WorldWideScience

Sample records for early brain tropism

  1. Affinity (tropism) of caprine arthritis encephalitis virus for brain cells

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... Full Length Research Paper. Affinity (tropism) of caprine arthritis encephalitis virus for brain cells. Adebayo, I. A.1*, Awoniyi, T. A. M. 1 and Olaleye, O. D.2. 1Department of Animal Production and Health, Animal Parasitology and Microbiology Research Unit, Federal University of Technology, P M B 704, ...

  2. Viral tropism and pathology associated with viral hemorrhagic septicemia in larval and juvenile Pacific herring

    Science.gov (United States)

    Lovy, Jan; Lewis, N.L.; Hershberger, P.K.; Bennett, W.; Meyers, T.R.; Garver, K.A.

    2012-01-01

    Viral hemorrhagic septicemia virus (VHSV) genotype IVa causes mass mortality in wild Pacific herring, a species of economic value, in the Northeast Pacific Ocean. Young of the year herring are particularly susceptible and can be carriers of the virus. To understand its pathogenesis, tissue and cellular tropisms of VHSV in larval and juvenile Pacific herring were investigated with immunohistochemistry, transmission electron microscopy, and viral tissue titer. In larval herring, early viral tropism for epithelial tissues (6d post-exposure) was indicated by foci of epidermal thickening that contained heavy concentrations of virus. This was followed by a cellular tropism for fibroblasts within the fin bases and the dermis, but expanded to cells of the kidney, liver, pancreas, gastrointestinal tract and meninges in the brain. Among wild juvenile herring that underwent a VHS epizootic in the laboratory, the disease was characterized by acute and chronic phases of death. Fish that died during the acute phase had systemic infections in tissues including the submucosa of the gastrointestinal tract, spleen, kidney, liver, and meninges. The disease then transitioned into a chronic phase that was characterized by the appearance of neurological signs including erratic and corkscrew swimming and darkening of the dorsal skin. During the chronic phase viral persistence occurred in nervous tissues including meninges and brain parenchymal cells and in one case in peripheral nerves, while virus was mostly cleared from the other tissues. The results demonstrate the varying VHSV tropisms dependent on the timing of infection and the importance of neural tissues for the persistence and perpetuation of chronic infections in Pacific herring.

  3. Dual-mixed HIV-1 coreceptor tropism and HIV-associated neurocognitive deficits.

    Science.gov (United States)

    Morris, Sheldon R; Woods, Steven Paul; Deutsch, Reena; Little, Susan J; Wagner, Gabriel; Morgan, Erin E; Heaton, Robert K; Letendre, Scott L; Grant, Igor; Smith, Davey M

    2013-10-01

    HIV coreceptor usage of CXCR4 (X4) is associated with decreased CD4+ T-cell counts and accelerated disease progression, but the role of X4 tropism in HIV-associated neurocognitive disorders (HAND) has not previously been described. This longitudinal study evaluated data on 197 visits from 72 recently HIV-infected persons who had undergone up to four sequential neurocognitive assessments over a median of 160 days (IQR, 138–192). Phenotypic tropism testing (Trofile ES, Monogram, Biosciences) was performed on stored blood samples. Multivariable mixed model repeated measures regression was used to determine the association between HAND and dual-mixed (DM) viral tropism, estimated duration of infection (EDI), HIV RNA, CD4 count, and problematic methamphetamine use. Six subjects (8.3 %) had DM at their first neurocognitive assessment and four converted to DM in subsequent sampling (for total of 10 DM) at a median EDI of 10.1 months (IQR, 7.2–12.2). There were 44 (61.1 %) subjects who demonstrated HAND on at least one study visit. HAND was associated with DM tropism (odds ratio, 4.4; 95 % CI, 0.9–20.5) and shorter EDI (odds ratio 1.1 per month earlier; 95 % CI, 1.0–1.2). This study found that recency of HIV-1 infection and the development of DM tropism may be associated with HAND in the relatively early stage of infection. Together, these data suggest that viral interaction with cellular receptors may play an important role in the early manifestation of HAND.

  4. The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors

    Directory of Open Access Journals (Sweden)

    Martín-García Julio

    2008-10-01

    Full Text Available Abstract Background HIV-1 infects macrophages and microglia in the brain and can cause neurological disorders in infected patients. We and others have shown that brain-derived envelope glycoproteins (Env have lower CD4 dependence and higher avidity for CD4 than those from peripheral isolates, and we have also observed increased fusogenicity and reduced sensitivity to the fusion inhibitor T-1249. Due to the genetic differences between brain and spleen env from one individual throughout gp120 and in gp41's heptad repeat 2 (HR2, we investigated the viral determinants for the phenotypic differences by performing functional studies with chimeric and mutant Env. Results Chimeric Env showed that the V1/V2-C2-V3 region in brain's gp120 determines the low CD4 dependence and high avidity for CD4, as well as macrophage tropism and reduced sensitivity to the small molecule BMS-378806. Changes in brain gp41's HR2 region did not contribute to the increased fusogenicity or to the reduced sensitivity to T-1249, since a T-1249-based peptide containing residues found in brain's but not in spleen's HR2 had similar potency than T-1249 and interacted similarly with an immobilized heptad repeat 1-derived peptide in surface plasmon resonance analysis. However, the increased fusogenicity and reduced T-1249 sensitivity of brain and certain chimeric Env mostly correlated with the low CD4 dependence and high avidity for CD4 determined by brain's V1-V3 region. Remarkably, most but not all of these low CD4-dependent, macrophage tropic envelopes glycoproteins also had increased sensitivity to the novel allosteric entry inhibitor HNG-105. The gp120's C2 region asparagine 283 (N283 has been previously associated with macrophage tropism, brain infection, lower CD4 dependence and higher CD4 affinity. Therefore, we introduced the N283T mutation into an env clone from a brain-derived isolate and into a brain tissue-derived env clone, and the T283N change into a spleen-derived env

  5. Lumbar Facet Tropism: A Comprehensive Review.

    Science.gov (United States)

    Alonso, Fernando; Kirkpatrick, Christina M; Jeong, William; Fisahn, Christian; Usman, Sameera; Rustagi, Tarush; Loukas, Marios; Chapman, Jens R; Oskouian, Rod J; Tubbs, R Shane

    2017-06-01

    Scattered reports exist in the medical literature regarding facet tropism. However, this finding has had mixed conclusions regarding its origin and impact on the normal spine. We performed a literature review of the anatomy, embryology, biomechanics, and pathology related to lumbar facet tropism. Facet tropism is most commonly found at L4-L5 vertebral segments and there is some evidence that this condition may lead to facet degenerative spondylolisthesis, intervertebral disc disease, and other degenerative conditions. Long-term analyses of patients are necessary to elucidate relationships between associated findings and facet tropism. In addition, a universally agreed definition that is more precise should be developed for future investigative studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Morbillivirus receptors and tropism: multiple pathways for infection

    Directory of Open Access Journals (Sweden)

    Hiroki eSato

    2012-03-01

    Full Text Available Morbilliviruses, which include measles virus (MeV, canine distemper virus, and rinderpest virus, are among the most important pathogens in their respective hosts and cause severe syndromes. Morbilliviruses are enveloped viruses with 2 envelope proteins, one of which is hemagglutinin (H protein, which plays a role in binding to cellular receptors. During morbillivirus infection, the virus initially targets lymphoid cells and replicates efficiently in the lymph nodes. The principal cellular receptor for morbillivirus is signaling lymphocyte activation molecule (SLAM, also called CD150, which is exclusively expressed on immune cells. This feature reflects the strong lymphoid cell tropism and viral spread in the infected body. Morbillivirus infection, however, affects various tissues in the body, including the lung, kidney, gastrointestinal tract, vascular endothelium, and brain. Thus, other receptors for morbilliviruses in addition to SLAM might exist. Recently, nectin-4 has been identified as a novel epithelial cell receptor for MeV. The expression of nectin-4 is localized to polarized epithelial cells, and this localization supports the notion of cell tropism since MeV also grows well in the epithelial cells of the respiratory tract. Although 2 major receptors for lymphoid and epithelial cells in natural infection have been identified, morbillivirus can still infect many other types of cells with low infectivity, suggesting the existence of inefficient but ubiquitously expressed receptors. We have identified other molecules that are implicated in morbillivirus infection of SLAM-negative cells by alternative mechanisms. These findings indicate that morbillivirus utilizes multiple pathways for establishment of infection. These studies will advance our understanding of morbillivirus tropism and pathogenesis.

  7. Variation in HIV-1 R5 macrophage-tropism correlates with sensitivity to reagents that block envelope: CD4 interactions but not with sensitivity to other entry inhibitors

    Directory of Open Access Journals (Sweden)

    Simmonds Peter

    2008-01-01

    Full Text Available Abstract Background HIV-1 R5 viruses cause most of the AIDS cases worldwide and are preferentially transmitted compared to CXCR4-using viruses. Furthermore, R5 viruses vary extensively in capacity to infect macrophages and highly macrophage-tropic variants are frequently identified in the brains of patients with dementia. Here, we investigated the sensitivity of R5 envelopes to a range of inhibitors and antibodies that block HIV entry. We studied a large panel of R5 envelopes, derived by PCR amplification without culture from brain, lymph node, blood and semen. These R5 envelopes conferred a wide range of macrophage tropism and included highly macrophage-tropic variants from brain and non-macrophage-tropic variants from lymph node. Results R5 macrophage-tropism correlated with sensitivity to inhibition by reagents that inhibited gp120:CD4 interactions. Thus, increasing macrophage-tropism was associated with increased sensitivity to soluble CD4 and to IgG-CD4 (PRO 542, but with increased resistance to the anti-CD4 monoclonal antibody (mab, Q4120. These observations were highly significant and are consistent with an increased affinity of envelope for CD4 for macrophage-tropic envelopes. No overall correlations were noted between R5 macrophage-tropism and sensitivity to CCR5 antagonists or to gp41 specific reagents. Intriguingly, there was a relationship between increasing macrophage-tropism and increased sensitivity to the CD4 binding site mab, b12, but decreased sensitivity to 2G12, a mab that binds a glycan complex on gp120. Conclusion Variation in R5 macrophage-tropism is caused by envelope variation that predominantly influences sensitivity to reagents that block gp120:CD4 interactions. Such variation has important implications for therapy using viral entry inhibitors and for the design of envelope antigens for vaccines.

  8. Correlation between facet tropism and lumbar degenerative disease: a retrospective analysis.

    Science.gov (United States)

    Gao, Tian; Lai, Qi; Zhou, Song; Liu, Xuqiang; Liu, Yuan; Zhan, Ping; Yu, Xiaolong; Xiao, Jun; Dai, Min; Zhang, Bin

    2017-11-22

    The aim of this study was to investigate the correlation between facet tropism and spinal degenerative diseases, such as degenerative lumbar spondylolisthesis, degenerative lumbar scoliosis, and lumbar disc herniation. This study retrospectively analysed clinical data from the Department of Orthopaedics at The First Affiliated Hospital of Nanchang University. Ninety-two patients were diagnosed with lumbar spondylolisthesis, 64 patients with degenerative scoliosis, and 86 patients with lumbar disc herniation between 1 October 2014 and 1 October 2016. All patients were diagnosed using 3.0 T magnetic resonance imaging and underwent conservative or operative treatment. Facet tropism was defined as greater than a ten degree between the facet joint angles on both sides. For L3-L4 degenerative lumbar spondylolisthesis, one out of six cases had tropism compared to seven out of the 86 controls (p = 0.474). At the L4-L5 level, 17/50 cases had tropism compared to 4/42 cases in the control group (p = 0.013). At the L5-S1 level, 18/36 cases had tropism compared to 7/56 controls (p = 0.000). For degenerative lumbar scoliosis at the L1-L5 level, 83/256 cases had tropism as compared to 36/256 controls (p = 0.000). For L3-L4 lumbar disc herniation two out of eight cases had tropism compared to 14/78 controls (p = 0.625). At the L4-L5 level, 19/44 cases had tropism compared to four out of 42 controls (p = 0.001). At the L5-S1 level, 24/34 cases had tropism compared to 10/52 controls (p = 0.000). At the L4-5 and L5-S1 levels, facet tropism is associated with degenerative spondylolisthesis. In the degenerative lumbar scoliosis group, the number of case with facet tropism was significantly higher than that of the control group. Facet tropism was associated with lumbar disc herniation at the L4-5 and L5-S1 levels. Overall, in these three lumbar degenerative diseases, facet tropism is a common phenomenon.

  9. Comparative Analysis Between Flaviviruses Reveals Specific Neural Stem Cell Tropism for Zika Virus in the Mouse Developing Neocortex

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Brault

    2016-08-01

    Full Text Available The recent Zika outbreak in South America and French Polynesia was associated with an epidemic of microcephaly, a disease characterized by a reduced size of the cerebral cortex. Other members of the Flavivirus genus, including West Nile virus (WNV, can cause encephalitis but were not demonstrated to cause microcephaly. It remains unclear whether Zika virus (ZIKV and other flaviviruses may infect different cell populations in the developing neocortex and lead to distinct developmental defects. Here, we describe an assay to infect mouse E15 embryonic brain slices with ZIKV, WNV and dengue virus serotype 4 (DENV-4. We show that this tissue is able to support viral replication of ZIKV and WNV, but not DENV-4. Cell fate analysis reveals a remarkable tropism of ZIKV infection for neural stem cells. Closely related WNV displays a very different tropism of infection, with a bias towards neurons. We further show that ZIKV infection, but not WNV infection, impairs cell cycle progression of neural stem cells. Both viruses inhibited apoptosis at early stages of infection. This work establishes a powerful comparative approach to identify ZIKV-specific alterations in the developing neocortex and reveals specific preferential infection of neural stem cells by ZIKV.

  10. Facet orientation and tropism: associations with spondylolysis.

    Science.gov (United States)

    Kalichman, Leonid; Guermazi, Ali; Li, Ling; Hunter, David J; Suri, Pradeep

    2010-04-01

    Cross-sectional study. To evaluate the association between lumbar spine facet joint orientation, facet joint tropism, and spondylolysis identified by multidetector computed tomography (CT) in the community-based Framingham Heart Study. The association between lumbar spondylolysis and facet orientation and tropism remains unclear. This study was an ancillary project to the Framingham Heart Study. Three thousand five hundred twenty-nine participants of the Framingham Heart Study aged 40 to 80 years underwent multidetector CT imaging to assess aortic calcification. One hundred ninety-one subjects were included in this ancillary study. Facet joint features and spondylolysis were evaluated on CT scans. The final analyzed sample included 104 men with mean age 51.90+/-11.25 years and 84 women with mean age 53.61+/-10.20 years. The association between spondylolysis and facet orientation and tropism was examined using univariate and multivariate analyses. Spondylolysis was prevalent in 11.5% of the total population. chi2 test demonstrated a significant sex difference in prevalence of spondylolysis (P=0.0154), with almost 3 times higher prevalence among men. There was no statistically significant difference in facet orientation and continuous facet tropism between individuals with and without spondylolysis at the L5 level (P=0.49 to 0.91). After adjustment for age, sex, and body mass index, no significant association between the occurrence of spondylolysis and facet orientation and tropism was found. In the studied sample the prevalence of facet joint osteoarthritis was significantly higher in individuals with spondylolysis than in those without spondylolysis at both sides of L4-L5 spinal level (P=0.044 at the right side and P=0.003 at the left side) and at left side of L5-S1 level (P=0.038). We did not find an association between facet orientation, facet tropism, and spondylolysis. One of the possible explanations for this is that the high prevalence of facet joint

  11. Tropism and pathogenicity of rickettsiae

    Directory of Open Access Journals (Sweden)

    Tsuneo eUchiyama

    2012-06-01

    Full Text Available Rickettsiae are obligate intracellular parasitic bacteria that cause febrile exanthematous illnesses such as Rocky Mountain spotted fever, Mediterranean spotted fever, epidemic and murine typhus, etc. Although the vector ranges of each Rickettsia species are rather restricted; i.e., ticks belonging to Arachnida and lice and fleas belonging to Insecta usually act as vectors for spotted fever group and typhus group rickettsiae, respectively, it would be interesting to elucidate the mechanisms controlling the vector tropism of rickettsiae. This review discusses the factors determining the vector tropism of rickettsiae. In brief, the vector tropism of rickettsiae species is basically consistent with their tropism towards cultured tick and insect cells. The mechanisms responsible for rickettsiae pathogenicity are also described. Recently, genomic analyses of rickettsiae have revealed that they possess several genes that are homologous to those affecting the pathogenicity of other bacteria. Analyses comparing the genomes of pathogenic and nonpathogenic strains of rickettsiae have detected many factors that are related to rickettsial pathogenicity. It is also known that a reduction in the rickettsial genome has occurred during the course of its evolution. Interestingly, Rickettsia species with small genomes, such as Rickettsia prowazekii, are more pathogenic to humans than those with larger genomes. This review also examines the growth kinetics of pathogenic and nonpathogenic species of spotted fever group rickettsiae in mammalian cells. The growth of nonpathogenic species is restricted in these cells, which is mediated, at least in part, by autophagy. The superinfection of nonpathogenic rickettsiae-infected cells with pathogenic rickettsiae results in an elevated yield of the nonpathogenic rickettsiae and the growth of the pathogenic rickettsiae. Autophagy is restricted in these cells. These results are discussed in this review.

  12. Correlating HIV tropism with immunological response under combination antiretroviral therapy.

    Science.gov (United States)

    Bader, J; Schöni-Affolter, F; Böni, J; Gorgievski-Hrisoho, M; Martinetti, G; Battegay, M; Klimkait, T

    2016-09-01

    A significant percentage of patients infected with HIV-1 experience only suboptimal CD4 cell recovery while treated with combination therapy (cART). It is still unclear whether viral properties such as cell tropism play a major role in this incomplete immune response. This study therefore intended to follow the tropism evolution of the HIV-1 envelope during periods of suppressive cART. Viruses from two distinct patient groups, one with good and another one with poor CD4 recovery after 5 years of suppressive cART, were genotypically analysed for viral tropism at baseline and at the end of the study period. Patients with CCR5-tropic CC-motif chemokine receptor 5 viruses at baseline tended to maintain this tropism to the study end. Patients who had a CXCR4-tropic CXC-motif chemokine receptor 4 virus at baseline were overrepresented in the poor CD4 recovery group. Overall, however, the majority of patients presented with CCR5-tropic viruses at follow-up. Our data lend support to the hypothesis that tropism determination can be used as a parameter for disease progression even if analysed long before the establishment of a poorer immune response. Moreover, the lasting predominating CCR5-tropism during periods of full viral control suggests the involvement of cellular mechanisms that preferentially reduce CXCR4-tropic viruses during cART. © 2016 British HIV Association.

  13. Establishment of monoclonal HCC cell lines with organ site-specific tropisms

    International Nuclear Information System (INIS)

    Wan, Jinliang; Wen, Duo; Dong, Lili; Tang, Jun; Liu, Dongli; Liu, Yang; Tao, Zhonghua; Gao, Dongmei; Sun, Huichuan; Cao, Ya; Fan, Jia; Wu, Weizhong

    2015-01-01

    Organ site-specific metastasis is an ominous feature for most poor-prognostic hepatocellular carcinoma (HCC) patients. Cancer cell lines and animal models are indispensable for investigating the molecular mechanisms of organ specific tropism. However, till now, little is known about the drivers in HCC metastatic tropism, and also no effective way has been developed to block the process of tropistic metastasis. In this study, we established several monoclonal HCC cell lines from HCCLM3-RFP together with their xenograft models, and then analyzed their metastatic potentials and tropisms using in-vitro and in-vivo assays, and finally elucidated the driving forces of HCC tropistic metastases. Six monoclonal cell lines with different organ site-specific tropism were established successfully. SPARC, VCAM1 and ANGPTL4 were found positively correlated with the potentials of lung metastasis, while ITGA1 had a positive relation to lymph node metastasis of enterocoelia. By our powerful platforms, HCC metastatic tropisms in clinic could be easily mimicked and recapitulated for exploring the bilateral interactions between tumor and its microenvironment, elucidating the drivers of HCC metastatic tropisms, and testing anti-cancer effects of newly developed agent in pre-clinical stage. The online version of this article (doi:10.1186/s12885-015-1692-0) contains supplementary material, which is available to authorized users

  14. Nocardia Farcinica brain abscess in an immunocompetent old patient: A case report and review of literature

    Directory of Open Access Journals (Sweden)

    Dinesh Mohan Chaudhari

    2017-01-01

    Full Text Available By definition, a brain abscess is an intraparenchymal collection of pus. Nocardia shows to have a special tropism for the neural tissue. Solitary abscess represents the most common manifestation in the central nervous system, accounting for 1%–2% of all cerebral abscesses. In this report, we present a case of primary multiple brain abscesses due to Nocardia farcinica in an immune competent patient. Early diagnosis and surgical intervention is significant for the patient.

  15. Ocular Tropism of Respiratory Viruses

    Science.gov (United States)

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  16. Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas.

    Directory of Open Access Journals (Sweden)

    Courtney Pendleton

    Full Text Available INTRODUCTION: Glioblastoma is the most common primary malignant brain tumor, and is refractory to surgical resection, radiation, and chemotherapy. Human mesenchymal stem cells (hMSC may be harvested from bone marrow (BMSC and adipose (AMSC tissue. These cells are a promising avenue of investigation for the delivery of adjuvant therapies. Despite extensive research into putative mechanisms for the tumor tropism of MSCs, there remains no direct comparison of the efficacy and specificity of AMSC and BMSC tropism towards glioma. METHODS: Under an IRB-approved protocol, intraoperative human Adipose MSCs (hAMSCs were established and characterized for cell surface markers of mesenchymal stem cell origin in conjunction with the potential for tri-lineage differentiation (adipogenic, chondrogenic, and osteogenic. Validated experimental hAMSCs were compared to commercially derived hBMSCs (Lonza and hAMSCs (Invitrogen for growth responsiveness and glioma tropism in response to glioma conditioned media obtained from primary glioma neurosphere cultures. RESULTS: Commercial and primary culture AMSCs and commercial BMSCs demonstrated no statistically significant difference in their migration towards glioma conditioned media in vitro. There was statistically significant difference in the proliferation rate of both commercial AMSCs and BMSCs as compared to primary culture AMSCs, suggesting primary cultures have a slower growth rate than commercially available cell lines. CONCLUSIONS: Adipose- and bone marrow-derived mesenchymal stem cells have similar in vitro glioma tropism. Given the well-documented ability to harvest larger numbers of AMSCs under local anesthesia, adipose tissue may provide a more efficient source of MSCs for research and clinical applications, while minimizing patient morbidity during cell harvesting.

  17. Relationship between facet tropism and facet joint degeneration in the sub-axial cervical spine

    Directory of Open Access Journals (Sweden)

    Xin Rong

    2017-02-01

    Full Text Available Abstract Background Facet tropism is the angular asymmetry between the left and right facet joint orientation. Although debatable, facet tropism was suggested to be associated with disc degeneration, facet degeneration and degenerative spondylolisthesis in the lumbar spine. The purpose of this study was to explore the relationship between facet tropism and facet degeneration in the sub-axial cervical spine. Methods A total of 200 patients with cervical spondylosis were retrospectively analyzed. Facet degeneration was categorized into 4 grade: grade I, normal; grade II, degenerative changes including joint space narrowing, cyst formation, small osteophytes (3 mm without fusion of the joint; grade IV, bony fusion of the facet joints. Facet orientations and facet tropisms with respect to the transverse, sagittal and coronal plane were calculated from the reconstructed cervical spine, which was based on the axial CT scan images. The paired facet joints were then categorized into three types: symmetric, moderated tropism and severe tropism. Univariate and multivariate analysis were performed to evaluate the relationship between any demographic and anatomical factor and facet degeneration. Results The mean age of enrolled patients was 46.23 years old (ranging from 30 to 64 years old. There were 114 males and 86 females. The degrees of facet degeneration varied according to cervical levels and ages. Degenerated facet joints were most common at C2-C3 level and more common in patients above 50 years old. The facet orientations were also different from level to level. By univariate analysis, genders, ages, cervical levels, facet orientations and facet tropisms were all significantly different between the normal facets and degenerated facets. However, results from multivariate logistic regression suggested only age and facet tropism with respect to the sagittal plane were related to facet degeneration. Conclusion Facet degeneration were more common at

  18. Facet joint orientation and tropism in lumbar degenerative disc disease and spondylolisthesis.

    Science.gov (United States)

    Pichaisak, Witchate; Chotiyarnwong, Chayaporn; Chotiyarnwong, Pojchong

    2015-04-01

    Although degenerative disc disease (DDD) and degenerative spondylolisthesis (DS) are two common causes of back pain in elderly, the association between the lumbarfacet joint angle and tropism in these conditions are still unclear. To evaluate the difference in facet joint angles between normal population and lumbar degenerative disc disease and spondylolisthesis patient. The angle of lumbar facet joints were retrospectively measured with magnetic resonance imaging (MRI) to determine whether there was a difference between degenerative diseases. MRI of patients with DDD, DS, and control group at facet joint between L3-4, L4-5 and L5-S1 level were measured in axial view (60 subjects in each group). There was no difference infacetjoint angle in DDD (44.1 ± 11.9) and control (45.6 ± 8.9), but differed in DS (40.1 ± 10. 7) and control group (p = 0.010) at L4-5 level. Facet tropism showed difference between degenerative groups and control group at L4-5 level. DS group showed difference in facet joints angle and tropism when compared with control population, while DDD showed difference only in facet tropism. In addition, longitudinal studies are needed to understand the clinical significant between facet joint angle and tropism in spinal degenerative diseases.

  19. Derivation of a JC virus-resistant human glial cell line: implications for the identification of host cell factors that determine viral tropism

    International Nuclear Information System (INIS)

    Gee, Gretchen V.; Manley, Kate; Atwood, Walter J.

    2003-01-01

    JC virus (JCV) is a common human polyomavirus that infects 70-80% of the population worldwide. In immunosuppressed individuals, JCV infects oligodendrocytes and causes a fatal demyelinating disease known as progressive multifocal leukoencephalopathy (PML). The tropism of JCV is restricted to oligodendrocytes, astrocytes, and B lymphocytes. Several mechanisms may contribute to the restricted tropism of JCV, including the presence or absence of cell-type-specific transcription and replication factors and the presence or absence of cell-type-specific receptors. We have established a system to investigate cellular factors that influence viral tropism by selecting JCV-resistant cells from a susceptible glial cell line (SVG-A). SVG-A cells were subjected to several rounds of viral infection using JC virus (M1/SVEΔ). A population of resistant cells emerged (SVGR2) that were refractory to infection with the Mad-4 strain of JCV, the hybrid virus M1/SVEΔ, as well as to the related polyomavirus SV40. SVGR2 cells were as susceptible as the SVG-A cells to infection with an unrelated amphotropic retrovirus. The stage at which these cells are resistant to infection was investigated and the block appears to be at early viral gene transcription. This system should ultimately allow us to identify glial specific factors that influence the tropism of JCV

  20. Phenotypic assays for the determination of coreceptor tropism in HIV-1 infected individuals.

    Science.gov (United States)

    Braun, Patrick; Wiesmann, Frank

    2007-10-15

    Coreceptor tropism antagonists represent a new class of antiretrovirals for the treatment of HIV infection. The knowledge of patients' viral population tropism before the initiation of and during therapy with such compounds may be critical in order to optimize treatment strategies. In this review we focus on the characteristics of phenotypic assays for the determination of HIV coreceptor tropism. Beside traditional phenotypic assays, there are at least four phenotypic recombinant virus assays (RVA) available to predict coreceptor usage: Trofile (Monogram Biosciences), Phenoscript (VIRalliance), XtrackC/ PhenX-R (inPheno) and a platform developed by Virco. Trofile and Phenoscript represent single-cycle assays and are able to determine coreceptor tropism without cocultivation of HIV particles in cell culture. Trofile offers the most clinically validated data with currently about 25,000 analysed samples. The detection of minority variants is a limitation of all population-based assays and varies between 1 and 10%, depending on the assay used. XtrackC/PhenX-R and Virco's platform combine genotypic and phenotypic assays to analyze a patient's sample for tropism. Although all assays are validated for the assessment of coreceptor tropism in different HIV-1 subtypes, there is still a need for further evaluations. Furthermore, the establishment of cut-offs for X4 minority species will be difficult, and is affected by many factors like patient sample quality, the input volume, viral load, the detection limits and PCR variations. Overall, RVAs confirm efficiency and accuracy thus making them suitable for the clinical management of HIV infected individuals treated with coreceptor antagonists.

  1. Development of a quantitative PCR assay for monitoring Streptococcus agalactiae colonization and tissue tropism in experimentally infected tilapia.

    Science.gov (United States)

    Su, Y-L; Feng, J; Li, Y-W; Bai, J-S; Li, A-X

    2016-02-01

    Streptococcus agalactiae has become one of the most important emerging pathogens in the aquaculture industry and has resulted in large economic losses for tilapia farms in China. In this study, three pairs of specific primers were designed and tested for their specificities and sensitivities in quantitative real-time polymerase chain reactions (qPCRs) after optimization of the annealing temperature. The primer pair IGS-s/IGS-a, which targets the 16S-23S rRNA intergenic spacer region, was finally chosen, having a detection limit of 8.6 copies of S. agalactiae DNA in a 20 μL reaction mixture. Bacterial tissue tropism was demonstrated by qPCR in Oreochromis niloticus 5 days post-injection with a virulent S. agalactiae strain. Bacterial loads were detected at the highest level in brain, followed by moderately high levels in kidney, heart, spleen, intestines, and eye. Significantly lower bacterial loads were observed in muscle, gill and liver. In addition, significantly lower bacterial loads were observed in the brain of convalescent O. niloticus 14 days post-injection with several different S. agalactiae strains. The qPCR for the detection of S. agalactiae developed in this study provides a quantitative tool for investigating bacterial tissue tropism in infected fish, as well as for monitoring bacterial colonization in convalescent fish. © 2015 John Wiley & Sons Ltd.

  2. HIV-1 tropism testing and clinical management of CCR5 antagonists: Quebec review and recommendations.

    Science.gov (United States)

    Tremblay, Cécile; Hardy, Isabelle; Lalonde, Richard; Trottier, Benoit; Tsarevsky, Irina; Vézina, Louis-Philippe; Roger, Michel; Wainberg, Mark; Baril, Jean-Guy

    2013-01-01

    HIV-1 tropism assays play a crucial role in determining the response to CCR5 receptor antagonists. Initially, phenotypic tests were used, but limited access to these tests prompted the development of alternative strategies. Recently, genotyping tropism has been validated using a Canadian technology in clinical trials investigating the use of maraviroc in both experienced and treatment-naive patients. The present guidelines review the evidence supporting the use of genotypic assays and provide recommendations regarding tropism testing in daily clinical management.

  3. HIV-1 Tropism Testing and Clinical Management of CCR5 Antagonists: Quebec Review and Recommendations

    Directory of Open Access Journals (Sweden)

    Cécile Tremblay

    2013-01-01

    Full Text Available HIV-1 tropism assays play a crucial role in determining the response to CCR5 receptor antagonists. Initially, phenotypic tests were used, but limited access to these tests prompted the development of alternative strategies. Recently, genotyping tropism has been validated using a Canadian technology in clinical trials investigating the use of maraviroc in both experienced and treatment-naive patients. The present guidelines review the evidence supporting the use of genotypic assays and provide recommendations regarding tropism testing in daily clinical management.

  4. Bioinformatic analysis of neurotropic HIV envelope sequences identifies polymorphisms in the gp120 bridging sheet that increase macrophage-tropism through enhanced interactions with CCR5

    International Nuclear Information System (INIS)

    Mefford, Megan E.; Kunstman, Kevin; Wolinsky, Steven M.; Gabuzda, Dana

    2015-01-01

    Macrophages express low levels of the CD4 receptor compared to T-cells. Macrophage-tropic HIV strains replicating in brain of untreated patients with HIV-associated dementia (HAD) express Envs that are adapted to overcome this restriction through mechanisms that are poorly understood. Here, bioinformatic analysis of env sequence datasets together with functional studies identified polymorphisms in the β3 strand of the HIV gp120 bridging sheet that increase M-tropism. D197, which results in loss of an N-glycan located near the HIV Env trimer apex, was detected in brain in some HAD patients, while position 200 was estimated to be under positive selection. D197 and T/V200 increased fusion and infection of cells expressing low CD4 by enhancing gp120 binding to CCR5. These results identify polymorphisms in the HIV gp120 bridging sheet that overcome the restriction to macrophage infection imposed by low CD4 through enhanced gp120–CCR5 interactions, thereby promoting infection of brain and other macrophage-rich tissues. - Highlights: • We analyze HIV Env sequences and identify amino acids in beta 3 of the gp120 bridging sheet that enhance macrophage tropism. • These amino acids at positions 197 and 200 are present in brain of some patients with HIV-associated dementia. • D197 results in loss of a glycan near the HIV Env trimer apex, which may increase exposure of V3. • These variants may promote infection of macrophages in the brain by enhancing gp120–CCR5 interactions

  5. Bioinformatic analysis of neurotropic HIV envelope sequences identifies polymorphisms in the gp120 bridging sheet that increase macrophage-tropism through enhanced interactions with CCR5

    Energy Technology Data Exchange (ETDEWEB)

    Mefford, Megan E., E-mail: megan_mefford@hms.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA (United States); Kunstman, Kevin, E-mail: kunstman@northwestern.edu [Northwestern University Medical School, Chicago, IL (United States); Wolinsky, Steven M., E-mail: s-wolinsky@northwestern.edu [Northwestern University Medical School, Chicago, IL (United States); Gabuzda, Dana, E-mail: dana_gabuzda@dfci.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA (United States); Department of Neurology (Microbiology and Immunobiology), Harvard Medical School, Boston, MA (United States)

    2015-07-15

    Macrophages express low levels of the CD4 receptor compared to T-cells. Macrophage-tropic HIV strains replicating in brain of untreated patients with HIV-associated dementia (HAD) express Envs that are adapted to overcome this restriction through mechanisms that are poorly understood. Here, bioinformatic analysis of env sequence datasets together with functional studies identified polymorphisms in the β3 strand of the HIV gp120 bridging sheet that increase M-tropism. D197, which results in loss of an N-glycan located near the HIV Env trimer apex, was detected in brain in some HAD patients, while position 200 was estimated to be under positive selection. D197 and T/V200 increased fusion and infection of cells expressing low CD4 by enhancing gp120 binding to CCR5. These results identify polymorphisms in the HIV gp120 bridging sheet that overcome the restriction to macrophage infection imposed by low CD4 through enhanced gp120–CCR5 interactions, thereby promoting infection of brain and other macrophage-rich tissues. - Highlights: • We analyze HIV Env sequences and identify amino acids in beta 3 of the gp120 bridging sheet that enhance macrophage tropism. • These amino acids at positions 197 and 200 are present in brain of some patients with HIV-associated dementia. • D197 results in loss of a glycan near the HIV Env trimer apex, which may increase exposure of V3. • These variants may promote infection of macrophages in the brain by enhancing gp120–CCR5 interactions.

  6. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.

    Science.gov (United States)

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2016-01-01

    Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.

  7. Brain anatomical networks in early human brain development.

    Science.gov (United States)

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  8. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest.

    Science.gov (United States)

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2017-05-25

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak.

  9. Elevated lactate as an early marker of brain injury in inflicted traumatic brain injury

    International Nuclear Information System (INIS)

    Makoroff, Kathi L.; Cecil, Kim M.; Ball, William S.; Care, Marguerite

    2005-01-01

    Patients with inflicted traumatic brain injury and evidence of hypoxic-ischemic injury as indicated by elevated lactate on MRS tend to have worse early neurological status and early outcome scores. Lactate levels as sampled by MRS might predict early clinical outcome in inflicted traumatic brain injury. (orig.)

  10. Plasticity during Early Brain Development Is Determined by Ontogenetic Potential.

    Science.gov (United States)

    Krägeloh-Mann, Ingeborg; Lidzba, Karen; Pavlova, Marina A; Wilke, Marko; Staudt, Martin

    2017-04-01

    Two competing hypotheses address neuroplasticity during early brain development: the "Kennard principle" describes the compensatory capacities of the immature developing CNS as superior to those of the adult brain, whereas the "Hebb principle" argues that the young brain is especially sensitive to insults. We provide evidence that these principles are not mutually exclusive. Following early brain lesions that are unilateral, the brain can refer to homotopic areas of the healthy hemisphere. This potential for reorganization is unique to the young brain but available only when, during ontogenesis of brain development, these areas have been used for the functions addressed. With respect to motor function, ipsilateral motor tracts can be recruited, which are only available during early brain development. Language can be reorganized to the right after early left hemispheric lesions, as the representation of the language network is initially bilateral. However, even in these situations, compensatory capacities of the developing brain are found to have limitations, probably defined by early determinants. Thus, plasticity and adaptivity are seen only within ontogenetic potential; that is, axonal or cortical structures cannot be recruited beyond early developmental possibilities. The young brain is probably more sensitive and vulnerable to lesions when these are bilateral. This is shown here for bilateral periventricular white matter lesions that clearly have an impact on cortical architecture and function, thus probably interfering with early network building. Georg Thieme Verlag KG Stuttgart · New York.

  11. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest

    Directory of Open Access Journals (Sweden)

    Christine L. P. Eng

    2017-05-01

    Full Text Available Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak.

  12. Brain Age in Early Stages of Bipolar Disorders or Schizophrenia.

    Science.gov (United States)

    Hajek, Tomas; Franke, Katja; Kolenic, Marian; Capkova, Jana; Matejka, Martin; Propper, Lukas; Uher, Rudolf; Stopkova, Pavla; Novak, Tomas; Paus, Tomas; Kopecek, Miloslav; Spaniel, Filip; Alda, Martin

    2017-12-20

    The greater presence of neurodevelopmental antecedants may differentiate schizophrenia from bipolar disorders (BD). Machine learning/pattern recognition allows us to estimate the biological age of the brain from structural magnetic resonance imaging scans (MRI). The discrepancy between brain and chronological age could contribute to early detection and differentiation of BD and schizophrenia. We estimated brain age in 2 studies focusing on early stages of schizophrenia or BD. In the first study, we recruited 43 participants with first episode of schizophrenia-spectrum disorders (FES) and 43 controls. In the second study, we included 96 offspring of bipolar parents (48 unaffected, 48 affected) and 60 controls. We used relevance vector regression trained on an independent sample of 504 controls to estimate the brain age of study participants from structural MRI. We calculated the brain-age gap estimate (BrainAGE) score by subtracting the chronological age from the brain age. Participants with FES had higher BrainAGE scores than controls (F(1, 83) = 8.79, corrected P = .008, Cohen's d = 0.64). Their brain age was on average 2.64 ± 4.15 years greater than their chronological age (matched t(42) = 4.36, P stages of BD showed comparable BrainAGE scores to controls (F(2,149) = 1.04, corrected P = .70, η2 = 0.01) and comparable brain and chronological age. Early stages of schizophrenia, but not early stages of BD, were associated with advanced BrainAGE scores. Participants with FES showed neurostructural alterations, which made their brains appear 2.64 years older than their chronological age. BrainAGE scores could aid in early differential diagnosis between BD and schizophrenia. © The Author(s) 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com

  13. Affinity (tropism) of caprine arthritis encephalitis virus for brain cells ...

    African Journals Online (AJOL)

    In this study, explant cultures prepared from the brain of new-born goat-kid were infected with. Caprine Arthritis Encephalitis (CAE) virus- a retrovirus affecting goats. The specific brain cell types infected by the (CAE) virus were determined using reverse-transcription polymerase chain reaction (RTPCR) and transmission ...

  14. Early adversity and brain response to faces in young adulthood.

    Science.gov (United States)

    Lieslehto, Johannes; Kiviniemi, Vesa; Mäki, Pirjo; Koivukangas, Jenni; Nordström, Tanja; Miettunen, Jouko; Barnett, Jennifer H; Jones, Peter B; Murray, Graham K; Moilanen, Irma; Paus, Tomáš; Veijola, Juha

    2017-09-01

    Early stressors play a key role in shaping interindividual differences in vulnerability to various psychopathologies, which according to the diathesis-stress model might relate to the elevated glucocorticoid secretion and impaired responsiveness to stress. Furthermore, previous studies have shown that individuals exposed to early adversity have deficits in emotion processing from faces. This study aims to explore whether early adversities associate with brain response to faces and whether this association might associate with the regional variations in mRNA expression of the glucocorticoid receptor gene (NR3C1). A total of 104 individuals drawn from the Northern Finland Brith Cohort 1986 participated in a face-task functional magnetic resonance imaging (fMRI) study. A large independent dataset (IMAGEN, N = 1739) was utilized for reducing fMRI data-analytical space in the NFBC 1986 dataset. Early adversities were associated with deviant brain response to fearful faces (MANCOVA, P = 0.006) and with weaker performance in fearful facial expression recognition (P = 0.01). Glucocorticoid receptor gene expression (data from the Allen Human Brain Atlas) correlated with the degree of associations between early adversities and brain response to fearful faces (R 2  = 0.25, P = 0.01) across different brain regions. Our results suggest that early adversities contribute to brain response to faces and that this association is mediated in part by the glucocorticoid system. Hum Brain Mapp 38:4470-4478, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Resilience in mathematics after early brain injury: The roles of parental input and early plasticity

    Directory of Open Access Journals (Sweden)

    Dana E. Glenn

    2018-04-01

    Full Text Available Children with early focal unilateral brain injury show remarkable plasticity in language development. However, little is known about how early brain injury influences mathematical learning. Here, we examine early number understanding, comparing cardinal number knowledge of typically developing children (TD and children with pre- and perinatal lesions (BI between 42 and 50 months of age. We also examine how this knowledge relates to the number words children hear from their primary caregivers early in life. We find that children with BI, are, on average, slightly behind TD children in both cardinal number knowledge and later mathematical performance, and show slightly slower learning rates than TD children in cardinal number knowledge during the preschool years. We also find that parents’ “number talk” to their toddlers predicts later mathematical ability for both TD children and children with BI. These findings suggest a relatively optimistic story in which neural plasticity is at play in children’s mathematical development following early brain injury. Further, the effects of early number input suggest that intervening to enrich the number talk that children with BI hear during the preschool years could narrow the math achievement gap. Keywords: Plasticity, Early unilateral brain injury, Mathematical skill, Cardinality, Parent input

  16. Association of facet tropism and progressive facet arthrosis after lumbar total disc replacement using ProDisc-L.

    Science.gov (United States)

    Shin, Myung-Hoon; Ryu, Kyeong-Sik; Hur, Jung-Woo; Kim, Jin-Sung; Park, Chun-Kun

    2013-08-01

    The purpose of this retrospective study was to examine the association of facet tropism and progressive facet arthrosis (PFA) after lumbar total disc replacement (TDR) surgery using ProDisc-L. A total of 51 segments of 42 patients who had undergone lumbar TDR using ProDisc-L between October 2003 and July 2007 and completed minimum 36-month follow-up period were retrospectively reviewed. The changes of facet arthrosis were categorized as non-PFA and PFA group. Comparison between non-PFA and PFA group was made according to age, sex, mean follow-up duration, grade of preoperative facet arthrosis, coronal and sagittal prosthetic position and degree of facet tropism. Multiple logistic regression analysis was also performed to analyze the effect of facet tropism on the progression of facet arthrosis. The mean age at the surgery was 44.43 ± 11.09 years and there were 16 males and 26 females. The mean follow-up period was 53.18 ± 15.79 months. Non-PFA group was composed of 19 levels and PFA group was composed of 32 levels. Age at surgery, sex proportion, mean follow-up period, level of implant, grade of preoperative facet arthrosis and coronal and sagittal prosthetic position were not significantly different between two groups (p = 0.264, 0.433, 0.527, 0.232, 0.926, 0.849 and 0.369, respectively). However, PFA group showed significantly higher degree of facet tropism (7.37 ± 6.46°) than that of non-PFA group (3.51 ± 3.53°) and p value was 0.008. After adjustment for age, sex and coronal and sagittal prosthetic position, multiple logistic regression analysis revealed that facet tropism of more than 5° was the only significant independent predictor of progression of facet arthrosis (odds ratio 5.39, 95 % confidence interval 1.251-19.343, p = 0.023). The data demonstrate that significant higher degree of facet tropism was seen in PFA group compared with non-PFA group and facet tropism of more than 5° had a significant association with PFA after TDR using ProDisc-L.

  17. Facet orientation and tropism: Associations with asymmetric lumbar paraspinal and psoas muscle parameters in patients with chronic low back pain.

    Science.gov (United States)

    Xu, W B; Chen, S; Fan, S W; Zhao, F D; Yu, X J; Hu, Z J

    2016-08-10

    Many studies have explored the relationship between facet tropism and facet joint osteoarthritis, disc degeneration and degenerative spondylolisthesis. However, the associations between facet orientation and tropism, and paraspinal muscles have not been studied. To analyze the associations between facet orientation and tropism, and parameters of paraspinal muscles in patients with chronic low back pain. Ninety-five patients with chronic low back pain were consecutively enrolled. Their facet joint angles were measured on computed tomography (CT) while gross cross-sectional area (GCSA), functional cross-sectional area (FCSA) and T2 signal intensity of lumbar paraspinal and psoas muscle were evaluated on magnetic resonance imaging (MRI). The GCSA and FCSA were significantly smaller for multifidus muscle (Plow back pain. Longitudinal studies are needed to understand the causal relationship between facet orientation and tropism and muscular asymmetry in future.

  18. Children's Executive Functions: Are They Poorer after Very Early Brain Insult

    Science.gov (United States)

    Anderson, Vicki; Spencer-Smith, Megan; Coleman, Lee; Anderson, Peter; Williams, Jackie; Greenham, Mardee; Leventer, Richard J.; Jacobs, Rani

    2010-01-01

    Traditionally early brain insult (EBI) has been considered to have better outcome than later injury, consistent with the notion that the young brain is flexible and able to reorganize. Recent research findings question this view, suggesting that EBI might lead to poorer outcome than brain insult at any other age. Exploring this early vulnerability…

  19. Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism.

    Science.gov (United States)

    Archer, John; Weber, Jan; Henry, Kenneth; Winner, Dane; Gibson, Richard; Lee, Lawrence; Paxinos, Ellen; Arts, Eric J; Robertson, David L; Mimms, Larry; Quiñones-Mateu, Miguel E

    2012-01-01

    HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5) viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences) and genotypic (e.g., population sequencing linked to bioinformatic algorithms) assays are the most widely used. Although several next-generation sequencing (NGS) platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences), Illumina®, and Ion Torrent™ (Life Technologies). Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels) and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used), compared to Trofile (80%) and population sequencing (70%). In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.

  20. Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism.

    Directory of Open Access Journals (Sweden)

    John Archer

    Full Text Available HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5 viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences and genotypic (e.g., population sequencing linked to bioinformatic algorithms assays are the most widely used. Although several next-generation sequencing (NGS platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences, Illumina®, and Ion Torrent™ (Life Technologies. Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used, compared to Trofile (80% and population sequencing (70%. In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.

  1. [Study on meridian tropism of medicinal property theory for Chines medicines by supramolecular chemistry (I)].

    Science.gov (United States)

    He, Fu-yuan; Deng, Kai-wen; Yang, Yan-tao; Zhou, Yi-qun; Shi, Ji-lian; Liu, Wen-long; Tang, Yu

    2015-04-01

    In this paper, based on the special influence of supramolecular chemistry on the basic theory of Chinese medicines ( CM) , the authors further analyzed the history of meridian tropism and natural origins of CM organisms and explained CM ingredients and the universal regularity of the automatic action of the supramolecular "imprinting templates" hole channel structure. After entering human bodies, CMs, as the aggregation of supramolecular "imprinting templates" , automatically seek supramolecular subjects that are matched with their "imprinting templates" in human meridians and organs for the purpose of self-recognition, self-organization, self-assembly and self-replication, so as to generate specific efficacy in meridians and organs, which is reflected as the meridian tropism phenomena at macro level. This regularity can be studied by in vitro and in vivo experimental studies. In vitro methods are mostly supra molecular structure analysis and kinetic and thermodynamic parameter calculation; Whereas in vivo methods are dominated by the analysis on object component distribution, chromatopharmacodynamic parameters and network chromatopharmacodynamic parameters; Particularly, the acupoint-medicine method can simplify to study the supramolecular subject-object relations. Consequently, CM's'meridian tropism reveals the universal regularity for interactions of macromolecular and micromolecular "imprinting templates" of subjects and objects in natural organisms. As the first barrier for the material base of the CM theory and breakthrough in the modernization of the basic CM theory, meridian tropism plays an important role in studies on basic theories of the basic CM theory.

  2. The viral envelope is not sufficient to transfer the unique broad cell tropism of Bungowannah virus to a related pestivirus.

    Science.gov (United States)

    Richter, Maria; Reimann, Ilona; Schirrmeier, Horst; Kirkland, Peter D; Beer, Martin

    2014-10-01

    Bungowannah virus is the most divergent pestivirus, and both origin and reservoir host have not been identified so far. We therefore performed in vitro tropism studies, which showed that Bungowannah virus differs remarkably from other pestiviruses. Interestingly, cell lines of vervet monkey, mouse, human and even of bat origin were susceptible. This broad in vitro tropism was not observed for a chimeric bovine viral diarrhoea virus (BVDV) expressing all structural proteins of Bungowannah virus. The viral envelope was not sufficient to completely transfer the cell tropism of Bungowannah virus to another pestivirus, and viral RNA replication was either markedly reduced or not detectable in a number of different cell lines for the tested BVDV strain and the chimera. We therefore suggest that the replication machinery together with the viral envelope is responsible for the unique broad cell tropism of Bungowannah virus. © 2014 The Authors.

  3. The Importance of Early Brain Injury after Subarachnoid Hemorrhage

    Science.gov (United States)

    Sehba, Fatima A.; Hou, Jack; Pluta, Ryszard M.; Zhang, John H.

    2012-01-01

    Aneurysmal subarachnoid hemorrhage (aSAH) is a medical emergency that accounts for 5% of all stroke cases. Individuals affected are typically in the prime of their lives (mean age 50 years). Approximately 12% of patients die before receiving medical attention, 33% within 48 hours and 50% within 30 days of aSAH. Of the survivors 50% suffer from permanent disability with an estimated lifetime cost more than double that of an ischemic stroke. Traditionally, spasm that develops in large cerebral arteries 3-7 days after aneurysm rupture is considered the most important determinant of brain injury and outcome after aSAH. However, recent studies show that prevention of delayed vasospasm does not improve outcome in aSAH patients. This finding has finally brought in focus the influence of early brain injury on outcome of aSAH. A substantial amount of evidence indicates that brain injury begins at the aneurysm rupture, evolves with time and plays an important role in patients’ outcome. In this manuscript we review early brain injury after aSAH. Due to the early nature, most of the information on this injury comes from animals and few only from autopsy of patients who died within days after aSAH. Consequently, we began with a review of animal models of early brain injury, next we review the mechanisms of brain injury according to the sequence of their temporal appearance and finally we discuss the failure of clinical translation of therapies successful in animal models of aSAH. PMID:22414893

  4. Mechanisms of foot-and-mouth disease virus tropism inferred from differential tissue gene expression.

    Directory of Open Access Journals (Sweden)

    James J Zhu

    Full Text Available Foot-and-mouth disease virus (FMDV targets specific tissues for primary infection, secondary high-titer replication (e.g. foot and mouth where it causes typical vesicular lesions and long-term persistence at some primary replication sites. Although integrin αVβ6 receptor has been identified as primary FMDV receptors in animals, their tissue distribution alone fails to explain these highly selective tropism-driven events. Thus, other molecular mechanisms must play roles in determining this tissue specificity. We hypothesized that differences in certain biological activities due to differential gene expression determine FMDV tropism and applied whole genome gene expression profiling to identify genes differentially expressed between FMDV-targeted and non-targeted tissues in terms of supporting primary infection, secondary replication including vesicular lesions, and persistence. Using statistical and bioinformatic tools to analyze the differential gene expression, we identified mechanisms that could explain FMDV tissue tropism based on its association with differential expression of integrin αVβ6 heterodimeric receptor (FMDV receptor, fibronectin (ligand of the receptor, IL-1 cytokines, death receptors and the ligands, and multiple genes in the biological pathways involved in extracellular matrix turnover and interferon signaling found in this study. Our results together with reported findings indicate that differences in (1 FMDV receptor availability and accessibility, (2 type I interferon-inducible immune response, and (3 ability to clear virus infected cells via death receptor signaling play roles in determining FMDV tissue tropism and the additional increase of high extracellular matrix turnover induced by FMDV infection, likely via triggering the signaling of highly expressed IL-1 cytokines, play a key role in the pathogenesis of vesicular lesions.

  5. Early brain vulnerability in Wolfram syndrome.

    Directory of Open Access Journals (Sweden)

    Tamara Hershey

    Full Text Available Wolfram Syndrome (WFS is a rare autosomal recessive disease characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, deafness, and neurological dysfunction leading to death in mid-adulthood. WFS is caused by mutations in the WFS1 gene, which lead to endoplasmic reticulum (ER stress-mediated cell death. Case studies have found widespread brain atrophy in late stage WFS. However, it is not known when in the disease course these brain abnormalities arise, and whether there is differential vulnerability across brain regions and tissue classes. To address this limitation, we quantified regional brain abnormalities across multiple imaging modalities in a cohort of young patients in relatively early stages of WFS. Children and young adults with WFS were evaluated with neurological, cognitive and structural magnetic resonance imaging measures. Compared to normative data, the WFS group had intact cognition, significant anxiety and depression, and gait abnormalities. Compared to healthy and type 1 diabetic control groups, the WFS group had smaller intracranial volume and preferentially affected gray matter volume and white matter microstructural integrity in the brainstem, cerebellum and optic radiations. Abnormalities were detected in even the youngest patients with mildest symptoms, and some measures did not follow the typical age-dependent developmental trajectory. These results establish that WFS is associated with smaller intracranial volume with specific abnormalities in the brainstem and cerebellum, even at the earliest stage of clinical symptoms. This pattern of abnormalities suggests that WFS has a pronounced impact on early brain development in addition to later neurodegenerative effects, representing a significant new insight into the WFS disease process. Longitudinal studies will be critical for confirming and expanding our understanding of the impact of ER stress dysregulation on brain development.

  6. Early Brain Vulnerability in Wolfram Syndrome

    Science.gov (United States)

    Hershey, Tamara; Lugar, Heather M.; Shimony, Joshua S.; Rutlin, Jerrel; Koller, Jonathan M.; Perantie, Dana C.; Paciorkowski, Alex R.; Eisenstein, Sarah A.; Permutt, M. Alan

    2012-01-01

    Wolfram Syndrome (WFS) is a rare autosomal recessive disease characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, deafness, and neurological dysfunction leading to death in mid-adulthood. WFS is caused by mutations in the WFS1 gene, which lead to endoplasmic reticulum (ER) stress-mediated cell death. Case studies have found widespread brain atrophy in late stage WFS. However, it is not known when in the disease course these brain abnormalities arise, and whether there is differential vulnerability across brain regions and tissue classes. To address this limitation, we quantified regional brain abnormalities across multiple imaging modalities in a cohort of young patients in relatively early stages of WFS. Children and young adults with WFS were evaluated with neurological, cognitive and structural magnetic resonance imaging measures. Compared to normative data, the WFS group had intact cognition, significant anxiety and depression, and gait abnormalities. Compared to healthy and type 1 diabetic control groups, the WFS group had smaller intracranial volume and preferentially affected gray matter volume and white matter microstructural integrity in the brainstem, cerebellum and optic radiations. Abnormalities were detected in even the youngest patients with mildest symptoms, and some measures did not follow the typical age-dependent developmental trajectory. These results establish that WFS is associated with smaller intracranial volume with specific abnormalities in the brainstem and cerebellum, even at the earliest stage of clinical symptoms. This pattern of abnormalities suggests that WFS has a pronounced impact on early brain development in addition to later neurodegenerative effects, representing a significant new insight into the WFS disease process. Longitudinal studies will be critical for confirming and expanding our understanding of the impact of ER stress dysregulation on brain development. PMID:22792385

  7. Sigmund Freud-early network theories of the brain.

    Science.gov (United States)

    Surbeck, Werner; Killeen, Tim; Vetter, Johannes; Hildebrandt, Gerhard

    2018-06-01

    Since the early days of modern neuroscience, psychological models of brain function have been a key component in the development of new knowledge. These models aim to provide a framework that allows the integration of discoveries derived from the fundamental disciplines of neuroscience, including anatomy and physiology, as well as clinical neurology and psychiatry. During the initial stages of his career, Sigmund Freud (1856-1939), became actively involved in these nascent fields with a burgeoning interest in functional neuroanatomy. In contrast to his contemporaries, Freud was convinced that cognition could not be localised to separate modules and that the brain processes cognition not in a merely serial manner but in a parallel and dynamic fashion-anticipating fundamental aspects of current network theories of brain function. This article aims to shed light on Freud's seminal, yet oft-overlooked, early work on functional neuroanatomy and his reasons for finally abandoning the conventional neuroscientific "brain-based" reference frame in order to conceptualise the mind from a purely psychological perspective.

  8. Narrative discourse in children with early focal brain injury.

    Science.gov (United States)

    Reilly, J S; Bates, E A; Marchman, V A

    1998-02-15

    Children with early brain damage, unlike adult stroke victims, often go on to develop nearly normal language. However, the route and extent of their linguistic development are still unclear, as is the relationship between lesion site and patterns of delay and recovery. Here we address these questions by examining narratives from children with early brain damage. Thirty children (ages 3:7-10:10) with pre- or perinatal unilateral focal brain damage and their matched controls participated in a storytelling task. Analyses focused on linguistic proficiency and narrative competence. Overall, children with brain damage scored significantly lower than their age-matched controls on both linguistic (morphological and syntactic) indices and those targeting broader narrative qualities. Rather than indicating that children with brain damage fully catch up, these data suggest that deficits in linguistic abilities reassert themselves as children face new linguistic challenges. Interestingly, after age 5, site of lesion does not appear to be a significant factor and the delays we have witnessed do not map onto the lesion profiles observed in adults with analogous brain injuries.

  9. Early invasion of brain parenchyma by African trypanosomes.

    Directory of Open Access Journals (Sweden)

    Ute Frevert

    Full Text Available Human African trypanosomiasis or sleeping sickness is a vector-borne parasitic disease that has a major impact on human health and welfare in sub-Saharan countries. Based mostly on data from animal models, it is currently thought that trypanosome entry into the brain occurs by initial infection of the choroid plexus and the circumventricular organs followed days to weeks later by entry into the brain parenchyma. However, Trypanosoma brucei bloodstream forms rapidly cross human brain microvascular endothelial cells in vitro and appear to be able to enter the murine brain without inflicting cerebral injury. Using a murine model and intravital brain imaging, we show that bloodstream forms of T. b. brucei and T. b. rhodesiense enter the brain parenchyma within hours, before a significant level of microvascular inflammation is detectable. Extravascular bloodstream forms were viable as indicated by motility and cell division, and remained detectable for at least 3 days post infection suggesting the potential for parasite survival in the brain parenchyma. Vascular inflammation, as reflected by leukocyte recruitment and emigration from cortical microvessels, became apparent only with increasing parasitemia at later stages of the infection, but was not associated with neurological signs. Extravascular trypanosomes were predominantly associated with postcapillary venules suggesting that early brain infection occurs by parasite passage across the neuroimmunological blood brain barrier. Thus, trypanosomes can invade the murine brain parenchyma during the early stages of the disease before meningoencephalitis is fully established. Whether individual trypanosomes can act alone or require the interaction from a quorum of parasites remains to be shown. The significance of these findings for disease development is now testable.

  10. A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus.

    Science.gov (United States)

    Coleman, Stewart; Choi, K Yeon; Root, Matthew; McGregor, Alistair

    2016-07-01

    In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107-179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model.

  11. Resilience in mathematics after early brain injury: The roles of parental input and early plasticity.

    Science.gov (United States)

    Glenn, Dana E; Demir-Lira, Özlem Ece; Gibson, Dominic J; Congdon, Eliza L; Levine, Susan C

    2018-04-01

    Children with early focal unilateral brain injury show remarkable plasticity in language development. However, little is known about how early brain injury influences mathematical learning. Here, we examine early number understanding, comparing cardinal number knowledge of typically developing children (TD) and children with pre- and perinatal lesions (BI) between 42 and 50 months of age. We also examine how this knowledge relates to the number words children hear from their primary caregivers early in life. We find that children with BI, are, on average, slightly behind TD children in both cardinal number knowledge and later mathematical performance, and show slightly slower learning rates than TD children in cardinal number knowledge during the preschool years. We also find that parents' "number talk" to their toddlers predicts later mathematical ability for both TD children and children with BI. These findings suggest a relatively optimistic story in which neural plasticity is at play in children's mathematical development following early brain injury. Further, the effects of early number input suggest that intervening to enrich the number talk that children with BI hear during the preschool years could narrow the math achievement gap. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Region-specific protein misfolding cyclic amplification reproduces brain tropism of prion strains.

    Science.gov (United States)

    Privat, Nicolas; Levavasseur, Etienne; Yildirim, Serfildan; Hannaoui, Samia; Brandel, Jean-Philippe; Laplanche, Jean-Louis; Béringue, Vincent; Seilhean, Danielle; Haïk, Stéphane

    2017-10-06

    Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrP Sc ). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrP Sc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. HIV tropism and decreased risk of breast cancer.

    Directory of Open Access Journals (Sweden)

    Nancy A Hessol

    2010-12-01

    Full Text Available During the first two decades of the U.S. AIDS epidemic, and unlike some malignancies, breast cancer risk was significantly lower for women with human immunodeficiency virus (HIV infection compared to the general population. This deficit in HIV-associated breast cancer could not be attributed to differences in survival, immune deficiency, childbearing or other breast cancer risk factors. HIV infects mononuclear immune cells by binding to the CD4 molecule and to CCR5 or CXCR4 chemokine coreceptors. Neoplastic breast cells commonly express CXCR4 but not CCR5. In vitro, binding HIV envelope protein to CXCR4 has been shown to induce apoptosis of neoplastic breast cells. Based on these observations, we hypothesized that breast cancer risk would be lower among women with CXCR4-tropic HIV infection.We conducted a breast cancer nested case-control study among women who participated in the WIHS and HERS HIV cohort studies with longitudinally collected risk factor data and plasma. Cases were HIV-infected women (mean age 46 years who had stored plasma collected within 24 months of breast cancer diagnosis and an HIV viral load≥500 copies/mL. Three HIV-infected control women, without breast cancer, were matched to each case based on age and plasma collection date. CXCR4-tropism was determined by a phenotypic tropism assay. Odds ratios (OR and 95% confidence intervals (CI for breast cancer were estimated by exact conditional logistic regression. Two (9% of 23 breast cancer cases had CXCR4-tropic HIV, compared to 19 (28% of 69 matched controls. Breast cancer risk was significantly and independently reduced with CXCR4 tropism (adjusted odds ratio, 0.10, 95% CI 0.002-0.84 and with menopause (adjusted odds ratio, 0.08, 95% CI 0.001-0.83. Adjustment for CD4+ cell count, HIV viral load, and use of antiretroviral therapy did not attenuate the association between infection with CXCR4-tropic HIV and breast cancer.Low breast cancer risk with HIV is specifically linked

  14. Hepatocyte growth factor/c-MET axis-mediated tropism of cord blood-derived unrestricted somatic stem cells for neuronal injury.

    Science.gov (United States)

    Trapp, Thorsten; Kögler, Gesine; El-Khattouti, Abdelouahid; Sorg, Rüdiger V; Besselmann, Michael; Föcking, Melanie; Bührle, Christian P; Trompeter, Ingo; Fischer, Johannes C; Wernet, Peter

    2008-11-21

    An under-agarose chemotaxis assay was used to investigate whether unrestricted somatic stem cells (USSC) that were recently characterized in human cord blood are attracted by neuronal injury in vitro. USSC migrated toward extracts of post-ischemic brain tissue of mice in which stroke had been induced. Moreover, apoptotic neurons secrete factors that strongly attracted USSC, whereas necrotic and healthy neurons did not. Investigating the expression of growth factors and chemokines in lesioned brain tissue and neurons and of their respective receptors in USSC revealed expression of hepatocyte growth factor (HGF) in post-ischemic brain and in apoptotic but not in necrotic neurons and of the HGF receptor c-MET in USSC. Neuronal lesion-triggered migration was observed in vitro and in vivo only when c-MET was expressed at a high level in USSC. Neutralization of the bioactivity of HGF with an antibody inhibited migration of USSC toward neuronal injury. This, together with the finding that human recombinant HGF attracts USSC, document that HGF signaling is necessary for the tropism of USSC for neuronal injury. Our data demonstrate that USSC have the capacity to migrate toward apoptotic neurons and injured brain. Together with their neural differentiation potential, this suggests a neuroregenerative potential of USSC. Moreover, we provide evidence for a hitherto unrecognized pivotal role of the HGF/c-MET axis in guiding stem cells toward brain injury, which may partly account for the capability of HGF to improve function in the diseased central nervous system.

  15. Starting Smart: How Early Experiences Affect Brain Development. Second Edition.

    Science.gov (United States)

    Hawley, Theresa

    Based on recent research, it is now believed that brain growth is highly dependent upon children's early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring the connections among neurons. The forming and breaking of…

  16. Starting Smart: How Early Experiences Affect Brain Development. An Ounce of Prevention Fund Paper.

    Science.gov (United States)

    Ounce of Prevention Fund.

    Recent research has provided great insight into the impact of early experience on brain development. It is now believed that brain growth is highly dependent upon early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring…

  17. Changes in spontaneous brain activity in early Parkinson's disease.

    Science.gov (United States)

    Yang, Hong; Zhou, Xiaohong Joe; Zhang, Min-Ming; Zheng, Xu-Ning; Zhao, Yi-Lei; Wang, Jue

    2013-08-09

    Resting state brain activity can provide valuable insights into the pathophysiology of Parkinson's disease (PD). The purpose of the present study was (a) to investigate abnormal spontaneous neuronal activity in early PD patients using resting-state functional MRI (fMRI) with a regional homogeneity (ReHo) method and (b) to demonstrate the potential of using changes in abnormal spontaneous neuronal activity for monitoring the progression of PD during its early stages. Seventeen early PD patients were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS), the Hoehn and Yahr disability scale and the Mini-mental State Examination (MMSE) were compared with seventeen gender- and age-matched healthy controls. All subjects underwent MRI scans using a 1.5T General Electric Signa Excite II scanner. The MRI scan protocol included whole-brain volumetric imaging using a 3D inversion recovery prepared (IR-Prep) fast spoiled gradient-echo pulse sequence and 2D multi-slice (22 axial slices covering the whole brain) resting-state fMRI using an echo planar imaging (EPI) sequence. Images were analyzed in SPM5 together with a ReHo algorithm using the in-house software program REST. A corrected threshold of pbrain regions, including the left cerebellum, left parietal lobe, right middle temporal lobe, right sub-thalamic nucleus areas, right superior frontal gyrus, middle frontal gyrus (MFG), right inferior parietal lobe (IPL), right precuneus lobe, left MFG and left IPL. Additionally, significantly reduced ReHo was also observed in the early PD patients in the following brain regions: the left putamen, left inferior frontal gyrus, right hippocampus, right anterior cingulum, and bilateral lingual gyrus. Moreover, in PD patients, ReHo in the left putamen was negatively correlated with the UPDRS scores (r=-0.69). These results indicate that the abnormal resting state spontaneous brain activity associated with patients with early PD can be revealed by Reho analysis. Copyright

  18. Normal variation in early parental sensitivity predicts child structural brain development.

    Science.gov (United States)

    Kok, Rianne; Thijssen, Sandra; Bakermans-Kranenburg, Marian J; Jaddoe, Vincent W V; Verhulst, Frank C; White, Tonya; van IJzendoorn, Marinus H; Tiemeier, Henning

    2015-10-01

    Early caregiving can have an impact on brain structure and function in children. The influence of extreme caregiving experiences has been demonstrated, but studies on the influence of normal variation in parenting quality are scarce. Moreover, no studies to date have included the role of both maternal and paternal sensitivity in child brain maturation. This study examined the prospective relation between mothers' and fathers' sensitive caregiving in early childhood and brain structure later in childhood. Participants were enrolled in a population-based prenatal cohort. For 191 families, maternal and paternal sensitivity was repeatedly observed when the child was between 1 year and 4 years of age. Head circumference was assessed at 6 weeks, and brain structure was assessed using magnetic resonance imaging (MRI) measurements at 8 years of age. Higher levels of parental sensitivity in early childhood were associated with larger total brain volume (adjusted β = 0.15, p = .01) and gray matter volume (adjusted β = 0.16, p = .01) at 8 years, controlling for infant head size. Higher levels of maternal sensitivity in early childhood were associated with a larger gray matter volume (adjusted β = 0.13, p = .04) at 8 years, independent of infant head circumference. Associations with maternal versus paternal sensitivity were not significantly different. Normal variation in caregiving quality is related to markers of more optimal brain development in children. The results illustrate the important role of both mothers and fathers in child brain development. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Plasticity following early-life brain injury: Insights from quantitative MRI.

    Science.gov (United States)

    Fiori, Simona; Guzzetta, Andrea

    2015-03-01

    Over the last decade, the application of novel advanced neuroimaging techniques to study congenital brain damage has provided invaluable insights into the mechanisms underlying early neuroplasticity. The concept that is clearly emerging, both from human and nun-human studies, is that functional reorganization in the immature brain is substantially different from that of the more mature, developed brain. This applies to the reorganization of language, the sensorimotor system, and the visual system. The rapid implementation and development of higher order imaging methods will offer increased, currently unavailable knowledge about the specific mechanisms of cerebral plasticity in infancy, which is essential to support the development of early therapeutic interventions aimed at supporting and enhancing functional reorganization during a time of greatest potential brain plasticity. Copyright © 2015. Published by Elsevier Inc.

  20. Virological and immunological response to antiretroviral regimens containing maraviroc in HIV type 1-infected patients in clinical practice: role of different tropism testing results and of concomitant treatments.

    Science.gov (United States)

    Rossetti, Barbara; Bianco, Claudia; Bellazzi, Lara Ines; Bruzzone, Bianca; Colao, Grazia; Corsi, Paola; Monno, Laura; Pagano, Gabriella; Paolucci, Stefania; Punzi, Grazia; Setti, Maurizio; Zazzi, Maurizio; De Luca, Andrea

    2014-01-01

    We assessed the immunovirological response to antiretroviral regimens containing maraviroc in HIV-infected viremic patients with viral tropism predicted by different assays. We selected antiretroviral treatment-experienced HIV-1-infected patients initiating regimens containing maraviroc after different phenotypic or genotypic viral tropism assays, with at least one HIV-1 RNA determination during follow-up. Survival analysis was employed to assess the virological response as time to HIV-1 RNA immunological response as time to a CD4 cell count increase of ≥ 100/μl from baseline. Predictors of these outcomes were analyzed by multivariate Cox regression models. In 191 treatments with maraviroc, virological response was achieved in 65.4% and the response was modestly influenced by the baseline viral load and concomitant drug activity but not influenced by the type of tropism assay employed. Immunological response was achieved in 58.1%; independent predictors were baseline HIV-1 RNA (per log10 higher: HR 1.29, 95% CI 1.05-1.60) and concomitant therapy with enfuvirtide (HR 2.05, 0.96-4.39) but not tropism assay results. Of 17 patients with baseline R5-tropic virus and available tropism results while viremic during follow-up on maraviroc, seven (41%) showed a tropism switch to non-R5 virus. A significant proportion of experienced patients treated with regimens containing maraviroc achieved virological response. The tropism test type used was not associated with immunovirological response and concomitant treatment with enfuvirtide increased the chance of immunological response. More than half of virological failures with maraviroc were not accompanied by tropism switch.

  1. Evidence of vertical transmission and tissue tropism of Streptococcosis from naturally infected red tilapia (Oreochromis spp.

