gondwana é extremamente limitado. Dentre as poucas espécies descritas para esta região está Tijubina pontei, um lagarto do Cretáceo Inferior da Formação Crato (Aptiano superior do nordeste do Brasil. A sua descrição é muito breve e não contém a maioria dos seus caracteres diagnósticos ou uma clara delimitação das outras espécies de lagartos. Neste trabalho, uma redescrição completa do holótipo, é provida. É demonstrado que T. pontei é espécie válida, e uma nova diagnose é provida com referência à Olindalacerta brasiliensis, uma espécie contemporânea da Formação Crato. Ele não possui os processos posteroventral e posterodorsal do dentário; o comprimento tibilar/fibular é relativamente igual ao comprimento do fêmur e os seus dentes posteriores no dentário são robustos, de base cilindrica, sem ornamentações e sem cúspides. Embora a posição sistemática de T. pontei ainda necessite de maiores

  18. An Ornithopod-Dominated Tracksite from the Lower Cretaceous Jiaguan Formation (Barremian?Albian) of Qijiang, South-Central China: New Discoveries, Ichnotaxonomy, Preservation and Palaeoecology

    OpenAIRE

    Xing, Lida; Lockley, Martin G.; Marty, Daniel; Zhang, Jianping; Wang, Yan; Klein, Hendrik; McCrea, Richard T.; Buckley, Lisa G.; Belvedere, Matteo; Mateus, Oct?vio; Gierli?ski, Gerard D.; Pi?uela, Laura; Persons, W. Scott; Wang, Fengping; Ran, Hao

    2015-01-01

    This research was supported by a special project grant of the Qijiang District Bureau of Land Resources, Chongqing (No. QDBLR-2007-2015) (LX); the Research of Paleoenvironment in Early Cretaceous Qijiang Dinosaur Assemblage (No. CQGT-KJ-2014057) (HD, LX) and the National Natural Science Foundation of China (No. 41402017) (YW). The historically-famous Lotus Fortress site, a deep 1.5-3.0-meter-high, 200-meter-long horizonal notch high up in near-vertical sandstone cliffs comprising the Creta...

  19. Sedimentology and sequence stratigraphy from outcrops of the Kribi-Campo sub-basin: Lower Mundeck Formation (Lower Cretaceous, southern Cameroon)

    Science.gov (United States)

    Ntamak-Nida, Marie Joseph; Bourquin, Sylvie; Makong, Jean-Claude; Baudin, François; Mpesse, Jean Engelbert; Ngouem, Christophe Itjoko; Komguem, Paul Bertrand; Abolo, Guy Martin

    2010-08-01

    The Kribi-Campo sub-basin is composed of an Early to Mid Cretaceous series from West Africa's Atlantic coast and is located in southern Cameroon in the Central African equatorial rain forest. It is the smallest coastal basin in Cameroon and forms the southern part of the Douala/Kribi-Campo basin known as Douala basin ( s.l.). Until now, no detailed sedimentological studies have been carried out on the outcrops of this basin located in the Campo area. The aim of this study was to characterise the depositional environments, vertical evolution and tectonic context of these Lower Cretaceous series in order to make a comparison with adjacent basins and replace them in the geodynamic context. Facies analysis of the Lower Mundeck Formation (Lower Cretaceous) indicates the presence of four major, interfigered facies associations, that are inferred to represent elements of an alluvial to lacustrine-fan delta system. The clast lithologies suggest proximity of relief supplying coarse-grained sediment during the deposition of the Lower Mundeck Formation at Campo. The general dip and direction of the bedding is approximately 10°-12°NW, which also corresponds to the orientation of the foliations in the underlying metamorphic basement. The main sedimentary succession is characterised by a major retrogradational/progradational cycle of Late Aptian age, evaluated at about 3 Ma, with a well-developed progradational trend characterised by fluctuations of the recognised depositional environments. Fluctuations in lake level and sediment supply were possibly controlled by active faults at the basin margin, although climatic changes may have also played a role. The consistently W-WNW palaeoflow of sediments suggests that the palaeorelief was located to the east and could be oriented in a NNE-SSW direction, downthrown to the west. Local outcrops dated as Albian, both north and south of the main outcrop, display some marine influence. These deposits are cut by 040-060 faults parallel to

  20. ) Organic Facies Variations in the Middle Cretaceous Black Shales of the Abakaliki Fold Belt, South-East, Nigeria

    International Nuclear Information System (INIS)

    Ehinola, O. A.; Badejoko, T.A.; Ekweozor, C.M.; Adebowale, K. O.

    2003-01-01

    An assessment, based on organic facies characteristics, have been carried out on the middle Cretaceous black shales, in order to determine their hydrocarbon source potential, thermal maturity, and depositional environments. The methods employed include evaluation of organic carbon content, rockeval pyrolysis, extractable organic matter, maceral composition and biomarker distributions.Organic facies criteria such as TOC, HI, Tmax, liptinite content, SOMIFOC and SHC/AHC indicate that Albian to middle Cenomanian shales are could only generate gas. The late Cenomanian to early Turonian shales are characterized by Type I/II kerogen, mature and could generate both oil and characterized by Type III kerogen, immature and could generate gas with little oil. The biomarker distributions indicate immature to mature source rock, moderately biodegraded and with reduced marine environment prevailing during the deposition of the lack shales. The late Cenomanian to early Turonian black shales show the highest source-rock potential

  1. The end-Cretaceous in the southwestern Tethys (Elles, Tunisia)

    DEFF Research Database (Denmark)

    Thibault, Nicolas Rudolph; Galbrun, Bruno; Gardin, Silvia

    2016-01-01

    An integrated study of magnetic mass susceptibility (MS), bulk stable isotopes and calcareous nannofossil paleoecological changes is undertaken on the late Maastrichtian of the Elles section, Tunisia, spanning the last ca. 1 Myr of the Cretaceous. A cyclostratigraphic analysis reveals the presenc...

  2. Explosive radiation of Malpighiales supports a mid-cretaceous origin of modern tropical rain forests.

    Science.gov (United States)

    Davis, Charles C; Webb, Campbell O; Wurdack, Kenneth J; Jaramillo, Carlos A; Donoghue, Michael J

    2005-03-01

    Fossil data have been interpreted as indicating that Late Cretaceous tropical forests were open and dry adapted and that modern closed-canopy rain forest did not originate until after the Cretaceous-Tertiary (K/T) boundary. However, some mid-Cretaceous leaf floras have been interpreted as rain forest. Molecular divergence-time estimates within the clade Malpighiales, which constitute a large percentage of species in the shaded, shrub, and small tree layer in tropical rain forests worldwide, provide new tests of these hypotheses. We estimate that all 28 major lineages (i.e., traditionally recognized families) within this clade originated in tropical rain forest well before the Tertiary, mostly during the Albian and Cenomanian (112-94 Ma). Their rapid rise in the mid-Cretaceous may have resulted from the origin of adaptations to survive and reproduce under a closed forest canopy. This pattern may also be paralleled by other similarly diverse lineages and supports fossil indications that closed-canopy tropical rain forests existed well before the K/T boundary. This case illustrates that dated phylogenies can provide an important new source of evidence bearing on the timing of major environmental changes, which may be especially useful when fossil evidence is limited or controversial.

  3. Taxonomic composition and trophic structure of the continental bony fish assemblage from the early late cretaceous of Southeastern Morocco.

    Science.gov (United States)

    Cavin, Lionel; Boudad, Larbi; Tong, Haiyan; Läng, Emilie; Tabouelle, Jérôme; Vullo, Romain

    2015-01-01

    The mid-Cretaceous vertebrate assemblage from south-eastern Morocco is one of the most diversified continental vertebrate assemblages of this time worldwide. The bony fish component (coelacanths, lungfishes and ray-finned fishes) is represented by relatively complete specimens and, mostly, by fragmentary elements scattered along 250 kilometres of outcrops. Here we revisit the bony fish assemblage by studying both isolated remains collected during several fieldtrips and more complete material kept in public collections. The assemblage comprises several lungfish taxa, with the first mention of the occurrence of Arganodus tiguidiensis, and possibly two mawsoniid coelacanths. A large bichir cf. Bawitius, is recorded and corresponds to cranial elements initially referred to 'Stromerichthys' from coeval deposits in Egypt. The ginglymodians were diversified with a large 'Lepidotes' plus two obaichthyids and a gar. We confirm here that this gar belongs to a genus distinctive from Recent gars, contrary to what was suggested recently. Teleosteans comprise a poorly known ichthyodectiform, a notopterid, a probable osteoglossomorph and a large tselfatiiform, whose cranial anatomy is detailed. The body size and trophic level for each taxon are estimated on the basis of comparison with extant closely related taxa. We plotted the average body size versus average trophic level for the Kem Kem assemblage, together with extant marine and freshwater assemblages. The Kem Kem assemblage is characterized by taxa of proportionally large body size, and by a higher average trophic level than the trophic level of the extant compared freshwater ecosystems, but lower than for the extant marine ecosystems. These results should be regarded with caution because they rest on a reconstructed assemblage known mostly by fragmentary remains. They reinforce, however, the ecological oddities already noticed for this mid-Cretaceous vertebrate ecosystem in North Africa.

  4. Dinosaur tracks from the Cedar Mountain Formation (Lower Cretaceous), Arches National Park, Utah

    Science.gov (United States)

    Lockley, Martin G.; White, Diane K.; Kirkland, James I.; Santucci, Vincent L.

    2004-01-01

    The seventh and largest known dinosaur tracksite from the Cedar Mountain Formation is reported from two important stratigraphic levels in the Ruby Ranch Member within the boundaries of Arches National Park. Previous reports of sites with a few isolated tracks are of limited utility in indicating the fauna represented by track makers. The Arches site reveals evidence of several theropod morphotypes, including a possible match for the coelurosaur Nedcolbertia and an apparently didactyl Utahraptor-like dromeosaurid. Sauropod tracks indicate a wide-gauge morphotype (cf. Brontopodus). Ornithischian tracks suggest the presence of an iguandontid-like ornithopod and a large ankylosaur. Dinosaur track diversity is high in comparison with other early Cretaceous vertebrate ichnofaunas, and it correlates well with faunal lists derived from skeletal remains, thus providing a convincing census of the known fauna.

  5. Extended Late-Cretaceous Magnetostratigraphy of the James Ross Basin Island, Antarctica

    Science.gov (United States)

    Chaffee, T. M.; Mitchell, R.; Slotznick, S. P.; Buz, J.; Biasi, J.; O'Rourke, J.; Sousa, F.; Flannery, D.; Fu, R. R.; Kirschvink, J. L.

    2017-12-01

    Sediments in the James Ross Island Basin (JRB) in the West Antarctic Peninsula contain one of the world's highest-resolution records of the late Cretaceous period, including the end-Cretaceous (K-Pg) mass extinction event. However, the geological record of this region has been poorly studied, limited in the past only to the relative dating of local fossils. Recent studies of this region have provided only low-resolution data, with gaps of greater than 0.5 million years between samples where no data was collected. A high-resolution magnetostratigraphic sampling and analysis is necessary in order to accurately determine the age of the JRB sediments and connect them to the global time record. During the 2016 field season in Antarctica, our team collected nearly 1,300 sample cores from JRB sediments using a diamond-tipped, gasoline powered coring drill. Drill sites were densely clustered across bedding in order to obtain a high-resolution record of magnetostratigraphy, permitting the recognition of distinct, high-resolution units of time (group of over 300 of these samples from the Brandy Bay area which constrain the end of the Cretaceous Superchron (C34N) and the C34N/C34R reversal and allow us to investigate the presence of geomagnetic excursions before the end of superchron. These samples span in age from the top of C34N to the mid-Maastrichtian. We also test the Late Cretaceous True Polar Wander (TPW) hypothesis. Current theories on the global extent of TPW are not substantiated by any data sets that confirm the presence and similarity of the effect across multiple continents. Evidence of a rapid TPW oscillation in Antarctica can be correlated with other samples from the North American continent currently under study to provide evidence for the theory of global, short-timescale TPW.

  6. A Cretaceous eutriconodont and integument evolution in early mammals.

    Science.gov (United States)

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D

    2015-10-15

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  7. Evolution of magmatism from the uppermost cretaceous to Oligocene, and its relationship to changing tectonic regime, in the Inca de Oro-El Salvador area (Northern Chile)

    International Nuclear Information System (INIS)

    Cornejo, Paula; Matthews, Stephen

    2001-01-01

    We present geochronological and petrological data for extrusive and intrusive rocks in the Inca de Oro and El Salvador sheets (in prep.), and the Potrerillos (Tomlinson et al., 1999) and Salar de Maricunga sheets (Cornejo et al., 1998), III Region, Chile (26 o -27 o S). Most of these data were collected as part of the SERNAGEOMIN regional mapping programme. Additionally, we include published data for El Salvador and Potrerillos districts (Cornejo et al., 1997; Marsh et al., 1997; Gustafson et al., 2001). The dataset includes K/Ar, Ar/Ar and U-Pb mineral ages, which have been carefully selected for quality. The area is underlain by Carboniferous-Permian granitic basement rocks, which are covered by Triassic to Early Upper Cretaceous volcanic and sedimentary successions, including both marine and continental sequences (Cornejo et al., 1993). The period studied in this paper includes extrusive and intrusive rocks of Maastrichtian to Oligocene age, which are of particular interest since they record the 'preparation' of the lithosphere prior to, during, and after the mid-Eocene Incaic deformation and associated porphyry copper event. Shortening in the early-upper Cretaceous (95-85Ma; e.g. Mpodozis and Ramos, 1989; Arevalo and Grocott, 2000) deformed large areas of northen Chile, and marked the transition from the dominance of intra-arc extension to that of shortening punctuated by periods of extension. We recognise seven tectono-magmatic periods from the uppermost Cretaceous to Oligocene, comprising a volcanic sedimentary event contemporaneous with an extensional tectonic regime in the Upper Cretaceous, associated with graben formation, followed by an important compressive event at the beginning of the Tertiary. The middle Paleocene was again dominated by voluminous volcanic activity (collapse calderas) in an extensional regime. During the lowest Eocene the magmatic activity in the area shows a gradual transition from pyroxene-bearing to amphibole-bearing lithologies

  8. MORPHOLOGY, TAXONOMY AND DISTRIBUTION OF THE CRETACEOUS CORAL GENUS PREVERASTRAEA (LATE BARREMIAN-CENOMANIAN; SCLERACTINIA

    Directory of Open Access Journals (Sweden)

    HANNES LÖSER

    2007-03-01

    Full Text Available The Cretaceous coral genus Preverastraea is being revised, mainly on the basis of sample material. This cerioid, occasionally astreoid or phaceloid, genus is characterised by round or polygonal calices, compact septa in a regular hexameral symmetry and lonsdaleoid septa. The wall is of the same structure as the septa. The genera Bogdanovicoenia, Paraacanthogyra, and Saxuligyra are considered synonyms of Preverastraea. Related genera are Aulastraeopora and Apoplacophyllia, which only differ by their solitary or dendroid growth forms. There are altogether 13 species of Preverastraea. The genus, which occurred worldwide, is restricted to the period from the Late Barremian to the Late Cenomanian, being most common in the Aptian to Early Albian. Eighty-three samples are either known from the literature or have been to hand. This makes Preverastraea a rather rare genus. 

  9. Late Cretaceous and Cenozoic exhumation history of the Malay Peninsula

    Science.gov (United States)

    François, Thomas; Daanen, Twan; Matenco, Liviu; Willingshofer, Ernst; van der Wal, Jorien

    2015-04-01

    The evolution of Peninsular Malaysia up to the collisional period in the Triassic is well described but the evolution since the collision between Indochina and the Sukhothai Arc in Triassic times is less well described in the literature. The processes affecting Peninsular Malaysia during the Jurassic up to current day times have to explain the emplacement multiple intrusions (the Stong Complex, and the Kemahang granite), the Jurassic/Cretaceous onland basins, the Cenozoic offshore basins, and the asymmetric extension, which caused the exhumation of Taku Schists dome. The orogenic period in Permo-Triassic times, which also formed the Bentong-Raub suture zone, resulted in thickening of the continental crust of current day Peninsular Malaysia due to the collision of the Indochina continental block and the Sukhothai Arc, and is related to the subduction of oceanic crust once present between these continental blocks. The Jurassic/Cretaceous is a period of extension, resulting in the onland Jurassic/Cretaceous basins, synchronous melting of the crust, resulting in the emplacement Stong Complex and the Kemahang granite and thinning of the continental crust on the scale of the Peninsular, followed by uplift of the Peninsular. Different models can explain these observations: continental root removal, oceanic slab detachment, or slab delamination. These models all describe the melting of the lower crust due to asthenospheric upwelling, resulting in uplift and subsequent extension either due to mantle convective movements or gravitational instabilities related to uplift. The Cenozoic period is dominated by extension and rapid exhumation in the area as documented by low temperature thermocrological ages The extension in this period is most likely related to the subduction, which resumed at 45 Ma, of the Australian plate beneath the Eurasian plate after it terminated in Cretaceous times due to the collision of an Australian microcontinental fragment with the Sunda margin in the

  10. Patterns of larval development in Cretaceous pipid frogs

    Czech Academy of Sciences Publication Activity Database

    Roček, Zbyněk; van Dijk, E.

    2006-01-01

    Roč. 51, č. 1 (2006), s. 111-126 ISSN 0567-7920 R&D Projects: GA AV ČR IAA3013206 Institutional research plan: CEZ:AV0Z30130516 Keywords : Anura * Pipidae * Cretaceous Subject RIV: EG - Zoology Impact factor: 1.076, year: 2006 http://app.pan.pl/archive/published/app51/app51-111.pdf

  11. Nonexplosive and explosive magma/wet-sediment interaction during emplacement of Eocene intrusions into Cretaceous to Eocene strata, Trans-Pecos igneous province, West Texas

    Science.gov (United States)

    Befus, K.S.; Hanson, R.E.; Miggins, D.P.; Breyer, J.A.; Busbey, A.B.

    2009-01-01

    Eocene intrusion of alkaline basaltic to trachyandesitic magmas into unlithified, Upper Cretaceous (Maastrichtian) to Eocene fluvial strata in part of the Trans-Pecos igneous province in West Texas produced an array of features recording both nonexplosive and explosive magma/wet-sediment interaction. Intrusive complexes with 40Ar/39Ar dates of ~ 47-46??Ma consist of coherent basalt, peperite, and disrupted sediment. Two of the complexes cutting Cretaceous strata contain masses of conglomerate derived from Eocene fluvial deposits that, at the onset of intrusive activity, would have been > 400-500??m above the present level of exposure. These intrusive complexes are inferred to be remnants of diatremes that fed maar volcanoes during an early stage of magmatism in this part of the Trans-Pecos province. Disrupted Cretaceous strata along diatreme margins record collapse of conduit walls during and after subsurface phreatomagmatic explosions. Eocene conglomerate slumped downward from higher levels during vent excavation. Coherent to pillowed basaltic intrusions emplaced at the close of explosive activity formed peperite within the conglomerate, within disrupted Cretaceous strata in the conduit walls, and within inferred remnants of the phreatomagmatic slurry that filled the vents during explosive volcanism. A younger series of intrusions with 40Ar/39Ar dates of ~ 42??Ma underwent nonexplosive interaction with Upper Cretaceous to Paleocene mud and sand. Dikes and sills show fluidal, billowed, quenched margins against the host strata, recording development of surface instabilities between magma and groundwater-rich sediment. Accentuation of billowed margins resulted in propagation of intrusive pillows into the adjacent sediment. More intense disruption and mingling of quenched magma with sediment locally produced fluidal and blocky peperite, but sufficient volumes of pore fluid were not heated rapidly enough to generate phreatomagmatic explosions. This work suggests that

  12. Exhumation of the Cordillera de Domeyko: Implications for Andean retroarc evolution between the Late Cretaceous and the Oligocene

    Science.gov (United States)

    Henriquez, S.; Carrapa, B.; DeCelles, P. G.

    2017-12-01

    In Cordilleran-type orogens, exhumation of the thrust belt records the kinematic history of the orogenic system. In the Central Andes, the widest and thickest part of this orogen, several authors have documented the exhumation of the thrust belt in the modern forearc (Chile) and retroarc region (Bolivia and Argentina) showing an overall eastward propagation of deformation since the late Eocene. However, the exhumation of earlier Andean retroarc tectonic events remains poorly documented. In the forearc, the Cordillera de Domeyko and Salar de Atacama basin exhibit multiple pieces of evidence for earlier Andean orogenesis. The goal of this study is to document the thermal record of Late Cretaceous to Eocene retroarc deformation. To this end, this study investigates the cooling history of the easternmost basement uplift of the Cordillera de Domeyko. We couple this record with detrital thermochronology from cobbles in the Late Cretaceous to Miocene sedimentary units from the Salar de Atacama basin which records the unroofing history of this uplift. We employed a multi-dating approach combining apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) thermochronology to constrain the timing and amount of exhumation in the early Andean retroarc region. Our results show episodic cooling ca. 90-80, 65-60 and 45-40 Ma. This new data provides a thermochronologic record of Late Cretaceous and Paleocene deformation in the retroarc region as well as of the widely recognized Eocene deformation event. The cooling signal is interpreted to reflect exhumation controlled by uplift and erosion in the retroarc region. These exhumation events reflect episodes of internal deformation, crustal thickening, and roughly similar amounts of local erosion. Exhumation in this region decreased by the late Oligocene; by this time the orogenic front was established to the east, in the Eastern Cordillera.

  13. Evidence for global cooling in the Late Cretaceous

    Science.gov (United States)

    Linnert, Christian; Robinson, Stuart A.; Lees, Jackie A.; Bown, Paul R.; Pérez-Rodríguez, Irene; Petrizzo, Maria Rose; Falzoni, Francesca; Littler, Kate; Arz, José Antonio; Russell, Ernest E.

    2014-01-01

    The Late Cretaceous ‘greenhouse’ world witnessed a transition from one of the warmest climates of the past 140 million years to cooler conditions, yet still without significant continental ice. Low-latitude sea surface temperature (SST) records are a vital piece of evidence required to unravel the cause of Late Cretaceous cooling, but high-quality data remain illusive. Here, using an organic geochemical palaeothermometer (TEX86), we present a record of SSTs for the Campanian–Maastrichtian interval (~83–66 Ma) from hemipelagic sediments deposited on the western North Atlantic shelf. Our record reveals that the North Atlantic at 35 °N was relatively warm in the earliest Campanian, with maximum SSTs of ~35 °C, but experienced significant cooling (~7 °C) after this to <~28 °C during the Maastrichtian. The overall stratigraphic trend is remarkably similar to records of high-latitude SSTs and bottom-water temperatures, suggesting that the cooling pattern was global rather than regional and, therefore, driven predominantly by declining atmospheric pCO2 levels. PMID:24937202

  14. Late Cretaceous neosuchian crocodiles from the Sultanate of Oman

    NARCIS (Netherlands)

    Buscalioni, Angela D.; Schulp, Anne S.; Jagt, John W M; Hanna, Samir S.; Hartman, Axel Frans

    Two apparently new crocodilian taxa from the Late Cretaceous (Late Campanian-Maastrichtian) Al-Khod Conglomerate of the Sultanate of Oman are described. The fragmentary state of preservation precludes formal naming, yet enables comparisons to be made with other taxa. One is a short-snouted

  15. Cu-Ag Besshi type volcanogenic massive sulfide mineralization in the Late Cretaceous volcano- sedimentary sequence: the case of Garmabe Paein deposit, southeast of Shahrood

    Directory of Open Access Journals (Sweden)

    Majid Tashi

    2017-07-01

    Full Text Available Introduction Iran hosts numerous types of Volcanogenic massive sulfide (VMS deposits that occur within different tectonic assemblages and have formed at discrete time periods (Mousivand et al. 2008. The Sabzevar zone hosts several VMS deposits including the Nudeh Cu-Ag deposit (Maghfouri, 2012 and some deposits in the Kharturan area (Tashi et al., 2014, and the Kharturan area locates in the Sabzevar subzone of the Central East Iranian Microcontinent. The Sabzevar subzone mainly involves Mesozoic and Cenozoic rock unites. The Late Cretaceous ophiolite mellanges and volcano-sedimentary sequences have high extension in the Subzone. Based on Rossetti (Rossetti et al. 2010, the Cretaceous rock units were formed in a back-arc setting due to subduction of the Neo-Tethyan oceanic crust beneath the Iranian plate. The exposed rock units of the Kharturan area from bottom to top are dominated by Early Cretaceous, orbitolina-bearing massive limestone, dacitic-andesitic volcanics and related volcaniclastic rocks٫ chert and radiolarite and Late Cretaceous globotrunkana- bearing limestone, paleocene polygenic conglomerate consisting of the Cretaceous volcanics and limestone pebbles (equal to the Kerman conglomerate, and Pliocene weakly-cemented polygenic conglomerate horizon. The Garmabe Paein copper-silver deposit and the Asbkeshan deposit and a few occurrences, are located at 290 km southeast of Shahrood and they have occurred within the Upper Cretaceous volcano-sedimentary sequence in the Sabzevar subzone. The aim of this study is to discuss the genesis of the Garmabe Paein deposit based on geological, textural and structural, mineralogical and geochemical evidence. Materials and methods A field study and sampling was performed during the year 2013. During the field observations, 94 rock samples were collected from the study area, and 45 thin sections were prepared and studied using a polarizing microscope. Also, 5 samples for the XRD method, 21 samples for

  16. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs

    Science.gov (United States)

    Lockley, Martin G.; McCrea, Richard T.; Buckley, Lisa G.; Deock Lim, Jong; Matthews, Neffra A.; Breithaupt, Brent H.; Houck, Karen J.; Gierliński, Gerard D.; Surmik, Dawid; Soo Kim, Kyung; Xing, Lida; Yong Kong, Dal; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-01

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of “display arenas” or leks, and consistent with “nest scrape display” behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.

  17. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs.

    Science.gov (United States)

    Lockley, Martin G; McCrea, Richard T; Buckley, Lisa G; Lim, Jong Deock; Matthews, Neffra A; Breithaupt, Brent H; Houck, Karen J; Gierliński, Gerard D; Surmik, Dawid; Kim, Kyung Soo; Xing, Lida; Kong, Dal Yong; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-07

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of "display arenas" or leks, and consistent with "nest scrape display" behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.

  18. ENSO-Type Signals Recorded in the Late Cretaceous Laminated Sediments of Songliao Basin, Northeast China

    Science.gov (United States)

    Yu, E.; Wang, C.; Hinnov, L. A.; Wu, H.

    2014-12-01

    The quasi-periodic, ca. 2-7 year El Niño Southern Oscillation (ENSO) phenomenon globally influences the inter-annual variability of temperature and precipitation. Global warming may increase the frequency of extreme ENSO events. Although the Cretaceous plate tectonic configuration was different from today, the sedimentary record suggests that ENSO-type oscillations had existed at the time of Cretaceous greenhouse conditions. Cored Cretaceous lacustrine sediments from the Songliao Basin in Northeast China (SK-1 cores from the International Continental Drilling Program) potentially offer a partially varved record of Cretaceous paleoclimate. Fourteen polished thin sections from the depth interval 1096.12-1096.53 m with an age of 84.4 Ma were analyzed by optical and scanning electron microscopy (SEM). ImageJ software was applied to extract gray scale curves from optical images at pixel resolution. We tracked minimum values of the gray scale curves to estimate the thickness of each lamina. Five sedimentary structures were recognized: flaser bedding, wavy bedding, lenticular bedding, horizontal bedding, and massive layers. The mean layer thicknesses with different sedimentary structures range from 116 to 162mm, very close to the mean sedimentation rate estimated for this sampled interval, 135mm/year, indicating that the layers bounded by pure clay lamina with the minimum gray values are varves. SEM images indicate that a varve is composed, in succession, of one lamina rich in coarse silt, one lamina rich in fine silt, one clay-rich lamina with some silt, and one clay-rich lamina. This suggests that a Cretaceous year featured four distinct depositional seasons, two of which were rainy and the others were lacking precipitation. Spectral analysis of extended intervals of the tuned gray scale curve indicates the presence of inter-annual periodicities of 2.2-2.7 yr, 3.5-6.1 year, and 10.1-14.5 year consistent with those of modern ENSO cycles and solar cycles, as well as

  19. The mid-cretaceous water bearer: Isotope mass balance quantification of the Albian hydrologic cycle

    Science.gov (United States)

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2002-01-01

    A latitudinal gradient in meteoric ??18O compositions compiled from paleosol sphaerosiderites throughout the Cretaceous Western Interior Basin (KWIB) (34-75??N paleolatitude) exhibits a steeper, more depleted trend than modern (predicted) values (3.0??? [34??N latitude] to 9.7??? [75??N] lighter). Furthermore, the sphaerosiderite meteoric ??18O latitudinal gradient is significantly steeper and more depleted (5.8??? [34??N] to 13.8??? [75??N] lighter) than a predicted gradient for the warm mid-Cretaceous using modern empirical temperature-??18O precipitation relationships. We have suggested that the steeper and more depleted (relative to the modern theoretical gradient) meteoric sphaerosiderite ??18O latitudinal gradient resulted from increased air mass rainout effects in coastal areas of the KWIB during the mid-Cretaceous. The sphaerosiderite isotopic data have been used to constrain a mass balance model of the hydrologic cycle in the northern hemisphere and to quantify precipitation rates of the equable 'greenhouse' Albian Stage in the KWIB. The mass balance model tracks the evolving isotopic composition of an air mass and its precipitation, and is driven by latitudinal temperature gradients. Our simulations indicate that significant increases in Albian precipitation (34-52%) and evaporation fluxes (76-96%) are required to reproduce the difference between modern and Albian meteoric siderite ??18O latitudinal gradients. Calculations of precipitation rates from model outputs suggest mid-high latitude precipitation rates greatly exceeded modern rates (156-220% greater in mid latitudes [2600-3300 mm/yr], 99% greater at high latitudes [550 mm/yr]). The calculated precipitation rates are significantly different from the precipitation rates predicted by some recent general circulation models (GCMs) for the warm Cretaceous, particularly in the mid to high latitudes. Our mass balance model by no means replaces GCMs. However, it is a simple and effective means of obtaining

  20. Press/Pulse: Explaining selective terrestrial extinctions at the Cretaceous/Palaeogene boundary

    Science.gov (United States)

    Arens, Nan Crystal

    2010-05-01

    Single-cause mass extinction scenarios require extreme conditions to generate sufficiently strong kill mechanisms. Such dire effects are commonly at odds with the taxonomic selectivity that characterizes most extinction events. In response, some researchers have proposed that the interaction of a variety of factors typify episodes of elevated extinction. Previous work (Arens & West 2008 Paleobiology 34:456-471) has shown that a combination of press and pulse disturbances increases the probability of elevated extinction. The press/pulse contrast is borrowed from community ecology, where researchers have long recognized that the ecological response to long-term stress differs from that of an instantaneous catastrophe. Scaled to the macroevolutionary level, press disturbances alter community composition by placing multigenerational stress on populations. Press disturbances do not necessarily cause mortality, but reduce population size by a variety of mechanisms such as curtailed reproduction. Pulse disturbances are sudden catastrophic events that cause extensive mortality. Either press or pulse disturbances of sufficient magnitude can cause extinction, however elevated extinction occurs more commonly during the coincidence of lower-magnitude press and pulse events. The Cretaceous/Palaeogene (K/P) extinction is one of the best examples of a press/pulse extinction. Deccan Trap volcanism, which straddled the K/P boundary, altered atmospheric composition and climate. This episodic volcanism likely contributed to the climate instability observed in terrestrial ecosystems and exerted press stress. Pulse disturbance was produced by bolide impact, which punctuated the end of the Cretaceous. The press/pulse mechanism also more effectively explains selectivity in terrestrial vertebrate and plant extinctions at the K/P boundary than do single-mechanisms scenarios. For example, why do environmentally sensitive vertebrates such as amphibians experience no extinction? And why do

  1. Sedimentary environments and hydrocarbon potential of cretaceous rocks of indus basin, Pakistan

    International Nuclear Information System (INIS)

    Sheikh, S.A.; Naseem, S.

    1999-01-01

    Cretaceous rocks of Indus Basin of Pakistan are dominated by clastics with subordinate limestone towards the top. These rocks represent shelf facies and were deposited in deltaic to reducing marine conditions at variable depths. Indications of a silled basin with restricted circulation are also present. Cretaceous fine clastics/carbonates have good source and reservoir qualities. Variable geothermal gradients in different parts of basin have placed these rocks at different maturity levels; i.e. from oil to condensate and to gas. The potential of these rocks has been proved by several oil and gas discoveries particularly in the Central and Southern provinces of Indus Basin. (author)

  2. A sequence of events across the Cretaceous-Tertiary boundary

    NARCIS (Netherlands)

    Smit, J.; Romein, A.J.T.

    1985-01-01

    The lithological and biological sequence of events across the Cretaceous-Tertiary (K/T), as developed in thick and complete landbased sections and termed the standard K/T event sequence, is also found in many DSDP cores from all over the globe. Microtektite-like spherules have been found in

  3. A new species of Allodaposuchus (Eusuchia, Crocodylia from the Maastrichtian (Late Cretaceous of Spain: phylogenetic and paleobiological implications

    Directory of Open Access Journals (Sweden)

    Alejandro Blanco

    2015-08-01

    Full Text Available Background. The Late Cretaceous is a keystone period to understand the origin and early radiation of Crocodylia, the group containing all extant lineages of crocodilians. Among the taxa described from the latest Cretaceous of Europe, the genus Allodaposuchus is one of the most common but also one of the most controversial. However, because of its fragmentary record, several issues regarding its phylogenetic emplacement and its ecology remain unsolved or unknown. The discovery of a single specimen attributed to Allodaposuchus, represented by both cranial and postcranial remains, from the Casa Fabà site (Tremp Basin, NE Spain in the lower red unit of the Tremp Fm. (early Maastrichtian, Late Cretaceous offers a unique opportunity to deepen in the phylogenetic relationships of the group and its ecological features.Methods. The specimen is described in detail, and CT scan of the skull is performed in order to study the endocranial morphology as well as paratympanic sinuses configuration. In addition, myological and phylogenetic analyses are also carried out on the specimen for to shed light in ecological and phylogenetic issues, respectively.Results. The specimen described herein represents a new species, Allodaposuchus hulki sp. nov., closely related to the Romanian A. precedens. The CT scan of the skull revealed an unexpected paratympanic sinuses configuration. Allosaposuchus hulki exhibits an “anterodorsal tympanic sinus” not observed in any other extant or extinct crocodilian. The caudal tympanic recesses are extremely enlarged, and the expanded quadratic sinus seems to be connected to the middle-ear channel. Phylogenetic analyses confirm the emplacement of the informal taxonomic group ‘Allodaposuchia’ at the base of Crocodylia, being considered the sister group of Borealosuchus and Planocraniidae.Discussion. Although this is a preliminary hypothesis, the unique paratympanic configuration displayed by A. hulki suggests that it could

  4. Carbonate deposition and salt diapirism during the Cretaceous in the Persian Gulf, offshore Iran

    OpenAIRE

    U. P. Baaske; M. Mutti; F. Baioni; R. Buonaguro; G. Bertozzi; M. A. Naini; C. M. Krawczyk; P. Kukla; R. Littke; H. Stollhofen; D. Schwarzer;  

    2004-01-01

    The Cretaceous deposits in the Persian Gulf area are part of one of the largest hydrocarbon systems in the world. The stratigraphic evolution of the northern part of the Gulf is, however, poorly constrained. Seismic data from offshore Iran reveal that the shallow water deposition is marked by topographic features like the NNE-SSW trending Qatar-Fars-Arch and salt-related structures (diapirs and salt walls) of smaller scale. These structures were active during the Cretaceous. To examine the ef...

  5. A new basal hadrosauroid dinosaur from the Late Cretaceous of Uzbekistan and the early radiation of duck-billed dinosaurs

    Science.gov (United States)

    Sues, Hans-Dieter; Averianov, Alexander

    2009-01-01

    Levnesovia transoxiana gen. et sp. nov., from the Late Cretaceous (Middle–Late Turonian) of Uzbekistan, is the oldest well-documented taxon referable to Hadrosauroidea sensu Godefroit et al. It differs from a somewhat younger and closely related Bactrosaurus from Inner Mongolia (China) by a tall sagittal crest on the parietals and the absence of club-shaped dorsal neural spines in adult specimens. Levnesovia, Bactrosaurus and possibly Gilmoreosaurus represent the earliest radiation of Hadrosauroidea, which took place during the Cenomanian–Turonian and possibly in North America. The second, Santonian-age radiation of Hadrosauroidea included Aralosaurus, Hadrosauridae and lineages leading to Tanius (Campanian) and Telmatosaurus (Maastrichtian). Hadrosauridae appears to be monophyletic, but Hadrosaurinae and Lambeosaurinae originated in North America and Asia, respectively. PMID:19386651

  6. A new basal hadrosauroid dinosaur from the Late Cretaceous of Uzbekistan and the early radiation of duck-billed dinosaurs.

    Science.gov (United States)

    Sues, Hans-Dieter; Averianov, Alexander

    2009-07-22

    Levnesovia transoxiana gen. et sp. nov., from the Late Cretaceous (Middle-Late Turonian) of Uzbekistan, is the oldest well-documented taxon referable to Hadrosauroidea sensu Godefroit et al. It differs from a somewhat younger and closely related Bactrosaurus from Inner Mongolia (China) by a tall sagittal crest on the parietals and the absence of club-shaped dorsal neural spines in adult specimens. Levnesovia, Bactrosaurus and possibly Gilmoreosaurus represent the earliest radiation of Hadrosauroidea, which took place during the Cenomanian-Turonian and possibly in North America. The second, Santonian-age radiation of Hadrosauroidea included Aralosaurus, Hadrosauridae and lineages leading to Tanius (Campanian) and Telmatosaurus (Maastrichtian). Hadrosauridae appears to be monophyletic, but Hadrosaurinae and Lambeosaurinae originated in North America and Asia, respectively.

  7. Paleoenvironmental changes across the Cretaceous/Tertiary boundary at Flaxbourne River and Woodside Creek, eastern Marlborough, New Zealand

    International Nuclear Information System (INIS)

    Hollis, C.J.; Strong, C.P.; Rodgers, K.A.; Rogers, K.M.

