WorldWideScience

Sample records for e2-transitions

  1. Nuclear wobbling motion and properties of E-2 transitions

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y R [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, M [Fukuoka Univ. (Japan)

    1992-08-01

    The nuclear wobbling motion associated with the static triaxial deformation are discussed based on a microscopic theory. Properties of the E2-transitions between the one-phonon wobbling band and the yrast (vacuum) band are studied and their characteristic features are suggested. (author). 11 refs., 3 figs.

  2. Absolute E0 and E2 transition rates and collective states in 116Sn

    International Nuclear Information System (INIS)

    Kantele, J.; Julin, R.; Luontama, M.; Passoja, A.; Poikolainen, T.; Baecklin, A.; Jonsson, N.-G.

    1978-08-01

    Absolute E0 and E2 transition rates in 116 Sn have been measured using several newly developed techniques. Many E2 transitions are observed to have a collective character with B(E2) values of up to 60 W.u. The presence of deformed excited states in 116 Sn is discussed in view of the results obtained. (author)

  3. Generalized Michailov plot analysis of inband E2 transitions of deformed nuclei

    International Nuclear Information System (INIS)

    Long, G.L.; Zhang, W.L.; Ji, H.Y.; Gao, J.F.

    1998-01-01

    Intraband E2 transitions of some 30 deformed nuclei are analysed using a generalized Michailov plot, based on an E2 transition formula in the SU(3) limit of the sdg interacting boson model. The general E2 transition formula in the sdg-IBM has an L(L+3) term in addition to the usual SU(3) model result. It is found that the general E2 formula can describe the inband transitions well. Comparisons with other models are made. The implications of the results are also discussed. (author)

  4. E2 transition probabilities between Nilsson states in odd-A nuclei

    International Nuclear Information System (INIS)

    Krpic, D.K.; Savic, I.M.; Anicin, I.V.

    1976-01-01

    Presented here are the matrices needed for the calculation of E2 transition probabilities between all pairs of Nilsson states with ΔN = 0 and ΔK = 0, 1, 2. The needed coefficients of states are tabulated by Nilsson and by Davidson

  5. Absolute M1 and E2 Transition Probabilities in 233U

    International Nuclear Information System (INIS)

    Malmskog, S.G.; Hoejeberg, M.

    1967-08-01

    Using the delayed coincidence technique, the following half lives have been determined for different excited states in 233 U: T 1/2 (311.9 keV level) = (1.20 ± 0.15) x 10 -10 sec, T 1/2 (340.5 keV level) = (5.2 ± 1.0) x 10 -11 sec, T 1/2 (398.6 keV level) = (5.5 ± 2.0) x 10 -11 sec and T 1/2 (415.8 keV level) -11 sec. From these half life determinations, together with earlier known electron intensities and conversion coefficients, 22 reduced B(Ml) and B(E2) transition probabilities (including 9 limits) have been deduced. The rotational transitions give information on the parameters δ and (g K - g R ) . The experimental M1 and E2 transition rates between members of different bands have been analysed in terms of the predictions of the Nilsson model, taking also pairing correlations and Coriolis coupling effects into account

  6. Absolute M1 and E2 Transition Probabilities in 2{sup 33}U

    Energy Technology Data Exchange (ETDEWEB)

    Malmskog, S G; Hoejeberg, M

    1967-08-15

    Using the delayed coincidence technique, the following half lives have been determined for different excited states in {sup 233}U: T{sub 1/2} (311.9 keV level) = (1.20 {+-} 0.15) x 10{sup -10} sec, T{sub 1/2} (340.5 keV level) = (5.2 {+-} 1.0) x 10{sup -11} sec, T{sub 1/2} (398.6 keV level) = (5.5 {+-} 2.0) x 10{sup -11} sec and T{sub 1/2} (415.8 keV level) < 3 x 10{sup -11}sec. From these half life determinations, together with earlier known electron intensities and conversion coefficients, 22 reduced B(Ml) and B(E2) transition probabilities (including 9 limits) have been deduced. The rotational transitions give information on the parameters {delta} and (g{sub K} - g{sub R}) . The experimental M1 and E2 transition rates between members of different bands have been analysed in terms of the predictions of the Nilsson model, taking also pairing correlations and Coriolis coupling effects into account.

  7. Pure E2 transitions: A test for BRICC Internal Conversion Coefficients

    International Nuclear Information System (INIS)

    Gerl, J.; Sai, K. Vijay; Sainath, M.; Gowrishankar, R.; Venkataramaniah, K.

    2009-01-01

    The most widely used theoretical internal conversion coefficient (ICC) tables are of Hager and Seltzer (HS), Rosel et al. and BRICC (Band et al. tables using BRICC interpolation code). A rigorous comparison of experimental ICCs with various theoretical tabulations is possible only when a large data on experimental ICCs is available at one place. For this reason, a compilation of all the available experimental ICCs, α T , α K , α L of E2 transitions for a number of elements in the range of 24≤Z≤94 is presented. Listing of experimental data includes 595 datasets corresponding to 505 E2 transitions in 165 nuclei across the nuclear chart. Data with less than 10% experimental uncertainty have been selected for comparison with the theoretical values of Hager and Seltzer, Rosel et al. and BRICC. The relative percentage deviation (%Δ) have been calculated for each of the above theories and the average (%Δ) are estimated. The Band et al. tables, using the BRICC interpolation code are seen to give theoretical ICCs closest to experimental values.

  8. The connection between cluster and collective quadrupole channels in 20 Ne and E 2-transition probabilities between the bound and continuous spectrum states

    International Nuclear Information System (INIS)

    Bystrenko, A.V.; Okhrimenko, I.P.

    1993-01-01

    The E 2-transition probabilities between the discrete and continuous spectrum states in 20 Ne are investigated using the two-channel version (making allowance for the connection between cluster and quadrupole channels) of the consistent microscopic approach,an algebraic version of the resonating-group method. The correctness of the approximation of the continuous spectrum by the discrete states, which is usual in collective models, the quadrupole sum rule and the giant quadrupole resonance phenomenon are considered. (author). 2 tab., 12 figs

  9. Spin dependence of intra-ground-state-band E2 transitions in the SU(3) limit of the sdg interacting boson model

    Science.gov (United States)

    Long, G. L.; Ji, H. Y.

    1998-04-01

    B(E2, L+2-->L) transitions in the sdg interacting boson model SU(3) limit are studied with a general E2 transition operator. Analytical expressions are obtained using a group theoretic method. It is found that when using transition operators of the form (d†g~+g†d~)2 or (g†g~)2, the B(E2, L+2-->L) values in the ground-state band have an L(L+3) dependent term. As L increases, the B(E2) values can be larger than the rigid rotor model value. Application to 236,238U is discussed.

  10. Evolution of E 2 transition strength in deformed hafnium isotopes from new measurements on 172Hf,174Hf, and 176Hf

    Science.gov (United States)

    Rudigier, M.; Nomura, K.; Dannhoff, M.; Gerst, R.-B.; Jolie, J.; Saed-Samii, N.; Stegemann, S.; Régis, J.-M.; Robledo, L. M.; Rodríguez-Guzmán, R.; Blazhev, A.; Fransen, Ch.; Warr, N.; Zell, K. O.

    2015-04-01

    Background: The available data for E 2 transition strengths in the region between neutron-deficient hafnium and platinum isotopes are far from complete. More and precise data are needed to enhance the picture of structure evolution in this region and to test state-of-the-art nuclear models. In a simple model, the maximum collectivity is expected at the middle of the major shell. However, for actual nuclei, particularly in heavy-mass regions, which should be highly complex, this picture may no longer be the case, and one should use a more realistic nuclear-structure model. We address this point by studying the spectroscopy of Hf as a representative case. Purpose: We remeasure the 21+ half-lives of 172,174,176Hf, for which there is some disagreement in the literature. The main goal is to measure, for the first time, the half-lives of higher-lying states of the rotational band. The new results are compared to a theoretical calculation for absolute transition strengths. Method: The half-lives were measured using γ -γ and conversion-electron-γ delayed coincidences with the fast timing method. For the determination of half-lives in the picosecond region, the generalized centroid difference method was applied. For the theoretical calculation of the spectroscopic properties, the interacting boson model is employed, whose Hamiltonian is determined based on microscopic energy-density functional calculations. Results: The measured 21+ half-lives disagree with results from earlier γ -γ fast timing measurements, but are in agreement with data from Coulomb excitation experiments and other methods. Half-lives of the 41+ and 61+ states were measured, as well as a lower limit for the 81+ states. Conclusions: This work shows the importance of a mass-dependent effective boson charge in the interacting boson model for the description of E 2 transition rates in chains of nuclei. It encourages further studies of the microscopic origin of this mass dependence. New experimental

  11. Selected properties of nuclei at the magic shell closures from the studies of E1, M1 and E2 transition rates

    International Nuclear Information System (INIS)

    Mach, H.; Baluyut, A.-M.; Smith, D.; Ruchowska, E.; Koester, U.; Fraile, L. M.; Penttilae, H.; Aeystoe, J.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Jokinen, A.; Karvonen, P.; Kessler, T.; Moore, I. D.; Rahaman, S.; Rissanen, J.; Ronkainen, J.; Ronkanen, P.; Saastamoinen, A.