    Directory of Open Access Journals (Sweden)

    Padmaja Jayaprasad Pradeep

    2016-05-01

    Full Text Available Streptococcosis is a highly problematic disease in the aquaculture of freshwater fishes, especially for tilapia. The possibility of vertical transmission of streptococcosis and the pattern of tissue tropism of this pathogen in various organs was examined in red tilapia (Oreochromis sp.. Healthy broodstock without any clinical signs of Streptococcus spp. were selected from a farm earlier reported to have the disease and a total of 10 pairs were forced spawned to provide samples of gametes and progeny for pathogen testing. A colorimetric LAMP assay was used to confirm whether the bacterial pathogens Streptococcus. agalactiae and Streptococcus. iniae was present in samples of milt, unfertilized eggs, fertilized eggs, and offspring at various stages of development, as well as internal organs of broodstock (reproductive organs, gill, liver, spleen, kidney and brain as well as samples of water from culture systems. The majority of samples of milt (9/10 and unfertilized eggs (7/10 collected from the broodstock were infected with S. iniae at the time of spawning and was transmitted to all of their offspring. Nevertheless, when the same samples of gametes were analyzed for S. agalactiae, they were all found to be negative but the pathogen was found to be present in some 10-day-old larval offspring (4/10. However, when the pathogenic presence was analyzed from the reproductive organs of the parents, both S. agalactiae (11/20 and S. iniae (18/20 bacterium were common. Although, all broodstock were asymptomatic, almost all broodstock harboured the bacteria in many organs. Confirmation of vertical transmission of streptococcosis in tilapia means that intergenerational break cannot be used as a reliable and simple means of reducing or eliminating the prevalence of these difficult pathogens in aquaculture stock. Keywords: Tilapia, Vertical transmission, Specific pathogen free, Streptococcus, Tissue tropism

  2. Early brain development in infants at high risk for autism spectrum disorder.

    Science.gov (United States)

    Hazlett, Heather Cody; Gu, Hongbin; Munsell, Brent C; Kim, Sun Hyung; Styner, Martin; Wolff, Jason J; Elison, Jed T; Swanson, Meghan R; Zhu, Hongtu; Botteron, Kelly N; Collins, D Louis; Constantino, John N; Dager, Stephen R; Estes, Annette M; Evans, Alan C; Fonov, Vladimir S; Gerig, Guido; Kostopoulos, Penelope; McKinstry, Robert C; Pandey, Juhi; Paterson, Sarah; Pruett, John R; Schultz, Robert T; Shaw, Dennis W; Zwaigenbaum, Lonnie; Piven, Joseph

    2017-02-15

    Brain enlargement has been observed in children with autism spectrum disorder (ASD), but the timing of this phenomenon, and the relationship between ASD and the appearance of behavioural symptoms, are unknown. Retrospective head circumference and longitudinal brain volume studies of two-year olds followed up at four years of age have provided evidence that increased brain volume may emerge early in development. Studies of infants at high familial risk of autism can provide insight into the early development of autism and have shown that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life. These observations suggest that prospective brain-imaging studies of infants at high familial risk of ASD might identify early postnatal changes in brain volume that occur before an ASD diagnosis. In this prospective neuroimaging study of 106 infants at high familial risk of ASD and 42 low-risk infants, we show that hyperexpansion of the cortical surface area between 6 and 12 months of age precedes brain volume overgrowth observed between 12 and 24 months in 15 high-risk infants who were diagnosed with autism at 24 months. Brain volume overgrowth was linked to the emergence and severity of autistic social deficits. A deep-learning algorithm that primarily uses surface area information from magnetic resonance imaging of the brain of 6-12-month-old individuals predicted the diagnosis of autism in individual high-risk children at 24 months (with a positive predictive value of 81% and a sensitivity of 88%). These findings demonstrate that early brain changes occur during the period in which autistic behaviours are first emerging.

  3. Development and applications of VSV vectors based on cell tropism

    Directory of Open Access Journals (Sweden)

    Hideki eTani

    2012-01-01

    Full Text Available Viral vectors have been available in various fields such as medical and biological research or gene therapy applications. Targeting vectors pseudotyped with distinct viral envelope proteins that influence cell tropism and transfection efficiency is a useful tool not only for examining entry mechanisms or cell tropisms but also for vaccine vector development. Vesicular stomatitis virus (VSV is an excellent candidate for development as a pseudotype vector. A recombinant VSV lacking its own envelope (G gene has been used to produce a pseudotype or recombinant VSV possessing the envelope proteins of heterologous viruses. These viruses possess a reporter gene instead of a VSV G gene in their genome, and therefore it is easy to evaluate their infectivity in the study of viral entry, including identification of viral receptors. Furthermore, advantage can be taken of a property of the pseudotype VSV, which is competence for single-round infection, in handling many different viruses that are either difficult to amplify in cultured cells or animals or that require specialized containment facilities. Here we describe procedures for producing pseudotype or recombinant VSVs and a few of the more prominent examples from among envelope viruses, such as hepatitis C virus, Japanese encephalitis virus, baculovirus, and hemorrhagic fever viruses.

  4. Comparison of Human Immunodeficiency Virus Type 1 Tropism Profiles in Clinical Samples by the Trofile and MT-2 Assays▿

    Science.gov (United States)

    Coakley, Eoin; Reeves, Jacqueline D.; Huang, Wei; Mangas-Ruiz, Marga; Maurer, Irma; Harskamp, Agnes M.; Gupta, Soumi; Lie, Yolanda; Petropoulos, Christos J.; Schuitemaker, Hanneke; van 't Wout, Angélique B.

    2009-01-01

    The recent availability of CCR5 antagonists as anti-human immunodeficiency virus (anti-HIV) therapeutics has highlighted the need to accurately identify CXCR4-using variants in patient samples when use of this new drug class is considered. The Trofile assay (Monogram Biosciences) has become the method that is the most widely used to define tropism in the clinic prior to the use of a CCR5 antagonist. By comparison, the MT-2 assay has been used since early in the HIV epidemic to define tropism in clinical specimens. Given that there are few data from direct comparisons of these two assays, we evaluated the performance of the plasma-based Trofile assay and the peripheral blood mononuclear cell (PBMC)-based MT-2 assay for the detection of CXCR4 use in defining the tropism of HIV isolates derived from clinical samples. The various samples used for this comparison were derived from participants of the Amsterdam Cohort Studies on HIV infection and AIDS who underwent consecutive MT-2 assay testing of their PBMCs at approximately 3-month intervals. This unique sample set was specifically selected because consecutive MT-2 assays had demonstrated a shift from negative to positive in PBMCs, reflecting the first emergence of CXCR4-using virus in PBMCs above the level of detection of the assay in these individuals. Trofile testing was performed with clonal HIV type 1 (HIV-1) variants (n = 21), MT-2 cell culture-derived cells (n = 20) and supernatants (n = 42), and plasma samples (n = 76). Among the clonal HIV-1 variants and MT-2 cell culture-derived samples, the results of the Trofile and MT-2 assays demonstrated a high degree of concordance (95% to 98%). Among consecutive plasma samples, detection of CXCR4-using virus was at or before the time of first detection by the MT-2 assay in 5/10 patients by the original Trofile assay and in 9/10 patients by the enhanced-sensitivity Trofile assay. Differences in the time to the first detection of CXCR4 use between the MT-2 assay (PBMCs

  5. Comparison of human immunodeficiency virus type 1 tropism profiles in clinical samples by the Trofile and MT-2 assays.

    Science.gov (United States)

    Coakley, Eoin; Reeves, Jacqueline D; Huang, Wei; Mangas-Ruiz, Marga; Maurer, Irma; Harskamp, Agnes M; Gupta, Soumi; Lie, Yolanda; Petropoulos, Christos J; Schuitemaker, Hanneke; van 't Wout, Angélique B

    2009-11-01

    The recent availability of CCR5 antagonists as anti-human immunodeficiency virus (anti-HIV) therapeutics has highlighted the need to accurately identify CXCR4-using variants in patient samples when use of this new drug class is considered. The Trofile assay (Monogram Biosciences) has become the method that is the most widely used to define tropism in the clinic prior to the use of a CCR5 antagonist. By comparison, the MT-2 assay has been used since early in the HIV epidemic to define tropism in clinical specimens. Given that there are few data from direct comparisons of these two assays, we evaluated the performance of the plasma-based Trofile assay and the peripheral blood mononuclear cell (PBMC)-based MT-2 assay for the detection of CXCR4 use in defining the tropism of HIV isolates derived from clinical samples. The various samples used for this comparison were derived from participants of the Amsterdam Cohort Studies on HIV infection and AIDS who underwent consecutive MT-2 assay testing of their PBMCs at approximately 3-month intervals. This unique sample set was specifically selected because consecutive MT-2 assays had demonstrated a shift from negative to positive in PBMCs, reflecting the first emergence of CXCR4-using virus in PBMCs above the level of detection of the assay in these individuals. Trofile testing was performed with clonal HIV type 1 (HIV-1) variants (n = 21), MT-2 cell culture-derived cells (n = 20) and supernatants (n = 42), and plasma samples (n = 76). Among the clonal HIV-1 variants and MT-2 cell culture-derived samples, the results of the Trofile and MT-2 assays demonstrated a high degree of concordance (95% to 98%). Among consecutive plasma samples, detection of CXCR4-using virus was at or before the time of first detection by the MT-2 assay in 5/10 patients by the original Trofile assay and in 9/10 patients by the enhanced-sensitivity Trofile assay. Differences in the time to the first detection of CXCR4 use between the MT-2 assay (PBMCs

  6. IL-2 Enhances Gut Homing Potential of Human Naive Regulatory T Cells Early in Life.

    Science.gov (United States)

    Hsu, Peter S; Lai, Catherine L; Hu, Mingjing; Santner-Nanan, Brigitte; Dahlstrom, Jane E; Lee, Cheng Hiang; Ajmal, Ayesha; Bullman, Amanda; Arbuckle, Susan; Al Saedi, Ahmed; Gacis, Lou; Nambiar, Reta; Williams, Andrew; Wong, Melanie; Campbell, Dianne E; Nanan, Ralph

    2018-06-15

    Recent evidence suggests early environmental factors are important for gut immune tolerance. Although the role of regulatory T (Treg) cells for gut immune homeostasis is well established, the development and tissue homing characteristics of Treg cells in children have not been studied in detail. In this article, we studied the development and homing characteristics of human peripheral blood Treg cell subsets and potential mechanisms inducing homing molecule expression in healthy children. We found contrasting patterns of circulating Treg cell gut and skin tropism, with abundant β7 integrin + Treg cells at birth and increasing cutaneous lymphocyte Ag (CLA + ) Treg cells later in life. β7 integrin + Treg cells were predominantly naive, suggesting acquisition of Treg cell gut tropism early in development. In vitro, IL-7 enhanced gut homing but reduced skin homing molecule expression in conventional T cells, whereas IL-2 induced a similar effect only in Treg cells. This effect was more pronounced in cord compared with adult blood. Our results suggest that early in life, naive Treg cells may be driven for gut tropism by their increased sensitivity to IL-2-induced β7 integrin upregulation, implicating a potential role of IL-2 in gut immune tolerance during this critical period of development. Copyright © 2018 by The American Association of Immunologists, Inc.

  7. Peste des Petits Ruminants Virus Tissue Tropism and Pathogenesis in Sheep and Goats following Experimental Infection

    Science.gov (United States)

    Truong, Thang; Boshra, Hani; Embury-Hyatt, Carissa; Nfon, Charles; Gerdts, Volker; Tikoo, Suresh; Babiuk, Lorne A.; Kara, Pravesh; Chetty, Thireshni; Mather, Arshad; Wallace, David B.; Babiuk, Shawn

    2014-01-01

    Peste des petits ruminants (PPR) is a viral disease which primarily affects small ruminants, causing significant economic losses for the livestock industry in developing countries. It is endemic in Saharan and sub-Saharan Africa, the Middle East and the Indian sub-continent. The primary hosts for peste des petits ruminants virus (PPRV) are goats and sheep; however recent models studying the pathology, disease progression and viremia of PPRV have focused primarily on goat models. This study evaluates the tissue tropism and pathogenesis of PPR following experimental infection of sheep and goats using a quantitative time-course study. Upon infection with a virulent strain of PPRV, both sheep and goats developed clinical signs and lesions typical of PPR, although sheep displayed milder clinical disease compared to goats. Tissue tropism of PPRV was evaluated by real-time RT-PCR and immunohistochemistry. Lymph nodes, lymphoid tissue and digestive tract organs were the predominant sites of virus replication. The results presented in this study provide models for the comparative evaluation of PPRV pathogenesis and tissue tropism in both sheep and goats. These models are suitable for the establishment of experimental parameters necessary for the evaluation of vaccines, as well as further studies into PPRV-host interactions. PMID:24498032

  8. Microstructural Changes of the Human Brain from Early to Mid-Adulthood

    OpenAIRE

    Tian, Lixia; Ma, Lin

    2017-01-01

    Despite numerous studies on the microstructural changes of the human brain throughout life, we have indeed little direct knowledge about the changes from early to mid-adulthood. The aim of this study was to investigate the microstructural changes of the human brain from early to mid-adulthood. We performed two sets of analyses based on the diffusion tensor imaging (DTI) data of 111 adults aged 18–55 years. Specifically, we first correlated age with skeletonized fractional anisotropy (FA), mea...

  9. Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks.

    Science.gov (United States)

    Chen, Yuncai; Baram, Tallie Z

    2016-01-01

    Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Adverse early-life experiences provoke the release and modify the expression of several stress mediators and neurotransmitters within specific brain regions. The interaction of these mediators with developing neurons and neuronal networks may lead to long-lasting structural and functional alterations associated with cognitive and emotional consequences. Although a vast body of work has linked quantitative and qualitative aspects of stress to adolescent and adult outcomes, a number of questions are unclear. What distinguishes 'normal' from pathologic or toxic stress? How are the effects of stress transformed into structural and functional changes in individual neurons and neuronal networks? Which ones are affected? We review these questions in the context of established and emerging studies. We introduce a novel concept regarding the origin of toxic early-life stress, stating that it may derive from specific patterns of environmental signals, especially those derived from the mother or caretaker. Fragmented and unpredictable patterns of maternal care behaviors induce a profound chronic stress. The aberrant patterns and rhythms of early-life sensory input might also directly and adversely influence the maturation of cognitive and emotional brain circuits, in analogy to visual and auditory brain systems. Thus, unpredictable, stress-provoking early-life experiences may influence adolescent cognitive and emotional outcomes by disrupting the maturation of the underlying brain networks. Comprehensive approaches and multiple levels of analysis are required to probe the protean consequences of early-life adversity on the developing brain. These involve integrated human and animal-model studies, and approaches ranging from in vivo imaging to novel neuroanatomical, molecular, epigenomic, and computational

  10. Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks

    Science.gov (United States)

    Chen, Yuncai; Baram, Tallie Z

    2016-01-01

    Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Adverse early-life experiences provoke the release and modify the expression of several stress mediators and neurotransmitters within specific brain regions. The interaction of these mediators with developing neurons and neuronal networks may lead to long-lasting structural and functional alterations associated with cognitive and emotional consequences. Although a vast body of work has linked quantitative and qualitative aspects of stress to adolescent and adult outcomes, a number of questions are unclear. What distinguishes ‘normal' from pathologic or toxic stress? How are the effects of stress transformed into structural and functional changes in individual neurons and neuronal networks? Which ones are affected? We review these questions in the context of established and emerging studies. We introduce a novel concept regarding the origin of toxic early-life stress, stating that it may derive from specific patterns of environmental signals, especially those derived from the mother or caretaker. Fragmented and unpredictable patterns of maternal care behaviors induce a profound chronic stress. The aberrant patterns and rhythms of early-life sensory input might also directly and adversely influence the maturation of cognitive and emotional brain circuits, in analogy to visual and auditory brain systems. Thus, unpredictable, stress-provoking early-life experiences may influence adolescent cognitive and emotional outcomes by disrupting the maturation of the underlying brain networks. Comprehensive approaches and multiple levels of analysis are required to probe the protean consequences of early-life adversity on the developing brain. These involve integrated human and animal-model studies, and approaches ranging from in vivo imaging to novel neuroanatomical, molecular, epigenomic, and computational

  11. Early expression of hypocretin/orexin in the chick embryo brain.

    Directory of Open Access Journals (Sweden)

    Kyle E Godden

    Full Text Available Hypocretin/Orexin (H/O neuropeptides are released by a discrete group of neurons in the vertebrate hypothalamus which play a pivotal role in the maintenance of waking behavior and brain state control. Previous studies have indicated that the H/O neuronal development differs between mammals and fish; H/O peptide-expressing cells are detectable during the earliest stages of brain morphogenesis in fish, but only towards the end of brain morphogenesis (by ∼ 85% of embryonic development in rats. The developmental emergence of H/O neurons has never been previously described in birds. With the goal of determining whether the chick developmental pattern was more similar to that of mammals or of fish, we investigated the emergence of H/O-expressing cells in the brain of chick embryos of different ages using immunohistochemistry. Post-natal chick brains were included in order to compare the spatial distribution of H/O cells with that of other vertebrates. We found that H/O-expressing cells appear to originate from two separate places in the region of the diencephalic proliferative zone. These developing cells express the H/O neuropeptide at a comparatively early age relative to rodents (already visible at 14% of the way through fetal development, thus bearing a closer resemblance to fish. The H/O-expressing cell population proliferates to a large number of cells by a relatively early embryonic age. As previously suggested, the distribution of H/O neurons is intermediate between that of mammalian and non-mammalian vertebrates. This work suggests that, in addition to its roles in developed brains, the H/O peptide may play an important role in the early embryonic development of non-mammalian vertebrates.

  12. Tissue tropisms in group A Streptococcus: what virulence factors distinguish pharyngitis from impetigo strains?

    Science.gov (United States)

    Bessen, Debra E

    2016-06-01

    Group A streptococci (GAS) are a common cause of pharyngitis and impetigo, and distinct throat strains and skin strains have been long recognized. This review aims to describe recent advances in molecular differences between throat and skin strains, and the pathogenic mechanisms used by virulence factors that may distinguish between these two groups. Recent findings include a new typing scheme for GAS strains based on sequence clusters of genes encoding the entire surface-exposed portion of M protein; correlations between emm-based typing schemes, clinical disease and surface adhesins; covalent bond formation mediated by GAS pili and other adhesins in binding to host ligands; a key role for superantigens in oropharyngeal infection via binding major histocompatibility complex class II antigen; and migration of GAS-specific Th17 cells from the upper respiratory tract to the brain, which may be relevant to autoimmune sequelae. The gap between molecular markers of disease (correlation) and virulence mechanisms (causation) in the establishment of tissue tropisms for GAS infection currently remains wide, but the gap also continues to narrow. Whole genome sequencing combined with mutant construction and improvements in animal models for oropharyngeal infection by GAS may help pave the way for new discoveries.

  13. Early Brain and Child Development: Connections to Early Education and Child Care

    Science.gov (United States)

    Romano, Judith T.

    2013-01-01

    The vast majority of young children spend time in settings outside of the home, and the nature of those settings directly impacts the child's health and development. The ecobiodevelopmental framework of early brain and child development serve as the backdrop for establishing quality. This article describes the use of quality rating systems,…

  14. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui [Pudong New Area People' s Hospital, Department of Neurosurgery, Shanghai (China)

    2011-05-15

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  15. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    International Nuclear Information System (INIS)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui

    2011-01-01

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  16. Tropism and infectivity of duck-derived egg drop syndrome virus in chickens.

    Directory of Open Access Journals (Sweden)

    Min Kang

    Full Text Available Egg drop syndrome virus (EDSV can markedly decrease egg production in laying hens. Duck is the natural host of EDSV. EDSV derived from ducks abrogate egg drop in laying hens. We have previously confirmed that duck-derived EDSVs have a variety of replication activities in chick embryo liver (CEL cells. However, it is currently unclear whether duck-derived EDSV could display tropism and adaptation in laying hens. This study assessed whether duck-derived EDSV can adapt to laying hens, and estimated the inducing factors. Complete genome sequences of duck-derived EDSVs (D11-JW-012, D11-JW-017, and D11-JW-032 isolates with various replication efficiency in CEL cells and C10-GY-001 isolate causing disease in laying hens were analyzed to find their differences. Phylogenetic analysis of complete genome sequence revealed that C10-GY-001, D11-JW-032, and strain 127 virus as vaccine were clustered into the same group, with D11-JW-012 and D11-JW-017 clustered in another group. Comparison between D11-JW-012 isolate that poorly replicated and D11-JW-017 isolate that replicated well in CEL cells in same cluster revealed six amino acid differences on IVa2, DNA polymerase, endopeptidase, and DNA-binding protein. These amino acids might be key candidates enhancing cellular tropism in chicken. When the pathogenicities of these isolates in laying hens were compared, D11-JW-032 showed severe signs similar to 127 virus, D11-JW-017 showed intermediate signs, while D11-JW-012 showed almost no sign. Eleven amino acids differed between D11-JW-032 and D11-JW-017, and 17 amino acids were different between D11-JW-032 and D11-JW-012. These results suggest that EDSVs derived from ducks have various pathogenicities in laying hens. Key amino acid candidates might have altered their affinity to tropism of laying hens, causing difference pathogenicities.

  17. Sensitive Cell-Based Assay for Determination of Human Immunodeficiency Virus Type 1 Coreceptor Tropism

    Czech Academy of Sciences Publication Activity Database

    Weber, Jan; Vazquez, A. C.; Winner, D.; Gibson, R. M.; Rhea, A. M.; Rose, J. D.; Wylie, D.; Henry, K.; Wright, A.; King, K.; Archer, J.; Poveda, E.; Soriano, V.; Robertson, D. L.; Olivo, P. D.; Arts, E. J.; Quinones-Mateu, M. E.

    2013-01-01

    Roč. 51, č. 5 (2013), s. 1517-1527 ISSN 0095-1137 Grant - others:NIH(US) P30 AI036219 Institutional support: RVO:61388963 Keywords : HIV tropism * phenotypic assay * genotypic prediction * disease progression * CCR5 antagonists * naive patients Subject RIV: EE - Microbiology, Virology Impact factor: 4.232, year: 2013

  18. Early monitoring of PtiO2, PtiCO2, pH and brain temperat ure in patients with brain injuries and the clinical significanc e

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To explore the regulation of early br ain tissue metabolic changing after brain injuries and the clinical significance .   Methods: There were 17 patients with brain injuries. Early dire ct monitoring of PtiO2, PtiCO2, pH and brain temperature, dynami c observation of the relation between various parameters and clinics after brai n injuries were performed.   Results: Early changes of PtiO2, PtiCO2 and pH we re closely correlated with outcome. The death rate obviously increased when P tiO2 was continuously lower than 9 mm?Hg within 24 hours after injuries. Secondary brain injury prolonged and aggravated brain tissue metabolic disturban ce. When intracerebral pressure was over 30 mm?Hg PtiO2 began to de crea se. The brain temperature in brain death patients was evidently lower than axill ary temperature.   Conclusions: The direct monitoring of PtiO2, PtiC O2, pH and brain temperature is safe and accurate and can find early anoxia da mage to brain tissue and provide reliable basis for clinical therapy. It ha s an instructive significance in selecting and studying a new treatment method i n brain injuries. And it can be taken as a criterion in clinical judging brain d eaths.

  19. Prediction of HIV-1 coreceptor usage (tropism) by sequence analysis using a genotypic approach.

    Science.gov (United States)

    Sierra, Saleta; Kaiser, Rolf; Lübke, Nadine; Thielen, Alexander; Schuelter, Eugen; Heger, Eva; Däumer, Martin; Reuter, Stefan; Esser, Stefan; Fätkenheuer, Gerd; Pfister, Herbert; Oette, Mark; Lengauer, Thomas

    2011-12-01

    Maraviroc (MVC) is the first licensed antiretroviral drug from the class of coreceptor antagonists. It binds to the host coreceptor CCR5, which is used by the majority of HIV strains in order to infect the human immune cells (Fig. 1). Other HIV isolates use a different coreceptor, the CXCR4. Which receptor is used, is determined in the virus by the Env protein (Fig. 2). Depending on the coreceptor used, the viruses are classified as R5 or X4, respectively. MVC binds to the CCR5 receptor inhibiting the entry of R5 viruses into the target cell. During the course of disease, X4 viruses may emerge and outgrow the R5 viruses. Determination of coreceptor usage (also called tropism) is therefore mandatory prior to administration of MVC, as demanded by EMA and FDA. The studies for MVC efficiency MOTIVATE, MERIT and 1029 have been performed with the Trofile assay from Monogram, San Francisco, U.S.A. This is a high quality assay based on sophisticated recombinant tests. The acceptance for this test for daily routine is rather low outside of the U.S.A., since the European physicians rather tend to work with decentralized expert laboratories, which also provide concomitant resistance testing. These laboratories have undergone several quality assurance evaluations, the last one being presented in 2011. For several years now, we have performed tropism determinations based on sequence analysis from the HIV env-V3 gene region (V3). This region carries enough information to perform a reliable prediction. The genotypic determination of coreceptor usage presents advantages such as: shorter turnover time (equivalent to resistance testing), lower costs, possibility to adapt the results to the patients' needs and possibility of analysing clinical samples with very low or even undetectable viral load (VL), particularly since the number of samples analysed with VL < 1000 copies/μl roughly increased in the last years (Fig. 3). The main steps for tropism testing (Fig. 4) demonstrated in

  20. External Validity of a Risk Stratification Score Predicting Early Distant Brain Failure and Salvage Whole Brain Radiation Therapy After Stereotactic Radiosurgery for Brain Metastases.

    Science.gov (United States)

    Press, Robert H; Boselli, Danielle M; Symanowski, James T; Lankford, Scott P; McCammon, Robert J; Moeller, Benjamin J; Heinzerling, John H; Fasola, Carolina E; Burri, Stuart H; Patel, Kirtesh R; Asher, Anthony L; Sumrall, Ashley L; Curran, Walter J; Shu, Hui-Kuo G; Crocker, Ian R; Prabhu, Roshan S

    2017-07-01

    A scoring system using pretreatment factors was recently published for predicting the risk of early (≤6 months) distant brain failure (DBF) and salvage whole brain radiation therapy (WBRT) after stereotactic radiosurgery (SRS) alone. Four risk factors were identified: (1) lack of prior WBRT; (2) melanoma or breast histologic features; (3) multiple brain metastases; and (4) total volume of brain metastases external patient population. We reviewed the records of 247 patients with 388 brain metastases treated with SRS between 2010 at 2013 at Levine Cancer Institute. The Press (Emory) risk score was calculated and applied to the validation cohort population, and subsequent risk groups were analyzed using cumulative incidence. The low-risk (LR) group had a significantly lower risk of early DBF than did the high-risk (HR) group (22.6% vs 44%, P=.004), but there was no difference between the HR and intermediate-risk (IR) groups (41.2% vs 44%, P=.79). Total lesion volume externally valid, but the model was able to stratify between 2 levels (LR and not-LR [combined IR and HR]) for early (≤6 months) DBF. These results reinforce the importance of validating predictive models in independent cohorts. Further refinement of this scoring system with molecular information and in additional contemporary patient populations is warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A Survey of English Sixth Formers' Knowledge of Early Brain Development.

    Science.gov (United States)

    Nolan, Mary

    2017-10-01

    Objectives To ascertain the knowledge of young people aged 16 to 19 of early brain development and their attitudes towards the care of babies and preschool children. Design Cross-sectional, school- and college-based survey including all sixth form students present on the days of data collection. The survey instrument comprised forced-choice questions in four sections: Demographics, Perceptions and Understanding of Early Childhood Development, Parental Behaviors to Support Early Brain development, and Resource Needs and Usage. Setting Two sixth form schools and one sixth form college in three towns of varying affluence in the West Midlands of the United Kingdom. Method The survey was mounted online and completed by 905 students who returned it directly to the researcher. Results Most students knew that tobacco, alcohol, and drugs are hazardous in pregnancy, and many recognized the impact of maternal stress on fetal brain development. Many believed that babies can be "spoiled" and did not appreciate the importance of reading to babies and of the relationship between play and early brain development. A significant minority thought that physical activity and a healthy diet have little impact on young children's development. Respondents said they would turn firstly to their parents for advice on baby care rather than professionals. Conclusion Young people need educating about parenting activities that support the all-round healthy development of infants. The importance of a healthy diet, physical activity, reading, and play should be included in sixth form curricula and antenatal classes. Consideration should be given to educating grandparents because of their influence on new parents.

  2. Early inflammatory response in rat brain after peripheral thermal injury.

    Science.gov (United States)

    Reyes, Raul; Wu, Yimin; Lai, Qin; Mrizek, Michael; Berger, Jamie; Jimenez, David F; Barone, Constance M; Ding, Yuchuan

    2006-10-16

    Previous studies have shown that the cerebral complications associated with skin burn victims are correlated with brain damage. The aim of this study was to determine whether systemic thermal injury induces inflammatory responses in the brain. Sprague Dawley rats (n=28) were studied in thermal injury and control groups. Animals from the thermal injury (n=14) and control (n=14) group were anesthetized and submerged to the neck vertically in 85 degrees C water for 6 s producing a third degree burn affecting 60-70% of the animal body surface area. The controls were submerged in 37 degrees C water for 6 s. Early expression of tumor necrosis factor-alpha (TNF-alpha), interleukin 1-beta (IL-1beta), and intracellular cell adhesion molecules (ICAM-1) protein levels in serum were determined at 3 (n=7) and 7 h (n=7) by enzyme-linked immunoabsorbent assay (ELISA). mRNA of TNF-alpha, IL-1beta, and ICAM-1 in the brain was measured at the same time points with a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). An equal animal number was used for controls. Systemic inflammatory responses were demonstrated by dramatic up-regulations (5-50 fold) of TNF-alpha, IL-1beta, and ICAM-1 protein level in serum at 7 h after the thermal injury. However, as early as 3 h after peripheral thermal injury, a significant increase (3-15 fold) in mRNA expression of TNF-alpha, IL-1beta and ICAM-1 was observed in brain homogenates, with increased levels remaining at 7 h after injury. This study demonstrated an early inflammatory response in the brain after severe peripheral thermal injury. The cerebral inflammatory reaction was associated with expression of systemic cytokines and an adhesion molecule.

  3. Fusion protein is the main determinant of metapneumovirus host tropism.

    Science.gov (United States)

    de Graaf, Miranda; Schrauwen, Eefje J A; Herfst, Sander; van Amerongen, Geert; Osterhaus, Albert D M E; Fouchier, Ron A M

    2009-06-01

    Human metapneumovirus (HMPV) and avian metapneumovirus subgroup C (AMPV-C) infect humans and birds, respectively. This study confirmed the difference in host range in turkey poults, and analysed the contribution of the individual metapneumovirus genes to host range in an in vitro cell-culture model. Mammalian Vero-118 cells supported replication of both HMPV and AMPV-C in contrast to avian quail fibroblast (QT6) cells in which only AMPV-C replicated to high titres. Inoculation of Vero-118 and QT6 cells with recombinant HMPV in which genes were exchanged with those of AMPV-C revealed that the metapneumovirus fusion (F) protein is the main determinant for host tropism. Chimeric viruses in which polymerase complex proteins were exchanged between HMPV and AMPV-C replicated less efficiently compared with HMPV in QT6 cells. Using mini-genome systems, it was shown that exchanging these polymerase proteins resulted in reduced replication and transcription efficiency in QT6 cells. Examination of infected Vero-118 and QT6 cells revealed that viruses containing the F protein of AMPV-C yielded larger syncytia compared with viruses containing the HMPV F protein. Cell-content mixing assays revealed that the F protein of AMPV-C was more fusogenic compared with the F protein of HMPV, and that the F2 region is responsible for the difference observed between AMPV-C and HMPV F-promoted fusion in QT6 and Vero-118 cells. This study provides insight into the determinants of host tropism and membrane fusion of metapneumoviruses.

  4. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder.

    Science.gov (United States)

    Dawson, Geraldine

    2008-01-01

    Advances in the fields of cognitive and affective developmental neuroscience, developmental psychopathology, neurobiology, genetics, and applied behavior analysis have contributed to a more optimistic outcome for individuals with autism spectrum disorder (ASD). These advances have led to new methods for early detection and more effective treatments. For the first time, prevention of ASD is plausible. Prevention will entail detecting infants at risk before the full syndrome is present and implementing treatments designed to alter the course of early behavioral and brain development. This article describes a developmental model of risk, risk processes, symptom emergence, and adaptation in ASD that offers a framework for understanding early brain plasticity in ASD and its role in prevention of the disorder.

  5. Nutrition and brain development in early life.

    Science.gov (United States)

    Prado, Elizabeth L; Dewey, Kathryn G

    2014-04-01

    Presented here is an overview of the pathway from early nutrient deficiency to long-term brain function, cognition, and productivity, focusing on research from low- and middle-income countries. Animal models have demonstrated the importance of adequate nutrition for the neurodevelopmental processes that occur rapidly during pregnancy and infancy, such as neuron proliferation and myelination. However, several factors influence whether nutrient deficiencies during this period cause permanent cognitive deficits in human populations, including the child's interaction with the environment, the timing and degree of nutrient deficiency, and the possibility of recovery. These factors should be taken into account in the design and interpretation of future research. Certain types of nutritional deficiency clearly impair brain development, including severe acute malnutrition, chronic undernutrition, iron deficiency, and iodine deficiency. While strategies such as salt iodization and micronutrient powders have been shown to improve these conditions, direct evidence of their impact on brain development is scarce. Other strategies also require further research, including supplementation with iron and other micronutrients, essential fatty acids, and fortified food supplements during pregnancy and infancy. © 2014 International Life Sciences Institute.

  6. Early amplitude‐integrated electroencephalography for monitoring neonates at high risk for brain injury

    Directory of Open Access Journals (Sweden)

    Gabriel Fernando Todeschi Variane

    2017-09-01

    Conclusion: This study supports previous results and demonstrates the utility of amplitude‐integrated electroencephalography for monitoring brain function and predicting early outcome in the studied groups of infants at high risk for brain injury.

  7. Population-based V3 genotypic tropism assay: a retrospective analysis using screening samples from the A4001029 and MOTIVATE studies.

    Science.gov (United States)

    McGovern, Rachel A; Thielen, Alexander; Mo, Theresa; Dong, Winnie; Woods, Conan K; Chapman, Douglass; Lewis, Marilyn; James, Ian; Heera, Jayvant; Valdez, Hernan; Harrigan, P Richard

    2010-10-23

    The MOTIVATE-1 and 2 studies compared maraviroc (MVC) along with optimized background therapy (OBT) vs. placebo along with OBT in treatment-experienced patients screened as having R5-HIV (original Monogram Trofile). A subset screened with non-R5 HIV were treated with MVC or placebo along with OBT in a sister safety trial, A4001029. This analysis retrospectively examined the performance of population-based sequence analysis of HIV-1 env V3-loop to predict coreceptor tropism. Triplicate V3-loop sequences were generated using stored screening plasma samples and data was processed using custom software ('ReCall'), blinded to clinical response. Tropism was inferred using geno2pheno ('g2p'; 5% false positive rate). Primary outcomes were viral load changes after starting maraviroc; and concordance with prior screening Trofile results. Genotype and Trofile results were available for 1164 individuals with virological outcome data (N = 169 non-R5 by Trofile). Compared with Trofile, V3 genotyping had a specificity of 92.6% and a sensitivity of 67.4% for detecting non-R5 virus. However, when compared with clinical outcome, virological responses were consistently similar between Trofile and V3 genotype at weeks 8 and 24 following the initiation of therapy for patients categorized as R5. Despite differences in sensitivity for predicting non-R5 HIV, week 8 and 24 week virological responses were similar in this treatment-experienced population. These findings suggest the potential utility of V3 genotyping as an accessible assay to select patients who may benefit from maraviroc treatment. Optimization of the predictive tropism algorithm may lead to further improvement in the clinical utility of HIV genotypic tropism assays.

  8. Migration and Tissue Tropism of Innate Lymphoid Cells

    Science.gov (United States)

    Kim, Chang H.; Hashimoto-Hill, Seika; Kim, Myunghoo

    2016-01-01

    Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research. PMID:26708278

  9. The mating brain: early maturing sneaker males maintain investment into the brain also under fast body growth in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Kotrschal, Alexander; Trombley, Susanne; Rogell, Björn; Brannström, Ioana; Foconi, Eric; Schmitz, Monika; Kolm, Niclas

    It has been suggested that mating behaviours require high levels of cognitive ability. However, since investment into mating and the brain both are costly features, their relationship is likely characterized by energetic trade-offs. Empirical data on the subject remains equivocal. We investigated if early sexual maturation was associated with brain development in Atlantic salmon ( Salmo salar ), in which males can either stay in the river and sexually mature at a small size (sneaker males) or migrate to the sea and delay sexual maturation until they have grown much larger (anadromous males). Specifically, we tested how sexual maturation may induce plastic changes in brain development by rearing juveniles on either natural or ad libitum feeding levels. After their first season we compared brain size and brain region volumes across both types of male mating tactics and females. Body growth increased greatly across both male mating tactics and females during ad libitum feeding as compared to natural feeding levels. However, despite similar relative increases in body size, early maturing sneaker males maintained larger relative brain size during ad libitum feeding levels as compared to anadromous males and females. We also detected several differences in the relative size of separate brain regions across feeding treatments, sexes and mating strategies. For instance, the relative size of the cognitive centre of the brain, the telencephalon, was largest in sneaker males. Our data support that a large relative brain size is maintained in individuals that start reproduction early also during fast body growth. We propose that the cognitive demands during complex mating behaviours maintain a high level of investment into brain development in reproducing individuals.

  10. Use of Four Next-Generation Sequencing Platforms to Determine HIV-1 Coreceptor Tropism

    Czech Academy of Sciences Publication Activity Database

    Archer, J.; Weber, Jan; Henry, K.; Winner, D.; Gibson, R.; Lee, L.; Paxinos, E.; Arts, E. J.; Robertson, D. L.; Mimms, L.; Quinones-Mateu, M. E.

    2012-01-01

    Roč. 7, č. 11 (2012), e49602/1-e49602/17 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LK11207 Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV-1 tropism * V3 region * deep sequencing Subject RIV: EE - Microbiology, Virology Impact factor: 3.730, year: 2012 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0049602

  11. Plasma HIV-1 tropism and risk of short-term clinical progression to AIDS or death

    DEFF Research Database (Denmark)

    Fontdevila, Maria Casadellà; Cozzi-Lepri, Alessandro; Phillips, Andrew

    2014-01-01

    INTRODUCTION: It is uncertain if plasma HIV-1 tropism is an independent predictor of short-term risk of clinical progression / death, in addition to the CD4 count and HIV RNA level. We conducted a nested case-control study within EuroSIDA to assess this question amongst people with current HIV RNA...

  12. Plasma HIV-1 Tropism and the Risk of Short-Term Clinical Progression to AIDS or Death

    DEFF Research Database (Denmark)

    Casadellà, Maria; Cozzi-Lepri, Alessandro; Phillips, Andrew

    2017-01-01

    OBJECTIVE: To investigate if plasma HIV-1 tropism testing could identify subjects at higher risk for clinical progression and death in routine clinical management. DESIGN: Nested case-control study within the EuroSIDA cohort. METHODS: Cases were subjects with AIDS or who died from any cause...

  13. A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons.

    Science.gov (United States)

    Li, Shu-Jing; Vaughan, Alexander; Sturgill, James Fitzhugh; Kepecs, Adam

    2018-06-06

    Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. A mosaic adenovirus possessing serotype Ad5 and serotype Ad3 knobs exhibits expanded tropism

    International Nuclear Information System (INIS)

    Takayama, Koichi; Reynolds, Paul N.; Short, Joshua J.; Kawakami, Yosuke; Adachi, Yasuo; Glasgow, Joel N.; Rots, Marianne G.; Krasnykh, Victor; Douglas, Joanne T.; Curiel, David T.

    2003-01-01

    The efficiency of cancer gene therapy with recombinant adenoviruses based on serotype 5 (Ad5) has been limited partly because of variable, and often low, expression by human primary cancer cells of the primary cellular-receptor which recognizes the knob domain of the fiber protein, the coxsackie and adenovirus receptor (CAR). As a means of circumventing CAR deficiency, Ad vectors have been retargeted by utilizing chimeric fibers possessing knob domains of alternate Ad serotypes. We have reported that ovarian cancer cells possess a primary receptor for Ad3 to which the Ad3 knob binds independently of the CAR-Ad5 knob interaction. Furthermore, an Ad5-based chimeric vector, designated Ad5/3, containing a chimeric fiber proteins possessing the Ad3 knob, demonstrates CAR-independent tropism by virtue of targeting the Ad3 receptor. Based on these findings, we hypothesized that a mosaic virus possessing both the Ad5 knob and the Ad3 knob on the same virion could utilize either primary receptor, resulting in expanded tropism. In this study, we generated a dual-knob mosaic virus by coinfection of 293 cells with Ad5-based and Ad5/3-based vectors. Characterization of the resultant virions confirmed the incorporation of both Ad5 and Ad3 knobs in the same particle. Furthermore, this mosaic virus was able to utilize either receptor, CAR and the Ad3 receptor, for virus attachment to cells. Enhanced Ad infectivity with the mosaic virus was shown in a panel of cell lines, with receptor profiles ranging from CAR-dominant to Ad3 receptor-dominant. Thus, this mosaic virus strategy may offer the potential to improve Ad-based gene therapy approaches by infectivity enhancement and tropism expansion

  15. Early treatment with lyophilized plasma protects the brain in a large animal model of combined traumatic brain injury and hemorrhagic shock

    DEFF Research Database (Denmark)

    Imam, Ayesha M; Jin, Guang; Sillesen, Martin

    2013-01-01

    Combination of traumatic brain injury (TBI) and hemorrhagic shock (HS) can result in significant morbidity and mortality. We have previously shown that early administration of fresh frozen plasma (FFP) in a large animal model of TBI and HS reduces the size of the brain lesion as well as the assoc...... as the associated edema. However, FFP is a perishable product that is not well suited for use in the austere prehospital settings. In this study, we tested whether a shelf-stable, low-volume, lyophilized plasma (LSP) product was as effective as FFP.......Combination of traumatic brain injury (TBI) and hemorrhagic shock (HS) can result in significant morbidity and mortality. We have previously shown that early administration of fresh frozen plasma (FFP) in a large animal model of TBI and HS reduces the size of the brain lesion as well...

  16. Early postnatal docosahexaenoic acid levels and improved preterm brain development

    OpenAIRE

    Tam, Emily W.Y.; Chau, Vann; Barkovich, A. James; Ferriero, Donna M.; Miller, Steven P.; Rogers, Elizabeth E.; Grunau, Ruth E.; Synnes, Anne R.; Xu, Duan; Foong, Justin; Brant, Rollin; Innis, Sheila M.

    2016-01-01

    Background Preterm birth has a dramatic impact on polyunsaturated fatty acid exposures for the developing brain. This study examined the association between postnatal fatty acid levels and measures of brain injury and development, as well as outcomes. Methods A cohort of 60 preterm newborns (24?32 weeks GA) was assessed using early and near-term MRI studies. Red blood cell fatty acid composition was analyzed coordinated with each scan. Outcome at a mean of 33 months corrected age was assessed...

  17. [Correlation between RNA Expression Level and Early PMI in Human Brain Tissue].

    Science.gov (United States)

    Lü, Y H; Ma, K J; Li, Z H; Gu, J; Bao, J Y; Yang, Z F; Gao, J; Zeng, Y; Tao, L; Chen, L

    2016-08-01

    To explore the correlation between the expression levels of several RNA markers in human brain tissue and early postmortem interval (PMI). Twelve individuals with known PMI (range from 4.3 to 22.5 h) were selected and total RNA was extracted from brain tissue. Eight commonly used RNA markers were chosen including β -actin, GAPDH, RPS29, 18S rRNA, 5S rRNA, U6 snRNA, miRNA-9 and miRNA-125b, and the expression levels were detected in brain tissue by real-time fluorescent quantitative PCR. The internal reference markers with stable expression in early PMI were screened using geNorm software and the relationship between its expression level and some relevant factors such as age, gender and cause of death were analyzed. RNA markers normalized by internal reference were inserted into the mathematic model established by previous research for PMI estimation using R software. Model quality was judged by the error rate calculated with estimated PMI. 5S rRNA, miRNA-9 and miRNA-125b showed quite stable expression and their expression levels had no relation with age, gender and cause of death. The error rate of estimated PMI using β -actin was 24.6%, while GAPDH was 41.0%. 5S rRNA, miRNA-9 and miRNA-125b are suitable as internal reference markers of human brain tissue owing to their stable expression in early PMI. The expression level of β -actin correlates well with PMI, which can be used as an additional index for early PMI estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine

  18. Early Life Experience and Gut Microbiome: The Brain-Gut-Microbiota Signaling System.

    Science.gov (United States)

    Cong, Xiaomei; Henderson, Wendy A; Graf, Joerg; McGrath, Jacqueline M

    2015-10-01

    Over the past decades, advances in neonatal care have led to substantial increases in survival among preterm infants. With these gains, recent concerns have focused on increases in neurodevelopment morbidity related to the interplay between stressful early life experiences and the immature neuroimmune systems. This interplay between these complex mechanisms is often described as the brain-gut signaling system. The role of the gut microbiome and the brain-gut signaling system have been found to be remarkably related to both short- and long-term stress and health. Recent evidence supports that microbial species, ligands, and/or products within the developing intestine play a key role in early programming of the central nervous system and regulation of the intestinal innate immunity. The purpose of this state-of-the-science review is to explore the supporting evidence demonstrating the importance of the brain-gut-microbiota axis in regulation of early life experience. We also discuss the role of gut microbiome in modulating stress and pain responses in high-risk infants. A conceptual framework has been developed to illustrate the regulation mechanisms involved in early life experience. The science in this area is just beginning to be uncovered; having a fundamental understanding of these relationships will be important as new discoveries continue to change our thinking, leading potentially to changes in practice and targeted interventions.

  19. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.

    Science.gov (United States)

    Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao

    2018-04-12

    Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating brain structural changes during this early developmental period provides new insights into the complicated processes of both typical brain development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional gradients of maturation in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018. Published by Elsevier Inc.

  20. In Vivo Imaging with Bioluminescent Enterovirus 71 Allows for Real-Time Visualization of Tissue Tropism and Viral Spread.

    Science.gov (United States)

    Caine, Elizabeth A; Osorio, Jorge E

    2017-03-01

    Hand, foot, and mouth disease (HFMD) is a reemerging illness caused by a variety of enteroviruses. The main causative agents are enterovirus 71 (EV71), coxsackievirus A16 (CVA16), and, most recently, coxsackievirus A6 (CVA6). Enterovirus infections can vary from asymptomatic infections to those with a mild fever and blisters on infected individuals' hands, feet, and throats to infections with severe neurological complications. Viral persistence for weeks postinfection (wpi) has also been documented by the demonstration of virus in children's stools. However, little is known about disease progression, viral spread, and tissue tropism of these viruses. These types of studies are limited because many recently developed mouse models mimic the severe neurological complications that occur in a small percentage of enterovirus infections. In the present study, we documented real-time EV71 infection in two different mouse strains by the use of in vivo imaging. Infection of BALB/c mice with a bioluminescent mouse-adapted EV71 construct (mEV71-NLuc) resulted in a lack of clinical signs of disease but in relatively high viral replication, as visualized by luminescence, for 2 wpi. In contrast, mEV71-NLuc infection of AG129 mice (alpha/beta and gamma interferon receptor deficient) showed rapid spread and long-term persistence of the virus in the brain. Interestingly, AG129 mice that survived infection maintained luminescence in the brain for up to 8 wpi. The results we present here will allow future studies on EV71 antiviral drug susceptibility, vaccine efficacy, transmissibility, and pathogenesis. IMPORTANCE We report here that a stable full-length enterovirus 71 (EV71) reporter construct was used to visualize real-time viral spread in AG129 and BALB/c mice. To our knowledge, this is the first report of in vivo imaging of infection with any member of the Picornaviridae family. The nanoluciferase (NLuc) gene, one of the smallest luciferase genes currently available, was shown to

  1. Envelope gene sequences encoding variable regions 3 and 4 are involved in macrophage tropism of feline immunodeficiency virus

    NARCIS (Netherlands)

    Horzinek, M.C.; Vahlenkamp, T.W.; Ronde, A. de; Schuurman, N.M.P.; Vliet, A.L.W. van; Drunen, J. van; Egberink, H.F.

    1999-01-01

    The envelope is of cardinal importance for the entry of feline immunodeficiency virus (FIV) into its host cells, which consist of cells of the immune system including macrophages. To characterize the envelope glycoprotein determinants involved in macrophage tropism, chimeric infectious molecular

  2. Early Effects of Lipopolysaccharide-Induced Inflammation on Foetal Brain Development in Rat

    Directory of Open Access Journals (Sweden)

    Cristina A Ghiani

    2011-10-01

    Full Text Available Studies in humans and animal models link maternal infection and imbalanced levels of inflammatory mediators in the foetal brain to the aetiology of neuropsychiatric disorders. In a number of animal models, it was shown that exposure to viral or bacterial agents during a period that corresponds to the second trimester in human gestation triggers brain and behavioural abnormalities in the offspring. However, little is known about the early cellular and molecular events elicited by inflammation in the foetal brain shortly after maternal infection has occurred. In this study, maternal infection was mimicked by two consecutive intraperitoneal injections of 200 μg of LPS (lipopolysaccharide/kg to timed-pregnant rats at GD15 (gestational day 15 and GD16. Increased thickness of the CP (cortical plate and hippocampus together with abnormal distribution of immature neuronal markers and decreased expression of markers for neural progenitors were observed in the LPS-exposed foetal forebrains at GD18. Such effects were accompanied by decreased levels of reelin and the radial glial marker GLAST (glial glutamate transporter, and elevated levels of pro-inflammatory cytokines in maternal serum and foetal forebrains. Foetal inflammation elicited by maternal injections of LPS has discrete detrimental effects on brain development. The early biochemical and morphological changes described in this work begin to explain the sequelae of early events that underlie the neurobehavioural deficits reported in humans and animals exposed to prenatal insults.

  3. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants.

    Science.gov (United States)

    Dubois, J; Dehaene-Lambertz, G; Kulikova, S; Poupon, C; Hüppi, P S; Hertz-Pannier, L

    2014-09-12

    Studying how the healthy human brain develops is important to understand early pathological mechanisms and to assess the influence of fetal or perinatal events on later life. Brain development relies on complex and intermingled mechanisms especially during gestation and first post-natal months, with intense interactions between genetic, epigenetic and environmental factors. Although the baby's brain is organized early on, it is not a miniature adult brain: regional brain changes are asynchronous and protracted, i.e. sensory-motor regions develop early and quickly, whereas associative regions develop later and slowly over decades. Concurrently, the infant/child gradually achieves new performances, but how brain maturation relates to changes in behavior is poorly understood, requiring non-invasive in vivo imaging studies such as magnetic resonance imaging (MRI). Two main processes of early white matter development are reviewed: (1) establishment of connections between brain regions within functional networks, leading to adult-like organization during the last trimester of gestation, (2) maturation (myelination) of these connections during infancy to provide efficient transfers of information. Current knowledge from post-mortem descriptions and in vivo MRI studies is summed up, focusing on T1- and T2-weighted imaging, diffusion tensor imaging, and quantitative mapping of T1/T2 relaxation times, myelin water fraction and magnetization transfer ratio. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Appraising the performance of genotyping tools in the prediction of coreceptor tropism in HIV-1 subtype C viruses

    Directory of Open Access Journals (Sweden)

    Crous Saleema

    2012-09-01

    Full Text Available Abstract Background In human immunodeficiency virus type 1 (HIV-1 infection, transmitted viruses generally use the CCR5 chemokine receptor as a coreceptor for host cell entry. In more than 50% of subtype B infections, a switch in coreceptor tropism from CCR5- to CXCR4-use occurs during disease progression. Phenotypic or genotypic approaches can be used to test for the presence of CXCR4-using viral variants in an individual’s viral population that would result in resistance to treatment with CCR5-antagonists. While genotyping approaches for coreceptor-tropism prediction in subtype B are well established and verified, they are less so for subtype C. Methods Here, using a dataset comprising V3 loop sequences from 349 CCR5-using and 56 CXCR4-using HIV-1 subtype C viruses we perform a comparative analysis of the predictive ability of 11 genotypic algorithms in their prediction of coreceptor tropism in subtype C. We calculate the sensitivity and specificity of each of the approaches as well as determining their overall accuracy. By separating the CXCR4-using viruses into CXCR4-exclusive (25 sequences and dual-tropic (31 sequences we evaluate the effect of the possible conflicting signal from dual-tropic viruses on the ability of a of the approaches to correctly predict coreceptor phenotype. Results We determined that geno2pheno with a false positive rate of 5% is the best approach for predicting CXCR4-usage in subtype C sequences with an accuracy of 94% (89% sensitivity and 99% specificity. Contrary to what has been reported for subtype B, the optimal approaches for prediction of CXCR4-usage in sequence from viruses that use CXCR4 exclusively, also perform best at predicting CXCR4-use in dual-tropic viral variants. Conclusions The accuracy of genotyping approaches at correctly predicting the coreceptor usage of V3 sequences from subtype C viruses is very high. We suggest that genotyping approaches can be used to test for coreceptor tropism in HIV-1

  5. A longitudinal analysis of regional brain volumes in macaques exposed to X-irradiation in early gestation.

    Directory of Open Access Journals (Sweden)

    Kristina Aldridge

    Full Text Available Early gestation represents a period of vulnerability to environmental insult that has been associated with adult psychiatric disease. However, little is known about how prenatal perturbation translates into adult brain dysfunction. Here, we use a longitudinal study design to examine the effects of disruption of early gestational neurogenesis on brain volume in the non-human primate.Five Rhesus macaques were exposed to x-irradiation in early gestation (E30-E41, and four control monkeys were sham-irradiated at comparable ages. Whole brain magnetic resonance imaging was performed at 6 months, 12 months, and 3 and 5 years of age. Volumes of whole cerebrum, cortical gray matter, caudate, putamen, and thalamus were estimated using semi-automated segmentation methods and high dimensional brain mapping. Volume reductions spanning all ages were observed in irradiated monkeys in the putamen (15-24%, p = 0.01 and in cortical gray matter (6-15%, p = 0.01. Upon covarying for whole cerebral volume, group differences were reduced to trend levels (putamen: p = 0.07; cortical gray matter: p = 0.08. No group-by-age effects were significant.Due to the small number of observations, the conclusions drawn from this study must be viewed as tentative. Early gestational irradiation may result in non-uniform reduction of gray matter, mainly affecting the putamen and cerebral cortex. This may be relevant to understanding how early prenatal environmental insult could lead to brain morphological differences in neurodevelopmental diseases.

  6. Canine Cutaneous Leishmaniasis: Dissemination and Tissue Tropism of Genetically Distinct Leishmania (Viannia braziliensis Populations

    Directory of Open Access Journals (Sweden)

    Guilherme Marx de Oliveira

    2013-01-01

    Full Text Available Little is known regarding the internal dissemination of initial cutaneous lesions and tissue tropism of Leishmania (Viannia braziliensis populations in naturally infected dogs. The aim of this study was to investigate genetic polymorphisms of L. (V. braziliensis populations in different anatomic sites of naturally infected dogs by using polymerase chain reaction (PCR and low-stringency single specific primer-PCR (LSSP-PCR techniques. The amplified products were analyzed by LSSP-PCR to investigate the genetic variability of the parasite populations present in different anatomical sites. Twenty-three out of the 52 samples gave PCR-positive results. The existence of L. (V. braziliensis strains that remained restricted to cutaneous lesions and others showing characteristics of dissemination to internal organs and healthy skin was observed. LSSP-PCR and numerical analyses revealed that parasite populations that do not disseminate were genetically similar and belonged to a separate phenetic cluster. In contrast, populations that showed spreading to internal organs displayed a more polymorphic genetic profile. Despite the heterogeneity, L. (V. braziliensis populations with identical genetic profiles were observed in popliteal and cervical lymph nodes of the same animal. Our results indicate that infection in dogs can be manifested by dissemination and tissue tropism of genetically distinct populations of L. (V. braziliensis.

  7. Molecular determinants of the V3 loop of human immunodeficiency virus type 1 glycoprotein gp120 responsible for controlling cell tropism.

    Science.gov (United States)

    Chavda, S C; Griffin, P; Han-Liu, Z; Keys, B; Vekony, M A; Cann, A J

    1994-11-01

    We and others have identified the major determinant of cell tropism in human immunodeficiency virus type 1 (HIV-1) as the V3 loop of glycoprotein gp120. We have conducted a detailed study of two molecularly cloned isolates of HIV-1, HIVJR-CSF and HIVNL4-3, that differ in their tropism for immortalized CD4+ cell lines, by constructing a series of site-directed mutations within the V3 loop of HIVJR-CSF based on the sequence of HIVNL4-3. The phenotypes of these mutants fall into two classes, those which are viable and those which are not. A spontaneous mutant with significantly altered growth properties was also recovered and found to have an additional single amino acid change in the V3 loop sequence. The carboxy-terminal beta-strand part of the V3 loop is the major determinant of cell tropism. However, the results presented here indicate that the functional role of the V3 loop sequences can only be interpreted properly in the context of the original gp120 backbone from which they were derived. These findings show that over-simplistic interpretation of sequence data derived from unknown mixtures of HIV variants in infected persons may be highly misleading.

  8. Neuropeptides as mediators of the early-life impact on the brain; implications for alcohol use disorders

    Directory of Open Access Journals (Sweden)

    Ingrid eNylander

    2012-07-01

    Full Text Available The brain is constantly exposed to external and internal input and to function in an ever-changing environment we are dependent on processes that enable the brain to adapt to new stimuli. Exposure to postnatal environmental stimuli can interfere with vital adaption processes and cause long-term changes in physiological function and behaviour. Early-life alterations in brain function may result in impaired ability to adapt to new situations, in altered sensitivity to challenges later in life and thereby mediate risk or protection for psychopathology such as alcohol use disorders (AUD. In clinical research the studies of mechanisms, mediators and causal relation between early environmental factors and vulnerability to AUD are restricted and attempts are made to find valid animal models for studies of the early-life influence on the brain. This review focuses on rodent models and the effects of adverse and naturalistic conditions on peptide networks within the brain and pituitary gland. Importantly, the consequences of alcohol addiction are not discussed but rather neurobiological alterations that can cause risk consumption and vulnerability to addiction. The article reviews earlier results and includes new data with emphasis on endogenous opioid peptides but also oxytocin and vasopressin. These peptides are vital for developmental processes and it is hypothesized that early-life changes in peptide networks may interfere with neuronal processes and thereby contribute the individual vulnerability for AUD. The summarized results indicate a link between early-life rearing conditions, opioids and ethanol consumption and that the ethanol-induced effects and the treatment with opioid antagonists later in life are dependent on early-life experiences. Endogenous opioids are therefore of interest to further study in the early-life impact on individual differences in vulnerability to AUD and treatment outcome.

  9. Early functional and morphological brain disturbances in late-onset intrauterine growth restriction.

    Science.gov (United States)

    Starčević, Mirta; Predojević, Maja; Butorac, Dražan; Tumbri, Jasna; Konjevoda, Paško; Kadić, Aida Salihagić

    2016-02-01

    To determine whether the brain disturbances develop in late-onset intrauterine growth restriction (IUGR) before blood flow redistribution towards the fetal brain (detected by Doppler measurements in the middle cerebral artery and umbilical artery). Further, to evaluate predictive values of Doppler arterial indices and umbilical cord blood gases and pH for early functional and/or morphological brain disturbances in late-onset IUGR. This cohort study included 60 singleton term pregnancies with placental insufficiency caused late-onset IUGR (IUGR occurring after 34 gestational weeks). Umbilical artery resistance index (URI), middle cerebral artery resistance index (CRI), and cerebroumbilical (C/U) ratio (CRI/URI) were monitored once weekly. Umbilical blood cord samples (arterial and venous) were collected for the analysis of pO2, pCO2 and pH. Morphological neurological outcome was evaluated by cranial ultrasound (cUS), whereas functional neurological outcome by Amiel-Tison Neurological Assessment at Term (ATNAT). 50 fetuses had C/U ratio>1, and 10 had C/U ratio≤1; among these 10 fetuses, 9 had abnormal neonatal cUS findings and all 10 had non-optimal ATNAT. However, the total number of abnormal neurological findings was much higher. 32 neonates had abnormal cUS (53.37%), and 42 (70.00%) had non-optimal ATNAT. Furthermore, Doppler indices had higher predictive validity for early brain disturbances than umbilical cord blood gases and pH. C/U ratio had the highest predictive validity with threshold for adverse neurological outcome at value 1.13 (ROC analysis), i.e., 1.18 (party machine learning algorithm). Adverse neurological outcome at average values of C/U ratios>1 confirmed that early functional and/or structural brain disturbances in late-onset IUGR develop even before activation of fetal cardiovascular compensatory mechanisms, i.e., before Doppler signs of blood flow redistribution between the fetal brain and the placenta. Copyright © 2015 Elsevier Ireland Ltd

  10. Brain Network Involved in the Recognition of Facial Expressions of Emotion in the Early Blind

    Directory of Open Access Journals (Sweden)

    Ryo Kitada

    2011-10-01

    Full Text Available Previous studies suggest that the brain network responsible for the recognition of facial expressions of emotion (FEEs begins to emerge early in life. However, it has been unclear whether visual experience of faces is necessary for the development of this network. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI experiments to test the hypothesis that the brain network underlying the recognition of FEEs is not dependent on visual experience of faces. Early-blind, late-blind and sighted subjects participated in the psychophysical experiment. Regardless of group, subjects haptically identified basic FEEs at above-chance levels, without any feedback training. In the subsequent fMRI experiment, the early-blind and sighted subjects haptically identified facemasks portraying three different FEEs and casts of three different shoe types. The sighted subjects also completed a visual task that compared the same stimuli. Within the brain regions activated by the visually-identified FEEs (relative to shoes, haptic identification of FEEs (relative to shoes by the early-blind and sighted individuals activated the posterior middle temporal gyrus adjacent to the superior temporal sulcus, the inferior frontal gyrus, and the fusiform gyrus. Collectively, these results suggest that the brain network responsible for FEE recognition can develop without any visual experience of faces.

  11. Genotypic tropism testing by massively parallel sequencing: qualitative and quantitative analysis

    Directory of Open Access Journals (Sweden)

    Thiele Bernhard

    2011-05-01

    Full Text Available Abstract Background Inferring viral tropism from genotype is a fast and inexpensive alternative to phenotypic testing. While being highly predictive when performed on clonal samples, sensitivity of predicting CXCR4-using (X4 variants drops substantially in clinical isolates. This is mainly attributed to minor variants not detected by standard bulk-sequencing. Massively parallel sequencing (MPS detects single clones thereby being much more sensitive. Using this technology we wanted to improve genotypic prediction of coreceptor usage. Methods Plasma samples from 55 antiretroviral-treated patients tested for coreceptor usage with the Monogram Trofile Assay were sequenced with standard population-based approaches. Fourteen of these samples were selected for further analysis with MPS. Tropism was predicted from each sequence with geno2pheno[coreceptor]. Results Prediction based on bulk-sequencing yielded 59.1% sensitivity and 90.9% specificity compared to the trofile assay. With MPS, 7600 reads were generated on average per isolate. Minorities of sequences with high confidence in CXCR4-usage were found in all samples, irrespective of phenotype. When using the default false-positive-rate of geno2pheno[coreceptor] (10%, and defining a minority cutoff of 5%, the results were concordant in all but one isolate. Conclusions The combination of MPS and coreceptor usage prediction results in a fast and accurate alternative to phenotypic assays. The detection of X4-viruses in all isolates suggests that coreceptor usage as well as fitness of minorities is important for therapy outcome. The high sensitivity of this technology in combination with a quantitative description of the viral population may allow implementing meaningful cutoffs for predicting response to CCR5-antagonists in the presence of X4-minorities.

  12. Genotypic tropism testing by massively parallel sequencing: qualitative and quantitative analysis.

    Science.gov (United States)

    Däumer, Martin; Kaiser, Rolf; Klein, Rolf; Lengauer, Thomas; Thiele, Bernhard; Thielen, Alexander

    2011-05-13

    Inferring viral tropism from genotype is a fast and inexpensive alternative to phenotypic testing. While being highly predictive when performed on clonal samples, sensitivity of predicting CXCR4-using (X4) variants drops substantially in clinical isolates. This is mainly attributed to minor variants not detected by standard bulk-sequencing. Massively parallel sequencing (MPS) detects single clones thereby being much more sensitive. Using this technology we wanted to improve genotypic prediction of coreceptor usage. Plasma samples from 55 antiretroviral-treated patients tested for coreceptor usage with the Monogram Trofile Assay were sequenced with standard population-based approaches. Fourteen of these samples were selected for further analysis with MPS. Tropism was predicted from each sequence with geno2pheno[coreceptor]. Prediction based on bulk-sequencing yielded 59.1% sensitivity and 90.9% specificity compared to the trofile assay. With MPS, 7600 reads were generated on average per isolate. Minorities of sequences with high confidence in CXCR4-usage were found in all samples, irrespective of phenotype. When using the default false-positive-rate of geno2pheno[coreceptor] (10%), and defining a minority cutoff of 5%, the results were concordant in all but one isolate. The combination of MPS and coreceptor usage prediction results in a fast and accurate alternative to phenotypic assays. The detection of X4-viruses in all isolates suggests that coreceptor usage as well as fitness of minorities is important for therapy outcome. The high sensitivity of this technology in combination with a quantitative description of the viral population may allow implementing meaningful cutoffs for predicting response to CCR5-antagonists in the presence of X4-minorities.

  13. Structural brain abnormalities in early onset first-episode psychosis

    DEFF Research Database (Denmark)

    Pagsberg, A K; Baaré, William Frans Christian; Raabjerg Christensen, A M

    2007-01-01

    BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder...... that schizophrenia patients (n = 15) had significantly larger lateral ventricles as compared to controls. Duration and dose of antipsychotics correlated negatively with global gray matter volume in minimally medicated patients (n = 18). CONCLUSION: Findings of white matter changes and enlarged lateral ventricles...... already at illness onset in young schizophrenia spectrum patients, suggests aberrant neurodevelopmental processes in the pathogenesis of these disorders. Gray matter volume changes, however, appear not to be a key feature in early onset first-episode psychosis....

  14. Early life adversity is associated with brain changes in subjects at family risk for depression.

    LENUS (Irish Health Repository)

    Carballedo, Angela

    2012-12-01

    The interplay of genetic and early environmental factors is recognized as an important factor in the aetiology of major depressive disorder (MDD). The aim of the present study was to examine whether reduced volume of hippocampus and frontal brain regions involved in emotional regulation are already present in unaffected healthy individuals at genetic risk of suffering MDD and to investigate whether early life adversity is a relevant factor interacting with these reduced brain structures.

  15. Early tracheostomy in severe traumatic brain injury: evidence for decreased mechanical ventilation and increased hospital mortality

    Science.gov (United States)

    Dunham, C Michael; Cutrona, Anthony F; Gruber, Brian S; Calderon, Javier E; Ransom, Kenneth J; Flowers, Laurie L

    2014-01-01

    Objective: In the past, the authors performed a comprehensive literature review to identify all randomized controlled trials assessing the impact of early tracheostomy on severe brain injury outcomes. The search produced only two trials, one by Sugerman and another by Bouderka. Subjects and methods: The current authors initiated an Institutional Review Board-approved severe brain injury randomized trial to evaluate the impact of early tracheostomy on ventilator-associated pneumonia rates, intensive care unit (ICU)/ventilator days, and hospital mortality. Current study results were compared with the other randomized trials and a meta-analysis was performed. Results: Early tracheostomy pneumonia rates were Sugerman-48.6%, Bouderka-58.1%, and current study-46.7%. No early tracheostomy pneumonia rates were Sugerman-53.1%, Bouderka-61.3%, and current study-44.4%. Pneumonia rate meta-analysis showed no difference for early tracheostomy and no early tracheostomy (OR 0.89; p = 0.71). Early tracheostomy ICU/ventilator days were Sugerman-16 ± 5.9, Bouderka-14.5 ± 7.3, and current study-14.1 ± 5.7. No early tracheostomy ICU/ventilator days were Sugerman-19 ± 11.3, Bouderka-17.5 ± 10.6, and current study-17 ± 5.4. ICU/ventilator day meta-analysis showed 2.9 fewer days with early tracheostomy (p = 0.02). Early tracheostomy mortality rates were Sugerman-14.3%, Bouderka-38.7%, and current study-0%. No early tracheostomy mortality rates were Sugerman-3.2%, Bouderka-22.6%, and current study-0%. Randomized trial mortality rate meta-analysis showed a higher rate for early tracheostomy (OR 2.68; p = 0.05). Because the randomized trials were small, a literature assessment was undertaken to find all retrospective studies describing the association of early tracheostomy on severe brain injury hospital mortality. The review produced five retrospective studies, with a total of 3,356 patients. Retrospective study mortality rate meta-analysis demonstrated a larger mortality for early

  16. Early Environmental Enrichment Enhances Abnormal Brain Connectivity in a Rabbit Model of Intrauterine Growth Restriction.

    Science.gov (United States)

    Illa, Miriam; Brito, Verónica; Pla, Laura; Eixarch, Elisenda; Arbat-Plana, Ariadna; Batallé, Dafnis; Muñoz-Moreno, Emma; Crispi, Fatima; Udina, Esther; Figueras, Francesc; Ginés, Silvia; Gratacós, Eduard

    2017-10-12

    The structural correspondence of neurodevelopmental impairments related to intrauterine growth restriction (IUGR) that persists later in life remains elusive. Moreover, early postnatal stimulation strategies have been proposed to mitigate these effects. Long-term brain connectivity abnormalities in an IUGR rabbit model and the effects of early postnatal environmental enrichment (EE) were explored. IUGR was surgically induced in one horn, whereas the contralateral one produced the controls. Postnatally, a subgroup of IUGR animals was housed in an enriched environment. Functional assessment was performed at the neonatal and long-term periods. At the long-term period, structural brain connectivity was evaluated by means of diffusion-weighted brain magnetic resonance imaging and by histological assessment focused on the hippocampus. IUGR animals displayed poorer functional results and presented altered whole-brain networks and decreased median fractional anisotropy in the hippocampus. Reduced density of dendritic spines and perineuronal nets from hippocampal neurons were also observed. Of note, IUGR animals exposed to enriched environment presented an improvement in terms of both function and structure. IUGR is associated with altered brain connectivity at the global and cellular level. A strategy based on early EE has the potential to restore the neurodevelopmental consequences of IUGR. © 2017 S. Karger AG, Basel.

  17. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel; Chapman, Shira; Bloch-Shilderman, Eugenia; Grauer, Ettie, E-mail: ettieg@iibr.gov.il

    2016-11-01

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. In all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.

  18. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    International Nuclear Information System (INIS)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel; Chapman, Shira; Bloch-Shilderman, Eugenia; Grauer, Ettie

    2016-01-01

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. In all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.

  19. Development of Brain EEG Connectivity across Early Childhood: Does Sleep Play a Role?

    Directory of Open Access Journals (Sweden)

    Monique K. LeBourgeois

    2013-11-01

    Full Text Available Sleep has beneficial effects on brain function and learning, which are reflected in plastic changes in the cortex. Early childhood is a time of rapid maturation in fundamental skills—e.g., language, cognitive control, working memory—that are predictive of future functioning. Little is currently known about the interactions between sleep and brain maturation during this developmental period. We propose coherent electroencephalogram (EEG activity during sleep may provide unique insight into maturational processes of functional brain connectivity. Longitudinal sleep EEG assessments were performed in eight healthy subjects at ages 2, 3 and 5 years. Sleep EEG coherence increased across development in a region- and frequency-specific manner. Moreover, although connectivity primarily decreased intra-hemispherically across a night of sleep, an inter-hemispheric overnight increase occurred in the frequency range of slow waves (0.8–2 Hz, theta (4.8–7.8 Hz and sleep spindles (10–14 Hz, with connectivity changes of up to 20% across a night of sleep. These findings indicate sleep EEG coherence reflects processes of brain maturation—i.e., programmed unfolding of neuronal networks—and moreover, sleep-related alterations of brain connectivity during the sensitive maturational window of early childhood.

  20. Predominant CD4 T-lymphocyte tropism of human herpesvirus 6-related virus.

    OpenAIRE

    Takahashi, K; Sonoda, S; Higashi, K; Kondo, T; Takahashi, H; Takahashi, M; Yamanishi, K

    1989-01-01

    Human herpesvirus 6 (HHV-6)-related virus was isolated from CD4+ CD8- and CD3+ CD4+ mature T lymphocytes but could not be isolated from CD4- CD8+, CD4- CD8-, and CD3- T cells in the peripheral blood of exanthem subitum patients. HHV-6-related virus predominantly infected CD4+ CD8+, CD4+ CD8-, and CD3+ CD4+ cells with mature phenotypes and rarely infected CD4- CD8+ cells from cord blood mononuclear cells, which suggested predominant CD4 mature T-lymphocyte tropism of HHV-6-related virus.