    2003-01-01

    An integrated study of variation in siliceous microfossils, lithofacies, and other geochemical guides to environmental conditions through the Cretaceous/Tertiary (K/T) boundary transition at Flaxbourne River and Woodside Creek, coastal eastern Marlborough, indicates that the K/T impact disrupted oceanic conditions along the continental margin of eastern New Zealand for c. 1 m.y. Initial effects of the K/T event were a major reduction in carbonate production, associated with calcareous plankton extinctions, and significant increases in terrigenous clay and biogenic silica content. An absence of radiolarian extinctions or significant negative excursions in paleo-productivity indicators (Ba, delta 13 C at the boundary, followed by rapid increases in the abundance of diatoms and spumellarian radiolarians, indicate that biogenic silica production partly compensated for the collapse in calcareous plankton. The earliest Paleocene recovery of calcareous plankton was short-lived, giving way to a progressive increase in siliceous plankton abundance over c. 500,000 yr, which culminated in a c. 400,000 yr episode of peak biogenic silica production. The dominance of siliceous facies, coupled with the abundance of diatoms and spumellarian radiolarians, indicates climatic or oceanic conditions were significantly cooler than in the Late Cretaceous. Stepped increases in biogenic silica production show c. 100,000 yr periodicity, suggesting that Early Paleocene lithofacies changes were influenced by climate forcing agents at the eccentricity bandwidth. (author). 83 refs., 11 figs., 3 tabs

  8. Astronomical calibration of the Maastrichtian (Late Cretaceous)

    DEFF Research Database (Denmark)

    Husson, Dorothée; Galbrun, Bruno; Laskar, Jacques

    2011-01-01

    /Pg boundary, considering the uncertainty of the long-term variation of the 405 ka eccentricity cycle. The first proposal provides a Cretaceous/Paleogene boundary age of 65.59 ± 0.07 Ma and the second an age of 66 ± 0.07 Ma, which is coherent with the most recent radio-isotopic datings. Magnetochron boundaries...... and the Campanian/Maastrichtian boundary are dated relative to these numerical ages of the K/Pg boundary....

  9. Palaeoenvironments and facies on a progressively flooded rocky island (Upper Cenomanian – Lower Turonian, Bohemian Cretaceous Basin)

    Czech Academy of Sciences Publication Activity Database

    Žítt, Jiří; Vodrážka, R.; Hradecká, L.; Svobodová, Marcela

    2010-01-01

    Roč. 179, - (2010), s. 223-234 ISSN 1802-6842 Institutional research plan: CEZ:AV0Z30130516 Keywords : Cretaceous island * weathering * geomorphology * sedimentary environments * biostratigraphy * Upper Cenomanian-Lower Turonian * Bohemian Cretaceous Basin Subject RIV: DB - Geology ; Mineralogy http://www.nm.cz/publikace/archiv-en.php?id=1&rok=179&f_=Show

  10. Soil development on loess overlying Cretaceous sediments and Devonian limestones

    Czech Academy of Sciences Publication Activity Database

    Žigová, Anna; Šťastný, Martin

    2015-01-01

    Roč. 12, č. 3 (2015), s. 267-278 ISSN 1214-9705 Institutional support: RVO:67985831 Keywords : loess * Cretaceous and Devonian rocks * mineral composition * soil development * Luvic Chernozem * Albic Luvisol Subject RIV: DF - Soil Science Impact factor: 0.561, year: 2015

  11. Late Cretaceous paleosols as paleoclimate proxies of high-latitude Southern Hemisphere: Mata Amarilla Formation, Patagonia, Argentina

    Science.gov (United States)

    Varela, Augusto N.; Raigemborn, M. Sol; Richiano, Sebastián; White, Tim; Poiré, Daniel G.; Lizzoli, Sabrina

    2018-01-01

    Although there is general consensus that a global greenhouse climate characterized the mid-Cretaceous, details of the climate state of the mid-Cretaceous Southern Hemisphere are less clearly understood. In particular, continental paleoclimate reconstructions are scarce and exclusively derived from paleontological records. Using paleosol-derived climofunction studies of the mid- to Upper Cretaceous Mata Amarilla Formation, southern Patagonia, Argentina, we present a reconstruction of the mid-Cretaceous climate of southern South America. Our results indicate that at 60° south paleolatitude during the Cenomanian-Santonian stages, the climate was subtropical temperate-warm (12 °C ± 2.1 °C) and humid (1404 ± 108 mm/yr) with marked rainfall seasonality. These results are consistent with both previous estimations from the fossil floras of the Mata Amarilla Formation and other units of the Southern Hemisphere, and with the previous observations of the displacement of tropical and subtropical floras towards the poles in both hemispheres. The data presented here show a more marked seasonality and slightly lower mean annual precipitation and mean annual temperature values than those recorded at the same paleolatitudes in the Northern Hemisphere.

  12. The reservoir properties of the upper Cretaceous productive deposits at the Pravoberezhnoe field. Kollektornyye svoystva verkhnemelovykh produktivnykh otlozheniy mestorozhdeniya Pravobeiezhnoye

    Energy Technology Data Exchange (ETDEWEB)

    Merkulov, A.V.; Yengibarov, V.N.

    1984-01-01

    Based on a set of various studies, an evaluation of the type of upper Cretaceous reservoir in the Pravoberezhnoe field is given. Compared to other fields in the Chechen Ingush Autonomous Soviet Socialist Republic, the upper Cretaceous productive deposits at this field are characterized by poorer reservoir properties. The set of all data indicates that the upper Cretaceous reservoir is analogous to reservoirs of equal age in existing fields in this republic and are cavernous fissured type.

  13. Petrological and zircon evidence for the Early Cretaceous granulite-facies metamorphism in the Dabie orogen, China

    Science.gov (United States)

    Gao, Xiao-Ying; Zhang, Qiang-Qiang; Zheng, Yong-Fei; Chen, Yi-Xiang

    2017-07-01

    . The spatial and temporal distribution of Early Cretaceous granulite-facies metamorphic rocks in this region is associated with the bimodal magmatism within a short period of 120-130 Ma in the postcollisional stage. This provides a direct link in petrogenesis between the granulitic, migmatic and magmatic rocks in the collisional orogen to active continental rifting, whereby high heat flow was transferred from the asthenospheric mantle into the thinned orogenic lithosphere for partial melting.

  14. Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins

    Science.gov (United States)

    Dal Corso, Jacopo; Schmidt, Alexander R.; Seyfullah, Leyla J.; Preto, Nereo; Ragazzi, Eugenio; Jenkyns, Hugh C.; Delclòs, Xavier; Néraudeau, Didier; Roghi, Guido

    2017-02-01

    Stable carbon-isotope geochemistry of fossilized tree resin (amber) potentially could be a very useful tool to infer the composition of past atmospheres. To test the reliability of amber as a proxy for the atmosphere, we studied the variability of modern resin δ13C at both local and global scales. An amber δ13C curve was then built for the Cretaceous, a period of abundant resin production, and interpreted in light of data from modern resins. Our data show that hardening changes the pristine δ13C value by causing a 13C-depletion in solid resin when compared to fresh liquid-viscous resin, probably due to the loss of 13C-enriched volatiles. Modern resin δ13C values vary as a function of physiological and environmental parameters in ways that are similar to those described for leaves and wood. Resin δ13C varies between plant species and localities, within the same tree and between different plant tissues by up to 6‰, and in general increases with increasing altitudes of the plant-growing site. We show that, as is the case with modern resin, Cretaceous amber δ13C has a high variability, generally higher than that of other fossil material. Despite the high natural variability, amber shows a negative 2.5-3‰ δ13C trend from the middle Early Cretaceous to the Maastrichtian that parallels published terrestrial δ13C records. This trend mirrors changes in the atmospheric δ13C calculated from the δ13C and δ18O of benthic foraminiferal tests, although the magnitude of the shift is larger in plant material than in the atmosphere. Increasing mean annual precipitation and pO2 could have enhanced plant carbon-isotope fractionation during the Late Cretaceous, whereas changing pCO2 levels seem to have had no effect on plant carbon-isotope fractionation. The results of this study suggest that amber is a powerful fossil plant material for palaeoenvironmental and palaeoclimatic reconstructions. Improvement of the resolution of the existing data coupled with more detailed

  15. Terpenoid composition and botanical affinity of Cretaceous resins from India and Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mallick, Monalisa [Department of Earth Sciences, Indian Institute of Technology-Bombay (India); Kumar, Kishor [Wadia Institute of Himalayan Geology, Uttarakhand (India); Mann, Ulrich [Forschungzentrum Juelich (Germany). Institut fuer Chemie und Dynamik der Geosphaere; Greenwood, Paul F. [John De Laeter Mass Spectrometry and WA Biogeochemistry Centres (M090), University of Western Australia, Crawley (Australia)

    2011-01-01

    Fossil resins from the Cretaceous sediments of Meghalaya, India and Kachin, Myanmar (Burma) were analysed using Curie point pyrolysis-gas chromatography-mass spectrometry and thermochemolysis gas chromatography-mass spectrometry to help elucidate their botanical source. The major pyrolysis products and methyl-esterified thermochemolysis products of both the resins were abietane and labdane type diterpenoids with minor amount of sesquiterpenoids. The thermochemolysis products also included methyl-16,17-dinor callitrisate, methyl-16,17-dinor dehydroabietate and methyl-8-pimaren-18-oate - the latter two from just the Myanmarese resin. The exclusive presence of both labdane and abietane diterpenoids and the lack of phenolic terpenoids may suggest that the studied Cretaceous resins were derived from Pinaceae (pine family) conifers. (author)

  16. Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs.

    Science.gov (United States)

    Hassler, A; Martin, J E; Amiot, R; Tacail, T; Godet, F Arnaud; Allain, R; Balter, V

    2018-04-11

    Large predators are overabundant in mid-Cretaceous continental dinosaur assemblages of North Africa. Such unbalanced ecosystem structure involves, among predatory dinosaurs, typical abelisaurid or carcharodontosaurid theropods co-occurring with long-snouted spinosaurids of debated ecology. Here, we report calcium (Ca) isotope values from tooth enamel (expressed as δ 44/42 Ca) to investigate resource partitioning in mid-Cretaceous assemblages from Niger (Gadoufaoua) and Morocco (Kem Kem Beds). In both assemblages, spinosaurids display a distinct isotopic signature, the most negative in our dataset. This distinct taxonomic clustering in Ca isotope values observed between spinosaurids and other predators provides unambiguous evidence for niche partitioning at the top of the trophic chains: spinosaurids foraged on aquatic environments while abelisaurid and carcharodontosaurid theropods relied almost exclusively on terrestrial resources. © 2018 The Author(s).

  17. Biostratigraphy of the Cretaceous/Tertiary boundary in the Sirwan Valley (Sulaimani Region, Kurdistan, NE Iraq)

    Science.gov (United States)

    Sharbazheri, Khalid Mahmood; Ghafor, Imad Mahmood; Muhammed, Qahtan Ahmad

    2009-10-01

    The Cretaceous/Tertiary (K/T) boundary sequence, which crops out in the studied area is located within the High Folded Zone, in the Sirwan Valley, northeastern Iraq. These units mainly consist of flysch and flysch-type successions of thick clastic beds of Tanjero/Kolosh Formations. A detailed lithostratigraphic study is achieved on the outcropping uppermost part of the Upper Cretaceous successions (upper part of Tanjero Formation) and the lowermost part of the Kolosh Formation. On the basis of the identified planktonic foraminiferal assemblages, five biozones are recorded from the uppermost part of Tanjero Formation and four biozones from the lower part of the Kolosh Formation (Lower Paleocene) in the Sirwan section. The biostratigraphic correlations based on planktonic foraminiferal zonations showed a comparison between the biostratigraphic zones established in this study and other equivalents of the commonly used planktonic zonal scheme around the Cretaceous/Tertiary boundary in and outside Iraq.

  18. Time scales of critical events around the Cretaceous-Paleogene boundary

    NARCIS (Netherlands)

    Renne, P.R.; Deino, A.L.; Hilgen, F.J.; Kuiper, K.F.; Mark, D.F.; Mitchell III, W.S.; Morgan, L.; Mundil, R.; Smit, J.

    2013-01-01

    Mass extinctions manifest in Earth's geologic record were turning points in biotic evolution. We present 40Ar/39Ar data that establish synchrony between the Cretaceous-Paleogene boundary and associated mass extinctions with the Chicxulub bolide impact to within 32,000 years. Perturbation of the

  19. Extraterrestrial cause for the Cretaceous-Tertiary extinction

    International Nuclear Information System (INIS)

    Alvarez, L.W.; Alvarez, W.; Asaro, F.; Michel, H.V.

    1980-01-01

    Platinum metals are depleted in the earth's crust relative to their cosmic abundance; concentrations of these elements in deep-sea sediments may thus indicate influxes of extraterrestrial material. Deep-sea limestones exposed in Italy, Denmark, and New Zealand show iridium increases of about 30, 160, and 20 times, respectively, above the background level at precisely the time of the Cretaceous-Tertiary extinctions, 65 million years ago. Reasons are given to indicate that this iridium is of extraterrestrial origin, but did not come from a nearby supernova. A hypothesis is suggested which accounts for the extinctions and the iridium observations. Impact of a large earth-crossing asteroid would inject about 60 times the object's mass into the atmosphere as pulverized rock; a fraction of this dust would stay in the stratosphere for several years and be distributed worldwide. The resulting darkness would suppress photosynthesis, and the expected biological consequences match quite closely the extinctions observed in the paleontological record. One prediction of this hypothesis has been verified: the chemical composition of the boundary clay, which is thought to come from the stratospheric dust, is markedly different from that of clay mixed with the Cretaceous and Tertiary limestones, which are chemically similar to each other. Four different independent estimates of the diameter of the asteroid give values that lie in the range 10 +- 4 kilometers

  20. Integrated stratigraphy of the Jurassic-Cretaceous sequences of the Kurovice Quarry, Outer Western Carpathians: correlations and tectonic implications

    Czech Academy of Sciences Publication Activity Database

    Pruner, Petr; Schnabl, Petr; Čížková, Kristýna; Elbra, Tiiu; Kdýr, Šimon; Svobodová, Andrea; Reháková, D.

    2017-01-01

    Roč. 120 (2017), s. 216-216 ISSN 1017-8880. [International Symposium on the Cretaceous /10./. 21.08.2017-26.08.2017, Vienna] R&D Projects: GA ČR(CZ) GA16-09979S Institutional support: RVO:67985831 Keywords : stratigraphy * Jurassic-Cretaceous sequences * Western Carpathians Subject RIV: DB - Geology ; Mineralogy

  1. Oxygen isotopic composition of carbonate concretions from the lower Cretaceous of Victoria, Australia: Implications for the evolution of meteoric waters on the Australian continent in a paleopolar environment

    International Nuclear Information System (INIS)

    Gregory, R.T.

    1989-01-01

    Oxygen isotopic data from carbonate cements in concretions have been used to infer the isotopic composition of meteoric fluids present at the time of concretion growth in terrestrial sediments that were deposited within the early Cretaceous South Polar Circle at 75-80 0 S. Carbon and oxygen isotope compositions have been determined on over 135 samples of carbonate from 45 concretions taken from 24 localities (Aptian-Albian in age) in the terrestrial sedimentary basins associated with the Otway and Strzelecki groups, southeastern Australia. The carbonate cements include calcite having -26.4≤δ 13 C≤19.6 and 3.6≤δ 18 O≤29.6 or siderite having 17.6≤δ 18 O≤30.8. Calcite-cemented concretions are more abundant and are interpreted to represent early near-surface cementation events on the basis of textural evidence such as high (>30%) porosities at the time of cementation and mineralogical evidence such as the preferential preservation within concretions of labile detrital grains including plagioclase, pyroxene, and amphibole. The oxygen isotopic data indicate that meteoric fluids with very low δ 18 O, certainly less than -15per mille and probably on the order of -20per mille, were involved in the precipitation of the early calcites. The extremely low δ 18 O values of the fluids involved in the early diagenesis of both the Otway and Strzelecki groups suggest that the catchment area of the river system that carried sediments to these basins had a cold high-latitude climate (with mean annual temperatures less than 5 0 C and quite possibly below freezing). By analogy with the relationship between modern 18 O distribution of meteoric fluids and climate, these new data suggest that the early Cretaceous polar regions may not have been ice-free. (orig.)

  2. The impact of the Cretaceous-Paleogene (K-Pg) mass extinction event on the global sulfur cycle: Evidence from Seymour Island, Antarctica

    Science.gov (United States)

    Witts, James D.; Newton, Robert J.; Mills, Benjamin J. W.; Wignall, Paul B.; Bottrell, Simon H.; Hall, Joanna L. O.; Francis, Jane E.; Alistair Crame, J.

    2018-06-01

    The Cretaceous-Paleogene (K-Pg) mass extinction event 66 million years ago led to large changes to the global carbon cycle, primarily via a decrease in primary or export productivity of the oceans. However, the effects of this event and longer-term environmental changes during the Late Cretaceous on the global sulfur cycle are not well understood. We report new carbonate associated sulfate (CAS) sulfur isotope data derived from marine macrofossil shell material from a highly expanded high latitude Maastrichtian to Danian (69-65.5 Ma) succession located on Seymour Island, Antarctica. These data represent the highest resolution seawater sulfate record ever generated for this time interval, and are broadly in agreement with previous low-resolution estimates for the latest Cretaceous and Paleocene. A vigorous assessment of CAS preservation using sulfate oxygen, carbonate carbon and oxygen isotopes and trace element data, suggests factors affecting preservation of primary seawater CAS isotopes in ancient biogenic samples are complex, and not necessarily linked to the preservation of original carbonate mineralogy or chemistry. Primary data indicate a generally stable sulfur cycle in the early-mid Maastrichtian (69 Ma), with some fluctuations that could be related to increased pyrite burial during the 'mid-Maastrichtian Event'. This is followed by an enigmatic +4‰ increase in δ34SCAS during the late Maastrichtian (68-66 Ma), culminating in a peak in values in the immediate aftermath of the K-Pg extinction which may be related to temporary development of oceanic anoxia in the aftermath of the Chicxulub bolide impact. There is no evidence of the direct influence of Deccan volcanism on the seawater sulfate isotopic record during the late Maastrichtian, nor of a direct influence by the Chicxulub impact itself. During the early Paleocene (magnetochron C29R) a prominent negative excursion in seawater δ34S of 3-4‰ suggests that a global decline in organic carbon burial

  3. Uppermost Cretaceous to middle Oligocene carbon and oxygen isotope stratigraphy of Southwest Pacific : holes 1121B and 1124C, ODP Leg 181

    International Nuclear Information System (INIS)

    Wei, K.-Y.; Mii, H.-S.; Shu, I-T.; Lin, Y.-J.

    2005-01-01

    Oxygen and carbon isotopic ratios of bulk sediments from ODP Leg 181, holes 1121B and 1124C, in the Southwest Pacific were measured. The isotopic signals are mainly contributed by calcareous nannofossils with minimal diagenetic alteration. A complete section of the late Paleogene age between 60.7 and 57.5 Ma was recovered from Hole 1121B. However, the Paleogene sedimentary sequence of Hole 1124C was truncated by three major hiatuses: late Paleocene to middle Eocene (59-42 Ma), middle Eocene to early Oligocene (40-33.5 Ma), and early Oligocene to middle Oligocene (31.3-27.5 Ma). The middle Eocene shows the most negative δ 18 O values (c. -0.8 permille) compared to the early Paleocene (c. -0.2 to -0.3 permille) and Oligocene (c. 0.6-0.9 permille). The δ 18 O pattern is consistent with previous understanding of the Paleogene paleoclimate: a warmth optimum in the early-middle Eocene followed by a major glaciation in the early Oligocene at c. 34 Ma. The hiatus of 33.5-40 Ma indicates that the Tasmanian Gateway had deepened enough by 33.5 Ma, allowing the breakthrough of cold, bottom water and consequently the formation of the Deep Western Boundary Current (DWBC). With the aid of independent biochronological and magnetochronological markers, the Paleocene carbon isotopic profiles were correlated with that of DSDP 577 in the North Pacific. Both sites record the early part of the Paleocene carbon isotopic maximum event, while only Hole 1124C extends back to the early Paleocene and latest Cretaceous. A short hiatus of 60.5-62.5 Ma age may exist. Although the Cretaceous/Tertiary boundary is not directly recorded, a significant cooling trend across the boundary is evident. The surface water became warmer after 64.5 Ma, and reached a stable warmth level during 64-59 Ma. A major cooling took place during c. 59-57 Ma in the late Paleocene. The temperature gradients between the two sites (ODP 1121 and 1124, paleolatitudes 64 degrees S versus 53 degrees S) are estimated to be c

  4. Noble metals in cretaceous/tertiary sediments from El Kef

    International Nuclear Information System (INIS)

    Kuslys, M.; Kraehenbuehl, U.

    1983-01-01

    Sediments from El Kef, Tunisia, were analysed by RNAA for Au, Ir and Os. All three elements show a 10-20 fold enrichment at the Cretaceous/Tertiary boundary. This enrichment must be the result of the addition of material with a high concentration of noble metals. It is plausible that this exotic material has an extra-terrestrial origin. (orig.)

  5. Noble metals in Cretaceous/Tertiary sediments from El Kef

    International Nuclear Information System (INIS)

    Kuslys, M.; Kraehenbuehl, U.

    1983-01-01

    Sediments from El Kef, Tunisia, were analysed by RNAA for Au, Ir and Os. All three elements show a 10-20 fold enrichment at the Cretaceous/Tertiary boundary. This enrichment must be the result of the addition of material with a high concentration of noble metals. It is plausible that this exotic material has an extraterrestrial origin. (orig.)

  6. Calibrating Late Cretaceous Terrestrial Cyclostratigraphy with High-precision U-Pb Zircon Geochronology: Qingshankou Formation of the Songliao Basin, China

    Science.gov (United States)

    Wang, T.; Ramezani, J.; Wang, C.

    2015-12-01

    A continuous succession of Late Cretaceous lacustrine strata has been recovered from the SK-I south (SK-Is) and SKI north (SK-In) boreholes in the long-lived Cretaceous Songliao Basin in Northeast China. Establishing a high-resolution chronostratigraphic framework is a prerequisite for integrating the Songliao record with the global marine Cretaceous. We present high-precision U-Pb zircon geochronology by the chemical abrasion isotope dilution thermal-ionization mass spectrometry method from multiple bentonite core samples from the Late Cretaceous Qingshankou Formation in order to assess the astrochronological model for the Songliao Basin cyclostratigraphy. Our results from the SK-Is core present major improvements in precision and accuracy over the previously published geochronology and allow a cycle-level calibration of the cyclostratigraphy. The resulting choronostratigraphy suggest a good first-order agreement between the radioisotope geochronology and the established astrochronological time scale over the corresponding interval. The dated bentonite beds near the 1780 m depth straddle a prominent oil shale layer of the Qingshankou Formation, which records a basin-wide lake anoxic event (LAE1), providing a direct age constraint for the LAE1. The latter appears to coincide in time with the Late Cretaceous (Turonian) global sea level change event Tu4 presently constrained at 91.8 Ma.

  7. The transgressive-regressive cycle of the Romualdo Formation (Araripe Basin): Sedimentary archive of the Early Cretaceous marine ingression in the interior of Northeast Brazil

    Science.gov (United States)

    Custódio, Michele Andriolli; Quaglio, Fernanda; Warren, Lucas Veríssimo; Simões, Marcello Guimarães; Fürsich, Franz Theodor; Perinotto, José Alexandre J.; Assine, Mario Luis

    2017-08-01

    Geologic events related to the opening of the South Atlantic Ocean deeply influenced the sedimentary record of the Araripe Basin. As consequence, upper stratigraphic units of the basin record a marine ingression in northeastern Brazil during the late Aptian. The timing and stratigraphic architecture of these units are crucial to understand the paleogeography of Gondwana and how the proto-Atlantic Ocean reached interior NE Brazil during the early Cretaceous. This marine ingression is recorded in the Araripe Basin as the Romualdo Formation, characterized by a transgressive-regressive cycle bounded by two regional unconformities. In the eastern part of the basin, the Romualdo depositional sequence comprises coastal alluvial and tide-dominated deposits followed by marine transgressive facies characterized by two fossil-rich intervals: a lower interval of black shales with fossil-rich carbonate concretions (Konservat-Lagerstätten) and an upper level with mollusk-dominated shell beds and shelly limestones. Following the marine ingression, an incomplete regressive succession of marginal-marine facies records the return of continental environments to the basin. The stratigraphic framework based on the correlation of several sections defines a transgressive-regressive cycle with depositional dip towards southeast, decreasing in thickness towards northwest, and with source areas located at the northern side of the basin. The facies-cycle wedge-geometry, together with paleocurrent data, indicates a coastal onlap towards NNW. Therefore, contrary to several paleogeographic scenarios previously proposed, the marine ingression would have reached the western parts of the Araripe Basin from the SSE.

  8. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution

    NARCIS (Netherlands)

    Boer, H.J. de; Eppinga, M.B.; Wassen, M.J.; Dekker, S.C.

    2012-01-01

    The revolutionary rise of broad-leaved (flowering) angiosperm plant species during the Cretaceous initiated a global ecological transformation towards modern biodiversity. Still, the mechanisms involved in this angiosperm radiation remain enigmatic. Here we show that the period of rapid

  9. Lithostratigraphy, depositional history and sea level changes of the Cauvery Basin, southern India

    Directory of Open Access Journals (Sweden)

    Muthuvairvasamy Ramkumar

    2003-01-01

    Full Text Available The sedimentary sequence exposed in the erstwhile Tiruchirapalli district hosts a more or less complete geological record of the Upper Cretaceous-Tertiary period. Systematic field mapping, collation of data on the micro-meso scale lithology, sedimentary structures, petrography, faunal assemblage and facies relationships of these rocks, in the light of modern stratigraphic concepts, helped to enumerate the lithostratigraphic setup and depositional history of the basin. Spatial and temporal variations of the lithologies and revised stratigraphic units are presented in this paper. Many high frequency sea level cycles (presumably fourth or higher order which stack up to form third order sea level cycles (six in number, which in turn form part of second order cycles (two in number, including seven eustatic sea level peaks, have been recorded in this basin. Trend analysis of sea level curves indicates a gradual increase of the sea level from Barremian to Coniacian and a gradual decrease from Coniacian to Danian. Such lasting sea level trends had their influence on the sedimentation pattern and facies association. It is inferred that depositional bathymetry was maintained at a shallow-moderate level, primarily influenced by a lack of major subsidence during the depositional history of this basin. The study also revealed a prevalent simple basin filling process and dominant control by sea level changes, rather than tectonic movements over the depositional regime.

  10. Structural extremes in a cretaceous dinosaur.

    Directory of Open Access Journals (Sweden)

    Paul C Sereno

    Full Text Available Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods. Nigersaurus taqueti shows extreme adaptations for a dinosaurian herbivore including a skull of extremely light construction, tooth batteries located at the distal end of the jaws, tooth replacement as fast as one per month, an expanded muzzle that faces directly toward the ground, and hollow presacral vertebral centra with more air sac space than bone by volume. A cranial endocast provides the first reasonably complete view of a sauropod brain including its small olfactory bulbs and cerebrum. Skeletal and dental evidence suggests that Nigersaurus was a ground-level herbivore that gathered and sliced relatively soft vegetation, the culmination of a low-browsing feeding strategy first established among diplodocoids during the Jurassic.

  11. Late cretaceous aquatic plant world in Patagonia, Argentina.

    Directory of Open Access Journals (Sweden)

    N Rubén Cúneo

    Full Text Available In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla and a monocot (Araceae. Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae. Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form and the eudicot angiosperm Nelumbo (Nelumbonaceae are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae, ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America.

  12. Late Cretaceous Aquatic Plant World in Patagonia, Argentina

    Science.gov (United States)

    Cúneo, N. Rubén; Gandolfo, María A.; Zamaloa, María C.; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America. PMID:25148081

  13. Thyasirid bivalves from Cretaceous and Paleogene cold seeps

    Directory of Open Access Journals (Sweden)

    Krzysztof Hryniewicz

    2017-11-01

    Full Text Available We present a systematic study of thyasirid bivalves from Cretaceous to Oligocene seep carbonates worldwide. Eleven species of thyasirid bivalves are identified belonging to three genera: Conchocele, Maorithyas, and Thyasira. Two species are new: Maorithyas humptulipsensis sp. nov. from middle Eocene seep carbonates in the Humptulips Formation, Washington State, USA, and Conchocele kiritachiensis sp. nov. from the late Eocene seep deposit at Kiritachi, Hokkaido, Japan. Two new combinations are provided: Conchocele townsendi (White, 1890 from Maastrichtian strata of the James Ross Basin, Antarctica, and Maorithyas folgeri (Wagner and Schilling, 1923 from Oligocene rocks from California, USA. Three species are left in open nomenclature. We show that thyasirids have Mesozoic origins and appear at seeps before appearing in “normal” marine environments. These data are interpreted as a record of seep origination of thyasirids, and their subsequent dispersal to non-seep environments. We discuss the age of origination of thyasirids in the context of the origin of the modern deep sea fauna and conclude that thyasirids could have deep sea origins. This hypothesis is supported by the observed lack of influence of the Cretaceous and Paleogene Oceanic Anoxic Events on the main evolutionary lineages of the thyasirids, as seen in several other members of the deep sea fauna.

  14. Lower Cretaceous Source Rock and its Implication for the Gulf of Guinea Petroleum System

    International Nuclear Information System (INIS)

    Frost, B.R.; Griffith, R.C.

    2002-01-01

    Current petroleum system models for the Gulf of Guinea propose Tertiary-age deltaic organic material as the principal source for the hydrocarbons found there. Although previous workers recognized numerous difficulties and inconsistencies, no alternative model has been resented to adequately explain the complete petroleum system. We propose that the principal source rock for the Gulf of Guinea system occurs in upper lower Cretaceous-age shales at the rift-drift transition. Tertiary loading and the consequent maturation of this lower Cretaceous source rock can explain the controls on tap formation, reservoir distribution and hydrocarbon types found in the Gulf of Guinea

  15. Evolution of anuran assemblages in the Late Cretaceous of Utah, USA

    Czech Academy of Sciences Publication Activity Database

    Roček, Zbyněk; Eaton, J. G.; Gardner, J.; Přikryl, Tomáš

    2010-01-01

    Roč. 90, č. 4 (2010), s. 341-393 ISSN 1867-1594 R&D Projects: GA MŠk ME08066 Institutional research plan: CEZ:AV0Z30130516 Keywords : Anura * evolution * Late Cretaceous * fossil frogs * stratigraphy * Utah Subject RIV: EG - Zoology

  16. Paleomagnetism of Late Jurassic to Early Cretaceous red beds from the Cardamom Mountains, southwestern Cambodia: Tectonic deformation of the Indochina Peninsula

    Science.gov (United States)

    Tsuchiyama, Yukiho; Zaman, Haider; Sotham, Sieng; Samuth, Yos; Sato, Eiichi; Ahn, Hyeon-Seon; Uno, Koji; Tsumura, Kosuke; Miki, Masako; Otofuji, Yo-ichiro

    2016-01-01

    Late Jurassic to Early Cretaceous red beds of the Phuquoc Formation were sampled at 33 sites from the Sihanoukville and Koah Kong areas of the Phuquoc-Kampot Som Basin, southwestern Cambodia. Two high-temperature remanent components with unblocking temperature ranging 650°-670 °C and 670-690 °C were identified. The magnetization direction for the former component (D = 5.2 °, I = 18.5 ° with α95 = 3.1 ° in situ) reveals a negative fold test that indicates a post-folding secondary nature. However, the latter component, carried by specular hematite, is recognized as a primary remanent magnetization. A tilt-corrected mean direction of D = 43.4 °, I = 31.9 ° (α95 = 3.6 °) was calculated for the primary component at 11 sites, corresponding to a paleopole of 47.7°N, 178.9°E (A95 = 3.6 °). When compared with the 130 Ma East Asian pole, a southward displacement of 6.0 ° ± 3.5 ° and a clockwise rotation of 33.1 ° ± 4.0 ° of the Phuquoc-Kampot Som Basin (as a part of the Indochina Block) with respect to East Asia were estimated. This estimate of the clockwise rotation is ∼15° larger than that of the Khorat Basin, which we attribute to dextral motion along the Wang Chao Fault since the mid-Oligocene. The comparison of the herein estimated clockwise rotation with the counter-clockwise rotation reported from the Da Lat area in Vietnam suggests the occurrence of a differential tectonic rotation in the southern tip of the Indochina Block. During the southward displacement of the Indochina Block, the non-rigid lithosphere under its southern tip moved heterogeneously, while the rigid lithosphere under the Khorat Basin moved homogeneously.

  17. The Hunt for Pristine Cretaceous Astronomical Rhythms at Demerara Rise (Cenomanian-Coniacian)

    Science.gov (United States)

    Ma, C.; Meyers, S. R.

    2014-12-01

    Rhythmic Upper Cretaceous strata from Demerara Rise (ODP leg 207) preserve a strong astronomical signature, and this attribute has facilitated the development of continuous astrochronologies to refine the geologic time scale and calibrate Late Cretaceous biogeochemical events. While the mere identification of astronomical rhythms is a crucial first step in many deep-time paleoceanographic investigations, accurate evaluation of often subtle amplitude and frequency modulations are required to: (1) robustly constrain the linkage between climate and sedimentation, and (2) evaluate the plausibility of different theoretical astrodynamical models. The availability of a wide range of geophysical, lithologic and geochemical data from multiple sites drilled at Demerara Rise - when coupled with recent innovations in the statistical analysis of cyclostratigraphic data - provides an opportunity to hunt for the most pristine record of Cretaceous astronomical rhythms at a tropical Atlantic location. To do so, a statistical metric is developed to evaluate the "internal" consistency of hypothesized astronomical rhythms observed in each data set, particularly with regard to the expected astronomical amplitude modulations. In this presentation, we focus on how the new analysis yields refinements to the existing astrochronologies, provides constraints on the linkages between climate and sedimentation (including the deposition of organic carbon-rich sediments at Demerara Rise), and allows a quantitative evaluation of the continuity of deposition across sites at multiple temporal scales.

  18. Trace element patterns at a non-marine cretaceous-tertiary boundary

    Science.gov (United States)

    Gilmore, J.S.; Knight, J.D.; Orth, C.J.; Pillmore, C.L.; Tschudy, R.H.

    1984-01-01

    At the fossil-pollen-defined Cretaceous-Tertiary boundary in the Raton Basin of New Mexico and Colorado, an iridium abundance anomaly and excess scandium, titanium, and chromium are associated with a thin ash or dust fallout bed (now kaolinitic clay) that was preserved in freshwater coal swamps. ?? 1984 Nature Publishing Group.

  19. Australian provenance for Upper Permian to Cretaceous rocks forming accretionary complexes on the New Zealand sector of the Gondwana land margin

    International Nuclear Information System (INIS)

    Pickard, A.L.; Barley, M.E.

    2000-01-01

    U-Pb (SHRIMP) detrital zircon age patterns are reported for 12 samples of Permian to Cretaceous turbiditic quartzo-feldspathic sandstone from the Torlesse and Waipapa suspect terranes of New Zealand. Their major Permian to Triassic, and minor Early Palaeozoic and Mesoproterozoic, age components indicate that most sediment was probably derived from the Carboniferous to Triassic New England Orogen in northeastern Australia. Rapid deposition of voluminous Torlesse/Waipapa turbidite fans during the Late Permian to Late Triassic appears to have been directly linked to uplift and exhumation of the magmatically active orogen during the 265-230 Ma Hunter-Bowen event. This period of cordilleran-type orogeny allowed transport of large volumes of quartzo-feldspathic sediment across the convergent Gondwana land margin. Post-Triassic depocentres also received (recycled?) sediment from the relict orogen as well as from Jurassic and Cretaceous volcanic provinces now offshore from southern Queensland and northern New South Wales. The detailed provenance-age fingerprints provided by the detrital zircon data are also consistent with progressive southward derivation of sediment: from northeastern Queensland during the Permian, southeastern Queensland during the Triassic, and northeastern New South Wales - Lord Howe Rise - Norfolk Ridge during the Jurassic to Cretaceous. Although the dextral sense of displacement is consistent with the tectonic regime during this period, detailed characterisation of source terranes at this scale is hindered by the scarcity of published zircon age data for igneous and sedimentary rocks in Queensland and northern New South Wales. Mesoproterozoic and Neoproterozoic age components cannot be adequately matched with likely source terranes in the Australian-Antarctic Precambrian craton, and it is possible they originated in the Proterozoic cores of the Cathaysia and Yangtze Blocks of southeast China. Copyright (1999) Geological Society of Australia

  20. Paleoenvironmental conditions across the Jurassic-Cretaceous boundary in central-eastern Mexico

    Science.gov (United States)

    Martínez-Yáñez, Mario; Núñez-Useche, Fernando; López Martínez, Rafael; Gardner, Rand D.

    2017-08-01

    The Padni section of central-eastern Mexico is characterized by pelagic, organic-rich carbonates and shales dated in this study by calpionellid biostratigraphy to the late Tithonian-late Berriasian time interval. Microfacies, pyrite framboid size, spectrometric gamma-ray and mineralogical data are herein integrated in order to reconstruct the paleoenvironmental change during the Jurassic-Cretaceous boundary. Deposits of the late Tithonian-early Berriasian are characterized by laminated, organic-rich facies with abundant radiolarian, tiny pyrite framboids and low Th/U ratios. They are linked to upwelling in a semi-restricted basin, high marine productivity and anoxic bottom waters. The early incursions of Tethyan oceanic waters into the proto-Gulf of Mexico occurred during late Tithonian as attested the appearance of calpionellids. Short and intermittent accumulations of saccocomids during early Berriasian suggest episodes of sporadic connection between the Tethys, the proto-Atlantic and the Pacific ocean during sea-level rise events. A full and stable connection between the Tethys and proto-Gulf of Mexico was established until the late Berriasian. This event is supported by the presence of open marine and bioturbated facies with a framboid population typical of dysoxic conditions, higher Th/U ratios and a decreasing pattern of the total organic carbon content. In addition to highlighting the replenishment of the oxygen supply to the basin, this facies also points to a younger age for the finalization of the Yucatán Block rotation and the end of the Gulf of Mexico opening. Deposition of the studied section occurred mostly during a Tithonian-Berriasian arid phase reported in other Tethyan and Atlantic regions. The similarity between the discrete segments of the standard gamma-ray curve defined in the studied outcrop and those reported from subsurface implies their regional continuity allowing their use for correlation purposes.