    2009-01-01

    Using the Advanced Time-Delayed method we have studied transition rates in several neutron-rich nuclei at the magic shell closures. These include the heavy Co and Fe nuclei just below the Z = 28 shell closure at the point of transition from spherical to collective structures. Of particular interest is 63 Fe located exactly at the point of transition at N = 37. A substantial increase in the information on this nucleus was obtained from a brief fast timing study conducted at ISOLDE. The new results indicate that 63 Fe seems to depart from a simple shell model structure observed for heavier N = 37 isotones of 65 Ni and 67 Zn.Another region of interest are the heavy Cd and Sn nuclei at N = 72, 74 and the properties of negative parity quasi-particle excitations. These experiments, performed at the IGISOL separator at Jyvaeskylae, revealed interesting properties of the E2 rates in the sequence of E2 transitions connecting the 10 + , 8 + , 6 + , 4 + , 2 + and 0 + members of the multiplet of levels in 122 Sn due to neutrons in the h 11/2 orbit.

  12. E2 transitions in deformed nuclei and the IBA

    International Nuclear Information System (INIS)

    Warner, D.D.; Casten, R.F.

    1981-01-01

    The mechanism which determines the relative E2 strengths in the Interacting Boson Approximation is studied, and the structure of the E2 operator necessary to reproduce the empirical B(E2) values in deformed even-even nuclei in the rate earth region is investigated

  13. Energy spectra and E2 transition rates of 124—130Ba

    Science.gov (United States)

    Sabri, H.; Seidi, M.

    2016-10-01

    In this paper, we have studied the energy spectra and B(E2) values of 124—130Ba isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes. We have used a transitional interacting Boson model (IBM), Hamiltonian which is based on affine SU(1,1) Lie algebra in the both IBM-1 and 2 versions and also the Catastrophe theory in combination with a coherent state formalism to generate energy surfaces and determine the exact values of control parameters. Our results for control parameters suggest a combination of U(5) and SO(6) dynamical symmetries in this isotopic chain. Also, the theoretical predictions can be rather well reproduce the experimental counterparts, when the control parameter is approached to the SO(6) limit.

  14. Electromagnetic E2 Transition Probabilities in 120Xe And 118Te - N=66 Nuclei

    International Nuclear Information System (INIS)

    Pasternak, A.A.; Efimov, A.D.; Podsvirova, E.O.

    2001-01-01

    Lifetimes of the yrast states in 120 Xe and the ground state band below and above band crossing in 118 Te have been measured by DSAM in the 111 Cd( 12 C, 3n) reaction and by DSAM and RDM in the 109 Ag( 13 C, p3n) reaction, respectively. The experimental data are compared with calculation done in the framework of the IBM1 model in the 0(6) and SU(5) limits. (author)

  15. M1 and E2 transitions in the ground-state configuration of atomic ...

    Indian Academy of Sciences (India)

    2015-11-27

    Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: Anurag Srivastava, C. S. Praveen, H. S. Tewari. © 2015 Indian Academy of Sciences, Bengaluru. Contact | Site index.

  16. M1 and E2 transitions in the ground-state configuration of atomic ...

    Indian Academy of Sciences (India)

    Pramana – Journal of Physics. Current Issue : Vol. 90, Issue 4 · Current Issue Volume 90 | Issue 4. April 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board · Information for Authors · Subscription ...

  17. M1 and E2 transitions in the ground-state configuration of atomic ...

    Indian Academy of Sciences (India)

    have calculated the forbidden transition (M1 and E2) parameters such as transition energies, log- arithmic weighted ... Keywords. Forbidden transitions; transition energies; logarithmic weighted oscillator strengths; .... optimizing the energy function based on the non-relativistic Hamiltonian of an atom,. HNR = N. ∑ j=1. (12∇ ...

  18. Inter-band B(E2) transitions strengths in 160-170Dy nuclei

    International Nuclear Information System (INIS)

    Vargas, Carlos E; Lerma, Sergio; Velázquez, Víctor

    2015-01-01

    The rare earth region of the nuclear landscape is characterized by a large collectivity observed. The microscopic studies are difficult to perform in the region due to the enormous size of the valence spaces. The use of symmetries based models avoids that problem, because the symmetry allows to choose the most relevant degrees of freedom for the system under consideration. We present theoretical results for electromagnetic properties in 160-168 Dy isotopes employing the pseudo-SU(3) model. In particular, we study the B(E2) inter-band transition strengths between the ground state, γ and, β-bands. The model succesfully describes in a systematic way rotational features in these nuclei and allows to extrapolate toward the midshell nucleus 170 Dy

  19. Energy Levels and B(E2) transition rates in the Hartree-Fock approximation with the Skyrme force

    International Nuclear Information System (INIS)

    Oliveira, D.R. de; Mizrahi, S.S.

    1976-11-01

    The Hartree-Fock approximation with the Skyrme force is applied to the A = 4n type of nuclei in the s-d shell. Energy levels and electric quadrupole transition probabilities within the ground states band are calculated from the projected states of good angular momentum. Strong approximations are made but the results concerning the spectra are better than those obtained with more sophisticated density independent two-body interactions. The transition rates are less sensitive to the interaction, as previously verified

  20. Influence of the projection of BCS functions on the M1 and E2 transitions in rare earths

    International Nuclear Information System (INIS)

    Fellah, M.; Hammann, T.F.

    1975-01-01

    E2 and M1 transition probabilities for odd-mass rare earth nuclei, have been calculated using both the usual BCS wave functions and the strict particle conserving, projected BCS functions. The blocking effect has been exactly and systematically taken into account. The influence of the Coriolis interaction has been studied using the first order perturbation theory. Allowance has been made for the β and γ vibrations. The unphysical effects, due to particle fluctuation in the BCS theory, are not always negligible, but are in most cases, less important than the Coriolis effect [fr

  1. Analytical calculation of the vibrator-rotor transition in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Wang Baolin

    1992-01-01

    Analytical calculation of the vibrator-rotor transition is given by utilizing the 1/N expansion technique in the sdg IBM. The phase transition of low-lying energy spectrum and E2 transition for Sm isotopes are calculated

  2. Electromagnetic properties of low-spin states in 102,104Pd

    International Nuclear Information System (INIS)

    Luontama, M.; Julin, R.; Kantele, J.; Passoja, A.; Trzaska, W.; Baecklin, A.; Jonsson, N.G.; Westerberg, L.

    1985-12-01

    Electromagnetic transitions from low-lying 0 + , 2 + , 4 + and 3 - states in 102 , 104 Pd have been studied with (p,2n) and (p,p) reactions and with Coulomb excitation. The E2 transition probabilities from the 0 3 + state in 102 Pd (13 W.u.) and from the 0 2 + state in 104 Pd (14 W.u.) are somewhat low for two-phonon states. Generally, the E2 transition rates are reasonably well reproduced by the IBA-2 and by the boson-expansion description. The intruding 0 2 + state (tsub(1/2) = 14.3 ns) in 102 Pd is connected to the 2 2 + and 2 3 + states via strong E2 transitions: B(E2;0 2 + →2 2 + )=96+-40 W.u.; B(E2;2 3 + →0 2 + )=17+-8 W.u

  3. Nuclear Structure of 124Xe Studied with β+/EC-Decay

    Science.gov (United States)

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.

    The nuclear structure of 124Xe was investigated using γ-ray spectroscopy following the β+/EC-decay of 124Cs. A very high-statistics data set was collected and γγ coincidence data was analyzed, greatly adding to the 124Xe level scheme. A new decay branch from the high-spin isomer of 124Cs was observed as well as weak E2 transitions into excited 0+ states in 124Xe. B(E2) transition strengths of such low-spin transitions are very important in determining collective properties, which are currently poorly characterized in the region of neutron-deficient xenon isotopes.

  4. Study of 19F and 19Ne mirror nuclei

    International Nuclear Information System (INIS)

    Lebrun, Claude.