  1. Early Language Learning and the Social Brain.

    Science.gov (United States)

    Kuhl, Patricia K

    2014-01-01

    Explaining how every typically developing child acquires language is one of the grand challenges of cognitive neuroscience. Historically, language learning provoked classic debates about the contributions of innately specialized as opposed to general learning mechanisms. Now, new data are being brought to bear from studies that employ magnetoencephalograph (MEG), electroencephalograph (EEG), magnetic resonance imaging (MRI), and diffusion tensor imaging (DTI) studies on young children. These studies examine the patterns of association between brain and behavioral measures. The resulting data offer both expected results and surprises that are altering theory. As we uncover what it means to be human through the lens of young children, and their ability to speak, what we learn will not only inform theories of human development, but also lead to the discovery of neural biomarkers, early in life, that indicate risk for language impairment and allow early intervention for children with developmental disabilities involving language. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. Serial cranial ultrasonography or early MRI for detecting preterm brain injury?

    NARCIS (Netherlands)

    Plaisier, Annemarie; Raets, Marlou M A; Ecury-Goossen, Ginette M; Govaert, Paul; Feijen-Roon, Monique; Reiss, Irwin K M; Smit, Liesbeth S; Lequin, Maarten H; Dudink, Jeroen

    OBJECTIVE: To investigate detection ability and feasibility of serial cranial ultrasonography (CUS) and early MRI in preterm brain injury. DESIGN: Prospective cohort study. SETTING: Level III neonatal intensive care unit. PATIENTS: 307 infants, born below 29 weeks of gestation. METHODS: Serial CUS

  3. SPECT perfusion brain scintigraphy in dementia: early diagnostic and differential diagnostic

    International Nuclear Information System (INIS)

    Klisarova, A.

    2003-01-01

    The present review discusses the role of Single Photon Emission Computer Tomography (SPECT) and Positron Emission Tomography (PET) for the early detection and the differential diagnosis of the different types of dementia. The usefulness of the functional imaging is particularly emphasized in the detection of the early changes occurring in Alzheimer's diseases. The early diagnosis is a crucial factor for the treatment in the phase of reversible changes. The correlation between the severity of the diseases and the degree of hypoperfusion of the functional neuroimaging is also subject to review. SPECT and PET are of particular importance for the differential diagnosis of the various kinds of dementia. The imaging models are defined for the different stages of diseases. The functional imaging together with the clinical tests increase the diagnostic accuracy in Alzheimer's disease. The review presents the relation between the development of Alzheimer's disease and some risk factors. The review confirms the usefulness of SPECT and PET in the early diagnosis of Alzheimer's disease and the differential diagnosis of the different types of dementia which proves the SPECT appropriateness in the routine clinical practice. The brain structures are more advantageous than the other methods of visualisation (CT and MRI) for the detection of the functional disorders in the brain cortex in a number of diseases of the central nervous system. (author)

  4. Neural Basis of Brain Dysfunction Produced by Early Sleep Problems

    Directory of Open Access Journals (Sweden)

    Jun Kohyama

    2016-01-01

    Full Text Available There is a wealth of evidence that disrupted sleep and circadian rhythms, which are common in modern society even during the early stages of life, have unfavorable effects on brain function. Altered brain function can cause problem behaviors later in life, such as truancy from or dropping out of school, quitting employment, and committing suicide. In this review, we discuss findings from several large cohort studies together with recent results of a cohort study using the marshmallow test, which was first introduced in the 1960s. This test assessed the ability of four-year-olds to delay gratification and showed how this ability correlated with success later in life. The role of the serotonergic system in sleep and how this role changes with age are also discussed. The serotonergic system is involved in reward processing and interactions with the dorsal striatum, ventral striatum, and the prefrontal cortex are thought to comprise the neural basis for behavioral patterns that are affected by the quantity, quality, and timing of sleep early in life.

  5. Neural Basis of Brain Dysfunction Produced by Early Sleep Problems.

    Science.gov (United States)

    Kohyama, Jun

    2016-01-29

    There is a wealth of evidence that disrupted sleep and circadian rhythms, which are common in modern society even during the early stages of life, have unfavorable effects on brain function. Altered brain function can cause problem behaviors later in life, such as truancy from or dropping out of school, quitting employment, and committing suicide. In this review, we discuss findings from several large cohort studies together with recent results of a cohort study using the marshmallow test, which was first introduced in the 1960s. This test assessed the ability of four-year-olds to delay gratification and showed how this ability correlated with success later in life. The role of the serotonergic system in sleep and how this role changes with age are also discussed. The serotonergic system is involved in reward processing and interactions with the dorsal striatum, ventral striatum, and the prefrontal cortex are thought to comprise the neural basis for behavioral patterns that are affected by the quantity, quality, and timing of sleep early in life.

  6. Endothelial cell tropism is a determinant of H5N1 pathogenesis in mammalian species.

    Directory of Open Access Journals (Sweden)

    Smanla Tundup

    2017-03-01

    Full Text Available The cellular and molecular mechanisms underpinning the unusually high virulence of highly pathogenic avian influenza H5N1 viruses in mammalian species remains unknown. Here, we investigated if the cell tropism of H5N1 virus is a determinant of enhanced virulence in mammalian species. We engineered H5N1 viruses with restricted cell tropism through the exploitation of cell type-specific microRNA expression by incorporating microRNA target sites into the viral genome. Restriction of H5N1 replication in endothelial cells via miR-126 ameliorated disease symptoms, prevented systemic viral spread and limited mortality, despite showing similar levels of peak viral replication in the lungs as compared to control virus-infected mice. Similarly, restriction of H5N1 replication in endothelial cells resulted in ameliorated disease symptoms and decreased viral spread in ferrets. Our studies demonstrate that H5N1 infection of endothelial cells results in excessive production of cytokines and reduces endothelial barrier integrity in the lungs, which culminates in vascular leakage and viral pneumonia. Importantly, our studies suggest a need for a combinational therapy that targets viral components, suppresses host immune responses, and improves endothelial barrier integrity for the treatment of highly pathogenic H5N1 virus infections.

  7. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice

    International Nuclear Information System (INIS)

    Shinya, Kyoko; Hamm, Stefan; Hatta, Masato; Ito, Hiroshi; Ito, Toshihiro; Kawaoka, Yoshihiro

    2004-01-01

    A single amino acid substitution, from glutamic acid to lysine at position 627 of the PB2 protein, converts a nonlethal H5N1 influenza A virus isolated from a human to a lethal virus in mice. In contrast to the nonlethal virus, which replicates only in respiratory organs, the lethal isolate replicates in a variety of organs, producing systemic infection. Despite a clear difference in virulence and organ tropism between the two viruses, it remains unknown whether the dissimilarity is a result of differences in cell tropism or the reduced replicative ability of the nonlethal virus in mouse cells in general. To determine how this single amino acid change affects virulence and organ tropism in mice, we investigated the growth kinetics of the two H5N1 viruses both in vitro and in vivo. The identity of the PB2 amino acid at position 627 did not appreciably affect viral replicative efficiency in chicken embryo fibroblasts and a quail cell line; however, viruses with lysine at this position instead of glutamic acid grew better in the different mouse cells tested. When the effect of this substitution was investigated in mice, all of the test viruses showed the same cell tropism, but infection by viruses containing lysine at position 627 spread more rapidly than those viruses containing glutamic acid at this position. Further analysis showed a difference in local immune responses: neutrophil infiltration in lungs infected with viruses containing lysine at position 627 persisted longer than that associated with viruses lacking a glutamic acid substitution. Our data indicate that the amino acid at position 627 of the PB2 protein determines the efficiency of viral replication in mouse (not avian) cells, but not tropism among cells in different mouse organs. The presence of lysine leads to more aggressive viral replication, overwhelming the host's defense mechanisms and resulting in high mortality rates in mice

  8. Moderate alcohol exposure during early brain development increases stimulus-response habits in adulthood.

    Science.gov (United States)

    Parker, Matthew O; Evans, Alexandra M-D; Brock, Alistair J; Combe, Fraser J; Teh, Muy-Teck; Brennan, Caroline H

    2016-01-01

    Exposure to alcohol during early central nervous system development has been shown variously to affect aspects of physiological and behavioural development. In extreme cases, this can extend to craniofacial defects, severe developmental delay and mental retardation. At more moderate levels, subtle differences in brain morphology and behaviour have been observed. One clear effect of developmental alcohol exposure is an increase in the propensity to develop alcoholism and other addictions. The mechanisms by which this occurs, however, are not currently understood. In this study, we tested the hypothesis that adult zebrafish chronically exposed to moderate levels of ethanol during early brain ontogenesis would show an increase in conditioned place preference for alcohol and an increased propensity towards habit formation, a key component of drug addiction in humans. We found support for both of these hypotheses and found that the exposed fish had changes in mRNA expression patterns for dopamine receptor, nicotinic acetylcholine receptor and μ-opioid receptor encoding genes. Collectively, these data show an explicit link between the increased proclivity for addiction and addiction-related behaviour following exposure to ethanol during early brain development and alterations in the neural circuits underlying habit learning. © 2014 Society for the Study of Addiction.

  9. Atypical temporal activation pattern and central-right brain compensation during semantic judgment task in children with early left brain damage.

    Science.gov (United States)

    Chang, Yi-Tzu; Lin, Shih-Che; Meng, Ling-Fu; Fan, Yang-Teng

    In this study we investigated the event-related potentials (ERPs) during the semantic judgment task (deciding if the two Chinese characters were semantically related or unrelated) to identify the timing of neural activation in children with early left brain damage (ELBD). The results demonstrated that compared with the controls, children with ELBD had (1) competitive accuracy and reaction time in the semantic judgment task, (2) weak operation of the N400, (3) stronger, earlier and later compensational positivities (referred to the enhanced P200, P250, and P600 amplitudes) in the central and right region of the brain to successfully engage in semantic judgment. Our preliminary findings indicate that temporally postlesional reorganization is in accordance with the proposed right-hemispheric organization of speech after early left-sided brain lesion. During semantic processing, the orthography has a greater effect on the children with ELBD, and a later semantic reanalysis (P600) is required due to the less efficient N400 at the former stage for semantic integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Mapping of brain activity by automated volume analysis of immediate early genes

    Science.gov (United States)

    Renier, Nicolas; Adams, Eliza L.; Kirst, Christoph; Wu, Zhuhao; Azevedo, Ricardo; Kohl, Johannes; Autry, Anita E.; Kadiri, Lolahon; Venkataraju, Kannan Umadevi; Zhou, Yu; Wang, Victoria X.; Tang, Cheuk Y.; Olsen, Olav; Dulac, Catherine; Osten, Pavel; Tessier-Lavigne, Marc

    2016-01-01

    Summary Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization and quantification of the activity of all neurons across the entire brain, which has not to date been achieved in the mammalian brain. We introduce a pipeline for high speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to Haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Lastly, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available. PMID:27238021

  11. Widespread disruption of functional brain organization in early-onset Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Sofie M Adriaanse

    Full Text Available Early-onset Alzheimer's disease (AD patients present a different clinical profile than late-onset AD patients. This can be partially explained by cortical atrophy, although brain organization might provide more insight. The aim of this study was to examine functional connectivity in early-onset and late-onset AD patients. Resting-state fMRI scans of 20 early-onset (<65 years old, 28 late-onset (≥65 years old AD patients and 15 "young" (<65 years old and 31 "old" (≥65 years old age-matched controls were available. Resting-state network-masks were used to create subject-specific maps. Group differences were examined using a non-parametric permutation test, accounting for gray-matter. Performance on five cognitive domains were used in a correlation analysis with functional connectivity in AD patients. Functional connectivity was not different in any of the RSNs when comparing the two control groups (young vs. old controls, which implies that there is no general effect of aging on functional connectivity. Functional connectivity in early-onset AD was lower in all networks compared to age-matched controls, where late-onset AD showed lower functional connectivity in the default-mode network. Functional connectivity was lower in early-onset compared to late-onset AD in auditory-, sensory-motor, dorsal-visual systems and the default mode network. Across patients, an association of functional connectivity of the default mode network was found with visuoconstruction. Functional connectivity of the right dorsal visual system was associated with attention across patients. In late-onset AD patients alone, higher functional connectivity of the sensory-motor system was associated with poorer memory performance. Functional brain organization was more widely disrupted in early-onset AD when compared to late-onset AD. This could possibly explain different clinical profiles, although more research into the relationship of functional connectivity and cognitive

  12. Effects of early life adverse experiences on brain activity: Implications from maternal separation models in rodents

    Directory of Open Access Journals (Sweden)

    Mayumi eNishi

    2014-06-01

    Full Text Available During postnatal development, adverse early life experiences can affect the formation of neuronal circuits and exert long-lasting influences on neural function. Many studies have shown that daily repeated MS, an animal model of early life stress, can modulate the hypothalamic-pituitary-adrenal axis (HPA axis and can affect subsequent brain function and emotional behavior during adulthood. However, the molecular basis of the long-lasting effects of early life stress on brain function has not been completely elucidated. In this review, we introduce various cases of MS in rodents and illustrate the alterations in HPA axis activity by focusing on corticosterone (CORT, an end product of the HPA axis in rodents. We then present a characterization of the brain regions affected by various patterns of MS, including repeated MS and single time MS at various stages before weaning, by investigating c-Fos expression, a biological marker of neuronal activity. These CORT and c-Fos studies suggest that repeated early life stress may affect neuronal function in region- and temporal-specific manners, indicating a critical period for habituation to early life stress. Next, we discuss how early life stress can impact behavior, namely by inducing depression, anxiety or eating disorders. Furthermore, alterations in gene expression in adult mice exposed to MS, especially epigenetic changes of DNA methylation, are discussed.

  13. Microstructural Changes of the Human Brain from Early to Mid-Adulthood

    Directory of Open Access Journals (Sweden)

    Lixia Tian

    2017-08-01

    Full Text Available Despite numerous studies on the microstructural changes of the human brain throughout life, we have indeed little direct knowledge about the changes from early to mid-adulthood. The aim of this study was to investigate the microstructural changes of the human brain from early to mid-adulthood. We performed two sets of analyses based on the diffusion tensor imaging (DTI data of 111 adults aged 18–55 years. Specifically, we first correlated age with skeletonized fractional anisotropy (FA, mean diffusivity (MD, axial diffusivity (AD and radial diffusivity (RD at global and regional level, and then estimated individuals’ ages based on each DTI metric using elastic net, a kind of multivariate pattern analysis (MVPA method that aims at selecting the model that achieves the best trade-off between goodness of fit and model complexity. We observed statistically significant negative age-vs-FA correlations and relatively less changes of MD. The negative age-vs-FA correlations were associated with negative age-vs-AD and positive age-vs-RD correlations. Regional negative age-vs-FA correlations were observed in the bilateral genu of the corpus callosum (CCg, the corticospinal tract (CST, the fornix and several other tracts, and these negative correlations may indicate the earlier changes of the fibers with aging. In brain age estimation, the chronological-vs-estimated-age correlations based on FA, MD, AD and RD were R = 0.62, 0.44, 0.63 and 0.69 (P = 0.002, 0.008, 0.002 and 0.002 based on 500 permutations, respectively, and these results indicate that even the microstructural changes from early to mid-adulthood alone are sufficiently specific to decode individuals’ ages. Overall, the current results not only demonstrated statistically significant FA decreases from early to mid-adulthood and clarified the driving factors of the FA decreases (RD increases and AD decreases, in contrast to increases of both measures in late-adulthood, but highlighted the

  14. Microstructural Changes of the Human Brain from Early to Mid-Adulthood.

    Science.gov (United States)

    Tian, Lixia; Ma, Lin

    2017-01-01

    Despite numerous studies on the microstructural changes of the human brain throughout life, we have indeed little direct knowledge about the changes from early to mid-adulthood. The aim of this study was to investigate the microstructural changes of the human brain from early to mid-adulthood. We performed two sets of analyses based on the diffusion tensor imaging (DTI) data of 111 adults aged 18-55 years. Specifically, we first correlated age with skeletonized fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) at global and regional level, and then estimated individuals' ages based on each DTI metric using elastic net, a kind of multivariate pattern analysis (MVPA) method that aims at selecting the model that achieves the best trade-off between goodness of fit and model complexity. We observed statistically significant negative age-vs-FA correlations and relatively less changes of MD. The negative age-vs-FA correlations were associated with negative age-vs-AD and positive age-vs-RD correlations. Regional negative age-vs-FA correlations were observed in the bilateral genu of the corpus callosum (CCg), the corticospinal tract (CST), the fornix and several other tracts, and these negative correlations may indicate the earlier changes of the fibers with aging. In brain age estimation, the chronological-vs-estimated-age correlations based on FA, MD, AD and RD were R = 0.62, 0.44, 0.63 and 0.69 ( P = 0.002, 0.008, 0.002 and 0.002 based on 500 permutations), respectively, and these results indicate that even the microstructural changes from early to mid-adulthood alone are sufficiently specific to decode individuals' ages. Overall, the current results not only demonstrated statistically significant FA decreases from early to mid-adulthood and clarified the driving factors of the FA decreases (RD increases and AD decreases, in contrast to increases of both measures in late-adulthood), but highlighted the necessity of

  15. The early effects in the brain after irradiation with carbon ions using mice

    International Nuclear Information System (INIS)

    Takai, Nobuhiko; Nakamura, Saori; Ohba, Yoshihito; Uzawa, Akiko; Furusawa, Yoshiya; Koike, Sachiko; Matsumoto, Yoshitaka; Hirayama, Ryoichi

    2011-01-01

    This study investigated both early and late effects in the brain after irradiation with carbon ions using mice. The irradiation dose was set at level known to produce vascular change followed by necrosis, which appeared the late period after irradiation with 30 Gy. The whole of brain was irradiated, excluding eyes and brain stem. The mice irradiated with single dose of 30 Gy showed deficit in short-term working memory assessed at 36 hr after irradiation, whereas mice receiving carbon irradiation showed no deficit in long-term reference memory. At 16 weeks after irradiation, the irradiated mice showed marked learning impairment compared with age-matched controls and the irradiated mice showed substantial impairment of working memory. Histopathological observation revealed no abnormal finding in the irradiated brain at 36 hr after irradiation, although irradiated mice showed marked neuronal degeneration at the hippocampus within CA1 to CA3 layers at 16 weeks after irradiation. In the irradiated group, neuronal cells in the hippocampal CA1-3 areas were reduced by 30-49%. These results suggest that although irradiation-induced hippocampal degeneration is associated with learning disability, cognitive deficits may also be detected on the early stage, not associated with hippocampal degeneration. (author)

  16. The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis.

    Directory of Open Access Journals (Sweden)

    Miroslava Berenreiterová

    Full Text Available BACKGROUND: The highly prevalent parasite Toxoplasma gondii reportedly manipulates rodent behavior to enhance the likelihood of transmission to its definitive cat host. The proximate mechanisms underlying this adaptive manipulation remain largely unclear, though a growing body of evidence suggests that the parasite-entrained dysregulation of dopamine metabolism plays a central role. Paradoxically, the distribution of the parasite in the brain has received only scant attention. METHODOLOGY/PRINCIPAL FINDINGS: The distributions of T. gondii cysts and histopathological lesions in the brains of CD1 mice with latent toxoplasmosis were analyzed using standard histological techniques. Mice were infected per orally with 10 tissue cysts of the avirulent HIF strain of T. gondii at six months of age and examined 18 weeks later. The cysts were distributed throughout the brain and selective tropism of the parasite toward a particular functional system was not observed. Importantly, the cysts were not preferentially associated with the dopaminergic system and absent from the hypothalamic defensive system. The striking interindividual differences in the total parasite load and cyst distribution indicate a probabilistic nature of brain infestation. Still, some brain regions were consistently more infected than others. These included the olfactory bulb, the entorhinal, somatosensory, motor and orbital, frontal association and visual cortices, and, importantly, the hippocampus and the amygdala. By contrast, a consistently low incidence of tissue cysts was recorded in the cerebellum, the pontine nuclei, the caudate putamen and virtually all compact masses of myelinated axons. Numerous perivascular and leptomeningeal infiltrations of inflammatory cells were observed, but they were not associated with intracellular cysts. CONCLUSION/SIGNIFICANCE: The observed pattern of T. gondii distribution stems from uneven brain colonization during acute infection and explains

  17. Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses with Brain Abnormalities.

    Science.gov (United States)

    Im, K; Guimaraes, A; Kim, Y; Cottrill, E; Gagoski, B; Rollins, C; Ortinau, C; Yang, E; Grant, P E

    2017-07-01

    Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns. © 2017 by American Journal of Neuroradiology.

  18. Zika Virus RNA Replication and Persistence in Brain and Placental Tissue

    Science.gov (United States)

    Rabeneck, Demi B.; Martines, Roosecelis B.; Reagan-Steiner, Sarah; Ermias, Yokabed; Estetter, Lindsey B.C.; Suzuki, Tadaki; Ritter, Jana; Keating, M. Kelly; Hale, Gillian; Gary, Joy; Muehlenbachs, Atis; Lambert, Amy; Lanciotti, Robert; Oduyebo, Titilope; Meaney-Delman, Dana; Bolaños, Fernando; Saad, Edgar Alberto Parra; Shieh, Wun-Ju; Zaki, Sherif R.

    2017-01-01

    Zika virus is causally linked with congenital microcephaly and may be associated with pregnancy loss. However, the mechanisms of Zika virus intrauterine transmission and replication and its tropism and persistence in tissues are poorly understood. We tested tissues from 52 case-patients: 8 infants with microcephaly who died and 44 women suspected of being infected with Zika virus during pregnancy. By reverse transcription PCR, tissues from 32 (62%) case-patients (brains from 8 infants with microcephaly and placental/fetal tissues from 24 women) were positive for Zika virus. In situ hybridization localized replicative Zika virus RNA in brains of 7 infants and in placentas of 9 women who had pregnancy losses during the first or second trimester. These findings demonstrate that Zika virus replicates and persists in fetal brains and placentas, providing direct evidence of its association with microcephaly. Tissue-based reverse transcription PCR extends the time frame of Zika virus detection in congenital and pregnancy-associated infections. PMID:27959260

  19. Reanalysis of Coreceptor Tropism in HIV-1–Infected Adults Using a Phenotypic Assay with Enhanced Sensitivity

    Science.gov (United States)

    Goetz, Mathew Bidwell; Leduc, Robert; Skowron, Gail; Su, Zhaohui; Chan, Ellen S.; Heera, Jayyant; Chapman, Doug; Spritzler, John; Reeves, Jacqueline D.; Gulick, Roy M.; Coakley, Eoin

    2011-01-01

    The enhanced-sensitivity Trofile assay (TF-ES; Monogram Biosciences) was used to retest coreceptor tropism samples from 4 different cohorts of HIV-1–infected patients. Nine percent to 26% of patients with CCR5-tropic virus by the original Trofile assay had CXCR4-using virus by TF-ES. Lower CD4 cell counts were associated with CXCR4-using virus in all cohorts. PMID:21427401

  20. Filovirus tropism: Cellular molecules for viral entry

    Directory of Open Access Journals (Sweden)

    Ayato eTakada

    2012-02-01

    Full Text Available In human and nonhuman primates, filoviruses (Ebola and Marburg viruses cause severe hemorrhagic fever.Recently, other animals such as pigs and some species of fruit bats have also been shown to be susceptible to these viruses. While having a preference for some cell types such as hepatocytes, endothelial cells, dendritic cells, monocytes, and macrophages, filoviruses are known to be pantropic in infection of primates. The envelope glycoprotein (GP is responsible for both receptor binding and fusion of the virus envelope with the host cell membrane. It has been demonstrated that filovirus GP interacts with multiple molecules for entry into host cells, whereas none of the cellular molecules so far identified as a receptor/coreceptor fully explains filovirus tissue tropism and host range. Available data suggest that the mucin-like region (MLR on GP plays an important role in attachment to the preferred target cells, whose infection is likely involved in filovirus pathogenesis, whereas the MLR is not essential for the fundamental function of the GP in viral entry into cells in vitro. Further studies elucidating the mechanisms of cellular entry of filoviruses may shed light on the development of strategies for prophylaxis and treatment of Ebola and Marburg hemorrhagic fevers.

  1. Early prediction of favourable recovery 6 months after mild traumatic brain injury.

    NARCIS (Netherlands)

    Stulemeijer, M.; Werf, S.P. van der; Borm, G.F.; Vos, P.E.

    2008-01-01

    BACKGROUND: Predicting outcome after mild traumatic brain injury (MTBI) is notoriously difficult. Although it is recognised that milder head injuries do not necessarily mean better outcomes, less is known about the factors that do enable early identification of patients who are likely to recover

  2. Early rehabilitation and participation in focus - a Danish perspective on patients with severe acquired brain injury

    DEFF Research Database (Denmark)

    Smidt, Helle Rønn; Pallesen, Hanne; Buhl, Inge

    2016-01-01

    Early neurorehabilitation is an interdisciplinary field. Thus, in order to eliminate unnecessary barriers for individuals with severe acquired brain injury in early rehabilitation, we need rehabilitation science that supports both quantitative and qualitative research methods. Participation can b...

  3. Automated analysis for early signs of cerebral infarctions on brain X-ray CT images

    International Nuclear Information System (INIS)

    Oshima, Kazuki; Hara, Takeshi; Zhou, X.; Muramatsu, Chisako; Fujita, Hiroshi; Sakashita, Keiji

    2010-01-01

    t-PA (tissue plasminogen activator) thrombolysis is an effective clinical treatment for the acute cerebral infarction by breakdown to blood clots. However there is a risk of hemorrhage with its use. The guideline of the treatment is denying cerebral hemorrhage and widespread Early CT sign (ECS) on CT images. In this study, we analyzed the CT value of normal brain and ECS with normal brain model by comparing patient brain CT scan with a statistical normal model. Our method has constructed normal brain models consisted of 60 normal brain X-ray CT images. We calculated Z-score based on statistical model for 16 cases of cerebral infarction with ECS, 3 cases of cerebral infarction without ECS, and 25 cases of normal brain. The results of statistical analysis showed that there was a statistically significant difference between control and abnormal groups. This result implied that the automated detection scheme for ECS by using Z-score would be a possible application for brain computer-aided diagnosis (CAD). (author)

  4. Early radiation changes of normal dog brain following internal and external brain irradiation: A preliminary report

    International Nuclear Information System (INIS)

    Chin, H.; Maruyama, Y.; Markesbery, W.; Goldstein, S.; Wang, P.; Tibbs, P.; Young, B.; Feola, J.; Beach, L.

    1984-01-01

    To examine radiation-induced changes in the normal brain, internal or external radiation was given to normal dog brain. Seven medium-sized dogs were used in this study. Two dogs were controls and an ice-pick (plastic implant applicator) was placed in the right frontal lobe for about 5 hours but no irradiation. Two dogs underwent Cs-137 brain implantation for 4 and 5 hours, respectively using an ice-pick technique. Two dogs were given internal neutron irradiation using the same technique of intracerebral ice-pick brachytherapy. One dog received an external photon irradiation using 6-Mev Linear Accelerator. Postmortem microscopic examination was made to study the early cerebral changes to irradiation in three dogs: one control with no irradiation; one received intracerebral Cesium implantation; and one external photon irradiation. Vascular change was the most prominent microscopic finding. There were hemorrhage, endothelial proliferation and fibrinoid changes of small vessel wall. Most of the changes were localized in the white matter and the cortex remained intact. Details (CT, NMR and histological studies) are discussed

  5. Historical zoonoses and other changes in host tropism of Staphylococcus aureus, identified by phylogenetic analysis of a population dataset.

    Directory of Open Access Journals (Sweden)

    Marcus A Shepheard

    Full Text Available Staphylococcus aureus exhibits tropisms to many distinct animal hosts. While spillover events can occur wherever there is an interface between host species, changes in host tropism only occur with the establishment of sustained transmission in the new host species, leading to clonal expansion. Although the genomic variation underpinning adaptation in S. aureus genotypes infecting bovids and poultry has been well characterized the frequency of switches from one host to another remains obscure. We sought to identify sustained switches in host tropism in the S. aureus population, both anthroponotic and zoonotic, and their distribution over the species phylogeny. METHODOLOGIES/RESULTS: We have used a sample of 3042 isolates, representing 696 distinct MLST genotypes, from a well-established database (www.mlst.net. Using an empirical parsimony approach (AdaptML we have investigated the distribution of switches in host association between both human and non-human (henceforth referred to as animal hosts. We reconstructed a credible description of past events in the form of a phylogenetic tree; the nodes and leaves of which are statistically associated with either human or animal habitats, estimated from extant host-association and the degree of sequence divergence between genotypes. We identified 15 likely historical switching events; 13 anthroponoses and two zoonoses. Importantly, we identified two human-associated clade candidates (CC25 and CC59 that have arisen from animal-associated ancestors; this demonstrates that a human-specific lineage can emerge from an animal host. We also highlight novel rabbit-associated genotypes arising from a human ancestor.S. aureus is an organism with the capacity to switch into and adapt to novel hosts, even after long periods of isolation in a single host species. Based on this evidence, animal-adapted S. aureus lineages exhibiting resistance to antibiotics must be considered a major threat to public health, as they

  6. Early medical rehabilitation after neurosurgical treatment of malignant brain tumours in Slovenia.

    Science.gov (United States)

    Kos, Natasa; Kos, Boris; Benedicic, Mitja

    2016-06-01

    The number of patients with malignant brain tumours is on the rise, but due to the novel treatment methods the survival rates are higher. Despite increased survival the consequences of tumour properties and treatment can have a significant negative effect on the patients' quality of life. Providing timely and appropriate rehabilitation interventions is an important aspect of patient treatment and should be started immediately after surgery. The most important goal of rehabilitation is to prevent complications that could have a negative effect on the patients' ability to function. By using individually tailored early rehabilitation it is often possible to achieve the patients' independence in mobility as well as in performing daily tasks before leaving the hospital. A more precise evaluation of the patients' functional state after completing additional oncologic therapy should be performed to stratify the patients who should be directed to complex rehabilitation treatment. The chances of a good functional outcome in patients with malignant brain tumours could be increased with good early medical rehabilitation treatment.

  7. Mechanical origins of rightward torsion in early chick brain development

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry

    2015-03-01

    During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.

  8. Vascular Cognitive Impairment Linked to Brain Endothelium Inflammation in Early Stages of Heart Failure in Mice.

    Science.gov (United States)

    Adamski, Mateusz G; Sternak, Magdalena; Mohaissen, Tasnim; Kaczor, Dawid; Wierońska, Joanna M; Malinowska, Monika; Czaban, Iwona; Byk, Katarzyna; Lyngsø, Kristina S; Przyborowski, Kamil; Hansen, Pernille B L; Wilczyński, Grzegorz; Chlopicki, Stefan

    2018-03-26

    Although advanced heart failure (HF) is a clinically documented risk factor for vascular cognitive impairment, the occurrence and pathomechanisms of vascular cognitive impairment in early stages of HF are equivocal. Here, we characterize vascular cognitive impairment in the early stages of HF development and assess whether cerebral hypoperfusion or prothrombotic conditions are involved. Tgαq*44 mice with slowly developing isolated HF triggered by cardiomyocyte-specific overexpression of G-αq*44 protein were studied before the end-stage HF, at the ages of 3, 6, and 10 months: before left ventricle dysfunction; at the stage of early left ventricle diastolic dysfunction (with preserved ejection fraction); and left ventricle diastolic/systolic dysfunction, respectively. In 6- to 10-month-old but not in 3-month-old Tgαq*44 mice, behavioral and cognitive impairment was identified with compromised blood-brain barrier permeability, most significantly in brain cortex, that was associated with myelin sheet loss and changes in astrocytes and microglia. Brain endothelial cells displayed increased E-selectin immunoreactivity, which was accompanied by increased amyloid-β 1-42 accumulation in piriform cortex and increased cortical oxidative stress (8-OHdG immunoreactivity). Resting cerebral blood flow measured by magnetic resonance imaging in vivo was preserved, but ex vivo NO-dependent cortical arteriole flow regulation was impaired. Platelet hyperreactivity was present in 3- to 10-month-old Tgαq*44 mice, but it was not associated with increased platelet-dependent thrombogenicity. We report for the first time that vascular cognitive impairment is already present in the early stage of HF development, even before left ventricle systolic dysfunction. The underlying pathomechanism, independent of brain hypoperfusion, involves preceding platelet hyperreactivity and brain endothelium inflammatory activation. © 2018 The Authors. Published on behalf of the American Heart

  9. Early Brain Injury Associated with Systemic Inflammation After Subarachnoid Hemorrhage.

    Science.gov (United States)

    Savarraj, Jude; Parsha, Kaushik; Hergenroeder, Georgene; Ahn, Sungho; Chang, Tiffany R; Kim, Dong H; Choi, H Alex

    2018-04-01

    Early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (aSAH) is defined as brain injury occurring within 72 h of aneurysmal rupture. Although EBI is the most significant predictor of outcomes after aSAH, its underlying pathophysiology is not well understood. We hypothesize that EBI after aSAH is associated with an increase in peripheral inflammation measured by cytokine expression levels and changes in associations between cytokines. aSAH patients were enrolled into a prospective observational study and were assessed for markers of EBI: global cerebral edema (GCE), subarachnoid hemorrhage early brain edema score (SEBES), and Hunt-Hess grade. Serum samples collected at ≤ 48 h of admission were analyzed using multiplex bead-based assays to determine levels of 13 pro- and anti-inflammatory cytokines. Pairwise correlation coefficients between cytokines were represented as networks. Cytokine levels and differences in correlation networks were compared between EBI groups. Of the 71 patients enrolled in the study, 17 (24%) subjects had GCE, 31 (44%) subjects had SEBES ≥ 3, and 21 (29%) had HH ≥ 4. IL-6 was elevated in groups with GCE, SEBES ≥ 3, and HH ≥ 4. MIP1β was independently associated with high-grade SEBES. Correlation network analysis suggests higher systematic inflammation in subjects with SEBES ≥ 3. EBI after SAH is associated with increased levels of specific cytokines. Peripheral levels of IL-10, IL-6, and MIP1β may be important markers of EBI. Investigating systematic correlations in addition to expression levels of individual cytokines may offer deeper insight into the underlying mechanisms related to EBI.

  10. Early and Later Life Stress Alter Brain Activity and Sleep in Rats

    Science.gov (United States)

    Mrdalj, Jelena; Pallesen, Ståle; Milde, Anne Marita; Jellestad, Finn Konow; Murison, Robert; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne

    2013-01-01

    Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way. PMID:23922857

  11. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease.

    Science.gov (United States)

    Muñoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe

    2018-02-07

    Animal models of Alzheimer's disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before a significant concentration of β-amyloid plaques is present. Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training phase where the animals learned the task. The number of training sessions required to achieve a learning criterion was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and resting-state functional MRI, which were processed to obtain the structural and functional connectomes, respectively. Global and regional graph metrics were computed to evaluate network organization in both transgenic and control rats. The results pointed to a delay in learning the working memory-related task in the AD rats, which also completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences in connectivity were identified in both structural and functional networks. In addition, a strong correlation was observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as functional and structural network metrics of regions related to memory and reward processes. In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very early stage of the disease when most of the pathological hallmarks

  12. Deep brain stimulation effects in dystonia: time course of electrophysiological changes in early treatment.

    Science.gov (United States)

    Ruge, Diane; Tisch, Stephen; Hariz, Marwan I; Zrinzo, Ludvic; Bhatia, Kailash P; Quinn, Niall P; Jahanshahi, Marjan; Limousin, Patricia; Rothwell, John C

    2011-08-15

    Deep brain stimulation to the internal globus pallidus is an effective treatment for primary dystonia. The optimal clinical effect often occurs only weeks to months after starting stimulation. To better understand the underlying electrophysiological changes in this period, we assessed longitudinally 2 pathophysiological markers of dystonia in patients prior to and in the early treatment period (1, 3, 6 months) after deep brain stimulation surgery. Transcranial magnetic stimulation was used to track changes in short-latency intracortical inhibition, a measure of excitability of GABA(A) -ergic corticocortical connections and long-term potentiation-like synaptic plasticity (as a response to paired associative stimulation). Deep brain stimulation remained on for the duration of the study. Prior to surgery, inhibition was reduced and plasticity increased in patients compared with healthy controls. Following surgery and commencement of deep brain stimulation, short-latency intracortical inhibition increased toward normal levels over the following months with the same monotonic time course as the patients' clinical benefit. In contrast, synaptic plasticity changed rapidly, following a nonmonotonic time course: it was absent early (1 month) after surgery, and then over the following months increased toward levels observed in healthy individuals. We postulate that before surgery preexisting high levels of plasticity form strong memories of dystonic movement patterns. When deep brain stimulation is turned on, it disrupts abnormal basal ganglia signals, resulting in the absent response to paired associative stimulation at 1 month. Clinical benefit is delayed because engrams of abnormal movement persist and take time to normalize. Our observations suggest that plasticity may be a driver of long-term therapeutic effects of deep brain stimulation in dystonia. Copyright © 2011 Movement Disorder Society.

  13. HIVBrainSeqDB: a database of annotated HIV envelope sequences from brain and other anatomical sites

    Directory of Open Access Journals (Sweden)

    O'Connor Niall

    2010-12-01

    Full Text Available Abstract Background The population of HIV replicating within a host consists of independently evolving and interacting sub-populations that can be genetically distinct within anatomical compartments. HIV replicating within the brain causes neurocognitive disorders in up to 20-30% of infected individuals and is a viral sanctuary site for the development of drug resistance. The primary determinant of HIV neurotropism is macrophage tropism, which is primarily determined by the viral envelope (env gene. However, studies of genetic aspects of HIV replicating in the brain are hindered because existing repositories of HIV sequences are not focused on neurotropic virus nor annotated with neurocognitive and neuropathological status. To address this need, we constructed the HIV Brain Sequence Database. Results The HIV Brain Sequence Database is a public database of HIV envelope sequences, directly sequenced from brain and other tissues from the same patients. Sequences are annotated with clinical data including viral load, CD4 count, antiretroviral status, neurocognitive impairment, and neuropathological diagnosis, all curated from the original publication. Tissue source is coded using an anatomical ontology, the Foundational Model of Anatomy, to capture the maximum level of detail available, while maintaining ontological relationships between tissues and their subparts. 44 tissue types are represented within the database, grouped into 4 categories: (i brain, brainstem, and spinal cord; (ii meninges, choroid plexus, and CSF; (iii blood and lymphoid; and (iv other (bone marrow, colon, lung, liver, etc. Patient coding is correlated across studies, allowing sequences from the same patient to be grouped to increase statistical power. Using Cytoscape, we visualized relationships between studies, patients and sequences, illustrating interconnections between studies and the varying depth of sequencing, patient number, and tissue representation across studies

  14. Host cell tropism mediated by Australian bat lyssavirus envelope glycoproteins.

    Science.gov (United States)

    Weir, Dawn L; Smith, Ina L; Bossart, Katharine N; Wang, Lin-Fa; Broder, Christopher C

    2013-09-01

    Australian bat lyssavirus (ABLV) is a rhabdovirus of the lyssavirus genus capable of causing fatal rabies-like encephalitis in humans. There are two variants of ABLV, one circulating in pteropid fruit bats and another in insectivorous bats. Three fatal human cases of ABLV infection have been reported with the third case in 2013. Importantly, two equine cases also arose in 2013; the first occurrence of ABLV in a species other than bats or humans. We examined the host cell entry of ABLV, characterizing its tropism and exploring its cross-species transmission potential using maxGFP-encoding recombinant vesicular stomatitis viruses that express ABLV G glycoproteins. Results indicate that the ABLV receptor(s) is conserved but not ubiquitous among mammalian cell lines and that the two ABLV variants can utilize alternate receptors for entry. Proposed rabies virus receptors were not sufficient to permit ABLV entry into resistant cells, suggesting that ABLV utilizes an unknown alternative receptor(s). Published by Elsevier Inc.

  15. Radiological study of the brain at various stages of human immunodeficiency virus infection: early development of brain atrophy

    International Nuclear Information System (INIS)

    Raininko, R.; Elovaara, I.; Virta, A.; Valanne, L.; Haltia, M.; Valle, S.L.

    1992-01-01

    One hundred and one persons infected with human immunodeficiency virus (HIV-1), in whom other central nervous system infections or diseases were excluded, underwent brain CT and/or MRI at various stages of HIV-1 infection: 29 were asymptomatic (ASX), 35 had lymphadenopathy syndrome (LAS), 17 had AIDS-related complex (ARC), and 20 had AIDS. A control group of 32 HIV-1-seronegative healthy persons underwent brain MRI. The most common finding was brain atrophy. The changes were bilateral and symmetrical, and they were more severe at later stages of infection. Non-specific small hyperintense foci were found on MRI in 13% of controls and 6-15% of the infected groups. Larger, diffuse, bilateral white matter infiltrates were detected in 4 demented patients with AIDS. Four patients with AIDS and 1 with LAS had focal hyperintense lesions in the internal capsules, lentiform nuclei or thalamus, often bilateral on MRI. One patient with AIDS examined with CT only, had low density in the lentiform nucleus. Loss of brain parenchyma can occur at an early stage of HIV-1 infection, and the atrophic process becomes more intense at later stages (ARC and AIDS). (orig./GDG)

  16. Reanalysis of coreceptor tropism in HIV-1-infected adults using a phenotypic assay with enhanced sensitivity.

    Science.gov (United States)

    Wilkin, Timothy J; Goetz, Mathew Bidwell; Leduc, Robert; Skowron, Gail; Su, Zhaohui; Chan, Ellen S; Heera, Jayyant; Chapman, Doug; Spritzler, John; Reeves, Jacqueline D; Gulick, Roy M; Coakley, Eoin

    2011-04-01

    The enhanced-sensitivity Trofile assay (TF-ES; Monogram Biosciences) was used to retest coreceptor tropism samples from 4 different cohorts of HIV-1-infected patients. Nine percent to 26% of patients with CCR5-tropic virus by the original Trofile assay had CXCR4-using virus by TF-ES. Lower CD4 cell counts were associated with CXCR4-using virus in all cohorts. © The Author 2011. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved.

  17. Could a deletion in neuraminidase stalk strengthen human tropism of the novel avian influenza virus H7N9 in China, 2013?

    Science.gov (United States)

    Chen, Liang; Zhu, Feng; Xiong, Chenglong; Zhang, Zhijie; Jiang, Lufang; Chen, Yue; Zhao, Genming; Jiang, Qingwu

    2015-01-20

    Objective. A novel avian influenza A virus (AIV) H7N9 subtype which emerged in China in 2013 caused worldwide concern. Deletion of amino-acids 69 to 73 in the neuraminidase stalk was its most notable characteristic. This study is aimed to discuss the tropism and virulence effects of this deletion. Neuraminidase gene sequences of N9 subtype were collected from NCBI and GISAID. MEGA6.0, Stata12.0, and UCSF Chimera were employed for sequence aligning, significance testing, and protein tertiary structure homology modeling. A total of 736 sequences were obtained; there were 81 human isolates of the novel AIV H7N9, of which 79 had the deletion. Among all the 654 avian origin sequences, only 43 had the deletion (p deletion obviously changed the spatial direction of neuraminidase. The deletion in neuraminidase stalk could have strengthened human tropism of the novel AIV H7N9, as well as its virulence.

  18. Brain signatures of early lexical and morphological learning of a new language.

    Science.gov (United States)

    Havas, Viktória; Laine, Matti; Rodríguez Fornells, Antoni

    2017-07-01

    Morphology is an important part of language processing but little is known about how adult second language learners acquire morphological rules. Using a word-picture associative learning task, we have previously shown that a brief exposure to novel words with embedded morphological structure (suffix for natural gender) is enough for language learners to acquire the hidden morphological rule. Here we used this paradigm to study the brain signatures of early morphological learning in a novel language in adults. Behavioural measures indicated successful lexical (word stem) and morphological (gender suffix) learning. A day after the learning phase, event-related brain potentials registered during a recognition memory task revealed enhanced N400 and P600 components for stem and suffix violations, respectively. An additional effect observed with combined suffix and stem violations was an enhancement of an early N2 component, most probably related to conflict-detection processes. Successful morphological learning was also evident in the ERP responses to the subsequent rule-generalization task with new stems, where violation of the morphological rule was associated with an early (250-400ms) and late positivity (750-900ms). Overall, these findings tend to converge with lexical and morphosyntactic violation effects observed in L1 processing, suggesting that even after a short exposure, adult language learners can acquire both novel words and novel morphological rules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Brain MRI and SPECT in the diagnosis of early neurological involvement in Wilson's disease

    International Nuclear Information System (INIS)

    Piga, Mario; Satta, Loredana; Serra, Alessandra; Loi, Gianluigi; Murru, Alessandra; Demelia, Luigi; Sias, Alessandro; Marrosu, Francesco

    2008-01-01

    To evaluate the impact of brain MRI and single-photon emission computed tomography (SPECT) in early detection of central nervous system abnormalities in patients affected by Wilson's disease (WD) with or without neurological involvement. Out of 25 consecutive WD patients, 13 showed hepatic involvement, ten hepatic and neurological manifestations, and twp hepatic, neurological, and psychiatric symptoms, including mainly movement disorders, major depression, and psychosis. Twenty-four healthy, age-gender matched subjects served as controls. All patients underwent brain MRI and 99m Tc-ethyl-cysteinate dimer (ECD) SPECT before starting specific therapy. Voxel-by-voxel analyses were performed using statistical parametric mapping to compare differences in 99m Tc-ECD brain uptake between the two groups. Brain MRI showed T2-weighted hyperintensities in seven patients (28%), six of whom were affected by hepatic and neurological forms. Brain perfusion SPECT showed pathological data in 19 patients (76%), revealing diffuse or focal hypoperfusion in superior frontal (Brodmann area (BA) 6), prefrontal (BA 9), parietal (BA 40), and occipital (BA 18, BA 39) cortices in temporal gyri (BA 37, BA 21) and in caudatus and putamen. Moreover, hepatic involvement was detected in nine subjects; eight presented both hepatic and neurological signs, while two exhibited WD-correlated hepatic, neurological, and psychiatric alterations. All but one patient with abnormal MRI matched with abnormal ECD SPECT. Pathologic MRI findings were obtained in six out of ten patients with hepatic and neurological involvement while abnormal ECD SPECT was revealed in eight patients. Both patients with hepatic, neurological, and psychiatric involvement displayed abnormal ECD SPECT and one displayed an altered MRI. These findings suggest that ECD SPECT might be useful in detecting early brain damage in WD, not only in the perspective of assessing and treating motor impairment but also in evaluating better the

  20. Tissue tropism, pathology and pathogenesis of enterovirus infection.

    Science.gov (United States)

    Muehlenbachs, Atis; Bhatnagar, Julu; Zaki, Sherif R

    2015-01-01

    Enteroviruses are very common and cause infections with a diverse array of clinical features. Enteroviruses are most frequently considered by practising pathologists in cases of aseptic meningitis, encephalitis, myocarditis and disseminated infections in neonates and infants. Congenital infections have been reported and transplacental transmission is thought to occur. Although skin biopsies during hand, foot and mouth disease are infrequently obtained, characteristic dermatopathological findings can be seen. Enteroviruses have been implicated in lower respiratory tract infections. This review highlights histopathological features of enterovirus infection and discusses diagnostic modalities for formalin-fixed paraffin-embedded tissues and their associated pitfalls. Immunohistochemistry can detect enterovirus antigen within cells of affected tissues; however, assays can be non-specific and detect other viruses. Molecular methods are increasingly relied upon but, due to the high frequency of asymptomatic enteroviral infections, clinical-pathological correlation is needed to determine significance. Of note, diagnostic assays on central nervous system or cardiac tissues from immunocompetent patients with prolonged disease courses are most often negative. Histopathological, immunohistochemical and molecular studies performed on clinical specimens also provide insight into enteroviral tissue tropism and pathogenesis. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  1. Early changes of serum insulin-like growth factor-II (IGF-II) levels in patients with acute brain injury

    International Nuclear Information System (INIS)

    Liu Cegang; Zhang Xinlu; Tao Jin; Xu Anding; Xu Shanshui; Huang Zhenpeng

    2003-01-01

    Objective: To investigate the early changes and clinical significance of serum Insulin-like growth factor-II (IGF-II) levels in patients with acute brain injury. Methods: Radioimmunoassay was used for measurement of the serum IGF-II concentration in 30 controls and 29 acute brain injury patients before and after treatment (within 1 day, at 3 and 7 days). Results: The serum IGF-II levels in brain injury patients at 1 day, 3 day 7 days after injury were 0.131 ± 0.047 ng/ml, 0.117 ± 0.046 ng/ml and 0.123 ±0.050 ng/ml respectively and were significantly lower than those in controls 0.44 ± 0.014 ng/ml, p<0.01. Differences among the values of the three days were not significant. Conclusion: IGF-II might play important role in the pathophysiological process of early acute brain injury

  2. Experimental studies on pathogenesis of the brain radiation injury in early stage

    International Nuclear Information System (INIS)

    Ye Tian; Shiyao Bao; Weibo Yin; Chunfeng Liu; Zhilin Zhang

    2000-01-01

    To investigate the pathogenesis of the brain radiation injury in the early stage, a series of experiments were performed as below. The SD rats halfbrain were irradiated by the single dose of 10, 20, and 30 Gy of 4 MeV electron, all those experiments were performed in 1 day to 3 months after radiation. The neurological symptoms, the weight and the skin response inside the field of all the rats were evaluated sequentially. The measurement of regional cerebral blood flow (rCBF) using hydrogen gas generated by electrolysis, the calculation of the brain water content percentage with wet-dry weight formula. The DNA contents and the quantities of bcl-2 protein were analyzed by flow cytometry. The brain histological sections were scanned to assess the present or absence of white matter necrosis in the region of hippocampus, and then the hippocampus region was observed for the morphological changes of the blood vessel, neuroglial, and the neurons. Some of the data were analyzed by the Student t test. Intra-portal alopecia was observed in all rats which received 30 Gy and some rats which received 20 Gy, the abnormal neurological signs were not found in all the rats, but the tend of weight increase was less pronounced in 1-3 months in the irradiated rats than those unirradiated. By comparison the unirradiated hemisphere, the rCBF of the contralateral brain decreased in most of the rats. In 20 Gy and 30 Gy groups, rCBF decreased areas expand gradually along with the prolong of observation time, from the nucleus caudate putamen, to the frontal cortex and then the hippocampus, the rCBF of whole the irradiated hemibrain was reduced significantly at 3 month after radiation. The water content of the irradiated halfbrain increased progressively, it means the brain edema exists in the meantime. By comparison the unirradiation halfbrain, the apoptosis of the hippocampus cells in the irradiated brain increased, and the expression of bcl-2 protein decreased at the meantime, and those

  3. Experimental studies on pathogenesis of the brain radiation injury in early stage

    Energy Technology Data Exchange (ETDEWEB)

    Ye Tian [Suzhou Medical Coll., Jiangsu (China). 2nd Affiliated Hospital; Shiyao Bao; Weibo Yin; Chunfeng Liu; Zhilin Zhang

    2000-05-01

    To investigate the pathogenesis of the brain radiation injury in the early stage, a series of experiments were performed as below. The SD rats halfbrain were irradiated by the single dose of 10, 20, and 30 Gy of 4 MeV electron, all those experiments were performed in 1 day to 3 months after radiation. The neurological symptoms, the weight and the skin response inside the field of all the rats were evaluated sequentially. The measurement of regional cerebral blood flow (rCBF) using hydrogen gas generated by electrolysis, the calculation of the brain water content percentage with wet-dry weight formula. The DNA contents and the quantities of bcl-2 protein were analyzed by flow cytometry. The brain histological sections were scanned to assess the present or absence of white matter necrosis in the region of hippocampus, and then the hippocampus region was observed for the morphological changes of the blood vessel, neuroglial, and the neurons. Some of the data were analyzed by the Student t test. Intra-portal alopecia was observed in all rats which received 30 Gy and some rats which received 20 Gy, the abnormal neurological signs were not found in all the rats, but the tend of weight increase was less pronounced in 1-3 months in the irradiated rats than those unirradiated. By comparison the unirradiated hemisphere, the rCBF of the contralateral brain decreased in most of the rats. In 20 Gy and 30 Gy groups, rCBF decreased areas expand gradually along with the prolong of observation time, from the nucleus caudate putamen, to the frontal cortex and then the hippocampus, the rCBF of whole the irradiated hemibrain was reduced significantly at 3 month after radiation. The water content of the irradiated halfbrain increased progressively, it means the brain edema exists in the meantime. By comparison the unirradiation halfbrain, the apoptosis of the hippocampus cells in the irradiated brain increased, and the expression of bcl-2 protein decreased at the meantime, and those

  4. Functional Topography of Early Periventricular Brain Lesions in Relation to Cytoarchitectonic Probabilistic Maps

    Science.gov (United States)

    Staudt, Martin; Ticini, Luca F.; Grodd, Wolfgang; Krageloh-Mann, Ingeborg; Karnath, Hans-Otto

    2008-01-01

    Early periventricular brain lesions can not only cause cerebral palsy, but can also induce a reorganization of language. Here, we asked whether these different functional consequences can be attributed to topographically distinct portions of the periventricular white matter damage. Eight patients with pre- and perinatally acquired left-sided…

  5. Early human speciation, brain expansion and dispersal influenced by African climate pulses.

    Directory of Open Access Journals (Sweden)

    Susanne Shultz

    Full Text Available Early human evolution is characterised by pulsed speciation and dispersal events that cannot be explained fully by global or continental paleoclimate records. We propose that the collated record of ephemeral East African Rift System (EARS lakes could be a proxy for the regional paleoclimate conditions experienced by early hominins. Here we show that the presence of these lakes is associated with low levels of dust deposition in both West African and Mediterranean records, but is not associated with long-term global cooling and aridification of East Africa. Hominin expansion and diversification seem to be associated with climate pulses characterized by the precession-forced appearance and disappearance of deep EARS lakes. The most profound period for hominin evolution occurs at about 1.9 Ma; with the highest recorded diversity of hominin species, the appearance of Homo (sensu stricto and major dispersal events out of East Africa into Eurasia. During this period, ephemeral deep-freshwater lakes appeared along the whole length of the EARS, fundamentally changing the local environment. The relationship between the local environment and hominin brain expansion is less clear. The major step-wise expansion in brain size around 1.9 Ma when Homo appeared was coeval with the occurrence of ephemeral deep lakes. Subsequent incremental increases in brain size are associated with dry periods with few if any lakes. Plio-Pleistocene East African climate pulses as evinced by the paleo-lake records seem, therefore, fundamental to hominin speciation, encephalisation and migration.

  6. Early human speciation, brain expansion and dispersal influenced by African climate pulses.

    Science.gov (United States)

    Shultz, Susanne; Maslin, Mark

    2013-01-01

    Early human evolution is characterised by pulsed speciation and dispersal events that cannot be explained fully by global or continental paleoclimate records. We propose that the collated record of ephemeral East African Rift System (EARS) lakes could be a proxy for the regional paleoclimate conditions experienced by early hominins. Here we show that the presence of these lakes is associated with low levels of dust deposition in both West African and Mediterranean records, but is not associated with long-term global cooling and aridification of East Africa. Hominin expansion and diversification seem to be associated with climate pulses characterized by the precession-forced appearance and disappearance of deep EARS lakes. The most profound period for hominin evolution occurs at about 1.9 Ma; with the highest recorded diversity of hominin species, the appearance of Homo (sensu stricto) and major dispersal events out of East Africa into Eurasia. During this period, ephemeral deep-freshwater lakes appeared along the whole length of the EARS, fundamentally changing the local environment. The relationship between the local environment and hominin brain expansion is less clear. The major step-wise expansion in brain size around 1.9 Ma when Homo appeared was coeval with the occurrence of ephemeral deep lakes. Subsequent incremental increases in brain size are associated with dry periods with few if any lakes. Plio-Pleistocene East African climate pulses as evinced by the paleo-lake records seem, therefore, fundamental to hominin speciation, encephalisation and migration.

  7. Neural processing of auditory signals and modular neural control for sound tropism of walking machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Pasemann, Frank; Fischer, Joern

    2005-01-01

    and a neural preprocessing system together with a modular neural controller are used to generate a sound tropism of a four-legged walking machine. The neural preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals coming from the left or the right....... The parameters of these networks are optimized by an evolutionary algorithm. In addition, a simple modular neural controller then generates the desired different walking patterns such that the machine walks straight, then turns towards a switched-on sound source, and then stops near to it....

  8. Excessive early-life dietary exposure: a potential source of elevated brain iron and a risk factor for Parkinson's disease.

    Science.gov (United States)

    Hare, Dominic J; Cardoso, Bárbara Rita; Raven, Erika P; Double, Kay L; Finkelstein, David I; Szymlek-Gay, Ewa A; Biggs, Beverley-Ann

    2017-01-01

    Iron accumulates gradually in the ageing brain. In Parkinson's disease, iron deposition within the substantia nigra is further increased, contributing to a heightened pro-oxidant environment in dopaminergic neurons. We hypothesise that individuals in high-income countries, where cereals and infant formulae have historically been fortified with iron, experience increased early-life iron exposure that predisposes them to age-related iron accumulation in the brain. Combined with genetic factors that limit iron regulatory capacity and/or dopamine metabolism, this may increase the risk of Parkinson's diseases. We propose to (a) validate a retrospective biomarker of iron exposure in children; (b) translate this biomarker to adults; (c) integrate it with in vivo brain iron in Parkinson's disease; and (d) longitudinally examine the relationships between early-life iron exposure and metabolism, brain iron deposition and Parkinson's disease risk. This approach will provide empirical evidence to support therapeutically addressing brain iron deposition in Parkinson's diseases and produce a potential biomarker of Parkinson's disease risk in preclinical individuals.

  9. Early Detection of Brain Pathology Suggestive of Early AD Using Objective Evaluation of FDG-PET Scans

    Directory of Open Access Journals (Sweden)

    James C. Patterson

    2011-01-01

    Full Text Available The need for early detection of AD becomes critical as disease-modifying agents near the marketplace. Here, we present results from a study focused on improvement in detection of metabolic deficits related to neurodegenerative changes consistent with possible early AD with statistical evaluation of FDG-PET brain images. We followed 31 subjects at high risk or diagnosed with MCI/AD for 3 years. 15 met criteria for diagnosis of MCI, and five met criteria for AD. FDG-PET scans were completed at initiation and termination of the study. PET scans were read clinically and also evaluated objectively using Statistical Parametric Mapping (SPM. Using standard clinical evaluation of the FDG-PET scans, 11 subjects were detected, while 18 were detected using SPM evaluation. These preliminary results indicate that objective analyses may improve detection; however, early detection in at-risk normal subjects remains tentative. Several FDA-approved software packages are available that use objective analyses, thus the capacity exists for wider use of this method for MCI/AD.

  10. Ancillary procedure for early diagnosis of brain damage in children

    International Nuclear Information System (INIS)

    Sumi, Masatoshi; Sha, Tenei; Ryo, Fukko; Kagawa, Kotaro.

    1979-01-01

    CT scan of the head was performed on 14 patients with cerebral palsy, 16 with central coordination disorders, and 16 controls, and findings showing cerebral atrophy and enlargement of the cerebral ventricle were obtained in cases both of cerebral palsy and of central coordination disorders. To objectify these findings, 10 items were selected and evaluated according to 4 grades (0 - 3) and were compared. As a result, it was concluded that CT scan is an excellent ancillary procedure for early diagnosis of brain damages. (Tsunoda, M.)

  11. Left hemisphere regions are critical for language in the face of early left focal brain injury

    OpenAIRE

    Raja Beharelle, Anjali; Dick, Anthony Steven; Josse, Goulven; Solodkin, Ana; Huttenlocher, Peter R.; Levine, Susan C.; Small, Steven L.

    2010-01-01

    A predominant theory regarding early stroke and its effect on language development, is that early left hemisphere lesions trigger compensatory processes that allow the right hemisphere to assume dominant language functions, and this is thought to underlie the near normal language development observed after early stroke. To test this theory, we used functional magnetic resonance imaging to examine brain activity during category fluency in participants who had sustained pre- or perinatal left h...

  12. Predictive value of early near-infrared spectroscopy monitoring of patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Alina Vilkė

    2014-01-01

    Conclusions: NIRS plays an important role in the clinical care of TBI patients. Regional brain saturation monitoring provides accurate predictive data, which can improve the allocation of scarce medical resources, set the treatment goals and alleviate the early communication with patients’ relatives.

  13. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    Science.gov (United States)

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. Published by Elsevier B.V.

  14. Auditory motion in the sighted and blind: Early visual deprivation triggers a large-scale imbalance between auditory and "visual" brain regions.

    Science.gov (United States)

    Dormal, Giulia; Rezk, Mohamed; Yakobov, Esther; Lepore, Franco; Collignon, Olivier

    2016-07-01

    How early blindness reorganizes the brain circuitry that supports auditory motion processing remains controversial. We used fMRI to characterize brain responses to in-depth, laterally moving, and static sounds in early blind and sighted individuals. Whole-brain univariate analyses revealed that the right posterior middle temporal gyrus and superior occipital gyrus selectively responded to both in-depth and laterally moving sounds only in the blind. These regions overlapped with regions selective for visual motion (hMT+/V5 and V3A) that were independently localized in the sighted. In the early blind, the right planum temporale showed enhanced functional connectivity with right occipito-temporal regions during auditory motion processing and a concomitant reduced functional connectivity with parietal and frontal regions. Whole-brain searchlight multivariate analyses demonstrated higher auditory motion decoding in the right posterior middle temporal gyrus in the blind compared to the sighted, while decoding accuracy was enhanced in the auditory cortex bilaterally in the sighted compared to the blind. Analyses targeting individually defined visual area hMT+/V5 however indicated that auditory motion information could be reliably decoded within this area even in the sighted group. Taken together, the present findings demonstrate that early visual deprivation triggers a large-scale imbalance between auditory and "visual" brain regions that typically support the processing of motion information. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Early endocrine alterations reflect prolonged stress and relate to one year functional outcome in patients with severe brain injury

    DEFF Research Database (Denmark)

    Marina, Djordje; Klose, Marianne; Nordenbo, Annette

    2015-01-01

    OBJECTIVE: Severe brain injury poses a risk of developing acute and chronic hypopituitarism. Pituitary hormone alterations developed in the early recovery phase after brain injury may have implications for long-term functional recovery. The objective was to assess the pattern and prevalence...

  16. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures

    Science.gov (United States)

    Zeng, Hui; Goldsmith, Cynthia S.; Maines, Taronna R.; Belser, Jessica A.; Gustin, Kortney M.; Pekosz, Andrew; Zaki, Sherif R.; Katz, Jacqueline M.

    2013-01-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses. PMID:23255802

  17. A systems biology approach reveals that tissue tropism to West Nile virus is regulated by antiviral genes and innate immune cellular processes.

    Directory of Open Access Journals (Sweden)

    Mehul S Suthar

    2013-02-01

    Full Text Available The actions of the RIG-I like receptor (RLR and type I interferon (IFN signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV. In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen and nonpermissive (liver tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs(-/- × Ifnar(-/- mice revealed the loss of expression of several key components within the natural killer (NK cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs(-/- × Ifnar(-/- infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue

  18. Regional brain activity during early-stage intense romantic love predicted relationship outcomes after 40 months: an fMRI assessment.

    Science.gov (United States)

    Xu, Xiaomeng; Brown, Lucy; Aron, Arthur; Cao, Guikang; Feng, Tingyong; Acevedo, Bianca; Weng, Xuchu

    2012-09-20

    Early-stage romantic love is associated with activation in reward and motivation systems of the brain. Can these localized activations, or others, predict long-term relationship stability? We contacted participants from a previous fMRI study of early-stage love by Xu et al. [34] after 40 months from initial assessments. We compared brain activation during the initial assessment at early-stage love for those who were still together at 40 months and those who were apart, and surveyed those still together about their relationship happiness and commitment at 40 months. Six participants who were still with their partners at 40 months (compared to six who had broken up) showed less activation during early-stage love in the medial orbitofrontal cortex, right subcallosal cingulate and right accumbens, regions implicated in long-term love and relationship satisfaction [1,2]. These regions of deactivation at the early stage of love were also negatively correlated with relationship happiness scores collected at 40 months. Other areas involved were the caudate tail, and temporal and parietal lobes. These data are preliminary evidence that neural responses in the early stages of romantic love can predict relationship stability and quality up to 40 months later in the relationship. The brain regions involved suggest that forebrain reward functions may be predictive for relationship stability, as well as regions involved in social evaluation, emotional regulation, and mood. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Dietary Iron Repletion following Early-Life Dietary Iron Deficiency Does Not Correct Regional Volumetric or Diffusion Tensor Changes in the Developing Pig Brain

    Directory of Open Access Journals (Sweden)

    Austin T. Mudd

    2018-01-01

    Full Text Available BackgroundIron deficiency is the most common micronutrient deficiency worldwide and children are at an increased risk due to the rapid growth occurring during early life. The developing brain is highly dynamic, requires iron for proper function, and is thus vulnerable to inadequate iron supplies. Iron deficiency early in life results in altered myelination, neurotransmitter synthesis, neuron morphology, and later-life cognitive function. However, it remains unclear if dietary iron repletion after a period of iron deficiency can recover structural deficits in the brain.MethodTwenty-eight male pigs were provided either a control diet (CONT; n = 14; 23.5 mg Fe/L milk replacer or an iron-deficient diet (ID; n = 14; 1.56 mg Fe/L milk replacer for phase 1 of the study, from postnatal day (PND 2 until 32. Twenty pigs (n = 10/diet from phase 1 were used in phase 2 of the study from PND 33 to 61, all pigs were provided a common iron sufficient diet, regardless of their early-life dietary iron status. All pigs remaining in the study were subjected to magnetic resonance imaging (MRI at PND 32 and again at PND 61 using structural imaging sequences and diffusion tensor imaging (DTI to assess volumetric and microstructural brain development, respectively. Data were analyzed using a two-way ANOVA to assess the main and interactive effects of early-life iron status and time.ResultsAn interactive effect was observed for absolute whole brain volumes, in which whole brain volumes of ID pigs were smaller at PND 32 but were not different than CONT pigs at PND 61. Analysis of brain region volumes relative to total brain volume indicated interactive effects (i.e., diet × day in the cerebellum, olfactory bulb, and putamen-globus pallidus. Main effects of early-life iron status, regardless of imaging time point, were noted for decreased relative volumes of the left hippocampus, right hippocampus, thalamus, and increased relative white matter volume

  20. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    Directory of Open Access Journals (Sweden)

    Marika eUrbanski

    2014-09-01

    Full Text Available Visual field defects (VFDs are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumours, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. VFD is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first six months, with the best chance of improvement at one month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements, reading training, visual field restitution (the Vision Restoration Therapy, VRT, or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography: PET, Diffusion Tensor Imaging: DTI, functional Magnetic Resonance Imaging: fMRI, MagnetoEncephalography: MEG or neurostimulation techniques (Transcranial Magnetic Stimulation: TMS; transcranial Direct Current Stimulation, tDCS to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  1. Epidural Brain Metastases in a Patient with Early Onset Pancreatic Cancer: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Aibek E. Mirrakhimov

    2012-01-01

    Full Text Available We present a case of early onset pancreatic cancer related extra-axial brain metastases. A 46-year-old Caucasian non-Jewish nonobese male with a history of PC diagnosed 3 months ago with metastases to the liver, omentum, malignant ascites, and a history of a pulmonary embolism was admitted to the hospital because of a new onset headache, nausea, and vomiting which started 2 days prior to the encounter. Brain MRI was ordered, which showed acute bihemispheric subdural hematomas and left hemispheric extra-axial heterogeneously enhancing lesions consisting with metastatic disease. The patient was started on ondansentron, metoclopramide, and dexamethasone. The cranial irradiation was started, and the patient’s headache and nausea significantly improved. There are only 9 published reports of extra-axial brain metastases related to the pancreatic cancer, whereas our paper is the first such case reported on a patient with epidural metastases and early onset pancreatic cancer.

  2. Early adverse life events are associated with altered brain network architecture in a sex- dependent manner

    Directory of Open Access Journals (Sweden)

    Arpana Gupta, PhD

    2017-12-01

    Full Text Available Introduction: Early adverse life events (EALs increase the risk for chronic medical and psychiatric disorders by altering early neurodevelopment. The aim of this study was to examine associations between EALs and network properties of core brain regions in the emotion regulation and salience networks, and to test the influence of sex on these associations. Methods: Resting-state functional and diffusion tensor magnetic resonance imaging were obtained in healthy individuals (61 men, 63 women. Functional and anatomical network properties of centrality and segregation were calculated for the core regions of the two networks using graph theory. Moderator analyses were applied to test hypotheses. Results: The type of adversity experienced influences brain wiring differently, as higher general EALs were associated with decreased functional and anatomical centrality in salience and emotion regulation regions, while physical and emotional EALs were associated with increased anatomical centrality and segregation in emotion regulation regions. Sex moderated the associations between EALs and measures of centrality; with decreased centrality of salience and emotion regulation regions with increased general EALs in females, and increased centrality in salience regions with higher physical and emotional EALs in males. Increased segregation of salience regions was associated with increased general EALs in males. Centrality of the amygdala was associated with physical symptoms, and segregation of salience regions was correlated with higher somatization in men only. Conclusions: Emotion regulation and salience regions are susceptible to topological brain restructuring associated with EALs. The male and female brains appear to be differently affected by specific types of EALs. Keywords: Early adverse traumatic life events, Centrality, Segregation, Network metrics, Moderating effects of sex, Emotion regulation network, Salience network

  3. TALE transcription factors during early development of the vertebrate brain and eye.

    Science.gov (United States)

    Schulte, Dorothea; Frank, Dale

    2014-01-01

    Our brain's cognitive performance arises from the coordinated activities of billions of nerve cells. Despite a high degree of morphological and functional differences, all neurons of the vertebrate central nervous system (CNS) arise from a common field of multipotent progenitors. Cell fate specification and differentiation are directed by multistep processes that include inductive/external cues, such as the extracellular matrix or growth factors, and cell-intrinsic determinants, such as transcription factors and epigenetic modulators of proteins and DNA. Here we review recent findings implicating TALE-homeodomain proteins in these processes. Although originally identified as HOX-cofactors, TALE proteins also contribute to many physiological processes that do not require HOX-activity. Particular focus is, therefore, given to HOX-dependent and -independent functions of TALE proteins during early vertebrate brain development. Additionally, we provide an overview about known upstream and downstream factors of TALE proteins in the developing vertebrate brain and discuss general concepts of how TALE proteins function to modulate neuronal cell fate specification. Copyright © 2013 Wiley Periodicals, Inc.

  4. Boys with precocious or early puberty: incidence of pathological brain magnetic resonance imaging findings and factors related to newly developed brain lesions

    Directory of Open Access Journals (Sweden)

    Keun Hee Choi

    2013-12-01

    Full Text Available PurposeBrain magnetic resonance imaging (MRI findings and factors predictive of pathological brain lesions in boys with precocious puberty (PP or early puberty (EP were investigated.MethodsSixty-one boys with PP or EP who had brain MRI performed were included. PP was classified into the central or peripheral type. Brain MRI findings were categorized into group I (pathological brain lesion known to cause puberty; newly diagnosed [group Ia] or previously diagnosed [group Ib]; group II (brain lesion possibly related to puberty; and group III (incidental or normal findings. Medical history, height, weight, hormone test results, and bone age were reviewed.ResultsBrain lesions in groups I and II were detected in 17 of 23 boys (74% with central PP, 9 of 30 boys (30% with EP, and 7 of 8 boys (88% with peripheral PP. All brain lesions in boys with peripheral PP were germ cell tumors (GCT, and 3 lesions developed later during follow-up. Group I showed earlier pubertal onset (P<0.01 and greater bone age advancement (P<0.05 than group III. Group III had lower birth weight and fewer neurological symptoms than "Ia and II" (all P<0.05.ConclusionEarlier onset of puberty, greater bone age advancement, and/or neurological symptoms suggested a greater chance of pathological brain lesions in boys with central PP or EP. All boys with peripheral PP, even those with normal initial MRI findings, should be evaluated for the emergence of GCT during follow-up.