  1. Evidence of Egg Diversity in Squamate Evolution from Cretaceous Anguimorph Embryos

    Czech Academy of Sciences Publication Activity Database

    Fernandez, V.; Buffetaut, E.; Suteethorn, V.; Rage, J. C.; Tafforeau, P.; Kundrát, Martin

    2015-01-01

    Roč. 10, č. 7 (2015), e0128610 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP302/12/1207 Institutional support: RVO:67985823 Keywords : squamates * egg * fossils * cretaceous Subject RIV: EA - Cell Biology Impact factor: 3.057, year: 2015

  2. Stratigraphy of Guichon Formation (lower cretaceous) in litoral basin, Uruguay

    International Nuclear Information System (INIS)

    Goso, C.; Perea, D.; Perinotto, J.

    1999-01-01

    This report is about the stratigraphic al analysis of the Guichon Formation (lower cretaceous, litoral basin in Uruguay). The facies association is represented by conglomerates mainly fine sandstones and mud stones wi ch is interpreted as an alluvial system. A regional palaeogeography and a new geochronological alternative are established for this formation. (author).

  3. Cretaceous sedimentation in the outer Eastern Carpathians: Implications for the facies model reconstruction of the Moldavide Basin

    Science.gov (United States)

    Roban, R. D.; Krézsek, C.; Melinte-Dobrinescu, M. C.

    2017-06-01

    The mid Cretaceous is characterized by high eustatic sea-levels with widespread oxic conditions that made possible the occurrence of globally correlated Oceanic Red Beds. However, very often, these eustatic signals have been overprinted by local tectonics, which in turn resulted in Lower Cretaceous closed and anoxic basins, as in the Eastern Carpathians. There, the black shale to red bed transition occurs in the latest Albian up to the early Cenomanian. Although earlier studies discussed the large-scale basin configuration, no detailed petrography and sedimentology study has been performed in the Eastern Carpathians. This paper describes the Hauterivian to Turonian lithofacies and interprets the depositional settings based on their sedimentological features. The studied sections crop out only in tectonic half windows of the Eastern Carpathians, part of the Vrancea Nappe. The lithofacies comprises black shales interbedded with siderites and sandstones, calcarenites, marls, radiolarites and red shales. The siliciclastic muddy lithofacies in general reflects accumulation by suspension settling of pelagites and hemipelagites in anoxic (black shale) to dysoxic (dark gray and gray to green shales) and oxic (red shales) conditions. The radiolarites alternate with siliceous shales and are considered as evidence of climate changes. The sandstones represent mostly low and high-density turbidite currents in deep-marine lobes, as well as channel/levee systems. The source area is an eastern one, e.g., the Eastern Carpathians Foreland, given the abundance of low grade metamorphic clasts. The Hauterivian - lower Albian sediments are interpreted as deep-marine, linear and multiple sourced mud dominated systems deposited in a mainly anoxic to dysoxic basin. The anoxic conditions existed in the early to late Albian, but sedimentation changed to a higher energy mud/sand-dominated submarine channels and levees. This coarsening upwards tendency is interpreted as the effect of the

  4. Preliminary magnetostratigraphy and environmental magnetism of the Lower Cretaceous from the Italian Dolomites

    Science.gov (United States)

    Savian, J. F.; Jovane, L.; Florindo, F.; Lukeneder, A.

    2011-12-01

    The Lower Cretaceous (~146 to 100 Ma) represents an enigmatic time interval for paleoclimatic, paleogeography and paleomagnetic evolution of the Earth's history. The climatic changes include global oceanic anoxic events (OAEs), biotic changes, global excursions of carbon and strontium isotopes, rises in eustatic sea level and paleotemperature. Paleoceanography was marked by a rapid rate of ocean spreading in the Atlantic. The opening of the Atlantic Ocean was wide enough to allow significant circulation of masses of waters across the equator. This period is furthermore important for the oceanographic events occurring at the base of the Aptian (Selli Level). This period also present one of the most intriguing geomagnetic events: the long normal Cretaceous superchron, lasted for almost 40 million years. We study here the lower Cretaceous deposits of the Puez section in the Dolomites (northern Italy) which represents a continuous section during this period. The samples collected represent marine sedimentary materials of the Biancone and Puez formations. The Puez section consists essentially of green-grey to red limestones and calcareous marls. We present preliminary results of integrated magnetostratigraphic analysis, including a detailed lithostratigraphy and environmental magnetism. We recognize magnetic behavior that are relative to normal polarity (the normal Cretaceous superchron), with a short reverse interval that might represent the M-1r event. We also recognize a series of normal and reverse polarities (below the normal Cretaceous superchron) which can be referred to the magnetozones M1/M5. The environmental magnetic data consists of magnetic susceptibility (χ), natural remanent magnetization (NRM), anhysteretic remanent magnetization (ARM), isothermal remanent magnetization (IRM) at 900 mT and backfield isothermal remanent magnetization (BIRM) at 100 mT and 300 mT. Derived parameters, such as S-ratio (S300=BIRM300/IRM900) and hard isothermal remanent

  5. The last dinosaurs of Brazil: The Bauru Group and its implications for the end-Cretaceous mass extinction

    Directory of Open Access Journals (Sweden)

    STEPHEN L. BRUSATTE

    Full Text Available ABSTRACT The non-avian dinosaurs died out at the end of the Cretaceous, ~66 million years ago, after an asteroid impact. The prevailing hypothesis is that the effects of the impact suddenly killed the dinosaurs, but the poor fossil record of latest Cretaceous (Campanian-Maastrichtian dinosaurs from outside Laurasia (and even more particularly, North America makes it difficult to test specific extinction scenarios. Over the past few decades, a wealth of new discoveries from the Bauru Group of Brazil has revealed a unique window into the evolution of terminal Cretaceous dinosaurs from the southern continents. We review this record and demonstrate that there was a diversity of dinosaurs, of varying body sizes, diets, and ecological roles, that survived to the very end of the Cretaceous (Maastrichtian: 72-66 million years ago in Brazil, including a core fauna of titanosaurian sauropods and abelisaurid and carcharodontosaurid theropods, along with a variety of small-to-mid-sized theropods. We argue that this pattern best fits the hypothesis that southern dinosaurs, like their northern counterparts, were still diversifying and occupying prominent roles in their ecosystems before the asteroid suddenly caused their extinction. However, this hypothesis remains to be tested with more refined paleontological and geochronological data, and we give suggestions for future work.

  6. The last dinosaurs of Brazil: The Bauru Group and its implications for the end-Cretaceous mass extinction.

    Science.gov (United States)

    Brusatte, Stephen L; Candeiro, Carlos R A; Simbras, Felipe M

    2017-01-01

    The non-avian dinosaurs died out at the end of the Cretaceous, ~66 million years ago, after an asteroid impact. The prevailing hypothesis is that the effects of the impact suddenly killed the dinosaurs, but the poor fossil record of latest Cretaceous (Campanian-Maastrichtian) dinosaurs from outside Laurasia (and even more particularly, North America) makes it difficult to test specific extinction scenarios. Over the past few decades, a wealth of new discoveries from the Bauru Group of Brazil has revealed a unique window into the evolution of terminal Cretaceous dinosaurs from the southern continents. We review this record and demonstrate that there was a diversity of dinosaurs, of varying body sizes, diets, and ecological roles, that survived to the very end of the Cretaceous (Maastrichtian: 72-66 million years ago) in Brazil, including a core fauna of titanosaurian sauropods and abelisaurid and carcharodontosaurid theropods, along with a variety of small-to-mid-sized theropods. We argue that this pattern best fits the hypothesis that southern dinosaurs, like their northern counterparts, were still diversifying and occupying prominent roles in their ecosystems before the asteroid suddenly caused their extinction. However, this hypothesis remains to be tested with more refined paleontological and geochronological data, and we give suggestions for future work.

  7. Possible markers of the Jurassic/Cretaceous boundary in the Mediterranean Tethys: A review and state of art

    Directory of Open Access Journals (Sweden)

    Jozef Michalík

    2011-10-01

    Full Text Available During the last decades, several integrated studies of Tethyan Jurassic/Cretaceous boundary sections from different countries were published with the objective to indicate problems for the selection of biological, chemical or physical markers suitable for identification of the Jurassic/Cretaceous boundary – the only system boundary within the Phanerozoic still not fixed by GSSP. Drawing the boundary between the Jurassic and Cretaceous systems is a matter of global scale discussions. The problem of proposing possible J/K boundary stratotypes results from lack of a global index fossils, global sea level drop, paleogeographic changes causing development of isolated facies areas, as well as from the effect of Late Cimmerian Orogeny. This contribution summarizes and comments data on J/K boundary interval obtained from several important Tethyan sections and shows still existing problems and discrepancies in its determination.

  8. Hadrosauroid dinosaurs from the Late Cretaceous of the Sultanate of Oman

    NARCIS (Netherlands)

    Buffetaut, Eric; Hartman, Axel Frans; Al-Kindi, Mohammed; Schulp, Anne S.

    2015-01-01

    Fragmentary post-cranial remains (femora, tibia, vertebrae) of ornithischian dinosaurs from the Late Cretaceous of the Sultanate of Oman are described and referred to hadrosauroids. The specimens come from the Al-Khod Conglomerate, of latest Campanian to Maastrichtian age, in the north-eastern part

  9. A Late Cretaceous theropod caudal vertebra from the Sultanate of Oman

    NARCIS (Netherlands)

    Schulp, Anne S.; Hanna, Samir S.; Hartman, Axel Frans; Jagt, John W M

    2000-01-01

    A caudal vertebra collected from conglomerates of the Al-Khod Formation (Late Cretaceous) in the Al-Khod area, Sultanate of Oman, is assigned to a medium-sized theropod dinosaur. The Al-Khod discovery represents one of the very few dinosaur records from the Middle East.

  10. Cretaceous sedimentology of the Barmer Basin, Rajasthan, India

    OpenAIRE

    Beaumont, Hazel

    2017-01-01

    The Barmer Basin, western India, is a well-known and prospected petroleum system. However, the Lower Cretaceous Ghaggar-Hakra Formation has not been recognised as basin fill and not documented prior to this study. The formation outcrops in rotational fault blocks at the Sarnoo Hills and surrounding areas, on the eastern Barmer Basin margin. The thesis here describes and analyses the nature and evolution of the formation at both outcrop and within the subsurface, producing facies and depositio...

  11. The first reported ceratopsid dinosaur from eastern North America (Owl Creek Formation, Upper Cretaceous, Mississippi, USA).

    Science.gov (United States)

    Farke, Andrew A; Phillips, George E

    2017-01-01

    Ceratopsids ("horned dinosaurs") are known from western North America and Asia, a distribution reflecting an inferred subaerial link between the two landmasses during the Late Cretaceous. However, this clade was previously unknown from eastern North America, presumably due to limited outcrop of the appropriate age and depositional environment as well as the separation of eastern and western North America by the Western Interior Seaway during much of the Late Cretaceous. A dentary tooth from the Owl Creek Formation (late Maastrichtian) of Union County, Mississippi, represents the first reported occurrence of Ceratopsidae from eastern North America. This tooth shows a combination of features typical of Ceratopsidae, including a double root and a prominent, blade-like carina. Based on the age of the fossil, we hypothesize that it is consistent with a dispersal of ceratopsids into eastern North America during the very latest Cretaceous, presumably after the two halves of North America were reunited following the retreat of the Western Interior Seaway.

  12. The first reported ceratopsid dinosaur from eastern North America (Owl Creek Formation, Upper Cretaceous, Mississippi, USA

    Directory of Open Access Journals (Sweden)

    Andrew A. Farke

    2017-05-01

    Full Text Available Ceratopsids (“horned dinosaurs” are known from western North America and Asia, a distribution reflecting an inferred subaerial link between the two landmasses during the Late Cretaceous. However, this clade was previously unknown from eastern North America, presumably due to limited outcrop of the appropriate age and depositional environment as well as the separation of eastern and western North America by the Western Interior Seaway during much of the Late Cretaceous. A dentary tooth from the Owl Creek Formation (late Maastrichtian of Union County, Mississippi, represents the first reported occurrence of Ceratopsidae from eastern North America. This tooth shows a combination of features typical of Ceratopsidae, including a double root and a prominent, blade-like carina. Based on the age of the fossil, we hypothesize that it is consistent with a dispersal of ceratopsids into eastern North America during the very latest Cretaceous, presumably after the two halves of North America were reunited following the retreat of the Western Interior Seaway.

  13. Fossil traces of the bone-eating worm Osedax in early Oligocene whale bones.

    Science.gov (United States)

    Kiel, Steffen; Goedert, James L; Kahl, Wolf-Achim; Rouse, Greg W

    2010-05-11

    Osedax is a recently discovered group of siboglinid annelids that consume bones on the seafloor and whose evolutionary origins have been linked with Cretaceous marine reptiles or to the post-Cretaceous rise of whales. Here we present whale bones from early Oligocene bathyal sediments exposed in Washington State, which show traces similar to those made by Osedax today. The geologic age of these trace fossils ( approximately 30 million years) coincides with the first major radiation of whales, consistent with the hypothesis of an evolutionary link between Osedax and its main food source, although older fossils should certainly be studied. Osedax has been destroying bones for most of the evolutionary history of whales and the possible significance of this "Osedax effect" in relation to the quality and quantity of their fossils is only now recognized.

  14. Ecological impact of the end-Cretaceous extinction on lamniform sharks.

    Directory of Open Access Journals (Sweden)

    Rachel A Belben

    Full Text Available Lamniform sharks are apex marine predators undergoing dramatic local and regional decline worldwide, with consequences for marine ecosystems that are difficult to predict. Through their long history, lamniform sharks have faced widespread extinction, and understanding those 'natural experiments' may help constrain predictions, placing the current crisis in evolutionary context. Here we show, using novel morphometric analyses of fossil shark teeth, that the end-Cretaceous extinction of many sharks had major ecological consequences. Post-extinction ecosystems supported lower diversity and disparity of lamniforms, and were dominated by significantly smaller sharks with slimmer, smoother and less robust teeth. Tooth shape is intimately associated with ecology, feeding and prey type, and by integrating data from extant sharks we show that latest Cretaceous sharks occupied similar niches to modern lamniforms, implying similar ecosystem structure and function. By comparison, species in the depauperate post-extinction community occupied niches most similar to those of juvenile sand tigers (Carcharias taurus. Our data show that quantitative tooth morphometrics can distinguish lamniform sharks due to dietary differences, providing critical insights into ecological consequences of past extinction episodes.

  15. Ecological impact of the end-Cretaceous extinction on lamniform sharks.

    Science.gov (United States)

    Belben, Rachel A; Underwood, Charlie J; Johanson, Zerina; Twitchett, Richard J

    2017-01-01

    Lamniform sharks are apex marine predators undergoing dramatic local and regional decline worldwide, with consequences for marine ecosystems that are difficult to predict. Through their long history, lamniform sharks have faced widespread extinction, and understanding those 'natural experiments' may help constrain predictions, placing the current crisis in evolutionary context. Here we show, using novel morphometric analyses of fossil shark teeth, that the end-Cretaceous extinction of many sharks had major ecological consequences. Post-extinction ecosystems supported lower diversity and disparity of lamniforms, and were dominated by significantly smaller sharks with slimmer, smoother and less robust teeth. Tooth shape is intimately associated with ecology, feeding and prey type, and by integrating data from extant sharks we show that latest Cretaceous sharks occupied similar niches to modern lamniforms, implying similar ecosystem structure and function. By comparison, species in the depauperate post-extinction community occupied niches most similar to those of juvenile sand tigers (Carcharias taurus). Our data show that quantitative tooth morphometrics can distinguish lamniform sharks due to dietary differences, providing critical insights into ecological consequences of past extinction episodes.

  16. Mountain building triggered late cretaceous North American megaherbivore dinosaur radiation.

    Directory of Open Access Journals (Sweden)

    Terry A Gates

    Full Text Available Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB. Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic activity in the region. SymmeTREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone.

  17. Mountain building triggered late cretaceous North American megaherbivore dinosaur radiation.

    Science.gov (United States)

    Gates, Terry A; Prieto-Márquez, Albert; Zanno, Lindsay E

    2012-01-01

    Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB). Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic activity in the region. SymmeTREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone.

  18. Paleoenvironmental changes across the Cretaceous/Tertiary boundary in the northern Clarence valley, southeastern Marlborough, New Zealand

    International Nuclear Information System (INIS)

    Hollis, C.J.; Rodgers, K.A.; Strong, C.P.; Field, B.D.; Rogers, K.M.

    2003-01-01

    Strata outcropping in Mead and Branch Streams, northern Clarence valley, provide important records of pelagic-hemipelagic sedimentation through the Cretaceous-Paleocene transition in a southern high-latitude, upwelling system flanking a carbonate platform. The two stream sections, 13 C) indicate that high biological productivity continued across the K/T boundary and through the biosiliceous episode. Siliceous plankton thrived in the Marlborough upwelling zone during the Early Paleocene. Fluctuations in abundance and lithofacies can be related to significant changes in sea level, which may be the result of local tectonic or global climate changes. The delayed recovery of calcareous plankton after mass extinction at the K/T boundary, in both outer neritic and bathyal settings, indicates a relatively cool oceanic regime for the first 1.5 m.y. of the Paleocene. (author). 68 refs., 11 figs., 6 tabs

  19. Latest Cretaceous climatic and environmental change in the South Atlantic region

    NARCIS (Netherlands)

    Woelders, L.; Vellekoop, J.; Kroon, D.; Smit, J.; Casadío, S.; Prámparo, M. B.; Dinarès-Turell, J.; Peterse, F.; Sluijs, A.; Lenaerts, J.T.M.; Speijer, R. P.

    Latest Maastrichtian climate change caused by Deccan volcanism has been invoked as a cause of mass extinction at the Cretaceous-Paleogene (K-Pg) boundary (~66.0 Ma). Yet late Maastrichtian climate and ecological changes are poorly documented, in particular on the Southern Hemisphere. Here we present

  20. Latest Cretaceous climatic and environmental change in the South Atlantic region

    NARCIS (Netherlands)

    Woelders, L.; Vellekoop, J.; Kroon, D.; Smit, J.; Casadío, S.; Prámparo, M. B.; Dinarès-Turell, J.; Peterse, F.; Sluijs, A.; Lenaerts, J. T.M.; Speijer, R. P.

    2017-01-01

    Latest Maastrichtian climate change caused by Deccan volcanism has been invoked as a cause of mass extinction at the Cretaceous-Paleogene (K-Pg) boundary (~66.0 Ma). Yet late Maastrichtian climate and ecological changes are poorly documented, in particular on the Southern Hemisphere. Here we present

  1. Adaptive Radiation in Socially Advanced Stem-Group Ants from the Cretaceous.

    Science.gov (United States)

    Barden, Phillip; Grimaldi, David A

    2016-02-22

    Across terrestrial ecosystems, modern ants are ubiquitous. As many as 94 out of every 100 individual arthropods in rainforests are ants, and they constitute up to 15% of animal biomass in the Amazon. Moreover, ants are pervasive agents of natural selection as over 10,000 arthropod species are specialized inquilines or myrmecomorphs living among ants or defending themselves through mimicry. Such impact is traditionally explained by sociality: ants are the first major group of ground-dwelling predatory insects to become eusocial, increasing efficiency of tasks and establishing competitive superiority over solitary species. A wealth of specimens from rich deposits of 99 million-year-old Burmese amber resolves ambiguity regarding sociality and diversity in the earliest ants. The stem-group genus Gerontoformica maintained distinct reproductive castes including morphotypes unknown in solitary aculeate (stinging) wasps, providing insight into early behavior. We present rare aggregations of workers, indicating group recruitment as well as an instance of interspecific combat; such aggression is a social feature of modern ants. Two species and an unusual new genus are described, further expanding the remarkable diversity of early ants. Stem-group ants are recovered as a paraphyletic assemblage at the base of modern lineages varying greatly in size, form, and mouthpart structure, interpreted here as an adaptive radiation. Though Cretaceous stem-group ants were eusocial and adaptively diverse, we hypothesize that their extinction resulted from the rise of competitively superior crown-group taxa that today form massive colonies, consistent with Wilson and Hölldobler's concept of "dynastic succession." Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The chronostratigraphic framework of the South-Pyrenean Maastrichtian succession reappraised: Implications for basin development and end-Cretaceous dinosaur faunal turnover

    Science.gov (United States)

    Fondevilla, Víctor; Dinarès-Turell, Jaume; Oms, Oriol

    2016-05-01

    The evolution of the end-Cretaceous terrestrial ecosystems and faunas outside of North America is largely restricted to the European Archipelago. The information scattered in this last area can only be integrated in a chronostratigraphic framework on the basis of robust age constraints and stratigraphy. Therefore, we have revisited the puzzling age calibration of the sedimentary infilling from the Isona sector in the Tremp syncline (South-Central Pyrenees), an area renowned for its rich Maastrichtian dinosaur fossil record. Aiming to shed light to existing controversial age determinations, we carried out a new magnetostratigraphic study along the ~ 420 m long Orcau and Nerets sections of that area. Our results reveal that most of the succession correlates to the early Maastrichtian (mostly chron C31r) in accordance to ages proposed by recent planktonic foraminifera biostratigraphy. The resulting chronostratigraphic framework of the entire Maastrichtian basin recorded in the Tremp syncline shows that a significant sedimentary hiatus of about 3 My characterizes most of the late Maastrichtian in the study area. This hiatus, related to an abrupt migration of the basin depocenter, is temporally close to similar hiatuses, decreases in sedimentary rates and facies shifts recorded in other southwestern European areas. The present chronologic framework sets the basis for a thorough assessment of end-Cretaceous terrestrial faunal turnover and extinction patterns, and the establishment of a more rigorous Pyrenean basin evolution analysis.

  3. Discovery of a new stonefly genus with three new species from mid-Cretaceous Burmese amber (Plecoptera: Perlidae).

    Science.gov (United States)

    Chen, Zhi-Teng; Wang, Bo; Du, Yu-Zhou

    2018-02-11

    A new fossil stonefly genus of the subfamily Acroneuriinae Klapálek, 1914 (Plecoptera: Perlidae), Largusoperla gen. nov. is reported based on three well-preserved specimens in mid-Cretaceous amber from northern Myanmar. Three new species of this new genus, L. acus sp. nov, L. flata sp. nov and L. arcus sp. nov. are described and illustrated. This is the first report of stonefly specimens from mid-Cretaceous Burmese amber. The taxonomic placement of the new genus is discussed.

  4. Earth history. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction.

    Science.gov (United States)

    Schoene, Blair; Samperton, Kyle M; Eddy, Michael P; Keller, Gerta; Adatte, Thierry; Bowring, Samuel A; Khadri, Syed F R; Gertsch, Brian

    2015-01-09

    The Chicxulub asteroid impact (Mexico) and the eruption of the massive Deccan volcanic province (India) are two proposed causes of the end-Cretaceous mass extinction, which includes the demise of nonavian dinosaurs. Despite widespread acceptance of the impact hypothesis, the lack of a high-resolution eruption timeline for the Deccan basalts has prevented full assessment of their relationship to the mass extinction. Here we apply uranium-lead (U-Pb) zircon geochronology to Deccan rocks and show that the main phase of eruptions initiated ~250,000 years before the Cretaceous-Paleogene boundary and that >1.1 million cubic kilometers of basalt erupted in ~750,000 years. Our results are consistent with the hypothesis that the Deccan Traps contributed to the latest Cretaceous environmental change and biologic turnover that culminated in the marine and terrestrial mass extinctions. Copyright © 2015, American Association for the Advancement of Science.

  5. Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: supporting data

    International Nuclear Information System (INIS)

    Koepnick, R.B.; Burke, W.H.; Denison, R.E.; Hetherington, E.A.; Nelson, H.F.; Otto, J.B.; Waite, L.E.

    1985-01-01

    We present the data used to construct the Cenozoic and Cretaceous portion of the Phanerozoic curve of seawater 87 Sr/ 86 Sr that had been given in summary form by W.H. Burke and coworkers. All Cenozoic samples (128) and 22 Cretaceous samples are foram-nannofossil oozes and limestones from DSDP cores distributed among 13 sites in the Atlantic, Pacific and Indian Oceans, and the Caribbean Sea. Non-DSDP Cretaceous samples (126) include limestone, anhydrite and phosphate samples from North America, Europe and Asia. Determination of the 87 Sr/ 86 Sr value of seawater at particular times in the past is based on comparison of ratios derived from coeval marine samples from widely separated geographic areas. The general configuration of the Cenozoic and Cretaceous curve appears to be strongly influenced by the history of plate interactions and sea-floor spreading. Specific rises and falls in the 87 Sr/ 86 Sr of seawater, however, may be caused by a variety of factors such as variation in lithologic composition of the crust exposed to weathering, configuration and topographic relief of continents, volcanic activity, rate of sea-floor spreading, extent of continental inundation by epeiric seas, and variations in both climate and paleo-oceanographic conditions. Many or all of these factors are probably related to global tectonic processes, yet their combined effect on the temporal variation of seawater 87 Sr/ 86 Sr can complicate a direct plate-tectonic interpretation for portions of the seawater curve. (Auth.)

  6. Geochemistry, geochronology, and tectonic setting of Early Cretaceous volcanic rocks in the northern segment of the Tan-Lu Fault region, northeast China

    Science.gov (United States)

    Ling, Yi-Yun; Zhang, Jin-Jiang; Liu, Kai; Ge, Mao-Hui; Wang, Meng; Wang, Jia-Min

    2017-08-01

    We present new geochemical and geochronological data for volcanic and related rocks in the regions of the Jia-Yi and Dun-Mi faults, in order to constrain the late Mesozoic tectonic evolution of the northern segment of the Tan-Lu Fault. Zircon U-Pb dating shows that rhyolite and intermediate-mafic rocks along the southern part of the Jia-Yi Fault formed at 124 and 113 Ma, respectively, whereas the volcanic rocks along the northern parts of the Jia-Yi and Dun-Mi faults formed at 100 Ma. The rhyolite has an A-type granitoid affinity, with high alkalis, low MgO, Ti, and P contents, high rare earth element (REE) contents and Ga/Al ratios, enrichments in large-ion lithophile (LILEs; e.g., Rb, Th, and U) and high-field-strength element (HFSEs; e.g., Nb, Ta, Zr, and Y), and marked negative Eu anomalies. These features indicate that the rhyolites were derived from partial melting of crustal material in an extensional environment. The basaltic rocks are enriched in light REEs and LILEs (e.g., Rb, K, Th, and U), and depleted in heavy REEs, HFSEs (e.g., Nb, Ta, Ti, and P), and Sr. These geochemical characteristics indicate that these rocks are calc-alkaline basalts that formed in an intraplate extensional tectonic setting. The dacite is a medium- to high-K, calc-alkaline, I-type granite that was derived from a mixed source involving both crustal and mantle components in a magmatic arc. Therefore, the volcanic rocks along the Jia-Yi and Dun-Mi faults were formed in an extensional regime at 124-100 Ma (Early Cretaceous), and these faults were extensional strike-slip faults at this time.

  7. Preliminary vitrinite and bitumen reflectance, total organic carbon, and pyrolysis data for samples from Upper and Lower Cretaceous strata, Maverick Basin, south Texas

    Science.gov (United States)

    Hackley, Paul C.; Dennen, Kristin O.; Gesserman, Rachel M.; Ridgley, Jennie L.

    2009-01-01

    The Lower Cretaceous Pearsall Formation, a regionally occurring limestone and shale interval of 500-600-ft maximum thickness (Rose, 1986), is being evaluated as part of an ongoing U.S. Geological Survey (USGS) assessment of undiscovered hydrocarbon resources in onshore Lower Cretaceous strata of the northern Gulf of Mexico. The purpose of this report is to release preliminary vitrinite and bitumen reflectance, total organic carbon, and pyrolysis data for Pearsall Formation, Glen Rose Formation, Hosston Formation, Austin Group, and Eagle Ford Group samples from the Maverick Basin in south Texas in order to aid in the characterization of these strata in this area. The preliminary nature of this report and the data contained herein reflect that the assessment and characterization of these samples is a work currently in progress. Pearsall Formation subdivisions are, in ascending stratigraphic order, the Pine Island Shale, James Limestone, and Bexar Shale Members (Loucks, 2002). The Lower Cretaceous Glen Rose Formation is also part of the USGS Lower Cretaceous assessment and produces oil in the Maverick Basin (Loucks and Kerans, 2003). The Hosston Formation was assessed by the USGS for undiscovered oil and gas resources in 2006 (Dyman and Condon, 2006), but not in south Texas. The Upper Cretaceous Austin Group is being assessed as part of the USGS assessment of undiscovered hydrocarbon resources in the Upper Cretaceous strata of the northern Gulf of Mexico and, along with the Upper Cretaceous Eagle Ford Group, is considered to be an important source rock in the Smackover-Austin-Eagleford Total Petroleum System (Condon and Dyman, 2006). Both the Austin Group and the Eagle Ford Group are present in the Maverick Basin in south Texas (Rose, 1986).

  8. A fossil brain from the Cretaceous of European Russia and avian sensory evolution.

    Science.gov (United States)

    Kurochkin, Evgeny N; Dyke, Gareth J; Saveliev, Sergei V; Pervushov, Evgeny M; Popov, Evgeny V

    2007-06-22

    Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.

  9. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    Science.gov (United States)

    Maffione, Marco; van Hinsbergen, Douwe J. J.; de Gelder, Giovanni I. N. O.; van der Goes, Freek C.; Morris, Antony

    2017-05-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Suprasubduction zone ophiolites (i.e., emerged fragments of ancient oceanic lithosphere formed at suprasubduction spreading centers) were generated during this subduction event and are today distributed in the eastern Mediterranean region along three E-W trending ophiolitic belts. Several models have been proposed to explain the formation of these ophiolites and the evolution of the associated intra-Neo-Tethyan subduction zone. Here we present new paleospreading directions from six Upper Cretaceous ophiolites of Turkey, Cyprus, and Syria, calculated by using new and published paleomagnetic data from sheeted dyke complexes. Our results show that NNE-SSW subduction zones were formed within the Neo-Tethys during the Late Cretaceous, which we propose were part of a major step-shaped subduction system composed of NNE-SSW and WNW-ESE segments. We infer that this subduction system developed within old (Triassic?) lithosphere, along fracture zones and perpendicular weakness zones, since the Neo-Tethyan spreading ridge formed during Gondwana fragmentation would have already been subducted at the Pontides subduction zone by the Late Cretaceous. Our new results provide an alternative kinematic model of Cretaceous Neo-Tethyan subduction initiation and call for future research on the mechanisms of subduction inception within old (and cold) lithosphere and the formation of metamorphic soles below suprasubduction zone ophiolites in the absence of nearby spreading ridges.

  10. Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): Implications for the collision of the Adriatic and European plates

    Science.gov (United States)

    Ustaszewski, Kamil; Schmid, Stefan M.; Lugović, Boško; Schuster, Ralf; Schaltegger, Urs; Bernoulli, Daniel; Hottinger, Lukas; Kounov, Alexandre; Fügenschuh, Bernhard; Schefer, Senecio

    2009-03-01

    The Kozara Mountains of northern Bosnia and Hercegovina form part of the internal Dinarides and host two tectonically juxtaposed ophiolitic successions of different age. The southern part of the Kozara Mountains exposes the Western Vardar Ophiolitic Unit, which was obducted onto the Adriatic margin in the Late Jurassic. The northern part exposes a bimodal igneous succession that was thrust onto the Western Vardar Ophiolitic Unit during the latest Cretaceous to Early Paleogene. This bimodal igneous succession comprises isotropic gabbros, doleritic dikes, basaltic pillow lavas and rhyolites. Pelagic limestones, intercalated with pillow lavas, yielded a Campanian globotruncanid association, consistent with concordant U-Pb ages on zircons from dolerites and rhyolites of 81.39 ± 0.11 and 81.6 ± 0.12 Ma, respectively. Chondrite-normalised rare earth element patterns of the bimodal igneous rocks show enrichment of LREE over HREE. Primitive mantle-normalised multi-element diagrams do not reveal significant depletion of HFSE. The ɛNd(T) and initial 87Sr/ 86Sr isotopic values range from + 4.4 to + 6.3 and from 0.70346 to 0.70507 respectively, suggesting an intraoceanic origin. The bimodal igneous succession is unconformably overlain by Maastrichtian to Paleocene siliciclastics that contain abundant ophiolitic detritus, suggesting reworking of the Campanian magmatics. An Eocene turbiditic sandstone succession unconformably covers both the Western Vardar Ophiolitic Unit and the Late Cretaceous bimodal igneous successions. These observations suggest that the Adriatic Plate and the Europe-derived Tisza and Dacia Mega-Units were still separated by a deep basin floored by oceanic lithosphere until the Campanian and that its closure did not occur before the Maastrichtian to earliest Paleogene. This Late Cretaceous oceanic domain probably represented a remnant of the Vardar Ocean, or alternatively, the Alpine Tethys; possibly the traces of both oceanic domains were connected in

  11. Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters

    Science.gov (United States)

    Swanson, Sharon M.; Enomoto, Catherine B.; Dennen, Kristin O.; Valentine, Brett J.; Cahan, Steven M.

    2017-02-10

    In 2010, the U.S. Geological Survey (USGS) assessed Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups and their equivalent units for technically recoverable, undiscovered hydrocarbon resources underlying onshore lands and State Waters of the Gulf Coast region of the United States. This assessment was based on a geologic model that incorporates the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico basin; the TPS was defined previously by the USGS assessment team in the assessment of undiscovered hydrocarbon resources in Tertiary strata of the Gulf Coast region in 2007. One conventional assessment unit (AU), which extends from south Texas to the Florida panhandle, was defined: the Fredericksburg-Buda Carbonate Platform-Reef Gas and Oil AU. The assessed stratigraphic interval includes the Edwards Limestone of the Fredericksburg Group and the Georgetown and Buda Limestones of the Washita Group. The following factors were evaluated to define the AU and estimate oil and gas resources: potential source rocks, hydrocarbon migration, reservoir porosity and permeability, traps and seals, structural features, paleoenvironments (back-reef lagoon, reef, and fore-reef environments), and the potential for water washing of hydrocarbons near outcrop areas.In Texas and Louisiana, the downdip boundary of the AU was defined as a line that extends 10 miles downdip of the Lower Cretaceous shelf margin to include potential reef-talus hydrocarbon reservoirs. In Mississippi, Alabama, and the panhandle area of Florida, where the Lower Cretaceous shelf margin extends offshore, the downdip boundary was defined by the offshore boundary of State Waters. Updip boundaries of the AU were drawn based on the updip extent of carbonate rocks within the assessed interval, the presence of basin-margin fault zones, and the presence of producing wells. Other factors evaluated were the middle

  12. New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs.

    Science.gov (United States)

    Brusatte, Stephen L; Averianov, Alexander; Sues, Hans-Dieter; Muir, Amy; Butler, Ian B

    2016-03-29

    Tyrannosaurids--the familiar group of carnivorous dinosaurs including Tyrannosaurus and Albertosaurus--were the apex predators in continental ecosystems in Asia and North America during the latest Cretaceous (ca. 80-66 million years ago). Their colossal sizes and keen senses are considered key to their evolutionary and ecological success, but little is known about how these features developed as tyrannosaurids evolved from smaller basal tyrannosauroids that first appeared in the fossil record in the Middle Jurassic (ca. 170 million years ago). This is largely because of a frustrating 20+ million-year gap in the mid-Cretaceous fossil record, when tyrannosauroids transitioned from small-bodied hunters to gigantic apex predators but from which no diagnostic specimens are known. We describe the first distinct tyrannosauroid species from this gap, based on a highly derived braincase and a variety of other skeletal elements from the Turonian (ca. 90-92 million years ago) of Uzbekistan. This taxon is phylogenetically intermediate between the oldest basal tyrannosauroids and the latest Cretaceous forms. It had yet to develop the giant size and extensive cranial pneumaticity of T. rex and kin but does possess the highly derived brain and inner ear characteristic of the latest Cretaceous species. Tyrannosauroids apparently developed huge size rapidly during the latest Cretaceous, and their success in the top predator role may have been enabled by their brain and keen senses that first evolved at smaller body size.

  13. New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs

    Science.gov (United States)

    Brusatte, Stephen L.; Averianov, Alexander; Sues, Hans-Dieter; Muir, Amy; Butler, Ian B.

    2016-03-01

    Tyrannosaurids-the familiar group of carnivorous dinosaurs including Tyrannosaurus and Albertosaurus-were the apex predators in continental ecosystems in Asia and North America during the latest Cretaceous (ca. 80-66 million years ago). Their colossal sizes and keen senses are considered key to their evolutionary and ecological success, but little is known about how these features developed as tyrannosaurids evolved from smaller basal tyrannosauroids that first appeared in the fossil record in the Middle Jurassic (ca. 170 million years ago). This is largely because of a frustrating 20+ million-year gap in the mid-Cretaceous fossil record, when tyrannosauroids transitioned from small-bodied hunters to gigantic apex predators but from which no diagnostic specimens are known. We describe the first distinct tyrannosauroid species from this gap, based on a highly derived braincase and a variety of other skeletal elements from the Turonian (ca. 90-92 million years ago) of Uzbekistan. This taxon is phylogenetically intermediate between the oldest basal tyrannosauroids and the latest Cretaceous forms. It had yet to develop the giant size and extensive cranial pneumaticity of T. rex and kin but does possess the highly derived brain and inner ear characteristic of the latest Cretaceous species. Tyrannosauroids apparently developed huge size rapidly during the latest Cretaceous, and their success in the top predator role may have been enabled by their brain and keen senses that first evolved at smaller body size.

  14. Tracing climatic conditions during the deposition of late Cretaceous-early Eocene phosphate beds in Morocco by geochemical compositions of biogenic apatite fossils

    Science.gov (United States)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Yans, J.; Ulianov, A.; Amaghzaz, M.