    1976-01-01

    The electromagnetic properties of the mirror nuclei 19 F and 19 Ne were studied using the 18 O(d,nγ) 19 F, 17 O( 3 He,nγ) 19 Ne and 19 F(p,nγ) 19 Ne reactions. Lifetimes of 8 levels in 19 F and 11 levels in 19 Ne have been measured using the Doppler shift attenuation method. Weak and strong components of M 1 , E 1 and E 2 transition strengths are compared with shell model predictions. M 1 and E 2 transition strengths of conjugated nuclei (A=18 to A=34) are compiled and compared with wide configuration space shell models [fr

  5. Inelastic scattering of {sup 9}Li and excitation mechanism of its first excited state

    Energy Technology Data Exchange (ETDEWEB)

    Al Falou, H. [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Kanungo, R., E-mail: ritu@triumf.ca [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); Andreoiu, C.; Cross, D.S. [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Davids, B.; Djongolov, M. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Gallant, A.T. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, University of British Columbia, British Columbia V6T 1Z4 (Canada); Galinski, N.; Howell, D. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Kshetri, R.; Niamir, D. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Orce, J.N. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, University of the Western Cape, P/B X17, Bellville, ZA-7535 (South Africa); Shotter, A.C. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Sjue, S. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Tanihata, I. [Research Center for Nuclear Physics, Osaka University, Mihogaoka, Ibaraki, Osaka 567 0047 (Japan); Thompson, I.J. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Triambak, S. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Uchida, M. [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); Walden, P. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Wiringa, R.B. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2013-04-25

    The first measurement of inelastic scattering of {sup 9}Li from deuterons at the ISAC facility is reported. The measured angular distribution for the first excited state confirms the nature of excitation to be an E2 transition. The quadrupole deformation parameter is extracted from an analysis of the angular distribution.

  6. Inelastic scattering of 9Li and excitation mechanism of its first excited state

    International Nuclear Information System (INIS)

    Al Falou, H.; Kanungo, R.; Andreoiu, C.; Cross, D.S.; Davids, B.; Djongolov, M.; Gallant, A.T.; Galinski, N.; Howell, D.; Kshetri, R.; Niamir, D.; Orce, J.N.; Shotter, A.C.; Sjue, S.; Tanihata, I.; Thompson, I.J.; Triambak, S.; Uchida, M.; Walden, P.; Wiringa, R.B.

    2013-01-01

    The first measurement of inelastic scattering of 9 Li from deuterons at the ISAC facility is reported. The measured angular distribution for the first excited state confirms the nature of excitation to be an E2 transition. The quadrupole deformation parameter is extracted from an analysis of the angular distribution

  7. Delayed bandcrossings in the tantalum nuclei

    International Nuclear Information System (INIS)

    Joshi, P.; Kumar, A.; Govil, I.M.; Mukherjee, G.; Singh, R.P.; Muralithar, S.; Bhowmik, R.K.; Garg, U.

    1999-01-01

    Lifetime measurements using the RDM method over the E2 transitions of the h 9/2 and g 7/2 bands in the nucleus 173 Ta to measure the quadrupole deformations of that nucleus in these bands have been performed

  8. Collective Quadrupole Excitations of Transactinide Nuclei

    CERN Document Server

    Zajac, K; Pomorski, K; Rohozinski, S G; Srebrny, J

    2003-01-01

    The quadrupole excitations of transuranic nuclei are described in the frame of the microscopic Bohr Hamiltonian modified by adding the coupling with the collective pairing vibrations. The energies of the states from the ground-state bands in U to No even-even isotopes as well as the B(E2) transition probabilities are reproduced within the model containing no adjustable parameters.

  9. Electric quadrupole transitions for some isotopes of Xenon; considering rigidity for γ = 30{sup ∘} collective parameter

    Energy Technology Data Exchange (ETDEWEB)

    Sobhani, Hadi, E-mail: hadisobhani8637@gmail.com; Hassanabadi, Hassan

    2017-01-15

    In this article, Davydov–Chaban Hamiltonian is investigated in presence of Davidson potential. Using analytical approach, wave function corresponding of considered system has been derived. Then energy spectra and B(E2) transition rate have been calculated numerically in detail as well. The results are compared with experimental data for three isotope of Xenon.

  10. Excited bands in even-even rare-earth nuclei

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Hirsch, Jorge G.

    2004-01-01

    The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands

  11. Calculations of the Low-Lying Structures in the Even-Even Nd/Sm/Gd/Dy Isotopes

    Science.gov (United States)

    Lee, Su Youn; Lee, J. H.; Lee, Young Jun

    2018-05-01

    The nuclear structure of deformed nuclei has been studied using the interacting boson model (IBM). In this study, energy levels and E2 transition probabilities were determined for even nuclei in the Nd/Sm/Gd/Dy chains which have a transition characteristic between the rotational, SU(3) and vibrational, U(5) limits. The structure of the nuclei exhibits a slight breaking of the SU(3) symmetry in the direction of U(5), and therefore, we add the d-boson number operator n d , which is the main term of the U(5) symmetric Hamiltonian, to the SU(3) Hamiltonian of the IBM. The calculated results for low-lying energy levels and E2 transition rates in Nd/Sm/Gd/Dy isotopes are in reasonably good agreement with known experimental results.

  12. Quadrupole collective excitations in rapidly rotating nuclej

    International Nuclear Information System (INIS)

    Mikhajlov, I.N.

    1983-01-01

    The spectrum of collective quadrupole excitations in nuclei is investigated. The average nucleus field has the axial symmetry and rotation occurs relatively to this axis. Dependences of the spectrum of quadrupole oscillations on rotation rate for classic liquid drop (CLD) and for a drop of fermi-liquid (DFL) with fissionability parameter X=0.62 ( 154 Er) are presented. The dependence of probabilities of E2-transitions between single-phonon and phonon-free states on rotation rate for CLD and DFL with fussionability parameter X=0.62 ( 154 Er) is also presented. It is shown that for CLD collective E2-transition of states of yrast-consequence is absolutely forbidden. For DFL transitions are possible that lead to decay of phonon-free state with the excitation of phonons of γ-modes and decrease of angular momentum

  13. Radiative capture versus Coulomb dissociation

    International Nuclear Information System (INIS)

    Esbensen, H.; Physics

    2006-01-01

    Measurements of the Coulomb dissociation of 8 B have been used to infer the rate of the inverse radiative proton capture on 7 Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed

  14. Radiative Capture versus Coulomb Dissociation

    International Nuclear Information System (INIS)

    Esbensen, Henning

    2006-01-01

    Measurements of the Coulomb dissociation of 8B have been used to infer the rate of the inverse radiative proton capture on 7Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed

  15. Energy-level scheme and transition probabilities of Si-like ions

    International Nuclear Information System (INIS)

    Huang, K.N.

    1984-01-01

    Theoretical energy levels and transition probabilities are presented for 27 low-lying levels of silicon-like ions from Z = 15 to Z = 106. The multiconfiguration Dirac-Fock technique is used to calculate energy levels and wave functions. The Breit interaction and Lamb shift contributions are calculated perturbatively as corrections to the Dirac-Fock energy. The M1 and E2 transitions between the first nine levels and the E1 transitions between excited and the ground levels are presented

  16. g-boson degree of freedom in vibrational regions

    International Nuclear Information System (INIS)

    Di Yaomin

    1991-01-01

    The g-boson degree of freedom in the vibrational regions is discussed in term of the energies and the electromagnetic transitions. Several closed expressions for the rates of M1, E2 transitions and the E2, M1 mixing ratios are obtained. Some survey is made and it reveals it is meaningful to investigate the g-boson degree of freedom in those regions

  17. Phenomenological Hamiltonian of Sp(2,R) model for heavy deformed nuclei

    International Nuclear Information System (INIS)

    Avramenko, V.I.; Asherova, R.M.; Filippov, G.F.; Smirnov, Yu.F.; Zajtsev, S.A.

    1985-01-01

    In the frame of the symplectic collective model, operating with the microscopical basic functions of irraducible representation of SU(3) groups the energy spectrum of collective excitation in 164 Kr nucleus is calculated. Also the aOsolute and relative values of probabilities E2-transitions between collective states are obtained. The indexes of SU(3) symmetry are chosen in correspondence with rules of Nillsson orbital occupation

  18. Investigation of photodisintegration of light nuclei in the resonating-group method

    International Nuclear Information System (INIS)

    Vasilevskij, V.S.; Chopovsky, L.L.

    1984-01-01

    All reduced matrix elements necessary for the calculation of probabilities of isoscalar and isovector EO-, e1 E1- and E2-transitions from ground state to the states of continuous spectra with energy E are constructed. The only one open channel of nucleus decay in α-particle and cluster containing two nucleons in the case A=6 and three ones in the case A=7 are taken into account

  19. Critical analysis of the cranking

    International Nuclear Information System (INIS)

    Hamamoto, Ikuko

    1985-01-01

    Problems, success and shortcomings of the cranking model are discussed by choosing the following four critical topics: 1) the interaction between the ground- and the S-band, 2) vanishing M1 transition moments, 3) the relation between the signature-dependence of the ΔI=1 E2 transition rates in odd-A nuclei and the deviation of nuclear shape from axial symmetry, and 4) the quantum effect on rotational motion, especially on moments of inertia for triaxial shape. (orig.)

  20. The sdg interacting-boson model applied to 168Er

    Science.gov (United States)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1986-03-01

    The sdg interacting-boson model is applied to 168Er. Energy levels and E2 transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first Kπ=4+ band relative to that of the first Kπ=2+ one. The level scheme including the Kπ=3+ band is well reproduced and the calculated B(E2)'s are consistent with the experimental data.