  5. Early brain development toward shaping of human mind: an integrative psychoneurodevelopmental model in prenatal and perinatal medicine.

    Science.gov (United States)

    Hruby, Radovan; Maas, Lili M; Fedor-Freybergh, P G

    2013-01-01

    The article introduces an integrative psychoneurodevelopmental model of complex human brain and mind development based on the latest findings in prenatal and perinatal medicine in terms of integrative neuroscience. The human brain development is extraordinarily complex set of events and could be influenced by a lot of factors. It is supported by new insights into the early neuro-ontogenic processes with the help of structural 3D magnetic resonance imaging or diffusion tensor imaging of fetal human brain. Various factors and targets for neural development including birth weight variability, fetal and early-life programming, fetal neurobehavioral states and fetal behavioral responses to various stimuli and others are discussed. Molecular biology reveals increasing sets of genes families as well as transcription and neurotropic factors together with critical epigenetic mechanisms to be deeply employed in the crucial neurodevelopmental events. Another field of critical importance is psychoimmuno-neuroendocrinology. Various effects of glucocorticoids as well as other hormones, prenatal stress and fetal HPA axis modulation are thought to be of special importance for brain development. The early postnatal period is characterized by the next intense shaping of complex competences, induced mainly by the very unique mother - newborn´s interactions and bonding. All these mechanisms serve to shape individual human mind with complex abilities and neurobehavioral strategies. Continuous research elucidating these special competences of human fetus and newborn/child supports integrative neuroscientific approach to involve various scientific disciplines for the next progress in human brain and mind research, and opens new scientific challenges and philosophic attitudes. New findings and approaches in this field could establish new methods in science, in primary prevention and treatment strategies, and markedly contribute to the development of modern integrative and personalized

  6. Targeting Malignant Brain Tumors with Antibodies

    Directory of Open Access Journals (Sweden)

    Rok Razpotnik

    2017-09-01

    Full Text Available Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs, and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT. Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs and neural stem cells (NSCs show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts, are making their way into glioma treatment as another type of cell

  7. Sex Differences in Brain Thyroid Hormone Levels during Early Post-Hatching Development in Zebra Finch (Taeniopygia guttata.

    Directory of Open Access Journals (Sweden)

    Shinji Yamaguchi

    Full Text Available Thyroid hormones are closely linked to the hatching process in precocial birds. Previously, we showed that thyroid hormones in brain had a strong impact on filial imprinting, an early learning behavior in newly hatched chicks; brain 3,5,3'-triiodothyronine (T3 peaks around hatching and imprinting training induces additional T3 release, thus, extending the sensitive period for imprinting and enabling subsequent other learning. On the other hand, blood thyroid hormone levels have been reported to increase gradually after hatching in altricial species, but it remains unknown how the brain thyroid hormone levels change during post-hatching development of altricial birds. Here, we determined the changes in serum and brain thyroid hormone levels of a passerine songbird species, the zebra finch using radioimmunoassay. In the serum, we found a gradual increase in thyroid hormone levels during post-hatching development, as well as differences between male and female finches. In the brain, there was clear surge in the hormone levels during development in males and females coinciding with the time of fledging, but the onset of the surge of thyroxine (T4 in males preceded that of females, whereas the onset of the surge of T3 in males succeeded that of females. These findings provide a basis for understanding the functions of thyroid hormones during early development and learning in altricial birds.

  8. Sex Differences in Brain Thyroid Hormone Levels during Early Post-Hatching Development in Zebra Finch (Taeniopygia guttata).

    Science.gov (United States)

    Yamaguchi, Shinji; Hayase, Shin; Aoki, Naoya; Takehara, Akihiko; Ishigohoka, Jun; Matsushima, Toshiya; Wada, Kazuhiro; Homma, Koichi J

    2017-01-01

    Thyroid hormones are closely linked to the hatching process in precocial birds. Previously, we showed that thyroid hormones in brain had a strong impact on filial imprinting, an early learning behavior in newly hatched chicks; brain 3,5,3'-triiodothyronine (T3) peaks around hatching and imprinting training induces additional T3 release, thus, extending the sensitive period for imprinting and enabling subsequent other learning. On the other hand, blood thyroid hormone levels have been reported to increase gradually after hatching in altricial species, but it remains unknown how the brain thyroid hormone levels change during post-hatching development of altricial birds. Here, we determined the changes in serum and brain thyroid hormone levels of a passerine songbird species, the zebra finch using radioimmunoassay. In the serum, we found a gradual increase in thyroid hormone levels during post-hatching development, as well as differences between male and female finches. In the brain, there was clear surge in the hormone levels during development in males and females coinciding with the time of fledging, but the onset of the surge of thyroxine (T4) in males preceded that of females, whereas the onset of the surge of T3 in males succeeded that of females. These findings provide a basis for understanding the functions of thyroid hormones during early development and learning in altricial birds.

  9. A mouse model for creatine transporter deficiency reveals early onset cognitive impairment and neuropathology associated with brain aging.

    Science.gov (United States)

    Baroncelli, Laura; Molinaro, Angelo; Cacciante, Francesco; Alessandrì, Maria Grazia; Napoli, Debora; Putignano, Elena; Tola, Jonida; Leuzzi, Vincenzo; Cioni, Giovanni; Pizzorusso, Tommaso

    2016-10-01

    Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement and autistic-like behavioural disturbances, language and speech impairment. Since no data are available about the neural and molecular underpinnings of this disease, we performed a longitudinal analysis of behavioural and pathological alterations associated with CrT deficiency in a CCDS1 mouse model. We found precocious cognitive and autistic-like defects, mimicking the early key features of human CCDS1. Moreover, mutant mice displayed a progressive impairment of short and long-term declarative memory denoting an early brain aging. Pathological examination showed a prominent loss of GABAergic synapses, marked activation of microglia, reduction of hippocampal neurogenesis and the accumulation of autofluorescent lipofuscin. Our data suggest that brain Cr depletion causes both early intellectual disability and late progressive cognitive decline, and identify novel targets to design intervention strategies aimed at overcoming brain CCDS1 alterations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Correlates of early pregnancy serum brain-derived neurotrophic factor in a Peruvian population.

    Science.gov (United States)

    Yang, Na; Levey, Elizabeth; Gelaye, Bizu; Zhong, Qiu-Yue; Rondon, Marta B; Sanchez, Sixto E; Williams, Michelle A

    2017-12-01

    Knowledge about factors that influence serum brain-derived neurotrophic factor (BDNF) concentrations during early pregnancy is lacking. The aim of the study is to examine the correlates of early pregnancy serum BDNF concentrations. A total of 982 women attending prenatal care clinics in Lima, Peru, were recruited in early pregnancy. Pearson's correlation coefficient was calculated to evaluate the relation between BDNF concentrations and continuous covariates. Analysis of variance and generalized linear models were used to compare the unadjusted and adjusted BDNF concentrations according to categorical variables. Multivariable linear regression models were applied to determine the factors that influence early pregnancy serum BDNF concentrations. In bivariate analysis, early pregnancy serum BDNF concentrations were positively associated with maternal age (r = 0.16, P BDNF concentrations. Participants with moderate antepartum depressive symptoms (Patient Health Questionnaire-9 (PHQ-9) score ≥ 10) had lower serum BDNF concentrations compared with participants with no/mild antepartum depressive symptoms (PHQ-9 score BDNF concentrations in low-income Peruvian women. Biological changes of CRP during pregnancy may affect serum BDNF concentrations.

  11. Pharmacologic inhibition of phospholipase C in the brain attenuates early memory formation in the honeybee (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Shota Suenami

    2018-01-01

    Full Text Available Although the molecular mechanisms involved in learning and memory in insects have been studied intensively, the intracellular signaling mechanisms involved in early memory formation are not fully understood. We previously demonstrated that phospholipase C epsilon (PLCe, whose product is involved in calcium signaling, is almost selectively expressed in the mushroom bodies, a brain structure important for learning and memory in the honeybee. Here, we pharmacologically examined the role of phospholipase C (PLC in learning and memory in the honeybee. First, we identified four genes for PLC subtypes in the honeybee genome database. Quantitative reverse transcription-polymerase chain reaction revealed that, among these four genes, three, including PLCe, were expressed higher in the brain than in sensory organs in worker honeybees, suggesting their main roles in the brain. Edelfosine and neomycin, pan-PLC inhibitors, significantly decreased PLC activities in homogenates of the brain tissues. These drugs injected into the head of foragers significantly attenuated memory acquisition in comparison with the control groups, whereas memory retention was not affected. These findings suggest that PLC in the brain is involved in early memory formation in the honeybee. To our knowledge, this is the first report of a role for PLC in learning and memory in an insect.

  12. [Antirheumatic substance and meridian tropism of Loranthus parasiticus based on "syndrome-efficacy-analysis of biological samples"].

    Science.gov (United States)

    Li, Ling-Ling; Wang, Jing; Cui, Ying; Wen, Pu; Guan, Jun; Yang, Shu; Ma, Kai

    2016-05-01

    To study the antirheumatic substance of Loranthus parasiticus and observe the relationship between its in vivo distribution and meridian tropism in rats by establishing adjuvant arthritis models corresponding to effectiveness. All rats except the negative control group were injected with 0.1 mL Freund's complete adjuvant on the left foot. After 8 days, the rats in negative control group and model group were given with normal saline while the rats in positive control group were given with tripterygium glycosides suspension 10 mg•kg-1, and the rats in L. parasiticus treatment groups were given with high(10 g•kg ⁻¹), medium(5 g•kg ⁻¹) and low(2.5 g•kg ⁻¹) dose decoction for 21 days. The left rear ankle joint diameter of rats were measured every 7 days from the 9th day of modeling. On the 22nd day, eyeball blood of part rats in L. parasiticus high-dose group was taken at different time points, and then they were sacrificed to take heart, liver, spleen, lung, kidney, stomach, large intestine, small intestine and brain tissues. For the remaining rats, eyeball blood was taken 30 min after drug treatment, and their left rear ankle joints were taken to detect interleukin (IL)-1β and tumor necrosis factor (TNF)-α levels in serum by ELISA method; rutin, avicularin and quercitrin levels in the tissues of high-dose group were detected by HPLC; pharmacokinetic parameters were analyzed by using DAS 2.0. Our results showed that L. parasiticus decoction could significantly improve the paw edema situation of adjuvant arthritis model rats, and reduce IL-1β and TNF-α levels in rat serum. The in vivo efficacy substance analysis in rats showed that rutin was only present in the stomach with a small amount. AUC0-t of avicularin was stomach > small intestine > kidney, and the duration time in vivo was kidney=stomach > small intestine > lung > heart. AUC0-t of quercitrin was stomach > kidney > liver > heart > lung > spleen > small intestine > brain > large intestine

  13. Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder.

    Science.gov (United States)

    Shen, Mark D; Nordahl, Christine W; Young, Gregory S; Wootton-Gorges, Sandra L; Lee, Aaron; Liston, Sarah E; Harrington, Kayla R; Ozonoff, Sally; Amaral, David G

    2013-09-01

    Prospective studies of infants at risk for autism spectrum disorder have provided important clues about the early behavioural symptoms of autism spectrum disorder. Diagnosis of autism spectrum disorder, however, is not currently made until at least 18 months of age. There is substantially less research on potential brain-based differences in the period between 6 and 12 months of age. Our objective in the current study was to use magnetic resonance imaging to identify any consistently observable brain anomalies in 6-9 month old infants who would later develop autism spectrum disorder. We conducted a prospective infant sibling study with longitudinal magnetic resonance imaging scans at three time points (6-9, 12-15, and 18-24 months of age), in conjunction with intensive behavioural assessments. Fifty-five infants (33 'high-risk' infants having an older sibling with autism spectrum disorder and 22 'low-risk' infants having no relatives with autism spectrum disorder) were imaged at 6-9 months; 43 of these (27 high-risk and 16 low-risk) were imaged at 12-15 months; and 42 (26 high-risk and 16 low-risk) were imaged again at 18-24 months. Infants were classified as meeting criteria for autism spectrum disorder, other developmental delays, or typical development at 24 months or later (mean age at outcome: 32.5 months). Compared with the other two groups, infants who developed autism spectrum disorder (n = 10) had significantly greater extra-axial fluid at 6-9 months, which persisted and remained elevated at 12-15 and 18-24 months. Extra-axial fluid is characterized by excessive cerebrospinal fluid in the subarachnoid space, particularly over the frontal lobes. The amount of extra-axial fluid detected as early as 6 months was predictive of more severe autism spectrum disorder symptoms at the time of outcome. Infants who developed autism spectrum disorder also had significantly larger total cerebral volumes at both 12-15 and 18-24 months of age. This is the first magnetic

  14. Recent Observations on Australian Bat Lyssavirus Tropism and Viral Entry

    Directory of Open Access Journals (Sweden)

    Dawn L. Weir

    2014-02-01

    Full Text Available Australian bat lyssavirus (ABLV is a recently emerged rhabdovirus of the genus lyssavirus considered endemic in Australian bat populations that causes a neurological disease in people indistinguishable from clinical rabies. There are two distinct variants of ABLV, one that circulates in frugivorous bats (genus Pteropus and the other in insectivorous microbats (genus Saccolaimus. Three fatal human cases of ABLV infection have been reported, the most recent in 2013, and each manifested as acute encephalitis but with variable incubation periods. Importantly, two equine cases also arose recently in 2013, the first occurrence of ABLV in a species other than bats or humans. Similar to other rhabdoviruses, ABLV infects host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion facilitated by its single fusogenic envelope glycoprotein (G. Recent studies have revealed that proposed rabies virus (RABV receptors are not sufficient to permit ABLV entry into host cells and that the unknown receptor is broadly conserved among mammalian species. However, despite clear tropism differences between ABLV and RABV, the two viruses appear to utilize similar endocytic entry pathways. The recent human and horse infections highlight the importance of continued Australian public health awareness of this emerging pathogen.

  15. Recent observations on Australian bat lyssavirus tropism and viral entry.

    Science.gov (United States)

    Weir, Dawn L; Annand, Edward J; Reid, Peter A; Broder, Christopher C

    2014-02-19

    Australian bat lyssavirus (ABLV) is a recently emerged rhabdovirus of the genus lyssavirus considered endemic in Australian bat populations that causes a neurological disease in people indistinguishable from clinical rabies. There are two distinct variants of ABLV, one that circulates in frugivorous bats (genus Pteropus) and the other in insectivorous microbats (genus Saccolaimus). Three fatal human cases of ABLV infection have been reported, the most recent in 2013, and each manifested as acute encephalitis but with variable incubation periods. Importantly, two equine cases also arose recently in 2013, the first occurrence of ABLV in a species other than bats or humans. Similar to other rhabdoviruses, ABLV infects host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion facilitated by its single fusogenic envelope glycoprotein (G). Recent studies have revealed that proposed rabies virus (RABV) receptors are not sufficient to permit ABLV entry into host cells and that the unknown receptor is broadly conserved among mammalian species. However, despite clear tropism differences between ABLV and RABV, the two viruses appear to utilize similar endocytic entry pathways. The recent human and horse infections highlight the importance of continued Australian public health awareness of this emerging pathogen.

  16. Early postnatal development of rat brain is accompanied by generation of lipofuscin-like pigments

    Czech Academy of Sciences Publication Activity Database

    Wilhelm, J.; Ivica, J.; Kagan, Dmytro; Svoboda, Petr

    2011-01-01

    Roč. 347, 1-2 (2011), s. 157-162 ISSN 0300-8177 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) IAA500110606 Institutional research plan: CEZ:AV0Z50110509 Keywords : brain * early development * lipofuscin-like pigments * fluorescence * rat Subject RIV: CE - Biochemistry Impact factor: 2.057, year: 2011

  17. Brain MRI and SPECT in the diagnosis of early neurological involvement in Wilson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Piga, Mario; Satta, Loredana; Serra, Alessandra; Loi, Gianluigi [Policlinico Universitario, University of Cagliari, Nuclear Medicine, Department of Medical Science, Monserrato, Cagliari (Italy); Murru, Alessandra; Demelia, Luigi [Policlinico Universitario, University of Cagliari, Gastroenterology, Department of Medical Science, Monserrato, Cagliari (Italy); Sias, Alessandro [Policlinico Universitario, University of Cagliari, Radiology, Department of Medical Science, Monserrato, Cagliari (Italy); Marrosu, Francesco [Policlinico Universitario, University of Cagliari, Neurology, Department of Medical Science, Monserrato, Cagliari (Italy)

    2008-04-15

    To evaluate the impact of brain MRI and single-photon emission computed tomography (SPECT) in early detection of central nervous system abnormalities in patients affected by Wilson's disease (WD) with or without neurological involvement. Out of 25 consecutive WD patients, 13 showed hepatic involvement, ten hepatic and neurological manifestations, and twp hepatic, neurological, and psychiatric symptoms, including mainly movement disorders, major depression, and psychosis. Twenty-four healthy, age-gender matched subjects served as controls. All patients underwent brain MRI and {sup 99m}Tc-ethyl-cysteinate dimer (ECD) SPECT before starting specific therapy. Voxel-by-voxel analyses were performed using statistical parametric mapping to compare differences in {sup 99m}Tc-ECD brain uptake between the two groups. Brain MRI showed T2-weighted hyperintensities in seven patients (28%), six of whom were affected by hepatic and neurological forms. Brain perfusion SPECT showed pathological data in 19 patients (76%), revealing diffuse or focal hypoperfusion in superior frontal (Brodmann area (BA) 6), prefrontal (BA 9), parietal (BA 40), and occipital (BA 18, BA 39) cortices in temporal gyri (BA 37, BA 21) and in caudatus and putamen. Moreover, hepatic involvement was detected in nine subjects; eight presented both hepatic and neurological signs, while two exhibited WD-correlated hepatic, neurological, and psychiatric alterations. All but one patient with abnormal MRI matched with abnormal ECD SPECT. Pathologic MRI findings were obtained in six out of ten patients with hepatic and neurological involvement while abnormal ECD SPECT was revealed in eight patients. Both patients with hepatic, neurological, and psychiatric involvement displayed abnormal ECD SPECT and one displayed an altered MRI. These findings suggest that ECD SPECT might be useful in detecting early brain damage in WD, not only in the perspective of assessing and treating motor impairment but also in evaluating

  18. Early gray-matter and white-matter concentration in infancy predict later language skills: a whole brain voxel-based morphometry study.

    Science.gov (United States)

    Deniz Can, Dilara; Richards, Todd; Kuhl, Patricia K

    2013-01-01

    Magnetic resonance imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months. Early gray-matter concentration in the right cerebellum, early white-matter concentration in the right cerebellum, and early white-matter concentration in the left posterior limb of the internal capsule (PLIC)/cerebral peduncle were positively and strongly associated with infants' receptive language ability at 12 months. Early gray-matter concentration in the right hippocampus was positively and strongly correlated with infants' expressive language ability at 12 months. Our results suggest that the cerebellum, PLIC/cerebral peduncle, and the hippocampus may be associated with early language development. Potential links between these structural predictors and infants' linguistic functions are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Tackling the ‘dyslexia paradox’: reading brain and behavior for early markers of developmental dyslexia

    Science.gov (United States)

    Ozernov-Palchik, Ola; Gaab, Nadine

    2016-01-01

    Developmental dyslexia is an unexplained inability to acquire accurate or fluent reading that affects approximately 5–17% of children. Dyslexia is associated with structural and functional alterations in various brain regions that support reading. Neuroimaging studies in infants and pre-reading children suggest that these alterations predate reading instruction and reading failure, supporting the hypothesis that variant function in dyslexia susceptibility genes lead to atypical neural migration and/or axonal growth during early, most likely in utero, brain development. Yet, dyslexia is typically not diagnosed until a child has failed to learn to read as expected (usually in second grade or later). There is emerging evidence that neuroimaging measures, when combined with key behavioral measures, can enhance the accuracy of identification of dyslexia risk in prereading children but its sensitivity, specificity, and cost-efficiency is still unclear. Early identification of dyslexia risk carries important implications for dyslexia remediation and the amelioration of the psychosocial consequences commonly associated with reading failure. PMID:26836227

  20. Rebooting the Brain: Using Early Childhood Education to Heal Trauma from Abuse and Neglect

    Science.gov (United States)

    McLintock, Ben

    2011-01-01

    Abused and neglected children live in a world that usually includes some sort of violence, chaos, and tremendous physical and mental stress. This toxic environment wreaks havoc on a child's developing brain. This article discusses how to use early childhood education to heal trauma from abuse and neglect. It shares the story of two children, Bryce…

  1. Minocycline Protects Against NLRP3 Inflammasome-Induced Inflammation and P53-Associated Apoptosis in Early Brain Injury After Subarachnoid Hemorrhage.

    Science.gov (United States)

    Li, Jianru; Chen, Jingsen; Mo, Hangbo; Chen, Jingyin; Qian, Cong; Yan, Feng; Gu, Chi; Hu, Qiang; Wang, Lin; Chen, Gao

    2016-05-01

    Minocycline has beneficial effects in early brain injury (EBI) following subarachnoid hemorrhage (SAH); however, the molecular mechanisms underlying these effects have not been clearly identified. This study was undertaken to determine the influence of minocycline on inflammation and neural apoptosis and the possible mechanisms of these effects in early brain injury following subarachnoid hemorrhage. SAH was induced by the filament perforation model of SAH in male Sprague-Dawley rats. Minocycline or vehicle was given via an intraperitoneal injection 1 h after SAH induction. Minocycline treatment markedly attenuated brain edema secondary to blood-brain barrier (BBB) dysfunction by inhibiting NLRP3 inflammasome activation, which controls the maturation and release of pro-inflammatory cytokines, especially interleukin-1β (IL-1β). Minocycline treatment also markedly reduced the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-positive cells. To further identify the potential mechanisms, we demonstrated that minocycline increased Bcl2 expression and reduced the protein expression of P53, Bax, and cleaved caspase-3. In addition, minocycline reduced the cortical levels of reactive oxygen species (ROS), which are closely related to both NLRP3 inflammasome and P53 expression. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury following SAH. Minocycline's anti-inflammatory and anti-apoptotic effect may involve the reduction of ROS. Minocycline treatment may exhibit important clinical potentials in the management of SAH.

  2. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs.

    Science.gov (United States)

    Zhang, Hai-Tao; Zhang, Ping; Gao, Yi; Li, Chen-Long; Wang, Hong-Jun; Chen, Ling-Chao; Feng, Yan; Li, Rui-Yan; Li, Yong-Li; Jiang, Chuan-Lu

    2017-01-01

    Vascular endothelial growth factor (VEGF) inhibition has been demonstrated to be an effective strategy in preserving the integrity of the blood-brain barrier (BBB) in patients with acute ischemic stroke. Loss of the BBB is the key event associated with morbidity and mortality in these patients. However, the underlying mechanisms remain poorly understood. In the present study, the effects of VEGF inhibition and the possible mechanism that underlies acute cerebral ischemia in rats was investigated. Following the induction of transient middle cerebral artery occlusion for a 90‑min period, either an anti‑VEGF neutralizing antibody (RB‑222; 5 or 10 µg), or IgG (control), was administered by intracerebroventricular injection at 1 h following reperfusion. Functional outcomes, BBB leakage, brain edema, microvessel numbers and the relative protein levels of VEGF, matrix metalloproteinase (MMP)-2, MMP-9, occludin and collagen-IV were then determined using neurological assessments, Evans Blue staining, brain water content, CD31 staining and western blotting. Treatment with RB‑222 at a dose of 5 and 10 µg significantly improved neurological functional outcomes and diminished infarct size, BBB leakage and brain edema compared with the MCAO and IgG groups at 24 h following reperfusion; 10 µg RB‑222 was more effective than a 5 µg dose of the antibody. In addition, RB‑222 reduced the number of immature microvessels, which subsequently attenuated BBB permeability. RB‑222 significantly repressed VEGF expression as well as decreased MMP‑2 and MMP‑9 expression. However, it enhanced occludin and collagen‑IV levels in the ischemic rat brain compared with the MCAO and IgG groups. Taken together, the results indicate that early inhibition of VEGF may have significant potential against cerebral ischemia, partly by regulating the expression of MMPs.

  3. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities

    Directory of Open Access Journals (Sweden)

    Janušonis Skirmantas

    2005-07-01

    Full Text Available Abstract Background A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin in blood platelets (platelet hyperserotonemia. The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. Results The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. Conclusion At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene based on currently available clinical and

  4. [Differences between cold and hot natures of processed Radix ginseng rubra and Panax quinquefolius L. based upon mice temperature tropism].

    Science.gov (United States)

    Zhang, Xue-Ru; Zhao, Yan-Ling; Wang, Jia-Bo; Zhou, Can-Ping; Liu, Ta-Si; Zhao, Hai-Ping; Ren, Yong-Shen; Yan, Dan; Xiao, Xiao-He

    2009-07-28

    To establish an objective method to estimate the disparity between the cold and hot natures on the basis of an intrinsic correlation between temperature tropism of mice and the cold and hot natures of Chinese medicines. Male KM mice were randomly divided into 7 groups of 6 each, namely the normal group (NM), the weak model group (WM), the strong model group (SM), the weak model plus Radix ginseng rubra group (WM + RG), the weak model plus Panax quinquefolius L. group (WM + PQ), the strong model plus Radix ginseng rubra group (SM + RG) and the strong model plus Panax quinquefolius L. group (SM +PQ). The specific herbal drugs were administered intragastricly. To induce the weak model, mice were fed with a limited supply of feed and forced to swim in cold water until almost drowning while the strong model induced by feeding a high-protein diet with an unlimited feed access. The doses of Radix ginseng rubra and Panax quinquefolius L. were 35 mg/g of body weight per day (counted by the quantity of crude material) and lasting for seven days. The NM and model groups without dosing were intragastricly administered with physiological saline of the same volume to the dosing groups. The percentage of the remaining time of mouse on a high temperature (40 degrees C) pad to the total monitoring time was recorded by a self-designed intelligent animal behavior monitoring system. Meanwhile, the drinking volume of mice in each group was measured. Immediately after experiment, the activities of Na(+)K(+)-ATPase and superoxide dismutase (SOD) in liver tissue were measured by assay kits of phosphorus and xanthine oxidase methods respectively. The features of deficient and cold symptom, such as fatigue, stagnant weight growth, decreased water intake, cold limbs and tail etc, were observed in WM group. And the features of heat symptom, such as increased weight and water intake, hyperactivity etc, were observed in SM group. The percentage of time that the mouse remained on 40 degrees C

  5. Brain Development

    Science.gov (United States)

    ... Become a Member Home Early Development & Well-Being Brain Development A child’s brain undergoes an amazing period of development from birth ... neural connections each second. The development of the brain is influenced by many factors, including a child’s ...

  6. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior

    Science.gov (United States)

    Leclercq, Sophie; Mian, Firoz M.; Stanisz, Andrew M.; Bindels, Laure B.; Cambier, Emmanuel; Ben-Amram, Hila; Koren, Omry; Forsythe, Paul; Bienenstock, John

    2017-01-01

    There is increasing concern about potential long-term effects of antibiotics on children's health. Epidemiological studies have revealed that early-life antibiotic exposure can increase the risk of developing immune and metabolic diseases, and rodent studies have shown that administration of high doses of antibiotics has long-term effects on brain neurochemistry and behaviour. Here we investigate whether low-dose penicillin in late pregnancy and early postnatal life induces long-term effects in the offspring of mice. We find that penicillin has lasting effects in both sexes on gut microbiota, increases cytokine expression in frontal cortex, modifies blood–brain barrier integrity and alters behaviour. The antibiotic-treated mice exhibit impaired anxiety-like and social behaviours, and display aggression. Concurrent supplementation with Lactobacillus rhamnosus JB-1 prevents some of these alterations. These results warrant further studies on the potential role of early-life antibiotic use in the development of neuropsychiatric disorders, and the possible attenuation of these by beneficial bacteria. PMID:28375200

  7. Regulation of stomatal tropism and infection by light in Cercospora zeae-maydis: evidence for coordinated host/pathogen responses to photoperiod?

    Directory of Open Access Journals (Sweden)

    Hun Kim

    2011-07-01

    Full Text Available Cercospora zeae-maydis causes gray leaf spot of maize, which has become one of the most widespread and destructive diseases of maize in the world. C. zeae-maydis infects leaves through stomata, which is predicated on the ability of the pathogen to perceive stomata and reorient growth accordingly. In this study, the discovery that light was required for C. zeae-maydis to perceive stomata and infect leaves led to the identification of CRP1, a gene encoding a putative blue-light photoreceptor homologous to White Collar-1 (WC-1 of Neurospora crassa. Disrupting CRP1 via homologous recombination revealed roles in multiple aspects of pathogenesis, including tropism of hyphae to stomata, the formation of appressoria, conidiation, and the biosynthesis of cercosporin. CRP1 was also required for photoreactivation after lethal doses of UV exposure. Intriguingly, putative orthologs of CRP1 are central regulators of circadian clocks in other filamentous fungi, raising the possibility that C. zeae-maydis uses light as a key environmental input to coordinate pathogenesis with maize photoperiodic responses. This study identified a novel molecular mechanism underlying stomatal tropism in a foliar fungal pathogen, provides specific insight into how light regulates pathogenesis in C. zeae-maydis, and establishes a genetic framework for the molecular dissection of infection via stomata and the integration of host and pathogen responses to photoperiod.

  8. Regulation of stomatal tropism and infection by light in Cercospora zeae-maydis: evidence for coordinated host/pathogen responses to photoperiod?

    Science.gov (United States)

    Kim, Hun; Ridenour, John B; Dunkle, Larry D; Bluhm, Burton H

    2011-07-01

    Cercospora zeae-maydis causes gray leaf spot of maize, which has become one of the most widespread and destructive diseases of maize in the world. C. zeae-maydis infects leaves through stomata, which is predicated on the ability of the pathogen to perceive stomata and reorient growth accordingly. In this study, the discovery that light was required for C. zeae-maydis to perceive stomata and infect leaves led to the identification of CRP1, a gene encoding a putative blue-light photoreceptor homologous to White Collar-1 (WC-1) of Neurospora crassa. Disrupting CRP1 via homologous recombination revealed roles in multiple aspects of pathogenesis, including tropism of hyphae to stomata, the formation of appressoria, conidiation, and the biosynthesis of cercosporin. CRP1 was also required for photoreactivation after lethal doses of UV exposure. Intriguingly, putative orthologs of CRP1 are central regulators of circadian clocks in other filamentous fungi, raising the possibility that C. zeae-maydis uses light as a key environmental input to coordinate pathogenesis with maize photoperiodic responses. This study identified a novel molecular mechanism underlying stomatal tropism in a foliar fungal pathogen, provides specific insight into how light regulates pathogenesis in C. zeae-maydis, and establishes a genetic framework for the molecular dissection of infection via stomata and the integration of host and pathogen responses to photoperiod.

  9. The experimental study on tropism of magnetic labeled bone marrow mesenchymal stem cells for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Chen Shuangqing; Wang Peijun; Li Minghua; Zhang Wei; Dai gonghua

    2009-01-01

    Objective: To label rat bone marrow mesenchymal stem cells with superparamagnetic iron oxide (SPIO) and to explore the tropism of BMSCs for hepatocellular carcinoma cells after transplantation in vivo. Methods: BMSCs from bone marrow of Sprague-Dawly (SD) rats were cultured isolated and purified. Labeled BMSCs was achieved using Feridex. Twenty-four hepatocellular carcinoma models of SD rats were induced two weeks before transplantation. The models were divided into three groups in random: the labeled BMSCs and unlabeled BMSCs were transplanted respectively into the rat's livers of experimental group (n=12) and control group A (n=6) via spleens, and no transplant was done for control group B (n=6). MR imaging was performed to monitor the transplanted cells after 1,3,7,14 d using 1.5 T MR system. Signal intensity ratio (SI/SI * ) between tumor and hepatic tissue on T 2 * WI were measured and compared by one-factor analysis of variance. After MR imaging, Prussian blue staining was performed. MR imaging findings were compared with histological sections. Results: Prussian blue staining confirmed the labeling efficiency of BMSCs was above 90%. SI/SI * of experimental group before and 1, 3, 7, 14 d after transplantation were 3.18±0.21, 1.98±0.20, 2.38±0.28, 2.70±0.25 and 3.16±0.24 respectively. Following transplantation of BMSCs, signal intensity decrease was found in hepatocellular carcinoma of experimental group (F=56.65, P 2 * WI (P>0.05). A large number of Prussian blue staining positive cells were found in hepatocellular carcinoma in experimental group. Histological section with Prussian blue staining had a good correlation with the signal intensity changes on MR images at different time. Conclusion: BMSCs display significant tropism to hepatocellular carcinoma and may be an ideal gene therapy vehicle against hepatocellular carcinoma. (authors)

  10. Pain Catastrophizing Correlates with Early Mild Traumatic Brain Injury Outcome

    Directory of Open Access Journals (Sweden)

    Geneviève Chaput

    2016-01-01

    Full Text Available Background. Identifying which patients are most likely to be at risk of chronic pain and other postconcussion symptoms following mild traumatic brain injury (MTBI is a difficult clinical challenge. Objectives. To examine the relationship between pain catastrophizing, defined as the exaggerated negative appraisal of a pain experience, and early MTBI outcome. Methods. This cross-sectional design included 58 patients diagnosed with a MTBI. In addition to medical chart review, postconcussion symptoms were assessed by self-report at 1 month (Time 1 and 8 weeks (Time 2 after MTBI. Pain severity, psychological distress, level of functionality, and pain catastrophizing were measured by self-report at Time 2. Results. The pain catastrophizing subscales of rumination, magnification, and helplessness were significantly correlated with pain severity (r=.31 to .44, number of postconcussion symptoms reported (r=.35 to .45, psychological distress (r=.57 to .67, and level of functionality (r=-.43 to -.29. Pain catastrophizing scores were significantly higher for patients deemed to be at high risk of postconcussion syndrome (6 or more symptoms reported at both Time 1 and Time 2. Conclusions. Higher levels of pain catastrophizing were related to adverse early MTBI outcomes. The early detection of pain catastrophizing may facilitate goal-oriented interventions to prevent or minimize the development of chronic pain and other postconcussion symptoms.

  11. Experimental Toxoplasmosis in Rats Induced Orally with Eleven Strains of Toxoplasma gondii of Seven Genotypes: Tissue Tropism, Tissue Cyst Size, Neural Lesions, Tissue Cyst Rupture without Reactivation, and Ocular Lesions.

    Directory of Open Access Journals (Sweden)

    Jitender P Dubey

    Full Text Available The protozoan parasite Toxoplasma gondii is one of the most widely distributed and successful parasites. Toxoplasma gondii alters rodent behavior such that infected rodents reverse their fear of cat odor, and indeed are attracted rather than repelled by feline urine. The location of the parasite encysted in the brain may influence this behavior. However, most studies are based on the highly susceptible rodent, the mouse.Latent toxoplasmosis was induced in rats (10 rats per T. gondii strains of the same age, strain, and sex, after oral inoculation with oocysts (natural route and natural stage of infection of 11 T. gondii strains of seven genotypes. Rats were euthanized at two months post inoculation (p.i. to investigate whether the parasite genotype affects the distribution, location, tissue cyst size, or lesions. Tissue cysts were enumerated in different regions of the brains, both in histological sections as well in saline homogenates. Tissue cysts were found in all regions of the brain. The tissue cyst density in different brain regions varied extensively between rats with many regions highly infected in some animals. Overall, the colliculus was most highly infected although there was a large amount of variability. The cerebral cortex, thalamus, and cerebellum had higher tissue cyst densities and two strains exhibited tropism for the colliculus and olfactory bulb. Histologically, lesions were confined to the brain and eyes. Tissue cyst rupture was frequent with no clear evidence for reactivation of tachyzoites. Ocular lesions were found in 23 (25% of 92 rat eyes at two months p.i. The predominant lesion was focal inflammation in the retina. Tissue cysts were seen in the sclera of one and in the optic nerve of two rats. The choroid was not affected. Only tissue cysts, not active tachyzoite infections, were detected. Tissue cysts were seen in histological sections of tongue of 20 rats but not in myocardium and leg muscle.This study reevaluated

  12. Early detection of consciousness in patients with acute severe traumatic brain injury.

    Science.gov (United States)

    Edlow, Brian L; Chatelle, Camille; Spencer, Camille A; Chu, Catherine J; Bodien, Yelena G; O'Connor, Kathryn L; Hirschberg, Ronald E; Hochberg, Leigh R; Giacino, Joseph T; Rosenthal, Eric S; Wu, Ona

    2017-09-01

    See Schiff (doi:10.1093/awx209) for a scientific commentary on this article. Patients with acute severe traumatic brain injury may recover consciousness before self-expression. Without behavioural evidence of consciousness at the bedside, clinicians may render an inaccurate prognosis, increasing the likelihood of withholding life-sustaining therapies or denying rehabilitative services. Task-based functional magnetic resonance imaging and electroencephalography techniques have revealed covert consciousness in the chronic setting, but these techniques have not been tested in the intensive care unit. We prospectively enrolled 16 patients admitted to the intensive care unit for acute severe traumatic brain injury to test two hypotheses: (i) in patients who lack behavioural evidence of language expression and comprehension, functional magnetic resonance imaging and electroencephalography detect command-following during a motor imagery task (i.e. cognitive motor dissociation) and association cortex responses during language and music stimuli (i.e. higher-order cortex motor dissociation); and (ii) early responses to these paradigms are associated with better 6-month outcomes on the Glasgow Outcome Scale-Extended. Patients underwent functional magnetic resonance imaging on post-injury Day 9.2 ± 5.0 and electroencephalography on Day 9.8 ± 4.6. At the time of imaging, behavioural evaluation with the Coma Recovery Scale-Revised indicated coma (n = 2), vegetative state (n = 3), minimally conscious state without language (n = 3), minimally conscious state with language (n = 4) or post-traumatic confusional state (n = 4). Cognitive motor dissociation was identified in four patients, including three whose behavioural diagnosis suggested a vegetative state. Higher-order cortex motor dissociation was identified in two additional patients. Complete absence of responses to language, music and motor imagery was only observed in coma patients. In patients with behavioural evidence

  13. Early and late effects of local high dose radiotherapy of the brain on memory and attention

    International Nuclear Information System (INIS)

    Duchstein, S.; Gademann, G.; Peters, B.

    2003-01-01

    Early and Late Effects of Local High Dose Radiotherapy of the Brain on Memory and Attention Background: Stereotactic radiotherapy of benign tumors of the base of skull shows excellent tumor control and long survival. Aim is to study the impact of high dose radiation therapy on functions of memory and attention over time. Patients and Methods: 21 patients (age 42 ± 11 years) with tumors of the base of skull (meningiomas, pituitary gland adenomas) were treated by fractionated stereotactic radiotherapy (mean total dose 56,6 Gy/1,8 Gy). Comprehensive neuropsychological tests and MRI brain scans were performed before, 3, 9 and 21 months after therapy. 14 healthy volunteers were tested in parallel at baseline. In the follow-ups patients were their own controls. Results: In pretreatment tests there were significantly worse test results in comparison to the control group in ten of 32 tests. In postradiation tests only few changes were found in the early-delayed period and not much difference was seen in comparison to the baseline tests. In MRI scans tumor recurrences or radiation induced changes were not found. Conclusion: Radiation with high local doses in target volume extremely close to sensitive brain structures like temporal lobes did not induce significant decline of cognitive functions. (orig.) [de

  14. Conventional 3T brain MRI and diffusion tensor imaging in the diagnostic workup of early stage parkinsonism

    International Nuclear Information System (INIS)

    Meijer, Frederick J.A.; Rumund, Anouke van; Tuladhar, Anil M.; Aerts, Marjolein B.; Titulaer, Imke; Esselink, Rianne A.J.; Bloem, Bastiaan R.; Verbeek, Marcel M.; Goraj, Bozena

    2015-01-01

    The aim of this study is to evaluate whether the diagnostic accuracy of 3 T brain MRI is improved by region of interest (ROI) measures of diffusion tensor imaging (DTI), to differentiate between neurodegenerative atypical parkinsonism (AP) and Parkinson's disease (PD) in early stage parkinsonism. We performed a prospective observational cohort study of 60 patients presenting with early stage parkinsonism and initial uncertain diagnosis. At baseline, patients underwent a 3 T brain MRI including DTI. After clinical follow-up (mean 28.3 months), diagnoses could be made in 49 patients (30 PD and 19 AP). Conventional brain MRI was evaluated for regions of atrophy and signal intensity changes. Tract-based spatial statistics and ROI analyses of DTI were performed to analyze group differences in mean diffusivity (MD) and fractional anisotropy (FA), and diagnostic thresholds were determined. Diagnostic accuracy of conventional brain MRI and DTI was assessed with the receiver operating characteristic (ROC). Significantly higher MD of the centrum semiovale, body corpus callosum, putamen, external capsule, midbrain, superior cerebellum, and superior cerebellar peduncles was found in AP. Significantly increased MD of the putamen was found in multiple system atrophy-parkinsonian form (MSA-P) and increased MD in the midbrain and superior cerebellar peduncles in progressive supranuclear palsy (PSP). The diagnostic accuracy of brain MRI to identify AP as a group was not improved by ROI measures of MD, though the diagnostic accuracy to identify MSA-P was slightly increased (AUC 0.82 to 0.85). The diagnostic accuracy of brain MRI to identify AP as a group was not improved by the current analysis approach to DTI, though DTI measures could be of added value to identify AP subgroups. (orig.)

  15. Conventional 3T brain MRI and diffusion tensor imaging in the diagnostic workup of early stage parkinsonism

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, Frederick J.A. [Radboud University Nijmegen Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Rumund, Anouke van; Tuladhar, Anil M.; Aerts, Marjolein B.; Titulaer, Imke; Esselink, Rianne A.J.; Bloem, Bastiaan R. [Radboud University Nijmegen Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen (Netherlands); Verbeek, Marcel M. [Radboud University Nijmegen Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen (Netherlands); Radboud University Nijmegen Medical Center, Department of Laboratory Medicine, Nijmegen (Netherlands); Goraj, Bozena [Radboud University Nijmegen Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Medical Center of Postgraduate Education, Department of Diagnostic Imaging, Warsaw (Poland)

    2015-07-15

    The aim of this study is to evaluate whether the diagnostic accuracy of 3 T brain MRI is improved by region of interest (ROI) measures of diffusion tensor imaging (DTI), to differentiate between neurodegenerative atypical parkinsonism (AP) and Parkinson's disease (PD) in early stage parkinsonism. We performed a prospective observational cohort study of 60 patients presenting with early stage parkinsonism and initial uncertain diagnosis. At baseline, patients underwent a 3 T brain MRI including DTI. After clinical follow-up (mean 28.3 months), diagnoses could be made in 49 patients (30 PD and 19 AP). Conventional brain MRI was evaluated for regions of atrophy and signal intensity changes. Tract-based spatial statistics and ROI analyses of DTI were performed to analyze group differences in mean diffusivity (MD) and fractional anisotropy (FA), and diagnostic thresholds were determined. Diagnostic accuracy of conventional brain MRI and DTI was assessed with the receiver operating characteristic (ROC). Significantly higher MD of the centrum semiovale, body corpus callosum, putamen, external capsule, midbrain, superior cerebellum, and superior cerebellar peduncles was found in AP. Significantly increased MD of the putamen was found in multiple system atrophy-parkinsonian form (MSA-P) and increased MD in the midbrain and superior cerebellar peduncles in progressive supranuclear palsy (PSP). The diagnostic accuracy of brain MRI to identify AP as a group was not improved by ROI measures of MD, though the diagnostic accuracy to identify MSA-P was slightly increased (AUC 0.82 to 0.85). The diagnostic accuracy of brain MRI to identify AP as a group was not improved by the current analysis approach to DTI, though DTI measures could be of added value to identify AP subgroups. (orig.)

  16. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast.

    Science.gov (United States)

    Proffitt, J V; Clarke, J A; Scofield, R P

    2016-08-01

    Digital methodologies for rendering the gross morphology of the brain from X-ray computed tomography data have expanded our current understanding of the origin and evolution of avian neuroanatomy and provided new perspectives on the cognition and behavior of birds in deep time. However, fossil skulls germane to extracting digital endocasts from early stem members of extant avian lineages remain exceptionally rare. Data from early-diverging species of major avian subclades provide key information on ancestral morphologies in Aves and shifts in gross neuroanatomical structure that have occurred within those groups. Here we describe data on the gross morphology of the brain from a mid-to-late Paleocene penguin fossil from New Zealand. This most basal and geochronologically earliest-described endocast from the penguin clade indicates that described neuroanatomical features of early stem penguins, such as lower telencephalic lateral expansion, a relatively wider cerebellum, and lack of cerebellar folding, were present far earlier in penguin history than previously inferred. Limited dorsal expansion of the wulst in the new fossil is a feature seen in outgroup waterbird taxa such as Gaviidae (Loons) and diving Procellariiformes (Shearwaters, Diving Petrels, and allies), indicating that loss of flight may not drastically affect neuroanatomy in diving taxa. Wulst enlargement in the penguin lineage is first seen in the late Eocene, at least 25 million years after loss of flight and cooption of the flight stroke for aquatic diving. Similar to the origin of avian flight, major shifts in gross brain morphology follow, but do not appear to evolve quickly after, acquisition of a novel locomotor mode. Enlargement of the wulst shows a complex pattern across waterbirds, and may be linked to sensory modifications related to prey choice and foraging strategy. © 2016 Anatomical Society.

  17. Snake pictures draw more early attention than spider pictures in non-phobic women: Evidence from event-related brain potentials

    OpenAIRE

    Strien, Jan; Eijlers, R.; Franken, Ingmar; Huijding, Jorg

    2014-01-01

    textabstractSnakes were probably the first predators of mammals and may have been important agents of evolutionary changes in the primate visual system allowing rapid visual detection of fearful stimuli (Isbell, 2006). By means of early and late attention-related brain potentials, we examined the hypothesis that more early visual attention is automatically allocated to snakes than to spiders. To measure the early posterior negativity (EPN), 24 healthy, non-phobic women watched the random rapi...

  18. Early changes in brain structure correlate with language outcomes in children with neonatal encephalopathy.

    Science.gov (United States)

    Shapiro, Kevin A; Kim, Hosung; Mandelli, Maria Luisa; Rogers, Elizabeth E; Gano, Dawn; Ferriero, Donna M; Barkovich, A James; Gorno-Tempini, Maria Luisa; Glass, Hannah C; Xu, Duan

    2017-01-01

    Global patterns of brain injury correlate with motor, cognitive, and language outcomes in survivors of neonatal encephalopathy (NE). However, it is still unclear whether local changes in brain structure predict specific deficits. We therefore examined whether differences in brain structure at 6 months of age are associated with neurodevelopmental outcomes in this population. We enrolled 32 children with NE, performed structural brain MR imaging at 6 months, and assessed neurodevelopmental outcomes at 30 months. All subjects underwent T1-weighted imaging at 3 T using a 3D IR-SPGR sequence. Images were normalized in intensity and nonlinearly registered to a template constructed specifically for this population, creating a deformation field map. We then used deformation based morphometry (DBM) to correlate variation in the local volume of gray and white matter with composite scores on the Bayley Scales of Infant and Toddler Development (Bayley-III) at 30 months. Our general linear model included gestational age, sex, birth weight, and treatment with hypothermia as covariates. Regional brain volume was significantly associated with language scores, particularly in perisylvian cortical regions including the left supramarginal gyrus, posterior superior and middle temporal gyri, and right insula, as well as inferior frontoparietal subcortical white matter. We did not find significant correlations between regional brain volume and motor or cognitive scale scores. We conclude that, in children with a history of NE, local changes in the volume of perisylvian gray and white matter at 6 months are correlated with language outcome at 30 months. Quantitative measures of brain volume on early MRI may help identify infants at risk for poor language outcomes.

  19. Early changes in brain structure correlate with language outcomes in children with neonatal encephalopathy

    Directory of Open Access Journals (Sweden)

    Kevin A. Shapiro

    2017-01-01

    Full Text Available Global patterns of brain injury correlate with motor, cognitive, and language outcomes in survivors of neonatal encephalopathy (NE. However, it is still unclear whether local changes in brain structure predict specific deficits. We therefore examined whether differences in brain structure at 6 months of age are associated with neurodevelopmental outcomes in this population. We enrolled 32 children with NE, performed structural brain MR imaging at 6 months, and assessed neurodevelopmental outcomes at 30 months. All subjects underwent T1-weighted imaging at 3 T using a 3D IR-SPGR sequence. Images were normalized in intensity and nonlinearly registered to a template constructed specifically for this population, creating a deformation field map. We then used deformation based morphometry (DBM to correlate variation in the local volume of gray and white matter with composite scores on the Bayley Scales of Infant and Toddler Development (Bayley-III at 30 months. Our general linear model included gestational age, sex, birth weight, and treatment with hypothermia as covariates. Regional brain volume was significantly associated with language scores, particularly in perisylvian cortical regions including the left supramarginal gyrus, posterior superior and middle temporal gyri, and right insula, as well as inferior frontoparietal subcortical white matter. We did not find significant correlations between regional brain volume and motor or cognitive scale scores. We conclude that, in children with a history of NE, local changes in the volume of perisylvian gray and white matter at 6 months are correlated with language outcome at 30 months. Quantitative measures of brain volume on early MRI may help identify infants at risk for poor language outcomes.

  20. Mdivi-1 ameliorates early brain injury after subarachnoid hemorrhage via the suppression of inflammation-related blood-brain barrier disruption and endoplasmic reticulum stress-based apoptosis.

    Science.gov (United States)

    Fan, Lin-Feng; He, Ping-You; Peng, Yu-Cong; Du, Qing-Hua; Ma, Yi-Jun; Jin, Jian-Xiang; Xu, Hang-Zhe; Li, Jian-Ru; Wang, Zhi-Jiang; Cao, Sheng-Long; Li, Tao; Yan, Feng; Gu, Chi; Wang, Lin; Chen, Gao

    2017-11-01

    Aberrant modulation of mitochondrial dynamic network, which shifts the balance of fusion and fission towards fission, is involved in brain damage of various neurodegenerative diseases including Parkinson's disease, Huntington's disease and Alzheimer's disease. A recent research has shown that the inhibition of mitochondrial fission alleviates early brain injury after experimental subarachnoid hemorrhage, however, the underlying molecular mechanisms have remained to be elucidated. This study was undertaken to characterize the effects of the inhibition of dynamin-related protein-1 (Drp1, a dominator of mitochondrial fission) on blood-brain barrier (BBB) disruption and neuronal apoptosis following SAH and the potential mechanisms. The endovascular perforation model of SAH was performed in adult male Sprague Dawley rats. The results indicated Mdivi-1(a selective Drp1 inhibitor) reversed the morphologic changes of mitochondria and Drp1 translocation, reduced ROS levels, ameliorated the BBB disruption and brain edema remarkably, decreased the expression of MMP-9 and prevented degradation of tight junction proteins-occludin, claudin-5 and ZO-1. Mdivi-1 administration also inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB), leading to decreased expressions of TNF-ɑ, IL-6 and IL-1ß. Moreover, Mdivi-1 treatment attenuated neuronal cell death and improved neurological outcome. To investigate the underlying mechanisms further, we determined that Mdivi-1 reduced p-PERK, p-eIF2α, CHOP, cleaved caspase-3 and Bax expression as well as increased Bcl-2 expression. Rotenone (a selective inhibitor of mitochondrial complexes I) abolished both the anti-BBB disruption and anti-apoptosis effects of Mdivi-1. In conclusion, these data implied that excessive mitochondrial fission might inhibit mitochondrial complex I to become a cause of oxidative stress in SAH, and the inhibition of Drp1 by Mdivi-1 attenuated early brain injury after SAH probably via the suppression

  1. EGR3 Immediate Early Gene and the Brain-Derived Neurotrophic Factor in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Bianca Pfaffenseller

    2018-02-01

    Full Text Available Bipolar disorder (BD is a severe psychiatric illness with a consistent genetic influence, involving complex interactions between numerous genes and environmental factors. Immediate early genes (IEGs are activated in the brain in response to environmental stimuli, such as stress. The potential to translate environmental stimuli into long-term changes in brain has led to increased interest in a potential role for these genes influencing risk for psychiatric disorders. Our recent finding using network-based approach has shown that the regulatory unit of early growth response gene 3 (EGR3 of IEGs family was robustly repressed in postmortem prefrontal cortex of BD patients. As a central transcription factor, EGR3 regulates an array of target genes that mediate critical neurobiological processes such as synaptic plasticity, memory and cognition. Considering that EGR3 expression is induced by brain-derived neurotrophic factor (BDNF that has been consistently related to BD pathophysiology, we suggest a link between BDNF and EGR3 and their potential role in BD. A growing body of data from our group and others has shown that peripheral BDNF levels are reduced during mood episodes and also with illness progression. In this same vein, BDNF has been proposed as an important growth factor in the impaired cellular resilience related to BD. Taken together with the fact that EGR3 regulates the expression of the neurotrophin receptor p75NTR and may also indirectly induce BDNF expression, here we propose a feed-forward gene regulatory network involving EGR3 and BDNF and its potential role in BD.

  2. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    Science.gov (United States)

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Associations between Family Adversity and Brain Volume in Adolescence: Manual vs. Automated Brain Segmentation Yields Different Results

    OpenAIRE

    Lyden, Hannah; Gimbel, Sarah I.; Del Piero, Larissa; Tsai, A. Bryna; Sachs, Matthew E.; Kaplan, Jonas T.; Margolin, Gayla; Saxbe, Darby

    2016-01-01

    Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation appr...

  4. Signifikansi Brain Based Learning Pendidikan Anak Usia Dini

    OpenAIRE

    Jazariyah

    2017-01-01

    This study based on the reality of learning in the early childhood level and the system has not noticed the potential of the brain learners. The potential and the working system of the brain is very important in early childhood. This paper aims to reveal the importance of brain-based learning in Early Childhood Education (ECD). The problem in this study is what the nature of early childhood education and how to use the potential and work system of the brain in early childhood learning. This s...

  5. Advanced fiber tracking in early acquired brain injury causing cerebral palsy.

    Science.gov (United States)

    Lennartsson, F; Holmström, L; Eliasson, A-C; Flodmark, O; Forssberg, H; Tournier, J-D; Vollmer, B

    2015-01-01

    Diffusion-weighted MR imaging and fiber tractography can be used to investigate alterations in white matter tracts in patients with early acquired brain lesions and cerebral palsy. Most existing studies have used diffusion tensor tractography, which is limited in areas of complex fiber structures or pathologic processes. We explored a combined normalization and probabilistic fiber-tracking method for more realistic fiber tractography in this patient group. This cross-sectional study included 17 children with unilateral cerebral palsy and 24 typically developing controls. DWI data were collected at 1.5T (45 directions, b=1000 s/mm(2)). Regions of interest were defined on a study-specific fractional anisotropy template and mapped onto subjects for fiber tracking. Probabilistic fiber tracking of the corticospinal tract and thalamic projections to the somatosensory cortex was performed by using constrained spherical deconvolution. Tracts were qualitatively assessed, and DTI parameters were extracted close to and distant from lesions and compared between groups. The corticospinal tract and thalamic projections to the somatosensory cortex were realistically reconstructed in both groups. Structural changes to tracts were seen in the cerebral palsy group and included splits, dislocations, compaction of the tracts, or failure to delineate the tract and were associated with underlying pathology seen on conventional MR imaging. Comparisons of DTI parameters indicated primary and secondary neurodegeneration along the corticospinal tract. Corticospinal tract and thalamic projections to the somatosensory cortex showed dissimilarities in both structural changes and DTI parameters. Our proposed method offers a sensitive means to explore alterations in WM tracts to further understand pathophysiologic changes following early acquired brain injury. © 2015 by American Journal of Neuroradiology.

  6. Radiation induced early delayed changes in mice brain: a 1h MRS and behavioral evaluation study

    International Nuclear Information System (INIS)

    Gupta, Mamta; Rana, Poonam; Haridas, Seenu; Manda, Kailash; Hemanth Kumar, B.S.; Khushu, Subash

    2014-01-01

    Radiation induced CNS injury can be classified as acute, early delayed and late delayed. Most of the studies suggest that acute injury is reversible whereas early delayed and late delayed injury is irreversible leading to metabolic and cognitive impairment. Extensive research has been carried out on cranial radiation induced early and late delayed changes, there are no reports on whole body radiation induced early and delayed changes. The present study was designed to observe early delayed effects of radiation during whole body radiation exposure. A total of 20 C57 male mice were divided in two groups of 10 animals each. One group was exposed to a dose of 5 Gy whole body radiation through Tele 60 Co irradiation facility with source operating at 2.496 Gy/min, while other group served as sham irradiated control. Behavioral and MR spectroscopy was carried out 3 months post irradiation. Behavioral parameters such as locomotor activity and working memory were evaluated first then followed by MR spectroscopy at 7T animal MRI system. For MRS, voxel was localised in the cortex-hippocampus region of mouse brain. MR spectra were acquired using PRESS sequence, FID was processed using LC model for quantitation. The data showed impaired cognitive functions and altered metabolite levels during early delayed phase of whole body radiation induced injury. In behavioural experiments, there was a significant impairment in the cognitive as well as exploratory functions at 3 months post irradiation in irradiated group as compared to controls. MRS results explained changes in mI, glutamine and glx levels in irradiated animals compared to controls. Altered mI level has been found to be associated with reduced cognitive abilities in many brain disorders including MCI and Alzheimer's disease. The findings of this study suggest that whole body radiation exposure may have long lasting effect on the cognitive performance. (author)

  7. Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation.

    Directory of Open Access Journals (Sweden)

    Robin Cloarec

    Full Text Available Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells.In order to confirm and expand those findings, particularly concerning the early developmental stages following infection of the fetal brain, we have created a model of in utero cytomegalovirus infection in the developing rat brain. Rat cytomegalovirus was injected intraventricularly at embryonic day 15 (E15 and the brains analyzed at various stages until the first postnatal day, using a combination of gene expression analysis, immunohistochemistry and multicolor flow cytometry experiments.Rat cytomegalovirus infection was increasingly seen in various brain areas including the choroid plexi and the ventricular and subventricular areas and was prominently detected in CD45low/int, CD11b+ microglial cells, in CD45high, CD11b+ cells of the myeloid lineage including macrophages, and in CD45+, CD11b- lymphocytes and non-B non-T cells. In parallel, rat cytomegalovirus infection of the developing rat brain rapidly triggered a cascade of pathophysiological events comprising: chemokines upregulation, including CCL2-4, 7 and 12; infiltration by peripheral cells including B-cells and monocytes at E17 and P1, and T-cells at P1; and microglia activation at E17 and P1.In line with previous findings in neonatal murine models and in human specimen, our study further suggests that neuroimmune alterations might play critical roles in the early stages following cytomegalovirus infection of the brain in utero. Further studies are now needed to determine which role, whether favorable or detrimental

  8. Changes in cerebral blood flow and psychometric indicators in veterans with early forms of chronic brain ischemia

    Directory of Open Access Journals (Sweden)

    Vasilenko Т.М.

    2015-09-01

    Full Text Available The goal is to study the cerebral blood flow and psychometric characteristics in veterans of Afghanistan with early forms of chronic brain ischemia. Material and Methods. The study included 74 veterans of the Afghan war aged from 45 to 55 years: group 1, 28 people with NPNKM; Group 2-28 patients with circulatory encephalopathy stage 1; group 3-18 healthy persons. Doppler examination of cerebral vessels was carried out on the unit «Smart-lite». Reactive and personal anxiety of patients was assessed using the scale of Spielberger, evaluation of the quality of life through the test SAN. Determining the level of neuroticism and psychoticism was conducted by the scale of neuroticism and psy-choticism. Results: The study of cerebral blood flow in the Afghan war veterans showed signs of insolvency of carotid and carotid-basilar anastomoses, hypoperfusion phenomenon with the depletion of autoregulation, violation of the outflow of venous blood at the level of the microvasculature, accompanied by cerebral arteries spasm. More than 40% of patients with early forms of chronic brain ischemia had high personal anxiety, low levels of well-being and activity, with maximum expression of dyscirculatory hypoxia. Conclusion. Readaptation of veterans of Afghanistan is accompanied by the changes in psychometric performance and the formation of the earliest forms of brain chronic ischemia associated with inadequate hemodynamics providing increased functional activity of the brain and the inefficiency of compensatory-adaptive reactions.

  9. Quantifying brain development in early childhood using segmentation and registration

    Science.gov (United States)

    Aljabar, P.; Bhatia, K. K.; Murgasova, M.; Hajnal, J. V.; Boardman, J. P.; Srinivasan, L.; Rutherford, M. A.; Dyet, L. E.; Edwards, A. D.; Rueckert, D.

    2007-03-01

    In this work we obtain estimates of tissue growth using longitudinal data comprising MR brain images of 25 preterm children scanned at one and two years. The growth estimates are obtained using segmentation and registration based methods. The segmentation approach used an expectation maximisation (EM) method to classify tissue types and the registration approach used tensor based morphometry (TBM) applied to a free form deformation (FFD) model. The two methods show very good agreement indicating that the registration and segmentation approaches can be used interchangeably. The advantage of the registration based method, however, is that it can provide more local estimates of tissue growth. This is the first longitudinal study of growth in early childhood, previous longitudinal studies have focused on later periods during childhood.

  10. Early Gelatinase Activity Is Not a Determinant of Long-Term Recovery after Traumatic Brain Injury in the Immature Mouse.

    Directory of Open Access Journals (Sweden)

    Bridgette D Semple

    Full Text Available The gelatinases, matrix metalloproteinases (MMP-2 and MMP-9, are thought to be key mediators of secondary damage in adult animal models of brain injury. Moreover, an acute increase in these proteases in plasma and brain extracellular fluid of adult patients with moderate-to-severe traumatic brain injuries (TBIs is associated with poorer clinical outcomes and mortality. Nonetheless, their involvement after TBI in the pediatric brain remains understudied. Using a murine model of TBI at postnatal day 21 (p21, approximating a toddler-aged child, we saw upregulation of active and pro-MMP-9 and MMP-2 by gelatin zymography at 48 h post-injury. We therefore investigated the role of gelatinases on long-term structural and behavioral outcomes after injury after acute inhibition with a selective gelatinase inhibitor, p-OH SB-3CT. After systemic administration, p-OH SB-3CT crossed the blood-brain barrier at therapeutically-relevant concentrations. TBI at p21 induced hyperactivity, deficits in spatial learning and memory, and reduced sociability when mice were assessed at adulthood, alongside pronounced tissue loss in key neuroanatomical regions. Acute and short-term post-injury treatment with p-OH SB-3CT did not ameliorate these long-term behavioral, cognitive, or neuropathological deficits as compared to vehicle-treated controls, suggesting that these deficits were independent of MMP-9 and MMP-2 upregulation. These findings emphasize the vulnerability of the immature brain to the consequences of traumatic injuries. However, early upregulation of gelatinases do not appear to be key determinants of long-term recovery after an early-life injury.

  11. Early Gelatinase Activity Is Not a Determinant of Long-Term Recovery after Traumatic Brain Injury in the Immature Mouse

    Science.gov (United States)

    Semple, Bridgette D.; Noble-Haeusslein, Linda J.; Gooyit, Major; Tercovich, Kayleen G.; Peng, Zhihong; Nguyen, Trung T.; Schroeder, Valerie A.; Suckow, Mark A.; Chang, Mayland; Raber, Jacob; Trivedi, Alpa

    2015-01-01

    The gelatinases, matrix metalloproteinases (MMP)-2 and MMP-9, are thought to be key mediators of secondary damage in adult animal models of brain injury. Moreover, an acute increase in these proteases in plasma and brain extracellular fluid of adult patients with moderate-to-severe traumatic brain injuries (TBIs) is associated with poorer clinical outcomes and mortality. Nonetheless, their involvement after TBI in the pediatric brain remains understudied. Using a murine model of TBI at postnatal day 21 (p21), approximating a toddler-aged child, we saw upregulation of active and pro-MMP-9 and MMP-2 by gelatin zymography at 48 h post-injury. We therefore investigated the role of gelatinases on long-term structural and behavioral outcomes after injury after acute inhibition with a selective gelatinase inhibitor, p-OH SB-3CT. After systemic administration, p-OH SB-3CT crossed the blood-brain barrier at therapeutically-relevant concentrations. TBI at p21 induced hyperactivity, deficits in spatial learning and memory, and reduced sociability when mice were assessed at adulthood, alongside pronounced tissue loss in key neuroanatomical regions. Acute and short-term post-injury treatment with p-OH SB-3CT did not ameliorate these long-term behavioral, cognitive, or neuropathological deficits as compared to vehicle-treated controls, suggesting that these deficits were independent of MMP-9 and MMP-2 upregulation. These findings emphasize the vulnerability of the immature brain to the consequences of traumatic injuries. However, early upregulation of gelatinases do not appear to be key determinants of long-term recovery after an early-life injury. PMID:26588471

  12. Anti-α4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection.

    Directory of Open Access Journals (Sweden)

    Jennifer H Campbell

    2014-12-01

    Full Text Available Four SIV-infected monkeys with high plasma virus and CNS injury were treated with an anti-α4 blocking antibody (natalizumab once a week for three weeks beginning on 28 days post-infection (late. Infection in the brain and gut were quantified, and neuronal injury in the CNS was assessed by MR spectroscopy, and compared to controls with AIDS and SIV encephalitis. Treatment resulted in stabilization of ongoing neuronal injury (NAA/Cr by 1H MRS, and decreased numbers of monocytes/macrophages and productive infection (SIV p28+, RNA+ in brain and gut. Antibody treatment of six SIV infected monkeys at the time of infection (early for 3 weeks blocked monocyte/macrophage traffic and infection in the CNS, and significantly decreased leukocyte traffic and infection in the gut. SIV - RNA and p28 was absent in the CNS and the gut. SIV DNA was undetectable in brains of five of six early treated macaques, but proviral DNA in guts of treated and control animals was equivalent. Early treated animals had low-to-no plasma LPS and sCD163. These results support the notion that monocyte/macrophage traffic late in infection drives neuronal injury and maintains CNS viral reservoirs and lesions. Leukocyte traffic early in infection seeds the CNS with virus and contributes to productive infection in the gut. Leukocyte traffic early contributes to gut pathology, bacterial translocation, and activation of innate immunity.

  13. Anti-α4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection.

    Science.gov (United States)

    Campbell, Jennifer H; Ratai, Eva-Maria; Autissier, Patrick; Nolan, David J; Tse, Samantha; Miller, Andrew D; González, R Gilberto; Salemi, Marco; Burdo, Tricia H; Williams, Kenneth C

    2014-12-01

    Four SIV-infected monkeys with high plasma virus and CNS injury were treated with an anti-α4 blocking antibody (natalizumab) once a week for three weeks beginning on 28 days post-infection (late). Infection in the brain and gut were quantified, and neuronal injury in the CNS was assessed by MR spectroscopy, and compared to controls with AIDS and SIV encephalitis. Treatment resulted in stabilization of ongoing neuronal injury (NAA/Cr by 1H MRS), and decreased numbers of monocytes/macrophages and productive infection (SIV p28+, RNA+) in brain and gut. Antibody treatment of six SIV infected monkeys at the time of infection (early) for 3 weeks blocked monocyte/macrophage traffic and infection in the CNS, and significantly decreased leukocyte traffic and infection in the gut. SIV - RNA and p28 was absent in the CNS and the gut. SIV DNA was undetectable in brains of five of six early treated macaques, but proviral DNA in guts of treated and control animals was equivalent. Early treated animals had low-to-no plasma LPS and sCD163. These results support the notion that monocyte/macrophage traffic late in infection drives neuronal injury and maintains CNS viral reservoirs and lesions. Leukocyte traffic early in infection seeds the CNS with virus and contributes to productive infection in the gut. Leukocyte traffic early contributes to gut pathology, bacterial translocation, and activation of innate immunity.

  14. Prevalence and Risk Factors of Early Endocrine Disorders in Childhood Brain Tumor Survivors: A Nationwide, Multicenter Study

    NARCIS (Netherlands)

    Clement, S.C.; Schouten-van Meeteren, A.Y.; Boot, A.M.; Claahsen-van der Grinten, H.L.; Granzen, B.; Han, K.; Janssens, G.O.; Michiels, E.M.; Trotsenburg, A.S. van; Vandertop, W.P.; Vuurden, D.G. van; Kremer, L.C.; Caron, H.N.; Santen, H.M. van

    2016-01-01

    Purpose To evaluate the prevalence of, and risk factors for, early endocrine disorders in childhood brain tumor survivors (CBTS). Patients and Methods This nationwide study cohort consisted of 718 CBTS who were diagnosed between 2002 and 2012, and who survived >/= 2 years after diagnosis. Patients

  15. Radiosurgery with flattening-filter-free techniques in the treatment of brain metastases. Plan comparison and early clinical evaluation

    International Nuclear Information System (INIS)

    Rieber, J.; Tonndorf-Martini, E.; Schramm, O.; Rhein, B.; Stefanowicz, S.; Lindel, K.; Debus, J.; Rieken, S.; Kappes, J.; Hoffmann, H.

    2016-01-01

    Radiosurgical treatment of brain metastases is well established in daily clinical routine. Utilization of flattening-filter-free beams (FFF) may allow for more rapid delivery of treatment doses and improve clinical comfort. Hence, we compared plan quality and efficiency of radiosurgery in FFF mode to FF techniques. Between November 2014 and June 2015, 21 consecutive patients with 25 brain metastases were treated with stereotactic radiosurgery (SRS) in FFF mode. Brain metastases received dose-fractionation schedules of 1 x 20 Gy or 1 x 18 Gy, delivered to the conformally enclosing 80 % isodose. Three patients with critically localized or large (>3 cm) brain metastases were treated with 6 x 5 Gy. Plan quality and efficiency were evaluated by analyzing conformity, dose gradients, dose to healthy brain tissue, treatment delivery time, and number of monitor units. FFF plans were compared to those using the FF method, and early clinical outcome and toxicity were assessed. FFF mode resulted in significant reductions in beam-on time (p [de

  16. Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires.

    Science.gov (United States)

    Bertrand, Ornella C; Amador-Mughal, Farrah; Silcox, Mary T

    2016-01-27

    Understanding the pattern of brain evolution in early rodents is central to reconstructing the ancestral condition for Glires, and for other members of Euarchontoglires including Primates. We describe the oldest virtual endocasts known for fossil rodents, which pertain to Paramys copei (Early Eocene) and Paramys delicatus (Middle Eocene). Both specimens of Paramys have larger olfactory bulbs and smaller paraflocculi relative to total endocranial volume than later occurring rodents, which may be primitive traits for Rodentia. The encephalization quotients (EQs) of Pa. copei and Pa. delicatus are higher than that of later occurring (Oligocene) Ischyromys typus, which contradicts the hypothesis that EQ increases through time in all mammalian orders. However, both species of Paramys have a lower relative neocortical surface area than later rodents, suggesting neocorticalization occurred through time in this Order, although to a lesser degree than in Primates. Paramys has a higher EQ but a lower neocortical ratio than any stem primate. This result contrasts with the idea that primates were always exceptional in their degree of overall encephalization and shows that relative brain size and neocortical surface area do not necessarily covary through time. As such, these data contradict assumptions made about the pattern of brain evolution in Euarchontoglires. © 2016 The Author(s).

  17. Chimeric viruses containing the N-terminal ectodomains of GP5 and M proteins of porcine reproductive and respiratory syndrome do not change the cellular tropism of equine arteritis virus

    Science.gov (United States)

    Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are members of family Arteriviridae; they share many biological properties but differ significantly in cellular tropism. Using an infectious cDNA clone of EAV, we engineered a panel of six chimeric viruses b...

  18. Early Autologous Cranioplasty after Decompressive Hemi-Craniectomy for Severe Traumatic Brain Injury

    International Nuclear Information System (INIS)

    Qasmi, S. A.; Ghaffar, A.; Hussain, Z.; Mushtaq, J.