    2012-04-01

    Morocco's Western Atlantic coast was covered by shallow seas during the late Cretaceous-early Eocene when large amount of phosphate rich sediments were deposited. This time interval envelops a major part of the last greenhouse period and gives the opportunity to study the event's characteristics in shallow water settings. These phosphate deposits are extremely rich in vertebrate fossils, while other types of fossils are rare or often poorly preserved. Hence the local stratigraphy is based on the most abundant marine vertebrate fossils, on the selachian fauna (sharks and rays). Our geochemical investigations were also carried out on these remains, though in some cases frequently found coprolites were involved as well. The main goal of our study was to test whether stable isotope compositions (δ18OPO4, δ13C) of these fossils reflect any of the hyperthermal events and/or the related perturbations in the carbon cycle during the early Paleogene (Lourens et al. 2005) and whether these geochemical signals can be used to refine the local stratigraphy. Additionally, the samples were analyzed for trace element composition in order to better assess local taphonomy and burial conditions. The samples came from two major phosphate regions, the Ouled Abdoun and the Ganntour Basins and they were collected either directly on the field during excavations (Sidi Chennane) or were obtained from museum collections with known stratigraphical position (Sidi Daoui, Ben Guerrir). The phosphate oxygen isotopic compositions of shark teeth display large range across the entire series (18.5-22.4 ) which can partly be related to the habitat of sharks. For instance the genus Striatolamnia often yielded the highest δ18O values indicating possible deep water habitat. Despite the large variation in δ18O values, a general isotope trend is apparent. In the Maastrichtian after a small negative shift, the δ18O values increase till the Danian from where the trend decrease till the Ypresian. The

  15. Evolution of the Late Cretaceous-Paleogene Cordilleran arc magmatism in NW Mexico: a review from updated geochronological studies.

    Science.gov (United States)

    Valencia-Moreno, M.; Iriondo, A.; Perez-Segura, E.; Noguez-Alcantara, B.

    2007-05-01

    During most of the Mesozoic and Cenozoic, the locus of subduction related arc magmatism in northwestern Mexico was relatively mobile, probably due to changes in the mechanical conditions of the Farallon-North America plate convergence. The older Mesozoic events recognized in this region occurred in the Late Triassic and Jurassic, but the associated rocks are poorly preserved. However, a belt of Late Cretaceous through Paleogene magmatic rocks is well exposed along Baja California, Sonora and Sinaloa. Since the late 70's, it was noted that during the Early Cretaceous the igneous activity along this belt remained relatively static in the westernmost part, but migrated eastward in the Late Cretaceous, penetrating more than 1000 km into the continent. The arc magmatism reached western Sonora at about 90 Ma, and then it started to move faster inland, presumably due to flattening of the subducted oceanic slab. Recent U-Pb zircon data revealed unexpected old ages (89-95 Ma) near the eastern edge of Sonora, which are difficult to explain on the basis of the classic tectonic interpretations. A model based on two synchronic sites for magma emplacement may explain the age overlapping observed along the belt; however, a profound re-evaluation a proper geodynamic scenario to support this model is required. Even if restoration of the large Neogene crustal extension is made, particularly for central and northern Sonora, the relatively flat-subduction regime commonly accepted for the Laramide event appears unable to explain the anomalously broad expression of the magmatic belt in northwestern Mexico. An alternative model based on two synchronic sites of magma emplacement, as suggested by the new age data, may better explain the large volume of igneous rocks produced during this time in Sonora and most of Chihuahua. This mechanism may differ southwards in Sinaloa, where the magmatic belt becomes considerably narrower. Moreover, the possible existence of two spatially distinct sites

  16. Palynology of uppermost Jurassic and lowermost Cretaceous strata in the Eastern Netherlands

    NARCIS (Netherlands)

    Burger, D.

    1965-01-01

    The present investigation is a systematical treatment of the sporomorphs from strata at the Jurassic-Cretaceous boundary in the eastern Netherlands Twente area, and an attempt to apply palynology to detailed stratigraphical study, by making use of quantitative pollen analyses. The rock samples used

  17. Traces of a large crocodylian from the Lower Cretaceous Sousa Formation, Brazil

    DEFF Research Database (Denmark)

    Campos, Herbert B.N.; da Silva, Rafael C.; Milàn, Jesper

    2010-01-01

    Body imprints and tracks attributed to large crocodylians from the Lower Cretaceous Sousa Formation of Brazil are described and interpreted as having been produced in a subaqueous environment. In addition to the crocodylian tracks, the assemblage also comprises isolated tracks from medium-sized t...

  18. Similarities and differences in the ilia of Late Cretaceous anurans and urodeles

    Czech Academy of Sciences Publication Activity Database

    Roček, Zbyněk; Gardner, J. D.; Eaton, J. G.; Přikryl, Tomáš

    2012-01-01

    Roč. 183, č. 6 (2012), s. 529-535 ISSN 0037-9409 R&D Projects: GA MŠk ME08066 Institutional support: RVO:67985831 Keywords : Anura * Cretaceous * Ilium * North America * Postcranial skeleton * Urodela Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.182, year: 2012

  19. Ages and petrogenesis of Jurassic and Cretaceous intrusive rocks in the Matsu Islands: Implications for lower crust modification beneath southeastern China

    Science.gov (United States)

    Chen, Jing-Yuan; Yang, Jin-Hui; Ji, Wei-Qiang

    2017-12-01

    Major and trace element, whole-rock Sr-, Nd- and Hf-isotope, zircon U-Pb age and Hf-O isotope data are reported for the intrusive rocks from the Matsu Islands in the coastal area of southeastern (SE) China, in order to study the ages, sources and petrogenesis of these rocks and evolution of the lower crust. The rocks include gneissic granite, massive granite, brecciated granite and diabase. Secondary ion mass spectrometer (SIMS) zircon U-Pb dating reveals that the rocks in the Matsu Islands were emplaced at ∼160 Ma, ∼130 Ma and ∼94 Ma. The Jurassic granites (∼160 Ma) have high SiO2 (74.1-74.5 wt%) and K2O + Na2O (8.32-8.33 wt%) contents and high Rb/Sr ratios of 0.6-1.2 and (La/Yb)CN ratios of 12.6-19.4. Their relatively high initial 87Sr/86Sr ratios (0.7074-0.7101), variable and negative εNd(t) values (-9.2 to -5.4), and variable zircon εHf(t) (-17.0 to +5.2) and δ18O (4.7-8.1‰) values indicate they were mainly derived from an ancient lower crustal source, but with involvement of high εHf(t) and low δ18O materials. The Early Cretaceous diabase (∼130 Ma) has SiO2 content of 56.5 wt%, relatively high MgO concentration, low initial 87Sr/86Sr ratio and negative εNd(t) value, similar to geochemical features of other Cretaceous mafic rocks in the coastal area of SE China. Zircons from the diabase have high εHf(t) values (-5.5 to +0.2) and relatively low δ18O values of 4.2-5.0‰. These characteristics indicate that the parental magma of the diabase was generated by partial melting of enriched lithospheric mantle, which have been metasomatised by altered oceanic crust-derived low-δ18O fluids. For the Cretaceous granitoids (∼130 Ma and 94 Ma), they have relatively low SiO2 (68.0-71.3 wt%) and K2O + Na2O (5.30-7.55 wt%) contents and low Rb/Sr ratios and (La/Yb)CN ratios of 5.8-7.1. They have low initial 87Sr/86Sr ratios (0.7071-0.7082), homogeneous εNd(t) (-4.3 to -4.5) and relatively high zircon εHf(t) values (-3.7 to +1.2) and low δ18O values (4

  20. Assessment of perfluorooctanoic acid and perfluorooctane sulfonate in surface water - Tamil Nadu, India.

    Science.gov (United States)

    Sunantha, Ganesan; Vasudevan, Namasivayam

    2016-08-15

    As an emerging class of environmentally persistent organic pollutants, perfluorinated compounds (PFCs), particularly perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS); have been universally found in the environment. Wastewater and untreated effluents are likely the major causes for the accumulation of PFCs in surface water. There are very few reports on the contamination of PFCs in the developing countries, particularly in India. This study reports the quantitative analysis of PFOA and PFOS in Noyyal, Cauvery, and also lakes in and around Chennai, using Ultra-Fast liquid chromatograph. The concentration of PFOA and PFOS ranged from 4 to 93ng/L and 3 to 29ng/L, respectively. The concentration of PFOS was below detectable limit in Cauvery River. A reliable concentration of PFOA was recorded at all sites of River Cauvery (5ng/L). The present study could be useful for the assessment of future monitoring programs of PFOA and PFOS in the surface water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Early Cretaceous overprinting of the Mesozoic Daqing Shan fold-and-thrust belt by the Hohhot metamorphic core complex, Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Gregory A. Davis

    2010-10-01

    Full Text Available The Early Cretaceous Hohhot metamorphic core complex (mcc of the Daqing Shan (Mtns. of central Inner Mongolia is among the best exposed and most spectacular of the spatially isolated mcc’s that developed within the northern edge of the North China “craton”. All of these mcc’s were formed within the basement of a Late Paleozoic Andean-style arc and across older Mesozoic fold-and-thrust belts of variable age and tectonic vergence. The master Hohhot detachment fault roots southwards within the southern margin of the Daqing Shan for an along-strike distance of at least 120 km. Its geometry in the range to the north is complicated by interference patterns between (1 primary, large-scale NW-SE-trending convex and concave fault corrugations and (2 secondary ENE-WSW-trending antiforms and synforms that folded the detachment in its late kinematic history. As in the Whipple Mtns. of California, the Hohhot master detachment is not of the Wernicke (1981 simple rooted type; instead, it was spawned from a mid-crustal shear zone, the top of which is preserved as a mylonitic front within Carboniferous metasedimentary rocks in its exhumed lower plate. 40Ar–39Ar dating of siliceous volcanic rocks in basal sections of now isolated supradetachment basins suggest that crustal extension began at ca. 127 Ma, although lower-plate mylonitic rocks were not exposed to erosion until after ca. 119 Ma. Essentially synchronous cooling of hornblende, biotite, and muscovite in footwall mylonitic gneisses indicates very rapid exhumation and at ca. 122–120 Ma. Contrary to several recent reports, the master detachment clearly cuts across and dismembers older, north-directed thrust sheets of the Daqing Shan foreland fold-and-thrust belt. Folded and thrust-faulted basalts within its foredeep strata are as young as 132.6 ± 2.4 Ma, thus defining within 5–6 Ma the regional tectonic transition between crustal contraction and profound crustal extension.

  2. Definition, age, and correlation of the Clarence Series stages in New Zealand (late Early to early Late Cretaceous)

    International Nuclear Information System (INIS)

    Crampton, J.S.; Tulloch, A.J.; Wilson, G.J.; Ramezani, J.; Speden, I.G.

    2004-01-01

    The New Zealand local Clarence Series spans the Lower/Upper Cretaceous boundary and includes three stages, in ascending order, the Urutawan, Motuan, and Ngaterian. All three were defined originally from a type section at Motu Falls, Raukumara Peninsula. To address problems with their original definitions and to improve correlations between the New Zealand time-scale and Global Chronostratigraphic Scale, four key sections have been re-studied: the Motu Falls and adjacent Te Waka sections, and the Coverham and Seymour sections in the Clarence valley, Marlborough. The sections contain locally abundant macrofossils and have been sampled at a reconnaissance level for dinoflagellates. In addition, a middle Motuan tuff bed in the Motu Falls section has yielded a zircon U-Pb age of 101.6 ± 0.2 Ma, and an upper Ngaterian basalt flow in the Seymour section has yielded a plagioclase Ar/Ar age of 96.1 ± 0.6 Ma. The older of these dates allows, for the first time, direct age correlation of Clarence Series stages that are based on marine strata in eastern New Zealand, with non-marine rocks in the west. Thus, the Stitts Tuff, at the base of the Pororari Group in the western South Island, is shown to be middle Motuan. Based on the new data, we emend the definitions of the Clarence Series stages. The base of the Urutawan is defined using the lowest occurrence of the inoceramid bivalve Mytiloides ipuanus in the Motu Falls section. The base of the Motuan is defined using the lowest occurrence of the bivalve Aucellina euglypha in the same section. The base of the Ngaterian is defined using the lowest occurrence of the inoceramid 'I.' tawhanus in the Te Waka section. In all three cases, the placements of the lowest occurrence datums are subject to uncertainties that can only be resolved by further biostratigraphic and/or taxonomic study. Based on biostratigraphic data and the new radiometric dates, the following international correlations are proposed: Urutawan Stage = lower

  3. A large Cretaceous theropod from Patagonia, Argentina, and the evolution of carcharodontosaurids

    Science.gov (United States)

    Novas, Fernando E.; Valais, Silvina; Vickers-Rich, Pat; Rich, Tom

    2005-05-01

    The Cretaceous Carcharodontosauridae is the latest clade of carnosaurs, including the largest predatory dinosaurs yet recorded. Albeit spectacular for their size, the skeletal anatomy of these theropods remains poorly-known, and their diversity was until recently restricted to two Cenomanian species: the highly derived Giganotosaurus carolinii, from southern South America, and the incompletely known Carcharodontosaurus saharicus, from northern Africa. Here we describe an older and basal member of the group, Tyrannotitan chubutensis gen. et sp. nov., from Aptian strata of Patagonia, Argentina. The new taxon gives new insights into the systematics and evolution of carcharodontosaurids and offers a better understanding of the evolution of Southern theropod faunas. We suggest that carcharodontosaurids radiated in Gondwana sharing with spinosaurids the role of top-predators until their extinction in Cenomanian Turonian times. During this interval, the diplodocoid sauropods and giant titanosaurians went extinct (probably as part of a global-scale crisis), and the smaller abelisaurid theropods took dominance, reigning until the end of the Cretaceous. Electronic Supplementary Material is available.

  4. Eocene and not Cretaceous origin of spider wasps: Fossil evidence from amber

    Directory of Open Access Journals (Sweden)

    Juanita Rodriguez

    2016-02-01

    Full Text Available Spider wasps had long been proposed to originate in the mid-Cretaceous based on the Burmese amber fossil Bryopompilus interfector Engel and Grimaldi, 2006. We performed a morphological examination of this fossil and determined it does not belong to Pompilidae or any other described hymenopteran family. Instead, we place it in the new family Bryopompilidae. The oldest verifiable member of the Pompilidae is from Baltic amber, which suggests the family probably originated in the Eocene, not in the mid-Cretaceous as previously proposed. The origin of spider wasps appears to be correlated with an increase in spider familial diversity in the Cenozoic. We also we add two genera to the extinct pompilid fauna: Tainopompilus gen. nov., and Paleogenia gen. nov., and describe three new species of fossil spider wasps: Anoplius planeta sp. nov., from Dominican amber (Burdigalian to Langhian; Paleogenia wahisi sp. nov., from Baltic amber (Lutetian to Priabonian; and Tainopompilus argentum sp. nov, from Dominican amber (Chattian to Langhian.

  5. Explosive diversification of marine fishes at the Cretaceous-Palaeogene boundary.

    Science.gov (United States)

    Alfaro, Michael E; Faircloth, Brant C; Harrington, Richard C; Sorenson, Laurie; Friedman, Matt; Thacker, Christine E; Oliveros, Carl H; Černý, David; Near, Thomas J

    2018-04-01

    The Cretaceous-Palaeogene (K-Pg) mass extinction is linked to the rapid emergence of ecologically divergent higher taxa (for example, families and orders) across terrestrial vertebrates, but its impact on the diversification of marine vertebrates is less clear. Spiny-rayed fishes (Acanthomorpha) provide an ideal system for exploring the effects of the K-Pg on fish diversification, yet despite decades of morphological and molecular phylogenetic efforts, resolution of both early diverging lineages and enormously diverse subclades remains problematic. Recent multilocus studies have provided the first resolved phylogenetic backbone for acanthomorphs and suggested novel relationships among major lineages. However, these new relationships and associated timescales have not been interrogated using phylogenomic approaches. Here, we use targeted enrichment of >1,000 ultraconserved elements in conjunction with a divergence time analysis to resolve relationships among 120 major acanthomorph lineages and provide a new timescale for acanthomorph radiation. Our results include a well-supported topology that strongly resolves relationships along the acanthomorph backbone and the recovery of several new relationships within six major percomorph subclades. Divergence time analyses also reveal that crown ages for five of these subclades, and for the bulk of the species diversity in the sixth, coincide with the K-Pg boundary, with divergences between anatomically and ecologically distinctive suprafamilial clades concentrated in the first 10 million years of the Cenozoic.

  6. An Atmospheric CO2 Record Across the End-Cretaceous Extinction

    Science.gov (United States)

    Royer, D. L.; Milligan, J. N.; Kowalczyk, J.

    2017-12-01

    A bolide impact and flood-basalt emissions likely caused large changes to the end-Cretaceous carbon cycle. Presently, there is only one proxy record for atmospheric CO2 that captures these changes (Beerling et al., 2002, PNAS 99: 7836-7840). These authors estimated CO2 from the calibrated stomatal indices of Ginkgo dated to within 105 yrs before and after the extinction ( 300-500 ppm) in addition to that of Stenochlaena, a fern disaster taxa present in the Raton Basin, New Mexico, 2300 ppm). We revisited these fossil collections and applied a newer and more robust CO2 proxy that is based on leaf gas-exchange principles and does not require calibrations with present-day species (Franks et al., 2014, Geophys Res Lett 41: 4685-4694). We reconstruct pre- and post-extinction CO2 concentrations of 650 ppm from Ginkgo, compared to 850 ppm directly after the extinction from Stenochlaena. This change in CO2 of 200 ppm can be readily explained with carbon cycle models as a consequence of either the bolide impact or flood-basalt emissions. Placing these CO2 estimates into the broader context of other leaf gas-exchange CO2 estimates for the Cenozoic, the Earth system sensitivity was 3 K per CO2 doubling during the early Paleogene, before steepening to >6 K several million years before the Eocene-Oligocene boundary.

  7. Curstal evolution and sedimentation history of the Bay of Bengal since the cretaceous

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.G.; Krishna, K.S.; Sar, D.

    on three latitudinal profiles) in the Bay of Bengal. The trend of the fracture zones, the locations of the magnetic chron 34, and the Cretaceous Magnetic Quiet Zone suggest that Greater India separated from Antarctica after a period of transform motion...

  8. New predatory cockroaches (Insecta: Blattaria: Manipulatoridae fam.n.) from the Upper Cretaceous Myanmar amber

    Science.gov (United States)

    Vršanský, Peter; Bechly, Günter

    2015-04-01

    We describe a new extinct lineage Manipulatoridae (new family) of cockroaches from the Upper Cretaceous (Cenomanian) amber of Myanmar. Manipulator modificaputis gen. et sp. n. is a morphologically unique extinct cockroach that represents the first (of a total of 29 known worldwide) cockroach family reported exclusively from the Myanmar amber. This family represents an early side branch of the stem group of Mantodea (most probably a sister group of Eadiidae within Blattaria/Corydioidea) because it has some synapomorphies with the Mantodea (including the stem group and Eadiidae). This family also retains symplesiomorphies that exclude a position in the crown group, and furthermore has unique autapomorphies that exclude a position as a direct ancestor of Mantodea. The unique adaptations such as strongly elongated extremities and freely movable head on a long neck suggest that these animals were pursuit predators. Five additional specimens (including two immatures) reported from the Myanmar amber suggest that this group was relatively rare but belonged to the indigenous and autochthonous inhabitants of the ancient amber forest of the Myanmar region.

  9. Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight

    Science.gov (United States)

    Navalón, Guillermo; Marugán-Lobón, Jesús; Chiappe, Luis M.; Luis Sanz, José; Buscalioni, Ángela D.

    2015-01-01

    Despite a wealth of fossils of Mesozoic birds revealing evidence of plumage and other soft-tissue structures, the epidermal and dermal anatomy of their wing’s patagia remain largely unknown. We describe a distal forelimb of an enantiornithine bird from the Lower Cretaceous limestones of Las Hoyas, Spain, which reveals the overall morphology of the integument of the wing and other connective structures associated with the insertion of flight feathers. The integumentary anatomy, and myological and arthrological organization of the new fossil is remarkably similar to that of modern birds, in which a system of small muscles, tendons and ligaments attaches to the follicles of the remigial feathers and maintains the functional integrity of the wing during flight. The new fossil documents the oldest known occurrence of connective tissues in association with the flight feathers of birds. Furthermore, the presence of an essentially modern connective arrangement in the wing of enantiornithines supports the interpretation of these primitive birds as competent fliers. PMID:26440221

  10. Seismic tomographic constraints on plate-tectonic reconstructions of Nazca subduction under South America since late Cretaceous (˜80 Ma)

    Science.gov (United States)

    Chen, Y. W.; Wu, J.; Suppe, J.

    2017-12-01

    Global seismic tomography has provided new and increasingly higher resolution constraints on subducted lithospheric remnants in terms of their position, depth, and volumes. In this study we aim to link tomographic slab anomalies in the mantle under South America to Andean geology using methods to unfold (i.e. structurally restore) slabs back to earth surface and input them to globally consistent plate reconstructions (Wu et al., 2016). The Andean margin of South America has long been interpreted as a classic example of a continuous subduction system since early Jurassic or later. However, significant gaps in Andean plate tectonic reconstructions exist due to missing or incomplete geology from extensive Nazca-South America plate convergence (i.e. >5000 km since 80 Ma). We mapped and unfolded the Nazca slab from global seismic tomography to produce a quantitative plate reconstruction of the Andes back to the late Cretaceous 80 Ma. Our plate model predicts the latest phase of Nazca subduction began in the late Cretaceous subduction after a 100 to 80 Ma plate reorganization, which is supported by Andean geology that indicates a margin-wide compressional event at the mid-late Cretaceous (Tunik et al., 2010). Our Andean plate tectonic reconstructions predict the Andean margin experienced periods of strike-slip/transtensional and even divergent plate tectonics between 80 to 55 Ma. This prediction is roughly consistent with the arc magmatism from northern Chile between 20 to 36°S that resumed at 80 Ma after a magmatic gap. Our model indicates the Andean margin only became fully convergent after 55 Ma. We provide additional constraints on pre-subduction Nazca plate paleogeography by extracting P-wave velocity perturbations within our mapped slab surfaces following Wu et al. (2016). We identified localized slow anomalies within our mapped Nazca slab that apparently show the size and position of the subducted Nazca ridge, Carnegie ridge and the hypothesized Inca plateau

  11. Progress in Late Cretaceous planktonic foraminiferal stable isotope paleoecology and implications for paleoceanographic reconstructions

    Science.gov (United States)

    Petrizzo, Maria Rose; Falzoni, Francesca; Huber, Brian T.; MacLeod, Kenneth G.

    2015-04-01

    Paleoecological preferences proposed for Cretaceous planktonic foraminiferal taxa have traditionally been based on morphological analogies with depth-stratified modern species, on biofacies comparison in continental margin and deepwater settings, and limited oxygen and carbon stable isotope data. These studies concluded that large-sized, keeled and heavily calcified planktonic foraminifera generally lived at deeper levels in the surface waters than small-sized, thinner-walled non-keeled species. Stable isotope data have been used to infer information on paleotemperature, paleoceanography and paleoproductivity of ancient oceans and constrain biological paleo-activities (i.e. photosymbiosis and respiration) of fossil species. These studies have suggested that the depth-distribution model based on analogy with modern taxa might not be fully applicable for Cretaceous species, and found particularly 13C-enriched values in some Maastrichtian multiserial taxa that have been related to the activity of photosymbionts. We have collected about 1500 δ18O and δ13C species-specific analyses on glassy preserved planktonic foraminifera from Tanzania (Tanzania Drilling Project TDP sites 23, 28 and 32) and well-preserved planktonic foraminifera from other mid-low latitude localities (Shatsky Rise, northwestern Pacific Ocean, ODP Leg 198 Hole 1210B; Exmouth Plateau, eastern Indian Ocean, ODP Leg 122, Hole 762C; Eratosthenes Seamount, eastern Mediterranean, ODP Leg 160, Hole 967E; Blake Nose, central Atlantic Ocean, ODP Leg 171B, holes 1050C and 1052E) to investigate Late Cretaceous species paleoecological preferences, life strategies and depth distribution in the surface water column. Our results indicates that several large-sized (> 500 μm) double-keeled species belonging to the genera Dicarinella, Marginotruncana and Contusotruncana, generally interpreted as deep to thermocline dwellers, instead occupied shallow/warm layers of the water column, whilst not all biserial species

  12. Late Early-Cretaceous quartz diorite-granodiorite-monzogranite association from the Gaoligong belt, southeastern Tibet Plateau: Chemical variations and geodynamic implications

    Science.gov (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Qin, Jiang-Feng; Zhao, Shao-Wei; Wang, Jiang-Bo

    2017-09-01

    Geochemical variations in granitic rocks may be controlled by their source rocks, melting reactions and subsequent magmatic processes, which resulted from various geodynamic processes related to subduction, collision, or slab break-off. Here we report new LA-ICP-MS zircon U-Pb ages and Hf isotopes, whole-rock chemistry and Sr-Nd isotopes for the late Early Cretaceous quartz diorite, granodiorite and monzogranite in the Gaoligong belt, southeastern Tibet Plateau. The zircon U-Pb dating yield ages of 113.9 ± 1.6, 111.7 ± 0.8, and 112.8 ± 1.7 Ma for the quartz diorite, granodiorite, and monzogranite, respectively, which are coeval with bimodal magmatism in the central and northern Lhasa sub-terrane. There are the distinct sources regions for the quartz diorite and granodiorite-monzogranite association. The quartz diorites are sodic, calc-alkaline and have high Mg# (52-54) values. They also have elevated initial 87Sr/86Sr (0.707019 to 0.709176) and low εNd(t) (- 5.16 to - 7.63), with variable zircon εHf(t) values (+ 5.65 to - 9.02). Zircon chemical data indicate a typical crustal-derived character with high Th (142-1260 ppm) and U (106-1082 ppm) and moderate U/Yb ratios (0.30 to 2.32) and Y content (705-1888 ppm). Those data suggest that the quartz diorites were derived from partial melting of ancient basaltic lower crust by a mantle-derived magma in source region. The granodiorite-monzogranite association has high-K calc-alkaline, weakly peraluminous characters. They show lower Nb/Ta (5.57 to 13.8), CaO/Na2O (0.62 to 1.21), higher Al2O3/TiO2 (24.4 to 44.4) ratios, more evolved whole-rock Sr-Nd and zircon Hf isotopic signatures, all of which suggest derivation from mixed basaltic and metasedimentary source rocks in a deep crustal zone. We propose that the granitic magmatisms at ca. 113-110 Ma in the Gaologong belt was triggered by the slab break-off of Bangong-Nujiang Tethyan oceanic lithosphere. Supplementary Dataset Table 2. Single-grain zircon Hf isotopic data

  13. Intra-trackway morphological variations due to substrate consistency: the El Frontal dinosaur tracksite (Lower Cretaceous, Spain.

    Directory of Open Access Journals (Sweden)

    Novella L Razzolini

    Full Text Available An ichnological and sedimentological study of the El Frontal dinosaur tracksite (Early Cretaceous, Cameros basin, Soria, Spain highlights the pronounced intra-trackway variation found in track morphologies of four theropod trackways. Photogrammetric 3D digital models revealed various and distinct intra-trackway morphotypes, which reflect changes in footprint parameters such as the pace length, the track length, depth, and height of displacement rims. Sedimentological analyses suggest that the original substrate was non-homogenous due to lateral changes in adjoining microfacies. Multidata analyses indicate that morphological differences in these deep and shallow tracks represent a part of a continuum of track morphologies and geometries produced by a gradient of substrate consistencies across the site. This implies that the large range of track morphologies at this site resulted from similar trackmakers crossing variable facies. The trackways at the El Frontal site present an exemplary case of how track morphology, and consequently potential ichnotaxa, can vary, even when produced by a single trackmaker.

  14. A Cretaceous origin for fire adaptations in the Cape flora.

    Science.gov (United States)

    He, Tianhua; Lamont, Byron B; Manning, John

    2016-10-05

    Fire has had a profound effect on the evolution of worldwide biotas. The Cape Floristic Region is one of the world's most species-rich regions, yet it is highly prone to recurrent fires and fire-adapted species contribute strongly to the overall flora. It is hypothesized that the current fire regimes in the Cape could be as old as 6-8 million years (My), while indirect evidence indicates that the onset of fire could have reached 18 million years ago (Ma). Here, we trace the origin of fire-dependent traits in two monocot families that are significant elements in the fire-prone Cape flora. Our analysis shows that fire-stimulated flowering originated in the Cape Haemodoraceae 81 Ma, while fire-stimulated germination arose in the African Restionaceae at least 70 Ma, implying that wildfires have been a significant force in the evolution of the Cape flora at least 60 My earlier than previous estimates. Our results provide strong evidence for the presence of fire adaptations in the Cape from the Cretaceous, leading to the extraordinary persistence of a fire-adapted flora in this biodiversity hotspot, and giving support to the hypothesis that Cretaceous fire was a global phenomenon that shaped the evolution of terrestrial floras.

  15. Intense acidic volcanism at the Cretaceous-Tertiary boundary

    International Nuclear Information System (INIS)

    Javoy, M.; Courtillot, V.

    1989-01-01

    A 87 Sr/ 86 Sr spike in seawater strontium with amplitude 2 x 10 -4 and duration of order 2 Ma is superimposed on longer-term variations at the Cretaceous-Tertiary boundary. The anomaly has been attributed to increased continental runoff due either to meteorite impact-related acid rain or sea-level regression. We speculate here that the spike could have resulted from intense, explosive acid volcanism preceding the development of the Deccan traps. A good model, both in tectonic position and geochemical characteristics, for these as yet elusive acidic products is provided by granites in the Seychelles Islands and particularly Mahe. (orig.)

  16. Reworked Middle Jurassic sandstones as a marker for Upper Cretaceous basin inversion in Central Europe—a case study for the U-Pb detrital zircon record of the Upper Cretaceous Schmilka section and their implication for the sedimentary cover of the Lausitz Block (Saxony, Germany)

    Science.gov (United States)

    Hofmann, Mandy; Voigt, Thomas; Bittner, Lucas; Gärtner, Andreas; Zieger, Johannes; Linnemann, Ulf

    2018-04-01

    The Saxonian-Bohemian Cretaceous Basin (Elbsandsteingebirge, E Germany and Czech Republic, Elbtal Group) comprises Upper Cretaceous sedimentary rocks from Upper Cenomanian to Santonian age. These sandstones were deposited in a narrow strait of the sea linking the northern Boreal shelf to the southern Tethyan areas. They were situated between the West Sudetic Island in the north and the Mid-European Island in the south. As known by former studies (e.g. Tröger, Geologie 6/7:717-730, 1964; Tröger, Geologie von Sachsen, Schweizerbart, 311-358, 2008; Voigt and Tröger, Proceedings of the 4th International Cretaceous Symposium, 275-290, 1996; Voigt, Dissertation, TU Bergakademie Freiberg, 1-130, 1995; Voigt, Zeitschrift der geologischen Wissenschaften 37(1-2): 15-39, 2009; Wilmsen et al., Freiberger Forschungshefte C540: 27-45, 2011) the main sedimentary input came from the north (Lausitz Block, southern West-Sudetic Island). A section of Turonian to Coniacian sandstones was sampled in the Elbsandsteingebirge near Schmilka (Elbtal Group, Saxony, Germany). The samples were analysed for their U-Pb age record of detrital zircon using LA-ICP-MS techniques. The results show main age clusters typical for the Bohemian Massif (local material) and are interpreted to reflect the erosion of uniform quartz-dominated sediments and basement rocks. Surprisingly, these rocks lack an expected Upper Proterozoic to Lower Palaeozoic age peak, which would be typical for the basement of the adjacent Lausitz Block (c. 540-c. 560 Ma). Therefore, the Lausitz Block basement must have been covered by younger sediments that acted as source rocks during deposition of the Elbtal Group. The sandstones of the Elbe valley (Elbtal Group, Schmilka section) represent the re-deposited sedimentary cover of the Lausitz Block in inverse order. This cover comprised Permian, Triassic, Jurassic and Lower Cretaceous deposits, which are eroded already today and cannot be investigated. Within the samples of the

  17. A Middle Jurassic abelisaurid from Patagonia and the early diversification of theropod dinosaurs.

    Science.gov (United States)

    Pol, Diego; Rauhut, Oliver W M

    2012-08-22

    Abelisaurids are a clade of large, bizarre predatory dinosaurs, most notable for their high, short skulls and extremely reduced forelimbs. They were common in Gondwana during the Cretaceous, but exceedingly rare in the Northern Hemisphere. The oldest definitive abelisaurids so far come from the late Early Cretaceous of South America and Africa, and the early evolutionary history of the clade is still poorly known. Here, we report a new abelisaurid from the Middle Jurassic of Patagonia, Eoabelisaurus mefi gen. et sp. nov., which predates the so far oldest known secure member of this lineage by more than 40 Myr. The almost complete skeleton reveals the earliest evolutionary stages of the distinctive features of abelisaurids, such as the modification of the forelimb, which started with a reduction of the distal elements. The find underlines the explosive radiation of theropod dinosaurs in the Middle Jurassic and indicates an unexpected diversity of ceratosaurs at that time. The apparent endemism of abelisauroids to southern Gondwana during Pangean times might be due to the presence of a large, central Gondwanan desert. This indicates that, apart from continent-scale geography, aspects such as regional geography and climate are important to reconstruct the biogeographical history of Mesozoic vertebrates.

  18. Provenance and geochronological insights into Late Cretaceous-Paleogene foreland basin development in the Subandean Zone and Oriente Basin of Ecuador

    Science.gov (United States)

    Gutierrez, E. G.; Horton, B. K.; Vallejo, C.

    2017-12-01

    The tectonic history of the Oriente foreland basin and adjacent Subandean Zone of Ecuador during contractional mountain building in the northern Andes can be revealed through integrated stratigraphic, geochronological, structural, and provenance analyses of clastic sediments deposited during orogenesis. We present new maximum depositional ages and a comprehensive provenance analysis for key stratigraphic units deposited in the western (proximal) Oriente Basin. Detrital zircon U-Pb ages were obtained from Upper Cretaceous and Cenozoic clastic formations from exposures in the Subandean Zone. The sampled stratigraphic intervals span critical timeframes during orogenesis in the Ecuadorian Andes. Cenozoic formations have poorly defined chronostratigraphic relationships and are therefore a primary target of this study. In addition, the newly acquired U-Pb age spectra allow clear identification of the various sediment source regions that fed the system during distinct depositional phases. Maximum depositional ages (MDA) were obtained for five samples from three formations: the Tena (MDA=69.6 Ma), Chalcana (MDA=29.3 Ma), and Arajuno (MDA= 17.1, 14.2, 12.8 Ma) Formations, placing them in the Maastrichtian, early Oligocene, and early-middle Miocene, respectively. Detrital zircon U-Pb ages identify clear signatures of at least four different sources: craton (1600-1300 Ma, 1250-900 Ma), Eastern Cordillera fold-thrust belt (600-450 Ma, 250-145 Ma), Western Cordillera magmatic arc (age spectra of the Upper Cretaceous-Paleogene type sections allow us to recognize variations in the contribution of each recognized source over time. We identify recycled material with two dominant peak ages (1250-900 Ma and 600-450 Ma), material derived from the adjacent uplifted orogen or recycled from foredeep sediments incorporated into the deforming wedge. Finally, an apparent unroofing event is inferred from a 250-145 Ma age peak in the Plio-Pleistocene Mesa-Mera Formation revealing the

  19. The Jurassic-Cretaceous basaltic magmatism of the Oued El-Abid syncline (High Atlas, Morocco): Physical volcanology, geochemistry and geodynamic implications

    Science.gov (United States)

    Bensalah, Mohamed Khalil; Youbi, Nasrrddine; Mata, João; Madeira, José; Martins, Línia; El Hachimi, Hind; Bertrand, Hervé; Marzoli, Andrea; Bellieni, Giuliano; Doblas, Miguel; Font, Eric; Medina, Fida; Mahmoudi, Abdelkader; Beraâouz, El Hassane; Miranda, Rui; Verati, Chrystèle; De Min, Angelo; Ben Abbou, Mohamed; Zayane, Rachid

    2013-05-01

    Basaltic lava flows, dykes and sills, interbedded within red clastic continental sedimentary sequences (the so called "Couches Rouges") are widespread in the Oued El-Abid syncline. They represent the best candidates to study the Jurassic-Cretaceous magmatism in the Moroccan High Atlas. The volcanic successions were formed during two pulses of volcanic activity, represented by the Middle to Upper Jurassic basaltic sequence B1 (1-4 eruptions) and the Lower Cretaceous basaltic sequence B2 (three eruptions). Whether belonging to the B1 or B2, the lava flows present morphology and internal structures typical of inflated pahoehoe. Our geochemical data show that, at least for Jurassic magmatism, the dykes, and sills cannot be considered as strictly representing the feeders of the sampled lava flows. The Middle to Upper Jurassic pulse is moderately alkaline in character, while the Lower Cretaceous one is transitional. Crustal contamination plays a minor role in the petrogenesis of these magmas, which were generated by variable partial melting degrees of a garnet-bearing mantle source. Magmatism location was controlled by pre-existing Hercynian fault systems reactivated during a Middle to Upper Jurassic-Cretaceous rifting event. The associated lithospheric stretching induced melting, by adiabatic decompression, of enriched low-solidus infra-lithospheric domains.

  20. Hadrosauroid Dinosaurs from the Late Cretaceous of the Sultanate of Oman.

    Directory of Open Access Journals (Sweden)

    Eric Buffetaut

    Full Text Available Fragmentary post-cranial remains (femora, tibia, vertebrae of ornithischian dinosaurs from the Late Cretaceous of the Sultanate of Oman are described and referred to hadrosauroids. The specimens come from the Al-Khod Conglomerate, of latest Campanian to Maastrichtian age, in the north-eastern part of the country. Although the fragmentary condition of the fossils precludes a precise identification, various characters, including the shape of the fourth trochanter of the femur and the morphology of its distal end, support an attribution to hadrosauroids. With the possible exception of a possible phalanx from Angola, this group of ornithopod dinosaurs, which apparently originated in Laurasia, was hitherto unreported from the Afro-Arabian plate. From a paleobiogeographical point of view, the presence of hadrosauroids in Oman in all likelihood is a result of trans-Tethys dispersal from Asia or Europe, probably by way of islands in the Tethys shown on all recent paleogeographical maps of that area. Whether hadrosauroids were widespread on the Afro-Arabian landmass in the latest Cretaceous, or where restricted to the « Oman island » shown on some paleogeographical maps, remains to be determined.