  1. New estimates of quadrupole deformation β of some nearly spherical even Mo nuclei

    International Nuclear Information System (INIS)

    Singh, Y.; Gupta, K.K.; Singh, M.; Bihari, Chhail; Varshney, A.K.; Gupta, D.K.

    2013-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. In recent past the sets of deformation parameters (β, γ) have been extracted from both level energies and E2 transition rates in even Xe, Ba and Ce nuclei and Hf, W, Os, Pt and Hg nuclei using rigid triaxial rotor model of Davydov – Filippov

  2. Nuclear wobbling-phonon excitations with alignments

    International Nuclear Information System (INIS)

    Hamamoto, I.

    2003-01-01

    Wobbling-phonon excitations, which are recently observed in 71 163 Lu 92 , are studied. The presence of alignments in nuclei makes it easier for wobbling excitations to appear at lower angular momenta of the yrast spectra. A family of rotational bands with wobbling excitations, which have nearly the same nuclear intrinsic structure, have been pinned down by observing specific electromagnetic decay properties between them. The triaxiality parameter γ = +20 deg. is obtained for the nuclear shape from measured E2 transition probabilities

  3. High spin level structure of {sub 63}{sup 143}Eu{sub 80}

    Energy Technology Data Exchange (ETDEWEB)

    Piiparen, M [Jyvaeskylae Univ. (Finland). Dept. of Physics; Atac, A; Gjorup, N; Hageman, G; Herskind, B; Jensen, H; Kusakari, H; Lieder, R; Nyberg, J; Santonocito, A; Sletten, G; Sugawara, M; Virtanen, A [Niels Bohr Institute, Tandem Accelerator laboratory, Roskilde, (Denmark); Angelis, G de [Laboratori Nazionali di Legnaro, Legnaro (Italy); Forbes, S; Mullins, S; Wadsworth, R [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Ingebretsen, F; Tjom, P O [Oslo Univ. (Norway); Jerrestam, D [Studsvik Science Research Lab., Nykoeping (Sweden); Marti, G M; Schnare, H; Strahle, K [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik

    1992-08-01

    The level scheme of {sup 143}Eu has been extended to I=75/2 in an experiment with the NORDBALL Compton-suppressed Ge detector array and the {sup 110}Pd({sup 37}Cl,4n) reaction. Most of the scheme shows irregular structure of multiparticle excitations. A strongly populated straight cascade of more than 10 stretched E2 transitions suggests the onset of collectivity. (author). 6 refs., 1 fig.

  4. Pushing the pseudo-SU(3) model towards its limits: Excited bands in even-even Dy isotopes

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Hirsch, Jorge G.

    2004-01-01

    The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands. A realistic Hamiltonian is employed. Both the success of model and its limitations are discussed

  5. SU(3) limit of the IBM as a 1/N expansion

    International Nuclear Information System (INIS)

    Kuyucak, S.; Morrison, I.

    1990-01-01

    The SU(3) limit of the interacting boson model is considered from the perspective of the 1/N expansion. It is shown that truncation of the E2 matrix elements in the spirit of the 1/N expansion and the Mikhailov plots greatly simplifies the complicated exact results and leads to some new insights. A list of E2 transitions among the ground, β and γ bands, both in the SU(3) limit and in more general cases, is given, and some errors in the previous literature are pointed out. 13 refs

  6. Structure of ground status in magic nuclei and description of their electric transition probabilities

    International Nuclear Information System (INIS)

    Savane, Y.Sy.

    1996-11-01

    The structure of the low-lying states in the even-even semi-magic nuclei ( 106-114 50 Sn) and the reduced transition probabilities B(E2, 6 + 1 → 4 = 1 ) for E2-transition have been investigated in the frame of the quasiparticle-phonon nuclear model. The model wave function includes a quasiparticle + two phonons components. It is shown that the small values of the transitions are connected with the non collective structure of the states. The calculated values are in agreement with the observed property of decreasing of the transition with increasing of mass number. (author). 16 refs, 6 tabs

  7. M1 transitions between superdeformed states in 195Tl

    International Nuclear Information System (INIS)

    Zheng Xing; Xingqu Chen; Xiaochun Wang

    1996-01-01

    Using a triaxial-particle-rotor model, the quadrupole and dipole transition energies, kinematic and dynamic moments of inertia, electromagnetic transition probabilities and the relative intensity of the E2 γ-transitions are calculated for superdeformed bands in 195 Tl. A strong perturbation effect of rotation on transition energies and M1 and E2 transitions of superdeformed states is investigated. The total M1 transitions, enhanced by internal conversion, are expected to compete strongly with the E2 γ-ray at low spins in the superdeformed 195 Tl nucleus. (author)

  8. Electric quadrupole excitation of the first excited state of 11B

    International Nuclear Information System (INIS)

    Fewell, M.P.; Spear, R.H.; Zabel, T.H.; Baxter, A.M.

    1980-02-01

    The Coulomb excitation of backscattered 11 B projectiles has been used to measure the reduced E2 transition probability B(E2; 3/2 - →1/2 - ) between the 3/2 - ground state and the 1/2 - first excited state of 11 B. It is found that B(E2; 3/2 - →1/2 - ) = 2.1 +- 0.4 e 2 fm 4 , which agrees with shell-model predictions but is a factor of 10 larger than the prediction of the core-excitation model

  9. The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ghumman, S. S. [Department of Physics, Sant Longowal Institute of Engineering and Technology (Deemed University), Longowal, Sangrur-148106, Punjab, India s-ghumman@yahoo.com (India)

    2015-08-28

    The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.

  10. Investigation of Bohr Hamiltonian in presence of Killingbeck potential using bi-confluent Heun functions

    Science.gov (United States)

    Sobhani, Hadi; Hassanabadi, Hassan; Chung, Won Sang

    2018-05-01

    In this study, Bohr Hamiltonian is studied for the triaxial and rotational cases. In both cases, Killingbeck potential is used as interaction. The wave function and energy of these cases are found using bi-confluent Heun functions. The results are examined by reproducing experimental data of some isotopes for each case. Energy levels of the isotopes are shown graphically as well as theoretical results for staggering in γ bands of the isotopes is discussed. In the next step, we argue about B (E 2) transition rates of the isotopes for each case. The results have a good agreement with experimental data.

  11. The Half Life of the 53 keV Level in {sup 197}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Malmskog, S G

    1967-02-15

    The half life of the recently proposed 53 keV level in {sup 197}Pt has been measured to 18.5 {+-} 1.5 nsec using the delayed coincidence technique. This level, which is identified with the f{sub 5/2} single particle state, decays directly to the p{sub 1/2} ground state in {sup 197}Pt. The reduced E2 transition probability for this 53 keV transition has been deduced and compared with the results obtained for the corresponding transitions in other Pt, Hg, and Pb isotopes and with the theoretical predictions by Sorensen and by Wahlborn and Martinson.

  12. Very high-spin states in nuclei

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1977-03-01

    The continuum γ-ray spectrum following emission in a (HI,xn) reaction consists of a high-energy tail, the statistical cascade, and a lower-energy bump, the yrast cascade, which contains most of the intensity and consists mostly of stretched E2 transitions. Thus, a good approximation to the average angular momentum carried by the γ-ray is 2Nsub(γ). Under favourable conditions, effective moments of inertia can be deduced for states up to the top of the γ-ray cascade. The maximum angular momentum in the cascades is probably limited by α-emission for nuclei with A 150. (Author)

  13. Description of spectrum and electromagnetic transitions in 94Mo through the proton-neutron interacting boson model

    Science.gov (United States)

    Mu, ChengFu; Zhang, DaLi

    2018-01-01

    We investigated the properties of low-lying states in 94Mo within the framework of the proton-neutron interacting boson model (IBM-2), with special focus on the characteristics of mixed-symmetry states. We calculated level energies and M1 and E2 transition strengths. The IBM-2 results agree with the available quantitative and qualitative experimental data on 94Mo. The properties of mixed-symmetry states can be well described by IBM-2 given that the energy of the d proton boson is different from that of the neutron boson, especially for the transition of B( M1; 4 2 + → 4 1 + ).

  14. On connection of rotation and internal motion in deformed nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1979-01-01

    In the semiphenomenological nuclear madel (SPNM) the problem of ''overestimate of Coriolis interaction'' is shown to be easily solved. The rotation and internal motion coupling operator H(rot/in) is used. Overdetermination of the operator H(rot/in) has been generalized and extended into schemes of strong and weak coupling. In this case both schemes of coupling are transformed from approximate into precise ones and become applicable for any nuclear deformation. As examples of application of the theory considered are the matrix elements of the E2-transitions and inertia parameters of a 235 U nucleus

  15. Interpretation and quality of the tilted axis cranking approximation

    International Nuclear Information System (INIS)

    Frauendorf, S.; Meng, J.