    2015-01-01

    Objective: To evaluate the outcome of early replacement of autologous bone flap for decompressive hemicraniectomy in severe traumatic brain injury patients. Methods: The observational cross-sectional prospective study was conducted at the Neurosurgical Unit of the Combined Military Hospital, Rawalpindi, Pakistan, from July 2011, to June 2014, and comprised patients who underwent cranioplasty after decompressive hemicraniectomy for trauma. Patients over 20 years of age and of either gender were included. Cranioplasty was timed in all these patients using native bone flap preserved in the abdominal wall after decompressive craniectomy. Parameters recorded were mortality, wound infection, subdural collection, wound dehiscence, ventriculomegaly, bone resorption, cosmetic deformity and neurological outcome. SPSS 17 was used for data analysis. Results: Of the 30 patients in the study, 28(93.3 percent) were males. The overall mean age was age 32.03±8.01 years (range: 20-48 years). Mean cranioplasty time was 66.2±11.50 days (range: 44-89 days). Major infection necessitating bone flap removal was found in 1(3.33 percent) patient, while minor scalp wound infections, treated with antibiotics and dressings were found in 2(6.66 percent). Cosmetic18 deformity was seen in 3(10 percent). Improved neurological outcome was noted in 21(70 percent) patients; 6(20 percent) survived with a moderate to severe disability and 3(10 percent) remained in a vegetative state. No mortality was found after the procedure. Conclusion: Early autologous bone replacement for decompressive hemicraniectomy in severe traumatic brain injury patients offered cost-effective, acceptable surgical and improve dneurological outcome. (author)

  19. Duration of untreated psychosis/illness and brain volume changes in early psychosis.

    Science.gov (United States)

    Rapp, Charlotte; Canela, Carlos; Studerus, Erich; Walter, Anna; Aston, Jacqueline; Borgwardt, Stefan; Riecher-Rössler, Anita

    2017-09-01

    The time period during which patients manifest psychotic or unspecific symptoms prior to treatment (duration of untreated psychosis, DUP, and the duration of untreated illness, DUI) has been found to be moderately associated with poor clinical and social outcome. Equivocal evidence exists of an association between DUP/DUI and structural brain abnormalities, such as reduced hippocampus volume (HV), pituitary volume (PV) and grey matter volume (GMV). Thus, the goal of the present work was to examine if DUP and DUI are associated with abnormalities in HV, PV and GMV. Using a region of interest (ROI) based approach, we present data of 39 patients from the Basel FePsy (Früherkennung von Psychosen, early detection of psychosis) study for which information about DUP, DUI and HV, PV and GMV data could be obtained. Twenty-three of them were first episode psychosis (FEP) and 16 at-risk mental state (ARMS) patients who later made the transition to frank psychosis. In unadjusted analyses, we found a significant positive correlation between DUP and PV in FEP patients. However, when adjusted for covariates, we found no significant correlation between DUP or DUI and HV, PV or GMV anymore. There only was a trend for decreasing GMV with increasing DUI in FEP. Our results do not comprehensively support the hypothesis of a "toxic" effect of the pathogenic mechanism underlying untreated psychosis on brain structure. If there is any effect, it might rather occur very early in the disease process, during which patients experience only unspecific symptoms. Copyright © 2017. Published by Elsevier B.V.

  20. Potential of the Antibody Against cis-Phosphorylated Tau in the Early Diagnosis, Treatment, and Prevention of Alzheimer Disease and Brain Injury.

    Science.gov (United States)

    Lu, Kun Ping; Kondo, Asami; Albayram, Onder; Herbert, Megan K; Liu, Hekun; Zhou, Xiao Zhen

    2016-11-01

    Alzheimer disease (AD) and chronic traumatic encephalopathy (CTE) share a common neuropathologic signature-neurofibrillary tangles made of phosphorylated tau-but do not have the same pathogenesis or symptoms. Although whether traumatic brain injury (TBI) could cause AD has not been established, CTE is shown to be associated with TBI. Until recently, whether and how TBI leads to tau-mediated neurodegeneration was unknown. The unique prolyl isomerase Pin1 protects against the development of tau-mediated neurodegeneration in AD by converting the phosphorylated Thr231-Pro motif in tau (ptau) from the pathogenic cis conformation to the physiologic trans conformation, thereby restoring ptau function. The recent development of antibodies able to distinguish and eliminate both conformations specifically has led to the discovery of cis-ptau as a precursor of tau-induced pathologic change and an early driver of neurodegeneration that directly links TBI to CTE and possibly to AD. Within hours of TBI in mice or neuronal stress in vitro, neurons prominently produce cis-ptau, which causes and spreads cis-ptau pathologic changes, termed cistauosis. Cistauosis eventually leads to widespread tau-mediated neurodegeneration and brain atrophy. Cistauosis is effectively blocked by the cis-ptau antibody, which targets intracellular cis-ptau for proteasome-mediated degradation and prevents extracellular cis-ptau from spreading to other neurons. Treating TBI mice with cis-ptau antibody not only blocks early cistauosis but also prevents development and spreading of tau-mediated neurodegeneration and brain atrophy and restores brain histopathologic features and functional outcomes. Thus, cistauosis is a common early disease mechanism for AD, TBI, and CTE, and cis-ptau and its antibody may be useful for early diagnosis, treatment, and prevention of these devastating diseases.

  1. Late intellectual and academic outcomes following traumatic brain injury sustained during early childhood.

    Science.gov (United States)

    Ewing-Cobbs, Linda; Prasad, Mary R; Kramer, Larry; Cox, Charles S; Baumgartner, James; Fletcher, Stephen; Mendez, Donna; Barnes, Marcia; Zhang, Xiaoling; Swank, Paul

    2006-10-01

    Although long-term neurological outcomes after traumatic brain injury (TBI) sustained early in life are generally unfavorable, the effect of TBI on the development of academic competencies is unknown. The present study characterizes intelligence quotient (IQ) and academic outcomes an average of 5.7 years after injury in children who sustained moderate to severe TBI prior to 6 years of age. Twenty-three children who suffered inflicted or noninflicted TBI between the ages of 4 and 71 months were enrolled in a prospective, longitudinal cohort study. Their mean age at injury was 21 months; their mean age at assessment was 89 months. The authors used general linear modeling approaches to compare IQ and standardized academic achievement test scores from the TBI group and a community comparison group (21 children). Children who sustained early TBI scored significantly lower than children in the comparison group on intelligence tests and in the reading, mathematical, and language domains of achievement tests. Forty-eight percent of the TBI group had IQs below the 10th percentile. During the approximately 5-year follow-up period, longitudinal IQ testing revealed continuing deficits and no recovery of function. Both IQ and academic achievement test scores were significantly related to the number of intracranial lesions and the lowest postresuscitation Glasgow Coma Scale score but not to age at the time of injury. Nearly 50% of the TBI group failed a school grade and/or required placement in self-contained special education classrooms; the odds of unfavorable academic performance were 18 times higher for the TBI group than the comparison group. Traumatic brain injury sustained early in life has significant and persistent consequences for the development of intellectual and academic functions and deleterious effects on academic performance.

  2. Prevalence and Risk Factors of Early Endocrine Disorders in Childhood Brain Tumor Survivors : A Nationwide, Multicenter Study

    NARCIS (Netherlands)

    Clement, Sarah C; Schouten-van Meeteren, Antoinette Y N; Boot, Annemieke M; Claahsen-van der Grinten, Hedy L; Granzen, Bernd; Sen Han, K; Janssens, Geert O; Michiels, Erna M; van Trotsenburg, A S Paul; Vandertop, W Peter; van Vuurden, Dannis G; Kremer, Leontien C M; Caron, Hubert N; van Santen, Hanneke M

    2016-01-01

    Purpose To evaluate the prevalence of, and risk factors for, early endocrine disorders in childhood brain tumor survivors (CBTS). Patients and Methods This nationwide study cohort consisted of 718 CBTS who were diagnosed between 2002 and 2012, and who survived ≥ 2 years after diagnosis. Patients

  3. Prevalence and Risk Factors of Early Endocrine Disorders in Childhood Brain Tumor Survivors: A Nationwide, Multicenter Study

    NARCIS (Netherlands)

    Clement, Sarah C.; Schouten-van Meeteren, Antoinette Y. N.; Boot, Annemieke M.; Claahsen-van der Grinten, Hedy L.; Granzen, Bernd; Sen Han, K.; Janssens, Geert O.; Michiels, Erna M.; van Trotsenburg, A. S. Paul; Vandertop, W. Peter; van Vuurden, Dannis G.; Kremer, Leontien C. M.; Caron, Hubert N.; van Santen, Hanneke M.

    2016-01-01

    Purpose To evaluate the prevalence of, and risk factors for, early endocrine disorders in childhood brain tumor survivors (CBTS). Patients and Methods This nationwide study cohort consisted of 718 CBTS who were diagnosed between 2002 and 2012, and who survived ≥ 2 years after diagnosis. Patients

  4. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease

    OpenAIRE

    Munoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe

    2018-01-01

    Background Animal models of Alzheimer’s disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain c...

  5. Association Between Motor Symptoms and Brain Metabolism in Early Huntington Disease.

    Science.gov (United States)

    Gaura, Véronique; Lavisse, Sonia; Payoux, Pierre; Goldman, Serge; Verny, Christophe; Krystkowiak, Pierre; Damier, Philippe; Supiot, Frédéric; Bachoud-Levi, Anne-Catherine; Remy, Philippe

    2017-09-01

    Brain hypometabolism is associated with the clinical consequences of the degenerative process, but little is known about regional hypermetabolism, sometimes observed in the brain of patients with clinically manifest Huntington disease (HD). Studying the role of regional hypermetabolism is needed to better understand its interaction with the motor symptoms of the disease. To investigate the association between brain hypometabolism and hypermetabolism with motor scores of patients with early HD. This study started in 2001, and analysis was completed in 2016. Sixty symptomatic patients with HD and 15 healthy age-matched control individuals underwent positron emission tomography to measure cerebral metabolism in this cross-sectional study. They also underwent the Unified Huntington's Disease Rating Scale motor test, and 2 subscores were extracted: (1) a hyperkinetic score, combining dystonia and chorea, and (2) a hypokinetic score, combining bradykinesia and rigidity. Statistical parametric mapping software (SPM5) was used to identify all hypo- and hypermetabolic regions in patients with HD relative to control individuals. Correlation analyses (P motor subscores and brain metabolic values were performed for regions with significant hypometabolism and hypermetabolism. Among 60 patients with HD, 22 were women (36.7%), and the mean (SD) age was 44.6 (7.6) years. Of the 15 control individuals, 7 were women (46.7%), and the mean (SD) age was 42.2 (7.3) years. In statistical parametric mapping, striatal hypometabolism was significantly correlated with the severity of all motor scores. Hypermetabolism was negatively correlated only with hypokinetic scores in the cuneus (z score = 3.95, P motor scores were associated with higher metabolic values in the inferior parietal lobule, anterior cingulate, inferior temporal lobule, the dentate nucleus, and the cerebellar lobules IV/V, VI, and VIII bilaterally corresponding to the motor regions of the cerebellum (z score = 3

  6. Gene expression in the mouse brain following early pregnancy exposure to ethanol

    Directory of Open Access Journals (Sweden)

    Christine R. Zhang

    2016-12-01

    Full Text Available Exposure to alcohol during early embryonic or fetal development has been linked with a variety of adverse outcomes, the most common of which are structural and functional abnormalities of the central nervous system [1]. Behavioural and cognitive deficits reported in individuals exposed to alcohol in utero include intellectual impairment, learning and memory difficulties, diminished executive functioning, attention problems, poor motor function and hyperactivity [2]. The economic and social costs of these outcomes are substantial and profound [3,4]. Improvement of neurobehavioural outcomes following prenatal alcohol exposure requires greater understanding of the mechanisms of alcohol-induced damage to the brain. Here we use a mouse model of relatively moderate ethanol exposure early in pregnancy and profile gene expression in the hippocampus and caudate putamen of adult male offspring. The effects of offspring sex and age on ethanol-sensitive hippocampal gene expression were also examined. All array data are available at the Gene Expression Omnibus (GEO repository under accession number GSE87736.

  7. Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.

    Science.gov (United States)

    Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh

    2017-08-15

    Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Administration of Tauroursodeoxycholic Acid Attenuates Early Brain Injury via Akt Pathway Activation

    Directory of Open Access Journals (Sweden)

    Dongdong Sun

    2017-07-01

    Full Text Available Traumatic brain injury (TBI is one of the leading causes of trauma-induced mortality and disability, and emerging studies have shown that endoplasmic reticulum (ER stress plays an important role in the pathophysiology of TBI. Tauroursodeoxycholic acid (TUDCA, a hydrophilic bile acid, has been reported to act as an ER stress inhibitor and chemical chaperone and to have the potential to attenuate apoptosis and inflammation. To study the effects of TUDCA on brain injury, we subjected mice to TBI with a controlled cortical impact (CCI device. Using western blotting, we first examined TBI-induced changes in the expression levels of GRP78, an ER stress marker, p-PERK, PERK, p-eIF2a, eIF2a, ATF4, p-Akt, Akt, Pten, Bax, Bcl-2, Caspase-12 and CHOP, as well as changes in the mRNA levels of Akt, GRP78, Caspase-12 and CHOP using RT-PCR. Neuronal cell death was assessed by a terminal deoxynucleotidyl transferase (TdT-mediated dUTP nick end-labeling (TUNEL assay, and CHOP expression in neuronal cells was detected by double-immunofluorescence staining. Neurological and motor deficits were assessed by modified neurological severity scores (mNSS and beam balance and beam walking tests, and brain water content was also assessed. Our results indicated that ER stress peaked at 72 h after TBI and that TUDCA abolished ER stress and inhibited p-PERK, p-eIF2a, ATF4, Pten, Caspase-12 and CHOP expression levels. Moreover, our results show that TUDCA also improved neurological function and alleviated brain oedema. Additionally, TUDCA increased p-Akt expression and the Bcl-2/Bax ratio. However, the administration of the Akt inhibitor MK2206 or siRNA targeting of Akt abolished the beneficial effects of TUDCA. Taken together, our results indicate that TUDCA may attenuate early brain injury via Akt pathway activation.

  9. Mutations in gp41 are correlated with coreceptor tropism but do not improve prediction methods substantially.

    Science.gov (United States)

    Thielen, Alexander; Lengauer, Thomas; Swenson, Luke C; Dong, Winnie W Y; McGovern, Rachel A; Lewis, Marilyn; James, Ian; Heera, Jayvant; Valdez, Hernan; Harrigan, P Richard

    2011-01-01

    The main determinants of HIV-1 coreceptor usage are located in the V3-loop of gp120, although mutations in V2 and gp41 are also known. Incorporation of V2 is known to improve prediction algorithms; however, this has not been confirmed for gp41 mutations. Samples with V3 and gp41 genotypes and Trofile assay (Monogram Biosciences, South San Francisco, CA, USA) results were taken from the HOMER cohort (n=444) and from patients screened for the MOTIVATE studies (n=1,916; 859 with maraviroc outcome data). Correlations of mutations with tropism were assessed using Fisher's exact test and prediction models trained using support vector machines. Models were validated by cross-validation, by testing models from one dataset on the other, and by analysing virological outcome. Several mutations within gp41 were highly significant for CXCR4 usage; most strikingly an insertion occurring in 7.7% of HOMER-R5 and 46.3% of HOMER-X4 samples (MOTIVATE 5.7% and 25.2%, respectively). Models trained on gp41 sequence alone achieved relatively high areas under the receiver-operating characteristic curve (AUCs; HOMER 0.713 and MOTIVATE 0.736) that were almost as good as V3 models (0.773 and 0.884, respectively). However, combining the two regions improved predictions only marginally (0.813 and 0.902, respectively). Similar results were found when models were trained on HOMER and validated on MOTIVATE or vice versa. The difference in median log viral load decrease at week 24 between patients with R5 and X4 virus was 1.65 (HOMER 2.45 and MOTIVATE 0.79) for V3 models, 1.59 for gp41-models (2.42 and 0.83, respectively) and 1.58 for the combined predictor (2.44 and 0.86, respectively). Several mutations within gp41 showed strong correlation with tropism in two independent datasets. However, incorporating gp41 mutations into prediction models is not mandatory because they do not improve substantially on models trained on V3 sequences alone.

  10. SPECT brain perfusion imaging in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Li Juan; Liu Baojun; Zhao Feng; He Lirong; Xia Yucheng

    2003-01-01

    Objective: To study the clinical value of SPECT brain perfusion imaging after mild traumatic brain injury and to evaluate the mechanism of brain blood flow changes in the brain traumatic symptoms. Methods: SPECT 99 Tc m -ethylene cysteinate dimer (ECD) brain perfusion imaging was performed on 39 patients with normal consciousness and normal computed tomography. The study was performed on 23 patients within 3 months after the accidental injury and on 16 patients at more than 3 months post-injury. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in cortex or basal ganglia to below 70%, or even to below 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. Results: The results of 23 patients (59%) were abnormal. Among them, 20 patients showed 74 focal lesions with an average of 3.7 per patient (15 studies performed within 3 months and 8 studies performed more than 3 months after injury). The remaining 3 showed diffuse hypoperfusion (two at the early stage and one at more than 3 months after the injury). The 13 abnormal studies performed at the early stage showed 58 lesions (average, 4.5 per patient), whereas there was a reduction to an average of 2.3 per patient in the 7 patients (total 16 lesions) at more than 3 months post-injury. In the 20 patients with focal lesions, mainly the following regions were involved: frontal lobes 43.2% (32/74), basal ganglia 24.3% (18/74) and temporal lobes 17.6% (13/74). Conclusions: 1) SPECT brain perfusion imaging is more sensitive than computed tomography in detecting brain lesions of mild traumatic brain injury. 2) SPECT brain perfusion imaging is more sensitive at early stage than at late stage after injury. 3) The most common complaints were headache, dizziness, memory deficit. The patients without loss of consciousness may present brain hypoperfusion, too. 4) The changes may explain a neurological component of the patient symptoms in

  11. Early enrichment effects on brain development in hatchery-reared Atlantic salmon (Salmo salar): no evidence for a critical period

    DEFF Research Database (Denmark)

    Näslund, Joacim; Aarestrup, Kim; Thomassen, Søren T.

    2012-01-01

    was released into nature and recaptured at smoltification. These stream-reared smolts developed smaller brains than the hatchery reared smolts, irrespective of initial enrichment treatment. These novel findings do not support the hypothesis that there is a critical early period determining the brain growth...... trajectory. In contrast, our results indicate that brain growth is plastic in relation to environment. In addition, we show allometric growth in brain substructures over juvenile development, which suggests that comparisons between groups of different body size should be made with caution. These results can......In hatcheries, fish are normally reared in barren environments, which have been reported to affect their phenotypic development compared with wild conspecifics. In this study, Atlantic salmon (Salmo salar) alevins were reared in conventional barren hatchery trays or in either of two types...

  12. Early Detection of Poor Outcome after Mild Traumatic Brain Injury: Predictive Factors Using a Multidimensional Approach a Pilot Study

    Directory of Open Access Journals (Sweden)

    Sophie Caplain

    2017-12-01

    Full Text Available Mild traumatic brain injury (MTBI is a common condition within the general population, usually with good clinical outcome. However, in 10–25% of cases, a post-concussive syndrome (PCS occurs. Identifying early prognostic factors for the development of PCS can ensure widespread clinical and economic benefits. The aim of this study was to demonstrate the potential value of a comprehensive neuropsychological evaluation to identify early prognostic factors following MTBI. We performed a multi-center open, prospective, longitudinal study that included 72 MTBI patients and 42 healthy volunteers matched for age, gender, and socioeconomic status. MTBI patients were evaluated 8–21 days after injury, and 6 months thereafter, with a full neurological and psychological examination and brain MRI. At 6 months follow-up, MTBI patients were categorized into two subgroups according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV as having either favorable or unfavorable evolution (UE, corresponding to the presence of major or mild neurocognitive disorder due to traumatic brain injury. Univariate and multivariate logistical regression analysis demonstrated the importance of patient complaints, quality of life, and cognition in the outcome of MTBI patients, but only 6/23 UE patients were detected early via the multivariate logistic regression model. Using several variables from each of these three categories of variables, we built a model that assigns a score to each patient presuming the possibility of UE. Statistical analyses showed this last model to be reliable and sensitive, allowing early identification of patients at risk of developing PCS with 95.7% sensitivity and 77.6% specificity.

  13. The Polerovirus Minor Capsid Protein Determines Vector Specificity and Intestinal Tropism in the Aphid

    Science.gov (United States)

    Brault, Véronique; Périgon, Sophie; Reinbold, Catherine; Erdinger, Monique; Scheidecker, Danièle; Herrbach, Etienne; Richards, Ken; Ziegler-Graff, Véronique

    2005-01-01

    Aphid transmission of poleroviruses is highly specific, but the viral determinants governing this specificity are unknown. We used a gene exchange strategy between two poleroviruses with different vectors, Beet western yellows virus (BWYV) and Cucurbit aphid-borne yellows virus (CABYV), to analyze the role of the major and minor capsid proteins in vector specificity. Virus recombinants obtained by exchanging the sequence of the readthrough domain (RTD) between the two viruses replicated in plant protoplasts and in whole plants. The hybrid readthrough protein of chimeric viruses was incorporated into virions. Aphid transmission experiments using infected plants or purified virions revealed that vector specificity is driven by the nature of the RTD. BWYV and CABYV have specific intestinal sites in the vectors for endocytosis: the midgut for BWYV and both midgut and hindgut for CABYV. Localization of hybrid virions in aphids by transmission electron microscopy revealed that gut tropism is also determined by the viral origin of the RTD. PMID:16014930

  14. Isolation and Characterization of Current Human Coronavirus Strains in Primary Human Epithelial Cell Cultures Reveal Differences in Target Cell Tropism

    Science.gov (United States)

    Dijkman, Ronald; Jebbink, Maarten F.; Koekkoek, Sylvie M.; Deijs, Martin; Jónsdóttir, Hulda R.; Molenkamp, Richard; Ieven, Margareta; Goossens, Herman; Thiel, Volker

    2013-01-01

    The human airway epithelium (HAE) represents the entry port of many human respiratory viruses, including human coronaviruses (HCoVs). Nowadays, four HCoVs, HCoV-229E, HCoV-OC43, HCoV-HKU1, and HCoV-NL63, are known to be circulating worldwide, causing upper and lower respiratory tract infections in nonhospitalized and hospitalized children. Studies of the fundamental aspects of these HCoV infections at the primary entry port, such as cell tropism, are seriously hampered by the lack of a universal culture system or suitable animal models. To expand the knowledge on fundamental virus-host interactions for all four HCoVs at the site of primary infection, we used pseudostratified HAE cell cultures to isolate and characterize representative clinical HCoV strains directly from nasopharyngeal material. Ten contemporary isolates were obtained, representing HCoV-229E (n = 1), HCoV-NL63 (n = 1), HCoV-HKU1 (n = 4), and HCoV-OC43 (n = 4). For each strain, we analyzed the replication kinetics and progeny virus release on HAE cell cultures derived from different donors. Surprisingly, by visualizing HCoV infection by confocal microscopy, we observed that HCoV-229E employs a target cell tropism for nonciliated cells, whereas HCoV-OC43, HCoV-HKU1, and HCoV-NL63 all infect ciliated cells. Collectively, the data demonstrate that HAE cell cultures, which morphologically and functionally resemble human airways in vivo, represent a robust universal culture system for isolating and comparing all contemporary HCoV strains. PMID:23427150

  15. Functional diffusion map: A noninvasive MRI biomarker for early stratification of clinical brain tumor response

    OpenAIRE

    Moffat, Bradford A.; Chenevert, Thomas L.; Lawrence, Theodore S.; Meyer, Charles R.; Johnson, Timothy D.; Dong, Qian; Tsien, Christina; Mukherji, Suresh; Quint, Douglas J.; Gebarski, Stephen S.; Robertson, Patricia L.; Junck, Larry R.; Rehemtulla, Alnawaz; Ross, Brian D.

    2005-01-01

    Assessment of radiation and chemotherapy efficacy for brain cancer patients is traditionally accomplished by measuring changes in tumor size several months after therapy has been administered. The ability to use noninvasive imaging during the early stages of fractionated therapy to determine whether a particular treatment will be effective would provide an opportunity to optimize individual patient management and avoid unnecessary systemic toxicity, expense, and treatment delays. We investiga...

  16. Brain Volumes at Term-Equivalent Age in Preterm Infants : Imaging Biomarkers for Neurodevelopmental Outcome through Early School Age

    NARCIS (Netherlands)

    Keunen, Kristin; Išgum, Ivana; van Kooij, Britt J M; Anbeek, Petronella; van Haastert, Ingrid C; Koopman-Esseboom, Corine; van Stam, Petronella C; Nievelstein, Rutger A J; Viergever, Max A; de Vries, Linda S; Groenendaal, Floris; Benders, Manon J N L

    OBJECTIVE: To evaluate the relationship between brain volumes at term and neurodevelopmental outcome through early school age in preterm infants. STUDY DESIGN: One hundred twelve preterm infants (born mean gestational age 28.6 ± 1.7 weeks) were studied prospectively with magnetic resonance imaging

  17. A diagnosis model for early Tourette syndrome children based on brain structural network characteristics

    Science.gov (United States)

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2016-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder characterized by the presence of multiple motor and vocal tics. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of action. The aim of our work is to select topological characteristics of structural network which were most efficient for estimating the classification models to identify early TS children. Here we employed the diffusion tensor imaging (DTI) and deterministic tractography to construct the structural networks of 44 TS children and 48 age and gender matched healthy children. We calculated four different connection matrices (fiber number, mean FA, averaged fiber length weighted and binary matrices) and then applied graph theoretical methods to extract the regional nodal characteristics of structural network. For each weighted or binary network, nodal degree, nodal efficiency and nodal betweenness were selected as features. Support Vector Machine Recursive Feature Extraction (SVM-RFE) algorithm was used to estimate the best feature subset for classification. The accuracy of 88.26% evaluated by a nested cross validation was achieved on combing best feature subset of each network characteristic. The identified discriminative brain nodes mostly located in the basal ganglia and frontal cortico-cortical networks involved in TS children which was associated with tic severity. Our study holds promise for early identification and predicting prognosis of TS children.

  18. 125 Brain Games for Babies: Simple Games To Promote Early Brain Development.

    Science.gov (United States)

    Silberg, Jackie

    Scientists believe that the stimulation that infants and young children receive determines which synapses form in the brain. This book presents 125 games for infants from birth to 12 months and is designed to nurture brain development. The book is organized chronologically in 3-month increments. Each game description includes information from…

  19. Symptomatic hypoglycemia causing brain injury in a term breast fed newborn following early discharge.

    Science.gov (United States)

    Marwah, Ashish; Gathwala, Geeta

    2011-12-01

    Cerebral metabolism and functioning depends upon an adequate blood glucose supply which provides for majority of the brain's energy requirement. Studies from the past have shown that neonatal hypoglycemia is associated with acute and long term neurological sequelae. Early discharge without adequately established breast feeding may lead to feeding problems, post discharge hypoglycemia and its associated neurological complications. The authors describe one such case of an exclusively breast fed term newborn who presented on day 3 with symptomatic hypoglycemia and associated neurological injury.

  20. Rapid and long-term induction of effector immediate early genes (BDNF, Neuritin and Arc) in peri-infarct cortex and dentate gyrus after ischemic injury in rat brain

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Teilum, Maria; Wieloch, Tadeusz

    2007-01-01

    including cerebral cortex and hippocampus. Brain-derived neurotrophic factor (BDNF), Neuritin and Activity-regulated cytoskeleton-associated protein (Arc) belong to a subgroup of immediate early genes implicated in synaptic plasticity known as effector immediate early genes. Here, we investigated...... at 0-6 h of reperfusion for Neuritin and 0-12 h of reperfusion for Arc while BDNF was induced 0-9 h of reperfusion. Our study demonstrates a rapid and long-term activation of effector immediate early genes in distinct brain areas following ischemic injury in rat. Effector gene activation may be part...

  1. R6/2 Huntington's disease mice develop early and progressive abnormal brain metabolism and seizures.

    Science.gov (United States)

    Cepeda-Prado, Efrain; Popp, Susanna; Khan, Usman; Stefanov, Dimitre; Rodríguez, Jorge; Menalled, Liliana B; Dow-Edwards, Diana; Small, Scott A; Moreno, Herman

    2012-05-09

    A hallmark feature of Huntington's disease pathology is the atrophy of brain regions including, but not limited to, the striatum. Though MRI studies have identified structural CNS changes in several Huntington's disease (HD) mouse models, the functional consequences of HD pathology during the progression of the disease have yet to be investigated using in vivo functional MRI (fMRI). To address this issue, we first established the structural and functional MRI phenotype of juvenile HD mouse model R6/2 at early and advanced stages of disease. Significantly higher fMRI signals [relative cerebral blood volumes (rCBVs)] and atrophy were observed in both age groups in specific brain regions. Next, fMRI results were correlated with electrophysiological analysis, which showed abnormal increases in neuronal activity in affected brain regions, thus identifying a mechanism accounting for the abnormal fMRI findings. [(14)C] 2-deoxyglucose maps to investigate patterns of glucose utilization were also generated. An interesting mismatch between increases in rCBV and decreases in glucose uptake was observed. Finally, we evaluated the sensitivity of this mouse line to audiogenic seizures early in the disease course. We found that R6/2 mice had an increased susceptibility to develop seizures. Together, these findings identified seizure activity in R6/2 mice and show that neuroimaging measures sensitive to oxygen metabolism can be used as in vivo biomarkers, preceding the onset of an overt behavioral phenotype. Since fMRI-rCBV can also be obtained in patients, we propose that it may serve as a translational tool to evaluate therapeutic responses in humans and HD mouse models.

  2. Reward and motivation systems: a brain mapping study of early-stage intense romantic love in Chinese participants.

    Science.gov (United States)

    Xu, Xiaomeng; Aron, Arthur; Brown, Lucy; Cao, Guikang; Feng, Tingyong; Weng, Xuchu

    2011-02-01

    Early-stage romantic love has been studied previously in the United States and United Kingdom (Aron et al. [2005]: J Neurophysiol 94:327–337; Bartels and Zeki [2000]: Neuroreport 11:3829–3834; Ortigue et al. [2007]: J Cogn Neurosci 19:1218–1230), revealing activation in the reward and motivation systems of the brain. In this study, we asked what systems are activated for early-stage romantic love in Easterners, specifically Chinese participants? Are these activations affected by individual differences within a cultural context of Traditionality and Modernity? Also, are these brain activations correlated with later satisfaction in the relationship? In Beijing, we used the same procedure used by Aron et al. (Aron et al. [2005]: J Neurophysiol 94:327–337). The stimuli for 18 Chinese participants were a picture of the face of their beloved, the face of a familiar acquaintance, and a countback task. We found significant activations specific to the beloved in the reward and motivation systems, particularly, the ventral tegmental area and the caudate. The mid-orbitofrontal cortex and cerebellum were also activated, whereas amygdala, medial orbitofrontal, and medial accumbens activity were decreased relative to the familiar acquaintance. Self-reported Traditionality and Modernity scores were each positively correlated with activity in the nucleus accumbens, although in different regions and sides of the brain. Activity in the subgenual area and the superior frontal gyrus was associated with higher relationship happiness at 18-month follow-up. Our results show that midbrain dopamine-rich reward/motivation systems were activated by early-stage romantic love in Chinese participants, as found by other studies. Neural activity was associated with Traditionality and Modernity attitudes as well as with later relationship happiness for Chinese participants.

  3. BK virus encephalopathy and sclerosing vasculopathy in a patient with hypohidrotic ectodermal dysplasia and immunodeficiency.

    Science.gov (United States)

    Darbinyan, Armine; Major, Eugene O; Morgello, Susan; Holland, Steven; Ryschkewitsch, Caroline; Monaco, Maria Chiara; Naidich, Thomas P; Bederson, Joshua; Malaczynska, Joanna; Ye, Fei; Gordon, Ronald; Cunningham-Rundles, Charlotte; Fowkes, Mary; Tsankova, Nadejda M

    2016-07-13

    Human BK polyomavirus (BKV) is reactivated under conditions of immunosuppression leading most commonly to nephropathy or cystitis; its tropism for the brain is rare and poorly understood. We present a unique case of BKV-associated encephalopathy in a man with hypohidrotic ectodermal dysplasia and immunodeficiency (HED-ID) due to IKK-gamma (NEMO) mutation, who developed progressive neurological symptoms. Brain biopsy demonstrated polyomavirus infection of gray and white matter, with predominant involvement of cortex and distinct neuronal tropism, in addition to limited demyelination and oligodendroglial inclusions. Immunohistochemistry demonstrated polyoma T-antigen in neurons and glia, but expression of VP1 capsid protein only in glia. PCR analysis on both brain biopsy tissue and cerebrospinal fluid detected high levels of BKV DNA. Sequencing studies further identified novel BKV variant and disclosed unique rearrangements in the noncoding control region of the viral DNA (BKVN NCCR). Neuropathological analysis also demonstrated an unusual form of obliterative fibrosing vasculopathy in the subcortical white matter with abnormal lysosomal accumulations, possibly related to the patient's underlying ectodermal dysplasia. Our report provides the first neuropathological description of HED-ID due to NEMO mutation, and expands the diversity of neurological presentations of BKV infection in brain, underscoring the importance of its consideration in immunodeficient patients with unexplained encephalopathy. We also document novel BKVN NCCR rearrangements that may be associated with the unique neuronal tropism in this patient.

  4. Sensitive cell-based assay for determination of human immunodeficiency virus type 1 coreceptor tropism.

    Science.gov (United States)

    Weber, Jan; Vazquez, Ana C; Winner, Dane; Gibson, Richard M; Rhea, Ariel M; Rose, Justine D; Wylie, Doug; Henry, Kenneth; Wright, Alison; King, Kevin; Archer, John; Poveda, Eva; Soriano, Vicente; Robertson, David L; Olivo, Paul D; Arts, Eric J; Quiñones-Mateu, Miguel E

    2013-05-01

    CCR5 antagonists are a powerful new class of antiretroviral drugs that require a companion assay to evaluate the presence of CXCR4-tropic (non-R5) viruses prior to use in human immunodeficiency virus (HIV)-infected individuals. In this study, we have developed, characterized, verified, and prevalidated a novel phenotypic test to determine HIV-1 coreceptor tropism (VERITROP) based on a sensitive cell-to-cell fusion assay. A proprietary vector was constructed containing a near-full-length HIV-1 genome with the yeast uracil biosynthesis (URA3) gene replacing the HIV-1 env coding sequence. Patient-derived HIV-1 PCR products were introduced by homologous recombination using an innovative yeast-based cloning strategy. The env-expressing vectors were then used in a cell-to-cell fusion assay to determine the presence of R5 and/or non-R5 HIV-1 variants within the viral population. Results were compared with (i) the original version of Trofile (Monogram Biosciences, San Francisco, CA), (ii) population sequencing, and (iii) 454 pyrosequencing, with the genotypic data analyzed using several bioinformatics tools, i.e., the 11/24/25 rule, Geno2Pheno (2% to 5.75%, 3.5%, or 10% false-positive rate [FPR]), and webPSSM. VERITROP consistently detected minority non-R5 variants from clinical specimens, with an analytical sensitivity of 0.3%, with viral loads of ≥1,000 copies/ml, and from B and non-B subtypes. In a pilot study, a 73.7% (56/76) concordance was observed with the original Trofile assay, with 19 of the 20 discordant results corresponding to non-R5 variants detected using VERITROP and not by the original Trofile assay. The degree of concordance of VERITROP and Trofile with population and deep sequencing results depended on the algorithm used to determine HIV-1 coreceptor tropism. Overall, VERITROP showed better concordance with deep sequencing/Geno2Pheno at a 0.3% detection threshold (67%), whereas Trofile matched better with population sequencing (79%). However, 454

  5. Educating the Human Brain. Human Brain Development Series

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  6. Early bilingualism, language attainment, and brain development.

    Science.gov (United States)

    Berken, Jonathan A; Gracco, Vincent L; Klein, Denise

    2017-04-01

    The brain demonstrates a remarkable capacity to undergo structural and functional change in response to experience throughout the lifespan. Evidence suggests that, in many domains of skill acquisition, the manifestation of this neuroplasticity depends on the age at which learning begins. The fact that most skills are acquired late in childhood or in adulthood has proven to be a limitation in studies aimed at determining the relationship between age of acquisition and brain plasticity. Bilingualism, however, provides an optimal model for discerning differences in how the brain wires when a skill is acquired from birth, when the brain circuitry for language is being constructed, versus later in life, when the pathways subserving the first language are already well developed. This review examines some of the existing knowledge about optimal periods in language development, with particular attention to the attainment of native-like phonology. It focuses on the differences in brain structure and function between simultaneous and sequential bilinguals and the compensatory mechanisms employed when bilingualism is achieved later in life, based on evidence from studies using a variety of neuroimaging modalities, including positron emission tomography (PET), task-based and resting-state functional magnetic resonance imaging (fMRI), and structural MRI. The discussion concludes with the presentation of recent neuroimaging studies that explore the concept of nested optimal periods in language development and the different neural paths to language proficiency taken by simultaneous and sequential bilinguals, with extrapolation to general notions of the relationship between age of acquisition and ultimate skill performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Overall biological activity of sensorimotor and visual brain cortex of rabbits with early neurological disorders induced by high doses of γ-radiation

    International Nuclear Information System (INIS)

    Silin, D.Ya.

    1988-01-01

    The overall bioelectrical activity of the sensorimotor and visual brain cortex of rabbits was estimated during early neurological impairment caused by 120 Gy gamma irradiation. The characteristic changes were revealed in the amplitude, form, energy spectrum and spatial biopotential synchronization. The changes in the bioelectrical activity of the brain were associated with the clinically displayed stages of the neurological process development

  8. Protect Your Brain

    Centers for Disease Control (CDC) Podcasts

    At least three and a half million people in the U.S. sustained a traumatic brain injury (TBI), either with or without other injuries. This podcast discusses the importance of early diagnosis and treatment of brain injuries.

  9. Early brain-body impact of emotional arousal

    Directory of Open Access Journals (Sweden)

    Fabien D'Hondt

    2010-04-01

    Full Text Available Current research in affective neuroscience suggests that the emotional content of visual stimuli activates brain–body responses that could be critical to general health and physical disease. The aim of this study was to develop an integrated neurophysiological approach linking central and peripheral markers of nervous activity during the presentation of natural scenes in order to determine the temporal stages of brain processing related to the bodily impact of emotions. More specifically, whole head magnetoencephalogram (MEG data and skin conductance response (SCR, a reliable autonomic marker of central activation, were recorded in healthy volunteers during the presentation of emotional (unpleasant and pleasant and neutral pictures selected from the International Affective Picture System (IAPS. Analyses of event-related magnetic fields (ERFs revealed greater activity at 180 ms in an occipitotemporal component for emotional pictures than for neutral counterparts. More importantly, these early effects of emotional arousal on cerebral activity were significantly correlated with later increases in SCR magnitude. For the first time, a neuromagnetic cortical component linked to a well-documented marker of bodily arousal expression of emotion, namely, the skin conductance response, was identified and located. This finding sheds light on the time course of the brain–body interaction with emotional arousal and provides new insights into the neural bases of complex and reciprocal mind–body links.

  10. Trends in brain oxygenation during mental and physical exercise measured using near-infrared spectroscopy (NIRS): potential for early detection of Alzheimer's disease

    Science.gov (United States)

    Allen, Monica S.; Allen, Jeffery W.; Mikkilineni, Shweta; Liu, Hanli

    2005-04-01

    Motivation: Early diagnosis of Alzheimer's disease (AD) is crucial because symptoms respond best to available treatments in the initial stages of the disease. Recent studies have shown that marked changes in brain oxygenation during mental and physical tasks can be used for noninvasive functional brain imaging to detect Alzheimer"s disease. The goal of our study is to explore the possibility of using near infrared spectroscopy (NIRS) and mapping (NIRM) as a diagnostic tool for AD before the onset of significant morphological changes in the brain. Methods: A 16-channel NIRS brain imager was used to noninvasively measure spatial and temporal changes in cerebral hemodynamics induced during verbal fluency task and physical activity. The experiments involved healthy subjects (n = 10) in the age range of 25+/-5 years. The NIRS signals were taken from the subjects' prefrontal cortex during the activities. Results and Conclusion: Trends of oxygenated and deoxygenated hemoglobin in the prefrontal cortex of the brain were observed. During the mental stimulation, the subjects showed significant increase in oxygenated hemoglobin [HbO2] with a simultaneous decrease in deoxygenated hemoglobin [Hb]. However, physical exercise caused a rise in levels of HbO2 with small variations in Hb. This study basically demonstrates that NIRM taken from the prefrontal cortex of the human brain is sensitive to both mental and physical tasks and holds potential to serve as a diagnostic means for early detection of Alzheimer's disease.

  11. Unilateral spondylolysis and the presence of facet joint tropism.

    Science.gov (United States)

    Rankine, James J; Dickson, Robert A

    2010-10-01

    Retrospective review of the CT scans performed in a group of patients examined for a possible spondylolysis. To investigate whether there is an association between unilateral spondylolysis and facet joint tropism. Spondylolysis is a fatigue fracture of the pars interarticularis of great importance in sports injury. The demonstration of a unilateral spondylolysis is important because there is a potential for full healing if the athletic activity is modified, whereas bilateral spondylolysis frequently leads to established nonunion. Coronally orientated facet joints are known to predispose to spondylolysis by increasing the point loading of the pars interarticularis. The importance of this finding has not been investigated in unilateral spondylolysis. A review of patients with low back pain and a possible diagnosis of spondylolysis who were investigated with multislice CT was performed. The coronal orientation of the facet joints at L4/5 and L5/S1 was measured and comparison was done between those with and without a spondylolysis. The coronal angle of 140 facet joints in 35 patients was recorded. Of 35 patients, 23 had a spondylolysis which was unilateral in 12 patients. The facet joint angle was significantly more coronally orientated in the presence of a spondylolysis when compared with an intact pars (means, 53° and 43°, respectively; P spondylolysis, the facet joint was significantly more coronally orientated on the side of the spondylolysis (means, 52° and 45°, respectively; P spondylolysis. Asymmetric facet joints do increase the force through one side of the spine, with a unilateral spondylolysis occurring on the side of the more coronally orientated facet joint.

  12. Traumatic Brain Injury Pathophysiology and Treatments: Early, Intermediate, and Late Phases Post-Injury

    Science.gov (United States)

    Algattas, Hanna; Huang, Jason H.

    2014-01-01

    Traumatic Brain Injury (TBI) affects a large proportion and extensive array of individuals in the population. While precise pathological mechanisms are lacking, the growing base of knowledge concerning TBI has put increased emphasis on its understanding and treatment. Most treatments of TBI are aimed at ameliorating secondary insults arising from the injury; these insults can be characterized with respect to time post-injury, including early, intermediate, and late pathological changes. Early pathological responses are due to energy depletion and cell death secondary to excitotoxicity, the intermediate phase is characterized by neuroinflammation and the late stage by increased susceptibility to seizures and epilepsy. Current treatments of TBI have been tailored to these distinct pathological stages with some overlap. Many prophylactic, pharmacologic, and surgical treatments are used post-TBI to halt the progression of these pathologic reactions. In the present review, we discuss the mechanisms of the pathological hallmarks of TBI and both current and novel treatments which target the respective pathways. PMID:24381049

  13. The development of functional network organization in early childhood and early adolescence: A resting-state fNIRS study

    Directory of Open Access Journals (Sweden)

    Lin Cai

    2018-04-01

    Full Text Available Early childhood (7–8 years old and early adolescence (11–12 years old constitute two landmark developmental stages that comprise considerable changes in neural cognition. However, very limited information from functional neuroimaging studies exists on the functional topological configuration of the human brain during specific developmental periods. In the present study, we utilized continuous resting-state functional near-infrared spectroscopy (rs-fNIRS imaging data to examine topological changes in network organization during development from early childhood and early adolescence to adulthood. Our results showed that the properties of small-worldness and modularity were not significantly different across development, demonstrating the developmental maturity of important functional brain organization in early childhood. Intriguingly, young children had a significantly lower global efficiency than early adolescents and adults, which revealed that the integration of the distributed networks strengthens across the developmental stages underlying cognitive development. Moreover, local efficiency of young children and adolescents was significantly lower than that of adults, while there was no difference between these two younger groups. This finding demonstrated that functional segregation remained relatively steady from early childhood to early adolescence, and the brain in these developmental periods possesses no optimal network configuration. Furthermore, we found heterogeneous developmental patterns in the regional nodal properties in various brain regions, such as linear increased nodal properties in the frontal cortex, indicating increasing cognitive capacity over development. Collectively, our results demonstrated that significant topological changes in functional network organization occurred during these two critical developmental stages, and provided a novel insight into elucidating subtle changes in brain functional networks across

  14. Computed tomography of the brain in children with early infantile autism

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Yoshihiko; Manome, Taei; Kaneko, Motohisa; Yashima, Yuko; Kumashiro, Hisashi

    1984-01-01

    In order to examine the cranial CT of autistic children and investigate the etiological significance of CT scan findings, the CT of the brain was surveyed in 24 children with early infantile autism (3 to 17 years with a mean age of 7.6), and 179 children with the normal CT despite their medical histories such as headaches or febrile convulsions. According to their ages, the autistic and normal children were divided into the following three groups: Group I (age ranging from 3 to 5), Group II (age: 6 to 9) and Group III (age: 10 to 17). 1) There was no significant difference between the bifrontal CVI of the autistic children and that of the normal children. However, in Group III, the bifrontal CVI of the autistic children was significantly higher than that of the normal children. 2) There was no significant difference between the bicaudate CVI of the autistic children and that of the normal children. However, in Groups I and II, the bicaudate CVI of the autistic children was significantly lower than that of the normal children. 3) The maximum widths of the third ventricle showed no significant difference between the autistic and normal children. However, in Groups II and III, those of the autistic children were wider than those of the normal children. In the autistic children, as the age increases, the difference becomes significantly wider. A positive correlation was observed between the width of the third ventricle and ages of the autistic children. 4) An examination of the right-left ratio of maximum transverse diameter of the brain showed that there was no significant difference between the autistic and normal children. The above mentioned results (1)-4)) might suggest a progressive disorder of the brain structure surrounding the third ventricle or lateral ventricles in the autistic children. (author).

  15. Computed tomography of the brain in children with early infantile autism

    International Nuclear Information System (INIS)

    Hoshino, Yoshihiko; Manome, Taei; Kaneko, Motohisa; Yashima, Yuko; Kumashiro, Hisashi

    1984-01-01

    In order to examine the cranial CT of autistic children and investigate the etiological significance of CT scan findings, the CT of the brain was surveyed in 24 children with early infantile autism (3 to 17 years with a mean age of 7.6), and 179 children with the normal CT despite their medical histories such as headaches or febrile convulsions. According to their ages, the autistic and normal children were divided into the following three groups: Group I (age ranging from 3 to 5), Group II (age: 6 to 9) and Group III (age: 10 to 17). 1) There was no significant difference between the bifrontal CVI of the autistic children and that of the normal children. However, in Group III, the bifrontal CVI of the autistic children was significantly higher than that of the normal children. 2) There was no significant difference between the bicaudate CVI of the autistic children and that of the normal children. However, in Groups I and II, the bicaudate CVI of the autistic children was significantly lower than that of the normal children. 3) The maximum widths of the third ventricle showed no significant difference between the autistic and normal children. However, in Groups II and III, those of the autistic children were wider than those of the normal children. In the autistic children, as the age increases, the difference becomes significantly wider. A positive correlation was observed between the width of the third ventricle and ages of the autistic children. 4) An examination of the right-left ratio of maximum transverse diameter of the brain showed that there was no significant difference between the autistic and normal children. The abovementioned results (1)-4)) might suggest a progressive disorder of the brain structure surrounding the third ventricle or lateral ventricles in the autistic children. (author)

  16. Snake pictures draw more early attention than spider pictures in non-phobic women : Evidence from event-related brain potentials

    NARCIS (Netherlands)

    Van Strien, J. W.; Eijlers, R.; Franken, I. H A; Huijding, J.|info:eu-repo/dai/nl/292646976

    Snakes were probably the first predators of mammals and may have been important agents of evolutionary changes in the primate visual system allowing rapid visual detection of fearful stimuli (Isbell, 2006). By means of early and late attention-related brain potentials, we examined the hypothesis

  17. Snake pictures draw more early attention than spider pictures in non-phobic women: Evidence from event-related brain potentials

    NARCIS (Netherlands)

    J.W. van Strien (Jan); R. Eijlers (R.); I.H.A. Franken (Ingmar); J. Huijding (Jorg)

    2014-01-01

    textabstractSnakes were probably the first predators of mammals and may have been important agents of evolutionary changes in the primate visual system allowing rapid visual detection of fearful stimuli (Isbell, 2006). By means of early and late attention-related brain potentials, we examined the

  18. The neonatal brain : early connectome development and childhood cognition

    NARCIS (Netherlands)

    Keunen, K.

    2017-01-01

    The human brain is a vastly complex system that develops rapidly during human gestation. Its developmental pace is unprecedented in any other period of human development. By the time of normal birth the brain's layout verges on the adult human brain. All major structures have come into place,

  19. Early postnatal exposure to intermittent hypoxia in rodents is proinflammatory, impairs white matter integrity, and alters brain metabolism.

    Science.gov (United States)

    Darnall, Robert A; Chen, Xi; Nemani, Krishnamurthy V; Sirieix, Chrystelle M; Gimi, Barjor; Knoblach, Susan; McEntire, Betty L; Hunt, Carl E

    2017-07-01

    BackgroundPreterm infants are frequently exposed to intermittent hypoxia (IH) associated with apnea and periodic breathing that may result in inflammation and brain injury that later manifests as cognitive and executive function deficits. We used a rodent model to determine whether early postnatal exposure to IH would result in inflammation and brain injury.MethodsRat pups were exposed to IH from P2 to P12. Control animals were exposed to room air. Cytokines were analyzed in plasma and brain tissue at P13 and P18. At P20-P22, diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) were performed.ResultsPups exposed to IH had increased plasma Gro/CXCL1 and cerebellar IFN-γ and IL-1β at P13, and brainstem enolase at P18. DTI showed a decrease in FA and AD in the corpus callosum (CC) and cingulate gyrus, and an increase in RD in the CC. MRS revealed decreases in NAA/Cho, Cr, Tau/Cr, and Gly/Cr; increases in TCho and GPC in the brainstem; and decreases in NAA/Cho in the hippocampus.ConclusionsWe conclude that early postnatal exposure to IH, similar in magnitude to that experienced in human preterm infants, is associated with evidence for proinflammatory changes, decreases in white matter integrity, and metabolic changes consistent with hypoxia.

  20. Structural equation modelling of viral tropism reveals its impact on achieving viral suppression within 6 months in treatment-naive HIV-1-infected patients after combination antiretroviral therapy.

    Science.gov (United States)

    Mengoli, Carlo; Andreis, Samantha; Scaggiante, Renzo; Cruciani, Mario; Bosco, Oliviero; Ferretto, Roberto; Leoni, Davide; Maffongelli, Gaetano; Basso, Monica; Torti, Carlo; Sarmati, Loredana; Andreoni, Massimo; Palù, Giorgio; Parisi, Saverio Giuseppe

    2017-01-01

    To evaluate the role of pre-treatment co-receptor tropism of plasma HIV on the achievement of viral suppression (plasma HIV RNA 1.69 log 10 copies/mL) at the sixth month of combination antiretroviral therapy (cART) in a cohort of naive patients using, for the first time in this context, a path analysis (PA) approach. Adult patients with chronic infection by subtype B HIV-1 were consecutively enrolled from the start of first-line cART (T0). Genotypic analysis of viral tropism was performed on plasma and interpreted using the bioinformatic tool Geno2pheno, with a false positive rate of 10%. A Bayesian network starting from the viro-immunological data at T0 and at the sixth month of treatment (T1) was set up and this model was evaluated using a PA approach. A total of 262 patients (22.1% bearing an X4 virus) were included; 178 subjects (67.9%) achieved viral suppression. A significant positive indirect effect of bearing X4 virus in plasma at T0 on log 10 HIV RNA at T1 was detected (P = 0.009), the magnitude of this effect was, however, over 10-fold lower than the direct effect of log 10 HIV RNA at T0 on log 10 HIV RNA at T1 (P = 0.000). Moreover, a significant positive indirect effect of bearing an X4 virus on log 10 HIV RNA at T0 (P = 0.003) was apparent. PA overcame the limitations implicit in common multiple regression analysis and showed the possible role of pre-treatment viral tropism at the recommended threshold on the outcome of plasma viraemia in naive patients after 6 months of therapy. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Associations Between Family Adversity and Brain Volume in Adolescence: Manual vs. Automated Brain Segmentation Yields Different Results

    Directory of Open Access Journals (Sweden)

    Hannah Lyden

    2016-09-01

    Full Text Available Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation approaches. In the current study, 23 adolescents participated in two waves of a longitudinal study. Family aggression was measured when the youths were 12 years old, and structural scans were acquired an average of 4 years later. Bilateral amygdalae and hippocampi were segmented using three different methods (manual tracing, FSL, and NeuroQuant. The segmentation estimates were compared, and linear regressions were run to assess the relationship between early family aggression exposure and all three volume segmentation estimates. Manual tracing results showed a positive relationship between family aggression and right amygdala volume, whereas FSL segmentation showed negative relationships between family aggression and both the left and right hippocampi. However, results indicate poor overlap between methods, and different associations between early family aggression exposure and brain volume depending on the segmentation method used.

  2. Associations between Family Adversity and Brain Volume in Adolescence: Manual vs. Automated Brain Segmentation Yields Different Results.

    Science.gov (United States)

    Lyden, Hannah; Gimbel, Sarah I; Del Piero, Larissa; Tsai, A Bryna; Sachs, Matthew E; Kaplan, Jonas T; Margolin, Gayla; Saxbe, Darby

    2016-01-01

    Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation approaches. In the current study, 23 adolescents participated in two waves of a longitudinal study. Family aggression was measured when the youths were 12 years old, and structural scans were acquired an average of 4 years later. Bilateral amygdalae and hippocampi were segmented using three different methods (manual tracing, FSL, and NeuroQuant). The segmentation estimates were compared, and linear regressions were run to assess the relationship between early family aggression exposure and all three volume segmentation estimates. Manual tracing results showed a positive relationship between family aggression and right amygdala volume, whereas FSL segmentation showed negative relationships between family aggression and both the left and right hippocampi. However, results indicate poor overlap between methods, and different associations were found between early family aggression exposure and brain volume depending on the segmentation method used.

  3. Effect of antemortem and postmortem factors on [3H]MK-801 binding in the human brain: Transient elevation during early childhood

    International Nuclear Information System (INIS)

    Kornhuber, J.; Mack-Burkhardt, F.; Konradi, C.; Fritze, J.; Riederer, P.

    1989-01-01

    The effect of a number of antemortem and postmortem factors on [ 3 H]MK-801 binding was investigated under equilibrium conditions in the frontal cortex of human brains of 38 controls. Binding values transiently increased during the early postnatal period reaching a maximum at the age of about 2 years. After age 10 years [ 3 H]MK-801 binding sites disappeared at 5.7% per decade. The storage time of brain tissue had a reducing effect on these binding sites. There was no effect of gender, brain weight or postmortem time interval and the binding sites were bilaterally symmetrically distributed in the frontal cortex

  4. Polymorphisms in Inc Proteins and Differential Expression of inc Genes among Chlamydia trachomatis Strains Correlate with Invasiveness and Tropism of Lymphogranuloma Venereum Isolates

    Science.gov (United States)

    Almeida, Filipe; Borges, Vítor; Ferreira, Rita; Borrego, Maria José; Gomes, João Paulo

    2012-01-01

    Chlamydia trachomatis is a human bacterial pathogen that multiplies only within an intracellular membrane-bound vacuole, the inclusion. C. trachomatis includes ocular and urogenital strains, usually causing infections restricted to epithelial cells of the conjunctiva and genital mucosa, respectively, and lymphogranuloma venereum (LGV) strains, which can infect macrophages and spread into lymph nodes. However, C. trachomatis genomes display >98% identity at the DNA level. In this work, we studied whether C. trachomatis Inc proteins, which have a bilobed hydrophobic domain that may mediate their insertion in the inclusion membrane, could be a factor determining these different types of infection and tropisms. Analyses of polymorphisms and phylogeny of 48 Inc proteins from 51 strains encompassing the three disease groups showed significant amino acid differences that were mainly due to variations between Inc proteins from LGV and ocular or urogenital isolates. Studies of the evolutionary dynamics of inc genes suggested that 10 of them are likely under positive selection and indicated that most nonsilent mutations are LGV specific. Additionally, real-time quantitative PCR analyses in prototype and clinical strains covering the three disease groups identified three inc genes with LGV-specific expression. We determined the transcriptional start sites of these genes and found LGV-specific nucleotides within their promoters. Thus, subtle variations in the amino acids of a subset of Inc proteins and in the expression of inc genes may contribute to the unique tropism and invasiveness of C. trachomatis LGV strains. PMID:23042990

  5. Preterm birth and structural brain alterations in early adulthood

    Directory of Open Access Journals (Sweden)

    Chiara Nosarti

    2014-01-01

    Full Text Available Alterations in cortical development and impaired neurodevelopmental outcomes have been described following very preterm (VPT birth in childhood and adolescence, but only a few studies to date have investigated grey matter (GM and white matter (WM maturation in VPT samples in early adult life. Using voxel-based morphometry (VBM we studied regional GM and WM volumes in 68 VPT-born individuals (mean gestational age 30 weeks and 43 term-born controls aged 19–20 years, and their association with cognitive outcomes (Hayling Sentence Completion Test, Controlled Oral Word Association Test, Visual Reproduction test of the Wechsler Memory Scale-Revised and gestational age. Structural MRI data were obtained with a 1.5 Tesla system and analysed using the VBM8 toolbox in SPM8 with a customized study-specific template. Similarly to results obtained at adolescent assessment, VPT young adults compared to controls demonstrated reduced GM volume in temporal, frontal, insular and occipital areas, thalamus, caudate nucleus and putamen. Increases in GM volume were noted in medial/anterior frontal gyrus. Smaller subcortical WM volume in the VPT group was observed in temporal, parietal and frontal regions, and in a cluster centred on posterior corpus callosum/thalamus/fornix. Larger subcortical WM volume was found predominantly in posterior brain regions, in areas beneath the parahippocampal and occipital gyri and in cerebellum. Gestational age was associated with GM and WM volumes in areas where VPT individuals demonstrated GM and WM volumetric alterations, especially in temporal, parietal and occipital regions. VPT participants scored lower than controls on measures of IQ, executive function and non-verbal memory. When investigating GM and WM alterations and cognitive outcome scores, subcortical WM volume in an area beneath the left inferior frontal gyrus accounted for 14% of the variance of full-scale IQ (F = 12.9, p < 0.0001. WM volume in posterior corpus

  6. Anaemia worsens early functional outcome after traumatic brain injury: a preliminary study.

    Science.gov (United States)

    Litofsky, N Scott; Miller, Douglas C; Chen, Zhenzhou; Simonyi, Agnes; Klakotskaia, Diana; Giritharan, Andrew; Feng, Qi; McConnell, Diane; Cui, Jiankun; Gu, Zezong

    2018-01-01

    To determine early effects on outcome from traumatic brain injury (TBI) induced by controlled cortical impact (CCI) associated with anaemia in mice. Outcome from TBI with concomitant anaemia would be worse than TBI without anaemia. CCI was induced with electromagnetic impaction in four groups of C57BL/6J mice: sham, sham+anaemia; TBI; and TBI+anaemia. Anaemia was created by withdrawal of 30% of calculated intravascular blood volume and saline replacement of equal volume. Functional outcome was assessed by beam-walking test and open field test (after pre-injury training) on post-injury days 3 and 7. After functional assessment, brains removed from sacrificed animals were pathological reviewed with haematoxylin and eosin, cresyl violet, Luxol Fast Blue, and IBA-1 immunostains. Beam-walking was similar between animals with TBI and TBI+anaemia (p = 0.9). In open field test, animals with TBI+anaemia walked less distance than TBI alone or sham animals on days 3 (p < 0.001) and 7 (p < 0.05), indicating less exploratory and locomotion behaviours. No specific pathologic differences could be identified. Anaemia associated with TBI from CCI is associated with worse outcome as measured by less distance travelled in the open field test at three days than if anaemia is not present.

  7. Recent Brain Research on Young Children.

    Science.gov (United States)

    Flohr, John W.

    1999-01-01

    Provides information about current brain research. Explains that some of the basic tenets that have guided research are outlined in R. Shore's "Rethinking the Brain: New Insights into Early Development." Offers five hypotheses: (1) nature/nurture; (2) effects of nurture; (3) optimal music learning; (4) minimal disadvantages; and (5) early music…

  8. HIV-1 tropism for the central nervous system: Brain-derived envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor

    International Nuclear Information System (INIS)

    Martin-Garcia, Julio; Cao, Wei; Varela-Rohena, Angel; Plassmeyer, Matthew L.; Gonzalez-Scarano, Francisco

    2006-01-01

    We previously described envelope glycoproteins of an HIV-1 isolate adapted in vitro for growth in microglia that acquired a highly fusogenic phenotype and lower CD4 dependence, as well as resistance to inhibition by anti-CD4 antibodies. Here, we investigated whether similar phenotypic changes are present in vivo. Envelope clones from the brain and spleen of an HIV-1-infected individual with neurological disease were amplified, cloned, and sequenced. Phylogenetic analysis demonstrated clustering of sequences according to the tissue of origin, as expected. Functional clones were then used in cell-to-cell fusion assays to test for CD4 and co-receptor utilization and for sensitivity to various antibodies and inhibitors. Both brain- and spleen-derived envelope clones mediated fusion in cells expressing both CD4 and CCR5 and brain envelopes also used CCR3 as co-receptor. We found that the brain envelopes had a lower CD4 dependence, since they efficiently mediated fusion in the presence of low levels of CD4 on the target cell membrane, and they were significantly more resistant to blocking by anti-CD4 antibodies than the spleen-derived envelopes. In contrast, we observed no difference in sensitivity to the CCR5 antagonist TAK-779. However, brain-derived envelopes were significantly more resistant than those from spleen to the fusion inhibitor T-1249 and concurrently showed slightly greater fusogenicity. Our results suggest an increased affinity for CD4 of brain-derived envelopes that may have originated from in vivo adaptation to replication in microglial cells. Interestingly, we note the presence of envelopes more resistant to a fusion inhibitor in the brain of an untreated, HIV-1-infected individual

  9. Permanent hypopituitarism is rare after structural traumatic brain injury in early childhood.

    Science.gov (United States)

    Heather, Natasha L; Jefferies, Craig; Hofman, Paul L; Derraik, José G B; Brennan, Christine; Kelly, Patrick; Hamill, James K M; Jones, Rhys G; Rowe, Deborah L; Cutfield, Wayne S

    2012-02-01

    We sought to determine the incidence of permanent hypopituitarism in a potentially high-risk group: young children after structural traumatic brain injury (TBI). We conducted a cross-sectional study with longitudinal follow-up. Dynamic tests of pituitary function (GH and ACTH) were performed in all subjects and potential abnormalities critically evaluated. Puberty was clinically staged; baseline thyroid function, prolactin, IGF-I, serum sodium, and osmolality were compared with age-matched data. Diagnosis of GH deficiency was based on an integrated assessment of stimulated GH peak (hypopituitarism were recorded. Permanent hypopituitarism is rare after both inflicted and accidental structural TBI in early childhood. Precocious puberty was the only pituitary hormone abnormality found, but the prevalence did not exceed that of the normal population.

  10. Determinants of HIV-induced brain changes in three different periods of the early clinical course: A data mining analysis

    Directory of Open Access Journals (Sweden)

    Bokai Cao

    2015-01-01

    Full Text Available To inform an understanding of brain status in HIV infection, quantitative imaging measurements were derived at structural, microstructural and macromolecular levels in three different periods of early infection and then analyzed simultaneously at each stage using data mining. Support vector machine recursive feature elimination was then used for simultaneous analysis of subject characteristics, clinical and behavioral variables, and immunologic measures in plasma and CSF to rank features associated with the most discriminating brain alterations in each period. The results indicate alterations beginning in initial infection and in all periods studied. The severity of immunosuppression in the initial virus host interaction was the most highly ranked determinant of earliest brain alterations. These results shed light on the initial brain changes induced by a neurotropic virus and their subsequent evolution. The pattern of ongoing alterations occurring during and beyond the period in which virus is suppressed in the systemic circulation supports the brain as a viral reservoir that may preclude eradication in the host. Data mining capabilities that can address high dimensionality and simultaneous analysis of disparate information sources have considerable utility for identifying mechanisms underlying onset of neurological injury and for informing new therapeutic targets.

  11. Association of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism with early-onset bipolar disorder.

    Science.gov (United States)

    Nassan, Malik; Croarkin, Paul E; Luby, Joan L; Veldic, Marin; Joshi, Paramjit T; McElroy, Susan L; Post, Robert M; Walkup, John T; Cercy, Kelly; Geske, Jennifer R; Wagner, Karen D; Cuellar-Barboza, Alfredo B; Casuto, Leah; Lavebratt, Catharina; Schalling, Martin; Jensen, Peter S; Biernacka, Joanna M; Frye, Mark A

    2015-09-01

    Brain-derived neurotrophic factor (BDNF) Val66Met (rs6265) functional polymorphism has been implicated in early-onset bipolar disorder. However, results of studies are inconsistent. We aimed to further explore this association. DNA samples from the Treatment of Early Age Mania (TEAM) and Mayo Clinic Bipolar Disorder Biobank were investigated for association of rs6265 with early-onset bipolar disorder. Bipolar cases were classified as early onset if the first manic or depressive episode occurred at age ≤19 years (versus adult-onset cases at age >19 years). After quality control, 69 TEAM early-onset bipolar disorder cases, 725 Mayo Clinic bipolar disorder cases (including 189 early-onset cases), and 764 controls were included in the analysis of association, assessed with logistic regression assuming log-additive allele effects. Comparison of TEAM cases with controls suggested association of early-onset bipolar disorder with the rs6265 minor allele [odds ratio (OR) = 1.55, p = 0.04]. Although comparison of early-onset adult bipolar disorder cases from the Mayo Clinic versus controls was not statistically significant, the OR estimate indicated the same direction of effect (OR = 1.21, p = 0.19). When the early-onset TEAM and Mayo Clinic early-onset adult groups were combined and compared with the control group, the association of the minor allele rs6265 was statistically significant (OR = 1.30, p = 0.04). These preliminary analyses of a relatively small sample with early-onset bipolar disorder are suggestive that functional variation in BDNF is implicated in bipolar disorder risk and may have a more significant role in early-onset expression of the disorder. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Design and validation of new genotypic tools for easy and reliable estimation of HIV tropism before using CCR5 antagonists.

    Science.gov (United States)

    Poveda, Eva; Seclén, Eduardo; González, María del Mar; García, Federico; Chueca, Natalia; Aguilera, Antonio; Rodríguez, Jose Javier; González-Lahoz, Juan; Soriano, Vincent

    2009-05-01

    Genotypic tools may allow easier and less expensive estimation of HIV tropism before prescription of CCR5 antagonists compared with the Trofile assay (Monogram Biosciences, South San Francisco, CA, USA). Paired genotypic and Trofile results were compared in plasma samples derived from the maraviroc expanded access programme (EAP) in Europe. A new genotypic approach was built to improve the sensitivity to detect X4 variants based on an optimization of the webPSSM algorithm. Then, the new tool was validated in specimens from patients included in the ALLEGRO trial, a multicentre study conducted in Spain to assess the prevalence of R5 variants in treatment-experienced HIV patients. A total of 266 specimens from the maraviroc EAP were tested. Overall geno/pheno concordance was above 72%. A high specificity was generally seen for the detection of X4 variants using genotypic tools (ranging from 58% to 95%), while sensitivity was low (ranging from 31% to 76%). The PSSM score was then optimized to enhance the sensitivity to detect X4 variants changing the original threshold for R5 categorization. The new PSSM algorithms, PSSM(X4R5-8) and PSSM(SINSI-6.4), considered as X4 all V3 scoring values above -8 or -6.4, respectively, increasing the sensitivity to detect X4 variants up to 80%. The new algorithms were then validated in 148 specimens derived from patients included in the ALLEGRO trial. The sensitivity/specificity to detect X4 variants was 93%/69% for PSSM(X4R5-8) and 93%/70% for PSSM(SINSI-6.4). PSSM(X4R5-8) and PSSM(SINSI-6.4) may confidently assist therapeutic decisions for using CCR5 antagonists in HIV patients, providing an easier and rapid estimation of tropism in clinical samples.

  13. A putative marker for human pathogenic strains of Anaplasma phagocytophilum correlates with geography and host, but not human tropism.

    Science.gov (United States)

    Foley, Janet; Stephenson, Nicole; Cubilla, Michelle Pires; Qurollo, Barbara; Breitschwerdt, Edward B

    2016-03-01

    Anaplasma phagocytophilum is an Ixodes species tick-transmitted bacterium that is capable of infecting a variety of host species, although there is a diversity of bacterial strains with differing host tropism. Recent analysis of A. phagocytophilum strains suggested that "drhm", a gene locus designated "distantly related to human marker" (drhm), which was predicted to be an integral membrane protein with possible transporter functions was not present in available canine and human isolates. By assessing 117 strains from 14 host species from across the US, we extended this analysis. Phylogenetic clades were associated with geography, but not host species. Additionally, a virulent clade that lacks drhm and infects dogs, horses, and humans in northeastern US was identified. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Brain spect imaging

    International Nuclear Information System (INIS)

    Lee, R.G.L.; Hill, T.C.; Holman, B.L.

    1989-01-01

    This paper discusses how the rapid development of single-photon radiopharmaceuticals has given new life to tomographic brain imaging in nuclear medicine. Further developments in radiopharmaceuticals and refinements in neuro-SPECT (single-photon emission computed tomography) instrumentation should help to reinstate brain scintigraphy as an important part of neurologic diagnosis. SPECT of the brain evolved from experimentation using prototype instrumentation during the early 1960s. Although tomographic studies provided superior diagnostic accuracy when compared to planar techniques, the arrival of X-ray CT of the head resulted in the rapid demise of technetium brain imaging

  15. Regional brain activity during early visual perception in unaffected siblings of schizophrenia patients.

    Science.gov (United States)

    Lee, Junghee; Cohen, Mark S; Engel, Stephen A; Glahn, David; Nuechterlein, Keith H; Wynn, Jonathan K; Green, Michael F

    2010-07-01

    Visual masking paradigms assess the early part of visual information processing, which may reflect vulnerability measures for schizophrenia. We examined the neural substrates of visual backward performance in unaffected sibling of schizophrenia patients using functional magnetic resonance imaging (fMRI). Twenty-one unaffected siblings of schizophrenia patients and 19 healthy controls performed a backward masking task and three functional localizer tasks to identify three visual processing regions of interest (ROI): lateral occipital complex (LO), the motion-sensitive area, and retinotopic areas. In the masking task, we systematically manipulated stimulus onset asynchronies (SOAs). We analyzed fMRI data in two complementary ways: 1) an ROI approach for three visual areas, and 2) a whole-brain analysis. The groups did not differ in behavioral performance. For ROI analysis, both groups increased activation as SOAs increased in LO. Groups did not differ in activation levels of the three ROIs. For whole-brain analysis, controls increased activation as a function of SOAs, compared with siblings in several regions (i.e., anterior cingulate cortex, posterior cingulate cortex, inferior prefrontal cortex, inferior parietal lobule). The study found: 1) area LO showed sensitivity to the masking effect in both groups; 2) siblings did not differ from controls in activation of LO; and 3) groups differed significantly in several brain regions outside visual processing areas that have been related to attentional or re-entrant processes. These findings suggest that LO dysfunction may be a disease indicator rather than a risk indicator for schizophrenia. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. From early stress to 12-month development in very preterm infants: Preliminary findings on epigenetic mechanisms and brain growth.