  1. Hadrosauroid Dinosaurs from the Late Cretaceous of the Sultanate of Oman.

    Science.gov (United States)

    Buffetaut, Eric; Hartman, Axel-Frans; Al-Kindi, Mohammed; Schulp, Anne S

    2015-01-01

    Fragmentary post-cranial remains (femora, tibia, vertebrae) of ornithischian dinosaurs from the Late Cretaceous of the Sultanate of Oman are described and referred to hadrosauroids. The specimens come from the Al-Khod Conglomerate, of latest Campanian to Maastrichtian age, in the north-eastern part of the country. Although the fragmentary condition of the fossils precludes a precise identification, various characters, including the shape of the fourth trochanter of the femur and the morphology of its distal end, support an attribution to hadrosauroids. With the possible exception of a possible phalanx from Angola, this group of ornithopod dinosaurs, which apparently originated in Laurasia, was hitherto unreported from the Afro-Arabian plate. From a paleobiogeographical point of view, the presence of hadrosauroids in Oman in all likelihood is a result of trans-Tethys dispersal from Asia or Europe, probably by way of islands in the Tethys shown on all recent paleogeographical maps of that area. Whether hadrosauroids were widespread on the Afro-Arabian landmass in the latest Cretaceous, or where restricted to the « Oman island » shown on some paleogeographical maps, remains to be determined.

  2. Cretaceous origin of dogwoods: an anatomically preserved Cornus (Cornaceae fruit from the Campanian of Vancouver Island

    Directory of Open Access Journals (Sweden)

    Brian A. Atkinson

    2016-12-01

    Full Text Available Background Cornaceae consists of 58 species, all within the genus Cornus. The Cenozoic record of Cornus is extensive and well documented. Molecular divergence-time studies suggest that crown-group Cornus may have originated by the Late Cretaceous. However, there has been no formal report of Cornus from Cretaceous deposits. Here, we characterize a permineralized fossil fruit assignable to Cornus subg. Cornus from the Upper Cretaceous (Campanian Shelter Point locality of Vancouver Island, British Columbia, Canada. Methods Serial sections of the specimen were made using the cellulose acetate peel technique. Peels were mounted onto microscope slides and studied by light microscopy. Results The fossil fruit consists of a tri-locular woody endocarp with dorsal germination valves. The locules are sub-triangular to ellipsoidal in transverse section and are separated by thin septa. Endocarp tissue consists of elongated and isodiametric sclereids and secretory cavities. Internal vascular tissue was not observed, but is interpreted to have been located along the outer periphery of the septa for some length, common in many cornalean taxa. There is one seed in each locule, one of which was found to have endosperm and a dicotyledonous embryo. Discussion Woody endocarps with germination valves, without central vascular bundles, and with one seed per locule are characteristic of several families within the order Cornales. The interpreted vascular pattern and presence of secretory cavities indicates that the fossil fruit is assignable to Cornus subg. Cornus. Comparative analysis suggests that the fossil is most similar to Cornus piggae, a species described from the Paleocene of North Dakota. This fossil is the first evidence of crown-group Cornaceae from the Cretaceous and sheds light on both the plesiomorphic fruit characters and the timing of the initial diversification of the family and basal asterid lineage, Cornales.

  3. The tectonometamorphic evolution of the Apuseni Mountains (Romania): Geodynamic constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens

    Science.gov (United States)

    Reiser, Martin; Schuster, Ralf; Fügenschuh, Bernhard

    2015-04-01

    New structural, thermobarometric and geochronological data allow integrating kinematics, timing and intensity of tectonic phases into a geodynamic model of the Apuseni Mountain, which provides new constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens. Strong differences in terms of deformation directions between Early and Late Cretaceous events provide new constraints on the regional geodynamic evolution during the Cretaceous. Geochronological and structural data evidence a Late Jurassic emplacement of the South Apuseni Ophiolites on top of the Biharia Nappe System (Dacia Mega-Unit), situated in an external position at the European margin. Following the emplacement of the ophiolites, three compressive deformation phases affected the Apuseni Mountains during Alpine orogeny: a) NE-directed in-sequence nappe stacking and regional metamorphic overprinting under amphibolite-facies conditions during the Early Cretaceous ("Austrian Phase"), b) NW-directed thrusting and folding, associated with greenschist-facies overprinting, during the early Late Cretaceous ("Turonian Phase") and c) E-W internal folding together with brittle thrusting during the latest Cretaceous ("Laramian Phase"). Major tectonic unroofing and exhumation at the transition from Early to Late Cretaceous times is documented through new Sm-Nd Grt, Ar-Ar Ms and Rb-Sr Bt ages from the study area and resulted in a complex thermal structure with strong lateral and vertical thermal gradients. Nappe stacking and medium-grade metamorphic overprinting during the Early Cretaceous exhibits striking parallels between the evolution of the Tisza-Dacia Mega-Units and the Austroalpine Nappes (ALCAPA Mega-Unit) and evidences a close connection. However, Late Cretaceous tectonic events in the study area exhibit strong similarities with the Dinarides. Thus, the Apuseni Mountains represent the "missing link" between the Early Cretaceous Meliata subduction (associated with obduction of ophiolites

  4. Unique caudal plumage of Jeholornis and complex tail evolution in early birds

    OpenAIRE

    O’Connor, Jingmai; Wang, Xiaoli; Sullivan, Corwin; Zheng, Xiaoting; Tubaro, Pablo; Zhang, Xiaomei; Zhou, Zhonghe

    2013-01-01

    The Early Cretaceous bird Jeholornis was previously only known to have a distally restricted ornamental frond of tail feathers. We describe a previously unrecognized fan-shaped tract of feathers situated dorsal to the proximal caudal vertebrae. The position and morphology of these feathers is reminiscent of the specialized upper tail coverts observed in males of some sexually dimorphic neornithines. As in the neornithine tail, the unique “two-tail” plumage in Jeholornis probably evolved as th...

  5. The asteroid genus Haccourtaster (Echinodermata, Goniasteridae) in the Bohemian Cretaceous Basin, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Žítt, Jiří

    2005-01-01

    Roč. 26, č. 2 (2005), s. 225-237 ISSN 0195-6671 R&D Projects: GA ČR(CZ) GA206/01/1580 Institutional research plan: CEZ:AV0Z30130516 Keywords : Cretaceous * Asteroidea * New species Subject RIV: EG - Zoology Impact factor: 0.981, year: 2005

  6. Terrestrial catastrophe caused by cometary impact at the end of Cretaceous

    Science.gov (United States)

    Hsü, Kenneth J.

    1980-05-01

    Evidence is presented indicating that the extinction, at the end of the Cretaceous, of large terrestrial animals was caused by atmospheric heating during a cometary impact and that the extinction of calcareous marine plankton was a consequence of poisoning by cyanide released by the fallen comet and of a catastrophic rise in calcite-compensation depth in the oceans after the detoxification of the cyanide.

  7. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds.

    Science.gov (United States)

    Knoll, Fabien; Chiappe, Luis M; Sanchez, Sophie; Garwood, Russell J; Edwards, Nicholas P; Wogelius, Roy A; Sellers, William I; Manning, Phillip L; Ortega, Francisco; Serrano, Francisco J; Marugán-Lobón, Jesús; Cuesta, Elena; Escaso, Fernando; Sanz, Jose Luis

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages of development. Comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.

  8. Subduction history of the Paleo-Pacific plate beneath the Eurasian continent: Evidence from Mesozoic igneous rocks and accretionary complex in NE Asia

    Science.gov (United States)

    Xu, W.

    2015-12-01

    Mesozoic magmatisms in NE China can be subdivided into seven stages, i.e., Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, and Late Cretaceous. Late Triassic magmatisms consist of calc-alkaline igneous rocks in the Erguna Massif, and bimodal igneous rocks in eastern margin of Eurasian continent. The former reveals southward subduction of the Mongol-Okhotsk oceanic plate, the latter reveals an extensional environment (Xu et al., 2013). Early Jurassic magmatisms are composed of calc-alkaline igneous rocks in the eastern margin of the Eurasian continent and the Erguna Massif, revealing westward subduction of the Paleo-pacific plate and southward subduction of the Mongol-Okhotsk oceanic plate (Tang et al., 2015), respectively. Middle Jurassic magmatism only occur in the Great Xing'an Range and the northern margin of the NCC, and consists of adakitic rocks that formed in crustal thickening, reflecting the closure of the Mongol-Okhotsk ocean (Li et al., 2015). Late Jurassic and early Early Cretaceous magmatisms only occur to the west of the Songliao Basin, and consist of trackyandesite and A-type of rhyolites, revealing an extensional environment related to delamination of thickened crust. The late Early Cretaceous magmatisms are widespread in NE China, and consist of calc-alkaline volcanics in eastern margin and bimodal volcanics in intracontinent, revealing westward subduction of the Paleo-pacific plate. Late Cretaceous magmatisms mainly occur to the east of the Songliao Basin, and consist of calc-alkaline volcanics in eastern margin and alkaline basalts in intracontinent (Xu et al., 2013), revealing westward subduction of the Paleo-pacific plate. The Heilongjiang complex with Early Jurassic deformation, together with Jurassic Khabarovsk complex in Russia Far East and Mino-Tamba complex in Japan, reveal Early Jurassic accretionary history. Additionally, the Raohe complex with the age of ca. 169 Ma was

  9. Fungal Ferromanganese Mineralisation in Cretaceous Dinosaur Bones from the Gobi Desert, Mongolia.

    Science.gov (United States)

    Owocki, Krzysztof; Kremer, Barbara; Wrzosek, Beata; Królikowska, Agata; Kaźmierczak, Józef

    2016-01-01

    Well-preserved mycelia of fungal- or saprolegnia-like biota mineralised by ferromanganese oxides were found for the first time in long bones of Late Cretaceous dinosaurs from the Gobi Desert (Nemegt Valley, Mongolia). The mycelia formed a biofilm on the wall of the bone marrow cavity and penetrated the osteon channels of the nearby bone tissue. Optical microscopy, Raman, SEM/EDS, SEM/BSE, electron microprobe and cathodoluminescence analyses revealed that the mineralisation of the mycelia proceeded in two stages. The first stage was early post-mortem mineralisation of the hyphae by Fe/Mn-oxide coatings and microconcretions. Probably this proceeded in a mildly acidic to circumneutral environment, predominantly due to heterotrophic bacteria degrading the mycelial necromass and liberating Fe and Mn sorbed by the mycelia during its lifetime. The second stage of mineralisation, which proceeded much later following the final burial of the bones in an alkaline environment, resulted from the massive precipitation of calcite and occasionally barite on the iron/manganese-oxide-coated mycelia. The mineral phases produced by fungal biofilms colonising the interiors of decaying dinosaur bones not only enhance the preservation (fossilisation) of fungal remains but can also be used as indicators of the geochemistry of the dinosaur burial sites.

  10. Proximal Cretaceous-Tertiary boundary impact deposits in the Caribbean

    Science.gov (United States)

    Hildebrand, Alan R.; Boynton, Willam V.

    1990-01-01

    Trace element, isotopic, and mineralogic studies indicate that the proposed impact at the Cretaceous-Tertiary boundary occurred in an ocean basin, although a minor component of continental material is required. The size and abundance of shocked minerals and the restricted geographic occurrence of the ejecta layer and impact-wave deposits suggest an impact between the Americas. Coarse boundary sediments at sites 151 and 153 in the Colombian Basin and 5- to 450-meter-thick boundary sediments in Cuba may be deposits of a giant wave produced by a nearby oceanic impact.

  11. New aero-gravity results from the Arctic: Linking the latest Cretaceous-early Cenozoic plate kinematics of the North Atlantic and Arctic Ocean

    DEFF Research Database (Denmark)

    Døssing, Arne; Hopper, J.R.; Olesen, Arne Vestergaard

    2013-01-01

    The tectonic history of the Arctic Ocean remains poorly resolved and highly controversial. Details regarding break up of the Lomonosov Ridge from the Barents-Kara shelf margins and the establishment of seafloor spreading in the Cenozoic Eurasia Basin are unresolved. Significantly, the plate...... tectonic evolution of the Mesozoic Amerasia Basin is essentially unknown. The Arctic Ocean north of Greenland is at a critical juncture that formed at the locus of a Mesozoic three-plate setting between the Lomonosov Ridge, Greenland, and North America. In addition, the area is close to the European plate...... plateau against an important fault zone north of Greenland. Our results provide new constraints for Cretaceous-Cenozoic plate reconstructions of the Arctic. Key Points Presentation of the largest aero-gravity survey acquired over the Arctic Ocean Plate tectonic link between Atlantic and Arctic spreading...

  12. The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes

    Science.gov (United States)

    Jones, Rosemary E.; Kirstein, Linda A.; Kasemann, Simone A.; Litvak, Vanesa D.; Poma, Stella; Alonso, Ricardo N.; Hinton, Richard; EIMF

    2016-10-01

    The tectonic and geodynamic setting of the southern Central Andean convergent margin changed significantly between the Late Cretaceous and the Late Miocene, influencing magmatic activity and its geochemical composition. Here we investigate how these changes, which include changing slab-dip angle and convergence angles and rates, have influenced the contamination of the arc magmas with crustal material. Whole rock geochemical data for a suite of Late Cretaceous to Late Miocene arc rocks from the Pampean flat-slab segment (29-31 °S) of the southern Central Andes is presented alongside petrographic observations and high resolution age dating. In-situ U-Pb dating of magmatic zircon, combined with Ar-Ar dating of plagioclase, has led to an improved regional stratigraphy and provides an accurate temporal constraint for the geochemical data. A generally higher content of incompatible trace elements (e.g. Nb/Zr ratios from 0.019 to 0.083 and Nb/Yb from 1.5 to 16.4) is observed between the Late Cretaceous ( 72 Ma), when the southern Central Andean margin is suggested to have been in extension, and the Miocene when the thickness of the continental crust increased and the angle of the subducting Nazca plate shallowed. Trace and rare earth element compositions obtained for the Late Cretaceous to Late Eocene arc magmatic rocks from the Principal Cordillera of Chile, combined with a lack of zircon inheritance, suggest limited assimilation of the overlying continental crust by arc magmas derived from the mantle wedge. A general increase in incompatible, fluid-mobile/immobile (e.g., Ba/Nb) and fluid-immobile/immobile (e.g., Nb/Zr) trace element ratios is attributed to the influence of the subducting slab on the melt source region and/or the influx of asthenospheric mantle. The Late Oligocene ( 26 Ma) to Early Miocene ( 17 Ma), and Late Miocene ( 6 Ma) arc magmatic rocks present in the Frontal Cordillera show evidence for the bulk assimilation of the Permian-Triassic (P

  13. Genetic stratigraphy of Coniacian deltaic deposits of the northwestern part of the Bohemian Cretaceous Basin

    Czech Academy of Sciences Publication Activity Database

    Nádaskay, R.; Uličný, David

    2014-01-01

    Roč. 165, č. 4 (2014), s. 547-575 ISSN 1860-1804 Institutional support: RVO:67985530 Keywords : genetic stratigraphy * well log * Bohemian Cretaceous Basin Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.569, year: 2014

  14. Hints of the Early Jehol Biota: Important Dinosaur Footprint Assemblages from the Jurassic-Cretaceous Boundary Tuchengzi Formation in Beijing, China

    Science.gov (United States)

    Xing, Lida; Zhang, Jianping; Lockley, Martin G.; McCrea, Richard T.; Klein, Hendrik; Alcalá, Luis; Buckley, Lisa G.; Burns, Michael E.; Kümmell, Susanna B.; He, Qing

    2015-01-01

    New reports of dinosaur tracksites in the Tuchengzi Formation in the newly established Yanqing Global Geopark, Beijing, China, support previous inferences that the track assemblages from this formation are saurischian-dominated. More specifically, the assemblages appear theropod-dominated, with the majority of well-preserved tracks conforming to the Grallator type (sensus lato), thus representing relatively small trackmakers. Such ichnofaunas supplement the skeletal record from this unit that lacks theropods thus far, proving a larger diversity of dinosaur faunas in that region. Sauropods are represented by medium to large sized and narrow and wide-gauge groups, respectively. The latter correspond with earlier discoveries of titanosauriform skeletons in the same unit. Previous records of ornithischian tracks cannot be positively confirmed. Purported occurrences are re-evaluated here, the trackways and imprints, except of a single possible specimen, re-assigned to theropods. Palecologically the Tuchengzi ichnofauna is characteristic of semi-arid fluvio-lacustrine inland basins with Upper Jurassic-Lower Cretaceous deposits in northern China that all show assemblages with abundant theropod and sauropod tracks and minor components of ornithopod, pterosaur and bird tracks. PMID:25901363

  15. Total petroleum systems of the Pelagian Province, Tunisia, Libya, Italy, and Malta; the Bou Dabbous, Tertiary and Jurassic-Cretaceous composite

    Science.gov (United States)

    Klett, T.R.

    2001-01-01

    Undiscovered conventional oil and gas resources were assessed within total petroleum systems of the Pelagian Province (2048) as part of the U.S. Geological Survey World Petroleum Assessment 2000. The Pelagian Province is located mainly in eastern Tunisia and northwestern Libya. Small portions of the province extend into Malta and offshore Italy. Although several petroleum systems may exist, only two ?composite? total petroleum systems were identified. Each total petroleum system comprises a single assessment unit. These total petroleum systems are called the Bou Dabbous?Tertiary and Jurassic-Cretaceous Composite, named after the source-rock intervals and reservoir-rock ages. The main source rocks include mudstone of the Eocene Bou Dabbous Formation; Cretaceous Bahloul, Lower Fahdene, and M?Cherga Formations; and Jurassic Nara Formation. Known reservoirs are in carbonate rocks and sandstone intervals throughout the Upper Jurassic, Cretaceous, and Tertiary sections. Traps for known accumulations include fault blocks, low-amplitude anticlines, high-amplitude anticlines associated with reverse faults, wrench fault structures, and stratigraphic traps. The estimated means of the undiscovered conventional petroleum volumes in total petroleum systems of the Pelagian Province are as follows: [MMBO, million barrels of oil; BCFG, billion cubic feet of gas; MMBNGL, million barrels of natural gas liquids] Total Petroleum System MMBO BCFG MMBNGL Bou Dabbous?Tertiary 667 2,746 64 Jurassic-Cretaceous Composite 403 2,280 27

  16. Aberrant rostral teeth of the sawfish Onchopristis numidus from the Kem Kem beds (?early Late Cretaceous) of Morocco and a reappraisal of Onchopristis in New Zealand

    Science.gov (United States)

    Martill, David M.; Ibrahim, Nizar

    2012-02-01

    A single crown of sawfish rostral 'tooth' with at least two barbs along its posterior margin is comparable with Onchopristis dunklei from the Woodbine Formation of Texas and Atlanticopristisequatorialis from the Alcântara Formation of Brazil. However, it is regarded here as an aberrant Onchopristisnumidus, the typical form from North Africa. An aberrant morph of O. numidus is considered pathological. The taxonomic utility of barb number in pristid rostral 'teeth' is discussed. The genus and species Australopristis wiffeni gen. et sp. nov is erected to accommodate some multi-cusped rostral teeth from the Late Cretaceous of New Zealand.

  17. The trace fossil Lepidenteron lewesiensis (Mantell, 1822) from the Upper Cretaceous of southern Poland

    Science.gov (United States)

    Jurkowska, Agata; Uchman, Alfred

    2013-12-01

    Jurkowska, A. and Uchman, A. 2013. The trace fossil Lepidenteron lewesiensis (Mantell, 1822) from the Upper Cretaceous of southern Poland. Acta Geologica Polonica, 63(4), 611-623. Warszawa. Lepidenteron lewesiensis (Mantell, 1822) is an unbranched trace fossil lined with small fish scales and bones, without a constructed wall. It is characteristic of the Upper Cretaceous epicontinental, mostly marly sediments in Europe. In the Miechow Segment of the Szczecin-Miechow Synclinorium in southern Poland, it occurs in the Upper Campanian-Lower Maastrichtian deeper shelf sediments, which were deposited below wave base and are characterized by total bioturbation and a trace fossil assemblage comprising Planolites, Palaeophycus, Thalassinoides , Trichichnus, Phycosiphon, Zoophycos and Helicodromites that is typical of the transition from the distal Cruziana to the Zoophycos ichnofacies. L. lewesiensis was produced by a burrowing predator or scavenger of fishes. The tracemaker candidates could be eunicid polychaetes or anguillid fishes.

  18. Evidence for Cretaceous-Paleogene boundary bolide "impact winter" conditions from New Jersey, USA

    NARCIS (Netherlands)

    Vellekoop, J.; Esmeray-Senlet, S.; Miller, K.G.; Browning, J.V.; Sluijs, A.|info:eu-repo/dai/nl/311474748; van de Schootbrugge, B.|info:eu-repo/dai/nl/376758562; Sinninghe Damsté, J.S.|info:eu-repo/dai/nl/07401370X; Brinkhuis, H.|info:eu-repo/dai/nl/095046097

    2016-01-01

    Abrupt and short-lived “impact winter” conditions have commonly been implicated as the main mechanism leading to the mass extinction at the Cretaceous-Paleogene (K-Pg) boundary (ca. 66 Ma), marking the end of the reign of the non-avian dinosaurs. However, so far only limited evidence has been

  19. The contribution of the young Cretaceous Caribbean Oceanic Plateau to the genesis of late Cretaceous arc magmatism in the Cordillera Occidental of Ecuador

    Science.gov (United States)

    Allibon, J.; Monjoie, P.; Lapierre, H.; Jaillard, E.; Bussy, F.; Bosch, D.; Senebier, F.

    2008-12-01

    The eastern part of the Cordillera Occidental of Ecuador comprises thick buoyant oceanic plateaus associated with island-arc tholeiites and subduction-related calc-alkaline series, accreted to the Ecuadorian Continental Margin from Late Cretaceous to Eocene times. One of these plateau sequences, the Guaranda Oceanic Plateau is considered as remnant of the Caribbean-Colombian Oceanic Province (CCOP) accreted to the Ecuadorian Margin in the Maastrichtien. Samples studied in this paper were taken from four cross-sections through two arc-sequences in the northern part of the Cordillera Occidental of Ecuador, dated as (Río Cala) or ascribed to (Macuchi) the Late Cretaceous and one arc-like sequence in the Chogòn-Colonche Cordillera (Las Orquídeas). These three island-arcs can clearly be identified and rest conformably on the CCOP. In all four localities, basalts with abundant large clinopyroxene phenocrysts can be found, mimicking a picritic or ankaramitic facies. This mineralogical particularity, although not uncommon in island arc lavas, hints at a contribution of the CCOP in the genesis of these island arc rocks. The complete petrological and geochemical study of these rocks reveals that some have a primitive island-arc nature (MgO values range from 6 to 11 wt.%). Studied samples display marked Nb, Ta and Ti negative anomalies relative to the adjacent elements in the spidergrams characteristic of subduction-related magmatism. These rocks are LREE-enriched and their clinopyroxenes show a tholeiitic affinity (FeO T-TiO 2 enrichment and CaO depletion from core to rim within a single crystal). The four sampled cross-sections through the island-arc sequences display homogeneous initial Nd, and Pb isotope ratios that suggest a unique mantellic source for these rocks resulting from the mixing of three components: an East-Pacific MORB end-member, an enriched pelagic sediment component, and a HIMU component carried by the CCOP. Indeed, the ankaramite and Mg

  20. Evolution of the Mongol-Okhotsk suture as constrained by new Early Cretaceous palaeomagnetic data from the North China and southern Mongolia

    Science.gov (United States)

    Ren, Q.; Zhang, S.; Zhao, H.; Ding, J.; Turbold, S.; Gao, Y.; Xu, B.; Wu, Y.; Fu, H.

    2017-12-01

    The closure time of the Mongol-Okhotsk ocean and subsequent collision between the Siberia and Amuria-North China block (AMU-NCB) during the final episode of the amalgamation of Northeast Asia have been hotly debating for decades. In order to better puzzle out the controversy, we carried out new paleomagnetic investigations from the Early Cretaceous geological units on the northern margin of the NCB and southern AMU. These geological units have been well-dated. Within the Yanshan Belt of the northern margin of the NCB, we collected the 209 paleomagnetic samples from the sandstone of the middle-upper member of the Tuchengzi Formation ( 140 Ma) and the volcanic rocks of the bottom of the Yixian Formation ( 130 Ma). We drilled 225 samples from the lava flows of two sections of the Tsagantsav Formation ( 130 Ma) in the southern Mongolia of the AMU. All samples were subjected to stepwise thermal demagnetization. After removal of a recent geomagnetic field viscous component, the stable high temperature component can pass a reversal test and a fold test at 95% and 99% confidence level. They are thus interpreted as primary. The virtual geomagnetic poles observed from the 130 Ma volcanic rocks of the Yixian Formation and the Tsagantsav Formation respectively averaged out the paleosecular variation and they overlapped each other, indicating that NCB and AMU was a single unit (NCB-AMU) at that time. The paleopole from the Tuchengzi Formation ( 140 Ma) of the NCB is different from the coeval pole of the Siberia, indicating that there was a significant latitudinal convergence between the Siberia and the NCB. Compared the 130 Ma paleopoles of the NCB-AMU and Siberia, there was no significant latitudinal difference, but the relative tectonic rotation was existing. It has been suggested that the plate convergence or Mongol-Okhotsk collisional orogeny was stopped between Siberia and NCB-AMU during the 140-130 Ma. After Mongol-Okhotsk orogeny, the widely extensional rift basins were

  1. Early Cretaceous wedge extrusion in the Indo-Burma Range accretionary complex: implications for the Mesozoic subduction of Neotethys in SE Asia

    Science.gov (United States)

    Zhang, Ji'en; Xiao, Wenjiao; Windley, Brian F.; Cai, Fulong; Sein, Kyaing; Naing, Soe

    2017-06-01

    ± 3 Ma and 115 Ma, which are close to the zircon ages of nearby calc-alkaline granite and diorite, which belong to an active continental margin arc that extends along the western side of the Shan-Thai block. The IBR accretionary complex and the active continental margin arc were generated during Early Cretaceous (115-128 Ma) subduction of the Neotethys Ocean.

  2. Crocodilian Nest in a Late Cretaceous Sauropod Hatchery from the Type Lameta Ghat Locality, Jabalpur, India.

    Directory of Open Access Journals (Sweden)

    Rahul Srivastava

    Full Text Available The well-known Late Cretaceous Lameta Ghat locality (Jabalpur, India provides a window of opportunity to study a large stable, near shore sandy beach, which was widely used by sauropod dinosaurs as a hatchery. In this paper, we revisit the eggs and eggshell fragments previously assigned to lizards from this locality and reassign them to crocodylomorphs. Several features point to a crocodilian affinity, including a subspherical to ellipsoidal shape, smooth, uneven external surface, discrete trapezoid shaped shell units with wide top and narrow base, basal knobs and wedge shaped crystallites showing typical inverted triangular extinction under crossed nicols. The crocodylomorph eggshell material presented in this paper adds to the skeletal data of these most probably Cretaceous-Eocene dryosaurid crocodiles.

  3. Petrological-geochemical characteristics of coarse-grained clastic sedimentary rocks of Quantou Formation, Cretaceous in Songliao basin and their geological significance

    International Nuclear Information System (INIS)

    Wang Gan; Zhang Bangtong

    2005-01-01

    Clastic sedimentary rocks of Quantou Formation, Cretaceous in Qing-an area, Songliao basin are mainly composed of sandstone, mudstone and siltstone. The petrological-chemical analysis of clastic sedimentary rocks from Quantou Formation, Cretaceous indicates that their lithology mainly consists of arkose, shale and minor rock debris sandstone and greywacke by chemical classification of bulk elements. REE distribution pattern displays the apparent enrichment of LREE and negative anomaly of Eu and is similar to that of NASC and PAAS. The ratio of trace-element in sedimentary rocks to that of upper crust shows gentle character. All the above features indicate that these sedimentary rocks were slowly deposited under weakly active tectonic setting. They are sediments typical for passive continental margin and active continental margin. It is suggested that material source of clastic sediments of Quantou Formation, Cretaceous in Qing-an area, Songliao basin was originated from Hercynian granite of Zhangguangchai Mountain, and the granite was originated from upper crust. (authors)

  4. Review of the Upper Jurassic-Lower Cretaceous stratigraphy in Western Cameros basin, Northern Spain

    DEFF Research Database (Denmark)

    Vidal, Maria del Pilar Clemente

    2010-01-01

    The Upper Jurassic-Lower Cretaceous stratigraphy of the Cameros basin has been reviewed. In Western Cameros the stratigraphic sections are condensed but they have a parallel development with the basin depocentre and the same groups have been identified. The Tera Group consists of two formations: ...

  5. Oxygen isotopes from biogenic apatites suggest widespread endothermy in Cretaceous dinosaurs

    Science.gov (United States)

    Amiot, Romain; Lécuyer, Christophe; Buffetaut, Eric; Escarguel, Gilles; Fluteau, Frédéric; Martineau, François

    2006-06-01

    The much debated question of dinosaur thermophysiology has not yet been conclusively solved despite numerous attempts. We used the temperature-dependent oxygen isotope fractionation between vertebrate body water (δ 18O body water) and phosphatic tissues (δ 18O p) to compare the thermophysiology of dinosaurs with that of non-dinosaurian ectothermic reptiles. Present-day δ 18O p values of vertebrate apatites show that ectotherms have higher δ 18O p values than endotherms at high latitudes due to their lower body temperature, and conversely lower δ 18O p values than endotherms at low latitudes. Using a data set of 80 new and 49 published δ 18O p values, we observed similar and systematic differences in δ 18O p values (Δ 18O) between four groups of Cretaceous dinosaurs (theropods, sauropods, ornithopods and ceratopsians) and associated fresh water crocodiles and turtles. Expressed in terms of body temperatures ( Tb), these Δ 18O values indicate that dinosaurs maintained rather constant Tb in the range of endotherms whatever ambient temperatures were. This implies that high metabolic rates were widespread among Cretaceous dinosaurs belonging to widely different taxonomic groups and suggest that endothermy may be a synapomorphy of dinosaurs, or may have been acquired convergently in the studied taxa.

  6. Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction.

    Science.gov (United States)

    Friedman, Matt

    2009-03-31

    Despite the attention focused on mass extinction events in the fossil record, patterns of extinction in the dominant group of marine vertebrates-fishes-remain largely unexplored. Here, I demonstrate ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction, based on a genus-level dataset that accounts for lineages predicted on the basis of phylogeny but not yet sampled in the fossil record. Two ecologically relevant anatomical features are considered: body size and jaw-closing lever ratio. Extinction intensity is higher for taxa with large body sizes and jaws consistent with speed (rather than force) transmission; resampling tests indicate that victims represent a nonrandom subset of taxa present in the final stage of the Cretaceous. Logistic regressions of the raw data reveal that this nonrandom distribution stems primarily from the larger body sizes of victims relative to survivors. Jaw mechanics are also a significant factor for most dataset partitions but are always less important than body size. When data are corrected for phylogenetic nonindependence, jaw mechanics show a significant correlation with extinction risk, but body size does not. Many modern large-bodied, predatory taxa currently suffering from overexploitation, such billfishes and tunas, first occur in the Paleocene, when they appear to have filled the functional space vacated by some extinction victims.

  7. A molecular genetic time scale demonstrates Cretaceous origins and multiple diversification rate shifts within the order Galliformes (Aves).

    Science.gov (United States)

    Stein, R Will; Brown, Joseph W; Mooers, Arne Ø

    2015-11-01

    The phylogeny of Galliformes (landfowl) has been studied extensively; however, the associated chronologies have been criticized recently due to misplaced or misidentified fossil calibrations. As a consequence, it is unclear whether any crown-group lineages arose in the Cretaceous and survived the Cretaceous-Paleogene (K-Pg; 65.5 Ma) mass extinction. Using Bayesian phylogenetic inference on an alignment spanning 14,539 bp of mitochondrial and nuclear DNA sequence data, four fossil calibrations, and a combination of uncorrelated lognormally distributed relaxed-clock and strict-clock models, we inferred a time-calibrated molecular phylogeny for 225 of the 291 extant Galliform taxa. These analyses suggest that crown Galliformes diversified in the Cretaceous and that three-stem lineages survived the K-Pg mass extinction. Ideally, characterizing the tempo and mode of diversification involves a taxonomically complete phylogenetic hypothesis. We used simple constraint structures to incorporate 66 data-deficient taxa and inferred the first taxon-complete phylogenetic hypothesis for the Galliformes. Diversification analyses conducted on 10,000 timetrees sampled from the posterior distribution of candidate trees show that the evolutionary history of the Galliformes is best explained by a rate-shift model including 1-3 clade-specific increases in diversification rate. We further show that the tempo and mode of diversification in the Galliformes conforms to a three-pulse model, with three-stem lineages arising in the Cretaceous and inter and intrafamilial diversification occurring after the K-Pg mass extinction, in the Paleocene-Eocene (65.5-33.9 Ma) or in association with the Eocene-Oligocene transition (33.9 Ma). Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A new species of Cretalamna sensu stricto (Lamniformes, Otodontidae) from the Late Cretaceous (Santonian-Campanian) of Alabama, USA

    Science.gov (United States)

    Ehret, Dana J.

    2018-01-01

    Decades of collecting from exposures of the Upper Cretaceous Tombigbee Sand Member of the Eutaw Formation and Mooreville Chalk in Alabama, USA has produced large numbers of isolated Cretalamna (sensu stricto) teeth. Many of these teeth had formerly been assigned to the extinct Late Cretaceous shark Cretalamna appendiculata (Agassiz, 1843), a taxon that is now considered largely restricted to the Turonian of Europe. Recent studies have shed light on the diversity of Late Cretaceous Cretalamna (s.s.) taxa, and here we recognize a new species from Alabama, Cretalamna bryanti. The teeth of C. bryanti sp. nov. appear aligned with the members of the Cretalamna borealis species group, but can be distinguished from these other species by a combination of the following: anterior teeth with a more pronounced and triangular lingual root protuberance, broader triangular cusp, and a taller root relative to the height of the crown; anteriorly situated lateroposterior teeth have a distally inclined or hooked main cusp and more than one pair of lateral cusplets; and lateroposterior teeth have a strong distally hooked main cusp and a root that is largely symmetrical in basal view. At present, C. bryanti sp. nov. is stratigraphically confined to the Santonian/Campanian Dicarinella asymetrica Sigal, 1952 and Globotruncanita elevata Brotzen, 1934 Planktonic Foraminiferal Zones within the Tombigbee Sand Member of the Eutaw Formation and Mooreville Chalk, and teeth have been collected from only four counties in central and western Alabama. The recognition of C. bryanti sp. nov. in Alabama adds to our knowledge on the diversity and distribution of Late Cretaceous otodontids in the region. PMID:29333348

  9. A new species of Cretalamna sensu stricto (Lamniformes, Otodontidae from the Late Cretaceous (Santonian-Campanian of Alabama, USA

    Directory of Open Access Journals (Sweden)

    Jun A. Ebersole

    2018-01-01

    Full Text Available Decades of collecting from exposures of the Upper Cretaceous Tombigbee Sand Member of the Eutaw Formation and Mooreville Chalk in Alabama, USA has produced large numbers of isolated Cretalamna (sensu stricto teeth. Many of these teeth had formerly been assigned to the extinct Late Cretaceous shark Cretalamna appendiculata (Agassiz, 1843, a taxon that is now considered largely restricted to the Turonian of Europe. Recent studies have shed light on the diversity of Late Cretaceous Cretalamna (s.s. taxa, and here we recognize a new species from Alabama, Cretalamna bryanti. The teeth of C. bryanti sp. nov. appear aligned with the members of the Cretalamna borealis species group, but can be distinguished from these other species by a combination of the following: anterior teeth with a more pronounced and triangular lingual root protuberance, broader triangular cusp, and a taller root relative to the height of the crown; anteriorly situated lateroposterior teeth have a distally inclined or hooked main cusp and more than one pair of lateral cusplets; and lateroposterior teeth have a strong distally hooked main cusp and a root that is largely symmetrical in basal view. At present, C. bryanti sp. nov. is stratigraphically confined to the Santonian/Campanian Dicarinella asymetrica Sigal, 1952 and Globotruncanita elevata Brotzen, 1934 Planktonic Foraminiferal Zones within the Tombigbee Sand Member of the Eutaw Formation and Mooreville Chalk, and teeth have been collected from only four counties in central and western Alabama. The recognition of C. bryanti sp. nov. in Alabama adds to our knowledge on the diversity and distribution of Late Cretaceous otodontids in the region.

  10. Calibration of the Late Cretaceous to Paleocene geomagnetic polarity and astrochronological time scales: new results from high-precision U-Pb geochronology

    Science.gov (United States)

    Ramezani, Jahandar; Clyde, William; Wang, Tiantian; Johnson, Kirk; Bowring, Samuel

    2016-04-01

    Reversals in the Earth's magnetic polarity are geologically abrupt events of global magnitude that makes them ideal timelines for stratigraphic correlation across a variety of depositional environments, especially where diagnostic marine fossils are absent. Accurate and precise calibration of the Geomagnetic Polarity Timescale (GPTS) is thus essential to the reconstruction of Earth history and to resolving the mode and tempo of biotic and environmental change in deep time. The Late Cretaceous - Paleocene GPTS is of particular interest as it encompasses a critical period of Earth history marked by the Cretaceous greenhouse climate, the peak of dinosaur diversity, the end-Cretaceous mass extinction and its paleoecological aftermaths. Absolute calibration of the GPTS has been traditionally based on sea-floor spreading magnetic anomaly profiles combined with local magnetostratigraphic sequences for which a numerical age model could be established by interpolation between an often limited number of 40Ar/39Ar dates from intercalated volcanic ash deposits. Although the Neogene part of the GPTS has been adequately calibrated using cyclostratigraphy-based, astrochronological schemes, the application of these approaches to pre-Neogene parts of the timescale has been complicated given the uncertainties of the orbital models and the chaotic behavior of the solar system this far back in time. Here we present refined chronostratigraphic frameworks based on high-precision U-Pb geochronology of ash beds from the Western Interior Basin of North America and the Songliao Basin of Northeast China that places tight temporal constraints on the Late Cretaceous to Paleocene GPTS, either directly or by testing their astrochronological underpinnings. Further application of high-precision radioisotope geochronology and calibrated astrochronology promises a complete and robust Cretaceous-Paleogene GPTS, entirely independent of sea-floor magnetic anomaly profiles.