    1996-06-01

    Comparing with the exact solutions of the model system of one and two particles coupled to an axial rotor, the quality of the semi classical tilted axis cranking approximation is investigated. Extensive comparisons of the energies and M1 and E2 transition probabilities are carried out for the lowest bands. Very good agreement is found, except near band crossings. Various recipes to take into account finite K within the frame of the usual principal axis cranking are included into the comparison. A set of rules is suggested that permits to construct the excited bands from the cranking configurations, avoiding spurious states. (orig.)

  16. DSAM lifetime measurements for the chiral pair in {sup 194}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Masiteng, P.L.; Bvumbi, S.P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); University of Johannesburg, PO Box 524, Auckland Park (South Africa); Pasternak, A.A. [A.F. Ioffe Physical-Technical Institute, St.-Petersburg (Russian Federation); Lawrie, E.A.; Shirinda, O.; Lawrie, J.J.; Bark, R.A.; Kheswa, N.Y.; Lieder, E.O.; Lieder, R.M.; Mullins, S.M.; Murray, S.H.T. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); Lindsay, R. [University of the Western Cape, Private Bag X17, Bellville (South Africa); Madiba, T.E.; Sharpey-Schafer, J.F. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); Ndayishimye, J.; Papka, P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Stellenbosch, Department of Physics, Private Bag X1, Matieland (South Africa); Ntshangase, S.S. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Cape Town, Department of Physics, Private Bag, Rondebosch (South Africa)

    2016-02-15

    Most important for the identification of chiral symmetry in atomic nuclei is to establish a pair of bands that are near-degenerate in energy, but also in B(M1) and B(E2) transition probabilities. Dedicated lifetime measurements were performed for four bands of {sup 194}Tl, including the pair of four-quasiparticle chiral bands with close near-degeneracy, considered as a prime candidate for best chiral symmetry pair. The lifetime measurements confirm the excellent near-degeneracy in this pair and indicate that a third band may be involved in the chiral symmetry scenario. (orig.)

  17. The role of quasiparticles in rotating transitional nuclei

    International Nuclear Information System (INIS)

    Frauendorf, Stefan

    1984-01-01

    The yrast sequency of nuclei rotating about the symmetry axis is classified in analogy to class I and II superconductors, where the quasiparticles play the role of the quantized flux in metals. The experimental spectra show a class I behaviour. The ω-dependence of the quasiparticle excitation energy in collectively rotating nuclei is used as evidence for magnitude of the pair correlations and the occurrence of triaxial shapes. A transition from triaxial to oblate shape explains the experimental spectra and E2-transition probabilities in the N=88-90 nuclei. (author)

  18. Comparing several boson mappings with the shell model

    International Nuclear Information System (INIS)

    Menezes, D.P.; Yoshinaga, Naotaka; Bonatsos, D.

    1990-01-01

    Boson mappings are an essential step in establishing a connection between the successful phenomenological interacting boson model and the shell model. The boson mapping developed by Bonatsos, Klein and Li is applied to a single j-shell and the resulting energy levels and E2 transitions are shown for a pairing plus quadrupole-quadrupole Hamiltonian. The results are compared to the exact shell model calculation, as well as to these obtained through use of the Otsuka-Arima-Iachello mapping and the Zirnbauer-Brink mapping. In all cases good results are obtained for the spherical and near-vibrational cases

  19. Nucleon pairs as the building blocks of a nucleus

    International Nuclear Information System (INIS)

    Trajdos, M.; Zajac, K.

    1989-01-01

    The effects induced by the interplay isovesctor and isoscalar components of the residual nucleon interactions were studied in the model based on six bosons: s μ + with J=0, T=1, μ=O,±1 and p μ + with J=1, μ=0, ±1, T=0. Low-lying energy levels, E2-transitions, p-boson structure of eigenstates, percentage of α clusters, (p,t) reactions and α elastic scattering were searched in even-even 156-166 Dy and N=92, Z=56-58 nuclei. 18 refs.; 8 figs.; 1 tab

  20. Identification of forbidden lines in the soft X-ray spectrum of the TFR Tokamak

    International Nuclear Information System (INIS)

    Klapisch, M.; Schwob, J.L.; Finkenthal, M.; Fraenkel, B.S.; Egert, S.; Bar-Shalom, A.; Breton, C.; Michelis, C. de; Mattioli, M.

    1978-01-01

    Two quite intense lines, at 58.832 A and 57.927 A appearing in the TFR Tokamak are attributed to E2 transitions 3d 10 - 3d 9 4s (J=2) of MoXV. This classification is based on the comparison between experimental and computed wavelengths and intensities of these lines in the Tokamak plasma. The great influence of cascades on the intensities is shown. It is shown that similar lines for other ionization stages of Mo should be much weaker

  1. Inter-band coincidences in the superdeformed well of {sup 190}Hg from gammasphere

    Energy Technology Data Exchange (ETDEWEB)

    Crowell, B.; Carpenter, M.P.; Janssens, R.V.F. [and others

    1995-08-01

    Very few experimental observables are ordinarily accessible for superdeformed (SD) states in the A {approximately} 150 and A {approximately} 190 regions. The gamma-decay out of the superdeformed bands usually proceeds directly to the normally deformed states, through highly fragmented pathways, making it difficult to determine the spins, parities and excitation energies of the SD states. The in-band E2 transitions are so collective (2 x 10{sup 3} single-particle units in the A {approximately} 190 region) that it is typically impossible to detect any of the competing M1 and E1 transitions between states in the SD well.

  2. New approach to determine the radiative width of the Hoyle state

    International Nuclear Information System (INIS)

    Kibedi, T.; Stuchbery, A. E.; Dracoulis, G. D.; Devlin, A.; Teh, A.; Robertson, K.

    2009-01-01

    The triple alpha process leading to the formation of stable carbon in the Universe is one of the most important nuclear astrophysical processes. The radiative width of the so called Hoyle-state, involving the 7.654 MeV E0 and the 3.215 MeV E2 transitions, is known with 10% accuracy. A novel, more direct approach is proposed here, based on the measurement of the E0 and the E2 internal pair conversion intensities. We report on the development of a new type of magnetic pair spectrometer with high sensitivity for electron-positron pairs and with excellent energy resolution.

  3. Physics at low spin in the mass 160 region: the search for tetrahedral shapes

    International Nuclear Information System (INIS)

    Bark, R.A.; Sharpey-Schafer, J.F.; Maliage, S.M.; Madiba, T.E.; Komati, F.S.; Lawrie, E.A.; Lawrie, J.J.; Lindasy, R.; Maine, P.; Mullins, S.M.; Murray, S.H.T.; Ncapayi, N.J.; Ramashidza, T.M.; Smit, F.D.; Vymers, P.

    2010-01-01

    The low-lying, odd-spin negative parity bands in the mass 160 region have been identified as candidates for the rotation of a tetrahedral shape, as they have very weak in-band E2 transitions. We report the observation of such bands in 160 Yb and 154 Gd. They are crossed by 2 quasiparticle bands which allow band mixing calculations to be carried out to derive relative quadrupole moments. However, those studied are not consistent with zero, as required for tetrahedral shape. The aligned angular momenta of the bands suggest an octupole vibrational assignment.

  4. Low-lying levels of 129Xe and 131Xe

    International Nuclear Information System (INIS)

    Palmer, D.C.; Irving, A.D.; Forsyth, P.D.; Hall, I.; Martin, D.G.E.; Maynard, M.J.

    1978-01-01

    The nuclei 129 Xe and 131 Xe have been studied by Coulomb excitation and by (α, n) reactions on 126 Te and 128 Te. Eleven new levels for 129 Xe and six for 131 Xe and B(E2) transition values for some of the low-lying states are reported. The present Coulomb excitation experiments together with published β-decay work enable some spin-parity assignments and restrictions to be made. The data are broadly consistent with the predictions of the particle-vibrator coupling model, although a thorough comparison requires further spectroscopic measurements and more detailed theoretical calculation. (author)

  5. Behavior of the excited deformed band and search for shape isomerism in 184Hg

    International Nuclear Information System (INIS)

    Cole, J.D.; Hamilton, J.H.; Ramayya, A.V.; Nettles, W.G.; Kawakami, H.; Spejewski, E.H.; Ijaz, M.A.; Toth, K.S.; Robinson, E.L.; Sastry, K.S.R.; Lin, J.; Avignone, F.T.; Brantley, W.H.; Rao, P.V.G.