    Science.gov (United States)

    Fumagalli, Monica; Provenzi, Livio; De Carli, Pietro; Dessimone, Francesca; Sirgiovanni, Ida; Giorda, Roberto; Cinnante, Claudia; Squarcina, Letizia; Pozzoli, Uberto; Triulzi, Fabio; Brambilla, Paolo; Borgatti, Renato; Mosca, Fabio; Montirosso, Rosario

    2018-01-01

    Very preterm (VPT) infants admitted to Neonatal Intensive Care Unit (NICU) are at risk for altered brain growth and less-than-optimal socio-emotional development. Recent research suggests that early NICU-related stress contributes to socio-emotional impairments in VPT infants at 3 months through epigenetic regulation (i.e., DNA methylation) of the serotonin transporter gene (SLC6A4). In the present longitudinal study we assessed: (a) the effects of NICU-related stress and SLC6A4 methylation variations from birth to discharge on brain development at term equivalent age (TEA); (b) the association between brain volume at TEA and socio-emotional development (i.e., Personal-Social scale of Griffith Mental Development Scales, GMDS) at 12 months corrected age (CA). Twenty-four infants had complete data at 12-month-age. SLC6A4 methylation was measured at a specific CpG previously associated with NICU-related stress and socio-emotional stress. Findings confirmed that higher NICU-related stress associated with greater increase of SLC6A4 methylation at NICU discharge. Moreover, higher SLC6A4 discharge methylation was associated with reduced anterior temporal lobe (ATL) volume at TEA, which in turn was significantly associated with less-than-optimal GMDS Personal-Social scale score at 12 months CA. The reduced ATL volume at TEA mediated the pathway linking stress-related increase in SLC6A4 methylation at NICU discharge and socio-emotional development at 12 months CA. These findings suggest that early adversity-related epigenetic changes might contribute to the long-lasting programming of socio-emotional development in VPT infants through epigenetic regulation and structural modifications of the developing brain.

  17. SPECT brain perfusion findings in mild or moderate traumatic brain injury

    International Nuclear Information System (INIS)

    Abu-Judeh, H.H.; Parker, R.; Aleksic, S.

    2000-01-01

    Background: The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. PATIENTS AND METHODS: This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). RESULTS: Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). CONCLUSIONS: Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than

  18. SPECT brain perfusion findings in mild or moderate traumatic brain injury.

    Science.gov (United States)

    Abu-Judeh, H H; Parker, R; Aleksic, S; Singh, M L; Naddaf, S; Atay, S; Kumar, M; Omar, W; El-Zeftawy, H; Luo, J Q; Abdel-Dayem, H M

    2000-01-01

    The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than delayed imaging (p = 0.0011). SPECT brain perfusion

  19. David Ferrier: brain drawings and brain maps.

    Science.gov (United States)

    Lazar, J Wayne

    2013-01-01

    This chapter has two emphases, one is about the men who influenced the visual representations that David Ferrier (1843-1928) used to illustrate his work on localization of brain functions during the years 1873-1875, namely, Alexander Ecker, John C. Galton, and Ernest Waterlow, and the other is about the nature of medical representations and of Ferrier's illustrations in particular. Medical illustrations are characterized either as pictures, line drawings, or brain maps. Ferrier's illustrations will be shown to be increasingly sophisticated brain maps that contrast with early nineteenth-century standards of medical illustrations, as exemplified by John Bell (1763-1829). © 2013 Elsevier B.V. All rights reserved.

  20. Interdisciplinary facilitation of the minimal participation of patients with severe brain injury in early rehabilitation

    DEFF Research Database (Denmark)

    Pallesen, Hanne; Buhl, Inge

    2016-01-01

    ABSTRACT Aim: The purpose of the study was to shed light on the participatory aspect of early rehabilitation, when contact, communication and interaction between the patients and the professionals is minimal, because of the patients’ severe brain injury and complex conditions. Methodology...... of hospital charts and memos. The data were analyzed using a four-step phenomenological analysis and NVivo 10. Major findings: Participation comes into play in various practices around the patient. Three main themes seem to be important: (1) The dynamic interplay of the multidisciplinary team as an element...

  1. The evolution of modern human brain shape

    Science.gov (United States)

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils (N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity. PMID:29376123

  2. The evolution of modern human brain shape.

    Science.gov (United States)

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils ( N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity.

  3. Oligoclonal bands in the cerebrospinal fluid and increased brain atrophy in early stages of relapsing-remitting multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Ignacio Rojas

    2012-08-01

    Full Text Available OBJECTIVE: To determine if the presence of oligoclonal bands (OB at early stages of multiple sclerosis was associated with higher brain atrophy, when compared with patients without OB. METHODS: Relapsing-remitting multiple sclerosis (RRMS patients with less than two years of disease onset and OB detection in cerebrospinal fluid (CSF were included. SIENAX was used for total brain volume (TBV, gray matter volume (GMV, and white matter volume (WMV. RESULTS: Forty patients were included, 29 had positive IgG-OB. No differences were found between positive and negative patients in gender, expanded disability status scale (EDSS, treatment received, and T2/T1 lesion load. TBV in positive IgG-OB patients was 1.5 mm³ x 10(6 compared with 1.64 mm³ x 10(6 in the negative ones (p=0.02. GMV was 0.51 mm³ x 10(6 in positive IgG-OB compared with 0.62 mm³ x 10(6 in negative ones (p=0.002. No differences in WMV (p=0.09 were seen. CONCLUSIONS: IgG-OB in the CSF was related to neurodegeneration magnetic resonance (MR markers in early RRMS.

  4. Early and delayed Tc-99m ECD brain SPECT in SLE patients with CNS involvement

    International Nuclear Information System (INIS)

    Kikukawa, Kaoru; Toyama, Hiroshi; Katayama, Masao

    2000-01-01

    We compared early and delayed Tc-99m ECD SPECT scans in 32 SLE patients (Group 1, definite neuropsychiatric disorders; Group 2, minor neurologic symptoms or normal) with those of normal controls by visual inspection and semi-quantitative evaluation. With visual interpretation, 13 out of 14 patients in Group 1 (93%) and 7 out of 18 patients in Group 2 (39%) had diffuse uneven decrease in early scans. Seven patients in Group 2 (39%) who had normal early scans demonstrated focal decrease in the medial frontal lobe in delayed scans. With cerebral region to cerebellar ratios, in early scans, the medial frontal lobe in Group 1 and Group 2 was significantly lower than in normal controls, and lateral frontal lobe and occipital lobes in Group 1 were significantly lower than in normal controls. Nevertheless, in delayed scans, every cortical region except for the parietal lode in Groups 1 and 2 was significantly lower than in normal controls. The retention rates in all regions in SLE patients were significantly lower than in normal controls. No case showed SPECT improvement on follow-up studies in either group in spite of clinical improvement. Delayed Tc-99m ECD brain SPECT of high sensitivity might be useful in detecting CNS involvement. Although the SPECT findings did not correlate with the neuropsychiatric symptoms, early and delayed Tc-99m ECD SPECT seems to provide useful objective diagnostic information in SLE patients. (author)

  5. Effects of deep brain stimulation on rest tremor progression in early stage Parkinson disease.

    Science.gov (United States)

    Hacker, Mallory L; DeLong, Mahlon R; Turchan, Maxim; Heusinkveld, Lauren E; Ostrem, Jill L; Molinari, Anna L; Currie, Amanda D; Konrad, Peter E; Davis, Thomas L; Phibbs, Fenna T; Hedera, Peter; Cannard, Kevin R; Drye, Lea T; Sternberg, Alice L; Shade, David M; Tonascia, James; Charles, David

    2018-06-29

    To evaluate whether the progression of individual motor features was influenced by early deep brain stimulation (DBS), a post hoc analysis of Unified Parkinson's Disease Rating Scale-III (UPDRS-III) score (after a 7-day washout) was conducted from the 2-year DBS in early Parkinson disease (PD) pilot trial dataset. The prospective pilot trial enrolled patients with PD aged 50-75 years, treated with PD medications for 6 months-4 years, and no history of dyskinesia or other motor fluctuations, who were randomized to receive optimal drug therapy (ODT) or DBS plus ODT (DBS + ODT). At baseline and 6, 12, 18, and 24 months, all patients stopped all PD therapy for 1 week (medication and stimulation, if applicable). UPDRS-III "off" item scores were compared between the ODT and DBS + ODT groups (n = 28); items with significant between-group differences were analyzed further. UPDRS-III "off" rest tremor score change from baseline to 24 months was worse in patients receiving ODT vs DBS + ODT ( p = 0.002). Rest tremor slopes from baseline to 24 months favored DBS + ODT both "off" and "on" therapy ( p will be tested in the Food and Drug Administration-approved, phase III, pivotal, multicenter clinical trial evaluating DBS in early PD. This study provides Class II evidence that for patients with early PD, DBS may slow the progression of rest tremor. © 2018 American Academy of Neurology.

  6. ω-3 and folic acid act against depressive-like behavior and oxidative damage in the brain of rats subjected to early- or late-life stress.

    Science.gov (United States)

    Réus, Gislaine Z; Maciel, Amanda L; Abelaira, Helena M; de Moura, Airam B; de Souza, Thays G; Dos Santos, Thais R; Darabas, Ana Caroline; Parzianello, Murilo; Matos, Danyela; Abatti, Mariane; Vieira, Ana Carolina; Fucillini, Vanessa; Michels, Monique; Dal-Pizzol, Felipe; Quevedo, João

    2018-03-30

    To investigate the antidepressant and antioxidant effects of omega-3, folic acid and n-acetylcysteine (NAC) in rats which were subjected to early or late life stress. Early stress was induced through maternal deprivation (MD), while late life stress was induced using the chronic mild stress (CMS) protocol. Young rats which were subjected to MD and the adult rats which were subjected to CMS were treated with omega-3 fatty acids (0.72 g/kg), NAC (20 mg/kg) or folic acid (50 mg/kg) once/day, for a period of 20 days. Then, the animals' immobility times were evaluated using the forced swimming test. Oxidative stress parameters were evaluated in the brain. Depressive-like behavior induced by CMS was prevented by NAC and folic acid, and depressive-like behavior induced by MD was prevented by NAC, folic acid and omega-3. NAC, folic acid and omega-3 were able to exert antioxidant effects in the brain of rats subjected to CMS or MD. These preventive treatments decreased the levels of protein carbonylation and lipid peroxidation, and also decreased the concentrations of nitrite/nitrate and reduced the activity of myeloperoxidase activity in the rat brain which was induced by CMS or MD. NAC, folic acid and omega-3 increased superoxide dismutase and catalase activities in the rat brain subjected to early or late life stress. NAC, omega-3 and folic acid may present interesting lines of treatment based on their antioxidant properties, which cause an inhibition of behavioral and brain changes that occur from stressful life events. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Statistical process control: A feasibility study of the application of time-series measurement in early neurorehabilitation after acquired brain injury.

    Science.gov (United States)

    Markovic, Gabriela; Schult, Marie-Louise; Bartfai, Aniko; Elg, Mattias

    2017-01-31

    Progress in early cognitive recovery after acquired brain injury is uneven and unpredictable, and thus the evaluation of rehabilitation is complex. The use of time-series measurements is susceptible to statistical change due to process variation. To evaluate the feasibility of using a time-series method, statistical process control, in early cognitive rehabilitation. Participants were 27 patients with acquired brain injury undergoing interdisciplinary rehabilitation of attention within 4 months post-injury. The outcome measure, the Paced Auditory Serial Addition Test, was analysed using statistical process control. Statistical process control identifies if and when change occurs in the process according to 3 patterns: rapid, steady or stationary performers. The statistical process control method was adjusted, in terms of constructing the baseline and the total number of measurement points, in order to measure a process in change. Statistical process control methodology is feasible for use in early cognitive rehabilitation, since it provides information about change in a process, thus enabling adjustment of the individual treatment response. Together with the results indicating discernible subgroups that respond differently to rehabilitation, statistical process control could be a valid tool in clinical decision-making. This study is a starting-point in understanding the rehabilitation process using a real-time-measurements approach.

  8. Evolution to pathogenicity of the parvovirus minute virus of mice in immunodeficient mice involves genetic heterogeneity at the capsid domain that determines tropism.

    Science.gov (United States)

    López-Bueno, Alberto; Segovia, José C; Bueren, Juan A; O'Sullivan, M Gerard; Wang, Feng; Tattersall, Peter; Almendral, José M

    2008-02-01

    Very little is known about the role that evolutionary dynamics plays in diseases caused by mammalian DNA viruses. To address this issue in a natural host model, we compared the pathogenesis and genetics of the attenuated fibrotropic and the virulent lymphohematotropic strains of the parvovirus minute virus of mice (MVM), and of two invasive fibrotropic MVM (MVMp) variants carrying the I362S or K368R change in the VP2 major capsid protein, in the infection of severe combined immunodeficient (SCID) mice. By 14 to 18 weeks after oronasal inoculation, the I362S and K368R viruses caused lethal leukopenia characterized by tissue damage and inclusion bodies in hemopoietic organs, a pattern of disease found by 7 weeks postinfection with the lymphohematotropic MVM (MVMi) strain. The MVMp populations emerging in leukopenic mice showed consensus sequence changes in the MVMi genotype at residues G321E and A551V of VP2 in the I362S virus infections or A551V and V575A changes in the K368R virus infections, as well as a high level of genetic heterogeneity within a capsid domain at the twofold depression where these residues lay. Amino acids forming this capsid domain are important MVM tropism determinants, as exemplified by the switch in MVMi host range toward mouse fibroblasts conferred by coordinated changes of some of these residues and by the essential character of glutamate at residue 321 for maintaining MVMi tropism toward primary hemopoietic precursors. The few viruses within the spectrum of mutants from mice that maintained the respective parental 321G and 575V residues were infectious in a plaque assay, whereas the viruses with the main consensus sequences exhibited low levels of fitness in culture. Consistent with this finding, a recombinant MVMp virus carrying the consensus sequence mutations arising in the K368R virus background in mice failed to initiate infection in cell lines of different tissue origins, even though it caused rapid-course lethal leukopenia in SCID

  9. A mathematical theory of shape and neuro-fuzzy methodology-based diagnostic analysis: a comparative study on early detection and treatment planning of brain cancer.

    Science.gov (United States)

    Kar, Subrata; Majumder, D Dutta

    2017-08-01

    Investigation of brain cancer can detect the abnormal growth of tissue in the brain using computed tomography (CT) scans and magnetic resonance (MR) images of patients. The proposed method classifies brain cancer on shape-based feature extraction as either benign or malignant. The authors used input variables such as shape distance (SD) and shape similarity measure (SSM) in fuzzy tools, and used fuzzy rules to evaluate the risk status as an output variable. We presented a classifier neural network system (NNS), namely Levenberg-Marquardt (LM), which is a feed-forward back-propagation learning algorithm used to train the NN for the status of brain cancer, if any, and which achieved satisfactory performance with 100% accuracy. The proposed methodology is divided into three phases. First, we find the region of interest (ROI) in the brain to detect the tumors using CT and MR images. Second, we extract the shape-based features, like SD and SSM, and grade the brain tumors as benign or malignant with the concept of SD function and SSM as shape-based parameters. Third, we classify the brain cancers using neuro-fuzzy tools. In this experiment, we used a 16-sample database with SSM (μ) values and classified the benignancy or malignancy of the brain tumor lesions using the neuro-fuzzy system (NFS). We have developed a fuzzy expert system (FES) and NFS for early detection of brain cancer from CT and MR images. In this experiment, shape-based features, such as SD and SSM, were extracted from the ROI of brain tumor lesions. These shape-based features were considered as input variables and, using fuzzy rules, we were able to evaluate brain cancer risk values for each case. We used an NNS with LM, a feed-forward back-propagation learning algorithm, as a classifier for the diagnosis of brain cancer and achieved satisfactory performance with 100% accuracy. The proposed network was trained with MR image datasets of 16 cases. The 16 cases were fed to the ANN with 2 input neurons, one

  10. The development of functional network organization in early childhood and early adolescence: A resting-state fNIRS study.

    Science.gov (United States)

    Cai, Lin; Dong, Qi; Niu, Haijing

    2018-04-01

    Early childhood (7-8 years old) and early adolescence (11-12 years old) constitute two landmark developmental stages that comprise considerable changes in neural cognition. However, very limited information from functional neuroimaging studies exists on the functional topological configuration of the human brain during specific developmental periods. In the present study, we utilized continuous resting-state functional near-infrared spectroscopy (rs-fNIRS) imaging data to examine topological changes in network organization during development from early childhood and early adolescence to adulthood. Our results showed that the properties of small-worldness and modularity were not significantly different across development, demonstrating the developmental maturity of important functional brain organization in early childhood. Intriguingly, young children had a significantly lower global efficiency than early adolescents and adults, which revealed that the integration of the distributed networks strengthens across the developmental stages underlying cognitive development. Moreover, local efficiency of young children and adolescents was significantly lower than that of adults, while there was no difference between these two younger groups. This finding demonstrated that functional segregation remained relatively steady from early childhood to early adolescence, and the brain in these developmental periods possesses no optimal network configuration. Furthermore, we found heterogeneous developmental patterns in the regional nodal properties in various brain regions, such as linear increased nodal properties in the frontal cortex, indicating increasing cognitive capacity over development. Collectively, our results demonstrated that significant topological changes in functional network organization occurred during these two critical developmental stages, and provided a novel insight into elucidating subtle changes in brain functional networks across development. Copyright

  11. Early post-natal exposure to intermittent hypoxia in rodents is pro-inflammatory, impairs white matter integrity and alters brain metabolism

    Science.gov (United States)

    Darnall, Robert A.; Chen, Xi; Nemani, Krishnamurthy V.; Sirieix, Chrystelle M.; Gimi, Barjor; Knoblach, Susan; McEntire, Betty L.; Hunt, Carl E.

    2017-01-01

    Background Preterm infants are frequently exposed to intermittent hypoxia (IH) associated with apnea and periodic breathing that may result in inflammation and brain injury that later manifests as cognitive and executive function deficits. We used a rodent model to determine whether early postnatal exposure to IH would result in inflammation and brain injury. Methods Rat pups were exposed to IH from P2–P12. Control animals were exposed to room air. Cytokines were analyzed in plasma and brain tissue at P13 and P18. At P20–P22, diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) were performed. Results Pups exposed to IH had increased plasma Gro/CXCL1 and cerebellar IFN-γ and IL-1β at P13, and brainstem enolase at P18. DTI showed a decrease in FA and AD in the corpus callosum (CC) and cingulate gyrus and an increase in RD in the CC. MRS revealed decreases in NAA/Cho, Cr, Tau/Cr and Gly/Cr and increases in TCho and GPC in the brainstem and decreases in NAA/Cho in the hippocampus. Conclusions We conclude that early postnatal exposure to IH, similar in magnitude experienced in human preterm infants, is associated with evidence for pro-inflammatory changes, decreases in white matter integrity, and metabolic changes consistent with hypoxia. PMID:28388601

  12. African Journal of Biotechnology - Vol 7, No 22 (2008)

    African Journals Online (AJOL)

    Affinity (tropism) of caprine arthritis encephalitis virus for brain cells · EMAIL FREE ... Sorghum stem yield and soluble carbohydrates under different salinity levels ... Establishment of a plant regeneration system from callus of Dendrobium cv.

  13. Early environmental therapy rescues brain development in a mouse model of Down syndrome.

    Science.gov (United States)

    Begenisic, Tatjana; Sansevero, Gabriele; Baroncelli, Laura; Cioni, Giovanni; Sale, Alessandro

    2015-10-01

    Down syndrome (DS), the most common genetic disorder associated with intellectual disabilities, is an untreatable condition characterized by a number of developmental defects and permanent deficits in the adulthood. Ts65Dn mice, the major animal model for DS, display severe cognitive and synaptic plasticity defects closely resembling the human phenotype. Here, we employed a multidisciplinary approach to investigate, for the first time in developing Ts65Dn mice, the effects elicited by early environmental enrichment (EE) on brain maturation and function. We report that exposure to EE resulted in a robust increase in maternal care levels displayed by Ts65Dn mothers and led to a normalization of declarative memory abilities and hippocampal plasticity in trisomic offspring. The positive effects of EE on Ts65Dn phenotype were not limited to the cognitive domain, but also included a rescue of visual system maturation. The beneficial EE effects were accompanied by increased BDNF and correction of over-expression of the GABA vesicular transporter vGAT. These findings highlight the beneficial impact of early environmental stimuli and their potential for application in the treatment of major functional deficits in children with DS. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Development of the Young Brain

    Medline Plus

    Full Text Available ... nothing short of remarkable. Dr. Giedd: The brain can grow extra connections sort of like branches, twigs ... early as 3 months of age Brain activity can predict success of depression treatment More News From ...

  15. Early life stress induces attention-deficit hyperactivity disorder (ADHD)-like behavioral and brain metabolic dysfunctions: functional imaging of methylphenidate treatment in a novel rodent model.

    Science.gov (United States)

    Bock, J; Breuer, S; Poeggel, G; Braun, K

    2017-03-01

    In a novel animal model Octodon degus we tested the hypothesis that, in addition to genetic predisposition, early life stress (ELS) contributes to the etiology of attention-deficit hyperactivity disorder-like behavioral symptoms and the associated brain functional deficits. Since previous neurochemical observations revealed that early life stress impairs dopaminergic functions, we predicted that these symptoms can be normalized by treatment with methylphenidate. In line with our hypothesis, the behavioral analysis revealed that repeated ELS induced locomotor hyperactivity and reduced attention towards an emotionally relevant acoustic stimulus. Functional imaging using ( 14 C)-2-fluoro-deoxyglucose-autoradiography revealed that the behavioral symptoms are paralleled by metabolic hypoactivity of prefrontal, mesolimbic and subcortical brain areas. Finally, the pharmacological intervention provided further evidence that the behavioral and metabolic dysfunctions are due to impaired dopaminergic neurotransmission. Elevating dopamine in ELS animals by methylphenidate normalized locomotor hyperactivity and attention-deficit and ameliorated brain metabolic hypoactivity in a dose-dependent manner.

  16. Diagnostic value of β amyloid plaques imaging agent 131I-IMPY brain imaging in early Alzheimer's disease

    International Nuclear Information System (INIS)

    Ye Wanzhong; Lu Chunxiong; Yang Min; Bao Jiandong; Cheng Zhaohuo; Cai Deliang; Wang Zhiqiang; Yang Bixiu

    2012-01-01

    Objective: To evaluate the diagnostic value of β-amyloid plaques imaging agent [ 131 I] 2( 4-dimethylaminop henyl)-6-iodoimidazo [1, 2-α] pyridine ( 131 I-IMPY) SPECT imaging in early Alzheimer's Disease. Methods: 24 cases of AD (7 males, 17 females, aged 48∼79 years) and 14 normal (6 males, 8 females, aged 42∼67 years) control subjects were selected for this study. 131 I-IMPY SPECT imaging was carried out 2-3 h post injection. 131 I-IMPY uptake defined as the ratio of each brain gyrus and cerebellum uptake on fixed region of interest (ROI) (Rcl/cb) was calculated. Comparative analysis between the two groups was carried out using t-test. Results: In patients with early AD (MCI), 131 I-IMPY was increased in parietal gyrus, temporal gyrus and frontal gyrus compared with normal control group and it were found to be statistically significant (t = 1.3967∼2.8757, all P 0.05). In patients with AD, increase in 131 I-IMPY were observed in parietal, temporal, occipital lobes and basal ganglia compared with normal control group and it were found to be statistically significant (t=2.1001∼6.2789, all P 0.05), and 131 I-IMPY was increased in occipital lobes and basal ganglia compared with MCI group and it were found to be statistically significant (t=2.0850∼3.6772, all P 131 I-IMPY was lightly increased in each brain of left side gyrus compared with right but without statistically significant difference (t=0.1273∼0.5571, all P>0.05). Conclusions: 131 I-IMPY SPECT Imaging was helpful for early diagnosis of AD. (authors)

  17. Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study.

    Science.gov (United States)

    Korevaar, Tim I M; Muetzel, Ryan; Medici, Marco; Chaker, Layal; Jaddoe, Vincent W V; de Rijke, Yolanda B; Steegers, Eric A P; Visser, Theo J; White, Tonya; Tiemeier, Henning; Peeters, Robin P

    2016-01-01

    Thyroid hormone is involved in the regulation of early brain development. Since the fetal thyroid gland is not fully functional until week 18-20 of pregnancy, neuronal migration and other crucial early stages of intrauterine brain development largely depend on the supply of maternal thyroid hormone. Current clinical practice mostly focuses on preventing the negative consequences of low thyroid hormone concentrations, but data from animal studies have shown that both low and high concentrations of thyroid hormone have negative effects on offspring brain development. We aimed to investigate the association of maternal thyroid function with child intelligence quotient (IQ) and brain morphology. In this population-based prospective cohort study, embedded within the Generation R Study (Rotterdam, Netherlands), we investigated the association of maternal thyroid function with child IQ (assessed by non-verbal intelligence tests) and brain morphology (assessed on brain MRI scans). Eligible women were those living in the study area at their delivery date, which had to be between April 1, 2002, and Jan 1, 2006. For this study, women with available serum samples who presented in early pregnancy (brain MRI scans (done at a median of 8·0 years of age [6·2-10·0]) were obtained. Analyses were adjusted for potential confounders including concentrations of human chorionic gonadotropin and child thyroid-stimulating hormone and free thyroxine. Data for child IQ were available for 3839 mother-child pairs, and MRI scans were available from 646 children. Maternal free thyroxine concentrations showed an inverted U-shaped association with child IQ (p=0·0044), child grey matter volume (p=0·0062), and cortex volume (p=0·0011). For both low and high maternal free thyroxine concentrations, this association corresponded to a 1·4-3·8 points reduction in mean child IQ. Maternal thyroid-stimulating hormone was not associated with child IQ or brain morphology. All associations remained

  18. Brain-Reactive Antibodies and Disease

    OpenAIRE

    Diamond, B.; Honig, G.; Mader, S.; Brimberg, L.; Volpe, B.T.

    2013-01-01

    Autoimmune diseases currently affect 5–7% of the world's population; in most diseases there are circulating autoantibodies. Brain-reactive antibodies are present in approximately 2–3% of the general population but do not usually contribute to brain pathology. These antibodies penetrate brain tissue only early in development or under pathologic conditions. This restriction on their pathogenicity and the lack of correlation between serum titers and brain pathology have, no doubt, contributed to...

  19. Early-life stress induces persistent alterationsin 5-HT1Areceptor and serotonin transporter mRNA expression in the adultrat brain.

    Directory of Open Access Journals (Sweden)

    Javier A. Bravo

    2014-04-01

    Full Text Available Early-life experience plays a major role in the stress response throughout life. Neonatal maternal separation (MS is an animal model of depression with an altered serotonergic response. We hypothesize that this alteration may be caused by differences in 5-HT1A receptor and serotonin transporter (SERT mRNA expression in brain areas involved in the control of emotions, memory and fear as well as in regions controlling the central serotonergic tone.To test this, Sprague-Dawley rats were subjected to MS for 3h daily during post-natal days 2-12. As control, age matched rats were not separated (NS from their dams. When animals reached adulthood (11-13 weeks brain was extracted and mRNA expression of 5-HT1A receptor in amygdala, hippocampus and dorsal raphé nucleus (DRN and SERT in the DRN was analyzed through in-situ hybridisation.Densitometric analysis revealed that MS increased 5-HT1A receptor mRNA expression in the amygdala, and reduced its expression in the DRN, but no changes were observed in the hippocampus in comparison to NS controls. Also, MS reduced SERT mRNA expression in the DRN when compared to NS rats.These results suggest that early-life stress induces persistent changes in 5-HT1A receptor and SERT mRNA expression in key brain regions involved in the development of stress-related psychiatric disorders. The reduction in SERT mRNA indicates an alteration that is in line with clinical findings such as polymorphic variants in individuals with higher risk of depression. These data may help to understand how early-life stress contributes to the development of mood disorders in adulthood.

  20. Structural MRI markers of brain aging early after ischemic stroke.

    Science.gov (United States)

    Werden, Emilio; Cumming, Toby; Li, Qi; Bird, Laura; Veldsman, Michele; Pardoe, Heath R; Jackson, Graeme; Donnan, Geoffrey A; Brodtmann, Amy

    2017-07-11

    To examine associations between ischemic stroke, vascular risk factors, and MRI markers of brain aging. Eighty-one patients (mean age 67.5 ± 13.1 years, 31 left-sided, 61 men) with confirmed first-ever (n = 66) or recurrent (n = 15) ischemic stroke underwent 3T MRI scanning within 6 weeks of symptom onset (mean 26 ± 9 days). Age-matched controls (n = 40) completed identical testing. Multivariate regression analyses examined associations between group membership and MRI markers of brain aging (cortical thickness, total brain volume, white matter hyperintensity [WMH] volume, hippocampal volume), normalized against intracranial volume, and the effects of vascular risk factors on these relationships. First-ever stroke was associated with smaller hippocampal volume ( p = 0.025) and greater WMH volume ( p = 0.004) relative to controls. Recurrent stroke was in turn associated with smaller hippocampal volume relative to both first-ever stroke ( p = 0.017) and controls ( p = 0.001). These associations remained significant after adjustment for age, sex, education, and, in stroke patients, infarct volume. Total brain volume was not significantly smaller in first-ever stroke patients than in controls ( p = 0.056), but the association became significant after further adjustment for atrial fibrillation ( p = 0.036). Cortical thickness and brain volumes did not differ as a function of stroke type, infarct volume, or etiology. Brain structure is likely to be compromised before ischemic stroke by vascular risk factors. Smaller hippocampal and total brain volumes and increased WMH load represent proxies for underlying vascular brain injury. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  1. Delayed traumatic hematomas of the brain: the early manifestations of CT

    International Nuclear Information System (INIS)

    Liu Shuyan; Tang Guangjian; Fu Jiazhen; Xu Bing; Yin Yanyu

    2002-01-01

    Objective: To study the CT manifestations of delayed traumatic hematomas of the brain and evaluate their diagnostic significance in predicting the delayed traumatic brain hematoma. Methods: The manifestations of initial CT studies and follow-up CT examinations of 31 delayed traumatic brain hematomas were analyzed. Another 50 CT studies of head trauma without delayed brain hematomas were included randomly as control. Results: The abnormal findings of CT studies of the 31 delayed traumatic brain hematomas included: (1) Decreased density of the local brain parenchyma and disappeared difference between gray and white matter of the same area in 18 cases; (2) Local subarachnoid space hemorrhage in 24 cases; (3) Slight mass effect of local brain parenchyma in 16 cases. (4) Subdural hematoma in 9 cases. The locations of the abnormalities were roughly the same with the delayed hematoma except one local subarachnoid space hemorrhage, which was in the opposite of the delayed hematoma. The appearing rate of those abnormal findings in the control group was low and the difference was statistically significant. Conclusion: The decrease of density of local brain parenchyma, the disappeared difference between the gray and white matter, local subarachnoid space hemorrhage, and local swollen of brain presented in the initial CT study of the patient with heat trauma should be taken as indicators of delayed hemorrhage of the same area of brain, and it is necessary to do follow-up CT studies to exclude it

  2. A new strategy of CyberKnife treatment system based radiosurgery followed by early use of adjuvant bevacizumab treatment for brain metastasis with extensive cerebral edema.

    Science.gov (United States)

    Wang, Yang; Wang, Enmin; Pan, Li; Dai, Jiazhong; Zhang, Nan; Wang, Xin; Liu, Xiaoxia; Mei, Guanghai; Sheng, Xiaofang

    2014-09-01

    Bevacizumab blocks the effects of vascular endothelial growth factor in leakage-prone capillaries and has been suggested as a new treatment for cerebral radiation edema and necrosis. CyberKnife is a new, frameless stereotactic radiosurgery system. This work investigated the safety and efficacy of CyberKnife followed by early bevacizumab treatment for brain metastasis with extensive cerebral edema. The eligibility criteria of the patients selected for radiosurgery followed by early use of adjuvant bevacizumab treatment were: (1) brain tumors from metastasis with one solitary brain lesion and symptomatic extensive cerebral edema; (2) >18 years of age; (3) the patient refused surgery due to the physical conditions and the risk of surgery; (4) no contraindications for bevacizumab. (5) bevacizumab was applied for a minimum of 2 injections and a maximum of 6 injections with a 2-week interval between treatments, beginning within 2 weeks of the CyberKnife therapy; (6) Karnofsky performance status (KPS) ≥30. Tumor size and edema were monitored by magnetic resonance imaging (MRI). Dexamethasone dosage, KPS, adverse event occurrence and associated clinical outcomes were also recorded. Eight patients were accrued for this new treatment. Radiation dose ranged from 20 to 33 Gy in one to five sessions, prescribed to the 61-71 % isodose line. Bevacizumab therapy was administered 3-10 days after completion of CyberKnife treatment for a minimum of two cycles (5 mg/kg, at 2-week intervals). MRI revealed average reductions of 55.8 % (post-gadolinium) and 63.4 % (T2/FLAIR). Seven patients showed significant clinical neurological improvements. Dexamethasone was reduced in all patients, with five successfully discontinuing dexamethasone treatment 4 weeks after bevacizumab initiation. Hypertension, a bevacizumab-related adverse event, occurred in one patient. After 3-8 months, all patients studied were alive and primary brain metastases were under control, 2 developed new brain

  3. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  4. Effects of partial volume correction on discrimination between very early Alzheimer's dementia and controls using brain perfusion SPECT

    International Nuclear Information System (INIS)

    Kanetaka, Hidekazu; Matsuda, Hiroshi; Ohnishi, Takashi; Imabayashi, Etsuko; Tanaka, Fumiko; Asada, Takashi; Yamashita, Fumio; Nakano, Seigo; Takasaki, Masaru

    2004-01-01

    We assessed the accuracy of brain perfusion single-photon emission computed tomography (SPECT) in discriminating between patients with probable Alzheimer's disease (AD) at the very early stage and age-matched controls before and after partial volume correction (PVC). Three-dimensional MRI was used for PVC. We randomly divided the subjects into two groups. The first group, comprising 30 patients and 30 healthy volunteers, was used to identify the brain area with the most significant decrease in regional cerebral blood flow (rCBF) in patients compared with normal controls based on the voxel-based analysis of a group comparison. The second group, comprising 31 patients and 31 healthy volunteers, was used to study the improvement in diagnostic accuracy provided by PVC. A Z score map for a SPECT image of a subject was obtained by comparison with mean and standard deviation SPECT images of the healthy volunteers for each voxel after anatomical standardization and voxel normalization to global mean or cerebellar values using the following equation: Z score = ([control mean]-[individual value])/(control SD). Analysis of receiver operating characteristics curves for a Z score discriminating AD and controls in the posterior cingulate gyrus, where a significant decrease in rCBF was identified in the first group, showed that the PVC significantly enhanced the accuracy of the SPECT diagnosis of very early AD from 73.9% to 83.7% with global mean normalization. The PVC mildly enhanced the accuracy from 73.1% to 76.3% with cerebellar normalization. This result suggests that early diagnosis of AD requires PVC in a SPECT study. (orig.)

  5. Development of the Young Brain

    Medline Plus

    Full Text Available ... hour? Early evidence suggests -pretty well. In fact, the human brain has a track record of successfully adapting to ... all kinds of sources. And up until now the human brain has done a great job of changing- adapting ...

  6. Correlation between RNA Degradation Patterns of Rat's Brain and Early PMI at Different Temperatures.

    Science.gov (United States)

    Lü, Y H; Li, Z H; Tuo, Y; Liu, L; Li, K; Bian, J; Ma, J L; Chen, L

    2016-06-01

    To explore the correlation between early postmortem interval (PMI) and eight RNA markers of rat's brain at different temperatures. Total 222 SD rats were randomly divided into control group (PMI=0 h) and four experimental groups. And the rats in the experimental groups were sacrificed by cervical dislocation and respectively kept at 5 ℃, 15 ℃, 25 ℃ and 35 ℃ in a controlled environment chamber. The RNA was extracted from brain tissues, which was taken at 9 time points from 1 h to 24 h postmortem. The expression levels of eight markers, β-actin, GAPDH, RPS29, 18S rRNA, 5S rRNA, U6 snRNA, miRNA-9 and miRNA-125b, were detected using real-time fluorescent quantitative PCR, respectively. Proper internal reference was selected by geNorm software. Regression analysis of normalized RNA markers was performed by SPSS software. Mathematical model for PMI estimation was established using R software. Another 6 SD rats with known PMI were used to verify the mathematical model. 5S rRNA, miR-9 and miR-125b were suitable as internal reference markers for their stable expression. Both β-actin and GAPDH had well time-dependent degradation patterns and degraded continually with prolongation of PMI in 24 h postmortem. The mathematical model of the variation of ΔCt values with PMI and temperature was set up by R software and the model could be used for PMI estimation. The average error rates of model validation using β-actin and GAPDH were 14.1% and 22.2%, respectively. The expression levels of β-actin and GAPDH are well correlated with PMI and environmental temperature. The mathematical model established in present study can provide references for estimating early PMI under various temperature conditions. Copyright© by the Editorial Department of Journal of Forensic Medicine

  7. The effects of vitamin D on brain development and adult brain function.

    Science.gov (United States)

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-05

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The maternal brain and its plasticity in humans

    Science.gov (United States)

    Kim, Pilyoung; Strathearn, Lane; Swain, James E.

    2015-01-01

    Early mother-infant relationships play important roles in infants’ optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers’ brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  9. Natural hybrid of Leishmania infantum/L. donovani: development in Phlebotomus tobbi, P. perniciosus and Lutzomyia longipalpis and comparison with non-hybrid strains differing in tissue tropism.

    Science.gov (United States)

    Seblova, Veronika; Myskova, Jitka; Hlavacova, Jana; Votypka, Jan; Antoniou, Maria; Volf, Petr

    2015-11-25

    Infection caused by parasites from L. donovani complex can manifest as a serious visceral disease or a self-healing milder cutaneous form. The different tropism and pathology in humans is caused by the interaction between parasites, host and vector determinants but the mechanisms are not well understood. In Cukurova region in Turkey we previously identified a major focus of cutaneous leishmaniasis caused by L. donovani/infantum hybrids (CUK strain) and isolated this parasite from the locally abundant sand fly, Phlebotomus tobbi. Here, we present the first experimental study with P. tobbi. We tested the susceptibility of this species to various Leishmania under laboratory conditions, characterized glycoproteins in the P. tobbi midgut putatively involved in parasite-vector interaction and compared the development of the CUK strain in the sand fly with one other dermotropic and three viscerotropic strains belonging to the L. donovani complex. Females of laboratory reared P. tobbi, P. perniciosus and Lutzomyia longipalpis were infected using membrane feeding on rabbit blood containing promastigotes of various Leishmania species with different tropisms. The individual guts were checked microscopically for presence and localization of Leishmania parasites; the number of parasites was assessed more precisely by qPCR. In addition, glycosylation of midgut proteins of P. tobbi was studied by lectin blotting of midgut lysate with lectins specific for terminal sugars of N-type and O-type glycans. High infection rates, heavy parasite loads and late-stage infection with colonization of the stomodeal valve were observed in P. tobbi infected by Leishmania major or L. infantum CUK hybrid. In parallel, lectin blotting revealed the presence of O-glycosylated proteins in the P. tobbi midgut. In P. perniciosus and L. longipalpis all five Leishmania strains tested developed well. In both vectors, significantly higher parasite numbers were detected by qPCR for dermotropic L. donovani

  10. Brain Tumor Image Segmentation in MRI Image

    Science.gov (United States)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  11. A Pilot Project of Early Integrated Traumatic Brain Injury Rehabilitation in Singapore

    Directory of Open Access Journals (Sweden)

    Siew Kwaon Lui

    2014-01-01

    Full Text Available Objective. Document acute neurosurgical and rehabilitation parameters of patients of all traumatic brain injury (TBI severities and determine whether early screening along with very early integrated TBI rehabilitation changes functional outcomes. Methods. Prospective study involving all patients with TBI admitted to a neurosurgical department of a tertiary hospital. They were assessed within 72 hours of admission by the rehabilitation team and received twice weekly rehabilitation reviews. Patients with further rehabilitation needs were then transferred to the attached acute inpatient TBI rehabilitation unit (TREATS and their functional outcomes were compared against a historical group of patients. Demographic variables, acute neurosurgical characteristics, medical complications, and rehabilitation outcomes were recorded. Results. There were 298 patients screened with an average age of 61.8±19.1 years. The most common etiology was falls (77.5%. Most patients were discharged home directly (67.4% and 22.8% of patients were in TREATS. The TREATS group functionally improved (P<0.001. Regression analysis showed by the intervention of TREATS, that there was a statistically significant FIM functional gain of 18.445 points (95% CI −30.388 to −0.6502, P=0.03. Conclusion. Our study demonstrated important epidemiological data on an unselected cohort of patients with TBI in Singapore and functional improvement in patients who further received inpatient rehabilitation.

  12. The impact of initiation: Early onset marijuana smokers demonstrate altered Stroop performance and brain activation

    Directory of Open Access Journals (Sweden)

    K.A. Sagar

    2015-12-01

    Full Text Available Marijuana (MJ use is on the rise, particularly among teens and emerging adults. This poses serious public health concern, given the potential deleterious effects of MJ on the developing brain. We examined 50 chronic MJ smokers divided into early onset (regular MJ use prior to age 16; n = 24 and late onset (age 16 or later; n = 26, and 34 healthy control participants (HCs. All completed a modified Stroop Color Word Test during fMRI. Results demonstrated that MJ smokers exhibited significantly poorer performance on the Interference subtest of the Stroop, as well as altered patterns of activation in the cingulate cortex relative to HCs. Further, early onset MJ smokers exhibited significantly poorer performance relative to both HCs and late onset smokers. Additionally, earlier age of MJ onset as well as increased frequency and magnitude (grams/week of MJ use were predictive of poorer Stroop performance. fMRI results revealed that while late onset smokers demonstrated a more similar pattern of activation to the control group, a different pattern was evident in the early onset group. These findings underscore the importance of assessing age of onset and patterns of MJ use and support the need for widespread education and intervention efforts among youth.

  13. Subthalamic nucleus deep brain stimulation impacts language in early Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Lara Phillips

    Full Text Available Although deep brain stimulation (DBS of the basal ganglia improves motor outcomes in Parkinson's disease (PD, its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars and lexical (irregulars processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor and non-manipulated (non-motor objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor but not non-manipulated (non-motor objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar but not irregulars (lexicon, as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar remain to be elucidated.

  14. Insulin action in brain regulates systemic metabolism and brain function.

    Science.gov (United States)

    Kleinridders, André; Ferris, Heather A; Cai, Weikang; Kahn, C Ronald

    2014-07-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. © 2014 by the American Diabetes Association.

  15. Home Environment as a Predictor of Long-Term Executive Functioning following Early Childhood Traumatic Brain Injury.

    Science.gov (United States)

    Durish, Christianne Laliberté; Yeates, Keith Owen; Stancin, Terry; Taylor, H Gerry; Walz, Nicolay C; Wade, Shari L

    2018-01-01

    This study examined the relationship of the home environment to long-term executive functioning (EF) following early childhood traumatic brain injury (TBI). Participants (N=134) were drawn from a larger parent study of 3- to 6-year-old children hospitalized for severe TBI (n=16), complicated mild/moderate TBI (n=44), or orthopedic injury (OI; n=74), recruited prospectively at four tertiary care hospitals in the United States and followed for an average of 6.8 years post-injury. Quality of the home environment, caregiver psychological distress, and general family functioning were assessed shortly after injury (i.e., early home) and again at follow-up (i.e., late home). Participants completed several performance-based measures of EF at follow-up. Hierarchical regression analyses examined the early and late home environment measures as predictors of EF, both as main effects and as moderators of group differences. The early and late home environment were inconsistent predictors of long-term EF across groups. Group differences in EF were significant for only the TEA-Ch Walk/Don't Walk subtest, with poorer performance in the severe TBI group. However, several significant interactions suggested that the home environment moderated group differences in EF, particularly after complicated mild/moderate TBI. The home environment is not a consistent predictor of long-term EF in children with early TBI and OI, but may moderate the effects of TBI on EF. The findings suggest that interventions designed to improve the quality of stimulation in children's home environments might reduce the long-term effects of early childhood TBI on EF. (JINS, 2018, 24, 11-21).

  16. Inside the Adolescent Brain

    Science.gov (United States)

    Drury, Stacy S.

    2009-01-01

    Dr. Jay Giedd says that the main alterations in the adolescent brain are the inverted U-shaped developmental trajectories with late childhood/early teen peaks for gray matter volume among others. Giedd adds that the adolescent brain is vulnerable to substances that artificially modulate dopamine levels since its reward system is in a state of flux.

  17. Interleukin 6 modulates acetylcholinesterase activity of brain neurons

    International Nuclear Information System (INIS)

    Clarencon, D.; Multon, E.; Galonnier, M.; Estrade, M.; Fournier, C.; Mathieu, J.; Mestries, J.C.; Testylier, G.; Fatome, M.

    1995-01-01

    Classically, radiation injuries results in a peripheral inflammatory process, and we have previously observed an early systemic interleukin 6 (IL-6) release following whole-body irradiation. Besides, we have demonstrated an early decrease of rat or primate brain acetylcholinesterase (AChE) activity a gamma exposure. The object of the present study is to find possible IL-6 systemic effects on the brain AChE activity. We show that, though intravenous (i.v.) or intra-cerebro-ventricular (ICV) injection of IL-6 can induce a drop in rat brain AChE activity, this cytokine induces only a slight decrease of the AChE release in cultured brain cells. (author)

  18. Structural and Maturational Covariance in Early Childhood Brain Development.

    Science.gov (United States)

    Geng, Xiujuan; Li, Gang; Lu, Zhaohua; Gao, Wei; Wang, Li; Shen, Dinggang; Zhu, Hongtu; Gilmore, John H

    2017-03-01

    Brain structural covariance networks (SCNs) composed of regions with correlated variation are altered in neuropsychiatric disease and change with age. Little is known about the development of SCNs in early childhood, a period of rapid cortical growth. We investigated the development of structural and maturational covariance networks, including default, dorsal attention, primary visual and sensorimotor networks in a longitudinal population of 118 children after birth to 2 years old and compared them with intrinsic functional connectivity networks. We found that structural covariance of all networks exhibit strong correlations mostly limited to their seed regions. By Age 2, default and dorsal attention structural networks are much less distributed compared with their functional maps. The maturational covariance maps, however, revealed significant couplings in rates of change between distributed regions, which partially recapitulate their functional networks. The structural and maturational covariance of the primary visual and sensorimotor networks shows similar patterns to the corresponding functional networks. Results indicate that functional networks are in place prior to structural networks, that correlated structural patterns in adult may arise in part from coordinated cortical maturation, and that regional co-activation in functional networks may guide and refine the maturation of SCNs over childhood development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Speech disorders in Parkinson's disease: early diagnostics and effects of medication and brain stimulation.

    Science.gov (United States)

    Brabenec, L; Mekyska, J; Galaz, Z; Rektorova, Irena

    2017-03-01

    Hypokinetic dysarthria (HD) occurs in 90% of Parkinson's disease (PD) patients. It manifests specifically in the areas of articulation, phonation, prosody, speech fluency, and faciokinesis. We aimed to systematically review papers on HD in PD with a special focus on (1) early PD diagnosis and monitoring of the disease progression using acoustic voice and speech analysis, and (2) functional imaging studies exploring neural correlates of HD in PD, and (3) clinical studies using acoustic analysis to evaluate effects of dopaminergic medication and brain stimulation. A systematic literature search of articles written in English before March 2016 was conducted in the Web of Science, PubMed, SpringerLink, and IEEE Xplore databases using and combining specific relevant keywords. Articles were categorized into three groups: (1) articles focused on neural correlates of HD in PD using functional imaging (n = 13); (2) articles dealing with the acoustic analysis of HD in PD (n = 52); and (3) articles concerning specifically dopaminergic and brain stimulation-related effects as assessed by acoustic analysis (n = 31); the groups were then reviewed. We identified 14 combinations of speech tasks and acoustic features that can be recommended for use in describing the main features of HD in PD. While only a few acoustic parameters correlate with limb motor symptoms and can be partially relieved by dopaminergic medication, HD in PD seems to be mainly related to non-dopaminergic deficits and associated particularly with non-motor symptoms. Future studies should combine non-invasive brain stimulation with voice behavior approaches to achieve the best treatment effects by enhancing auditory-motor integration.

  20. STATISTICAL GROWTH MODELING OF LONGITUDINAL DT-MRI FOR REGIONAL CHARACTERIZATION OF EARLY BRAIN DEVELOPMENT.

    Science.gov (United States)

    Sadeghi, Neda; Prastawa, Marcel; Fletcher, P Thomas; Gilmore, John H; Lin, Weili; Gerig, Guido

    2012-01-01

    A population growth model that represents the growth trajectories of individual subjects is critical to study and understand neurodevelopment. This paper presents a framework for jointly estimating and modeling individual and population growth trajectories, and determining significant regional differences in growth pattern characteristics applied to longitudinal neuroimaging data. We use non-linear mixed effect modeling where temporal change is modeled by the Gompertz function. The Gompertz function uses intuitive parameters related to delay, rate of change, and expected asymptotic value; all descriptive measures which can answer clinical questions related to growth. Our proposed framework combines nonlinear modeling of individual trajectories, population analysis, and testing for regional differences. We apply this framework to the study of early maturation in white matter regions as measured with diffusion tensor imaging (DTI). Regional differences between anatomical regions of interest that are known to mature differently are analyzed and quantified. Experiments with image data from a large ongoing clinical study show that our framework provides descriptive, quantitative information on growth trajectories that can be directly interpreted by clinicians. To our knowledge, this is the first longitudinal analysis of growth functions to explain the trajectory of early brain maturation as it is represented in DTI.

  1. Clinical Evaluation of Brain Perfusion SPECT with Brodmann Areas Mapping in Early Diagnosis of Alzheimer's Disease.

    Science.gov (United States)

    Valotassiou, Varvara; Papatriantafyllou, John; Sifakis, Nikolaos; Tzavara, Chara; Tsougos, Ioannis; Psimadas, Dimitrios; Fezoulidis, Ioannis; Kapsalaki, Eftychia; Hadjigeorgiou, George; Georgoulias, Panagiotis

    2015-01-01

    Early diagnosis of Alzheimer's disease (AD) based on clinical criteria alone may be problematic, while current and future treatments should be administered earlier in order to be more effective. Thus, various disease biomarkers could be used for early detection of AD. We evaluated brain perfusion with 99mTc-HMPAO single photon emission computed tomography (SPECT) and Brodmann areas (BAs) mapping in mild AD using an automated software (NeuroGam) for the semi-quantitative evaluation of perfusion in BAs and the comparison with the software's normal database. We studied 34 consecutive patients with mild AD: 9 men, 25 women, mean age 70.9 ± 8.1 years, mean Mini-Mental State Examination 22.6 ± 2.5. BAs 25L, 25R, 38L, 38R, 28L, 28R, 36L, and 36R had the lower mean perfusion values, while BAs 31L, 31R, 19R, 18L, 18R, 17L, and 17R had the higher mean values. Compared with healthy subjects of the same age, perfusion values in BAs 25L, 25R, 28R, 28L, 36L, and 36R had the greatest deviations from the healthy sample, while the lowest deviations were found in BAs 32L, 32R, 19R, 24L, 17L, 17R, 18L, and 18R. A percentage of ≥94% of patients had perfusion values more than -2SDs below the mean of healthy subjects in BAs 38R, 38L, 36L, 36R, 23L, 23R, 22L, 44L, 28L, 28R, 25L, and 25R. The corresponding proportion was less than 38% for BAs 11L, 19R, 32L, 32R, 18L, 18R, 24L, and 17R. In conclusion, brain SPECT studies with automated perfusion mapping could be useful as an ancillary tool in daily practice, revealing perfusion impairments in early AD.

  2. A comparison of early diagnostic utility of Alzheimer disease biomarkers in brain magnetic resonance and cerebrospinal fluid.

    Science.gov (United States)

    Monge Argilés, J A; Blanco Cantó, M A; Leiva Salinas, C; Flors, L; Muñoz Ruiz, C; Sánchez Payá, J; Gasparini Berenguer, R; Leiva Santana, C

    2014-09-01

    The goals of this study were to compare the early diagnostic utility of Alzheimer disease biomarkers in the CSF with those in brain MRI in conditions found in our clinical practice, and to ascertain the diagnostic accuracy of both techniques used together. Between 2008 and 2009, we included 30 patients with mild cognitive impairment (MCI) who were examined using 1.5 Tesla brain MRI and AD biomarker analysis in CSF. MRI studies were evaluated by 2 radiologists according to the Korf́s visual scale. CSF biomarkers were analysed using INNOTEST reagents for Aβ1-42, total-tau and phospho-tau181p. We evaluated clinical changes 2 years after inclusion. By 2 years after inclusion, 15 of the original 30 patients (50%) had developed AD (NINCDS-ADRA criteria). The predictive utility of AD biomarkers in CSF (RR 2.7; 95% CI, 1.1-6.7; Pde Neurología. Published by Elsevier Espana. All rights reserved.

  3. [Curcumin alleviates early brain injury following subarachnoid hemorrhage in rats by inhibiting JNK/c-Jun signal pathway].

    Science.gov (United States)

    Li, Xia; Zhu, Ji

    2018-03-01

    Objective To investigate the inhibitory effect of curcumin on early brain injury following subarachnoid hemorrhage (SAH) by inhibiting JNK/ c-Jun signal pathway. Methods Sixty adult male SD rats were randomly divided into four groups: sham operation group (sham group), SAH group, SAH group treated with 100 mg/(kg.d) curcumin and SAH group treated with 200 mg/(kg.d) curcumin, with 15 rats in each group. Endovascular puncture was used to induce SAH model. Nissl staining was used to test whether neurons were broken. TUNEL staining was used to detect apoptosis. Immunohistochemistry was used to investigate the expression of caspase-3. Western blot analysis was used to detect the expressions of p-JNK, JNK, p-c-Jun, c-Jun, and caspase-3. Results Nissl staining indicated the decrease of Nissl bodies in SAH group, but increase of Nissl bodies in SAH group treated with curcumin. TUNEL staining showed that there were more apoptotic neurons in SAH group compared with sham group, while apoptotic neurons decreased after the treatment with curcumin, more obviously in the group treated with 200 mg/(kg.d) curcumin. The expressions of p-JNK, JNK, p-c-Jun, c-Jun, and caspase-3 were up-regulated in SAH group compared with sham group. However, the expressions of those proteins were down-regulated after the treatment with curcumin, especially by higher-dose curcumin treatment. Conclusion Curcumin might suppress early brain injury after SAH by inhibiting JNK/c-Jun signal pathway and neuron apoptosis.

  4. [Timing of Brain Radiation Therapy Impacts Outcomes in Patients with 
Non-small Cell Lung Cancer Who Develop Brain Metastases].

    Science.gov (United States)

    Wang, Yang; Fang, Jian; Nie, Jun; Dai, Ling; Hu, Weiheng; Zhang, Jie; Ma, Xiangjuan; Han, Jindi; Chen, Xiaoling; Tian, Guangming; Wu, Di; Han, Sen; Long, Jieran

    2016-08-20

    Radiotherapy combined with chemotherapy or molecular targeted therapy remains the standard of treatment for brain metastases from non-small cell lung cancer (NSCLC). The aim of this study is to determine if the deferral of brain radiotherapy impacts patient outcomes. Between May 2003 and December 2015, a total of 198 patients with brain metastases from NSCLC who received both brain radiotherapy and systemic therapy (chemotherapy or targeted therapy) were identified. The rate of grade 3-4 adverse reactions related to chemotherapy and radiotherapy had no significant difference between two groups. 127 patients received concurrent brain radiotherapy and systemic therapy, and 71 patients received deferred brain radiotherapy after at least two cycles of chemotherapy or targeted therapy. Disease specific-graded prognostic assessment was similar in early radiotherapy group and deferred radiotherapy group. Median overall survival (OS) was longer in early radiotherapy group compared to deferred radiotherapy group (17.9 months vs 12.6 months; P=0.038). Progression free survival (PFS) was also improved in patients receiving early radiotherapy compared to those receiving deferred radiotherapy (4.0 months vs 3.0 months; Pbrain metastases as any line therapy improved the OS (20.0 months vs 10.7 months; Pbrain radiotherapy may resulted in inferior OS in patients with NSCLC who develop brain metastases. A prospective multi-central randomized study is imminently needed.

  5. Evidence of molecular evolution driven by recombination events influencing tropism in a novel human adenovirus that causes epidemic keratoconjunctivitis.

    Directory of Open Access Journals (Sweden)

    Michael P Walsh

    2009-06-01

    Full Text Available In 2005, a human adenovirus strain (formerly known as HAdV-D22/H8 but renamed here HAdV-D53 was isolated from an outbreak of epidemic keratoconjunctititis (EKC, a disease that is usually caused by HAdV-D8, -D19, or -D37, not HAdV-D22. To date, a complete change of tropism compared to the prototype has never been observed, although apparent recombinant strains of other viruses from species Human adenovirus D (HAdV-D have been described. The complete genome of HAdV-D53 was sequenced to elucidate recombination events that lead to the emergence of a viable and highly virulent virus with a modified tropism. Bioinformatic and phylogenetic analyses of this genome demonstrate that this adenovirus is a recombinant of HAdV-D8 (including the fiber gene encoding the primary cellular receptor binding site, HAdV-D22, (the epsilon determinant of the hexon gene, HAdV-D37 (including the penton base gene encoding the secondary cellular receptor binding site, and at least one unknown or unsequenced HAdV-D strain. Bootscanning analysis of the complete genomic sequence of this novel adenovirus, which we have re-named HAdV-D53, indicated at least five recombination events between the aforementioned adenoviruses. Intrahexon recombination sites perfectly framed the epsilon neutralization determinant that was almost identical to the HAdV-D22 prototype. Additional bootscan analysis of all HAdV-D hexon genes revealed recombinations in identical locations in several other adenoviruses. In addition, HAdV-D53 but not HAdV-D22 induced corneal inflammation in a mouse model. Serological analysis confirmed previous results and demonstrated that HAdV-D53 has a neutralization profile representative of the epsilon determinant of its hexon (HAdV-D22 and the fiber (HAdV-D8 proteins. Our recombinant hexon sequence is almost identical to the hexon sequences of the HAdV-D strain causing EKC outbreaks in Japan, suggesting that HAdV-D53 is pandemic as an emerging EKC agent. This documents

  6. Early diagnosis and early intervention in cerebral palsy

    Directory of Open Access Journals (Sweden)

    Mijna eHadders-Algra

    2014-09-01

    Full Text Available This paper reviews the opportunities and challenges for early diagnosis and early intervention in cerebral palsy (CP. CP describes a group of disorders of the development of movement and posture, causing activity limitation, that are attributed to disturbances that occurred in the fetal or infant brain. Therefore the paper starts with a summary of relevant information from developmental neuroscience. Most lesions underlying CP occur in the second half of gestation, when developmental activity in the brain reaches its summit. Variations in timing of the damage not only result in different lesions, but also in different neuroplastic reactions and different associated neuropathologies. This turns CP into a heterogeneous entity. This may mean that the best early diagnostics and the best intervention methods may differ for various subgroups of children with CP. Next, the paper addresses possibilities for early diagnosis. It discusses the predictive value of neuromotor and neurological exams, neuro-imaging techniques and neurophysiological assessments. Prediction is best when complementary techniques are used in longitudinal series. Possibilities for early prediction of CP differ for infants admitted to neonatal intensive care and other infants. In the former group best prediction is achieved with the combination of neuro-imaging and the assessment of general movements, in the latter group best prediction is based on carefully documented milestones and neurological assessment. The last part reviews early intervention in infants developing CP. Most knowledge on early intervention is based on studies in high risk infants without CP. In these infants early intervention programs promote cognitive development until preschool age; motor development profits less. The few studies on early intervention in infants developing CP suggest that programs that stimulate all aspects of infant development by means of family coaching are most promising. More research is

  7. Early stress is associated with alterations in the orbitofrontal cortex: a tensor-based morphometry investigation of brain structure and behavioral risk.

    Science.gov (United States)

    Hanson, Jamie L; Chung, Moo K; Avants, Brian B; Shirtcliff, Elizabeth A; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2010-06-02

    Individuals who experience early adversity, such as child maltreatment, are at heightened risk for a broad array of social and health difficulties. However, little is known about how this behavioral risk is instantiated in the brain. Here we examine a neurobiological contribution to individual differences in human behavior using methodology appropriate for use with pediatric populations paired with an in-depth measure of social behavior. We show that alterations in the orbitofrontal cortex among individuals who experienced physical abuse are related to social difficulties. These data suggest a biological mechanism linking early social learning to later behavioral outcomes.

  8. Homocysteine and brain atrophy on MRI of non-demented elderly

    NARCIS (Netherlands)

    den Heijer, T; Vermeer, SE; Clarke, R; Oudkerk, M; Koudstaal, PJ; Hofman, A; Breteler, MMB

    Patients with Alzheimer's disease have higher plasma homocysteine levels than controls, but it is uncertain whether higher plasma homocysteine levels are involved in the early pathogenesis of the disease. Hippocampal, amygdalar and global brain atrophy on brain MRI have been proposed as early

  9. Why Should I Read to My Baby? The Importance of Early Literacy

    Science.gov (United States)

    High, Pamela C.

    2013-01-01

    "Early Brain and Child Development" as a strategic priority of the American Academy of Pediatrics recognizes that early literacy and language skills build a strong foundation for healthy development and academic success. Promoting early literacy in the context of pediatric primary care supports early brain development and positive,…

  10. Macrophage entry mediated by HIV Envs from brain and lymphoid tissues is determined by the capacity to use low CD4 levels and overall efficiency of fusion

    International Nuclear Information System (INIS)

    Thomas, Elaine R.; Dunfee, Rebecca L.; Stanton, Jennifer; Bogdan, Derek; Taylor, Joann; Kunstman, Kevin; Bell, Jeanne E.; Wolinsky, Steven M.; Gabuzda, Dana

    2007-01-01

    HIV infects macrophages and microglia in the central nervous system (CNS), which express lower levels of CD4 than CD4+ T cells in peripheral blood. To investigate mechanisms of HIV neurotropism, full-length env genes were cloned from autopsy brain and lymphoid tissues from 4 AIDS patients with HIV-associated dementia (HAD). Characterization of 55 functional Env clones demonstrated that Envs with reduced dependence on CD4 for fusion and viral entry are more frequent in brain compared to lymphoid tissue. Envs that mediated efficient entry into macrophages were frequent in brain but were also present in lymphoid tissue. For most Envs, entry into macrophages correlated with overall fusion activity at all levels of CD4 and CCR5. gp160 nucleotide sequences were compartmentalized in brain versus lymphoid tissue within each patient. Proline at position 308 in the V3 loop of gp120 was associated with brain compartmentalization in 3 patients, but mutagenesis studies suggested that P308 alone does not contribute to reduced CD4 dependence or macrophage-tropism. These results suggest that HIV adaptation to replicate in the CNS selects for Envs with reduced CD4 dependence and increased fusion activity. Macrophage-tropic Envs are frequent in brain but are also present in lymphoid tissues of AIDS patients with HAD, and entry into macrophages in the CNS and other tissues is dependent on the ability to use low receptor levels and overall efficiency of fusion

  11. Interactions of early adversity with stress-related gene polymorphisms impact regional brain structure in females.

    Science.gov (United States)

    Gupta, Arpana; Labus, Jennifer; Kilpatrick, Lisa A; Bonyadi, Mariam; Ashe-McNalley, Cody; Heendeniya, Nuwanthi; Bradesi, Sylvie; Chang, Lin; Mayer, Emeran A

    2016-04-01

    Early adverse life events (EALs) have been associated with regional thinning of the subgenual cingulate cortex (sgACC), a brain region implicated in the development of disorders of mood and affect, and often comorbid functional pain disorders, such as irritable bowel syndrome (IBS). Regional neuroinflammation related to chronic stress system activation has been suggested as a possible mechanism underlying these neuroplastic changes. However, the interaction of genetic and environmental factors in these changes is poorly understood. The current study aimed to evaluate the interactions of EALs and candidate gene polymorphisms in influencing thickness of the sgACC. 210 female subjects (137 healthy controls; 73 IBS) were genotyped for stress and inflammation-related gene polymorphisms. Genetic variation with EALs, and diagnosis on sgACC thickness was examined, while controlling for race, age, and total brain volume. Compared to HCs, IBS had significantly reduced sgACC thickness (p = 0.03). Regardless of disease group (IBS vs. HC), thinning of the left sgACC was associated with a significant gene-gene environment interaction between the IL-1β genotype, the NR3C1 haplotype, and a history of EALs (p = 0.05). Reduced sgACC thickness in women with the minor IL-1β allele, was associated with EAL total scores regardless of NR3C1 haplotype status (p = 0.02). In subjects homozygous for the major IL-1β allele, reduced sgACC with increasing levels of EALs was seen only with the less common NR3C1 haplotype (p = 0.02). These findings support an interaction between polymorphisms related to stress and inflammation and early adverse life events in modulating a key region of the emotion arousal circuit.

  12. The bishop and anatomist Niels Stensen (1638-1686) and his contributions to our early understanding of the brain.

    Science.gov (United States)

    Tubbs, R Shane; Mortazavi, Martin M; Shoja, Mohammadali M; Loukas, Marios; Cohen-Gadol, Aaron A

    2011-01-01

    Many physicians are familiar with the parotid duct and the Danish physician/anatomist's name associated with it. However, most are unaware of Niels Stensen's life and his significant contributions to the early study of the brain. This physician of the Medici court was clearly ahead of his time and found errors in the publications of such giants as Varolius and Willis. The present review discusses the life of this seventeenth century anatomist, physician, and priest/bishop and highlights his contributions to neuroanatomy.

  13. Protect Your Brain

    Centers for Disease Control (CDC) Podcasts

    Recent high-profile cases among professional athletes have called attention to the serious problem of traumatic brain injuries, or TBI, but the problem isn’t limited to playing fields. In 2009, at least three and a half million people in the U.S. sustained a TBI, either with or without other injuries. In this podcast, Dr. Lisa McGuire discusses the importance of early diagnosis and treatment of brain injuries.

  14. Early CT findings to predict early death in patients with traumatic brain injury: Marshall and Rotterdam CT scoring systems compared in the major academic tertiary care hospital in northeastern Japan.

    Science.gov (United States)

    Mata-Mbemba, Daddy; Mugikura, Shunji; Nakagawa, Atsuhiro; Murata, Takaki; Ishii, Kiyoshi; Li, Li; Takase, Kei; Kushimoto, Shigeki; Takahashi, Shoki

    2014-05-01

    Computed tomography (CT) plays a crucial role in early assessment of patients with traumatic brain injury (TBI). Marshall and Rotterdam are the mostly used scoring systems, in which CT findings are grouped differently. We sought to determine the scoring system and initial CT findings predicting the death at hospital discharge (early death) in patients with TBI. We included 245 consecutive adult patients with mild-to-severe TBI. Their initial CT and status at hospital discharge (dead or alive) were reviewed, and both CT scores were calculated. We examined whether each score was related to early death; compared the two scoring systems' performance in predicting early death, and identified the CT findings that are independent predictors of early death. More deaths occurred among patients with higher Marshall and Rotterdam scores (both P death (Marshall, AUC = 0. 85 vs. Rotterdam, AUC = 0.85). Basal cistern absence (odds ratio [OR] = 771.5, P death. Both Marshall and Rotterdam scoring systems can be used to predict early death in patients with TBI. The performance of the Marshall score is at least equal to that of the Rotterdam score. Thus, although older, the Marshall score remains useful in predicting patients' prognosis. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  15. Improvements in the re-flight of spaceflight experiments on plant tropisms

    Science.gov (United States)

    Kiss, John Z.; Millar, Katherine D. L.; Kumar, Prem; Edelmann, Richard E.; Correll, Melanie J.

    2011-02-01

    In order to effectively study phototropism, the directed growth in response to light, we performed a series of experiments in microgravity to better understand light response without the “complications” of a 1-g stimulus. These experiments were named TROPI (for tropisms) and were performed on the European Modular Cultivation System (EMCS), a laboratory facility on the International Space Station (ISS). TROPI-1 was performed in 2006, and while it was a successful experiment, there were a number of technical difficulties. We had the opportunity to perform TROPI-2 in 2010 and were able to optimize experimental conditions as well as to extend the studies of phototropism to fractional gravity created by the EMCS centrifuge. This paper focuses on how the technical improvements in TROPI-2 allowed for a better experiment with increased scientific return. Major modifications in TROPI-2 compared to TROPI-1 included the use of spaceflight hardware that was off-gassed for a longer period and reduced seed storage (less than 2 months) in hardware. These changes resulted in increased seed germination and more vigorous growth of seedlings. While phototropism in response to red illumination was observed in hypocotyls of seedlings grown in microgravity during TROPI-1, there was a greater magnitude of red-light-based phototropic curvature in TROPI-2. Direct downlinking of digital images from the ISS in TROPI-2, rather than the use of analog tapes in TROPI-1, resulted in better quality images and simplified data analyses. In TROPI-2, improved cryo-procedures and the use of the GLACIER freezer during transport of samples back to Earth maintained the low temperature necessary to obtain good-quality RNA required for use in gene profiling studies.

  16. HCMV spread and cell tropism are determined by distinct virus populations.

    Directory of Open Access Journals (Sweden)

    Laura Scrivano

    Full Text Available Human cytomegalovirus (HCMV can infect many different cell types in vivo. Two gH/gL complexes are used for entry into cells. gH/gL/pUL(128,130,131A shows no selectivity for its host cell, whereas formation of a gH/gL/gO complex only restricts the tropism mainly to fibroblasts. Here, we describe that depending on the cell type in which virus replication takes place, virus carrying the gH/gL/pUL(128,130,131A complex is either released or retained cell-associated. We observed that virus spread in fibroblast cultures was predominantly supernatant-driven, whereas spread in endothelial cell (EC cultures was predominantly focal. This was due to properties of virus released from fibroblasts and EC. Fibroblasts released virus which could infect both fibroblasts and EC. In contrast, EC released virus which readily infected fibroblasts, but was barely able to infect EC. The EC infection capacities of virus released from fibroblasts or EC correlated with respectively high or low amounts of gH/gL/pUL(128,130,131A in virus particles. Moreover, we found that focal spread in EC cultures could be attributed to EC-tropic virus tightly associated with EC and not released into the supernatant. Preincubation of fibroblast-derived virus progeny with EC or beads coated with pUL131A-specific antibodies depleted the fraction that could infect EC, and left a fraction that could predominantly infect fibroblasts. These data strongly suggest that HCMV progeny is composed of distinct virus populations. EC specifically retain the EC-tropic population, whereas fibroblasts release EC-tropic and non EC-tropic virus. Our findings offer completely new views on how HCMV spread may be controlled by its host cells.

  17. Structural brain abnormalities in early onset first-episode psychosis

    DEFF Research Database (Denmark)

    Pagsberg, A K; Baaré, W F C; Raabjerg Christensen, A M

    2007-01-01

    BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder......, delusional disorder or other non-organic psychosis), aged 10-18 to those of 29 matched controls, using optimized voxel-based morphometry. RESULTS: Psychotic patients had frontal white matter abnormalities, but expected (regional) gray matter reductions were not observed. Post hoc analyses revealed...