  11. Fossil mega- and microflora from the Březno Beds s.s. (Bohemian Cretaceous Basin, Coniacian)

    Czech Academy of Sciences Publication Activity Database

    Halamski, A. T.; Kvaček, J.; Svobodová, Marcela

    2018-01-01

    Roč. 253, June 2018 (2018), s. 123-138 ISSN 0034-6667 Institutional support: RVO:67985831 Keywords : fossil plant * Cretaceous * taxonomy * paleobotany * Coniacian * Czech Republic Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Paleontology Impact factor: 1.817, year: 2016

  12. A Late Cretaceous diversification of Asian oviraptorid dinosaurs: evidence from a new species preserved in an unusual posture

    Science.gov (United States)

    Lü, Junchang; Chen, Rongjun; Brusatte, Stephen L.; Zhu, Yangxiao; Shen, Caizhi

    2016-11-01

    Oviraptorosaurs are a bizarre group of bird-like theropod dinosaurs, the derived forms of which have shortened, toothless skulls, and which diverged from close relatives by developing peculiar feeding adaptations. Although once among the most mysterious of dinosaurs, oviraptorosaurs are becoming better understood with the discovery of many new fossils in Asia and North America. The Ganzhou area of southern China is emerging as a hotspot of oviraptorosaur discoveries, as over the past half decade five new monotypic genera have been found in the latest Cretaceous (Maastrichtian) deposits of this region. We here report a sixth diagnostic oviraptorosaur from Ganzhou, Tongtianlong limosus gen. et sp. nov., represented by a remarkably well-preserved specimen in an unusual splayed-limb and raised-head posture. Tongtianlong is a derived oviraptorid oviraptorosaur, differentiated from other species by its unique dome-like skull roof, highly convex premaxilla, and other features of the skull. The large number of oviraptorosaurs from Ganzhou, which often differ in cranial morphologies related to feeding, document an evolutionary radiation of these dinosaurs during the very latest Cretaceous of Asia, which helped establish one of the last diverse dinosaur faunas before the end-Cretaceous extinction.

  13. Secondarily flightless birds or Cretaceous non-avian theropods?

    Science.gov (United States)

    Kavanau, J Lee

    2010-02-01

    Recent studies by Varricchio et al. reveal that males cared for the eggs of troodontids and oviraptorids, so-called "non-avian theropods" of the Cretaceous, just as do those of most Paleognathic birds (ratites and tinamous) today. Further, the clutches of both groups have large relative volumes, and consist of many eggs of relatively large size. By comparison, clutch care by most extant birds is biparental and the clutches are of small relative volume, and consist of but few small eggs. Varricchio et al. propose that troodontids and oviraptorids were pre-avian and that paternal egg care preceded the origin of birds. On the contrary, unmentioned by them is that abundant paleontological evidence has led several workers to conclude that troodontids and oviraptorids were secondary flightless birds. This evidence ranges from bird-like bodies and bone designs, adapted for climbing, perching, gliding, and ultimately flight, to relatively large, highly developed brains, poor sense of smell, and their feeding habits. Because ratites also are secondarily flightless and tinamous are reluctant, clumsy fliers, the new evidence strengthens the view that troodontids and oviraptorids were secondarily flightless. Although secondary flightlessness apparently favors paternal care of clutches of large, abundant eggs, such care is not likely to have been primitive. There are a suite of previously unknown independent findings that point to the evolution of, first, maternal, followed by biparental egg care in earliest ancestors of birds. This follows from the discovery of remarkable relict avian reproductive behaviors preserved by virtue of the highly conservative nature of vertebrate brain evolution. These behaviors can be elicited readily by exposing breeding birds to appropriate conditions, both environmental and with respect to their eggs and chicks. They give significant new clues for a coherent theory of avian origin and early evolution.

  14. Cenozoic to Cretaceous paleomagnetic dataset from Egypt: New data, review and global analysis

    Science.gov (United States)

    Perrin, Mireille; Saleh, Ahmed

    2018-04-01

    Different phases of igneous activity took place in Egypt during the Mesozoic and the Cenozoic and oriented samples were collected from three Cenozoic localities (Baharya oasis in the Western Desert, Abu Had in the Eastern Desert and Quseir along the Red Sea coast), and four Cretaceous localities (Toshki & Abu Simbel south of Aswan, and Shalaten & Abu Shihat along the Red Sea coast). Rock magnetic properties of the samples indicate magnetite and titanomagnetite as the main carrier of the remanent magnetization. Following stepwise demagnetization, characteristic remanent directions were identified only for 62% of the samples, a fairly low rate for that type of samples, and 8 new paleomagnetic poles were calculated. All our Cenozoic poles fall clearly off Master Polar Wander Paths proposed for South Africa. Therefore, all paleomagnetic results, previously published for Egypt, were compiled from Cretaceous to Quaternary. The published poles largely overlap, blurring the Egyptian Apparent Polar Wander Path. A new analysis at the site level was then carried out. Only poles having a kappa larger than 50 were selected, and new pole positions were calculated by area and by epoch, when at least 3 sites were available. Even though the selection drastically reduced the number of considered poles, it allows definition of a reliable Cenozoic apparent polar wander trend for Egypt that differs from the South African Master Polar Wander Path by about 10-15 °. If the Cretaceous igneous poles are in good agreement with the rest of the African data, the sedimentary poles plot close to the Cenozoic portion of the South African Master Polar Wander Path, a discrepancy that could be related either to inclination flattening and/or error on age and/or remagnetization in the Cenozoic.

  15. Mantle dynamics and Cretaceous magmatism in east-central China: Insight from teleseismic tomograms

    Science.gov (United States)

    Jiang, Guoming; Zhang, Guibin; Zhao, Dapeng; Lü, Qingtian; Li, Hongyi; Li, Xinfu

    2015-11-01

    Both the rich mineralization in the Lower Yangtze Block (LYB) and the post-collisional mafic rocks in the Dabie Orogen (DBO) are closely related to the Cretaceous magmatism in east-central China. Various geodynamic models have been proposed for explaining the mechanism of the Cretaceous magmatism, but these models are controversial and even contradictory with each other, especially on the mechanism of adakites. A unified geodynamic model is required for explaining the magmatism in east-central China, in particular, the spatial and temporal correlations of magmatic activity in the DBO and that in the LYB. For this purpose, we apply teleseismic tomography to study P-wave velocity structure down to 800 km depth beneath east-central China. A modified multiple-channel cross-correlation method is used to collect 28,805 high-quality P-wave arrival-time data from seismograms of distant earthquakes recorded by permanent seismic stations and our temporary stations in the study region. To remove the influence of crustal heterogeneity on the mantle tomography, we used the CRUST1.0 model to correct the teleseismic relative residuals. Our tomography revealed distinct high-velocity (high-V) anomalies beneath the DBO and two flanks of the LYB, and low-velocity (low-V) anomalies above the high-V zones. Combining our tomographic images with previous geological, geochemical and geophysical results, we infer that these high-V and low-V anomalies reflect the detached lithosphere and upwelling asthenospheric materials, respectively, which are associated with the Late Mesozoic dynamic process and the Cretaceous magmatism. We propose a double-slab subduction model that a ridge subduction yielded the adakitic rocks in the LYB during 150-135 Ma and the subsequent Pacific Plate subduction played a crucial role in not only the formation of igneous rocks in the LYB but also remelting of the subducted South China Block beneath the DBO during 135-101 Ma.

  16. The uranium potential of the continental Cretaceous of Patagonia

    International Nuclear Information System (INIS)

    Olsen, H.; Berizzo, J.

    1980-01-01

    The geological features of the fluvial sedimentation of the Cretaceous of Patagonia - the Grupo Chubut Formation in the provinces of Chubut and Santa Cruz, underlined this environment as one of high favourability for discovering uranium deposits. The area has been explored by the CNEA who found two outstanding levels of fluvial sediments that are today the target of further studies to find new deposits. The general geological features are given, together with the results of the exploration up to date, distribution of radiometric anomalies, deposits discovered and an estimation of the uraniferous potential of the Formation. (author)

  17. Unravelling the stratigraphy and sedimentation history of the uppermost Cretaceous to Eocene sediments of the Kuching Zone in West Sarawak (Malaysia), Borneo

    Science.gov (United States)

    Breitfeld, H. Tim; Hall, Robert; Galin, Thomson; BouDagher-Fadel, Marcelle K.

    2018-07-01

    The Kuching Zone in West Sarawak consists of two different sedimentary basins, the Kayan and Ketungau Basins. The sedimentary successions in the basins are part of the Kuching Supergroup that extends into Kalimantan. The uppermost Cretaceous (Maastrichtian) to Lower Eocene Kayan Group forms the sedimentary deposits directly above a major unconformity, the Pedawan Unconformity, which marks the cessation of subduction-related magmatism beneath SW Borneo and the Schwaner Mountains, due to termination of the Paleo-Pacific subduction. The successions consist of the Kayan and Penrissen Sandstones and are dominated by fluvial channels, alluvial fans and floodplain deposits with some deltaic to tidally-influenced sections in the Kayan Sandstone. In the late Early or early Middle Eocene, sedimentation in this basin ceased and a new basin, the Ketungau Basin, developed to the east. This change is marked by the Kayan Unconformity. Sedimentation resumed in the Middle Eocene (Lutetian) with the marginal marine, tidal to deltaic Ngili Sandstone and Silantek Formation. Upsequence, the Silantek Formation is dominated by floodplain and subsidiary fluvial deposits. The Bako-Mintu Sandstone, a potential lateral equivalent of the Silantek Formation, is formed of major fluvial channels. The top of the Ketungau Group in West Sarawak is formed by the fluvially-dominated Tutoop Sandstone. This shows a transition of the Ketungau Group in time towards terrestrial/fluvially-dominated deposits. Paleocurrent measurements show river systems were complex, but reveal a dominant southern source. This suggests uplift of southern Borneo initiated in the region of the present-day Schwaner Mountains from the latest Cretaceous onwards. Additional sources were local sources in the West Borneo province, Mesozoic melanges to the east and potentially the Malay Peninsula. The Ketungau Group also includes reworked deposits of the Kayan Group. The sediments of the Kuching Supergroup are predominantly

  18. Lower Cretaceous Luscar group (revised) of the northern and north-central foothills of Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Langenberg, C W; McMechan, M E

    1985-03-01

    Lower Cretaceous coal-bearing strata exposed in the northern and north-central foothills of Alberta form part of a predominantly nonmarine succession that extends from Montana to northeastern British Columbia. The Luscar Group (revised) forms the sequence of coal bearing Lower Cretaceous strata that disconformably overlies marine and nonmarine strata of the Nikanassin Formation or Minnes Group and disconformably underlies marine shales of the Blackstone or Shaftesbury formations. It includes a thin, basal conglomerate, a predominantly nonmarine sandstone and shale unit that locally contains coal; a marine shale and sandstone unit, and an upper nonmarine sandstone and shale unit that contains thick commercial coal seams. These units form the Cadomin, Gladstone, Moosebar and Gates formations, respectively. The Luscar Group is exposed from Kakwa River to Clearwater River in the Foothills of Alberta. It represents a slight modification, by the inclusion of the thin basal conglomerate, from the previous usage of the term Luscar in the northern Foothills of Alberta. 25 references.

  19. Seawater strontium isotopes, acid rain, and the Cretaceous-Tertiary boundary

    Science.gov (United States)

    Macdougall, J. D.

    1988-01-01

    A large bolide impact at the end of the Cretaceous would have produced significant amounts of nitrogen oxides by shock heating of the atmosphere. The resulting acid precipitation would have increased continental weathering greatly and could be an explanation for the observed high ratio of strontium-87 to strontium-86 in seawater at about this time, due to the dissolution of large amounts of strontium from the continental crust. Spikes to high values in the seawater strontium isotope record at other times may reflect similar episodes.

  20. A review of the paleomagnetic data from Cretaceous to lower Tertiary rocks from Vietnam, Indochina and South China, and their implications for Cenozoic tectonism in Vietnam and adjacent areas

    Science.gov (United States)

    Cung, Thu'ọ'ng Chí; Geissman, John W.

    2013-09-01

    Available paleomagnetic data from rock formations of Cretaceous age from Vietnam, Indochina and South China are compiled and reviewed in the context of their tectonic importance in a common reference frame with respect to Eurasia's coeval paleopoles. Key factors that play an important role in determining the reliability of a paleomagnetic result for utilization in tectonic studies have been taken into consideration and include the absence of evidence of remagnetization, which is a feature common to many rocks in this region. Overall, the Cretaceous paleomagnetic data from the South China Block show that the present geographic position of the South China Block has been relatively stable with respect to Eurasia since the mid-Cretaceous and that the paleomagnetically detected motion of a coherent lithospheric block must be based on the representative data obtained from different specific localities across the block in order to separate more localized, smaller scale deformation from true lithosphere scale motion (translation and/or rotation) of a tectonic block. Cretaceous to early Tertiary paleomagnetic data from the Indochina-Shan Thai Block reveal complex patterns of intra-plate deformation in response to the India-Eurasia collision. Paleomagnetically detected motions from the margins of tectonic blocks are interpreted to mainly reflect displacement of upper crustal blocks due to folding and faulting processes. Rigid, lithosphere scale block rotation is not necessarily supported by the paleomagnetic data. The paleomagnetic results from areas east and south of the Red River fault system suggest that this major transcurrent fault system has had a complicated slip history through much of the Cenozoic and that it does not demarcate completely non-rotated and significantly rotated parts of the crust in this area. However, most paleomagnetic results from areas east and south of the Red River fault system at the latitude of Yunnan Province are consistent with a very modest

  1. The formation of the Late Cretaceous Xishan Sn-W deposit, South China: Geochronological and geochemical perspectives

    Science.gov (United States)

    Zhang, Lipeng; Zhang, Rongqing; Hu, Yongbin; Liang, Jinlong; Ouyang, Zhixia; He, Junjie; Chen, Yuxiao; Guo, Jia; Sun, Weidong

    2017-10-01

    The Xishan Sn-W deposit is spatially related to K-feldspar granites in the Yangchun basin, western Guangdong Province, South China. LA-ICP-MS zircon U-Pb dating for the Xishan pluton defines an emplacement age of 79 Ma (78.1 ± 0.9 Ma; 79.0 ± 1.2 Ma; 79.3 ± 0.8 Ma), consistent with the mineralization age of the Xishan Sn-W deposit constrained by molybdenite Re-Os isochron age (79.4 ± 4.5 Ma) and LA-ICP-MS cassiterite U-Pb ages (78.1 ± 0.9 Ma and 79.0 ± 1.2 Ma) for the cassiterite-quartz vein. These indicate a close genetic relationship between the granite and Sn-W mineralization. The Xishan K-feldspar granites have geochemical characteristics of A-type granites, e.g., high total alkali (Na2O + K2O = 7.88-10.07 wt.%), high Ga/Al ratios (10000*Ga/Al > 2.6) and high Zr + Nb + Ce + Y concentrations (> 350 ppm). They are further classified as A2-type granites. The whole-rock isotopic compositions of K-feldspar granites (initial 87Sr/86Sr = 0.705256-0.706181; εNd(t) = - 5.4 to - 4.8) and zircon εHf(t) values (- 7.8 to 2.0) suggest a mixed magma source. The low zircon Ce4 +/Ce3 + ratios (12-88) of K-feldspar granites suggest low oxygen fugacities, which is key for enrichment of tin in primary magmas. The K-feldspar granites have experienced strong differentiation as indicated by their high Rb/Sr and K/Rb ratios, and low Nb/Ta and Zr/Hf ratios, which play an important role in ore-forming element transportation and concentration. A-type granite characteristics of the Xishan pluton show that it formed in an extensional environment. The high F and low Cl characteristics of the K-feldspar granite are most probably attributed to slab rollback. In the Late Cretaceous, the Xishan Sn-W deposit was located near the interaction of the circum-Pacific and the Tethys tectonic realms. Late Cretaceous Sn-W deposits, including the Xishan deposit, form an EW-trending belt from Guangdong to Yunnan Province in South China. This belt is in accordance with the direction of the Neo

  2. Evidence for subduction-related magmatism during the Cretaceous and Cenozoic in Myanmar

    Science.gov (United States)

    Sevastjanova, Inga; Sagi, David Adam; Webb, Peter; Masterton, Sheona; Hill, Catherine; Davies, Clare

    2017-04-01

    Myanmar's complex geological history, numerous controversies around its tectonic evolution and the presence of prospective hydrocarbon basins make it a key area of interest for geologists. Understanding whether a passive or an active margin existed in the region during the Cenozoic is particularly important for the production of accurate basin models; active Cenozoic subduction would imply that hydrocarbon basins in the forearc experienced extension due to slab rollback. The geology of Myanmar was influenced by the regional tectonics associated with the Cretaceous and Cenozoic closure of the Neotethys Ocean. During this time, India travelled rapidly from Gondwana to Asia at speeds up to 20 cm/yr. To accommodate the north-eastward motion of India, the Neotethys Ocean was consumed at the subduction zone along the southern margin of Eurasia. Based on our Global Plate Model, this subduction zone can reasonably be expected to extend for the entire width of the Neotethys Ocean as far as Myanmar and Southeast Asia at their eastern extent. Moreover, a) Cretaceous volcanism onshore Myanmar, b) the middle Cenozoic arc-related extension in the Present Day eastern Andaman Sea and c) the late Cenozoic uplift of the Indo-Burman Ranges are all contemporaneous with the subduction ages predicted by the global plate motions. However, because of the geological complexity of the area, additional evidence would augment interpretations that are based on structural data. In an attempt to reduce the uncertainty in the existing interpretations, we have compiled published zircon geochronological data from detrital and igneous rocks in the region. We have used published zircon U-Pb ages and, where available, published Hf isotope data and CL images (core/rim) in order to distinguish 'juvenile' mantle-derived zircons from those of reworked crustal origin. The compilation shows that Upper Cretaceous and Cenozoic zircons, which are interpreted to have a volcanic provenance, are common across the

  3. Bolide impact and long- and short term environmental change across the cretaceous-paleogene boundary

    NARCIS (Netherlands)

    Vellekoop, J.

    2015-01-01

    The Cretaceous-Paleogene (K-Pg) boundary mass extinction, ~66 million years ago, was one of the most devastating events in the history of life, marking the end of the dinosaur era. This mass extinction event is now widely acknowledged to be related to the global environmental consequences of the

  4. Tectonics and Volcanism During the Cretaceous Normal Superchron Seafloor in the Western Pacific Ocean

    Science.gov (United States)

    O'Brien, E.

    2017-12-01

    We have conducted an integration study on the origin and evolution of the tectonics and volcanism of seafloor in the Western Pacific Ocean that took place during the Cretaceous Normal Superchron (CNS) where sparse data has so far precluded detailed investigation. We have compiled the latest satellite-based gravity, gravity gradient, and magnetic grids (EMAG2 v.3) for this region. These crustal-scale high-resolution grids suggest that the CNS seafloor contains fossilized lithospheric morphology possibly attributed to the interaction between Cretaceous supervolcanism activity and Mid-Cretaceous Pacific mid ocean ridge systems that have continuously expanded the Pacific Plate. We recognize previously identified fossilized microplates west of the Magellan Rise, short-lived abandoned propagating rifts and fracture zones, all of which show significant rotation of seafloor fabric. In addition to these large scale observations, we have also compiled marine geological information from previously drilled cores and new data from a Kongsberg Topas PS18 Parametric Sub-Bottom Profiler collected on a transect from Honolulu, Hawaii to Apra, Guam acquired during research cruise SKQ2014S2. In particular, the narrow beam and high bandwidth signal of the Topas PS18 sub-bottom profiler provides sonar data of the seabed with a resolution and depth penetration that is unprecedented compared with previously available surveys in the region. A preliminary assessment of this high resolution Topas data allows us to better characterize sub-seafloor sediment properties and identify features, including the Upper Transparent Layer with identifiable pelagic clay and porcelanite-chert reflectors as well as tectonic features such as the westernmost tip of the Waghenaer Fracture Zone.

  5. Severity of ocean acidification following the end-Cretaceous asteroid impact.

    Science.gov (United States)

    Tyrrell, Toby; Merico, Agostino; Armstrong McKay, David Ian

    2015-05-26

    Most paleo-episodes of ocean acidification (OA) were either too slow or too small to be instructive in predicting near-future impacts. The end-Cretaceous event (66 Mya) is intriguing in this regard, both because of its rapid onset and also because many pelagic calcifying species (including 100% of ammonites and more than 90% of calcareous nannoplankton and foraminifera) went extinct at this time. Here we evaluate whether extinction-level OA could feasibly have been produced by the asteroid impact. Carbon cycle box models were used to estimate OA consequences of (i) vaporization of up to 60 × 10(15) mol of sulfur from gypsum rocks at the point of impact; (ii) generation of up to 5 × 10(15) mol of NOx by the impact pressure wave and other sources; (iii) release of up to 6,500 Pg C as CO2 from vaporization of carbonate rocks, wildfires, and soil carbon decay; and (iv) ocean overturn bringing high-CO2 water to the surface. We find that the acidification produced by most processes is too weak to explain calcifier extinctions. Sulfuric acid additions could have made the surface ocean extremely undersaturated (Ωcalcite ocean very rapidly (over a few days) and if the quantity added was at the top end of literature estimates. We therefore conclude that severe ocean acidification might have been, but most likely was not, responsible for the great extinctions of planktonic calcifiers and ammonites at the end of the Cretaceous.

  6. Neutron activation analysis in geochemical characterization of Jurassic-Cretaceous sedimentary rocks from the Nordvik Peninsula

    Czech Academy of Sciences Publication Activity Database

    Mizera, Jiří; Řanda, Zdeněk; Košťák, M.

    2010-01-01

    Roč. 284, č. 1 (2010), s. 211-219 ISSN 0236-5731 Institutional research plan: CEZ:AV0Z10480505 Keywords : Jurassic-Cretaceous boundary * Nordvik Peninsula * Iridium anomaly Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.777, year: 2010

  7. Hospital and urban effluent waters as a source of accumulation of toxic metals in the sediment receiving system of the Cauvery River, Tiruchirappalli, Tamil Nadu, India.

    Science.gov (United States)

    Devarajan, Naresh; Laffite, Amandine; Ngelikoto, Patience; Elongo, Vicky; Prabakar, Kandasamy; Mubedi, Josué I; Piana, Pius T M; Wildi, Walter; Poté, John

    2015-09-01

    Hospital and urban effluents contain a variety of toxic and/or persistent substances in a wide range of concentrations, and most of these compounds belong to the group of emerging contaminants. The release of these substances into the aquatic ecosystem can lead to the pollution of water resources and may place aquatic organisms and human health at risk. Sediments receiving untreated and urban effluent waters from the city of Tiruchirappalli in the state of Tamil Nadu, India, are analyzed for potential environmental and human health risks. The sediment samples were collected from five hospital outlet pipes (HOP) and from the Cauvery River Basin (CRB) both of which receive untreated municipal effluent waters (Tiruchirappalli, Tamil Nadu, India). The samples were characterized for grain size, organic matter, toxic metals, and ecotoxicity. The results highlight the high concentration of toxic metals in HOP, reaching values (mg kg(-1)) of 1851 (Cr), 210 (Cu), 986 (Zn), 82 (Pb), and 17 (Hg). In contrast, the metal concentrations in sediments from CRB were lower than the values found in the HOP (except for Cu, Pb), with maximum values (mg kg(-1)) of 75 (Cr), 906 (Cu), 649 (Zn), 111 (Pb), and 0.99 (Hg). The metal concentrations in all sampling sites largely exceed the Sediment Quality Guidelines (SQGs) and the Probable Effect Concentration (PEC) for the Protection of Aquatic Life recommendation. The ecotoxicity test with ostracods exposed to the sediment samples presents a mortality rate ranging from 22 to 100 % (in sediments from HOP) and 18-87 % (in sediments from CRB). The results of this study show the variation of toxic metal levels as well as toxicity in sediment composition related to both the type of hospital and the sampling period. The method of elimination of hospital and urban effluents leads to the pollution of water resources and may place aquatic organisms and human health at risk.

  8. Phosphatized algal-bacterial assemblages in Late Cretaceous phosphorites of the Voronezh Anteclise

    Science.gov (United States)

    Maleonkina, Svetlana Y.

    2003-01-01

    Late Cretaceous phosphogenesis of the Voronezh Anteclise has occurred during Cenomanian and Early Campanian. SEM studies show the presence of phosphatized algal-bacterial assemblages both in Cenomanian and Campanian phosphorites. In some Cenomanian nodular phosphorite samples revealed empty tubes 1 - 5 microns in diameter, which are most likely trichomes of cyanobacterial filaments. Other samples contained accumulations of spheres 0,5-3 microns, similar to coccoidal bacteria. Complicated tubular forms with variable diameter 2 - 5 microns occur on surface of some quartz grains in nodules. They are probably pseudomorphs after algae. We found similar formations in the Campanian phosphate grains. Frequently, grain represents a cyanobacterial mat, which is sometimes concentrically coated by phosphatic films. The films of some grains retain the primary structure, their concentric layers are formed by pseudomorphs after different bacterial types and obviously they represent oncolite. In other cases, the primary structure is unobservable because of recrystallization process erases them. Occasionally, the central part retains the coccoidal structure and the recrystallization affects only films. Besides the core of such oncolite can be represented not only by phosphatic grain, but also by grains of other minerals, such as quartz, glauconite and heavy minerals, which serve as a substrate for cyanobacterial colonies. Bacteria also could settle on cavity surfaces and interiors frames of sponge fragments, teeth and bones.

  9. New insights on early evolution of spiny-rayed fishes (Teleostei: Acanthomorpha

    Directory of Open Access Journals (Sweden)

    Wei-Jen eChen

    2014-10-01

    Full Text Available The Acanthomorpha is the largest group of teleost fishes with about one third of extant vertebrate species. In the course of its evolution this lineage experienced several episodes of radiation, leading to a large number of descendant lineages differing profoundly in morphology, ecology, distribution and behavior. Although Acanthomorpha was recognized decades ago, we are only now beginning to decipher its large-scale, time-calibrated phylogeny, a prerequisite to test various evolutionary hypotheses explaining the tremendous diversity of this group. In this study, we provide new insights into the early evolution of the acanthomorphs and the euteleost allies based on the phylogenetic analysis of a newly developed dataset combining nine nuclear and mitochondrial gene markers. Our inferred tree is time-calibrated using 15 fossils, some of which have not been used before. While our phylogeny strongly supports a monophyletic Neoteleostei, Ctenosquamata (i.e., Acanthomorpha plus Myctophiformes, and Acanthopterygii, we find weak support (bootstrap value < 48% for the traditionally defined Acanthomorpha, as well as evidence of non-monophyly for the traditional Paracanthopterygii, Beryciformes, and Percomorpha. We corroborate the new Paracanthopterygii sensu Miya et al. (2005 including Polymixiiformes, Zeiformes, Gadiformes, Percopsiformes, and likely the enigmatic Stylephorus chordatus. Our timetree largely agrees with other recent studies based on nuclear loci in inferring an Early Cretaceous origin for the acanthomorphs followed by a Late Cretaceous/Early Paleogene radiation of major lineages. This is in contrast to mitogenomic studies mostly inferring Jurassic or even Triassic ages for the origin of the acanthomorphs. We compare our results to those of previous studies, and attempt to address some of the issues that may have led to incongruence between the fossil record and the molecular clock studies, as well as between the different molecular

  10. High resolution stratigraphy of the Jurassic-Cretaceous boundary interval in the Gresten Klippenbelt (Austria)

    Czech Academy of Sciences Publication Activity Database

    Lukeneder, A.; Halásová, E.; Kroh, A.; Mayrhofer, S.; Pruner, Petr; Reháková, D.; Schnabl, Petr; Sprovieri, M.; Wagreich, M.

    2010-01-01

    Roč. 61, č. 5 (2010), s. 365-381 ISSN 1335-0552 R&D Projects: GA ČR GA205/07/1365 Institutional research plan: CEZ:AV0Z30130516 Keywords : Jurassic/Cretaceous boundary * Penninic Ocean, * paleoecology * paleogeography * environmental changes Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.909, year: 2010

  11. Evidence for Cretaceous-Paleogene boundary bolide “impact winter” conditions from New Jersey, USA

    NARCIS (Netherlands)

    Vellekoop, J.; Esmeray-Senlet, S.; Miller, K.G.; Browning, J.V.; Sluijs, A.; van de Schootbrugge, B.; Sinninghe Damsté, J.S.; Brinkhuis, H.

    2016-01-01

    Abrupt and short-lived “impact winter” conditions have commonly been implicated as the main mechanism leading to the mass extinction at the Cretaceous-Paleogene (K-Pg) boundary (ca. 66 Ma), marking the end of the reign of the non-avian dinosaurs. However, so far only limited evidence has been

  12. The origin of oil in the Cretaceous succession from the South Pars Oil Layer of the Persian Gulf

    Science.gov (United States)

    Rahmani, Omeid; Aali, Jafar; Junin, Radzuan; Mohseni, Hassan; Padmanabhan, Eswaran; Azdarpour, Amin; Zarza, Sahar; Moayyed, Mohsen; Ghazanfari, Parviz

    2013-07-01

    The origin of the oil in Barremian-Hauterivian and Albian age source rock samples from two oil wells (SPO-2 and SPO-3) in the South Pars oil field has been investigated by analyzing the quantity of total organic carbon (TOC) and thermal maturity of organic matter (OM). The source rocks were found in the interval 1,000-1,044 m for the Kazhdumi Formation (Albian) and 1,157-1,230 m for the Gadvan Formation (Barremian-Hauterivian). Elemental analysis was carried out on 36 samples from the source rock candidates (Gadvan and Kazhdumi formations) of the Cretaceous succession of the South Pars Oil Layer (SPOL). This analysis indicated that the OM of the Barremian-Hauterivian and Albian samples in the SPOL was composed of kerogen Types II and II-III, respectively. The average TOC of analyzed samples is less than 1 wt%, suggesting that the Cretaceous source rocks are poor hydrocarbon (HC) producers. Thermal maturity and Ro values revealed that more than 90 % of oil samples are immature. The source of the analyzed samples taken from Gadvan and Kazhdumi formations most likely contained a content high in mixed plant and marine algal OM deposited under oxic to suboxic bottom water conditions. The Pristane/nC17 versus Phytane/nC18 diagram showed Type II-III kerogen of mixture environments for source rock samples from the SPOL. Burial history modeling indicates that at the end of the Cretaceous time, pre-Permian sediments remained immature in the Qatar Arch. Therefore, lateral migration of HC from the nearby Cretaceous source rock kitchens toward the north and south of the Qatar Arch is the most probable origin for the significant oils in the SPOL.

  13. An advanced, new long-legged bird from the Early Cretaceous of the Jehol Group (northeastern China): insights into the temporal divergence of modern birds.

    Science.gov (United States)

    Liu, Di; Chiappe, Luis M; Zhang, Yuguang; Bell, Alyssa; Meng, Qingjin; Ji, Qiang; Wang, Xuri

    2014-11-14

    We describe a new ornithuromorph bird species, Gansus zheni from the Lower Cretaceous lacustrine deposits of the Jiufotang Formation (Jehol Group), Liaoning Province, China. A cladistic analysis resolves Gansus zheni as the sister taxon of the roughly contemporaneous Gansus yumenensis (Xiagou Formation, Gansu Province), and together as the most immediate outgroup to Ornithurae. Gansus zheni is the most advanced bird known today for the Jehol Biota. Its discovery provides the best-documented case of inter-basinal correlations (Jehol and Changma basins of Liaoning and Gansu provinces, respectively) using low-taxonomic clades of fossil birds. The existence of close relatives of Ornithurae in deposits formed at about 120 million years ago helps to mitigate the long-standing controversy between molecular and paleontological evidence for the temporal divergence of modern birds (Neornithes).

  14. Geology, mineralization, Rb-Sr & Sm-Nd geochemistry, and U–Pb zircon geochronology of Kalateh Ahani Cretaceous intrusive rocks, southeast Gonabad

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Karimpour

    2013-10-01

    Full Text Available Kalateh Ahani is located 27 km southeast of Gonabad within the Khorasan Razavi province. The area is part of Lut Block. Sub-volcanic monzonitic rocks intruded regional metamorphosed Shemshak Formation (Jurassic age. Magnetic susceptibility of less altered monzonitic rocks is 0.6%., As, Pb and Zn > 1%, Au up to 150 ppb and Sn = 133 ppm. The Sn content of vein in the northern part of Kalateh Ahani (Rud Gaz is > 1%. Based on mineralization, alteration and geochemistry, it seems that Sn mineralization is associated with the Cretaceous monzonitic rocks. Zircon U–Pb dating indicates that the age of the monzonitic rocks associated with mineralization is 109 Ma (Lower Cretaceous. Based on (87Sr/86Sri = 0.71089-0.710647 and (143Nd/144Ndi = 0.512113-0.51227 of the monzonitic rocks, the magma for these rocks were originated from the continental crust. This research has opened new window with respect to Sn-Cu mineralization and exploration within the Lut Block which is associated with Cretaceous granitoid rocks (reduced type, ilmenite series originated from the continental crust.

  15. A new sphenodontian (Lepidosauria: Rhynchocephalia) from the Late Triassic of Argentina and the early origin of the herbivore opisthodontians

    Science.gov (United States)

    Martínez, Ricardo N.; Apaldetti, Cecilia; Colombi, Carina E.; Praderio, Angel; Fernandez, Eliana; Malnis, Paula Santi; Correa, Gustavo A.; Abelin, Diego; Alcober, Oscar

    2013-01-01

    Sphenodontians were a successful group of rhynchocephalian reptiles that dominated the fossil record of Lepidosauria during the Triassic and Jurassic. Although evidence of extinction is seen at the end of the Laurasian Early Cretaceous, they appeared to remain numerically abundant in South America until the end of the period. Most of the known Late Cretaceous record in South America is composed of opisthodontians, the herbivorous branch of Sphenodontia, whose oldest members were until recently reported to be from the Kimmeridgian–Tithonian (Late Jurassic). Here, we report a new sphenodontian, Sphenotitan leyesi gen. et sp. nov., collected from the Upper Triassic Quebrada del Barro Formation of northwestern Argentina. Phylogenetic analysis identifies Sphenotitan as a basal member of Opisthodontia, extending the known record of opisthodontians and the origin of herbivory in this group by 50 Myr. PMID:24132307

  16. Fire-adapted Gondwanan Angiosperm floras evolved in the Cretaceous

    Directory of Open Access Journals (Sweden)

    Lamont Byron B

    2012-11-01

    Full Text Available Abstract Background Fires have been widespread over the last 250 million years, peaking 60−125 million years ago (Ma, and might therefore have played a key role in the evolution of Angiosperms. Yet it is commonly believed that fireprone communities existed only after the global climate became more arid and seasonal 15 Ma. Recent molecular-based studies point to much earlier origins of fireprone Angiosperm floras in Australia and South Africa (to 60 Ma, Paleocene but even these were constrained by the ages of the clades examined. Results Using a molecular-dated phylogeny for the great Gondwanan family Proteaceae, with a 113-million-year evolutionary history, we show that the ancestors of many of its characteristic sclerophyll genera, such as Protea, Conospermum, Leucadendron, Petrophile, Adenanthos and Leucospermum (all subfamily Proteoideae, occurred in fireprone habitats from 88 Ma (83−94, 95% HPD, Mid-Upper Cretaceous. This coincided with the highest atmospheric oxygen (combustibility levels experienced over the past 150 million years. Migration from non-fireprone (essentially rainforest-climate-type environments was accompanied by the evolution of highly speciose clades with a range of seed storage traits and fire-cued seed release or germination mechanisms that was diagnostic for each clade by 71 Ma, though the ant-dispersed lineage (as a soil seed-storage subclade was delayed until 45 Ma. Conclusions Focusing on the widespread 113-million-year-old family Proteaceae, fireproneness among Gondwanan Angiosperm floras can now be traced back almost 90 million years into the fiery Cretaceous. The associated evolution of on-plant (serotiny and soil seed storage, and later ant dispersal, affirms them as ancient adaptations to fire among flowering plants.

  17. Physical behaviour of Cretaceous calcareous nannofossil ooze

    DEFF Research Database (Denmark)

    Buls, Toms; Anderskouv, Kresten; Friend, Patrick L.

    2017-01-01

    Geomorphic features such as drifts, sediment waves and channels have been documented in the Upper Cretaceous of north-west Europe. These features are interpreted to result from bottom currents and have been used to refine chalk depositional models and quantify palaeocirculation patterns. Chalk...... was first deposited as calcareous nannofossil ooze and geomorphic features are the result of sediment reworking after deposition. There is limited knowledge on the processes that govern nannofossil ooze mobility, thus forcing uncertainty onto numerical models based on sedimentological observations...... of deposition thresholds (τcd) from ca 0·04 to 0·13 Pa reflects the influence of variable suspended sediment concentration and τ0 on settling particle size due to the identified potential for chalk ooze aggregation and flocculation. Additionally, deposition thresholds seem to be affected by the size of eroded...

  18. Impact of sauropod dinosaurs on lagoonal substrates in the Broome Sandstone (Lower Cretaceous, Western Australia.

    Directory of Open Access Journals (Sweden)

    Tony Thulborn

    Full Text Available Existing knowledge of the tracks left by sauropod dinosaurs (loosely 'brontosaurs' is essentially two-dimensional, derived mainly from footprints exposed on bedding planes, but examples in the Broome Sandstone (Early Cretaceous of Western Australia provide a complementary three-dimensional picture showing the extent to which walking sauropods could deform the ground beneath their feet. The patterns of deformation created by sauropods traversing thinly-stratified lagoonal deposits of the Broome Sandstone are unprecedented in their extent and structural complexity. The stacks of transmitted reliefs (underprints or ghost prints beneath individual footfalls are nested into a hierarchy of deeper and more inclusive basins and troughs which eventually attain the size of minor tectonic features. Ultimately the sauropod track-makers deformed the substrate to such an extent that they remodelled the topography of the landscape they inhabited. Such patterns of substrate deformation are revealed by investigating fragmentary and eroded footprints, not by the conventional search for pristine footprints on intact bedding planes. For that reason it is not known whether similar patterns of substrate deformation might occur at sauropod track-sites elsewhere in the world.