    1976-01-01

    The new isotope 184 Tl has been identified with T 1 / 2 =11 +- 1 sec and the levels in 184 Hg investigated from its decay. The 0 + band head of a deformed band was found to drop to 375 keV in agreement with theoretical predictions. The mean life of the 375-keV 0 + level was measured to be 0.9 +- 0.3 nsec which is a factor of 10 faster than theoretically predicted for a shape-isomeric E2 transition

  6. Major shell centroids in the symplectic collective model

    International Nuclear Information System (INIS)

    Draayer, J.P.; Rosensteel, G.; Tulane Univ., New Orleans, LA

    1983-01-01

    Analytic expressions are given for the major shell centroids of the collective potential V(#betta#, #betta#) and the shape observable #betta# 2 in the Sp(3,R) symplectic model. The tools of statistical spectroscopy are shown to be useful, firstly, in translating a requirement that the underlying shell structure be preserved into constraints on the parameters of the collective potential and, secondly, in giving a reasonable estimate for a truncation of the infinite dimensional symplectic model space from experimental B(E2) transition strengths. Results based on the centroid information are shown to compare favorably with results from exact calculations in the case of 20 Ne. (orig.)

  7. Electromagnetic transitions in nuclei between states with different deformation for the case H>=Ksub(iota)+Ksub(j)

    International Nuclear Information System (INIS)

    Kopanets, E.G.; Inopin, E.V.; Korda, L.P.

    1980-01-01

    Calculations of matrix elements of the electromagnetic transitions at the multipolarity L>Ksub(i)+Ksub(f), where Ksub(i) and Ksub(f) are the projections of the total moment of the final and initial states on the nucleus symmetry axis, have been carried out E2transitions between the low-lying levels -/ of the rotational bands of 23 Na, 29 P, 35 Cl and 37 Cl nuclei have been investigated. The ranges of the initial and final state deformation parameters are given at which a coincidence is observed between the calculated and experimental values of the probability of E2-transitions between the ground states of the rotational bands. A conclusion has been made that the theory and experiments can agree only on the assumption that changes in nucleus equilibrium deformation take place not only in the case of single-particle levels but also in the case of the same rotational band. This indicates to breaking the adiabatic approximation due to mixing the states with different K caused by the Coriolis interaction [ru

  8. Correspondence between phenomenological and IBM-1 models of even isotopes of Yb

    Science.gov (United States)

    A. Okhunov, A.; I. Sharrad, F.; Anwer, A. Al-Sammarraie; U. Khandaker, M.

    2015-08-01

    Energy levels and the reduced probability of E2- transitions for ytterbium isotopes with proton number Z = 70 and neutron numbers between 100 and 106 have been calculated through phenomenological (PhM) and interacting boson (IBM-1) models. The predicted low-lying levels (energies, spins and parities) and the reduced probability for E2- transitions results are reasonably consistent with the available experimental data. The predicted low-lying levels (gr-, β1- and γ1- band) produced in the PhM are in good agreement with the experimental data compared with those by IBM-1 for all nuclei of interest. In addition, the phenomenological model was successful in predicting the β2-, β3-, β4-, γ2- and 1+ - band while it was a failure with IBM-1. Also, the 3+- band is predicted by the IBM-1 model for 172Yb and 174Yb nuclei. All calculations are compared with the available experimental data. Supported by Fundamental Research Grant Scheme (FRGS) of Ministry of Higher Education of Malaysia (FRGS13-074-0315), Islamic Development Bank (IDB) (36/11201905/35/IRQ/D31, 37/IRQ/P30)

  9. Oscillator strengths for transitions among Fe III levels belonging to the three lowest configurations

    International Nuclear Information System (INIS)

    Deb, N C; Hibbert, A

    2008-01-01

    Accurate oscillator strengths and Einstein A-coefficients for some El and E2 transitions among 3d 6 , 3d 5 4s and 3d 5 4p levels of FeIII are presented and compared with other available results. The present results comprise by far the largest configuration interaction calculation for this astrophysically important ion, and include relativistic effects through the Breit-Pauli operator. The core-valence effects from a large number of 3d 6 and 3d 5 cores are carefully treated by optimising 4d, 4f, 5s, 5p, 5d, 5f and 6p orbitals either as a correction or as a correlation orbital while 1s, 2s, 2p, 3s, 3p and 3d Hartree-Fock functions are used. The 4s and 4p functions are optimised as spectroscopic orbitals. Fine-tuning of the ab initio energies was done through adjusting by a small amount some diagonal elements of the Hamiltonian matrix. It is found that for many of the relatively strong dipole transitions, our calculated oscillator strengths agree with available calculations, while for the weaker transitions our results often disagree with the previously determined results. We also present gA values for five E2 transitions for the multiplets 3d 6 5 DJ → 3d 5 ( 6 S)4s 5 S 2. The present results for these transitions show a 30-40% increase over the results previously published.

  10. Study of the structure of yrast bands of neutron-rich 114-124Pd isotopes

    Science.gov (United States)

    Chaudhary, Ritu; Devi, Rani; Khosa, S. K.

    2018-02-01

    The projected shell model calculations have been carried out in the neutron-rich 114-124Pd isotopic mass chain. The results have been obtained for the deformation systematics of E(2+1) and E(4+1)/E({2}+1) values, BCS subshell occupation numbers, yrast spectra, backbending phenomena, B( E2) transition probabilities and g-factors in these nuclei. The observed systematics of E(2+1) values and R_{42} ratios in the 114-124Pd isotopic mass chain indicate that there is a decrease of collectivity as the neutron number increases from 68 to 78. The occurrence of backbending in these nuclei as well as the changes in the calculated B( E2) transition probabilities and g -factors predict that there are changes in the structure of yrast bands in these nuclei. These changes occur at the spin where there is crossing of g-band by 2-qp bands. The predicted backbendings and predicted values of B( E2)s and g-factors in some of the isotopes need to be confirmed experimentally.

  11. Admixtures of shell and cluster states in 18F

    International Nuclear Information System (INIS)

    Sakuda, Toshimi; Nemoto, Fumiki; Nagata, Sinobu.

    1976-01-01

    The properties of the low-lying T=0 positive-parity levels in 18 F are shown to be well understood by considering admixtures of 2p shell-model states and ''4p-2h'' states with alpha-cluster structures. In order to represent the ''4p-2h'' states, α- 14 N cluster model is introduced. By this model, weak coupling features and coupling between shell and cluster states are well described. The binding energies of the ground 1 + and the lowest 3 + levels are reproduced by the couplings with the ''4p-2h'' cluster states. On the other hand, weak coupling features of ''4p-2h'' cluster states are disturbed to some extent. As a result, the energy spectrum, E2-transition rates and reduced α-widths of all T=0 positive-parity levels below 7 MeV excitation energy are systematically reproduced. (auth.)

  12. Fifteenth international workshop on nuclear theory. Rila Mountains, Bulgaria, June 10-15, 1996. Abstracts

    International Nuclear Information System (INIS)

    1996-01-01

    This brochure contains the abstracts of reports delivered by 22 participants at the 15. International Workshop on Nuclear Theory organized by the Institute for Nuclear Research and Nuclear Energy, Bulgaria. The main topics discussed are: hot giant dipole resonance problem, nuclear dynamics in the phase space, heavy ion collisions, ground state correlations beyond RPA, short-range nucleon-nucleon correlation effects in various applications (semiclassical models, magnetic form factors, nucleon momentum distributions, charge densities), nucleon-nucleon interactions in the frame of the semiclassical distorted wave model and O(8) model , nuclear surface in preequilibrium reactions at low energies, magnetic excitations in deformed nuclei, particle decay and E2 transitions, fragmentation at near-barrier energies in heavy ion reactions, IBM models, representations of deformed groups and HF method. All items are recorded in INIS separately

  13. Seniority isomerism in proton-rich N=82 nuclei and its indication to stiffness of the Z=64 subshell

    International Nuclear Information System (INIS)

    Matsuzawa, T.; Nakada, H.; Ogawa, K.; Momoki, G.

    2000-01-01

    The 10 + and 27/2 - isomers of the Z > 64, N=82 nuclei are investigated in the shell model framework. We derive an extended seniority reduction formula (ExSRF) for the relevant E2 transition strengths. We argue that the B(E2) data based on the ExSRF require the proton excitation from 146 Gd core. The energy levels and the B(E2) values are reproduced simultaneously by a multi-j shell model calculation, if the excitations from (0g 7/2 1d 5/2 ) to (2s 1/2 0h 11/2 1d 3/2 ) are taken into account. (author)

  14. Computer experiments of the time-sequence of individual steps in multiple Coulomb-excitation

    International Nuclear Information System (INIS)

    Boer, J. de; Dannhaueser, G.

    1982-01-01

    The way in which the multiple E2 steps in the Coulomb-excitation of a rotational band of a nucleus follow one another is elucidated for selected examples using semiclassical computer experiments. The role a given transition plays for the excitation of a given final state is measured by a quantity named ''importance function''. It is found that these functions, calculated for the highest rotational state, peak at times forming a sequence for the successive E2 transitions starting from the ground state. This sequential behaviour is used to approximately account for the effects on the projectile orbit of the sequential transfer of excitation energy and angular momentum from projectile to target. These orbits lead to similar deflection functions and cross sections as those obtained from a symmetrization procedure approximately accounting for the transfer of angular momentum and energy. (Auth.)