  18. Dissociation between brain amyloid deposition and metabolism in early mild cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Liyong Wu

    Full Text Available The hypothetical model of dynamic biomarkers for Alzheimer's disease (AD describes high amyloid deposition and hypometabolism at the mild cognitive impairment (MCI stage. However, it remains unknown whether brain amyloidosis and hypometabolism follow the same trajectories in MCI individuals. We used the concept of early MCI (EMCI and late MCI (LMCI as defined by the Alzheimer's disease Neuroimaging Initiative (ADNI-Go in order to compare the biomarker profile between EMCI and LMCI.To examine the global and voxel-based neocortical amyloid burden and metabolism among individuals who are cognitively normal (CN, as well as those with EMCI, LMCI and mild AD.In the present study, 354 participants, including CN (n = 109, EMCI (n = 157, LMCI (n = 39 and AD (n = 49, were enrolled between September 2009 and November 2011 through ADNI-GO and ADNI-2. Brain amyloid load and metabolism were estimated using [(18F]AV45 and [(18F]fluorodeoxyglucose ([(18F]FDG PET, respectively. Uptake ratio images of [(18F]AV45 and [(18F]FDG were calculated by dividing the summed PET image by the median counts of the grey matter of the cerebellum and pons, respectively. Group differences of global [(18F]AV45 and [(18F]FDG were analyzed using ANOVA, while the voxel-based group differences were estimated using statistic parametric mapping (SPM.EMCI patients showed higher global [(18F]AV45 retention compared to CN and lower uptake compared to LMCI. SPM detected higher [(18F]AV45 uptake in EMCI compared to CN in the precuneus, posterior cingulate, medial and dorsal lateral prefrontal cortices, bilaterally. EMCI showed lower [(18F]AV45 retention than LMCI in the superior temporal, inferior parietal, as well as dorsal lateral prefrontal cortices, bilaterally. Regarding to the global [(18F]FDG, EMCI patients showed no significant difference from CN and a higher uptake ratio compared to LMCI. At the voxel level, EMCI showed higher metabolism in precuneus, hippocampus, entorhinal and

  19. Early predictors of brain damage in full-term newborns with hypoxic ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Alkholy UM

    2017-08-01

    Full Text Available Usama M Alkholy,1 Nermin Abdalmonem,1 Ahmed Zaki,2 Yasser F Ali,1 Soma Abdalla Mohamed,3 Nasser I Abdelsalam,1 Mustafa Ismail Abu Hashim,1 Mohamed Abou Sekkien,3 Yasser Makram Elsherbiny4 1Pediatric Department, Zagazig University, Egypt; 2Pediatric Department, Mansoura University, Egypt; 3Pediatric Department, Al Azhar University, Egypt; 4Clinical Pathology Department, Menoufia University, Egypt Objective of the study: To evaluate the value of serum creatine phosphokinase-brain specific (CK-BB and urinary lactate/creatinine (L/C ratio as early indicators of brain damage in full-term newborns with hypoxic ischemic encephalopathy (HIE.Patients and methods: A case–control study including 25 full-term new-born infants with perinatal asphyxia who were admitted to neonatal intensive care unit (NICU with a proven diagnosis of HIE, compared to 20 healthy age- and sex-matched full-term newborns. All newborn infants were subjected to full history taking, clinical examination, routine investigations (cord blood gases and complete blood picture, and assessment of serum CK-BB (cord blood, 6 and 24 hours after birth and urinary L/C ratio (collected within the first 6 hours, on the 2nd and 3rd day after birth.Results: The serum CK-BB and urinary L/C ratio in infants with HIE were significantly higher in samples collected throughout the monitoring period when compared with the control group (all P<0.001. The cord CK-BB and urinary L/C ratio within the first 6 hours were significantly higher in infants with severe HIE than in infants with mild and moderate HIE (P<0.001. Cord CK-BB level at 12.5 U/L had 100% sensitivity and 84% specificity in the detection of severe HIE infants. Urinary L/C ratio of more than 10.5 collected within the first 6 hours after birth had 100% sensitivity and 78% specificity for the detection of severe HIE infants.Conclusion: The serum CK-BB and urinary L/C ratio in HIE infants were significantly increased early in the course of the

  20. Effect of Early Versus Late Tracheostomy or Prolonged Intubation in Critically Ill Patients with Acute Brain Injury: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    McCredie, Victoria A; Alali, Aziz S; Scales, Damon C; Adhikari, Neill K J; Rubenfeld, Gordon D; Cuthbertson, Brian H; Nathens, Avery B

    2017-02-01

    The optimal timing of tracheostomy placement in acutely brain-injured patients, who generally require endotracheal intubation for airway protection rather than respiratory failure, remains uncertain. We systematically reviewed trials comparing early tracheostomy to late tracheostomy or prolonged intubation in these patients. We searched 5 databases (from inception to April 2015) to identify randomized controlled trials comparing early tracheostomy (≤10 days of intubation) with late tracheostomy (>10 days) or prolonged intubation in acutely brain-injured patients. We contacted the principal authors of included trials to obtain subgroup data. Two reviewers extracted data and assessed risk of bias. Outcomes included long-term mortality (primary), short-term mortality, duration of mechanical ventilation, complications, and liberation from ventilation without a tracheostomy. Meta-analyses used random-effects models. Ten trials (503 patients) met selection criteria; overall study quality was moderate to good. Early tracheostomy reduced long-term mortality (risk ratio [RR] 0.57. 95 % confidence interval (CI), 0.36-0.90; p = 0.02; n = 135), although in a sensitivity analysis excluding one trial, with an unclear risk of bias, the significant finding was attenuated (RR 0.61, 95 % CI, 0.32-1.16; p = 0.13; n = 95). Early tracheostomy reduced duration of mechanical ventilation (mean difference [MD] -2.72 days, 95 % CI, -1.29 to -4.15; p = 0.0002; n = 412) and ICU length of stay (MD -2.55 days, 95 % CI, -0.50 to -4.59; p = 0.01; n = 326). However, early tracheostomy did not reduce short-term mortality (RR 1.25; 95 % CI, 0.68-2.30; p = 0.47 n = 301) and increased the probability of ever receiving a tracheostomy (RR 1.58, 95 % CI, 1.24-2.02; 0 tracheostomy in acutely brain-injured patients may reduce long-term mortality, duration of mechanical ventilation, and ICU length of stay. However, waiting longer leads to fewer tracheostomy procedures and

  1. Snake pictures draw more early attention than spider pictures in non-phobic women: evidence from event-related brain potentials.

    Science.gov (United States)

    Van Strien, J W; Eijlers, R; Franken, I H A; Huijding, J

    2014-02-01

    Snakes were probably the first predators of mammals and may have been important agents of evolutionary changes in the primate visual system allowing rapid visual detection of fearful stimuli (Isbell, 2006). By means of early and late attention-related brain potentials, we examined the hypothesis that more early visual attention is automatically allocated to snakes than to spiders. To measure the early posterior negativity (EPN), 24 healthy, non-phobic women watched the random rapid serial presentation of 600 snake pictures, 600 spider pictures, and 600 bird pictures (three pictures per second). To measure the late positive potential (LPP), they also watched similar pictures (30 pictures per stimulus category) in a non-speeded presentation. The EPN amplitude was largest for snake pictures, intermediate for spider pictures and smallest for bird pictures. The LPP was significantly larger for both snake and spider pictures when compared to bird pictures. Interestingly, spider fear (as measured by a questionnaire) was associated with EPN amplitude for spider pictures, whereas snake fear was not associated with EPN amplitude for snake pictures. The results suggest that ancestral priorities modulate the early capture of visual attention and that early attention to snakes is more innate and independent of reported fear. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Early predictors of outcome after mild traumatic brain injury (UPFRONT): an observational cohort study.

    Science.gov (United States)

    van der Naalt, Joukje; Timmerman, Marieke E; de Koning, Myrthe E; van der Horn, Harm J; Scheenen, Myrthe E; Jacobs, Bram; Hageman, Gerard; Yilmaz, Tansel; Roks, Gerwin; Spikman, Jacoba M

    2017-07-01

    Mild traumatic brain injury (mTBI) accounts for most cases of TBI, and many patients show incomplete long-term functional recovery. We aimed to create a prognostic model for functional outcome by combining demographics, injury severity, and psychological factors to identify patients at risk for incomplete recovery at 6 months. In particular, we investigated additional indicators of emotional distress and coping style at 2 weeks above early predictors measured at the emergency department. The UPFRONT study was an observational cohort study done at the emergency departments of three level-1 trauma centres in the Netherlands, which included patients with mTBI, defined by a Glasgow Coma Scale score of 13-15 and either post-traumatic amnesia lasting less than 24 h or loss of consciousness for less than 30 min. Emergency department predictors were measured either on admission with mTBI-comprising injury severity (GCS score, post-traumatic amnesia, and CT abnormalities), demographics (age, gender, educational level, pre-injury mental health, and previous brain injury), and physical conditions (alcohol use on the day of injury, neck pain, headache, nausea, dizziness)-or at 2 weeks, when we obtained data on mood (Hospital Anxiety and Depression Scale), emotional distress (Impact of Event Scale), coping (Utrecht Coping List), and post-traumatic complaints. The functional outcome was recovery, assessed at 6 months after injury with the Glasgow Outcome Scale Extended (GOSE). We dichotomised recovery into complete (GOSE=8) and incomplete (GOSE≤7) recovery. We used logistic regression analyses to assess the predictive value of patient information collected at the time of admission to an emergency department (eg, demographics, injury severity) alone, and combined with predictors of outcome collected at 2 weeks after injury (eg, emotional distress and coping). Between Jan 25, 2013, and Jan 6, 2015, data from 910 patients with mTBI were collected 2 weeks after injury; the final

  3. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan

    2011-01-01

    After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...... constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes...

  4. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan

    2011-01-01

    After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...

  5. MRI of perinatal brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Allsop, Joanna [Imperial College, Robert Steiner MR Unit, Perinatal Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Martinez Biarge, Miriam [La Paz University Hospital, Dept of Neonatology, Madrid (Spain); Counsell, Serena [Imperial College, Robert Steiner MR Unit, Neonatal Medicine, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Cowan, Frances [Imperial College, Dept of Paediatrics, Hammersmith Hospital, London (United Kingdom)

    2010-06-15

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  6. MRI of perinatal brain injury

    International Nuclear Information System (INIS)

    Rutherford, Mary; Allsop, Joanna; Martinez Biarge, Miriam; Counsell, Serena; Cowan, Frances

    2010-01-01

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  7. Prognostic index to identify patients who may not benefit from whole brain radiotherapy for multiple brain metastases from lung cancer

    International Nuclear Information System (INIS)

    Sundaresan, P.; Yeghiaian, R.; Gebski, V.

    2010-01-01

    Full text: Palliative whole brain radiotherapy (WBRT) is often recommended in the management of multiple brain metastases. Allowing for WBRT waiting time, duration of the WBRT course and time to clinical response, it may take 6 weeks from the point of initial assessment for a benefit from WBRT to manifest. Patients who die within 6 weeks ('early death') may not benefit from WBRT and may instead experience a decline in quality of life. This study aimed to develop a prognostic index (PI) that identifies the subset of patients with lung cancer with multiple brain metastases who may not benefit from WBRT because of'early death'. The medical records of patients with lung cancer who had WBRT recommended for multiple brain metastases over a 10-year period were retrospectively reviewed. Patients were classified as either having died within 6 weeks or having lived beyond 6 weeks. Potential prognostic indicators were evaluated for correlation with 'early death'. A PI was constructed by modelling the survival classification to determine the contribution of these factors towards shortened survival. Of the 275 patients recommended WBRT, 64 (23.22%) died within 6 weeks. The main prognostic factor predicting early death was Eastern Cooperative Oncology Group (ECOG) status >2. Patients with a high PI score (>13) were at higher risk of'early death'. Twenty-three per cent of patients died prior to benefit from WBRT. ECOG status was the most predictive for 'early death'. Other factors may also contribute towards a poor outcome. With further refinement and validation, the PI could be a valuable clinical decision tool.

  8. Clinical and Biochemical Characteristics of Brain-Dead Donors as Predictors of Early- and Long-Term Renal Function After Transplant.

    Science.gov (United States)

    Kwiatkowska, Ewa; Domański, Leszek; Bober, Joanna; Safranow, Krzysztof; Pawlik, Andrzej; Ciechanowski, Kazimierz; Wiśniewska, Magda; Kędzierska, Karolina

    2017-08-01

    Organs from brain-dead donors are the main source of allografts for transplant. Comparisons between living-donor and brain-dead donor kidneys show that the latter are more likely to demonstrate delayed graft function and lower long-term survival. This study aimed to assess the effects of various clinical and biochemical factors of donors on early- and long-term renal function after transplant. We analyzed data from kidney recipients treated between 2006 and 2008 who received organs from brain-dead donors. Data from 54 donors and 89 recipients were analyzed. No relation was observed between donor sodium concentration and the presence of delayed graft function. Donor height was positively correlated with creatinine clearance in recipients in the 1 to 3 months after renal transplant. Donor diastolic blood pressure was negatively correlated with estimated glomerular filtration rate throughout the observation period. Donor age was negatively correlated with the allograft recipient's estimated glomerular filtration rate throughout 4 years of observation. Donor estimated glomerular filtration rate was positively correlated with that of the recipient throughout 3 years of observation. The results of this study indicate that various factors associated with allograft donors may influence graft function.

  9. Development of the Young Brain

    Medline Plus

    Full Text Available ... Dr. Giedd: At different ages of life certain parts of the brain have much more dynamic growth than at other times. And so for very early in life we ... adolescents, the key changes are in the frontal part of the brain involved in ... has shown by the time children reach the first grade the physical size ...

  10. Exploring the Infant Social Brain: What's Going on in There?

    Science.gov (United States)

    Meltzoff, Andrew N.; Kuhl, Patricia K.

    2016-01-01

    Advances in neuroscience allow researchers to uncover new information about the social brain in infancy and early childhood. In this article we present state-of-the-art findings about brain functioning during the first 3 years of life that underscore how important social interactions are to early learning. We explore learning opportunities that…

  11. How the embryonic chick brain twists.

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Forsch, Nickolas; Taber, Larry A

    2016-11-01

    During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain. © 2016 The Author(s).

  12. Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease: Methodology and Baseline Sample Characteristics.

    Science.gov (United States)

    Byun, Min Soo; Yi, Dahyun; Lee, Jun Ho; Choe, Young Min; Sohn, Bo Kyung; Lee, Jun-Young; Choi, Hyo Jung; Baek, Hyewon; Kim, Yu Kyeong; Lee, Yun-Sang; Sohn, Chul-Ho; Mook-Jung, Inhee; Choi, Murim; Lee, Yu Jin; Lee, Dong Woo; Ryu, Seung-Ho; Kim, Shin Gyeom; Kim, Jee Wook; Woo, Jong Inn; Lee, Dong Young

    2017-11-01

    The Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's disease (KBASE) aimed to recruit 650 individuals, aged from 20 to 90 years, to search for new biomarkers of Alzheimer's disease (AD) and to investigate how multi-faceted lifetime experiences and bodily changes contribute to the brain changes or brain pathologies related to the AD process. All participants received comprehensive clinical and neuropsychological evaluations, multi-modal brain imaging, including magnetic resonance imaging, magnetic resonance angiography, [ 11 C]Pittsburgh compound B-positron emission tomography (PET), and [ 18 F]fluorodeoxyglucose-PET, blood and genetic marker analyses at baseline, and a subset of participants underwent actigraph monitoring and completed a sleep diary. Participants are to be followed annually with clinical and neuropsychological assessments, and biannually with the full KBASE assessment, including neuroimaging and laboratory tests. As of March 2017, in total, 758 individuals had volunteered for this study. Among them, in total, 591 participants-291 cognitively normal (CN) old-aged individuals, 74 CN young- and middle-aged individuals, 139 individuals with mild cognitive impairment (MCI), and 87 individuals with AD dementia (ADD)-were enrolled at baseline, after excluding 162 individuals. A subset of participants (n=275) underwent actigraph monitoring. The KBASE cohort is a prospective, longitudinal cohort study that recruited participants with a wide age range and a wide distribution of cognitive status (CN, MCI, and ADD) and it has several strengths in its design and methodologies. Details of the recruitment, study methodology, and baseline sample characteristics are described in this paper.

  13. Validation of the Early Functional Abilities scale

    DEFF Research Database (Denmark)

    Poulsen, Ingrid; Kreiner, Svend; Engberg, Aase W

    2018-01-01

    model item analysis. A secondary objective was to examine the relationship between the Early Functional Abilities scale and the Functional Independence Measurement™, in order to establish the criterion validity of the Early Functional Abilities scale and to compare the sensitivity of measurements using......), facio-oral, sensorimotor and communicative/cognitive functions. Removal of one item from the sensorimotor scale confirmed unidimensionality for each of the 4 subscales, but not for the entire scale. The Early Functional Abilities subscales are sensitive to differences between patients in ranges in which......OBJECTIVE: The Early Functional Abilities scale assesses the restoration of brain function after brain injury, based on 4 dimensions. The primary objective of this study was to evaluate the validity, objectivity, reliability and measurement precision of the Early Functional Abilities scale by Rasch...

  14. Modeling Early Postnatal Brain Growth and Development with CT: Changes in the Brain Radiodensity Histogram from Birth to 2 Years.

    Science.gov (United States)

    Cauley, K A; Hu, Y; Och, J; Yorks, P J; Fielden, S W

    2018-04-01

    The majority of brain growth and development occur in the first 2 years of life. This study investigated these changes by analysis of the brain radiodensity histogram of head CT scans from the clinical population, 0-2 years of age. One hundred twenty consecutive head CTs with normal findings meeting the inclusion criteria from children from birth to 2 years were retrospectively identified from 3 different CT scan platforms. Histogram analysis was performed on brain-extracted images, and histogram mean, mode, full width at half maximum, skewness, kurtosis, and SD were correlated with subject age. The effects of scan platform were investigated. Normative curves were fitted by polynomial regression analysis. Average total brain volume was 360 cm 3 at birth, 948 cm 3 at 1 year, and 1072 cm 3 at 2 years. Total brain tissue density showed an 11% increase in mean density at 1 year and 19% at 2 years. Brain radiodensity histogram skewness was positive at birth, declining logarithmically in the first 200 days of life. The histogram kurtosis also decreased in the first 200 days to approach a normal distribution. Direct segmentation of CT images showed that changes in brain radiodensity histogram skewness correlated with, and can be explained by, a relative increase in gray matter volume and an increase in gray and white matter tissue density that occurs during this period of brain maturation. Normative metrics of the brain radiodensity histogram derived from routine clinical head CT images can be used to develop a model of normal brain development. © 2018 by American Journal of Neuroradiology.

  15. Stimulation of Functional Vision in Children with Perinatal Brain Damage

    OpenAIRE

    Alimović, Sonja; Mejaški-Bošnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual st...

  16. Sports-related brain injuries: connecting pathology to diagnosis.

    Science.gov (United States)

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  17. Brain-derived neurotrophic factor and early-life stress

    Indian Academy of Sciences (India)

    2016-10-24

    Oct 24, 2016 ... The brain-derived neurotrophic factor (BDNF) is a key regulator of neural development and ... forms are produced by splicing individual non-coding ..... VII and. IX m. RNA. ↑. mBDNF. ↓. (MS). 5. BDNF expression was unch;.

  18. Acute and long-term pituitary insufficiency in traumatic brain injury

    DEFF Research Database (Denmark)

    Klose, M; Juul, A; Struck, J

    2007-01-01

    To assess the prevalence of hypopituitarism following traumatic brain injury (TBI), describe the time-course and assess the association with trauma-related parameters and early post-traumatic hormone alterations.......To assess the prevalence of hypopituitarism following traumatic brain injury (TBI), describe the time-course and assess the association with trauma-related parameters and early post-traumatic hormone alterations....

  19. Early auditory processing in area V5/MT+ of the congenitally blind brain.

    Science.gov (United States)

    Watkins, Kate E; Shakespeare, Timothy J; O'Donoghue, M Clare; Alexander, Iona; Ragge, Nicola; Cowey, Alan; Bridge, Holly

    2013-11-13

    Previous imaging studies of congenital blindness have studied individuals with heterogeneous causes of blindness, which may influence the nature and extent of cross-modal plasticity. Here, we scanned a homogeneous group of blind people with bilateral congenital anophthalmia, a condition in which both eyes fail to develop, and, as a result, the visual pathway is not stimulated by either light or retinal waves. This model of congenital blindness presents an opportunity to investigate the effects of very early visual deafferentation on the functional organization of the brain. In anophthalmic animals, the occipital cortex receives direct subcortical auditory input. We hypothesized that this pattern of subcortical reorganization ought to result in a topographic mapping of auditory frequency information in the occipital cortex of anophthalmic people. Using functional MRI, we examined auditory-evoked activity to pure tones of high, medium, and low frequencies. Activity in the superior temporal cortex was significantly reduced in anophthalmic compared with sighted participants. In the occipital cortex, a region corresponding to the cytoarchitectural area V5/MT+ was activated in the anophthalmic participants but not in sighted controls. Whereas previous studies in the blind indicate that this cortical area is activated to auditory motion, our data show it is also active for trains of pure tone stimuli and in some anophthalmic participants shows a topographic mapping (tonotopy). Therefore, this region appears to be performing early sensory processing, possibly served by direct subcortical input from the pulvinar to V5/MT+.

  20. Experimental study of Gadofluorine M enhancement in early diagnosis of radiation brain injury by MRI in rats

    International Nuclear Information System (INIS)

    Bai Shoumin; Liao Chengde; Guo Ruomi; Huang Ying; Liang Biling; Shen Jun; Lu Taixiang

    2011-01-01

    Objective: To explore the value of Gadofluorine M, a novel MRI enhancement agent,in the diagnosis the early radiation brain injury. Methods: Seventy-two Wistar rats were randomly divided into 5 equal groups. To establish the radiation injury model, the rat's posterior brain was irradiated with 0 (blank controls), 25, 35, 45, 55, and 65 Gy, respectively. After irradiation MR plain scanning and Gadofluorine M enhancement scanning (after the T1WI and T2WI scanning Gf at the dosage of 0.1 mmol/kg was injected intravenously and scanning was performed again 12 h later) were performed once a week for 8 weeks. Another 12 rats were randomly divided into 2 equal groups to exposure to 55 and 65 Gy, respectively, and MR scanning was performed once a week for 8 weeks since the third week after MR. After T1WI and T2WI scanning Gd-DTPA was injected intravenously, MR was conducted again 30 min later, and Gf was injected intravenously (Gd-DTPA enhancement and Gf enhancement contrast). The MR image and the pixel count were compared. Since the third week 2 rats from the Gf enhancement scanning group and 1 rat from the Gd-DTPA enhancement and Gf enhancement contrast were killed after MR with their brains taken out to undergo pathological examination. Results: No abnormal signal changes were found in MRI in 25 and 35 Gy groups within 2 months after irradiation. A high signal in the Gf enhancement T1WI image was found in 45, 55, and 65 Gy groups within the period of 4-6 weeks after radiation. The signal intensity was significantly higher than that of the control, 25, and 35 Gy groups (F=2.15, P<0.05). The emerge time of this signal was negatively correlated with the dose of radiation (r =-0.62, P<0.05). When there was no obvious change was found by Gd-DTPA enhancement, a high signal representing change of injury could be found in Gf enhancement in the same rat. The signal intensity was significantly enhanced in Gf enhancement compared to the Gd-DTPA enhancement (F=2.74, P<0

  1. Deep Brain Stimulation for Parkinson's Disease with Early Motor Complications: A UK Cost-Effectiveness Analysis.

    Directory of Open Access Journals (Sweden)

    Tomasz Fundament

    Full Text Available Parkinson's disease (PD is a debilitating illness associated with considerable impairment of quality of life and substantial costs to health care systems. Deep brain stimulation (DBS is an established surgical treatment option for some patients with advanced PD. The EARLYSTIM trial has recently demonstrated its clinical benefit also in patients with early motor complications. We sought to evaluate the cost-effectiveness of DBS, compared to best medical therapy (BMT, among PD patients with early onset of motor complications, from a United Kingdom (UK payer perspective.We developed a Markov model to represent the progression of PD as rated using the Unified Parkinson's Disease Rating Scale (UPDRS over time in patients with early PD. Evidence sources were a systematic review of clinical evidence; data from the EARLYSTIM study; and a UK Clinical Practice Research Datalink (CPRD dataset including DBS patients. A mapping algorithm was developed to generate utility values based on UPDRS data for each intervention. The cost-effectiveness was expressed as the incremental cost per quality-adjusted life-year (QALY. One-way and probabilistic sensitivity analyses were undertaken to explore the effect of parameter uncertainty.Over a 15-year time horizon, DBS was predicted to lead to additional mean cost per patient of £26,799 compared with BMT (£73,077/patient versus £46,278/patient and an additional mean 1.35 QALYs (6.69 QALYs versus 5.35 QALYs, resulting in an incremental cost-effectiveness ratio of £19,887 per QALY gained with a 99% probability of DBS being cost-effective at a threshold of £30,000/QALY. One-way sensitivity analyses suggested that the results were not significantly impacted by plausible changes in the input parameter values.These results indicate that DBS is a cost-effective intervention in PD patients with early motor complications when compared with existing interventions, offering additional health benefits at acceptable incremental

  2. Early life adversity: Lasting consequences for emotional learning

    Directory of Open Access Journals (Sweden)

    Harm J. Krugers

    2017-02-01

    Full Text Available The early postnatal period is a highly sensitive time period for the developing brain, both in humans and rodents. During this time window, exposure to adverse experiences can lastingly impact cognitive and emotional development. In this review, we briefly discuss human and rodent studies investigating how exposure to adverse early life conditions – mainly related to quality of parental care - affects brain activity, brain structure, cognition and emotional responses later in life. We discuss the evidence that early life adversity hampers later hippocampal and prefrontal cortex functions, while increasing amygdala activity, and the sensitivity to stressors and emotional behavior later in life. Exposure to early life stress may thus on the one hand promote behavioral adaptation to potentially threatening conditions later in life –at the cost of contextual memory formation in less threatening situations- but may on the other hand also increase the sensitivity to develop stress-related and anxiety disorders in vulnerable individuals.

  3. Predictive value of early near-infrared spectroscopy monitoring of patients with traumatic brain injury.

    Science.gov (United States)

    Vilkė, Alina; Bilskienė, Diana; Šaferis, Viktoras; Gedminas, Martynas; Bieliauskaitė, Dalia; Tamašauskas, Arimantas; Macas, Andrius

    2014-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in young adults. Study aimed to define the predictive value of early near-infrared spectroscopy (NIRS) monitoring of TBI patients in a Lithuanian clinical setting. Data of 61 patients was analyzed. Predictive value of early NIRS monitoring, computed tomography data and regular intensive care unit (ICU) parameters was investigated. Twenty-six patients expressed clinically severe TBI; 14 patients deceased. Patients who survived expressed higher NIRS values at the periods of admission to operative room (75.4%±9.8% vs. 71.0%±20.5%; P=0.013) and 1h after admission to ICU (74.7%±1.5% vs. 61.9%±19.4%; P=0.029). The NIRS values discriminated hospital mortality groups more accurately than admission GCS score, blood sugar or hemoglobin levels. Admission INR value and NIRS value at 1h after admission to ICU were selected by discriminant analysis into the optimal set of features when classifying hospital mortality groups. Average efficiency of classification using this method was 88.9%. When rsO2 values at 1h after admission to ICU did not exceed 68.0% in the left hemisphere and 68.3% in the right hemisphere, the hazard ratio for death increased by 17.7 times (Pbrain saturation monitoring provides accurate predictive data, which can improve the allocation of scarce medical resources, set the treatment goals and alleviate the early communication with patients' relatives. Copyright © 2014 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Sex differences and structural brain maturation from childhood to early adulthood

    NARCIS (Netherlands)

    Koolschijn, P.C.M.P.; Crone, E.A.

    2013-01-01

    Recent advances in structural brain imaging have demonstrated that brain development continues through childhood and adolescence. In the present cross-sectional study, structural MRI data from 442 typically developing individuals (range 8–30) were analyzed to examine and replicate the relationship

  5. Brain size and encephalization in early to Mid-Pleistocene Homo.

    Science.gov (United States)

    Rightmire, G Philip

    2004-06-01

    Important changes in the brain have occurred during the course of human evolution. Both absolute and relative size increases can be documented for species of Homo, culminating in the appearance of modern humans. One species that is particularly well-represented by fossil crania is Homo erectus. The mean capacity for 30 individuals is 973 cm(3). Within this group there is substantial variation, but brain size increases slightly in specimens from later time periods. Other Middle Pleistocene crania differ from those of Homo erectus. Characters of the facial skeleton, vault, and cranial base suggest that fossils from sites such as Arago Cave in France, the Sima de los Huesos in Spain, Bodo in Ethiopia, Broken Hill in Zambia, and perhaps Dali in China belong to the taxon Homo heidelbergensis. Ten of these mid-Quaternary hominins have brains averaging 1,206 cm(3) in volume, and many fall beyond the limits of size predicted for Homo erectus of equivalent age. When orbit height is used to construct an index of relative brain size, it is apparent that the (significant) increase in volume documented for the Middle Pleistocene individuals is not simply a consequence of larger body mass. Encephalization quotient values confirm this finding. These changes in absolute and relative brain size can be taken as further corroborative evidence for a speciation event, in which Homo erectus produced a daughter lineage. It is probable that Homo heidelbergensis originated in Africa or western Eurasia and then ranged widely across the Old World. Archaeological traces indicate that these populations differed in their technology and behavior from earlier hominins. Copyright 2003 Wiley-Liss, Inc.

  6. Radiographic patterns and survival of patients with early and late brain metastases in EGFR wild type and mutant non small cell lung cancer

    DEFF Research Database (Denmark)

    Yuan, Ren; Yamada, Andrew; Weber, Britta

    2016-01-01

    Brain metastasis (BM) in NSCLC is a negative prognostic indicator. In the era of EGFR mutations we evaluated the difference between early (≤6 months from diagnosis) versus late BM (>6 months), in EGFR wild type (WT) and mutant (MT) NSCLC patients with respect to radiographic patterns and overall...... BM: WT 24.9 months versus MT 25.6 months (p = 0.51). In multivariate analysis chemotherapy, single lesion and late BM were associated with better survival in WT patients whereas age, and systemic treatment but not BM timing or single lesion were predictive of better outcomes in MT patients. In early...

  7. Social Environmental Moderators of Long-term Functional Outcomes of Early Childhood Brain Injury.

    Science.gov (United States)

    Wade, Shari L; Zhang, Nanhua; Yeates, Keith Owen; Stancin, Terry; Taylor, H Gerry

    2016-04-01

    Pediatric traumatic brain injury (TBI) contributes to impairments in behavior and academic performance. However, the long-term effects of early childhood TBI on functioning across settings remain poorly understood. To examine the long-term functional outcomes of early childhood TBI relative to early childhood orthopedic injuries (OIs). We also examine the moderating role of the social environment as defined by parent report and observational measures of family functioning, parenting practices, and home environment. A prospective, longitudinal, observational cohort study conducted at each child's home, school, and hospital, including 3 children's hospitals and 1 general hospital in the Midwest. Patients were enrolled in the initial study between January 2003 and October 2006. Follow-ups were completed between January 2010 and April 2015. Fifty-eight children who sustained a TBI (67% of original enrolled cohort) and 72 children who sustained an OI (61% of the original enrolled cohort) were prospectively followed up from shortly after injury (between the ages of 3 and 7 years at enrollment) to an average of 6.7 years after injury, with assessments occurring at multiple points. Long-term functional outcomes in everyday settings, as assessed through the Child and Adolescent Functional Assessment Scale (CAFAS). Of the 130 children included, the median age for those with OIs was 11.72 years and 11.97, 12.21, and 11.72 years for those with complicated mild, moderate, and severe TBIs, respectively. Children with moderate and severe TBI were rated as having more functional impairments in multiple domains than those with OIs (P authoritarian (mean CAFAS of 56.45, 41.80, 54.90, and 17.12 for severe TBI, moderate TBI, complicated mild TBI, and OI, respectively, with significant difference between severe TBI and OI [difference = 39.33; P parenting or with fewer home resources (mean CAFAS of 69.57, 47.45, 49.00, and 23.81 for severe TBI, moderate TBI, complicated mild TBI, and OI

  8. Effect of socioeconomic status disparity on child language and neural outcome: how early is early?

    Science.gov (United States)

    Hurt, Hallam; Betancourt, Laura M

    2016-01-01

    It is not news that poverty adversely affects child outcome. The literature is replete with reports of deleterious effects on developmental outcome, cognitive function, and school performance in children and youth. Causative factors include poor nutrition, exposure to toxins, inadequate parenting, lack of cognitive stimulation, unstable social support, genetics, and toxic environments. Less is known regarding how early in life adverse effects may be detected. This review proposes to elucidate "how early is early" through discussion of seminal articles related to the effect of socioeconomic status on language outcome and a discussion of the emerging literature on effects of socioeconomic status disparity on brain structure in very young children. Given the young ages at which such outcomes are detected, the critical need for early targeted interventions for our youngest is underscored. Further, the fiscal reasonableness of initiating quality interventions supports these initiatives. As early life adversity produces lasting and deleterious effects on developmental outcome and brain structure, increased focus on programs and policies directed to reducing the impact of socioeconomic disparities is essential.

  9. Targeted Inhibition of the miR-199a/214 Cluster by CRISPR Interference Augments the Tumor Tropism of Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells under Hypoxic Condition

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2016-01-01

    Full Text Available The human induced pluripotent stem cell (hiPSC provides a breakthrough approach that helps overcoming ethical and allergenic challenges posed in application of neural stem cells (NSCs in targeted cancer gene therapy. However, the tumor-tropic capacity of hiPSC-derived NSCs (hiPS-NSCs still has much room to improve. Here we attempted to promote the tumor tropism of hiPS-NSCs by manipulating the activity of endogenous miR-199a/214 cluster that is involved in regulation of hypoxia-stimulated cell migration. We first developed a baculovirus-delivered CRISPR interference (CRISPRi system that sterically blocked the E-box element in the promoter of the miR-199a/214 cluster with an RNA-guided catalytically dead Cas9 (dCas9. We then applied this CRISPRi system to hiPS-NSCs and successfully suppressed the expression of miR-199a-5p, miR-199a-3p, and miR-214 in the microRNA gene cluster. Meanwhile, the expression levels of their targets related to regulation of hypoxia-stimulated cell migration, such as HIF1A, MET, and MAPK1, were upregulated. Further migration assays demonstrated that the targeted inhibition of the miR-199a/214 cluster significantly enhanced the tumor tropism of hiPS-NSCs both in vitro and in vivo. These findings suggest a novel application of CRISPRi in NSC-based tumor-targeted gene therapy.

  10. The family environment predicts long-term academic achievement and classroom behavior following traumatic brain injury in early childhood.

    Science.gov (United States)

    Durber, Chelsea M; Yeates, Keith Owen; Taylor, H Gerry; Walz, Nicolay Chertkoff; Stancin, Terry; Wade, Shari L

    2017-07-01

    This study examined how the family environment predicts long-term academic and behavioral functioning in school following traumatic brain injury (TBI) in early childhood. Using a concurrent cohort, prospective design, 15 children with severe TBI, 39 with moderate TBI, and 70 with orthopedic injury (OI) who were injured when they were 3-7 years of age were compared on tests of academic achievement and parent and teacher ratings of school performance and behavior on average 6.83 years postinjury. Soon after injury and at the longer term follow-up, families completed measures of parental psychological distress, family functioning, and quality of the home environment. Hierarchical linear regression analyses examined group differences in academic outcomes and their associations with measures of the early and later family environment. The severe TBI group, but not the moderate TBI group, performed worse than did the OI group on all achievement tests, parent ratings of academic performance, and teacher ratings of internalizing problems. Higher quality early and late home environments predicted stronger academic skills and better classroom behavior for children with both TBI and OI. The early family environment more consistently predicted academic achievement, whereas the later family environment more consistently predicted classroom functioning. The quality of the home environment predicted academic outcomes more strongly than did parental psychological distress or family functioning. TBI in early childhood has long-term consequences for academic achievement and school performance and behavior. Higher quality early and later home environments predict better school outcomes for both children with TBI and children with OI. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism.

    Directory of Open Access Journals (Sweden)

    Renee M Tsolis

    Full Text Available Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis.

  12. Alterations of parenchymal microstructure, neuronal connectivity and cerebrovascular resistance at adolescence following mild to moderate traumatic brain injury in early development.

    Science.gov (United States)

    Parent, Maxime; Li, Ying; Santhakumar, Vijayalakshmi; Hyder, Fahmeed; Sanganahalli, Basavaraju G; Kannurpatti, Sridhar

    2018-06-01

    TBI is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence. 1 Based on the non-localized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity and neurovascular function are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2-months after injury, using functional MRI (fMRI) and Diffusion Tensor Imaging (DTI). fMRI based resting state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus and thalamus accompanied by decrease in the spatial extent of their corresponding RSFC networks and inter-hemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus and motor cortex. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient (ADC), reporting on axonal and microstructural integrity of the brain, indicated similar inter-hemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in inter-hemispheric structural connectivity. Hippocampus, thalamus and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance and parenchymal microstructure in the adolescent brain

  13. Early-onset Infectious Complications among Penetrating and Severe Closed Traumatic Brain Injury in Active Duty Deployed during OIF and OEF, 2008-2013

    Science.gov (United States)

    2015-02-01

    seizures, hydrocephalus, cerebral spinal fluid (CSF) leaks, infections inside the skull, vascular injuries, and cranial nerve injuries. 9-11 The...the form of early in-theater cranial decompression, followed by aggressive critical care management. 8 Medical advances, in addition to improved body...p = 0.66). However, closed TBI patients were significantly more likely than penetrating TBI patients to have anoxic brain damage (coma, stupor

  14. History of aphasia: From brain to language

    NARCIS (Netherlands)

    Eling, P.A.T.M.; Whitaker, H.A.; Finger, S.; Boller, F.; Tyler, K.L.

    2009-01-01

    An historical overview is presented that focuses on the changes both in approach and topics with respect to language disturbances due to brain lesions. Early cases of language disorders were described without any theorizing about language or its relation to the brain. Also, three forms of speech

  15. Septic-embolic and septic-metabolic brain abscess

    International Nuclear Information System (INIS)

    Weber, W.; Henkes, H.; Kuehne, D.; Felber, S.; Jaenisch, W.; Woitalla, D.

    2000-01-01

    The hematogeneous spread of bacteria, fungi and protozoa may also reach the brain vessels, which happens mostly through septic emboli. From such an embolus a metastatic focal encephalitis and later a septic-embolic brain abscess may arise. The most frequently underlying infections that may cause septic emboli are bacterial endocarditis as well as bacterial infections of artificial heart valve prostheses. Congenital heart malformations with a right-to-left shunt also play here a certain role. Basically, however, all septic conditions and bacteriemias may cause septic-embolic brain abscesses. They occur frequently as multiple lesions. MRI is superior to CT in depicting the different stages of evolution from focal encephalitis, through the hardly encapsulated early abscess, to the formation of a membrane and later a dense fibrous capsule. The medical treatment of a brain abscess requires properly performed CT or MRI follow-up examinations in order to realize early enough a possible growing of such a lesion. (orig.) [de

  16. Brains on video games.

    Science.gov (United States)

    Bavelier, Daphne; Green, C Shawn; Han, Doug Hyun; Renshaw, Perry F; Merzenich, Michael M; Gentile, Douglas A

    2011-11-18

    The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games 'damage the brain' or 'boost brain power' do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward.

  17. Characterization of a novel brain barrier ex vivo insect-based P-glycoprotein screening model

    DEFF Research Database (Denmark)

    Andersson, O.; Badisco, L.; Hansen, A. H.

    2014-01-01

    In earlier studies insects were proposed as suitable models for vertebrate blood–brain barrier (BBB) permeability prediction and useful in early drug discovery. Here we provide transcriptome and functional data demonstrating the presence of a P-glycoprotein (Pgp) efflux transporter in the brain b...... has the potential to act as a robust and convenient model for assessing BBB permeability in early drug discovery.......In earlier studies insects were proposed as suitable models for vertebrate blood–brain barrier (BBB) permeability prediction and useful in early drug discovery. Here we provide transcriptome and functional data demonstrating the presence of a P-glycoprotein (Pgp) efflux transporter in the brain...

  18. Treatment for delayed brain injury after pituitary irradiation

    International Nuclear Information System (INIS)

    Fujii, Takashi; Misumi, Shuzoh; Shibasaki, Takashi; Tamura, Masaru; Kunimine, Hideo; Hayakawa, Kazushige; Niibe, Hideo; Miyazaki, Mizuho; Miyagi, Osamu.

    1988-01-01

    Treatment for delayed brain injury after pituitary irradiation is discussed. Six cases with delayed brain injury were treated with a combination of dexamethasone or betamethasone, with heparin, glycerol, dextran 40 and some vasodilators. Two cases with temporal lobe syndrome were treated in the early stages of brain injury for a period of over 12 months were almost completely cured, another two cases with chiasma syndrome were treated in the relatively late stages, showed a partial improvement. One case which was irradiated 120 GY during 13 years did not improve. The final case treated with steroids for a short period also resulted in failure and the patient underwent an operation for the removal of the necrotic mass three years after the radiotherapy. Steroid therapy started in the early stages of brain injury after irradiation for over the 12 months is thought to be effective. Heparin therapy was also effective in one out of three cases, but in one of the cases subarachnoid hemorrhage from a traumatic aneurysm occurred during the therapy. In an acute phase, showing edematous change of the injured brain, the administration of glycerol is also thought to be useful. But the effectiveness of the other medicines containing some vasodilators was obscure or doubtful. We propose the following : (1) A meticulous observation is essential for the patients who received high doses of irradiation to diagnose brain injury in the early reversible stage. (2) Steroids should be given immediately in this reversible stage of brain injury before the irreversible ''necrosis'' occurs. (3) Steroids should be maintained for a long period over 12 months. (4) Heparin therapy is also thought to be effective, but careful precautions to avoid hemorrhagic complications before the therapy should be scheduled. This recommended plan may also be used for the treatment of brain injuries after cranial irradiation for other intracranial tumors. (author)

  19. Virtual endocranial cast of earliest Eocene Diacodexis (Artiodactyla, Mammalia) and morphological diversity of early artiodactyl brains

    Science.gov (United States)

    Orliac, M. J.; Gilissen, E.

    2012-01-01

    The study of brain evolution, particularly that of the neocortex, is of primary interest because it directly relates to how behavioural variations arose both between and within mammalian groups. Artiodactyla is one of the most diverse mammalian clades. However, the first 10 Myr of their brain evolution has remained undocumented so far. Here, we used high-resolution X-ray computed tomography to investigate the endocranial cast of Diacodexis ilicis of earliest Eocene age. Its virtual reconstruction provides unprecedented access to both metric parameters and fine anatomy of the most complete endocast of the earliest artiodactyl. This picture is assessed in a broad comparative context by reconstructing endocasts of 14 other Early and Middle Eocene representatives of basal artiodactyls, allowing the tracking of the neocortical structure of artiodactyls back to its simplest pattern. We show that the earliest artiodactyls share a simple neocortical pattern, so far never observed in other ungulates, with an almond-shaped gyrus instead of parallel sulci as previously hypothesized. Our results demonstrate that artiodactyls experienced a tardy pulse of encephalization during the Late Neogene, well after the onset of cortical complexity increase. Comparisons with Eocene perissodactyls show that the latter reached a high level of cortical complexity earlier than the artiodactyls. PMID:22764165

  20. Modeling and simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Corey C. (University of New Mexico, Albuquerque, NM); Taylor, Paul Allen

    2008-02-01

    The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm{sup 3} voxels), 5 material model of the human head was created by segmentation of color cryosections from the Visible Human Female dataset. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior and lateral directions. Three dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric (shear) stress within the first 2 milliseconds of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 msec time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.

  1. Challenges and limitations in early intervention

    NARCIS (Netherlands)

    Hadders-Algra, Mijna

    Research over the past three decades has shown that early intervention in infants biologically at risk of developmental disorders, irrespective of the presence of a brain lesion, is associated with improved cognitive development in early childhood without affecting motor development. However, at

  2. Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment?

    Science.gov (United States)

    Sayed, Blayne A; Christy, Alison L; Walker, Margaret E; Brown, Melissa A

    2010-06-15

    Mast cells contribute to the pathogenesis of experimental autoimmune encephalomyelitis, a rodent model of the human demyelinating disease multiple sclerosis. Yet their site and mode of action is unknown. In both diseases, myelin-specific T cells are initially activated in peripheral lymphoid organs. However, for disease to occur, these cells must enter the immunologically privileged CNS through a breach in the relatively impermeable blood-brain barrier. In this study, we demonstrate that a dense population of resident mast cells in the meninges, structures surrounding the brain and spinal cord, regulate basal CNS barrier function, facilitating initial T cell CNS entry. Through the expression of TNF, mast cells recruit an early wave of neutrophils to the CNS. We propose that neutrophils in turn promote the blood-brain barrier breach and together with T cells lead to further inflammatory cell influx and myelin damage. These findings provide specific targets for intervention in multiple sclerosis as well as other immune-mediated CNS diseases.

  3. Temporal Profile of Microtubule-Associated Protein 2: A Novel Indicator of Diffuse Brain Injury Severity and Early Mortality after Brain Trauma.

    Science.gov (United States)

    Papa, Linda; Robicsek, Steven A; Brophy, Gretchen M; Wang, Kevin K W; Hannay, H Julia; Heaton, Shelley; Schmalfuss, Ilona; Gabrielli, Andrea; Hayes, Ronald L; Robertson, Claudia S

    2018-01-01

    This study compared cerebrospinal fluid (CSF) levels of microtubule-associated protein 2 (MAP-2) from adult patients with severe traumatic brain injury (TBI) with uninjured controls over 10 days, and examined the relationship between MAP-2 concentrations and acute clinical and radiologic measures of injury severity along with mortality at 2 weeks and over 6 months. This prospective study, conducted at two Level 1 trauma centers, enrolled adults with severe TBI (Glasgow Coma Scale [GCS] score ≤8) requiring a ventriculostomy, as well as controls. Ventricular CSF was sampled from each patient at 6, 12, 24, 48, 72, 96, 120, 144, 168, 192, 216, and 240 h following TBI and analyzed via enzyme-linked immunosorbent assay for MAP-2 (ng/mL). Injury severity was assessed by the GCS score, Marshall Classification on computed tomography (CT), Rotterdam CT score, and mortality. There were 151 patients enrolled-130 TBI and 21 control patients. MAP-2 was detectable within 6 h of injury and was significantly elevated compared with controls (p < 0.001) at each time-point. MAP-2 was highest within 72 h of injury and decreased gradually over 10 days. The area under the receiver operating characteristic curve for deciphering TBI versus controls at the earliest time-point CSF was obtained was 0.96 (95% CI 0.93-0.99) and for the maximal 24-h level was 0.98 (95% CI 0.97-1.00). The area under the curve for initial MAP-2 levels predicting 2-week mortality was 0.80 at 6 h, 0.81 at 12 h, 0.75 at 18 h, 0.75 at 24 h, and 0.80 at 48 h. Those with Diffuse Injury III-IV had much higher initial (p = 0.033) and maximal (p = 0.003) MAP-2 levels than those with Diffuse Injury I-II. There was a graded increase in the overall levels and peaks of MAP-2 as the degree of diffuse injury increased within the first 120 h post-injury. These data suggest that early levels of MAP-2 reflect severity of diffuse brain injury and predict 2-week mortality in TBI patients. These

  4. Early Life Stress-Related Elevations in Reaction Time Variability Are Associated with Brain Volume Reductions in HIV+ Adults

    Directory of Open Access Journals (Sweden)

    Uraina S. Clark

    2018-01-01

    Full Text Available There is burgeoning evidence that, among HIV+ adults, exposure to high levels of early life stress (ELS is associated with increased cognitive impairment as well as brain volume abnormalities and elevated neuropsychiatric symptoms. Currently, we have a limited understanding of the degree to which cognitive difficulties observed in HIV+ High-ELS samples reflect underlying neural abnormalities rather than increases in neuropsychiatric symptoms. Here, we utilized a behavioral marker of cognitive function, reaction time intra-individual variability (RT-IIV, which is sensitive to both brain volume reductions and neuropsychiatric symptoms, to elucidate the unique contributions of brain volume abnormalities and neuropsychiatric symptoms to cognitive difficulties in HIV+ High-ELS adults. We assessed the relation of RT-IIV to neuropsychiatric symptom levels and total gray and white matter volumes in 44 HIV+ adults (26 with high ELS. RT-IIV was examined during a working memory task. Self-report measures assessed current neuropsychiatric symptoms (depression, stress, post-traumatic stress disorder. Magnetic resonance imaging was used to quantify total gray and white matter volumes. Compared to Low-ELS participants, High-ELS participants exhibited elevated RT-IIV, elevated neuropsychiatric symptoms, and reduced gray and white matter volumes. Across the entire sample, RT-IIV was significantly associated with gray and white matter volumes, whereas significant associations with neuropsychiatric symptoms were not observed. In the High-ELS group, despite the presence of elevated neuropsychiatric symptom levels, brain volume reductions explained more than 13% of the variance in RT-IIV, whereas neuropsychiatric symptoms explained less than 1%. Collectively, these data provide evidence that, in HIV+ High-ELS adults, ELS-related cognitive difficulties (as indexed by RT-IIV exhibit strong associations with global brain volumes, whereas ELS-related elevations in

  5. Social Environmental Moderators of Long-term Functional Outcomes of Early Childhood Brain Injury

    Science.gov (United States)

    Wade, Shari L.; Zhang, Nanhua; Yeates, Keith Owen; Stancin, Terry; Taylor, H. Gerry

    2017-01-01

    IMPORTANCE Pediatric traumatic brain injury (TBI) contributes to impairments in behavior and academic performance. However, the long-term effects of early childhood TBI on functioning across settings remain poorly understood. OBJECTIVE To examine the long-term functional outcomes of early childhood TBI relative to early childhood orthopedic injuries (OIs). We also examine the moderating role of the social environment as defined by parent report and observational measures of family functioning, parenting practices, and home environment. DESIGN, SETTING, AND PARTICIPANTS A prospective, longitudinal, observational cohort study conducted at each child’s home, school, and hospital, including 3 children’s hospitals and 1 general hospital in the Midwest. Patients were enrolled in the initial study between January 2003 and October 2006. Follow-ups were completed between January 2010 and April 2015. Fifty-eight children who sustained a TBI (67%of original enrolled cohort) and 72 children who sustained an OI (61% of the original enrolled cohort) were prospectively followed up from shortly after injury (between the ages of 3 and 7 years at enrollment) to an average of 6.7 years after injury, with assessments occurring at multiple points. MAIN OUTCOMES AND MEASURES Long-term functional outcomes in everyday settings, as assessed through the Child and Adolescent Functional Assessment Scale (CAFAS). RESULTS Of the 130 children included, the median age for those with OIs was 11.72 years and 11.97, 12.21, and 11.72 years for those with complicated mild, moderate, and severe TBIs, respectively. Children with moderate and severe TBI were rated as having more functional impairments in multiple domains than those with OIs (P authoritarian (mean CAFAS of 56.45, 41.80, 54.90, and 17.12 for severe TBI, moderate TBI, complicated mild TBI, and OI, respectively, with significant difference between severe TBI and OI [difference = 39.33; P < .001], moderate TBI and OI [difference = 24

  6. Predictive value of brain SPECT with 99 technetium - MIBI for differentiation of histologic grade brain gliomas

    International Nuclear Information System (INIS)

    León Castellón, Roberto; Martín Escuela, Juan Miguel; López Díaz, Ing. Adlin; Salva Camaño, Silvia; Gómez Viera, DrC. Nelson; San Pedro, Aley Palau; Castro Jiménez, Mayté

    2016-01-01

    Diagnosis and treatment of primary tumors of the nervous system remain difficult and are a challenge to be addressed in a multidisciplinary way. In order to determine the usefulness of brain SPECT 99 Tc MIBI to differentiate histologic grade brain gliomas - Frequently brain tumors - they were studied 68 patients with this technique. A dynamic study first step in AP and lateral view was performed, and a SPECT at 20 minutes post-administration and at 2 hours late views. the post-surgical histological study of injuries was used as control. several imaging parameters such as the absolute activity of 99m Tc-MIBI were calculated both early and late phase, cortex contralateral tumor rates; pituitary tumor; choroid plexus tumor and Reason Late / Early phase tumor index / contralateral cortex tumor volume functional phase, the volume concentration of MIBI activity in the tumor and the retention rate of the radiopharmaceutical. Of the 68 patients studied, 11 were high-grade tumors and 57 low grade. The cortex contralateral tumor in late stage index showed a negative satisfactory sensitivity of 98.6% and specificity 77.1%, positive predictive value (PPV) of 48.2% and (NPV) of 99.8%. The reason late stage / early in the index tumor / contralateral cortex showed values ​​in turn 96.3%, 98.7%, 98.8% and 98.8% sensitivity, specificity, PPV and NPV respectively. The retention rate showed a 99% sensitivity, 89% specificity and PPV, NPV of 95% and 99% respectively. Conclusion: The combination cortex contralateral tumor rate in late stage, the reason late stage / early stage tumor index / contralateral cortex and the retention rate of the radiopharmaceutical are the most useful parameters to predict histologic grade of brain gliomas. (author)

  7. Patterns of exposure to infectious diseases and social contacts in early life and risk of brain tumours in children and adolescents

    DEFF Research Database (Denmark)

    Andersen, T V; Schmidt, L S; Poulsen, A H

    2013-01-01

    of childhours at daycare, attending baby groups, birth order or living with other children. Cases of glioma and embryonal tumours had more frequent sick days with infections in the first 6 years of life compared with controls. In 7-19 year olds with 4+ monthly sick day, the respective odds ratios were 2.93 (95......BACKGROUND: Infectious diseases and social contacts in early life have been proposed to modulate brain tumour risk during late childhood and adolescence. METHODS: CEFALO is an interview-based case-control study in Denmark, Norway, Sweden and Switzerland, including children and adolescents aged 7......-19 years with primary intracranial brain tumours diagnosed between 2004 and 2008 and matched population controls. RESULTS: The study included 352 cases (participation rate: 83%) and 646 controls (71%). There was no association with various measures of social contacts: daycare attendance, number...

  8. Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction.

    Science.gov (United States)

    Ding, Zhongxiang; Zhang, Han; Lv, Xiao-Fei; Xie, Fei; Liu, Lizhi; Qiu, Shijun; Li, Li; Shen, Dinggang

    2018-01-01

    Radiation therapy, a major method of treatment for brain cancer, may cause severe brain injuries after many years. We used a rare and unique cohort of nasopharyngeal carcinoma patients with normal-appearing brains to study possible early irradiation injury in its presymptomatic phase before severe, irreversible necrosis happens. The aim is to detect any structural or functional imaging biomarker that is sensitive to early irradiation injury, and to understand the recovery and progression of irradiation injury that can shed light on outcome prediction for early clinical intervention. We found an acute increase in local brain activity that is followed by extensive reductions in such activity in the temporal lobe and significant loss of functional connectivity in a distributed, large-scale, high-level cognitive function-related brain network. Intriguingly, these radiosensitive functional alterations were found to be fully or partially recoverable. In contrast, progressive late disruptions to the integrity of the related far-end white matter structure began to be significant after one year. Importantly, early increased local brain functional activity was predictive of severe later temporal lobe necrosis. Based on these findings, we proposed a dynamic, multifactorial model for radiation injury and another preventive model for timely clinical intervention. Hum Brain Mapp 39:407-427, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Early detection of ventilation-induced brain injury using magnetic resonance spectroscopy and diffusion tensor imaging: an in vivo study in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Béatrice Skiöld

    Full Text Available BACKGROUND AND AIM: High tidal volume (VT ventilation during resuscitation of preterm lambs results in brain injury evident histologically within hours after birth. We aimed to investigate whether magnetic resonance spectroscopy (MRS and/or diffusion tensor imaging (DTI can be used for early in vivo detection of ventilation-induced brain injury in preterm lambs. METHODS: Newborn lambs (0.85 gestation were stabilized with a "protective ventilation" strategy (PROT, n = 7: prophylactic Curosurf, sustained inflation, VT 7 mL/kg, positive end expiratory pressure (PEEP 5 cmH2O or an initial 15 minutes of "injurious ventilation" (INJ, n = 10: VT 12 mL/kg, no PEEP, late Curosurf followed by PROT ventilation for the remainder of the experiment. At 1 hour, lambs underwent structural magnetic resonance imaging (Siemens, 3 Tesla. For measures of mean/axial/radial diffusivity (MD, AD, RD and fractional anisotropy (FA, 30 direction DTI was performed. Regions of interests encompassed the thalamus, internal capsule, periventricular white matter and the cerebellar vermis. MRS was performed using a localized single-voxel (15×15×20 mm3, echo time 270 ms encompassing suptratentorial deep nuclear grey matter and central white matter. Peak-area ratios for lactate (Lac relative to N-acetylaspartate (NAA, choline (Cho and creatine (Cr were calculated. Groups were compared using 2-way RM-ANOVA, Mann-Whitney U-test and Spearman's correlations. RESULTS: No cerebral injury was seen on structural MR images. Lambs in the INJ group had higher mean FA and lower mean RD in the thalamus compared to PROT lambs, but not in the other regions of interest. Peak-area lactate ratios >1.0 was only seen in INJ lambs. A trend of higher mean peak-area ratios for Lac/Cr and Lac/Cho was seen, which correlated with lower pH in both groups. CONCLUSION: Acute changes in brain diffusion measures and metabolite peak-area ratios were observed after injurious ventilation. Early MRS/DTI is

  10. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    Science.gov (United States)

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital lobes together, 4.6%.

  11. Brain Aneurysm: Recovery

    Science.gov (United States)

    ... people, but they are growing larger as medical technology continues to grow and early detection and treatment becomes more prevalent. Read More “I’ve met many people through The Brain Aneurysm Foundation. Each one with their own unique story. Of survival, of appreciation for what we still ...

  12. Brain structure correlates of urban upbringing, an environmental risk factor for schizophrenia.

    Science.gov (United States)

    Haddad, Leila; Schäfer, Axel; Streit, Fabian; Lederbogen, Florian; Grimm, Oliver; Wüst, Stefan; Deuschle, Michael; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas

    2015-01-01

    Urban upbringing has consistently been associated with schizophrenia, but which specific environmental exposures are reflected by this epidemiological observation and how they impact the developing brain to increase risk is largely unknown. On the basis of prior observations of abnormal functional brain processing of social stress in urban-born humans and preclinical evidence for enduring structural brain effects of early social stress, we investigated a possible morphological correlate of urban upbringing in human brain. In a sample of 110 healthy subjects studied with voxel-based morphometry, we detected a strong inverse correlation between early-life urbanicity and gray matter (GM) volume in the right dorsolateral prefrontal cortex (DLPFC, Brodmann area 9). Furthermore, we detected a negative correlation of early-life urbanicity and GM volumes in the perigenual anterior cingulate cortex (pACC) in men only. Previous work has linked volume reductions in the DLPFC to the exposure to psychosocial stress, including stressful experiences in early life. Besides, anatomical and functional alterations of this region have been identified in schizophrenic patients and high-risk populations. Previous data linking functional hyperactivation of pACC during social stress to urban upbringing suggest that the present interaction effect in brain structure might contribute to an increased risk for schizophrenia in males brought up in cities. Taken together, our results suggest a neural mechanism by which early-life urbanicity could impact brain architecture to increase the risk for schizophrenia. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy.

    Science.gov (United States)

    Qu, Xiu-Xia; Hao, Pei; Song, Xi-Jun; Jiang, Si-Ming; Liu, Yan-Xia; Wang, Pei-Gang; Rao, Xi; Song, Huai-Dong; Wang, Sheng-Yue; Zuo, Yu; Zheng, Ai-Hua; Luo, Min; Wang, Hua-Lin; Deng, Fei; Wang, Han-Zhong; Hu, Zhi-Hong; Ding, Ming-Xiao; Zhao, Guo-Ping; Deng, Hong-Kui

    2005-08-19

    Severe acute respiratory syndrome coronavirus (SARS-CoV) is a recently identified human coronavirus. The extremely high homology of the viral genomic sequences between the viruses isolated from human (huSARS-CoV) and those of palm civet origin (pcSARS-CoV) suggested possible palm civet-to-human transmission. Genetic analysis revealed that the spike (S) protein of pcSARS-CoV and huSARS-CoV was subjected to the strongest positive selection pressure during transmission, and there were six amino acid residues within the receptor-binding domain of the S protein being potentially important for SARS progression and tropism. Using the single-round infection assay, we found that a two-amino acid substitution (N479K/T487S) of a huSARS-CoV for those of pcSARS-CoV almost abolished its infection of human cells expressing the SARS-CoV receptor ACE2 but no effect upon the infection of mouse ACE2 cells. Although single substitution of these two residues had no effects on the infectivity of huSARS-CoV, these recombinant S proteins bound to human ACE2 with different levels of reduced affinity, and the two-amino acid-substituted S protein showed extremely low affinity. On the contrary, substitution of these two amino acid residues of pcSARS-CoV for those of huSRAS-CoV made pcSARS-CoV capable of infecting human ACE2-expressing cells. These results suggest that amino acid residues at position 479 and 487 of the S protein are important determinants for SARS-CoV tropism and animal-to-human transmission.

  14. Cognition and brain functional aging

    Directory of Open Access Journals (Sweden)

    Hui-jie LI

    2014-03-01

    Full Text Available China has the largest population of elderly adults. Meanwhile, it is one of the countries showing fastest aging speed in the world. Aging processing is always companied with a series of brain structural and functional changes, which result in the decline of processing speed, working memory, long-term memory and executive function, etc. The studies based on functional magnetic resonance imaging (fMRI found certain aging effects on brain function activation, spontaneous activity and functional connectivity in old people. However, few studies have explored the brain functional curve during the aging process while most previous studies explored the differences in the brain function between young people and old people. Delineation of the human brain functional aging curve will promote the understanding of brain aging mechanisms and support the normal aging monitoring and early detection of abnormal aging changes. doi: 10.3969/j.issn.1672-6731.2014.03.005

  15. Biomarkers of Pediatric Brain Tumors

    Directory of Open Access Journals (Sweden)

    Mark D Russell

    2013-03-01

    Full Text Available Background and Need for Novel Biomarkers: Brain tumors are the leading cause of death by solid tumors in children. Although improvements have been made in their radiological detection and treatment, our capacity to promptly diagnose pediatric brain tumors in their early stages remains limited. This contrasts several other cancers where serum biomarkers such as CA 19-9 and CA 125 facilitate early diagnosis and treatment. Aim: The aim of this article is to review the latest literature and highlight biomarkers which may be of clinical use in the common types of primary pediatric brain tumor. Methods: A PubMed search was performed to identify studies reporting biomarkers in the bodily fluids of pediatric patients with brain tumors. Details regarding the sample type (serum, cerebrospinal fluid or urine, biomarkers analyzed, methodology, tumor type and statistical significance were recorded. Results: A total of 12 manuscripts reporting 19 biomarkers in 367 patients vs. 397 controls were identified in the literature. Of the 19 biomarkers identified, 12 were isolated from cerebrospinal fluid, 2 from serum, 3 from urine, and 2 from multiple bodily fluids. All but one study reported statistically significant differences in biomarker expression between patient and control groups.Conclusions: This review identifies a panel of novel biomarkers for pediatric brain tumors. It provides a platform for the further studies necessary to validate these biomarkers and, in addition, highlights several techniques through which new biomarkers can be discovered.

  16. Maternal left ventricular hypertrophy and diastolic dysfunction and brain natriuretic peptide concentration in early- and late-onset pre-eclampsia.

    Science.gov (United States)

    Borges, V T M; Zanati, S G; Peraçoli, M T S; Poiati, J R; Romão-Veiga, M; Peraçoli, J C; Thilaganathan, B

    2018-04-01

    Pre-eclampsia (PE) is associated with maternal cardiac remodeling and diastolic dysfunction. The aim of this study was to assess and compare maternal left ventricular structure and diastolic function and levels of brain natriuretic peptide (BNP) in women with early-onset (< 34 weeks' gestation) vs those with late-onset (≥ 34 weeks' gestation) PE. This was a prospective, cross-sectional, observational study of 30 women with early-onset PE, 32 with late-onset PE and 23 normotensive controls. Maternal cardiac structure and diastolic function were assessed by echocardiography and plasma levels of BNP were measured by enzyme immunoassay. Early- and late-onset PE were associated with increased left ventricular mass index and relative wall thickness compared with normotensive controls. In women with early-onset PE, the prevalence of concentric hypertrophy (40%) and diastolic dysfunction (23%) was also significantly higher (both P < 0.05) compared with women with late-onset PE (16% for both). Maternal serum BNP levels were significantly higher (P < 0.05) in women with early-onset PE and correlated with relative wall thickness and left ventricular mass index. Early-onset PE is associated with more severe cardiac impairment than is late-onset PE, as evidenced by an increased prevalence of concentric hypertrophy, diastolic dysfunction and higher levels of BNP. These findings suggest that early-onset PE causes greater myocardial damage, increasing the risk of both peripartum and postpartum cardiovascular morbidity. Although these cardiovascular effects are easily identified by echocardiographic parameters and measuring BNP, further studies are needed to assess their clinical utility. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.

  17. The Effect of Antibiotics in Early Life on Brain Function and Behaviour

    International Development Research Centre (IDRC) Digital Library (Canada)

    Recent evidence in animal models suggests that gut microbiota can influence ... of the microbiota-gut-brain axis related to antibiotic effects on brain function and behaviour ... IDRC and DHSC partner to fight antimicrobial resistance in animals.

  18. The right brain is dominant in psychotherapy.

    Science.gov (United States)

    Schore, Allan N

    2014-09-01

    This article discusses how recent studies of the right brain, which is dominant for the implicit, nonverbal, intuitive, holistic processing of emotional information and social interactions, can elucidate the neurobiological mechanisms that underlie the relational foundations of psychotherapy. Utilizing the interpersonal neurobiological perspective of regulation theory, I describe the fundamental role of the early developing right brain in relational processes, throughout the life span. I present interdisciplinary evidence documenting right brain functions in early attachment processes, in emotional communications within the therapeutic alliance, in mutual therapeutic enactments, and in therapeutic change processes. This work highlights the fact that the current emphasis on relational processes is shared by, cross-fertilizing, and indeed transforming both psychology and neuroscience, with important consequences for clinical psychological models of psychotherapeutic change. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. "Brain sex differentiation" in teleosts: Emerging concepts with potential biomarkers.

    Science.gov (United States)

    Senthilkumaran, Balasubramanian; Sudhakumari, Cheni-Chery; Mamta, Sajwan-Khatri; Raghuveer, Kavarthapu; Swapna, Immani; Murugananthkumar, Raju

    2015-09-01

    "Brain sex differentiation" in teleosts is a contentious topic of research as most of the earlier reports tend to suggest that gonadal sex differentiation drives brain sex differentiation. However, identification of sex-specific marker genes in the developing brain of teleosts signifies brain-gonadal interaction during early sexual development in lower vertebrates. In this context, the influence of gonadotropin-releasing hormone (GnRH)-gonadotropin (GTH) axis on gonadal sex differentiation, if any requires in depth analysis. Presence of seabream (sb) GnRH immunoreactivity (ir-) in the brain of XY Nile tilapia was found as early as 5days post hatch (dph) followed by qualitative reduction in the preoptic area-hypothalamus region. In contrast, in the XX female brain a steady ir- of sbGnRH was evident from 15dph. Earlier studies using sea bass already implied the importance of hypothalamic gonadotropic axis completion during sex differentiation period. Such biphasic pattern of localization was also seen in pituitary GTHs using heterologous antisera in tilapia. However, more recent analysis in the same species could not detect any sexually dimorphic pattern using homologous antisera for pituitary GTHs. Detailed studies on the development of hypothalamo-hypophyseal-gonadal axis in teleosts focusing on hypothalamic monoamines (MA) and MA-related enzymes demonstrated sex-specific differential expression of tryptophan hydroxylase (Tph) in the early stages of developing male and female brains of tilapia and catfish. The changes in Tph expression was in agreement with the levels of serotonin (5-HT) and 5-hydroxytryptophan in the preoptic area-hypothalamus. Considering the stimulatory influence of 5-HT on GnRH and GTH release, it is possible to propose a network association between these correlates during early development, which may bring about brain sex dimorphism in males. A recent study from our laboratory during female brain sex development demonstrated high expression of

  20. Sensitivity of different MRI sequences in the early detection of melanoma brain metastases

    Science.gov (United States)

    Breckwoldt, Michael O.; Schwarz, Daniel; Radbruch, Alexander; Enk, Alexander; Bendszus, Martin; Hassel, Jessica; Schlemmer, Heinz-Peter

    2018-01-01

    Background After the emergence of new MRI techniques such as susceptibility- and diffusion-weighted imaging (SWI and DWI) and because of specific imaging characteristics of melanoma brain metastases (MBM), it is unclear which MRI sequences are most beneficial for detection of MBM. This study was performed to investigate the sensitivity of six clinical MRI sequences in the early detection of MBM. Methods Medical records of all melanoma patients referred to our center between November 2005 and December 2016 were reviewed for presence of MBM. Analysis encompassed six MRI sequences at the time of initial diagnosis of first or new MBM, including non-enhanced T1-weighted (T1w), contrast-enhanced T1w (ceT1w), T2-weighted (T2w), T2w-FLAIR, susceptibility-weighted (SWI) and diffusion-weighted (DWI) MRI. Each lesion was rated with respect to its conspicuity (score from 0—not detectable to 3—clearly visible). Results Of 1210 patients, 217 with MBM were included in the analysis and up to 5 lesions per patient were evaluated. A total of 720 metastases were assessed and all six sequences were available for 425 MBM. Sensitivity (conspicuity ≥2) was 99.7% for ceT1w, 77.0% for FLAIR, 64.7% for SWI, 61.0% for T2w, 56.7% for T1w, and 48.4% for DWI. Thirty-one (7.3%) of 425 lesions were only detectable by ceT1w but no other sequence. Conclusions Contrast-enhanced T1-weighting is more sensitive than all other sequences for detection of MBM. Disruption of the blood-brain-barrier is consistently an earlier sign in MBM than perifocal edema, signal loss on SWI or diffusion restriction. PMID:29596475

  1. Longitudinal functional brain imaging study in early course schizophrenia before and after cognitive enhancement therapy.

    Science.gov (United States)

    Keshavan, Matcheri S; Eack, Shaun M; Prasad, Konasale M; Haller, Chiara S; Cho, Raymond Y

    2017-05-01

    Schizophrenia is characterized by impaired -social and non social cognition both of which lead to functional deficits. These deficits may benefit from cognitive remediation, but the neural underpinnings of such improvements have not been clearly delineated. We conducted a functional magnetic resonance (fMRI) study in early course schizophrenia patients randomly assigned to cognitive enhancement therapy (CET) or enriched supportive therapy (EST) and treated for two years. Imaging data over three time points including fMRI blood oxygen level dependent (BOLD) data were acquired during performance of a cognitive control paradigm, the Preparing to Overcome Prepotency (POP) task, and functional connectivity data, were analyzed. During the two years of treatment, CET patients showed a continual increase in BOLD activity in the right dorsolateral prefrontal cortex (DLPFC), whereas EST patients tended to show no change in prefrontal brain function throughout treatment. Increases in right DLPFC activity were modestly associated with improved neurocognition (β = .14, p = .041), but not social cognition. Functional connectivity analyses showed reduced connectivity between the DLPFC and the anterior cingulate cortex (ACC) in CET compared to EST over the two years of treatment, which was associated with neurocognitive improvement. These findings suggest that CET leads to enhanced neural activity in brain regions mediating cognitive control and increased efficiency in prefrontal circuits; such changes may be related to the observed therapeutic effects of CET on neurocognitive function. Copyright © 2017. Published by Elsevier Inc.

  2. Development of the Young Brain

    Medline Plus

    Full Text Available ... developing brain. Announcer: So how well are our children handing multi-tasking in a digital age that changes, seemingly, by the hour? Early evidence suggests -pretty well. In fact, the human ...

  3. Juvenile angio-Behçet's disease: report and brain MRI findings of 3 ...

    African Journals Online (AJOL)

    Background: Behçet's Disease (BD) is a vasculitis of unknown origin; it is characterized by recurrent mouth and genital ulcerations, uveitis and diverse systemic manifestations. It is very rare in children. Vascular tropism is mainly characterized by phlebothrombosis; arterial involvement is less frequent. Case presentations: ...

  4. Brain-derived neurotrophic factor and autism: maternal and infant peripheral blood levels in the Early Markers for Autism (EMA) Study

    Science.gov (United States)

    Croen, Lisa A.; Goines, Paula; Braunschweig, Daniel; Yolken, Robert; Yoshida, Cathleen K.; Grether, Judith K.; Fireman, Bruce; Kharrazi, Martin; Hansen, Robin; Van de Water, Judy

    2008-01-01

    LAY ABSTRACT The diagnosis of autism is based solely on behavioral characteristics. There is currently no laboratory test that can be done to identify autism. In this study, we investigated a molecule called brain derived neurotrophic factor (BDNF) as a possible early biologic marker for autism. BDNF is a small protein found throughout the central nervous system and in circulating blood. We measured the level of BDNF in blood collected from women during pregnancy and from their babies at birth. We found that the concentration of BDNF in the maternal mid-pregnancy and newborn blood specimens was similar for children with autism, children with mental retardation, and children with typical development. The results of this study suggest that BDNF is unlikely to be a useful early biologic marker for autism. SCIENTIFIC ABSTRACT Objective To investigate levels of brain-derived neurotrophic factor (BDNF) in mid-pregnancy and neonatal blood specimens as early biologic markers for autism. Methods We conducted a population-based case-control study nested within the cohort of infants born from July 2000 – September 2001 to women who participated in the prenatal screening program in Orange County, California. Cases (n=84) were all children receiving services for autism at the Regional Center of Orange County. Two comparison groups from the same study population were included: children with mental retardation or developmental delay (n=49) receiving services at the same regional center, and children not receiving services for developmental disabilities, randomly sampled from the California birth certificate files (n=159), and frequency-matched to autism cases on sex, birth year, and birth month. BDNF concentrations were measured in archived mid-pregnancy and neonatal blood specimens drawn during routine prenatal and newborn screening using a highly sensitive bead-based assay (Luminex). Results The concentration of BDNF in maternal mid-pregnancy and neonatal specimens was

  5. Insulin-Resistant Brain State: the culprit in sporadic Alzheimer’s Disease?

    Science.gov (United States)

    Correia, Sónia C.; Santos, Renato X.; Perry, George; Zhu, Xiongwei; Moreira, Paula I.; Smith, Mark A.