  19. Impact of Sauropod Dinosaurs on Lagoonal Substrates in the Broome Sandstone (Lower Cretaceous), Western Australia

    Science.gov (United States)

    Thulborn, Tony

    2012-01-01

    Existing knowledge of the tracks left by sauropod dinosaurs (loosely ‘brontosaurs’) is essentially two-dimensional, derived mainly from footprints exposed on bedding planes, but examples in the Broome Sandstone (Early Cretaceous) of Western Australia provide a complementary three-dimensional picture showing the extent to which walking sauropods could deform the ground beneath their feet. The patterns of deformation created by sauropods traversing thinly-stratified lagoonal deposits of the Broome Sandstone are unprecedented in their extent and structural complexity. The stacks of transmitted reliefs (underprints or ghost prints) beneath individual footfalls are nested into a hierarchy of deeper and more inclusive basins and troughs which eventually attain the size of minor tectonic features. Ultimately the sauropod track-makers deformed the substrate to such an extent that they remodelled the topography of the landscape they inhabited. Such patterns of substrate deformation are revealed by investigating fragmentary and eroded footprints, not by the conventional search for pristine footprints on intact bedding planes. For that reason it is not known whether similar patterns of substrate deformation might occur at sauropod track-sites elsewhere in the world. PMID:22662116

  20. A new species of the neopterygian fish Enchodus from the Duwi Formation, Campanian, Late Cretaceous, Western Desert, central Egypt

    Directory of Open Access Journals (Sweden)

    Waymon L. Holloway

    2017-09-01

    Full Text Available The neopterygian fish Enchodus was a widespread, speciose genus consisting of approximately 30 recognized species that were temporally distributed from the late Early Cretaceous through the Paleocene. Many Enchodus specimens are fragmentary cranial remains or isolated dental elements, as is the case for previously reported occurrences in Egypt. Here, we present the most complete specimen of Enchodus recovered from the Late Cretaceous of northeast Africa. The specimen was collected from the upper Campanian Duwi Formation, near the village of Tineida (Dakhla Oasis, Western Desert, Egypt. The new species, Enchodus tineidae sp. nov., consists of right and left dentaries, a partial ectopterygoid, and other cranial bones. The size of the specimen places it into the upper body-size range for the genus. The palatine tooth, an element often useful for diagnosing Enchodus to the species level, is not preserved, but a combination of other cranial characters supports the referral of this specimen to Enchodus. In particular, the dentary preserves three symphysial rostroventral prongs and two tooth rows, the lateral of which consists of small denticles, whereas the medial row comprises large, mediolaterally-compressed teeth. The rostral-most tooth exhibits the highest crown, whereas the rest of the teeth are of lower, variable crown heights. The eight robust, caudal-most medial-row teeth are distributed in a cluster pattern never before observed in Enchodus. Additionally, the dentary and preopercle are both without dermal ornamentation, and the mandibular sensory canal is closed. Phylogenetic analysis recovers this new species as the sister species to E. dirus from North America. Along with previously described materials from Israel, Jordan, Syria, Lebanon, Italy, Morocco, and Libya, this specimen represents a thirteenth species from the northwestern Tethyan geographic distribution of Enchodus.

  1. Depositional and palaeoenvironmental variation of lower Turonian nearshore facies in the Bohemian Cretaceous Basin, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Žítt, Jiří; Vodrážka, R.; Hradecká, L.; Svobodová, Marcela; Šťastný, Martin; Švábenická, L.

    2015-01-01

    Roč. 56, September/December (2015), s. 293-315 ISSN 0195-6671 Institutional support: RVO:67985831 Keywords : phosphatic particle accumulations * organic matter * micropalaeontology * biostratigraphy * condensed sedimentation * Upper Cretaceous Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.196, year: 2015

  2. Neutron activation analysis in geochemical characterization of Jurassic-Cretaceous sedimentary rocks from the Nordvik Peninsula

    Czech Academy of Sciences Publication Activity Database

    Mizera, Jiří; Řanda, Z.; Košťák, M.

    2010-01-01

    Roč. 284, č. 1 (2010), s. 211-219 ISSN 0236-5731 Institutional research plan: CEZ:AV0Z30460519 Keywords : Jurassic-Cretaceous boundary * Nordvik Peninsula * Iridium anomaly Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Geology Impact factor: 0.777, year: 2010

  3. Organic matter in North Bohemian Tertiavy and Cretaceous sediments with uranium mineralization

    International Nuclear Information System (INIS)

    Simanek, V.

    1979-01-01

    Significant variability was found in the qualitative and the quantitative compositions of dispersed organic matter in Tertiary rocks with uranium ore content between hundredths and units of percentage of the rocks. In Cretaceous rocks with similar proportion of uranium in w.% the variability is much smaller. In rocks with higher organic carbon and uranium levels the organic matter is in a more advanced stage of carbonification metamorphosis than in rocks with lower levels of the components. A statistical correlation test showed free positive correlation between the levels of uranium and organic carbon and the levels of uranium and strongly carbonified organic components and negative correlation between uranium level and humic substances on one hand and the uranium level and bitumens on the other. In Cretaceous sediments, the individual organic compounds were analytically determined in addition to the total level of organic carbon, the strongly carbonified organic components, humic substances and bitumens. Higher fatty acids in ppm concentrations were also found. Their distribution corresponds to the usual distribution in sediments. Rocks with lower contents of organic matter and uranium usually contain phenol aldehydes bound to glycosides while those with higher contents of uranium and organic carbon contain higher amounts of free phenol aldehydes. The composition of amino acids indicates genetic links to the microbial activity. (author)

  4. Geologic framework of nonmarine cretaceous-tertiary boundary sites, raton basin, new mexico and colorado

    Science.gov (United States)

    Pillmore, C.L.; Tschudy, R.H.; Orth, C.J.; Gilmore, J.S.; Knight, J.D.

    1984-01-01

    Indium concentrations are anomalously high at the palynological Cretaceous-Tertiary boundary in fluvial sedimentary rocks of the lower part of the Raton Formation at several localities in the Raton Basin of New Mexico and Colorado. The iridium anomaly is associated with a thin bed of kaolinitic claystone in a discontinuous carbonaceous shale and coal sequence.

  5. Dinosaur Footprints and Other Ichnofauna from the Cretaceous Kem Kem Beds of Morocco

    Science.gov (United States)

    Ibrahim, Nizar; Varricchio, David J.; Sereno, Paul C.; Wilson, Jeff A.; Dutheil, Didier B.; Martill, David M.; Baidder, Lahssen; Zouhri, Samir

    2014-01-01

    We describe an extensive ichnofossil assemblage from the likely Cenomanian-age ‘lower’ and ‘upper’ units of the ‘Kem Kem beds’ in southeastern Morocco. In the lower unit, trace fossils include narrow vertical burrows in cross-bedded sandstones and borings in dinosaur bone, with the latter identified as the insect ichnotaxon Cubiculum ornatus. In the upper unit, several horizons preserve abundant footprints from theropod dinosaurs. Sauropod and ornithischian footprints are much rarer, similar to the record for fossil bone and teeth in the Kem Kem assemblage. The upper unit also preserves a variety of invertebrate traces including Conichnus (the resting trace of a sea-anemone), Scolicia (a gastropod trace), Beaconites (a probable annelid burrow), and subvertical burrows likely created by crabs for residence and detrital feeding on a tidal flat. The ichnofossil assemblage from the Upper Cretaceous Kem Kem beds contributes evidence for a transition from predominantly terrestrial to marine deposition. Body fossil and ichnofossil records together provide a detailed view of faunal diversity and local conditions within a fluvial and deltaic depositional setting on the northwestern coast of Africa toward the end of the Cretaceous. PMID:24603467

  6. Specialized proteinine rove beetles shed light on insect-fungal associations in the Cretaceous.

    Science.gov (United States)

    Cai, Chenyang; Newton, Alfred F; Thayer, Margaret K; Leschen, Richard A B; Huang, Diying

    2016-12-28

    Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up. © 2016 The Author(s).

  7. Carbon isotope geochemistry of the Cretaceous-Tertiary section of the Wasserfallgraben, Lattengebirge, southeast Germany

    International Nuclear Information System (INIS)

    Arneth, J.D.; Matzigkeit, U.; Boos, A.

    1985-01-01

    Carbonates and organic matter in sediments of the Cretaceous-Tertiary (C/T) section of the Wasserfallgraben, Lattengebirge (Bavaria) have been investigated. All parameters - the carbonate content (Csub(carb)), its isotopic composition (delta 13 Csub(carb),delta 18 Osub(carb)) as well as the organic carbon content (Csub(org)), its isotopic composition (delta 13 Csub(org)) and the H/C ratio of the sedimentary organic matter - display systematic variations across the C/T boundary which cannot be attributed to a single cause. The boundary zone as a whole is tectonically disturbed and shows significant features of detrital contaminations. Unidirectional shift in delta 13 Csub(carb) and delta 13 Csub(org) are observed when directly comparing Maastrichtian (latest Cretaceous) and Danian (earliest Tertiary) sediments. These synchronous isotope displacements towards more negative readings are interpreted to reflect the reduced photosynthetic activity as consequence of the mass extinction at the C/T boundary. The results may have some bearings on other C/T profiles investigated where measurements on the reduced carbon species are still lacking. (orig.)

  8. 40Ar/39Ar dating of the Late Cretaceous

    International Nuclear Information System (INIS)

    Gaylor, Jonathan

    2013-01-01

    As part of the wider European GTS Next project, I propose new constraints on the ages of the Late Cretaceous, derived from a multitude of geochronological techniques, and successful stratigraphic interpretations from Canada and Japan. In the Western Canada Sedimentary Basin, we propose a new constraint on the age of the K/Pg boundary in the Red Deer River section (Alberta, Canada). We were able to cyclo-stratigraphically tune sediments in a non-marine, fluvial environment utilising high-resolution proxy records suggesting a 11-12 precession related cyclicity. Assuming the 40 Ar/ 39 Ar method is inter-calibrated with the cyclo-stratigraphy, the apparent age for C29r suggests that the K/Pg boundary falls between eccentricity maxima and minima, yielding an age of the C29r between 65.89 ± 0.08 and 66.30 ± 0.08 Ma. Assuming that the bundle containing the coal horizon represents a precession cycle, the K/Pg boundary is within the analytical uncertainty of the youngest zircon population achieving a revised age for the K/Pg boundary as 65.75 ± 0.06 Ma. The Campanian - Maastrichtian boundary is preserved in the sedimentary succession of the Horseshoe Canyon Formation and has been placed 8 m below Coal nr. 10. Cyclo-stratigraphic studies show that the formation of these depositional sequences (alternations) of all scales are influenced directly by sea-level changes due to precession but more dominated by eccentricity cycles proved in the cyclo-stratigraphic framework and is mainly controlled by sand horizons, which have been related by auto-cyclicity in a dynamic sedimentary setting. Our work shows that the Campanian - Maastrichtian boundary in the Western Canada Sedimentary Basin coincides with 2.5 eccentricity cycles above the youngest zircon age population at the bottom of the section and 4.9 Myr before the Cretaceous - Palaeogene boundary (K/Pg), and thus corresponds to an absolute age of 70.65 ± 0.09 Ma producing an 1.4 Myr younger age than recent published ages

  9. Early Cretaceous dextral transpressional deformation within the Median Batholith, Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.

    2008-01-01

    The character, timing, and significance of deformation within the Median Batholith has been debated since at least 1967, with allochthonous and autochthonous models proposed to account for internal variations in the character of the batholith. Stewart Island provides excellent exposures of intrabatholithic structures, allowing many aspects of the deformation history within the batholith to be analysed, far removed from the effects of later deformation related to the current plate boundary. Median Batholith rocks in northern and central Stewart Island are deformed by three major structures: the Freshwater Fault System, Escarpment Fault, and Gutter Shear Zone. Lineation orientations, Al in hornblende geobarometry, and Ar-Ar thermochronology indicate up to c. 7 km of NNE-directed uplift of the hanging wall of the Escarpment Fault between c. 110 and 105 Ma. Unlike the Escarpment Fault, a wide range of mineral elongation lineation orientations, including many oblique to the strike and dip of related foliations, characterise both the Gutter Shear Zone and Freshwater Fault System. Lineation and limited sense of shear data indicate dextral-reverse movement on both structures during development of their dominant ductile fabrics. Crosscutting and intrusive relationships indicate movement on the Freshwater Fault System after c. 130 Ma and on the Gutter Shear Zone between 120 and 112 Ma. The amount of movement on the Freshwater Fault System and Gutter Shear Zone remains largely unconstrained. However, the 342 ± 24 Ma age of a granite clast in a Paterson Group lithic tuff horizon at Abrahams Bay overlaps that of Carboniferous plutons in the block immediately south of the Freshwater Fault System, implying that the Paterson Group is little displaced from the basement rocks through which it was erupted. The three structures mapped on Stewart Island form part of a narrow transpressional mobile belt active within the Jurassic-Cretaceous arc on the outboard margin of the Western

  10. Phymosoma maastrichtensis spec. nov., a fossil echinoid from the Cretaceous of Maastricht (Echinacea, Phymosomatoida, Phymosomatidae)

    NARCIS (Netherlands)

    Engel, H.

    1972-01-01

    A beautifully preserved fragment of the test of a fossil Echinoid from the Maestrichtian Cretaceous, found at Belvédère, Caberg and kept in the Natuurhistorisch Museum, Maastricht under no. 1340, differs from the other species of the genus Phymosoma, hitherto described (cf. Fell & Pawson, 1966: U

  11. Calibrating the Cretaceous normal superchron with high-precision U-Pb zircon geochronology from Songliao Basin, NE China

    Science.gov (United States)

    Wang, T.; Ramezani, J.; Wang, C.

    2017-12-01

    The Cretaceous Normal Superchron (CNS) or C34n is defined as the prolonged period of normal geomagnetic polarity, which lasted for approximately 38 Myr from the Aptian to the beginning of the Campanian. Along with the Kiaman Reverse Superchron (Carboniferous-Permian), they constitute the two longest periods of stability in the Earth's magnetic field. Polarity reversals are geologically abrupt events of global extent that form the basis of the Geomagnetic Polarity Timescale. In addition, a causal relationship between the end of a superchron and global environmental change has been hypothesized by some workers. Thus, the precise timing of the onset and termination of CNS has important implications for the correlation of global tectonic, paleoclimatic and paleobiotic events, and may help us better understand the causes and consequences of superchrons. At present, the exact age and duration of CNS are poorly understood, in part due to the relative scarcity of relevant paleomagnetic and radioisotopic data. The end of CNS or the C34n/C33r chron boundary is also considered a suitable proxy for the Santonian-Campanian stage boundary in the absence of diagnostic fossils of global distribution for the latter. The early Campanian ( 84 Ma to 76 Ma) is characterized by a steady cooling of the (greenhouse) climate, preceded by an abrupt (possibly 5-6°C) drop in the global temperatures at the Santonain-Campanian boundary, based on the oxygen isotope record of benthic foraminifera. The peak of dinosaur diversity throughout vast swaths of the continents was reached during the Campanian, as well. Here we present a new age constraint for the termination of CNS based on ash bed geochronology from a near-continuous, subsurface, Cretaceous lacustrine record recovered from the Songliao Basin in Northeast China. This extraordinary record allows integration of high-precision U-Pb geochronology, magnetostratigraphy and cyclostratigraphy that enables a multi-chronometer approach to the

  12. Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc : Evidence from paleomagnetism, sediment provenance, and stratigraphy

    NARCIS (Netherlands)

    Huang, Wentao; van Hinsbergen, Douwe J J; Maffione, Marco; Orme, Devon A.; Dupont-Nivet, Guillaume; Guilmette, Carl; Ding, Lin; Guo, Zhaojie; Kapp, Paul

    2015-01-01

    The India-Asia suture zone of southern Tibet exposes Lower Cretaceous Xigaze ophiolites and radiolarian cherts, and time-equivalent Asian-derived clastic forearc sedimentary rocks (Xigaze Group). These ophiolites have been interpreted to have formed in the forearc of the north-dipping subduction

  13. Maastrichtian or Maestrichtian? A proposal to the Subcommision on Cretaceous Stratigraphy (IUGS, International Commission on Stratigraphy)

    NARCIS (Netherlands)

    Herngreen, G.F.W.

    2003-01-01

    This contribution deals with the dual spelling of the terminal Cretaceous Stage, the Maastrichtian or Maestrichtian. From a historical point of view and in agreement with the recommendations of the International Stratigraphic Guide (1st and 2nd editions) only Maestrichtian is justified.

  14. Cretaceous to Recent Asymetrical Subsidence of South American and West African Conjugate Margins

    Science.gov (United States)

    Kenning, J.; Mann, P.

    2017-12-01

    Two divergent interpretations have been proposed for South American rifted-passive margins: the "mirror hypothesis" proposes that the rifted margins form symmetrically from pure shear of the lithosphere while upper-plate-lower plate models propose that the rifted margins form asymmetrically by simple shear. Models based on seismic reflection and refraction imaging and comparison of conjugate, rifted margins generally invoke a hybrid stretching process involving elements of both end member processes along with the effects of mantle plumes active during the rift and passive margin phases. We use subsidence histories of 14, 1-7 km-deep exploration wells located on South American and West African conjugate pairs now separated by the South Atlantic Ocean, applying long-term subsidence to reveal the symmetry or asymmetry of the underlying, conjugate, rift processes. Conjugate pairs characterize the rifted margin over a distance of 3500 km and include: Colorado-South Orange, Punta Del Este-North Orange, South Pelotas-Lüderitz and the North Pelotas-Walvis Basins. Of the four conjugate pairs, more rapid subsidence on the South American plate is consistently observed with greater initial rift and syn-rift subsidence rates of >60m/Ma (compared to 100 m/Ma are observed offshore South Africa between approximately 120-80 Ma, compatible with onset of the post-rift thermal sag phase. During this period the majority of burial is completed and rates remain low at Argentina/Uruguay displays more gradual subsidence throughout the Cretaceous, consistently averaging a moderate 15-30m/Ma. By the end of this stage there is a subsequent increase to 25-60 m/Ma within the last 20 Ma, interpreted to reflect lithospheric loading due to increased sedimentation rates during the Cenozoic. This increase in subsidence rate is not seen in the African conjugate section where the majority of sediments bypassed the highly aggraded Cretaceous shelf. Initially greater on the Brazilian margin compared to

  15. Kilop Cretaceous Hardground (Kale, Gümüshane, NE Turkey):description and origin

    Science.gov (United States)

    Eren, Muhsin; Tasli, Kemal

    2002-06-01

    A hardground surface is well exposed in the Kilop area of Kale (Gümüshane, NE Turkey) which forms part of the Eastern Pontides. Here, the hardground is underlain by shallow water Lower Cretaceous limestones, and overlain by Upper Cretaceous red limestones/marls which contains a planktonic microfauna including Globotruncanidae. In the field, the recognition of the hardground is based on the presence of extensive burrows (especially vertical burrows), the encrusting rudistid bivalve Requienia, neptunian-dykes with infills of pelagic sediments and synsedimentary faults. Skolithos and Thalassinoides-type burrows are present. Some burrow walls show iron hydroxide-staining. The extensive burrowing occurred prior to lithification. On the other hand, the neptunian-dykes and synsedimentary faults, which cut the hard ground, occurred after the lithification. These features indicate the progressive hardening of the substrate. The burrowed limestone consists of an intrabioclastic peloidal grainstone which was deposited in an intertidal to shallow, subtidal, moderate to relatively high energy environment. The peloidal limestone shows little or no evidence of submarine cementation, characterized by only scarce relics of isopachous cement rims of bladed calcite spar. The grainstone cement is composed predominantly of blocky calcite and overgrowth calcite cements on the echinoid-fragments. The origin of this cement is controversial. Biostratigraphic analysis of the limestones demonstrates that there is a marked stratigraphic gap (hiatus), spanning the Aptian to the Santonian, in the Cretaceous of the Kilop area. The formation of the Kilop Hardground is related to the break-up and subsidence of the Eastern Pontides carbonate platform during the formation of the Black Sea backarc basin. Hardground development was initiated in a shallow marine environment of slow sedimentation and with moderate to high energy indicating slow subsidence. Later, the hardground subsided abruptly, as

  16. Temperature Reconstruction and Biomarker Variation across the Cretaceous-Paleogene Boundary, Mid-Waipara River, New Zealand

    Science.gov (United States)

    Taylor, K. W.; Hollis, C. J.; Pancost, R. D.

    2010-12-01

    The Cretaceous-Paleogene (K/Pg) boundary marks a catastrophic global extinction event, believed to be caused by an asteroid impact in northern Yucatan. Whilst the extent of mass extinction is well documented, there is ongoing debate about the immediate and longer term climatic and environmental changes triggered by the event. The northern South Island of New Zealand has several records of the K/Pg boundary, representing a range of terrestrial and marine environments. Previous studies of terrestrial palynomorphs and siliceous microfossils from these sections suggested significant cooling and terrestrial vegetation reconfiguration in the earliest Paleocene. Extinctions or local disappearances of thermophilic taxa at the K/Pg boundary are consistent with the hypothesis of a short-lived “impact winter”. The Mid-Waipara K/Pg boundary section, north Canterbury, has been identified as suitable for organic geochemical study because sufficient organic carbon is present in the siliciclastic sediments and is thermally immature. Sediments were deposited in outer shelf to upper slope depths under a neritic watermass. New estimates of sea surface temperature variation based on TEX86 elucidate the relationship between biological and climatic changes that followed the K/Pg event. Within the 0.25 m-thick interval identified as the “fern spike” in basal Paleocene sediments in this section there is no indication of a significant change in temperature relative to the Cretaceous (22-25°C). Foraminiferal and radiolarian biostratigraphy indicates that this interval spans ~100 kyrs and includes a fern succession from colonising ground ferns to tree ferns, the latter suggesting a temperate, humid climate. The transition from ferns to a conifer-dominated pollen assemblage corresponds with a remarkable decrease in temperature recorded in the TEX86 record. These cool temperatures persist over 10 m. The dominant conifer pollen type over this interval is Phyllocladites mawsonii

  17. Ichnofabric and substrate consistency in Upper Turonian carbonates of the Bohemian Cretaceous Basin (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Mikuláš, Radek

    2006-01-01

    Roč. 57, č. 2 (2006), s. 79-90 ISSN 1335-0552 R&D Projects: GA ČR GA205/04/0151 Institutional research plan: CEZ:AV0Z30130516 Keywords : Cretaceous * ichnofossils * firmground Subject RIV: EG - Zoology Impact factor: 0.364, year: 2006 http://www.geologicacarpathica.sk/src/main.php

  18. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China

    Science.gov (United States)

    Wang, Tiantian; Ramezani, Jahandar; Wang, Chengshan; Wu, Huaichun; He, Huaiyu; Bowring, Samuel A.

    2016-07-01

    The Cretaceous continental sedimentary records are essential to our understanding of how the terrestrial geologic and ecologic systems responded to past climate fluctuations under greenhouse conditions and our ability to forecast climate change in the future. The Songliao Basin of Northeast China preserves a near-complete, predominantly lacustrine, Cretaceous succession, with sedimentary cyclicity that has been tied to Milankocitch forcing of the climate. Over 900 meters of drill-core recovered from the Upper Cretaceous (Turonian to Campanian) of the Songliao Basin has provided a unique opportunity for detailed analyses of its depositional and paleoenvironmental records through integrated and high-resolution cyclostratigraphic, magnetostratigraphic and geochronologic investigations. Here we report high-precision U-Pb zircon dates (CA-ID-TIMS method) from four interbedded bentonites from the drill-core that offer substantial improvements in accuracy, and a ten-fold enhancement in precision, compared to the previous U-Pb SIMS geochronology, and allow a critical evaluation of the Songliao astrochronological time scale. The results indicate appreciable deviations of the astrochronologic model from the absolute radioisotope geochronology, which more likely reflect cyclostratigraphic tuning inaccuracies and omitted cycles due to depositional hiatuses, rather than suspected limitations of astronomical models applied to distant geologic time. Age interpolation based on our new high-resolution geochronologic framework and the calibrated cyclostratigraphy places the end of the Cretaceous Normal Superchon (C34n-C33r chron boundary) in the Songliao Basin at 83.07 ± 0.15 Ma. This date also serves as a new and improved estimate for the global Santonian-Campanian stage boundary.

  19. Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous-Tertiary boundary.

    Science.gov (United States)

    Roos, Jonas; Aggarwal, Ramesh K; Janke, Axel

    2007-11-01

    The mitochondrial genomes of the dwarf crocodile, Osteolaemus tetraspis, and two species of dwarf caimans, the smooth-fronted caiman, Paleosuchus trigonatus, and Cuvier's dwarf caiman, Paleosuchus palpebrosus, were sequenced and included in a mitogenomic phylogenetic study. The phylogenetic analyses, which included a total of ten crocodylian species, yielded strong support to a basal split between Crocodylidae and Alligatoridae. Osteolaemus fell within the Crocodylidae as the sister group to Crocodylus. Gavialis and Tomistoma, which joined on a common branch, constituted a sister group to Crocodylus/Osteolaemus. This suggests that extant crocodylians are organized in two families: Alligatoridae and Crocodylidae. Within the Alligatoridae there was a basal split between Alligator and a branch that contained Paleosuchus and Caiman. The analyses also provided molecular estimates of various divergences applying recently established crocodylian and outgroup fossil calibration points. Molecular estimates based on amino acid data placed the divergence between Crocodylidae and Alligatoridae at 97-103 million years ago and that between Alligator and Caiman/Paleosuchus at 65-72 million years ago. Other crocodilian divergences were placed after the Cretaceous-Tertiary boundary. Thus, according to the molecular estimates, three extant crocodylian lineages have their roots in the Cretaceous. Considering the crocodylian diversification in the Cretaceous the molecular datings suggest that the extinction of the dinosaurs was also to some extent paralleled in the crocodylian evolution. However, for whatever reason, some crocodylian lineages survived into the Tertiary.

  20. A record of long- and short-term environmental and climatic change during OAE3: La Luna Formation, Late Cretaceous (Santonian-early Campanian), Venezuela

    Science.gov (United States)

    Rey, O.; Simo (Toni), J. A.; Lorente, M. A.

    2004-08-01

    The La Luna Formation was deposited under anoxic/dysoxic conditions in a tropical epicontinental sea on the northwest South America margin. Sedimentological, micropaleontological and geochemical evidence provides insights into factors that influenced the sedimentation and controlled the accumulation of organic-rich deposits at decimeter and meter scales during the youngest of the Cretaceous oceanic anoxic events (OAE). The La Luna Formation consists of an alternation of black marlstones interbedded with black limestones and black marly limestones. The benthic foraminifera assemblages indicate sedimentation in the upper neritic to upper bathyal environment. These rocks contain large amounts of organic matter. It is interpreted that a combination of warm global and rainy climate and the presence of bathymetric barriers caused poor circulation and low rates of water column ventilation during a high sea level in the early Santonian leading to the preservation of carbon-rich deposits in this region. During the late Santonian, a cooling-trend in global climate increased wind strength and upwelling; this change probably reduced runoff causing a weakening of the pycnocline and destabilized the stratification in the water column providing a progressive increase in oxygen in the water column and on the sea floor and a decrease in total organic carbon preservation in a shallower basin. These changes and the establishment of full mid- and deep-water exchange in response to the deepening and widening of the Equatorial Atlantic Gateway could have been important mechanisms for ending the epeiric sea anoxia. Changes through time in the vanadium-nickel fraction, planktonic and benthic foraminifera assemblages, productivity proxy elements, and lithological characteristics support this model. Superimposed on the general trend, variations in calcium carbonate and total organic carbon percentages at the scale of tens of centimeters reveal high frequency cyclic variations, which

  1. New details of bio- and magnetostratigraphical correlations in the Jurassic/Cretaceous boundary interval: Lókút (Transdanubial Range, Hngary), Veliky Kamenets (Pieniny Klippen Belt, Ukraine), Barlya (Western Balkan, Bulgaria)

    Czech Academy of Sciences Publication Activity Database

    Grabowski, J.; Bakhmutov, V.; Haas, J.; Krobicki, M.; Lakova, I.; Petrova, S.; Reháková, D.; Schnabl, Petr; Stoykova, K.; Sobien, K.

    2017-01-01

    Roč. 120 (2017), s. 100-100 ISSN 1017-8880. [International Symposium on the Cretaceous /10./. 21.08.2017-26.08.2017, Vienna] Institutional support: RVO:67985831 Keywords : magnetostratigraphy * Jurassic/Cretaceous boundary interval * Transdanubian Range * Pieniny Klippen Belt * Western Balkan Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  2. Sea water strontium isotopes, acid rain, and the cretaceous-tertiary boundary

    International Nuclear Information System (INIS)

    MacDougall, J.D.

    1988-01-01

    A large bolide impact at the end of the Cretaceous would have produced significant amounts of nitrogen oxides by shock heating of the atmosphere. The resulting acid precipitation would have increased continental weathering greatly and could be an explanation for the observed high ratio of strontium-87 to strontium-86 in sea water at about this time, due to the dissolution of large amounts of strontium from the continental crust. Spikes to high values in the sea water strontium isotope record at other times may reflect similar episodes. 17 references, 1 figure, 1 table

  3. Mineralogical characteristics of Cretaceous-Tertiary kaolins of the Douala Sub-Basin, Cameroon

    Science.gov (United States)

    Bukalo, Nenita N.; Ekosse, Georges-Ivo E.; Odiyo, John O.; Ogola, Jason S.

    2018-05-01

    As a step in evaluating the quality of Cretaceous-Tertiary kaolins of the Douala Sub-Basin, their mineralogical characteristics were determined. The X-ray diffractometry technique was used to identify and quantify the mineral phases present in bulk and smectite > illite, with mean values of 33.01 > 11.20 > 4.41 wt %; and 72.23 > 10.69 > 4.69 wt %, in bulk and <2 μm fractions, respectively. The kaolins, micromorphologically, consisted of pseudo-hexagonal and thin platy particles; swirl-textured particles; and books or stacks of kaolinite particles. Three main reactions occurred during heating of the kaolins: a low temperature endothermic reaction, observed between 48 and 109 °C; a second low temperature peak, observed between 223 and 285 °C; and a third endothermic peak was found between 469 and 531 °C. In addition, an exothermic reaction also occurred between 943 and 988 °C in some of the samples. The absence of primary minerals such as feldspars and micas in most of these kaolins is an indication of intensive weathering, probably due to the humid tropical climate of the region. The different morphologies suggested that these kaolins might have been transported. Therefore, a humid tropical climate was responsible for the formation of Cretaceous-Tertiary kaolins of the Douala Sub-Basin through intense weathering of surrounding volcanic and metamorphic rocks.

  4. Seismic sequence stratigraphy and platform to basin reservoir structuring of Lower Cretaceous deposits in the Sidi Aïch-Majoura region (Central Tunisia)

    Science.gov (United States)

    Azaïez, Hajer; Bédir, Mourad; Tanfous, Dorra; Soussi, Mohamed

    2007-05-01

    In central Tunisia, Lower Cretaceous deposits represent carbonate and sandstone reservoir series that correspond to proven oil fields. The main problems for hydrocarbon exploration of these levels are their basin tectonic configuration and their sequence distribution in addition to the source rock availability. The Central Atlas of Tunisia is characterized by deep seated faults directed northeast-southwest, northwest-southeast and north-south. These faults limit inherited tectonic blocks and show intruded Triassic salt domes. Lower Cretaceous series outcropping in the region along the anticline flanks present platform deposits. The seismic interpretation has followed the Exxon methodologies in the 26th A.A.P.G. Memoir. The defined Lower Cretaceous seismic units were calibrated with petroleum well data and tied to stratigraphic sequences established by outcrop studies. This allows the subsurface identification of subsiding zones and thus sequence deposit distribution. Seismic mapping of these units boundary shows a structuring from a platform to basin blocks zones and helps to understand the hydrocarbon reservoir systems-tract and horizon distribution around these domains.

  5. A Late Cretaceous Piper (Piperaceae) from Colombia and diversification patterns for the genus.

    Science.gov (United States)

    Martínez, Camila; Carvalho, Mónica R; Madriñán, Santiago; Jaramillo, Carlos A

    2015-02-01

    Documented fossil floras in the neotropics are sparse, yet their records provide evidence on the spatial and temporal occurrence of taxa, allowing for testing of biogeographical and diversification scenarios on individual lineages. A new fossil Piper from the Late Cretaceous of Colombia is described here, and its importance for assessing diversification patterns in the genus is addressed. Leaf architecture of 32 fossil leaf compressions from the Guaduas Formation was compared with that of 294 extant angiosperm species. The phylogenetic position of the fossil named Piper margaritae sp. nov. was established based on leaf traits and a molecular scaffold of Piper. The age of the fossil was independently used as a calibration point for divergence time estimations. Natural affinities of P. margaritae to the Schilleria clade of Piper indicate that the genus occurred in tropical America by the Late Cretaceous. Estimates of age divergence and lineage accumulation reveal that most of the extant diversity of the genus accrued during the last ∼30 Myr. The recent radiation of Piper is coeval with both the Andean uplift and the emergence of Central America, which have been proposed as important drivers of diversity. This pattern could exemplify a recurrent theme among many neotropical plant lineages. © 2015 Botanical Society of America, Inc.

  6. Diversification of the Genus Anopheles and a Neotropical Clade from the Late Cretaceous.

    Directory of Open Access Journals (Sweden)

    Lucas A Freitas

    Full Text Available The Anopheles genus is a member of the Culicidae family and consists of approximately 460 recognized species. The genus is composed of 7 subgenera with diverse geographical distributions. Despite its huge medical importance, a consensus has not been reached on the phylogenetic relationships among Anopheles subgenera. We assembled a comprehensive dataset comprising the COI, COII and 5.8S rRNA genes and used maximum likelihood and Bayesian inference to estimate the phylogeny and divergence times of six out of the seven Anopheles subgenera. Our analysis reveals a monophyletic group composed of the three exclusively Neotropical subgenera, Stethomyia, Kerteszia and Nyssorhynchus, which began to diversify in the Late Cretaceous, at approximately 90 Ma. The inferred age of the last common ancestor of the Anopheles genus was ca. 110 Ma. The monophyly of all Anopheles subgenera was supported, although we failed to recover a significant level of statistical support for the monophyly of the Anopheles genus. The ages of the last common ancestors of the Neotropical clade and the Anopheles and Cellia subgenera were inferred to be at the Late Cretaceous (ca. 90 Ma. Our analysis failed to statistically support the monophyly of the Anopheles genus because of an unresolved polytomy between Bironella and A. squamifemur.

  7. Geochemistry and environmental isotope of groundwater from the upper Cretaceous aquifer of Orontes basin (Syria)

    International Nuclear Information System (INIS)

    Al-Charideh, A.

    2010-03-01

    Chemical and environmental isotopes have been used for studying the Upper Cretaceous aquifer systems in the Middle Orontes basin. The results indicate that the salinity of groundwater (0.2 to 2 g/l) reveals the dissolution of evaporate rocks is the main factor of high salinity especially in the Homes depression. The degree of salinity and its spaces distribution are basically related to the pattern of groundwater movement in the Upper cretaceous aquifer. The stable isotopes composition of groundwater in the Homes depression are more depleted by -2.5% and -17.0% for δ 18 O and δ 2 H respectively, than the groundwater from Hama elevation, suggested different origin and recharge time between this two groundwater groups. Estimates of their mean subsurface residence times have been constrained on the basis of 14 C D IC. The corrected ages of groundwater are recent and less to 10 thousand years in Hama uplift. However, the corrected age of groundwater in the Homs depression range between 10 to 25 thousand years indicate late Pleistocene recharge period. (author)

  8. A study on uranium metallogenetic prospects of ground water oxidation zone type in the lower cretaceous, north Shanganning basin

    International Nuclear Information System (INIS)

    Wang Jinping

    2000-01-01

    Lower Cretaceous is developed well in the north part of Shanganning basin. The area was widely uplifting vertically after their deposited. Based on the features of lithology, lithophase and Neotectonic forms, two main periods of oxidation-erosion of K2-E1 and N1-present can be distinguished. During these two periods, large scale horizontal oxidation were occurred. It is significant that the ground water oxidation related to the uranium mineralization and has been proved by the field investigation and the data of γ-logging in drill hole for oil. Meanwhile, according to the hydrodynamic features of present Shanganning plateau type artesian basin, it seems that uranium mineralization main related to the ground water oxidation the upper parts of the Lower Cretaceous

  9. Dinosaur footprint assemblage from the Lower Cretaceous Khok Kruat Formation, Khorat Group, northeastern Thailand

    Directory of Open Access Journals (Sweden)

    Shohei Kozu

    2017-11-01

    Full Text Available The Khok Kruat Formation is the upper part of the Khorat Group, which consists of upper Lower Cretaceous non-marine sedimentary rocks in northeastern Thailand. Many dinosaur footprints have been known from the upper Lower Cretaceous (Aptian–Albian Khok Kruat Formation at the Huai Dam Chum (Tha Uthen site, northeastern Thailand. Approximately 600 tracks occur in thin mudstone layer of the northern part of the outcrop at the Huai Dam Chum track site. Two types of footprints, small-sized theropod and crocodylomorph are imprinted with mud cracks and ripple marks on the thin mud layer. Most of footprints are referred to cf. Asianopodus, and are imprinted by small-sized theropoda, probably ornithomimosauria. Theropod tracks are mainly separated into two groups, Group A and Group B. From ichnological viewpoints, the small-sized theropod track assemblage indicates the herd behaviour and its idiosyncratic group composition. In particular, the histogram of size-frequency measurements of Group A shows the anomalous bimodal distribution. We consider that there are two hypotheses; the first one is due to the male-female difference, and the second is a result of the different growing stage.

  10. The first freshwater mosasauroid (Upper Cretaceous, Hungary and a new clade of basal mosasauroids.

    Directory of Open Access Journals (Sweden)

    László Makádi

    Full Text Available Mosasauroids are conventionally conceived of as gigantic, obligatorily aquatic marine lizards (1000s of specimens from marine deposited rocks with a cosmopolitan distribution in the Late Cretaceous (90-65 million years ago [mya] oceans and seas of the world. Here we report on the fossilized remains of numerous individuals (small juveniles to large adults of a new taxon, Pannoniasaurus inexpectatus gen. et sp. nov. from the Csehbánya Formation, Hungary (Santonian, Upper Cretaceous, 85.3-83.5 mya that represent the first known mosasauroid that lived in freshwater environments. Previous to this find, only one specimen of a marine mosasauroid, cf. Plioplatecarpus sp., is known from non-marine rocks in Western Canada. Pannoniasaurus inexpectatus gen. et sp. nov. uniquely possesses a plesiomorphic pelvic anatomy, a non-mosasauroid but pontosaur-like tail osteology, possibly limbs like a terrestrial lizard, and a flattened, crocodile-like skull. Cladistic analysis reconstructs P. inexpectatus in a new clade of mosasauroids: (Pannoniasaurus (Tethysaurus (Yaguarasaurus, Russellosaurus. P. inexpectatus is part of a mixed terrestrial and freshwater faunal assemblage that includes fishes, amphibians turtles, terrestrial lizards, crocodiles, pterosaurs, dinosaurs and birds.