  15. First observation of the beta decay of neutron-rich $^{218}Bi$ by the pulsed-release technique and resonant laser ionization

    CERN Document Server

    De Witte, H; Borzov, I N; Caurier, E; Cederkäll, J; De Smet, A; Eckhaudt, S; Fedorov, D V; Fedosseev, V; Franchoo, S; Górska, M; Grawe, H; Huber, G; Huyse, M; Janas, Z; Köster, U; Kurcewicz, W; Kurpeta, J; Plochocki, A; Van Duppen, P; Van de Vel, K; Weissman, L

    2004-01-01

    The neutron-rich isotope /sup 218/Bi has been produced in proton- induced spallation of a uranium carbide target at the ISOLDE facility at CERN, extracted from the ion source by the pulsed-release technique and resonant laser ionization, and its beta decay is studied for the first time. A half-life of 33(1)s was measured and is discussed in the self-consistent continuum-quasi particle-random- phase approximation framework that includes Gamow-Teller and first- forbidden transitions. A level scheme was constructed for /sup 218 /Po, and a deexcitation pattern of stretched E2 transitions 8/sup +/ to 6/sup +/ to 4/sup +/ to 2/sup +/ to 0/sup +/ to the ground state is suggested. Shell-model calculations based on the Kuo-Herling interaction reproduce the experimental results satisfactorily. (28 refs).

  16. Low-spin electromagnetic transition probabilities in {sup 102,104}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Jolie, J.; Dewald, A.; Fransen, C.; Linnemann, A.; Melon, B.; Moeller, O. [Inst. fuer Kernphysik, Univ. zu Koeln (Germany); Boelaert, N. [Inst. fuer Kernphysik, Univ. zu Koeln (Germany); Dept. of Subatomic and Radiation Physics, Gent Univ. (Belgium); Smirnova, N.; Heyde, K. [Dept. of Subatomic and Radiation Physics, Gent Univ. (Belgium)

    2007-07-01

    Lifetimes of low-lying states in {sup 102,104}Cd were determined by using the recoil distance Doppler shift technique with a plunger device and a Ge array consisting of five HP Ge detectors and one Euroball cluster detector. The experiments were carried out at the Cologne FN Tandem accelerator using the {sup 92,94}Mo({sup 12}C,2n){sup 102,104}Cd reactions. The differential decay curve method in coincidence mode was employed to derive the lifetime of the first excited 2{sup +} state in both nuclei and the first excited 4{sup +} state in {sup 104}Cd. The corresponding E2 transition probabilities agree well with large scale shell-model calculations. (orig.)

  17. On the Properties of the s{sub 1/2} -> d{sub 3/2} Transition in {sup 199}Au

    Energy Technology Data Exchange (ETDEWEB)

    Baecklin, A [Swedish Research Councils' Laboratory, Studsvik, Nykoeping (Sweden); Malmskog, S G [AB Atomenergi, Nykoeping (Sweden)

    1967-02-15

    The half-life of the first excited level in Au has been measured by the delayed coincidence technique to be 1.1 {+-} 0.1 nsec. From a measurement of the intensity ratios of the L sub shell conversion lines the E2/M1 ratio of the deexciting transition has been found to be (4.9 {sup +1.4}{sub -0.8})10{sup -2} The energy of the transition was measured to 77.21 {+-} 0.03 keV. The absolute values of the reduced M1 and E2 transition probabilities have been calculated and included in a systematic survey of s{sub 1/2} <-> d{sub 3/2} transitions in odd Z isotopes in the Au region. This result has been compared with the predictions of the nuclear models of Sorensen and de Shalit.

  18. Absolute Transition Probabilities from the 453.1 keV Level in 183W

    International Nuclear Information System (INIS)

    Malmskog, S.G.

    1966-10-01

    The half life of the 453.1 keV level in 183 W has been measured by the delayed coincidence method to 18.4 ± 0.5 nsec. This determines twelve absolute M1 and E2 transition probabilities, out of which nine are K-forbidden. All transition probabilities are compared with the single particle estimate. The three K-allowed E2, ΔK = 2 transition rates to the 1/2 - (510) rotational band are furthermore compared with the Nilsson model. An attempt to give a quantitative explanation of the observed transition rates has been made by including the effects from admixtures into the single particle wave functions

  19. Observation of forbidden (E2) lines in the ultraviolet spectra of Ca II, Sr II, and Ba II by inductively coupled plasma emission spectroscopy

    International Nuclear Information System (INIS)

    Doidge, Peter S.

    2013-01-01

    Forbidden (electric quadrupole, E2) transitions of the type ns 2 S 1/2 –nd 2 D 3/2 and ns 2 S 1/2 –nd 2 D 5/2 in the ultraviolet spectra of singly ionized Ca, Sr, and Ba (with n = 4, 5 or 6 for Ca, Sr, and Ba, respectively) have been observed in the emission spectrum of an inductively coupled argon plasma. Wavelengths and wavenumbers of the six lines are reported and the values are in good agreement with those expected from literature data for the energy levels involved. - Highlights: • Wavelengths measured using commercially available ICP emission spectrometer • First wavelength and wavenumber measurements of some E2 lines of Ba +, Ca +, Sr + • Evidence for small plasma shifts in the wavenumbers of Ba + and Sr +

  20. Investigations of low- and high-spin states of sup 1 sup 3 sup 2 La

    CERN Document Server

    Kumar, V; Singh, R P; Muralithar, S; Bhowmik, R K

    2003-01-01

    The fusion evaporation reaction sup 1 sup 2 sup 2 Sn( sup 1 sup 4 N,4n) sup 1 sup 3 sup 2 La was used to populate the high-spin states of sup 1 sup 3 sup 2 La at the beam energy of 60 MeV. A new band consisting of mostly E2 transitions has been discovered. This band has the interesting links to the ground state 2 sup - and the isomeric state 6 sup -. A new transition of energy 351 keV connecting the low-spin states of the positive-parity band based on the pi h sub 1 sub 1 sub / sub 2 x nu h sub 1 sub 1 sub / sub 2 particle configuration, has been found. This has played a very important role in resolving the existing ambiguities and inconsistencies in the spin assignment of the band head. (orig.)

  1. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Sorri, J., E-mail: juha.m.t.sorri@jyu.fi [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyvaskyla (Finland); Greenlees, P.T.; Papadakis, P.; Konki, J. [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyvaskyla (Finland); Cox, D.M. [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyvaskyla (Finland); Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J. [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyvaskyla (Finland); Herzberg, R.-D. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Smallcombe, J.; Davies, P.J.; Barton, C.J.; Jenkins, D.G. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2016-03-11

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of {sup 154}Sm, {sup 152}Sm and {sup 166}Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  2. Montecarlo calculation of the isomeric cross sections ratio for the reaction 237Np(n,2n)236Np

    International Nuclear Information System (INIS)

    Cleri, F.

    1988-01-01

    A Montecarlo calculation of the isomeric cross section ratio for the (n,2n) reaction on 237 Np has been carried out based on the Hauser-Feshbach formulation. A standard energy-dependent optical model potential was used, with zero deformation parameters and no spin-orbit coupling. Investigation was made about the role of the energy cut-off value, of the higher multipole (E2) transition, of the gamma-ray versus second neutron emission, of the value of the spin cutt-off parameter. The results give the correct qualitative energy dependence of the branching ratio, with the assumption that the 1 - level is the ground state. The spin cut-off value obtained indicates a less pronounced deviation of the nuclear moment of inertia from the rigid-body value, with respect to older evaluations for high-mass nuclei. (author)

  3. Interrelation between the isoscalar octupole phonon and the proton-neutron mixed-symmetry quadrupole phonon in near-spherical nuclei

    International Nuclear Information System (INIS)

    Smirnova, N.A.; Van Isacker, P.; Smirnova, N.A; Pietralla, N.; Yale Univ., New Haven, CT; Mizusaki, T.

    2000-01-01

    The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2 + 1 state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the γ-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei 142 Ce and 94 Mo. (authors)

  4. E 2 decay strength of the M 1 scissors mode of 156Gd and its first excited rotational state

    Science.gov (United States)

    Beck, T.; Beller, J.; Pietralla, N.; Bhike, M.; Birkhan, J.; Derya, V.; Gayer, U.; Hennig, A.; Isaak, J.; Löher, B.; Ponomarev, V. Yu.; Richter, A.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Werner, V.; Zilges, A.; Zweidinger, M.

    2017-05-01

    The E 2 /M 1 multipole mixing ratio δ1 →2 of the 1sc+→21+ γ -ray decay in 156Gd and hence the isovector E 2 transition rate of the scissors mode of a well-deformed rotational nucleus has been measured for the first time. It has been obtained from the angular distribution of an artificial quasimonochromatic linearly polarized γ -ray beam of energy 3.07(6) MeV scattered inelastically off an isotopically highly enriched 156Gd target. The data yield first direct support for the deformation dependence of effective proton and neutron quadrupole boson charges in the framework of algebraic nuclear models. First evidence for a low-lying Jπ=2+ member of the rotational band of states on top of the 1+ band head is obtained, too, indicating a significant signature splitting in the K =1 scissors mode rotational band.