    2011-01-01

    Severe abnormalities in brain glucose/energy metabolism and insulin signaling have been documented to take a pivotal role in early sporadic Alzheimer’s disease (sAD) pathology. Indeed, the “insulin-resistant brain state” has been hypothesized to form the core of the neurodegenerative events that occur in sAD. In this vein, intracerebroventricular administration of subdiabetogenic doses of streptozotocin (STZ) in rats can induce an insulin-resistant brain state, which is proposed as a suitable experimental model of sAD. This review highlights the involvement of disturbed brain insulin metabolism in sAD etiopathogenesis. Furthermore, current knowledge demonstrates that central STZ administration produces brain pathology and behavioral changes that resemble changes found in sAD patients. The STZ-intracerebroventricularly treated rat represents a promising experimental tool in this field by providing new insights concerning early brain alterations in sAD, which can be translated in novel etiopathogenic and therapeutic approaches in this disease. PMID:21262392

  6. Brain imaging

    International Nuclear Information System (INIS)

    Greenfield, L.D.; Bennett, L.R.

    1976-01-01

    Imaging with radionuclides should be used in a complementary fashion with other neuroradiologic techniques. It is useful in the early detection and evaluation of intracranial neoplasm, cerebrovascular accident and abscess, and in postsurgical follow-up. Cisternography yields useful information about the functional status of cerebrospinal fluid pathways. Computerized axial tomography is a new technique of great promise that produced a cross-sectional image of the brain

  7. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes.

    Science.gov (United States)

    Salazar, Ma Isabel; Richardson, Jason H; Sánchez-Vargas, Irma; Olson, Ken E; Beaty, Barry J

    2007-01-30

    To be transmitted by its mosquito vector, dengue virus (DENV) must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP) is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi). The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands) increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands) differed in their response to DENV-2 infection.

  8. Shift of graft-versus-host-disease target organ tropism by dietary vitamin A.

    Directory of Open Access Journals (Sweden)

    Christian Koenecke

    Full Text Available Gut-homing of donor T cells is causative for the development of intestinal GvHD in recipients of allogeneic hematopoietic stem cell transplantation (HSCT. Expression of the gut-specific homing receptors integrin-α4β7 and chemokine receptor CCR9 on T cells is imprinted in gut-associated lymphoid tissues (GALT under the influence of the vitamin A metabolite retinoic acid. Here we addressed the role of vitamin A deficiency in HSCT-recipients for donor T cell migration in the course of experimental GvHD. Vitamin A-deficient (VAD mice were prepared by feeding them a vitamin A-depleted diet. Experiments were performed in a C57BL/6 into BALB/c model of acute GvHD. We found that expression of integrin-α4β7 and CCR9 in GALT was reduced in VAD recipients after HSCT. Competitive in vivo homing assays showed that allogeneic T cells primed in VAD mice did not home as efficiently to the intestine as T cells primed in mice fed with standard diet (STD. The course of GvHD was ameliorated in VAD HSCT-recipients and, consequently, their survival was prolonged compared to recipients receiving STD. However, VAD-recipients were not protected and died of clinical GvHD. We found reduced numbers of donor T cells in the intestine but increased cell counts and tissue damage in other organs of VAD-recipients. Furthermore, we observed high IFN-γ(+CD4(+ and low FoxP3(+CD4(+ frequencies of total donor CD4(+ T cells in VAD as compared to STD recipients. Taken together, these results indicate that dietary vitamin A deficiency in HSCT-recipients changed target organ tropism in GvHD but also resulted in fatal inflammation after HSCT.

  9. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2007-01-01

    Full Text Available Abstract Background To be transmitted by its mosquito vector, dengue virus (DENV must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. Results After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi. The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Conclusion Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands differed in their response to DENV-2 infection.

  10. Magnetic resonance spectroscopy of traumatic brain in SD rats model

    International Nuclear Information System (INIS)

    Li Ke; Li Yangbin; Li Zhiming; Huang Yong; Li Bin; Lu Guangming

    2009-01-01

    Objective: To assess the value and prospect of magnetic resonance spectroscopy (MRS) in early diagnosis of traumatic brain with traumatic brain model in SD rats. Methods: Traumatic brain modal was established in 40 male SD rats utilizing a weigh-drop device, and MRS was performed before trauma and 4,8,24 and 48 hours after trauma. The ratio of N-acetylaspartate/creatine (NAA/Ct) and choline/creatine (Cho/Cr) were calculated and compared with pathological findings respectively. Results: Axonal changes were confirmed in microscopic study 4 hours after injury. The ratio of NAA/Ct decreased distinctly at 4 hours after trauma, followed by a steadily recover at 8 hours, and no significant change from 24h to 48h. There was no significant change in the ratio of Cho/Cr before and after trauma. Conclusion: MRS can be used to monitor the metabolic changes of brain non-invasively. MRS could play a positive role in early diagnosis, prognosis and follow-up of traumatic brain. (authors)

  11. Early diagnosis of neurodegenerative diseases - the long awaited Holy Grail and bottleneck of modern brain research - 19th HUPO BPP workshop: May 22-24, 2013, Dortmund, Germany.

    Science.gov (United States)

    Schrötter, Andreas; Magraoui, Fouzi El; Gröttrup, Bernd; Wiltfang, Jens; Heinsen, Helmut; Marcus, Katrin; Meyer, Helmut E; Grinberg, Lea T; Park, Young Mok

    2013-10-01

    The HUPO Brain Proteome Project (HUPO BPP) held its 19th workshop in Dortmund, Germany, from May 22 to 24, 2013. The focus of the spring workshop was on strategies and developments concerning early diagnosis of neurodegenerative diseases. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Motor impairments related to brain injury timing in early hemiparesis. Part II: abnormal upper extremity joint torque synergies.

    Science.gov (United States)

    Sukal-Moulton, Theresa; Krosschell, Kristin J; Gaebler-Spira, Deborah J; Dewald, Julius P A

    2014-01-01

    Extensive neuromotor development occurs early in human life, and the timing of brain injury may affect the resulting motor impairment. In Part I of this series, it was demonstrated that the distribution of weakness in the upper extremity depended on the timing of brain injury in individuals with childhood-onset hemiparesis. The goal of this study was to characterize how timing of brain injury affects joint torque synergies, or losses of independent joint control. Twenty-four individuals with hemiparesis were divided into 3 groups based on the timing of their injury: before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), and after 6 months of age (POST-natal, n = 8). Individuals with hemiparesis and 8 typically developing peers participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks while their efforts were recorded by a multiple degree-of-freedom load cell. Motor output in 4 joints of the upper extremity was concurrently measured during 8 primary torque generation tasks to quantify joint torque synergies. There were a number of significant coupling patterns identified in individuals with hemiparesis that differed from the typically developing group. POST-natal differences were most noted in the coupling of shoulder abductors with elbow, wrist, and finger flexors, while the PRE-natal group demonstrated significant distal joint coupling with elbow flexion. The torque synergies measured provide indirect evidence for the use of bulbospinal pathways in the POST-natal group, while those with earlier injury may use relatively preserved ipsilateral corticospinal motor pathways.

  13. Development of the Young Brain

    Medline Plus

    Full Text Available ... Health researcher Dr. Jay Giedd. Dr. Giedd: At different ages of life certain parts of the brain have much more dynamic growth than at other times. And so for very early in life we ...

  14. Development of the Young Brain

    Medline Plus

    Full Text Available ... items) Institute Announcements (24 items) Development of the Young Brain May 2, 2011 For more than twenty ... are our children handing multi-tasking in a digital age that changes, seemingly, by the hour? Early ...

  15. Emotion recognition in early Parkinson's disease patients undergoing deep brain stimulation or dopaminergic therapy: a comparison to healthy participants

    Directory of Open Access Journals (Sweden)

    Lindsey G. McIntosh

    2015-01-01

    Full Text Available Parkinson’s disease (PD is traditionally regarded as a neurodegenerative movement disorder, however, nigrostriatal dopaminergic degeneration is also thought to disrupt non-motor loops connecting basal ganglia to areas in frontal cortex involved in cognition and emotion processing. PD patients are impaired on tests of emotion recognition, but it is difficult to disentangle this deficit from the more general cognitive dysfunction that frequently accompanies disease progression. Testing for emotion recognition deficits early in the disease course, prior to cognitive decline, better assesses the sensitivity of these non-motor corticobasal ganglia-thalamocortical loops involved in emotion processing to early degenerative change in basal ganglia circuits. In addition, contrasting this with a group of healthy aging individuals demonstrates changes in emotion processing specific to the degeneration of basal ganglia circuitry in PD. Early PD patients (EPD were recruited from a randomized clinical trial testing the safety and tolerability of deep brain stimulation of the subthalamic nucleus (STN-DBS in early-staged PD. EPD patients were previously randomized to receive optimal drug therapy only (ODT, or drug therapy plus STN-DBS (ODT+DBS. Matched healthy elderly controls (HEC and young controls (HYC also participated in this study. Participants completed two control tasks and three emotion recognition tests that varied in stimulus domain. EPD patients were impaired on all emotion recognition tasks compared to HEC. Neither therapy type (ODT or ODT+DBS nor therapy state (ON/OFF altered emotion recognition performance in this study. Finally, HEC were impaired on vocal emotion recognition relative to HYC, suggesting a decline related to healthy aging. This study supports the existence of impaired emotion recognition early in the PD course, implicating an early disruption of fronto-striatal loops mediating emotional function.

  16. Effect of MgSO4 on the contents of Ca2+ in brain cell and NO in brain tissue of rats with radiation-induced acute brain injury

    International Nuclear Information System (INIS)

    Yuan Wenjia; Cui Fengmei; Liu Ping; He Chao; Tu Yu; Wang Lili

    2009-01-01

    The work is to explore the protection of magnesium sulfate(MgSO 4 ) on radiation-induced acute brain injury. Thirty six mature Sprague-Dawley(SD) rats were randomly divided into 3 groups of control, experimental control and experimental therapy group. The whole brains of SD rats of experimental control and experimental therapy group were irradiated with a dose of 20 Gy using 6 MeV electron beam. MgSO 4 was injected into the abdomen of experimental therapy rats group 1 day before, immediately and continue for 5 days after irradiation respectively. The brain tissues were taken on 3, 10, 17 and 24 d after irradiation. Ca 2+ content in brain cell was measured by laser scanning confocal microscopy, and the NO content in brain tissue was detected by the method of nitric acid reductase. Compared with the blank control group, the contents of Ca 2+ in brain cell and NO in brain tissue of the experimental control group increase (P 4 used in early stage can inhibit the contents of Ca 2+ in brain cell and NO in brain tissue after radiation-induced acute brain injury. It means that MgSO 4 has a protective effect on radiation-induced acute brain injury. (authors)

  17. Neural decoding of collective wisdom with multi-brain computing.

    Science.gov (United States)

    Eckstein, Miguel P; Das, Koel; Pham, Binh T; Peterson, Matthew F; Abbey, Craig K; Sy, Jocelyn L; Giesbrecht, Barry

    2012-01-02

    Group decisions and even aggregation of multiple opinions lead to greater decision accuracy, a phenomenon known as collective wisdom. Little is known about the neural basis of collective wisdom and whether its benefits arise in late decision stages or in early sensory coding. Here, we use electroencephalography and multi-brain computing with twenty humans making perceptual decisions to show that combining neural activity across brains increases decision accuracy paralleling the improvements shown by aggregating the observers' opinions. Although the largest gains result from an optimal linear combination of neural decision variables across brains, a simpler neural majority decision rule, ubiquitous in human behavior, results in substantial benefits. In contrast, an extreme neural response rule, akin to a group following the most extreme opinion, results in the least improvement with group size. Analyses controlling for number of electrodes and time-points while increasing number of brains demonstrate unique benefits arising from integrating neural activity across different brains. The benefits of multi-brain integration are present in neural activity as early as 200 ms after stimulus presentation in lateral occipital sites and no additional benefits arise in decision related neural activity. Sensory-related neural activity can predict collective choices reached by aggregating individual opinions, voting results, and decision confidence as accurately as neural activity related to decision components. Estimation of the potential for the collective to execute fast decisions by combining information across numerous brains, a strategy prevalent in many animals, shows large time-savings. Together, the findings suggest that for perceptual decisions the neural activity supporting collective wisdom and decisions arises in early sensory stages and that many properties of collective cognition are explainable by the neural coding of information across multiple brains. Finally

  18. Parent perceptions of early prognostic encounters following children's severe traumatic brain injury: 'locked up in this cage of absolute horror'.

    Science.gov (United States)

    Roscigno, Cecelia I; Grant, Gerald; Savage, Teresa A; Philipsen, Gerry

    2013-01-01

    Little guidance exists for discussing prognosis in early acute care with parents following children's severe traumatic brain injury (TBI). Providers' beliefs about truth-telling can shape what is said, how it is said and how providers respond to parents. This study was part of a large qualitative study conducted in the US (42 parents/37 families) following children's moderate-to-severe TBI (2005-2007). Ethnography of speaking was used to analyse interviews describing early acute care following children's severe TBI (29 parents/25 families). Parents perceived that: (a) parents were disadvantaged by provider delivery; (b) negative outcome values dominated some provider's talk; (c) truth-telling involves providers acknowledging all possibilities; (d) framing the child's prognosis with negative medical certainty when there is some uncertainty could damage parent-provider relationships; (e) parents needed to remain optimistic; and (f) children's outcomes could differ from providers' early acute care prognostications. Parents blatantly and tacitly revealed their beliefs that providers play an important role in shaping parent reception of and synthesis of prognostic information, which constructs the family's ability to cope and participate in shared decision-making. Negative medical certainty created a fearful or threatening environment that kept parents from being fully informed.

  19. Sex differences in depression-like behavior after nerve injury are associated with differential changes in brain-derived neurotrophic factor levels in mice subjected to early life stress.

    Science.gov (United States)

    Nishinaka, Takashi; Kinoshita, Megumi; Nakamoto, Kazuo; Tokuyama, Shogo

    2015-04-10

    We recently demonstrated that exposure to early life stress exacerbates nerve injury-induced thermal and mechanical hypersensitivity in adult male and female mice. Accumulating evidence suggests that chronic pain causes emotional dysfunction, such as anxiety and depression. In the present study, we investigated the impact of early life stress on depression-like behavior after nerve injury in mice. In addition, we examined the expression of brain-derived neurotrophic factor (BDNF), which is known to be involved in the pathogenesis of depression. Early life stress was induced by maternal separation between 2 and 3 weeks of age combined with social isolation after weaning (MSSI). At 9 weeks of age, the sciatic nerve was partially ligated to elicit neuropathic pain. Depression-like behavior was evaluated using the forced swim test at 12 weeks of age. Tissue samples from different regions of the brain were collected at the end of maternal separation (3 weeks of age) or after the forced swim test (12 weeks of age). At 12 weeks of age, immobility time in the forced swim test was increased only in MSSI-stressed female mice with nerve injury. BDNF expression was increased in male, but not female, MSSI-stressed mice at 3 weeks of age. However, MSSI stress did not impact BDNF expression in male or female mice at 12 weeks of age. Our findings suggest that exposure to early life stress exacerbates emotional dysfunction induced by neuropathic pain in a sex-dependent manner. Changes in BDNF expression after early life stress may be associated with neuropathic pain-induced depression-like behavior in adulthood. Furthermore, sex differences in BDNF expression after exposure to early life stress may contribute to sex-specific susceptibility to neuropathic pain-induced emotional dysfunction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Intracranial Monitoring after Severe Traumatic Brain Injury

    OpenAIRE

    Donnelly, Joseph

    2018-01-01

    Intracranial monitoring after severe traumatic brain injury offers the possibility for early detection and amelioration of physiological insults. In this thesis, I explore cerebral insults due raised intracranial pressure, decreased cerebral perfusion pressure and impaired cerebral pressure reactivity after traumatic brain injury. In chapter 2, the importance of intracranial pressure, cerebral perfusion pressure and pressure reactivity in regulating the cerebral circulation is elucidated ...

  1. Development of the Young Brain

    Medline Plus

    Full Text Available ... Early evidence suggests -pretty well. In fact, the human brain has a track record of successfully adapting ... reading. Dr. Giedd: It’s sobering to realize most humans that have lived and died have never read. ...

  2. Large-scale brain networks underlying language acquisition in early infancy

    Directory of Open Access Journals (Sweden)

    Fumitaka eHomae

    2011-05-01

    Full Text Available A critical issue in human development is that of whether the language-related areas in the left frontal and temporal regions work as a functional network in preverbal infants. Here, we used 94-channel near-infrared spectroscopy (NIRS to reveal the functional networks in the brains of sleeping 3-month-old infants with and without presenting speech sounds. During the first 3 min, we measured spontaneous brain activation (period 1. After period 1, we provided stimuli by playing Japanese sentences for 3 min (period 2. Finally, we measured brain activation for 3 min without providing the stimulus (period 3, as in period 1. We found that not only the bilateral temporal and temporoparietal regions but also the prefrontal and occipital regions showed oxygenated hemoglobin (oxy-Hb signal increases and deoxygenated hemoglobin (deoxy-Hb signal decreases when speech sounds were presented to infants. By calculating time-lagged cross-correlations and coherences of oxy-Hb signals between channels, we tested the functional connectivity for the 3 periods. The oxy-Hb signals in neighboring channels, as well as their homologous channels in the contralateral hemisphere, showed high correlation coefficients in period 1. Similar correlations were observed in period 2; however, the number of channels showing high correlations was higher in the ipsilateral hemisphere, especially in the anterior-posterior direction. The functional connectivity in period 3 showed a close relationship between the frontal and temporal regions, which was less prominent in period 1, indicating that these regions form the functional networks and work as a hysteresis system that has memory of the previous inputs. We propose a hypothesis that the spatiotemporally large-scale brain networks, including the frontal and temporal regions, underlie speech processing in infants and they might play important roles in language acquisition during infancy.

  3. Developmental changes in organization of structural brain networks.

    Science.gov (United States)

    Khundrakpam, Budhachandra S; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C

    2013-09-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.

  4. Cranial thickness changes in early childhood

    Science.gov (United States)

    Gajawelli, Niharika; Deoni, Sean; Shi, Jie; Dirks, Holly; Linguraru, Marius George; Nelson, Marvin D.; Wang, Yalin; Lepore, Natasha

    2017-11-01

    The neurocranium changes rapidly in early childhood to accommodate the developing brain. However, developmental disorders may cause abnormal growth of the neurocranium, the most common one being craniosynostosis, affecting about 1 in 2000 children. It is important to understand how the brain and neurocranium develop together to understand the role of the neurocranium in neurodevelopmental outcomes. However, the neurocranium is not as well studied as the human brain in early childhood, due to a lack of imaging data. CT is typically employed to investigate the cranium, but, due to ionizing radiation, may only be used for clinical cases. However, the neurocranium is also visible on magnetic resonance imaging (MRI). Here, we used a large dataset of MRI images from healthy children in the age range of 1 to 2 years old and extracted the neurocranium. A conformal geometry based analysis pipeline is implemented to determine a set of statistical atlases of the neurocranium. A growth model of the neurocranium will help us understand cranial bone and suture development with respect to the brain, which will in turn inform better treatment strategies for neurocranial disorders.

  5. Tert-butylhydroquinone alleviates early brain injury and cognitive dysfunction after experimental subarachnoid hemorrhage: role of Keap1/Nrf2/ARE pathway.

    Directory of Open Access Journals (Sweden)

    Zhong Wang

    Full Text Available Tert-butylhydroquinone (tBHQ, an Nrf2 activator, has demonstrated neuroprotection against brain trauma and ischemic stroke in vivo. However, little work has been done with respect to its effect on early brain injury (EBI after subarachnoid hemorrhage (SAH. At the same time, as an oral medication, it may have extensive clinical applications for the treatment of SAH-induced cognitive dysfunction. This study was undertaken to evaluate the influence of tBHQ on EBI, secondary deficits of learning and memory, and the Keap1/Nrf2/ARE pathway in a rat SAH model. SD rats were divided into four groups: (1 Control group (n=40; (2 SAH group (n=40; (3 SAH+vehicle group (n=40; and (4 SAH+tBHQ group (n=40. All SAH animals were subjected to injection of autologous blood into the prechiasmatic cistern once in 20 s. In SAH+tBHQ group, tBHQ was administered via oral gavage at a dose of 12.5 mg/kg at 2 h, 12 h, 24 h, and 36 h after SAH. In the first set of experiments, brain samples were extracted and evaluated 48 h after SAH. In the second set of experiments, changes in cognition and memory were investigated in a Morris water maze. Results shows that administration of tBHQ after SAH significantly ameliorated EBI-related problems, such as brain edema, blood-brain barrier (BBB impairment, clinical behavior deficits, cortical apoptosis, and neurodegeneration. Learning deficits induced by SAH was markedly alleviated after tBHQ therapy. Treatment with tBHQ markedly up-regulated the expression of Keap1, Nrf2, HO-1, NQO1, and GSTα1 after SAH. In conclusion, the administration of tBHQ abated the development of EBI and cognitive dysfunction in this SAH model. Its action was probably mediated by activation of the Keap1/Nrf2/ARE pathway.

  6. Pedophilic brain potential responses to adult erotic stimuli.

    Science.gov (United States)

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults. Copyright © 2016. Published by Elsevier B.V.

  7. Central nervous system: brain

    International Nuclear Information System (INIS)

    Mishkin, F.S.

    1975-01-01

    Present radiopharmaceuticals and detector systems have provided nuclear medicine physicians with tools capable of detecting a variety of brain abnormalities with little radiation exposure to pediatric patients. It is essential that the referring physician as well as the physician performing the procedure recognize both the limitations and virtues of these techniques. Appropriate selection of brain imaging procedures in each specific case must be the rule. Brain scintigraphy reliably solves certain problems, such as detecting or excluding intracranial tumors and identifying early cerebral inflammatory disease, cerebral ischemic disease, and a variety of congenital anomalies. Other situations, such as seizures without a focal neurologic deficit, acute meningitis, and hydrocephalus, are less often benefited by these studies. The role of these procedures in acute trauma and its sequelae is at the present time limited in pediatric practice. (auth)

  8. How the embryonic chick brain twists

    OpenAIRE

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Forsch, Nickolas; Taber, Larry A.

    2016-01-01

    During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left–right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic m...

  9. Synthesis of new technetium brain radiotracers

    International Nuclear Information System (INIS)

    Ben Dhieb, Fatma

    2012-01-01

    The scintigraphic diagnosis is a major mean for detecting neuro degenerative diseases at early stage; this requires specific radiotracers to a particular class of brain receptors. Our goal was the synthesis of radiotracers, cytectrenes derivatives, which are specific to the 5-HT1A receptor, whose dysfunction is an indicator of neuro degeneration. The study of their biodistribution revealed for only one of them, a good brain retention and a retrieval adequate for diagnosis.

  10. Brain and bone abnormalities of thanatophoric dwarfism.

    Science.gov (United States)

    Miller, Elka; Blaser, Susan; Shannon, Patrick; Widjaja, Elysa

    2009-01-01

    The purpose of this article is to present the imaging findings of skeletal and brain abnormalities in thanatophoric dwarfism, a lethal form of dysplastic dwarfism. The bony abnormalities associated with thanatophoric dwarfism include marked shortening of the tubular bones and ribs. Abnormal temporal lobe development is a common associated feature and can be visualized as early as the second trimester. It is important to assess the brains of fetuses with suspected thanatophoric dwarfism because the presence of associated brain malformations can assist in the antenatal diagnosis of thanatophoric dwarfism.

  11. Advanced MRI techniques of the fetal brain

    International Nuclear Information System (INIS)

    Schoepf, V.; Dittrich, E.; Berger-Kulemann, V.; Kasprian, G.; Kollndorfer, K.; Prayer, D.

    2013-01-01

    Evaluation of the normal and pathological fetal brain. Magnetic resonance imaging (MRI). Advanced MRI of the fetal brain. Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. Serving as standard methods in the future. Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities. (orig.) [de

  12. Development of the Young Brain

    Medline Plus

    Full Text Available ... certain parts of the brain have much more dynamic growth than at other times. And so for very early in life we have our five senses where our visual system and audio system is getting established and optimized ...

  13. 99mTc-MIBI-SPECT-studies in the evaluation of brain tumors

    International Nuclear Information System (INIS)

    Ambrus, E.; Pavics, L.; Gruenwald, F.; Barath, B.; Tiszlavicz, L.; Bender, H.; Menzel, C.; Almasi, L.; Lang, J.; Bodosi, M.; Biersack, H.J.; Csernay, L.

    1994-01-01

    Brain SPECT studies were performed 5 and 60 minutes after 99m Tc-MIBI administration in 41 patients with brain tumors confirmed by CT and surgical removal (13 meningeomas, 8 astrocytomas grades I-III, 10 glioblastomas, 10 metastases). 99m Tc-MIBI uptake was found in 32 out of 41 brain tumors. According to the semiquantitative SPECT analysis, the tumor/non tumor radios revealed a statistically significant difference in the early tracer uptake between meningeomas and astrocytomas (+4.73±2.91 vs -1.75±0.75, p 99m Tc-MIBI uptake and its changes with time. We concluded that the combination of an early and late 99m Tc-MIBI brain SPECT may be helpful in the non invasive histological classification of brain tumors and the determination of the grade of theirs malignancy. (orig.) [de

  14. Can induced hypothermia be assured during brain MRI in neonates with hypoxic-ischemic encephalopathy?

    International Nuclear Information System (INIS)

    Wintermark, Pia; Labrecque, Michelle; Hansen, Anne; Warfield, Simon K.; DeHart, Stephanie

    2010-01-01

    Until now, brain MRIs in asphyxiated neonates who are receiving therapeutic hypothermia have been performed after treatment is complete. However, there is increasing interest in utilizing early brain MRI while hypothermia is still being provided to rapidly understand the degree of brain injury and possibly refine neuroprotective strategies. This study was designed to assess whether therapeutic hypothermia can be maintained while performing a brain MRI. Twenty MRI scans were obtained in 12 asphyxiated neonates while they were treated with hypothermia. The median difference between esophageal temperature on NICU departure and return was 0.1 C (range: -0.8 to 0.8 C). We found that therapeutic hypothermia can be safely and reproducibly maintained during a brain MRI. Hypothermia treatment should not prevent obtaining an early brain MRI if clinically indicated. (orig.)

  15. Can induced hypothermia be assured during brain MRI in neonates with hypoxic-ischemic encephalopathy?

    Energy Technology Data Exchange (ETDEWEB)

    Wintermark, Pia [Children' s Hospital Boston, Division of Newborn Medicine, Boston, MA (United States); Children' s Hospital Boston, Department of Radiology, Boston, MA (United States); Montreal Children' s Hospital, Division of Newborn Medicine, Montreal, QC (Canada); Labrecque, Michelle; Hansen, Anne [Children' s Hospital Boston, Division of Newborn Medicine, Boston, MA (United States); Warfield, Simon K.; DeHart, Stephanie [Children' s Hospital Boston, Department of Radiology, Boston, MA (United States)

    2010-12-15

    Until now, brain MRIs in asphyxiated neonates who are receiving therapeutic hypothermia have been performed after treatment is complete. However, there is increasing interest in utilizing early brain MRI while hypothermia is still being provided to rapidly understand the degree of brain injury and possibly refine neuroprotective strategies. This study was designed to assess whether therapeutic hypothermia can be maintained while performing a brain MRI. Twenty MRI scans were obtained in 12 asphyxiated neonates while they were treated with hypothermia. The median difference between esophageal temperature on NICU departure and return was 0.1 C (range: -0.8 to 0.8 C). We found that therapeutic hypothermia can be safely and reproducibly maintained during a brain MRI. Hypothermia treatment should not prevent obtaining an early brain MRI if clinically indicated. (orig.)

  16. Age-related functional brain changes in young children.

    Science.gov (United States)

    Long, Xiangyu; Benischek, Alina; Dewey, Deborah; Lebel, Catherine

    2017-07-15

    Brain function and structure change significantly during the toddler and preschool years. However, most studies focus on older or younger children, so the specific nature of these changes is unclear. In the present study, we analyzed 77 functional magnetic resonance imaging datasets from 44 children aged 2-6 years. We extracted measures of both local (amplitude of low frequency fluctuation and regional homogeneity) and global (eigenvector centrality mapping) activity and connectivity, and examined their relationships with age using robust linear correlation analysis and strict control for head motion. Brain areas within the default mode network and the frontoparietal network, such as the middle frontal gyrus, the inferior parietal lobule and the posterior cingulate cortex, showed increases in local and global functional features with age. Several brain areas such as the superior parietal lobule and superior temporal gyrus presented opposite development trajectories of local and global functional features, suggesting a shifting connectivity framework in early childhood. This development of functional connectivity in early childhood likely underlies major advances in cognitive abilities, including language and development of theory of mind. These findings provide important insight into the development patterns of brain function during the preschool years, and lay the foundation for future studies of altered brain development in young children with brain disorders or injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. No alterations of brain GABA after 6 months of treatment with atypical antipsychotic drugs in early-stage first-episode schizophrenia.

    Science.gov (United States)

    Goto, Naoki; Yoshimura, Reiji; Kakeda, Shingo; Moriya, Junji; Hori, Hikaru; Hayashi, Kenji; Ikenouchi-Sugita, Atsuko; Nakano-Umene, Wakako; Katsuki, Asuka; Nishimura, Joji; Korogi, Yukunori; Nakamura, Jun

    2010-12-01

    We investigated the effects of atypical antipsychotic drugs on GABA concentrations in early-stage, first-episode schizophrenia patients. Sixteen (8 males, 8 females; age, 30±11 years old) patients were followed up for six months. We also included 18 sex- and age-matched healthy control subjects. All patients were treated with atypical antipsychotic drugs (5 patients with risperidone, 5 patients with olanzapine, 4 patients with aripiprazole, and 2 patients with quetiapine). In all three regions measured (frontal lobe, left basal ganglia, and parieto-occipital lobe), no differences in GABA concentrations were observed in a comparison of pre-treatment levels and those six months after treatment. These results suggest that relatively short-term treatment with atypical antipsychotic drugs may not affect GABAergic neurotransmission; however, it is also possible that such treatment prevents further reductions in brain GABA levels in people with early-stage, first-episode schizophrenia. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Limbic grey matter changes in early Parkinson's disease.

    Science.gov (United States)

    Li, Xingfeng; Xing, Yue; Schwarz, Stefan T; Auer, Dorothee P

    2017-05-02

    The purpose of this study was to investigate local and network-related changes of limbic grey matter in early Parkinson's disease (PD) and their inter-relation with non-motor symptom severity. We applied voxel-based morphometric methods in 538 T1 MRI images retrieved from the Parkinson's Progression Markers Initiative website. Grey matter densities and cross-sectional estimates of age-related grey matter change were compared between subjects with early PD (n = 366) and age-matched healthy controls (n = 172) within a regression model, and associations of grey matter density with symptoms were investigated. Structural brain networks were obtained using covariance analysis seeded in regions showing grey matter abnormalities in PD subject group. Patients displayed focally reduced grey matter density in the right amygdala, which was present from the earliest stages of the disease without further advance in mild-moderate disease stages. Right amygdala grey matter density showed negative correlation with autonomic dysfunction and positive with cognitive performance in patients, but no significant interrelations were found with anxiety scores. Patients with PD also demonstrated right amygdala structural disconnection with less structural connectivity of the right amygdala with the cerebellum and thalamus but increased covariance with bilateral temporal cortices compared with controls. Age-related grey matter change was also increased in PD preferentially in the limbic system. In conclusion, detailed brain morphometry in a large group of early PD highlights predominant limbic grey matter deficits with stronger age associations compared with controls and associated altered structural connectivity pattern. This provides in vivo evidence for early limbic grey matter pathology and structural network changes that may reflect extranigral disease spread in PD. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2017 The

  19. Maternal separation as a model of brain-gut axis dysfunction.

    LENUS (Irish Health Repository)

    O'Mahony, Siobhain M

    2011-03-01

    Early life stress has been implicated in many psychiatric disorders ranging from depression to anxiety. Maternal separation in rodents is a well-studied model of early life stress. However, stress during this critical period also induces alterations in many systems throughout the body. Thus, a variety of other disorders that are associated with adverse early life events are often comorbid with psychiatric illnesses, suggesting a common underlying aetiology. Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is thought to involve a dysfunctional interaction between the brain and the gut. Essential aspects of the brain-gut axis include spinal pathways, the hypothalamic pituitary adrenal axis, the immune system, as well as the enteric microbiota. Accumulating evidence suggest that stress, especially in early life, is a predisposing factor to IBS.

  20. Effects of anodal transcranial direct current stimulation (tDCS) on behavioral and spatial memory during the early stage of traumatic brain injury in the rats.

    Science.gov (United States)

    Yoon, Kyung Jae; Lee, Yong-Taek; Chae, Seoung Wan; Park, Chae Ri; Kim, Dae Yul

    2016-03-15

    Transcranial direct current stimulation (tDCS) is a noninvasive technique to modulate the neural membrane potential. Its effects in the early stage of traumatic brain injury (TBI) have rarely been investigated. This study assessed the effects of anodal tDCS on behavioral and spatial memory in a rat model of traumatic brain injury. Thirty six rats underwent lateral fluid percussion and were then randomly assigned to one of three groups: control (n=12), five-day tDCS over peri-lesional cortex at one (1W, n=12), or two (2W, n=12) weeks post-injury. The Barnes maze (BM) and Rotarod (RR) tests were evaluated in a blind manner on day 1, week 3 and week 5 post-injury. After three weeks, both the 1W and 2W groups showed significant improvements in the BM ratio (PtDCS ameliorated behavioral and spatial memory function in the early phase after TBI when it is delivered two weeks post-injury. Earlier stimulation (one week post-injury) improves spatial memory only. However, the beneficial effects did not persist after cessation of the anodal stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Zika Virus Can Strongly Infect and Disrupt Secondary Organizers in the Ventricular Zone of the Embryonic Chicken Brain.

    Science.gov (United States)

    Thawani, Ankita; Sirohi, Devika; Kuhn, Richard J; Fekete, Donna M

    2018-04-17

    Zika virus (ZIKV) is associated with severe neurodevelopmental impairments in human fetuses, including microencephaly. Previous reports examining neural progenitor tropism of ZIKV in organoid and animal models did not address whether the virus infects all neural progenitors uniformly. To explore this, ZIKV was injected into the neural tube of 2-day-old chicken embryos, resulting in nonuniform periventricular infection 3 days later. Recurrent foci of intense infection were present at specific signaling centers that influence neuroepithelial patterning at a distance through secretion of morphogens. ZIKV infection reduced transcript levels for 3 morphogens, SHH, BMP7, and FGF8 expressed at the midbrain basal plate, hypothalamic floor plate, and isthmus, respectively. Levels of Patched1, a SHH-pathway downstream gene, were also reduced, and a SHH-dependent cell population in the ventral midbrain was shifted in position. Thus, the diminishment of signaling centers through ZIKV-mediated apoptosis may yield broader, non-cell-autonomous changes in brain patterning. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Brain Abscess Presenting as Postpartum Diabetes Insipidus

    Directory of Open Access Journals (Sweden)

    Silvia So-Haei Liu

    2004-03-01

    Conclusion: The diagnosis of brain abscess in this patient was masked by postpartum diabetes insipidus, which is an unusual manifestation. Symptoms and signs of brain abscess are nonspecific in the early stage and missed diagnosis is not uncommon. In conclusion, we reaffirm the importance of remarking on any past relevant information, and one should always be aware of any unresolved symptoms even though they may be nonspecific.

  3. Effect of cadmium on lipid metabolism of brain

    International Nuclear Information System (INIS)

    Gulati, S.; Gill, K.D.; Nath, R.

    1987-01-01

    The effect of early postnatal cadmium exposure on the in vivo incorporation of (1- 14 C) sodium acetate into various lipid classes of the weanling rat brain was studied. A stimulated incorporation of the label was observed in total lipids, phospholipids, cholesterol, cerebrosides and sulphatides of the brain of Cd-exposed animals compared to controls. (author)

  4. Early (N170/M170 face-sensitivity despite right lateral occipital brain damage in acquired prosopagnosia

    Directory of Open Access Journals (Sweden)

    Esther eAlonso Prieto

    2011-12-01

    Full Text Available Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event related potentials were recorded in response to faces, cars and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS. Despite the patient’s right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces (occipital face area, OFA, we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left fusiform face area, or lFFA. These results were replicated by a magneto-encephalographic (MEG investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170 on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus – two areas showing face preferential responses in the patient’s right hemisphere - might be necessary to generate

  5. Imaging Brain Development: Benefiting from Individual Variability

    Directory of Open Access Journals (Sweden)

    Megha Sharda

    2015-01-01

    Full Text Available Human brain development is a complex process that evolves from early childhood to young adulthood. Major advances in brain imaging are increasingly being used to characterize the developing brain. These advances have further helped to elucidate the dynamic maturational processes that lead to the emergence of complex cognitive abilities in both typical and atypical development. However, conventional approaches involve categorical group comparison models and tend to disregard the role of widespread interindividual variability in brain development. This review highlights how this variability can inform our understanding of developmental processes. The latest studies in the field of brain development are reviewed, with a particular focus on the role of individual variability and the consequent heterogeneity in brain structural and functional development. This review also highlights how such heterogeneity might be utilized to inform our understanding of complex neuropsychiatric disorders and recommends the use of more dimensional approaches to study brain development.

  6. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat.

    Science.gov (United States)

    Casas, Rafael; Muthusamy, Siva; Wakim, Paul G; Sinharay, Sanhita; Lentz, Margaret R; Reid, William C; Hammoud, Dima A

    2018-01-01

    HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain

  7. Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood–brain barrier disruption after ischemic brain injury

    Science.gov (United States)

    Jiang, Xiaoyan; Zhang, Lili; Pu, Hongjian; Hu, Xiaoming; Zhang, Wenting; Cai, Wei; Gao, Yanqin; Leak, Rehana K.; Keep, Richard F.; Bennett, Michael V. L.; Chen, Jun

    2017-01-01

    The damage borne by the endothelial cells (ECs) forming the blood–brain barrier (BBB) during ischemic stroke and other neurological conditions disrupts the structure and function of the neurovascular unit and contributes to poor patient outcomes. We recently reported that structural aberrations in brain microvascular ECs—namely, uncontrolled actin polymerization and subsequent disassembly of junctional proteins, are a possible cause of the early onset BBB breach that arises within 30–60 min of reperfusion after transient focal ischemia. Here, we investigated the role of heat shock protein 27 (HSP27) as a direct inhibitor of actin polymerization and protectant against BBB disruption after ischemia/reperfusion (I/R). Using in vivo and in vitro models, we found that targeted overexpression of HSP27 specifically within ECs—but not within neurons—ameliorated BBB impairment 1–24 h after I/R. Mechanistically, HSP27 suppressed I/R-induced aberrant actin polymerization, stress fiber formation, and junctional protein translocation in brain microvascular ECs, independent of its protective actions against cell death. By preserving BBB integrity after I/R, EC-targeted HSP27 overexpression attenuated the infiltration of potentially destructive neutrophils and macrophages into brain parenchyma, thereby improving long-term stroke outcome. Notably, early poststroke administration of HSP27 attached to a cell-penetrating transduction domain (TAT-HSP27) rapidly elevated HSP27 levels in brain microvessels and ameliorated I/R-induced BBB disruption and subsequent neurological deficits. Thus, the present study demonstrates that HSP27 can function at the EC level to preserve BBB integrity after I/R brain injury. HSP27 may be a therapeutic agent for ischemic stroke and other neurological conditions involving BBB breakdown. PMID:28137866

  8. Sleep habits, academic performance, and the adolescent brain structure

    OpenAIRE

    Urrila, Anna S.; Artiges, Eric; Massicotte, Jessica; Miranda, Ruben; Vulser, H?l?ne; B?zivin-Frere, Pauline; Lapidaire, Winok; Lema?tre, Herv?; Penttil?, Jani; Conrod, Patricia J.; Garavan, Hugh; Martinot, Marie-Laure Paill?re; Martinot, Jean-Luc

    2017-01-01

    Here we report the first and most robust evidence about how sleep habits are associated with regional brain grey matter volumes and school grade average in early adolescence. Shorter time in bed during weekdays, and later weekend sleeping hours correlate with smaller brain grey matter volumes in frontal, anterior cingulate, and precuneus cortex regions. Poor school grade average associates with later weekend bedtime and smaller grey matter volumes in medial brain regions. The medial prefronta...

  9. Complete Unique Genome Sequence, Expression Profile, and Salivary Gland Tissue Tropism of the Herpesvirus 7 Homolog in Pigtailed Macaques.

    Science.gov (United States)

    Staheli, Jeannette P; Dyen, Michael R; Deutsch, Gail H; Basom, Ryan S; Fitzgibbon, Matthew P; Lewis, Patrick; Barcy, Serge

    2016-08-01

    Human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 are classified as roseoloviruses and are highly prevalent in the human population. Roseolovirus reactivation in an immunocompromised host can cause severe pathologies. While the pathogenic potential of HHV-7 is unclear, it can reactivate HHV-6 from latency and thus contributes to severe pathological conditions associated with HHV-6. Because of the ubiquitous nature of roseoloviruses, their roles in such interactions and the resulting pathological consequences have been difficult to study. Furthermore, the lack of a relevant animal model for HHV-7 infection has hindered a better understanding of its contribution to roseolovirus-associated diseases. Using next-generation sequencing analysis, we characterized the unique genome of an uncultured novel pigtailed macaque roseolovirus. Detailed genomic analysis revealed the presence of gene homologs to all 84 known HHV-7 open reading frames. Phylogenetic analysis confirmed that the virus is a macaque homolog of HHV-7, which we have provisionally named Macaca nemestrina herpesvirus 7 (MneHV7). Using high-throughput RNA sequencing, we observed that the salivary gland tissue samples from nine different macaques had distinct MneHV7 gene expression patterns and that the overall number of viral transcripts correlated with viral loads in parotid gland tissue and saliva. Immunohistochemistry staining confirmed that, like HHV-7, MneHV7 exhibits a natural tropism for salivary gland ductal cells. We also observed staining for MneHV7 in peripheral nerve ganglia present in salivary gland tissues, suggesting that HHV-7 may also have a tropism for the peripheral nervous system. Our data demonstrate that MneHV7-infected macaques represent a relevant animal model that may help clarify the causality between roseolovirus reactivation and diseases. Human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 are classified as roseoloviruses. We have recently discovered that pigtailed macaques are naturally

  10. Premature brain aging in humans exposed to maternal nutrient restriction during early gestation

    NARCIS (Netherlands)

    Franke, Katja; Gaser, Christian; de Rooij, Susanne R.; Schwab, Matthias; Roseboom, Tessa J.

    2017-01-01

    Prenatal exposure to undernutrition is widespread in both developing and industrialized countries, causing irreversible damage to the developing brain, resulting in altered brain structure and decreased cognitive function during adulthood. The Dutch famine in 1944/45 was a humanitarian disaster, now

  11. The Val66Met Brain-Derived Neurotrophic Factor Gene Variant Interacts with Early Pain Exposure to Predict Cortisol Dysregulation in 7-year-old Children Born Very Preterm: Implications for Cognition

    OpenAIRE

    Chau, Cecil MY; Cepeda, Ivan L; Devlin, Angela M.; Weinberg, Joanne; Grunau, Ruth E

    2015-01-01

    Early stress in the form of repetitive neonatal pain, in infants born very preterm, is associated with long-term dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and with poorer cognitive performance. Brain-derived neurotrophic factor (BDNF) which is important in synaptic plasticity and cognitive functions is reduced by stress. Therefore the BDNF Val66Met variant, which affects secretion of BDNF, may interact with early exposure to pain-related stress in children born very prete...

  12. Early Blood-Brain Barrier Disruption after Mechanical Thrombectomy in Acute Ischemic Stroke.

    Science.gov (United States)

    Shi, Zhong-Song; Duckwiler, Gary R; Jahan, Reza; Tateshima, Satoshi; Szeder, Viktor; Saver, Jeffrey L; Kim, Doojin; Sharma, Latisha K; Vespa, Paul M; Salamon, Noriko; Villablanca, J Pablo; Viñuela, Fernando; Feng, Lei; Loh, Yince; Liebeskind, David S

    2018-05-01

    The impact of blood-brain barrier (BBB) disruption can be detected by intraparenchymal hyperdense lesion on the computed tomography (CT) scan after endovascular stroke therapy. The purpose of this study was to determine whether early BBB disruption predicts intracranial hemorrhage and poor outcome in patients with acute ischemic stroke treated with mechanical thrombectomy. We analyzed patients with anterior circulation stroke treated with mechanical thrombectomy and identified BBB disruption on the noncontrast CT images immediately after endovascular treatment. Follow-up CT or magnetic resonance imaging scan was performed at 24 hours to assess intracranial hemorrhage. We dichotomized patients into those with moderate BBB disruption versus those with minor BBB disruption and no BBB disruption. We evaluated the association of moderate BBB disruption after mechanical thrombectomy with intracranial hemorrhage and clinical outcomes. Moderate BBB disruption after mechanical thrombectomy was found in 56 of 210 patients (26.7%). Moderate BBB disruption was independently associated with higher rates of hemorrhagic transformation (OR 25.33; 95% CI 9.93-64.65; P disruption with intracranial hemorrhage remained in patients with successful reperfusion after mechanical thrombectomy. The location of BBB disruption was not associated with intracranial hemorrhage and poor outcome. Moderate BBB disruption is common after mechanical thrombectomy in a quarter of patients with acute ischemic stroke and increases the risk of intracranial hemorrhage and poor outcome. Copyright © 2018 by the American Society of Neuroimaging.

  13. Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies of the role of ORF3abc in viral cell tropism.

    Science.gov (United States)

    Bálint, Ádám; Farsang, Attila; Zádori, Zoltán; Hornyák, Ákos; Dencso, László; Almazán, Fernando; Enjuanes, Luis; Belák, Sándor

    2012-06-01

    The full-length genome of the highly lethal feline infectious peritonitis virus (FIPV) strain DF-2 was sequenced and cloned into a bacterial artificial chromosome (BAC) to study the role of ORF3abc in the FIPV-feline enteric coronavirus (FECV) transition. The reverse genetic system allowed the replacement of the truncated ORF3abc of the original FIPV DF-2 genome with the intact ORF3abc of the canine coronavirus (CCoV) reference strain Elmo/02. The in vitro replication kinetics of these two viruses was studied in CrFK and FCWF-4 cell lines, as well as in feline peripheral blood monocytes. Both viruses showed similar replication kinetics in established cell lines. However, the strain with a full-length ORF3 showed markedly lower replication of more than 2 log(10) titers in feline peripheral blood monocytes. Our results suggest that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type II FIPV.

  14. Reconstruction of the gene regulatory network involved in the sonic hedgehog pathway with a potential role in early development of the mouse brain.

    Directory of Open Access Journals (Sweden)

    Jinhua Liu

    2014-10-01

    Full Text Available The Sonic hedgehog (Shh signaling pathway is crucial for pattern formation in early central nervous system development. By systematically analyzing high-throughput in situ hybridization data of E11.5 mouse brain, we found that Shh and its receptor Ptch1 define two adjacent mutually exclusive gene expression domains: Shh+Ptch1- and Shh-Ptch1+. These two domains are associated respectively with Foxa2 and Gata3, two transcription factors that play key roles in specifying them. Gata3 ChIP-seq experiments and RNA-seq assays on Gata3-knockdown cells revealed that Gata3 up-regulates the genes that are enriched in the Shh-Ptch1+ domain. Important Gata3 targets include Slit2 and Slit3, which are involved in the process of axon guidance, as well as Slc18a1, Th and Qdpr, which are associated with neurotransmitter synthesis and release. By contrast, Foxa2 both up-regulates the genes expressed in the Shh+Ptch1- domain and down-regulates the genes characteristic of the Shh-Ptch1+ domain. From these and other data, we were able to reconstruct a gene regulatory network governing both domains. Our work provides the first genome-wide characterization of the gene regulatory network involved in the Shh pathway that underlies pattern formation in the early mouse brain.

  15. Protect Your Brain (A Minute of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2013-03-21

    At least three and a half million people in the U.S. sustained a traumatic brain injury (TBI), either with or without other injuries. This podcast discusses the importance of early diagnosis and treatment of brain injuries.  Created: 3/21/2013 by MMWR.   Date Released: 3/21/2013.

  16. Prion propagation and toxicity occur in vitro with two-phase kinetics specific to strain and neuronal type.

    Science.gov (United States)

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A; Haïk, Stéphane

    2013-03-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(C)), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrP(Sc) distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau.

  17. Anesthesia and the developing brain

    DEFF Research Database (Denmark)

    Davidson, Andrew J; Becke, Karin; de Graaff, Jurgen

    2015-01-01

    It is now well established that many general anesthetics have a variety of effects on the developing brain in animal models. In contrast, human cohort studies show mixed evidence for any association between neurobehavioural outcome and anesthesia exposure in early childhood. In spite of large...

  18. Development of the Young Brain

    Medline Plus

    Full Text Available ... Funded Science on EurekAlert EEG signals accurately predict autism as early as 3 months of age Researchers identify 44 genomic variants associated with depression Brain activity can predict success of depression treatment More News From the Field... Contact Us The ...

  19. Early rehabilitation and participation in focus

    DEFF Research Database (Denmark)

    Pallesen, Hanne; Buhl, Inge; Roenn-Smidt, Helle

    2016-01-01

    Early neurorehabilitation is an interdisciplinary field. Thus, in order to eliminate unnecessary barriers for individuals with severe acquired brain injury in early rehabilitation, we need rehabilitation science that supports both quantitative and qualitative research methods. Participation can...... be studied directly and indirectly. This commentary proposes that active participation and the ‘‘lived body’’ are essential terms in early rehabilitation of severe ABI patients, and a description of how these terms are interpreted and handled in the practice is needed....

  20. Brain lesion analysis using three-dimensional SPECT imaging

    International Nuclear Information System (INIS)

    Shibata, Iekado; Onagi, Atsuo; Kuroki, Takao

    1995-01-01

    A three-headed gamma camera (PRISM 3000) is capable to scan the protocol of early dynamic SPECT and to analyze two radioisotopes at the same time. We have framed three-dimensional brain SPECT images for several brain diseases by using the Application Visualization System (AVS). We carried out volume measurements in brain tumors and/or AVMs by applying this methodology. Thallium-201 and/or 123I-IMP were used for brain SPECT imaging. The dynamic scan protocol was changed in accordance with the given disease. The protocol for brain tumors was derived from a preliminary comparative study with thallium-201 and 123I-IMP that had suggested a disparity in the detection of brain tumors and the differentiation between tumor tissue and normal brain. The three-dimension SPECT image represented the brain tumor or AVM in a striking fashion, and the changes with respect to tumor or AVM after radiosurgery or embolization were understood readily. (author)

  1. Effect of the Nerve Growth Factor Mimetic GK-2 on Brain Structural and Functional State in the Early Postresuscitation Period

    Directory of Open Access Journals (Sweden)

    M. Sh. Avrushchenko

    2012-01-01

    Full Text Available Objective: to evaluate the efficacy of the nerve growth factor mimetic GK-2 used to improve the structural and functional state of the brain in the early postresuscitation period. Material and methods. Cardiac arrest was induced in mature male albino rats for 12 minutes, followed by resuscitation. The neurological state of the resuscitated animals was assessed by a scoring scale. On postresuscitation day 7, the density and composition of neuronal populations of Purkinje cells in the lateral cerebellar region and pyramidal neurons in the hippocampal CA1 sector were determined by a differential morphometric analysis. The results were statistically processed using the ANOVA method. Results. The use of GK-2 was found to accelerate neurological recovery in the resuscitated animals. On day 7 after 12-minute cardiac arrest, the resuscitated animals showed neuronal dystrophic changes and death in the neuronal populations highly susceptible to ischemia. It was shown that the systemic administration of the nerve growth factor mimetic GK-2 contributed to a reduction in the magnitude and depth of postresuscitation changes in the cerebellar Purkinje cells and prevented dystrophic changes in the pyramidal cells of the hippocampal CA1 sector. The findings suggest that GK-2 has a neuroprotective effect in the recovery period after total body ischemia. Conclusion. The results of this study indicate the efficiency of the systemic administration of the nerve growth factor mimetic GK-2 in improving the brain structural and functional state in the early postresuscitation period. This determines perspectives for the use of GK-2 to prevent and correct posthypoxic encephalopathies. Key words: the nerve growth factor mimetic GK-2, postresuscitation period, neuronal dystrophic changes and death, neurological status.

  2. Behavior Management for Children and Adolescents with Acquired Brain Injury

    Science.gov (United States)

    Slifer, Keith J.; Amari, Adrianna

    2009-01-01

    Behavioral problems such as disinhibition, irritability, restlessness, distractibility, and aggression are common after acquired brain injury (ABI). The persistence and severity of these problems impair the brain-injured individual's reintegration into family, school, and community life. Since the early 1980s, behavior analysis and therapy have…

  3. Devastating metabolic brain disorders of newborns and young infants.

    Science.gov (United States)

    Yoon, Hyun Jung; Kim, Ji Hye; Jeon, Tae Yeon; Yoo, So-Young; Eo, Hong

    2014-01-01

    Metabolic disorders of the brain that manifest in the neonatal or early infantile period are usually associated with acute and severe illness and are thus referred to as devastating metabolic disorders. Most of these disorders may be classified as organic acid disorders, amino acid metabolism disorders, primary lactic acidosis, or fatty acid oxidation disorders. Each disorder has distinctive clinical, biochemical, and radiologic features. Early diagnosis is important both for prompt treatment to prevent death or serious sequelae and for genetic counseling. However, diagnosis is often challenging because many findings overlap and may mimic those of more common neonatal conditions, such as hypoxic-ischemic encephalopathy and infection. Ultrasonography (US) may be an initial screening method for the neonatal brain, and magnetic resonance (MR) imaging is the modality of choice for evaluating metabolic brain disorders. Although nonspecific imaging findings are common in early-onset metabolic disorders, characteristic patterns of brain involvement have been described for several disorders. In addition, diffusion-weighted images may be used to characterize edema during an acute episode of encephalopathy, and MR spectroscopy depicts changes in metabolites that may help diagnose metabolic disorders and assess response to treatment. Imaging findings, including those of advanced MR imaging techniques, must be closely reviewed. If one of these rare disorders is suspected, the appropriate biochemical test or analysis of the specific gene should be performed to confirm the diagnosis. ©RSNA, 2014.

  4. Preliminary findings demonstrating latent effects of early adolescent marijuana use onset on cortical architecture

    Directory of Open Access Journals (Sweden)

    Francesca M. Filbey

    2015-12-01

    Conclusions: Divergent patterns between current MJ use and elements of cortical architecture were associated with early MJ use onset. Considering brain development in early adolescence, findings are consistent with disruptions in pruning. However, divergence with continued use for many years thereafter suggests altered trajectories of brain maturation during late adolescence and beyond.

  5. Brain SPECT

    International Nuclear Information System (INIS)

    Feistel, H.

    1991-01-01

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG) [de

  6. How the embryonic brain tube twists

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Forsch, Nickolas; Taber, Larry

    2014-03-01

    During early development, the tubular brain of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This deformation is one of the major organ-level symmetry-breaking events in development. Available evidence suggests that bending is caused by differential growth, but the mechanism for torsion remains poorly understood. Since the heart almost always loops in the same direction that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is virtually nonexistent, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. In addition, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model is used to interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''.

  7. Environment and brain plasticity: towards an endogenous pharmacotherapy.

    Science.gov (United States)

    Sale, Alessandro; Berardi, Nicoletta; Maffei, Lamberto

    2014-01-01

    Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes.

  8. Fisetin alleviates early brain injury following experimental subarachnoid hemorrhage in rats possibly by suppressing TLR 4/NF-κB signaling pathway.

    Science.gov (United States)

    Zhou, Chen-hui; Wang, Chun-xi; Xie, Guang-bin; Wu, Ling-yun; Wei, Yong-xiang; Wang, Qiang; Zhang, Hua-sheng; Hang, Chun-hua; Zhou, Meng-liang; Shi, Ji-xin

    2015-12-10

    Early brain injury (EBI) determines the unfavorable outcomes after subarachnoid hemorrhage (SAH). Fisetin, a natural flavonoid, has anti-inflammatory and neuroprotection properties in several brain injury models, but the role of fisetin on EBI following SAH remains unknown. Our study aimed to explore the effects of fisetin on EBI after SAH in rats. Adult male Sprague-Dawley rats were randomly divided into the sham and SAH groups, fisetin (25mg/kg or 50mg/kg) or equal volume of vehicle was given at 30min after SAH. Neurological scores and brain edema were assayed. The protein expression of toll-like receptor 4 (TLR 4), p65, ZO-1 and bcl-2 was examined by Western blot. TLR 4 and p65 were also assessed by immunohistochemistry (IHC). Enzyme-linked immunosorbent assay (ELISA) was performed to detect the production of pro-inflammatory cytokines. Terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling (TUNEL) was perform to assess neural cell apoptosis. High-dose (50mg/kg) fisetin significantly improved neurological function and reduced brain edema at both 24h and 72h after SAH. Remarkable reductions of TLR 4 expression and nuclear factor κB (NF-κB) translocation to nucleus were detected after fisetin treatment. In addition, fisetin significantly reduced the productions of pro-inflammatory cytokines, decreased neural cell apoptosis and increased the protein expression of ZO-1 and bcl-2. Our data provides the evidence for the first time that fisetin plays a protective role in EBI following SAH possibly by suppressing TLR 4/NF-κB mediated inflammatory pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Technetium 99mTc Pertechnetate Brain Scanning

    International Nuclear Information System (INIS)

    Rhee, Sang Min; Park, Jin Yung; Lee, Ahn Ki; Chung, Choo Il; Hong, Chang Gi; Rhee, Chong Heon; Koh, Chang Soon

    1968-01-01

    Technetium 99 mTc pertechnetate brain scanning were performed in 3 cases of head injury (2 chronic subdural hematomas and 1 acute epidural hematoma), 2 cases of brain abscess and 1 case of intracerebral hematoma associated with arteriovenous anomaly. In all the cases brain scintigrams showed 'hot areas.' Literatures on radioisotope scanning of intracranial lesions were briefly reviewed. With the improvement of radioisotope scanner and development of new radiopharmaceuticals brain scanning became a safe and useful screening test for diagnosis of intracranial lesions. Brain scanning can be easily performed even to a moribund patient without any discomfort and risk to the patient which are associated with cerebral angiography or pneumoencephalography. Brain scanning has been useful in diagnosis of brain tumor, brain abscess, subdural hematoma, and cerebral vascular diseases. In 80 to 90% of brain tumors positive scintigrams can be expected. Early studies were done with 203 Hg-Neohydrin or 131 I-serum albumin. With these agents, however, patients receive rather much radiation to the whole body and kidneys. In 1965 Harper introduced 99 mTc to reduce radiation dose to the patient and improve statistical variation in isotope scanning.

  10. Autism: cause factors, early diagnosis and therapies.

    Science.gov (United States)

    Bhat, Shreya; Acharya, U Rajendra; Adeli, Hojjat; Bairy, G Muralidhar; Adeli, Amir

    2014-01-01

    Autism spectrum disorder (ASD) is a complex neurobiological disorder characterized by neuropsychological and behavioral deficits. Cognitive impairment, lack of social skills, and stereotyped behavior are the major autistic symptoms, visible after a certain age. It is one of the fastest growing disabilities. Its current prevalence rate in the U.S. estimated by the Centers for Disease Control and Prevention is 1 in 68 births. The genetic and physiological structure of the brain is studied to determine the pathology of autism, but diagnosis of autism at an early age is challenging due to the existing phenotypic and etiological heterogeneity among ASD individuals. Volumetric and neuroimaging techniques are explored to elucidate the neuroanatomy of the ASD brain. Nuroanatomical, neurochemical, and neuroimaging biomarkers can help in the early diagnosis and treatment of ASD. This paper presents a review of the types of autism, etiologies, early detection, and treatment of ASD.

  11. Early Fever As a Predictor of Paroxysmal Sympathetic Hyperactivity in Traumatic Brain Injury.

    Science.gov (United States)

    Hinson, Holly E; Schreiber, Martin A; Laurie, Amber L; Baguley, Ian J; Bourdette, Dennis; Ling, Geoffrey S F

    Paroxysmal sympathetic hyperactivity (PSH) is characterized by episodic, hyperadrenergic alterations in vital signs after traumatic brain injury (TBI). We sought to apply an objective scale to the vital sign alterations of PSH in order to determine whether 1 element might be predictive of developing PSH. We conducted an observational study of consecutive TBI patients (Glasgow Coma Scale score ≤12) and monitored the cohort for clinical evidence of PSH. PSH was defined as a paroxysm of 3 or more of the following characteristics: (1) tachycardia, (2) tachypnea, (3) hypertension, (4) fever, (5) dystonia (rigidity or decerebrate posturing), and (6) diaphoresis, with no other obvious causation (ie, alcohol withdrawal, sepsis). The Modified Clinical Feature Severity Scale (mCFSS) was applied to each participant once daily for the first 5 days of hospitalization. Nineteen (11%) of the 167 patients met criteria for PSH. Patients with PSH had a higher 5-day cumulative mCFSS score than those without PSH (median [interquartile range] = 36 [29-42] vs 29 [22-35], P = .01). Of the 4 components of the mCFSS, elevated temperature appeared to be most predictive of the development of PSH, especially during the first 24 hours (odds ratio = 1.95; 95% confidence interval, 1.12-3.40). Early fever after TBI may signal impending autonomic dysfunction.

  12. When and Why Did Brains Break Symmetry?

    Directory of Open Access Journals (Sweden)

    Lesley J. Rogers

    2015-12-01

    Full Text Available Asymmetry of brain function is known to be widespread amongst vertebrates, and it seems to have appeared very early in their evolution. In fact, recent evidence of functional asymmetry in invertebrates suggests that even small brains benefit from the allocation of different functions to the left and right sides. This paper discusses the differing functions of the left and right sides of the brain, including the roles of the left and right antennae of bees (several species in both short- and long-term recall of olfactory memories and in social behaviour. It considers the likely advantages of functional asymmetry in small and large brains and whether functional asymmetry in vertebrates and invertebrates is analogous or homologous. Neural or cognitive capacity can be enhanced both by the evolution of a larger brain and by lateralization of brain function: a possible reason why both processes occur side-by-side is offered.

  13. Brain MRI screening showing evidences of early central nervous system involvement in patients with systemic sclerosis.

    Science.gov (United States)

    Mohammed, Reem Hamdy A; Sabry, Yousriah Y; Nasef, Amr A

    2011-05-01

    Systemic sclerosis is a multisystem autoimmune collagen disease where structural and functional abnormalities of small blood vessels prevail. Transient ischemic attacks, ischemic stroke, and hemorrhage have been reported as primary consequence of vascular central nervous system affection in systemic sclerosis. Magnetic resonance imaging is considered to be the most sensitive diagnostic technique for detecting symptomatic and asymptomatic lesions in the brain in cases of multifocal diseases. The objective of this study is to detect subclinical as well as clinically manifest cerebral vasculopathy in patients with systemic sclerosis using magnetic resonance imaging. As much as 30 female patients with systemic sclerosis aged 27-61 years old, with disease duration of 1-9 years and with no history of other systemic disease or cerebrovascular accidents, were enrolled. Age-matched female control group of 30 clinically normal subjects, underwent brain magnetic resonance examination. Central nervous system (CNS) involvement in the form of white matter hyperintense foci of variable sizes were found in significantly abundant forms in systemic sclerosis patients on magnetic resonance evaluation than in age-related control group, signifying a form of CNS vasculopathy. Such foci showed significant correlation to clinical features of organic CNS lesion including headaches, fainting attacks and organic depression as well as to the severity of peripheral vascular disease with insignificant correlation with disease duration. In conclusion, subclinical as well as clinically manifest CNS ischemic vasculopathy is not uncommon in systemic sclerosis patients and magnetic resonance imaging is considered a sensitive noninvasive screening tool for early detection of CNS involvement in patients with systemic sclerosis.

  14. Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available CD4(+ T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5(+ cells, and (ii that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4(+ compartment. To test these hypotheses we measured in vivo turnover rates of CD4(+ T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p and disappearance (d* rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143-569 cells/ul participated. CCR5-expression defined a CD4(+ subpopulation of predominantly CD45R0(+ memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5(+ vs CCR5(-; healthy controls; P<0.01. Conversely, CXCR4 expression defined CD4(+ T-cells (predominantly CD45RA(+ naive cells with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5(+CD45R0(+CD4(+ memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05, naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9 or X4-tropic (n = 4. Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively. Our data are most consistent with models in which CD4(+ T-cell loss is primarily driven by non-specific immune activation.

  15. Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Liru Li

    Full Text Available The mesenchymal stem cells (MSCs derived from amniotic fluid (AF have become an attractive stem cells source for cell-based therapy because they can be harvested at low cost and avoid ethical disputes. In human research, stem cells derived from AF gradually became a hot research direction for disease treatment, specifically for their plasticity, their reduced immunogenicity and their tumor tropism regardless of the tumor size, location and source. Our work aimed to obtain and characterize human amniotic fluid mesenchymal stem cells (AFMSCs and detect their ovarian cancer tropsim in nude mice model. Ten milliliters of twenty independent amniotic fluid samples were collected from 16-20 week pregnant women who underwent amniocentesis for fetal genetic determination in routine prenatal diagnosis in the first affiliated hospital of Harbin medical university. We successfully isolated the AFMSCs from thirteen of twenty amniotic fluid samples. AFMSCs presented a fibroblastic-like morphology during the culture. Flow cytometry analyses showed that the cells were positive for specific stem cell markers CD73,CD90, CD105, CD166 and HLA-ABC (MHC class I, but negative for CD 45,CD40, CD34, CD14 and HLA-DR (MHC class II. RT-PCR results showed that the AFMSCs expressed stem cell marker OCT4. AFMSCs could differentiate into bone cells, fat cells and chondrocytes under certain conditions. AFMSCs had the high motility to migrate to ovarian cancer site but didn't have the tumorigenicity. This study enhances the possibility of AFMSCs as drug carrier in human cell-based therapy. Meanwhile, the research emphasis in the future can also put in targeting therapy of ovarian cancer.

  16. Learning to Thrive: Building Diverse Scientists’ Access to Community and Resources through the BRAINS Program

    Science.gov (United States)

    Margherio, Cara; Horner-Devine, M. Claire; Mizumori, Sheri J. Y.; Yen, Joyce W.

    2016-01-01

    BRAINS: Broadening the Representation of Academic Investigators in NeuroScience is a National Institutes of Health–funded, national program that addresses challenges to the persistence of diverse early-career neuroscientists. In doing so, BRAINS aims to advance diversity in neuroscience by increasing career advancement and retention of post-PhD, early-career neuroscientists from underrepresented groups (URGs). The comprehensive professional development program is structured to catalyze conversations specific to URGs in neuroscience and explicitly addresses factors known to impact persistence such as a weak sense of belonging to the scientific community, isolation and solo status, inequitable access to resources that impact career success, and marginalization from informal networks and mentoring relationships. While we do not yet have data on the long-term impact of the BRAINS program on participants’ career trajectory and persistence, we introduce the BRAINS program theory and report early quantitative and qualitative data on shorter-term individual impacts within the realms of career-advancing behaviors and career experiences. These early results suggest promising, positive career productivity, increased self-efficacy, stronger sense of belonging, and new perspectives on navigating careers for BRAINS participants. We finish by discussing recommendations for future professional development programs and research designed to broaden participation in the biomedical and life sciences. PMID:27587858

  17. Effectiveness of early decompressive surgery for massive hemispheric embolic infarction

    International Nuclear Information System (INIS)

    Osada, Hideo; Mori, Kentaro; Yamamoto, Takuji; Nakao, Yasuaki; Oyama, Kazutaka; Esaki, Takanori; Watanabe, Mitsuya

    2008-01-01

    Massive hemispheric embolic infarction associated with acute brain swelling and rapid clinical deterioration is known as malignant infarction because of the significant rates of mortality and morbidity. Decompressive hemicraniectomy is effective; however, the timing and outcome still remain unclear. Ninety-four patients with massive embolic hemispheric infarctions (infarct volume >200 ml) were retrospectively divided into 3 groups: 29 patients, treated conservatively (conservative group); 33 patients, operated on after the appearance of signs of brain herniation (late surgery group); and 32 patients, operated on before the onset of signs of brain herniation signs (early surgery group). The mortality at 1 and 6 months in the late surgery group (15.2% and 24.2%, respectively) was significantly improved as compared to the conservative group (62.1% and 69.0%, respectively) (p 200 ml) should be performed before the onset of brain herniation. Early surgery may achieve a satisfactory functional recovery. (author)

  18. From Ear to Brain

    Science.gov (United States)

    Kimura, Doreen

    2011-01-01

    In this paper Doreen Kimura gives a personal history of the "right-ear effect" in dichotic listening. The focus is on the early ground-breaking papers, describing how she did the first dichotic listening studies relating the effects to brain asymmetry. The paper also gives a description of the visual half-field technique for lateralized stimulus…

  19. An availability of brain magnetic resonance imaging (MRI) in the early diagnosis of latent hepatic encephalopathy

    International Nuclear Information System (INIS)

    Kuwahara, Noaki; Tanabe, Masako; Fujiwara, Akiko; Minato, Takeshi; Sasaki, Hiromasa; Higashi, Toshihiro; Tsuji, Takao.

    1996-01-01

    Brain MRI was carried out in patients with chronic liver diseases. No abnormal findings were recognized in patients with chronic viral hepatitis, while 59.2% of cirrhotics showed a symmetrically strong signal in basal ganglia on T1 weighted image in MRI. This finding significantly related with lowered Fischer's ratio of serum amino acid, increased levels of serum phenylalanine, tyrosine and hyaluronic acid, prolonged prothrombin time and decreased platelet counts in the peripheral blood. Overt hepatic encephalopathy was observed in 6 of 34 patients with the strong signal in MRI during follow-up period, while none of patients without that finding developed hepatic encephalopathy. These results have indicated that the strong signal in basal ganglia on MRI appears in cirrhotic patients with severe liver dysfunction, and it is an useful index in the early diagnosis of latent hepatic encephalopathy. An improvement of this MRI finding was not observed by long-term oral administration of branched-chain amino acid. (author)

  20. An availability of brain magnetic resonance imaging (MRI) in the early diagnosis of latent hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Noaki; Tanabe, Masako; Fujiwara, Akiko; Minato, Takeshi; Sasaki, Hiromasa [Hiroshima Posts and Telecommunications Hospital (Japan); Higashi, Toshihiro; Tsuji, Takao

    1996-03-01

    Brain MRI was carried out in patients with chronic liver diseases. No abnormal findings were recognized in patients with chronic viral hepatitis, while 59.2% of cirrhotics showed a symmetrically strong signal in basal ganglia on T1 weighted image in MRI. This finding significantly related with lowered Fischer`s ratio of serum amino acid, increased levels of serum phenylalanine, tyrosine and hyaluronic acid, prolonged prothrombin time and decreased platelet counts in the peripheral blood. Overt hepatic encephalopathy was observed in 6 of 34 patients with the strong signal in MRI during follow-up period, while none of patients without that finding developed hepatic encephalopathy. These results have indicated that the strong signal in basal ganglia on MRI appears in cirrhotic patients with severe liver dysfunction, and it is an useful index in the early diagnosis of latent hepatic encephalopathy. An improvement of this MRI finding was not observed by long-term oral administration of branched-chain amino acid. (author).