  11. Time scales of critical events around the Cretaceous-Paleogene boundary.

    Science.gov (United States)

    Renne, Paul R; Deino, Alan L; Hilgen, Frederik J; Kuiper, Klaudia F; Mark, Darren F; Mitchell, William S; Morgan, Leah E; Mundil, Roland; Smit, Jan

    2013-02-08

    Mass extinctions manifest in Earth's geologic record were turning points in biotic evolution. We present (40)Ar/(39)Ar data that establish synchrony between the Cretaceous-Paleogene boundary and associated mass extinctions with the Chicxulub bolide impact to within 32,000 years. Perturbation of the atmospheric carbon cycle at the boundary likely lasted less than 5000 years, exhibiting a recovery time scale two to three orders of magnitude shorter than that of the major ocean basins. Low-diversity mammalian fauna in the western Williston Basin persisted for as little as 20,000 years after the impact. The Chicxulub impact likely triggered a state shift of ecosystems already under near-critical stress.

  12. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau

    Science.gov (United States)

    Fan, Jian-Jun; Li, Cai; Wang, Ming; Xie, Chao-Ming

    2018-01-01

    When and how the Bangong-Nujiang Tethyan Ocean closed is a highly controversial subject. In this paper, we present a detailed study and review of the Cretaceous ophiolites, ocean islands, and flysch deposits in the middle and western segments of the Bangong-Nujiang suture zone (BNSZ), and the Cretaceous volcanic rocks, late Mesozoic sediments, and unconformities within the BNSZ and surrounding areas. Our aim was to reconstruct the spatial-temporal patterns of the closing of the middle and western segments of the Bangong-Nujiang Tethyan Ocean. Our conclusion is that the closure of the ocean started during the Late Jurassic and was mainly complete by the end of the Early Cretaceous. The closure of the ocean involved both "longitudinal diachronous closure" from north to south and "transverse diachronous closure" from east to west. The spatial-temporal patterns of the closure process can be summarized as follows: the development of the Bangong-Nujiang Tethyan oceanic lithosphere and its subduction started before the Late Jurassic; after the Late Jurassic, the ocean began to close because of the compressional regime surrounding the BNSZ; along the northern margin of the Bangong-Nujiang Tethyan Ocean, collisions involving the arcs, back-arc basins, and marginal basins of a multi-arc basin system first took place during the Late Jurassic-early Early Cretaceous, resulting in regional uplift and the regional unconformity along the northern margin of the ocean and in the Southern Qiangtang Terrane on the northern side of the ocean. However, the closure of the Bangong-Nujiang Tethyan Ocean cannot be attributed to these arc-arc and arc-continent collisions, because subduction and the development of the Bangong-Nujiang Tethyan oceanic lithosphere continued until the late Early Cretaceous. The gradual closure of the middle and western segments of Bangong-Nujiang Tethyan Ocean was diachronous from east to west, starting in the east in the middle Early Cretaceous, and being mainly

  13. Timing of the deposition of uppermost Cretaceous and Paleocene coal-bearing deposits in the Greater Glendive area, Montana and North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    With the aid of a grant from the National Geographic Society, a cooperative agreement with the State University of New York at Stony Brook, and contract with the U.S. Department of Energy, Late Cretaceous and Paleocene geologic and paleontologic field studies were undertaken in Makoshika, State Park and vicinity, Dawson County, Montana. This region was chosen as a study area because of its potential for yielding new fossil localities and extensive exposures both above and below the K/T boundary, as suggested by previous research by David W. Krause and Joseph H. Hartman. Related field studies were also undertaken in areas adjacent to the Cedar Creek Anticline in North Dakota. This work was part of ongoing research to document change in the composition of mammalian and molluscan faunas during the Late Cretaceous and Paleocene and to relate observed patterns to floral and invertebrate changes in composition. This study focuses on the record of mammals and mollusks in the Makoshika stratigraphic section and places old and new observations into a paleomagnetic and palynomorph framework. Of particular interest is the appearance and diversification of archaic ungulate mammals. Simultaneous dinosaur extinction with ungulate radiation has been invoked in gradual, as opposed to catastrophic, models of faunal change at the K/T boundary. However, supposed Cretaceous localities bearing archaic ungulates and other mammals of {open_quotes}Paleocene aspect{close_quotes} may be the product of faunal reworking. Elsewhere in the Williston Basin (e.g., Garfield and McCone Counties, Montana), the molluscan record of uppermost Cretaceous and Paleocene strata indicates the extinction of all of the highly sculptured unionid bivalves just prior to the onset of coal swamps and subsequent coal formation.

  14. Terebella phosphatica Leriche (Polychaeta) associated with phosphatic crusts and particles (Lower Turonian, Bohemian Cretaceous Basin, Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Žítt, Jiří; Vodrážka, R.

    2013-01-01

    Roč. 41, April (2013), s. 111-126 ISSN 0195-6671 Institutional support: RVO:67985831 Keywords : Terebella phosphatica tubes * Atreta-Bdelloidina encrusting community * Faecal pellet accumulations * phosphogenesis * Lower Turonian * Bohemian Cretaceous Basin Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.390, year: 2013

  15. Characterization of the Cretaceous aquifer structure of the Meskala region of the Essaouira Basin, Morocco

    Science.gov (United States)

    Hanich, L.; Zouhri, L.; Dinger, J.

    2011-01-01

    The aquifer of early Cretaceous age in the Meskala region of the Essaouira Basin is defined by interpretation of geological drilling data of oil and hydrogeological wells, field measurement and analysis of in situ fracture orientations, and the application of a morphostructural method to identify lineaments. These analyzes are used to develop a stratigraphic-structural model of the aquifer delimited by fault zones of two principal orientations: NNE and WNW. These fault zones define fault blocks that range in area from 4 to 150km2. These blocks correspond either to elevated zones (horsts) or depressed zones (grabens). This structural setting with faults blocks of Meskala region is in accordance with the structure of the whole Essaouira Basin. Fault zones disrupt the continuity of the aquifer throughout the study area, create recharge and discharge zones, and create dip to the units from approximately 10?? to near vertical in various orientations. Fracture measurements and morphometric-lineament analyzes help to identify unmapped faults, and represent features important to groundwater hydraulics and water quality within fault blocks. The above geologic features will enable a better understanding of the behaviour and hydro-geo-chemical and hydrodynamics of groundwater in the Meskala aquifer. ?? 2010 Elsevier Ltd.

  16. Variable sources for Cretaceous to recent HIMU and HIMU-like intraplate magmatism in New Zealand

    DEFF Research Database (Denmark)

    van der Meer, Quinten; Waight, Tod Earle; Scott, James

    2017-01-01

    –100Ma) calc-alkaline lamprophyres are compositionally similar to the preceding arc-magmatism (206Pb/204Pb(i)=18.6, 207Pb/204Pb(i)=15.62, 208Pb/204Pb(i)=38.6, 87Sr/86Sr(i)=0.7063–0.7074, εNd(i)=−2.1 −+0.1 and εHf(i)=−0.2 −+2.3) and are interpreted as melts originating from subduction-modified lithosphere....... Alkaline dikes erupted on the inboard Gondwana margin shortly after cessation of subduction (92–84Ma) have heterogeneous isotopic properties: 206Pb/204Pb(i)=18.7 to 19.4, 207Pb/204Pb(i)=15.60 to 15.65, 208Pb/204Pb(i)=38.6 to 39.4, 87Sr/86Sr(i)=0.7031 to 0.7068, εNd(i)=+4.5 to +8.0 and εHf(i)=+5.1 to +8...... from the complex local subduction history. A coeval episode of alkaline magmatism (mainly 98–82Ma) occurred outboard of Gondwana’s former active margin and on the Hikurangi oceanic plateau (accreted to Zealandia in the Early Cretaceous) with compositions closer to true HIMU (206Pb/204Pb(i)≈20.5, 207Pb...

  17. Detailed measured sections, cross sections, and paleogeographic reconstructions of the upper cretaceous and lower tertiary nonmarine interval, Wind River Basin, Wyoming: Chapter 10 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    Science.gov (United States)

    Johnson, Ronald C.

    2007-01-01

    Detailed measured sections and regional stratigraphic cross sections are used to reconstruct facies maps and interpret paleogeographic settings for the interval from the base of Upper Cretaceous Mesaverde Formation to top of lower member of the Paleocene Fort Union Formation in the Wind River Basin, Wyoming. The Mesaverde Formation spans the time during which the Upper Cretaceous seaway retreated eastward out of central Wyoming in Campanian time and the initial stages of the Lewis transgression in earliest Maastrichtian time. This retreat stalled for a considerable period of time during deposition of the lower part of the Mesaverde, creating a thick buildup of marginal marine sandstones and coaly coastal plain deposits across the western part of the basin. The Lewis sea transgressed into the northeast part of Wind River Basin, beginning in early Maastrichtian time during deposition of the Teapot Sandstone Member of the Mesaverde Formation. The Meeteetse Formation, which overlies the Teapot, was deposited in a poorly-drained coastal plain setting southwest of the Lewis seaway. The Lewis seaway, at maximum transgression, covered much of the northeast half of the Wind River Basin area but was clearly deflected around the present site of the Wind River Range, southwest of the basin, providing the first direct evidence of Laramide uplift on that range. Uplift of the Wind River Range continued during deposition of the overlying Maastrichtian Lance Formation. The Granite Mountains south of the basin also became a positive feature during this time. A rapidly subsiding trough during the Maastrichtian time formed near the presentday trough of the Wind River Basin in which more than 6,000 feet of Lance was deposited. The development of this trough appears to have begun before the adjacent Owl Creek Mountains to the north started to rise; however, a muddy facies in the upper part of Lance in the deep subsurface, just to the south, might be interpreted to indicate that the

  18. Role of deep-Earth water cycling in the growth and evolution of continental crust: Constraints from Cretaceous magmatism in southeast China

    Science.gov (United States)

    Li, Zhen; Wang, Xuan-Ce; Wilde, Simon A.; Liu, Liang; Li, Wu-Xian; Yang, Xuemei

    2018-03-01

    The late Mesozoic igneous province in southeast China provides an excellent opportunity to understand the processes that controlled the growth and evolution of Phanerozoic continental crust. Here we report petrological, whole-rock geochemical and isotopic data, and in situ zircon U-Pb-Lu-Hf isotopic data from granitoids and associated gabbros in the Pingtan and Tong'an complexes, southeast China. Through combining the new results with published datasets in southeast China, we show that the Early Cretaceous magmatic rocks are dominated by juvenile Nd-Hf isotopic compositions, whereas the Late Cretaceous ones display less radiogenic Nd-Hf isotope signatures. Furthermore, Nd-Hf isotope systematics are coupled with decreasing abundance of hydrous minerals and an increase of zircon saturation temperatures. Compiled zircon Hf-O data indicates that the 117-116 Ma granites have zircon δ18O values ranging from mantle values (close to 5.3‰) to as low as 3.9‰, but with dominantly positive initial epsilon Hf (εHf(t)) values. Zircon grains from 105 to 98 Ma rocks have δ18O values plotting within the mantle-like range (6.5‰ - 4.5‰), but mainly with negative εHf(t) values. Zircon grains from ca. 87 Ma rocks have positive εHf(t) values (+ 9.8 to + 0.7) and a large range of δ18O values (6.3‰ - 3.5‰). The variations in Hf-Nd-O isotopic compositions are correlated with decreasing abundance of magma water contents, presenting a case that water-fluxed melting generated large-scale granitic magmatism. Deep-Earth water cycling provides an alternative or additional mechanism to supply volatiles (e.g., H2O) for hydrous basaltic underplating, continental crustal melting, and magmatic differentiation.

  19. The Ichnogenus Gastrochaenolites and its Tracemakers from Firmgrounds of the Bohemian Cretaceous Basin (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Mikuláš, Radek; Žítt, Jiří; Nekovařík, Č.

    2003-01-01

    Roč. 10, - (2003), s. 13-21 ISSN 1042-0940 R&D Projects: GA ČR GA205/99/1315 Institutional research plan: CEZ:AV0Z3013912 Keywords : Mollusc traces * Gastrochaenolites * Cretaceous Subject RIV: DB - Geology ; Mineralogy http://rzblx1.uni-regensburg.de/ezeit/detail.phtml?bibid=CASCR& colors =7&lang=en&jour_id=41560

  20. Paleoenvironmental reconstruction and evolution of an Upper Cretaceous lacustrine-fluvial-deltaic sequence in the Parecis Basin, Brazil

    Science.gov (United States)

    Rubert, Rogerio R.; Mizusaki, Ana Maria Pimentel; Martinelli, Agustín G.; Urban, Camile

    2017-12-01

    The Cretaceous in the Brazilian Platform records events of magmatism, tectonism and sedimentation coupled to the Gondwana breakup. Some of these events are registered as sedimentary sequences in interior basins, such as in the Cretaceous sequence of the Alto Xingu Sub-basin, Parecis Basin, Central Brazil. This article proposes the faciologic characterization and paleoenvironmental reconstruction of the Cretaceous sequence of the eastern portion of the Parecis Basin and its relation with some reactivated structures as, for instance, the Serra Formosa Arch. Based on both data from outcrops and core drillings a paleoenvironmental and evolutionary reconstruction of the sequence is herein presented. The base of the studied section is characterized by chemical and low energy clastic sedimentation of Lake Bottom and Shoreline, in a context of fast initial subsidence and low sedimentation rate. As the subsidence process decreased, a deltaic progradation became dominant with deposition in a prodelta environment, followed by a deltaic front and deltaic plain interbedded with fluvial plain, and aeolian deposition completing the sequence. The inferred Coniacian-Santonian age is based on vertebrate (fishes and notosuchians) and ostracod fossils with regional chrono-correlates in the Adamantina (Bauru Group), Capacete (Sanfranciscana Basin), and Bajo de la Carpa (Neuquén Group, in Argentina) formations. The formation of a Coniacian depocenter in the Alto Xingu Sub-basin is associated to the Turonian-Coniacian reactivation event in the Peruvian Orogenic Phase of the Andean Orogeny, with the transference of stresses to interplate setting, reactivating Proterozoic structures of the basement.

  1. ) Geochemistry and Hydrocarbon Potential of Cretaceous Shales in the Chad Basin

    International Nuclear Information System (INIS)

    Alalade, B.; Ogunyemi, A. T.; Abimbola, A.F.; Olugbemiro, R. O.

    2003-01-01

    The Chad Basin is the largest intracratonic basin in Africa and is filled with more than 400m of Cretaceous to Recent sediments. Geochemical and petrographic studies of Cretaceous shales form the Bima, Gongola and Fika Formations were carried out to establish their hydrocarbon potential and thermal maturity. Ditch cuttings of the shales were collected from the Wa di and Karen's exploration wells located in the Nigerian sector of the Chad Basin.The geochemical analysis of the shales indicate that, except for Si02 and K20, all other oxides (Mg O, Fe2O3, AL2O3, CaO) are more abundant in the Fika shale than the Gongola shale. This suggests a more marine condition for the Fika shale compared to the Gongola shale. The Fika and Gongola shales were further classified into Iron shale and shale respectively. Organic carbon contents of the Bima, Gongola and exceed the minimum (0.5wt%) usually required for siliciclastic petroleum source rock. However, the soluble organic matter (SOM) and saturated hydrocarbon (SHC) contents of the shales, which ranges from 108pm to 743ppm and 23ppm to 100ppm respectively, are generally low and are therefore, organically lean. The organic matter of the shales is predominantly terrestrially derived, vitrinite rich, Type III kerogen and are therefore, gas prone. Thermal maturity assessed from SOM/TOC, SHC/TOC ratios and spore color index (SCI) indicate that the Fika shale is immature while the Gongola and Bima shales are within the oil window

  2. Biostratigraphy and carbon isotope stratigraphy of uppermost Cretaceous-lower Cenozoic Muzzle Group in middle Clarence valley, New Zealand

    International Nuclear Information System (INIS)

    Hollis, C.J.; Field, B.D.; Jones, C.M.; Strong, C.P.; Wilson, G.J.; Dickens, G.R.

    2005-01-01

    Muzzle Group strata exposed along southeast-flowing tributaries of the Clarence River valley, Marlborough, record hemipelagic-pelagic sedimentation across a high latitude (c. 55 degrees S), terrigenous sediment-starved, continental margin from latest Cretaceous to middle Eocene times. Studies of dinoflagellates, foraminifera, calcareous nannofossils, and radiolarians have been integrated with bulk carbonate δ 13 C profiles to establish the chronostratigraphy for two stratigraphic sections along Bluff and Muzzle Streams, middle Clarence valley. The two sections comprise similar successions. Uppermost Cretaceous (upper Haumurian) micritic limestone of Mead Hill Formation is overlain unconformably by Teredo Limestone, a c. 0.25 m thick bed of highly glauconitic, calcareous sandstone. This unit, the basal member of Amuri Limestone, is overlain conformably by c. 15 m thick Lower Limestone, micritic limestone that is glauconitic at base and progressively more marl-rich in its upper part. Lower Limestone grades up into Lower Marl, a poorly exposed, 40-70 m thick unit of alternating marl and micritic limestone beds. Biostratigraphy indicates that the base of Amuri Limestone is younger at Bluff Stream (earliest Eocene, early Waipawan) than at Muzzle Stream (late Paleocene, late Teurian). In the condensed (12 m) upper Paleocene-lower Eocene Amuri Limestone sequence at Muzzle Stream, a trend in δ 13 C from high (≥2.4 permille) to low (≤1 permille) values is consistent with global records across three major climate or carbon cycle perturbations: the late Paleocene carbon isotope maximum (PCIM, 59-56 Ma), the initial Eocene thermal maximum (IETM, 55.5 Ma), and the early Eocene climatic optimum (EECO, 53-50 Ma). Probably only the upper PCIM is preserved in the 4 m thick siliceous limestone interval overlying Teredo Limestone. The IETM is well-defined by a 1 permille negative δ 13 C excursion at the base of a 0.8 m thick marl-rich unit (Dee Marl), 5 m above the base of

  3. Depositional system of the Bayangobi formation, lower cretaceous and its control over in-situ leachable sandstone-type uranium deposits in Chagandelesu area, Inner Mongolia

    International Nuclear Information System (INIS)

    Zhang Wanliang

    2002-01-01

    Chagandelesu area is situated in the eastern part of Bayangobi basin, Inner Mongolia. In the Early Cretaceous, a detrital rock series (Bayangobi Formation) with a thickness of about 1000 m was formed within a down-faulted basin under the extensional tectonic regime. The Bayangobi Formation is the prospecting target for interlayer oxidation zone sandstone-type uranium deposits, and is divided into three lithologic members: the lower member-- proluvial (alluvial), subaqueous fan or fan-delta facies sediments; the middle member-shallow lacustrine-semi-deep lacustrine-deep lacustrine facies sediments; the upper member-littoral shallow lacustrine or delta facies sediments. The facies order of Bayangobi Formation represents the evolution process of basin water from the shallow (early period) to the deep (middle period) then again to the shallow (late period) level. The Bayangobi Formation composed of a third sequence order reflects respectively a lowstand system tract (LST), a transgressive system tract (TST) and a highstand system tract (HST). The author also makes an analysis on physical properties of psammites of Bayangobi Formation, and proposes that psammites of delta and littoral shallow lacustrine facies are favourable for the formation of interlayer oxidation zone sandstone-type uranium deposits

  4. Provenance and U-Pb geochronology of the Upper Cretaceous El Chanate Group, northwest Sonora, Mexico, and its tectonic significance

    Science.gov (United States)

    Jacques-Ayala, C.; Barth, A.P.; Wooden, J.L.; Jacobson, C.E.

    2009-01-01

    The Upper Cretaceous El Chanate Group, northwest Sonora, Mexico, is a 2.8km thick clastic sedimentary sequence deposited in a continental basin closely related to volcanic activity. It consists of three formations: the Pozo Duro (oldest), the Anita, and the Escalante (youngest). Petrographic study, conglomerate pebble counts, and U-Pb geochronology of detrital zircons were performed to determine the source and age of this sequence, and to interpret its tectonic setting. In the sandstones of all three formations, the most abundant grains are those of volcanic composition (Q38F22L 40, Q35F19L46, and Q 31F22L47, respectively). The Pozo Duro Formation includes well-rounded quartz-arenite clast conglomerates, whereas conglomerates of the two upper units have clasts predominantly of andesitic and rhyolitic composition. The most likely source for these sediments was the Jurassic volcanic arc exposed in northern Sonora and southern Arizona. Zircons from five sandstone samples define two main age groups, Proterozoic and Mesozoic. The first ranges mostly from 1000 to 1800Ma, which suggests the influence of a cratonic source. This zircon suite is interpreted to be recycled and derived from the same source area as the quartz-rich sandstone clasts in the basal part of the section. Mesozoic zircons range from Triassic to Late Cretaceous, which confirms the proposed Late Cretaceous age for the sequence, and also corroborates Jurassic felsic source rocks. Another possible source was the Alisitos volcanic arc, exposed along the western margin of the Baja California Peninsula. Of regional significance is the great similarity between the El Chanate Group and the McCoy Mountains Formation of southeastern California and southwestern Arizona. Both are Cretaceous, were deposited in continental environments, and have similar zircon-age patterns. Also, both exhibit intense deformation and locally display penetrative foliation. These features strongly suggest that both units underwent

  5. A roller-like bird (Coracii) from the Early Eocene of Denmark.

    Science.gov (United States)

    Bourdon, Estelle; Kristoffersen, Anette V; Bonde, Niels

    2016-09-27

    The fossil record of crown group birds (Neornithes) prior to the Cretaceous-Paleogene boundary is scarce and fragmentary. Early Cenozoic bird fossils are more abundant, but are typically disarticulated and/or flattened. Here we report the oldest roller (Coracii), Septencoracias morsensis gen. et sp. nov. (Primobucconidae), based on a new specimen from the Early Eocene (about 54 million years ago) Fur Formation of Denmark. The new fossil is a nearly complete, three-dimensionally preserved and articulated skeleton. It lies at the lower end of the size range for extant rollers. Salient diagnostic features of Septencoracias relative to other Coracii include the proportionally larger skull and the small, ovoid and dorsally positioned narial openings. Our discovery adds to the evidence that the Coracii had a widespread northern hemisphere distribution in the Eocene. Septencoracias is the oldest substantial record of the Picocoraciae and provides a reliable calibration point for molecular phylogenetic studies.

  6. The Cretaceous-Tertiary boundary interval in Badlands National Park, South Dakota

    Science.gov (United States)

    Stoffer, Philip W.; Messina, Paula; Chamberlain, John A.; Terry, Dennis O.

    2001-01-01

    A marine K-T boundary interval has been identified throughout the Badlands National Park region of South Dakota. Data from marine sediments suggest that deposits from two asteroid impacts (one close, one far away) may be preserved in the Badlands. These impact-generated deposits may represent late Maestrichtian events or possibly the terminal K-T event. Interpretation is supported by paleontological correlation, sequence stratigraphy, magnetostratigraphy, and strontium isotope geochronology. This research is founded on nearly a decade of NPS approved field work in Badlands National Park and a foundation of previously published data and interpretations. The K-T boundary occurs within or near the base of a stratigraphic interval referred to as the "Interior Zone." We interpret the stratigraphy of the Interior Zone as a series of distinct, recognizable lithologic members and units from oldest to youngest, an upper weathered interval of the Elk Butte Member of the Pierre Shale (early late Maestrichtian), a complete (albeit condensed) interval of Fox Hill Formation, a pedogenically altered K-T Boundary "Disturbed Zone," and a generally unresolved sequence of marine to marginal marine units ranging in age from possibly latest Maestrichtian to late Paleocene (the "Yellow Mounds"), that underlie a basal red clay unit (the late Eocene overbank channel facies of the Chamberlain Pass Formation at the base of the White River Group). Within this sequence is a series of unconformities that all display some degree of subaerial weathering and erosion. The dating of marine fossils above and below these unconformities are in line with generally accepted global sea-level changes recognized for the late Campanian through early Eocene. Within the greater framework of regional geology, these findings support that the Western Interior Seaway and subsequent Cannonball Seaway were dependently linked to the changing base-level controlled by sea-level of the global ocean through the Gulf of

  7. Cretaceous alkaline volcanism in south Marzanabad, northern central Alborz, Iran: Geochemistry and petrogenesis

    Directory of Open Access Journals (Sweden)

    Roghieh Doroozi

    2016-11-01

    Full Text Available The alkali-basalt and basaltic trachy-andesites volcanic rocks of south Marzanabad were erupted during Cretaceous in central Alborz, which is regarded as the northern part of the Alpine-Himalayan orogenic belt. Based on petrography and geochemistry, en route fractional crystallization of ascending magma was an important process in the evolution of the volcanic rocks. Geochemical characteristics imply that the south Marzanabad alkaline basaltic magma was originated from the asthenospheric mantle source, whereas the high ratios of (La/YbN and (Dy/YbN are related to the low degree of partial melting from the garnet bearing mantle source. Enrichment pattern of Nb and depletion of Rb, K and Y, are similar to the OIB pattern and intraplate alkaline magmatic rocks. The K/Nb and Zr/Nb ratios of volcanic rocks range from 62 to 588 and from 4.27 to 9 respectively, that are some higher in more evolved samples which may reflect minor crustal contamination. The isotopic ratios of Sr and Nd respectively vary from 0.70370 to 0.704387 and from 0.51266 to 0.51281 that suggest the depleted mantle as a magma source. The development of south Marzanabad volcanic rocks could be related to the presence of extensional phase, upwelling and decompressional melting of asthenospheric mantle in the rift basin which made the alkaline magmatism in Cretaceous, in northern central Alborz of Iran.

  8. Paleomagnetism and the Alpine tectonics of Eurasia IV : Jurassic, Cretaceous and Eocene pole positions from northeastern Turkey

    NARCIS (Netherlands)

    Voo, R. van der

    In April 1965 and May 1966 several groups of samples were collected by the author in northern and eastern Turkey in view of a study of their magnetic properties. The characteristic magnetizations of four groups of Eocene and Cretaceous volcanic rocks and sediments had the following directions of

  9. Basin analysis in the Southern Tethyan margin: Facies sequences, stratal pattern and subsidence history highlight extension-to-inversion processes in the Cretaceous Panormide carbonate platform (NW Sicily)

    Science.gov (United States)

    Basilone, Luca; Sulli, Attilio

    2018-01-01

    In the Mediterranean, the South-Tethys paleomargin experienced polyphased tectonic episodes and paleoenvironmental perturbations during Mesozoic time. The Cretaceous shallow-water carbonate successions of the Panormide platform, outcropping in the northern edge of the Palermo Mountains (NW Sicily), were studied by integrating facies and stratal pattern with backstripping analysis to recognize the tectonics vs. carbonate sedimentation interaction. The features of the Requienid limestone, including geometric configuration, facies sequence, lithological changes and significance of the top-unconformity, highlight that at the end of the Lower Cretaceous the carbonate platform was tectonically dismembered in various rotating fault-blocks. The variable trends of the subsidence curves testify to different responses, both uplift and downthrow, of various platform-blocks impacted by extensional tectonics. Physical stratigraphic and facies analysis of the Rudistid limestone highlight that during the Upper Cretaceous the previously carbonate platform faulted-blocks were subjected to vertical movements in the direction opposite to the displacement produced by the extensional tectonics, indicating a positive tectonic inversion. Comparisons with other sectors of the Southern Tethyan and Adria paleomargins indicate that during the Cretaceous these areas underwent the same extensional and compressional stages occurring in the Panormide carbonate platform, suggesting a regional scale significance, in time and kinematics, for these tectonic events.

  10. Biostratigraphy of the Upper Cretaceous deposits in north of Birjand, (Shushud section

    Directory of Open Access Journals (Sweden)

    farah jalili

    2014-11-01

    Full Text Available Introduction: One of the first works about Cretaceous deposits in eastern part of the Lut Block is done by Stocklin et al. (1972. They reported Orbitolina limestones in Shah Kuh area and Maasterichtian siliciclastic and limestone beds which have overlaid the older deposits with a gap. In geological maps of the east of Iran, Upper Cretaceous deposits have been reported (Berthiaux et al., 1990; Eftekharnejad, 1991; Berberian and Soheili, 1992; Alvai Naini, 1983; Guillou et al., 1981 that they have been mostly referred to shallow and relatively deep facies. Moreover, Gorgich (2002, Gorgich et al. (2009 and Motie (2010 reported Maastrichtian deposits in the east of Iran. The study area is located at Geological Quadrangle Map of Qayen (Berthiaux et al., 1990 and Geological Sheet Map of Roum (Shahidi et al., 2000. The measured section is geographically situated at 33o 05′ north latitude and 59o 02′ east longitude. Aims and Method: This paper aims to study lithostratigraphy, identification of foraminifera assemblage, age determination, and biostratigraphy and biozonation of the measured section. The authors hope this research lead to a better understanding of the regional geology and distribution of Cretaceous foraminifera that might describe the degree of lithostratigraphic and biostratigraphic precision. In this research 160 samples have been collected which 130 samples were cut and thin sections were prepared. The other samples were disaggregated in dilute H2O2 (10% vol. and washed. The washed residues were dried and picked the isolated forams. Thin sections studied under Olympus microscope and the foraminifera were identified and photographed. The isolated forms were photographed with Scanning Electronic Microscope (SEM device model XL30 Philips in Technical Faculty of Tehran University. Discussion and results (Lithostratigraphy and biostratigraphy: From point of view of lithostratigraphy, the lower contact of the succession is faulted and the

  11. Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, western interior

    Science.gov (United States)

    Tschudy, R.H.; Pillmore, C.L.; Orth, C.J.; Gilmore, J.S.; Knight, J.D.

    1984-01-01

    The palynologically defined Cretaceous-Tertiary boundary in the western interior of North America occurs at the top of an iridium-rich clay layer. The boundary is characterized by the abrupt disappearance of certain pollen species, immediately followed by a pronounced, geologically brief change in the ratio of fern spores to angiosperm pollen. The occurrence of these changes at two widely separated sites implies continentwide disruption of the terrestrial ecosystem, probably caused by a major catastrophic event at the end of the period.

  12. A dinosaur community composition dataset for the Late Cretaceous Nemegt Basin of Mongolia

    Directory of Open Access Journals (Sweden)

    G.F. Funston

    2018-02-01

    Full Text Available Dinosaur community composition data for eleven fossil localities in the Late Cretaceous Nemegt Basin of Mongolia are compiled from field observations and records in the literature. Counts were generated from skeletons and represent numbers of individuals preserved in each locality. These data were used in the analyses of Funston et al. [1] “Oviraptorosaur anatomy, diversity, and ecology in the Nemegt Basin” in the Nemegt Ecosystems Special Issue of Palaeogeography, Palaeoclimatology, Palaeoecology, where the results are discussed.

  13. Palaeomagnetism in the Sines massif (SW Iberia) revisited: evidences for Late Cretaceous hydrothermal alteration and associated partial remagnetization

    Science.gov (United States)

    Ribeiro, P.; Silva, P. F.; Moita, P.; Kratinová, Z.; Marques, F. O.; Henry, B.

    2013-10-01

    This study revisits the palaeomagnetism of the Sines massif (˜76 Ma) in the southwestern Iberian Margin (Portugal). The palaeomagnetic analysis was complemented by a comprehensive study of the magnetic mineralogy by means of rock magnetic measurements and petrographic observations. The overall dispersion of palaeomagnetic directions (declination ranging between ˜N0° and ˜N50°) and their migration observed during stepwise demagnetizations have revealed the superposition of remanence components. We interpret this complex palaeomagnetic behaviour as related to the regional hydrothermalism associated with the last stages of Late Cretaceous magmatic activity. This environment favoured mineralogical alteration and a partial chemical remagnetization, giving in most samples a composite magnetization, which has been erroneously interpreted as the primary one in a previous study, then leading to a questionable model for Cretaceous Iberia rotation. Nonetheless, for some samples a single component has been isolated. Interesting rock magnetic properties and microscopic observations point to a well-preserved magnetic mineralogy for these samples, with magnetite clearly of primary origin. The associated ChRM mean direction (D/I = 3.9°/46.5°, α95 = 1.7°, N = 31 samples) then represents the true primary magnetization of the Sines massif. This new palaeomagnetic direction and the corresponding palaeomagnetic pole (long = 332.0°, lat = -79.5°, A95 = 1.7°) agrees with those from the other palaeomagnetic works for the same period and region (e.g. the Sintra and Monchique massifs), yielding a lack of significant rotation of Iberia relative to stable Europe since the uppermost Late Cretaceous (Campanian-Maastrichtian).

  14. An iridium abundance anomaly at the palynological Cretaceous-Tertiary boundary in northern New Mexico

    Science.gov (United States)

    Orth, C.J.; Gilmore, J.S.; Knight, J.D.; Pillmore, C.L.; Tschudy, R.H.; Fassett, J.E.

    1981-01-01

    An iridium abundance anomaly, with concentrations up to 5000 parts per trillion over a background level of 4 to 20 parts per trillion, has been located in sedimentary rocks laid down under freshwater swamp conditions in the Raton Basin of northeastern New Mexico. The anomaly occurs at the base of a coal bed, at the same stratigraphic position at which several well-known species of Cretaceous-age pollen became extinct. Copyright ?? 1981 AAAS.

  15. Mesozoic strike-slip movement of the Dunhua-Mishan Fault Zone in NE China: A response to oceanic plate subduction

    Science.gov (United States)

    Liu, Cheng; Zhu, Guang; Zhang, Shuai; Gu, Chengchuan; Li, Yunjian; Su, Nan; Xiao, Shiye

    2018-01-01

    The NE-striking Dunhua-Mishan Fault Zone (DMFZ) is one of two branches of the continental-scale sinistral Tan-Lu Fault Zone in NE China. The field data presented here indicate that the ca. 1000 km long DMFZ records two phases of sinistral faulting. The structures produced by these two phases of faulting include NE-SW-striking ductile shear belts and brittle faults, respectively. Mylonite-hosted microstructures and quartz c-axis fabrics suggest deformation temperatures of 450 °C-500 °C for the ductile shear belts. Combining new zircon U-Pb dates for 14 igneous rock samples analyzed during this study with the geology of this region indicates these shear belts formed during the earliest Early Cretaceous. This phase of sinistral displacement represents the initial formation of the DMFZ in response to the northward propagation of the Tan-Lu Fault Zone into NE China. A phase of Early Cretaceous rifting was followed by a second phase of sinistral faulting at 102-96 Ma, as evidenced by our new U-Pb ages for associated igneous rocks. Combining our new data with the results of previous research indicates that the DFMZ records a four-stage Cretaceous evolutionary history, where initial sinistral faulting at the beginning of the Early Cretaceous gave way to rifting during the rest of the Early Cretaceous. This was followed by a second phase of sinistral faulting at the beginning of the Late Cretaceous and a second phase of local rifting during the rest of the Late Cretaceous. The Cretaceous evolution of the DMFZ records the synchronous tectonic evolution of the NE China continent bordering the Pacific Ocean. Two phases of regional N-S compression generated the two phases of sinistral faulting within the DMFZ, whereas two-stage regional extension generated the two phases of rifting. The two compressive events were the result of the rapid low-angle subduction of the Izanagi and Pacific plates, whereas the two-stage extension was caused by the roll-back of these respective

  16. Giant calcite concretions in aeolian dune sandstones; sedimentological and architectural controls on diagenetic heterogeneity, mid-Cretaceous Iberian Desert System, Spain

    NARCIS (Netherlands)

    Arribas, M.E.; Rodríguez-López, J.P.; Meléndez, N.; Soria, A.R.; de Boer, P.L.

    2012-01-01

    Aeoliandunesandstones of the Iberian erg system (Cretaceous, Spain) host giantcalciteconcretions that constitute heterogeneities of diagenetic origin within a potential aeolian reservoir. The giantcalciteconcretions developed in large-scale aeoliandune foresets, at the transition between aeoliandune

  17. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    Science.gov (United States)

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  18. Studies on the induced dwarfs and ear mutations in finger millet

    International Nuclear Information System (INIS)

    Nayar, K.M.D.; Hanumanthappa, H.S.; Seetharam, A.

    1975-01-01

    Seeds of five varieties of ragi viz., Purna, Annapurna, Cauvery, H 22 and Hamsa were treated with gamma rays (20 kr and 30 kr), Fast Neutrons (0.8 kr and 1.2 kr) and Ethyl methane sulphonate (0.2% and 0.3% for 16 hrs.) with a view to isolate agronomically desirable dwarf mutants in Purna, Annapurna, Cauvery and H 22 and desirable earhead mutants in Hamsa. In M 1 generation, biological effects of these mutagens on germination, seedling growth, pollen and seed fertility were studied. In the M 2 generation, a total of 60 dwarfs were isolated from all the treatments. Out of these, after subsequent testing, two dwarfs in Purna, three in Annapurna, two in Cauvery and one in H 22 were found to be promising. Some of the induced dwarfs were having better harvest index. The dwarf mutant of H 22 had a height of 30 cm., in contrast to 100 cm., in original parent. Although this mutant has a very low yield potential, it can form an excellent breeding material in hybridization programmes. In Hamsa, mutants for earhead shape and size were isolated with a gradation from extreme fist type to completely open and lax ears. The yield potential of the earhead mutants was either significantly lower or on par with the original Hamsa. (author)

  19. Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong-Nujiang Tethys ocean

    Science.gov (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Santosh, M.; Qin, Jiang-Feng; Zhao, Shao-Wei

    2017-08-01

    that mantle-derived magmas played an important role in the genesis of Early Cretaceous intrusions from Tengchong to Lhasa Blocks, although crustal melting is the dominant contributor.

  20. Cretaceous extinctions - Evidence for wildfires and search for meteoritic material

    Science.gov (United States)

    Wolbach, W. S.; Lewis, R. S.; Anders, E.

    1985-01-01

    The results of analyses of the contents of deposits in the Cretaceous-Ternary (K-T) transition at three sites worldwide are discussed. The study was undertaken to examine the composition of the object which may have struck the earth, causing widespread biotic extinction. The data indicate that most of the parent body was destroyed on impact, a condition which would also hold true for comets, suggesting that comets were not a source of prebiotic life. A four-orders-of-magnitude excess of carbon in the K-T layer is considered in terms of its source, which is suspected to be deposits from wildfires. The consequent extinctions of species are regarded as possibly making the current nuclear winter scenarios too optimistic.