  5. Absolute Transition Probabilities from the 453.1 keV Level in {sup 183}W

    Energy Technology Data Exchange (ETDEWEB)

    Malmskog, S G

    1966-10-15

    The half life of the 453.1 keV level in {sup 183}W has been measured by the delayed coincidence method to 18.4 {+-} 0.5 nsec. This determines twelve absolute M1 and E2 transition probabilities, out of which nine are K-forbidden. All transition probabilities are compared with the single particle estimate. The three K-allowed E2, {delta}K = 2 transition rates to the 1/2{sup -} (510) rotational band are furthermore compared with the Nilsson model. An attempt to give a quantitative explanation of the observed transition rates has been made by including the effects from admixtures into the single particle wave functions.

  6. Poisson and Porter-Thomas fluctuations in off-yrast rotational transitions

    International Nuclear Information System (INIS)

    Matsuo, M.; Doessing, T.; Herskind, B.; Frauendorf, S.

    1993-01-01

    Fluctuations associated with stretched E2 transitions from high-spin levels in nuclei around 168 Yb are investigated by a cranked shell model extended to include residual two-body interactions. In the cranked mean-field model without residual interactions, it is found that gamma-ray energies behave like random variables and the energy spectra show Poisson fluctuation. With two-body residual interactions included, the discrete transition pattern with unmixed rotational bands is still valid up to around 600 keV above yrast, in good agreement with experiments. At higher excitation energy, a gradual onset of rotational damping emerges. At 1.8 MeV above yrast, complete damping is observed with GOE-type fluctuations for both energy levels and transition strengths (Porter-Thomas fluctuations). (orig.)

  7. Very high-spin states in nuclei

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1977-01-01

    The continuum γ-ray spectrum following neutron emission in a (HI,xn) reaction consists of a high-energy tail, the statistical cascade, and a lower-energy bump, the yrast cascade, which contains most of the intensity and consists mostly of stretched E2 transitions. Thus, a good approximation to the average angular momentum carried by the γ-rays is 2N/sub γ/-bar. Under favourable conditions, effective moments of inertia can be deduced for states up to the top of the γ-ray cascade. The maximum angular momentum in the cascades is probably limited by α-emission for nuclei with A 150. 17 figures

  8. Extended interacting boson model description of Pd nuclei in the A∼100 transitional region

    Directory of Open Access Journals (Sweden)

    Böyükata M.

    2014-03-01

    Full Text Available Studies of even-even nuclei in the A∼100 transitional mass region within the framework of the interacting boson model-1 (IBM-1 have been expanded down to 98Pd nuclei to compare the calculation with new experimental results from measurements obtained at the Institute of Nuclear Physics in Cologne. The low-lying energy levels and the E2 transition rates of 98−100Pd nuclei are investigated and their geometric structures are described in the present work. We have also focused on the new B(E2:21+ → 01+ values of 112,114Pd nuclei to compare with previously calculated values.

  9. Structure of states and reduced probabilities of electromagnetic transitions in 169Yb

    International Nuclear Information System (INIS)

    Bonch-Osmolovskaya, N.A.; Morozov, V.A.; Khudajberdyev, Eh.N.

    1988-01-01

    The effect of accounting the Pauli principle on the structure and energy of nonrotational states of 169 Yb deformed nucleus as well as on reduced probabilities of E2-transitions B(E2) is studied within the framework of the quasiparticle-phonon model (QPM). The amplitudes of states mixing due to Coriolis interaction and reduced probabilities of gamma transition within the framework of nonadiabatic rotation model are also calculated. The results are compared with calculations made within QPM with account of Coriolis interaction but excluding the Pauli principle in the wave state function. It is shown that to describe correctly both the level structure and reduced probabilities B(E2) it is necessary to include all types of interaction : quasiparticle interaction with phonons with account of the Pauli principle in the wave state functions and Coriolis interactions. Now no uniform theoretical approach exists

  10. Stretched configuration of states as inferred from γ-ray angular distributions in {sup 40}Ar + {sup 208}Pb neutron transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Colovic, P.; Szilner, S.; Mijatovic, T.; Jelavic Malenica, D.; Soic, N. [Ruder Boskovic Institute, Zagreb (Croatia); Corradi, L.; Fioretto, E.; Stefanini, A.M.; Valiente-Dobon, J.J. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro (Italy); Pollarolo, G. [Dipartimento di Fisica Teorica, Universita di Torino (Italy); Istituto Nazionale di Fisica Nucleare, Torino (Italy); Goasduff, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro (Italy); Dipartimento di Fisica, Universita di Padova (Italy); Istituto Nazionale di Fisica Nucleare, Padova (Italy); Montanari, D. [Dipartimento di Fisica, Universita di Padova (Italy); Istituto Nazionale di Fisica Nucleare, Padova (Italy); Universite de Strasbourg, Institut Pluridisciplinaire Hubert Curien, CNRS-IN2P3, Strasbourg (France); Chapman, R.; Smith, J.F. [University of the West of Scotland, School of Engineering and Computing, Paisley (United Kingdom); Gadea, A. [Instituto de Fisica Corpuscular, CSIC-Universitat de Valencia, Valencia (Spain); Haas, F. [Universite de Strasbourg, Institut Pluridisciplinaire Hubert Curien, CNRS-IN2P3, Strasbourg (France); Marginean, N.; Ur, C.A. [Horia Hulubei National Institute of Physics and Nuclear Engineering and ELI-NP, Bucharest (Romania); Mengoni, D.; Montagnoli, G.; Scarlassara, F. [Dipartimento di Fisica, Universita di Padova (Italy); Istituto Nazionale di Fisica Nucleare, Padova (Italy); Milin, M. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia)

    2017-08-15

    Angular distributions of γ-rays for selected transitions in {sup 40,41,42}Ar isotopes have been studied with the PRISMA magnetic spectrometer coupled to the CLARA γ array. These transitions were populated in Ar isotopes reached via neutron transfer in the {sup 40}Ar + {sup 208}Pb reaction. By comparison with the shape of the experimental angular distribution of the known E2 transitions we established more firmly the spin and parity of excited states. In particular, in {sup 41}Ar for the (11/2{sup -}) state through the (11/2{sup -}) → 7/2{sup -} transition whose structure was discussed in terms of a phonon-fermion coupled state. The comparison with the expected fully aligned spin indicated that a high level of spin alignment has been reached. (orig.)

  11. Effective Lagrangians, Watson's theorem and the E2/M1 mixing ratio in the excitation of the Delta resonance

    International Nuclear Information System (INIS)

    Davidson, R.M.

    1992-01-01

    The author investigates theoretical uncertainties and model dependence in the extraction of the nucleon-delta(1232) electromagnetic transition amplitudes from the multipole data base. The starting point is an effective Lagrangian incorporating chiral symmetry, which includes at the tree level the pseudovector Born terms, leading t-channel vector meson exchanges, and s and u channel delta exchanges. The nucleon-delta magnetic dipole (M1) and electric quadrupole (E2) transition amplitudes are expressed in terms of two independent gauge couplings at the γNΔ vertex. After unitarizing the tree level amplitude, the gauge couplings are fitted to various multipole data sets, thus determining E2 and M1. Although there is much sensitivity to the method used to unitarize the amplitude, the author extracts the E2/M1 ratio to be negative, with a magnitude around 1.5%. 11 refs., 3 figs

  12. Description of the Rigid Triaxial Deformation at Low Energy in 76Ge with the Proton-Neutron Interacting Model IBM2

    International Nuclear Information System (INIS)

    Zhang Da-Li; Ding Bin-Gang

    2013-01-01

    We investigate properties of the low-lying energy states for 76 Ge within the framework of the proton-neutron interacting model IBM2, considering the validity of the Z = 38 subshell closure 88 Sr 50 as a doubly magic core. By introducing the quadrupole interactions among like bosons to the IBM2 Hamiltonian, the energy levels for both the ground state and γ bands are reproduced well. Particularly, the doublet structure of the γ band and the energy staggering signature fit the experimental data correctly. The ratios of B(E2) transition strengths for some states of the γ band, and the g factors of the 2 1 + , 2 2 + states are very close to the experimental data. The calculation result indicates that the nucleus exhibiting rigid triaxial deformation in the low-lying states can be described rather well by the IBM2

  13. SP (4,R) symmetry in light nuclei

    International Nuclear Information System (INIS)

    Peterson, D.R.

    1979-01-01

    A classification of nuclear states according to the noncompact sympletic Lie algebras sp(2n,R), n = 1, 2, 3, is investigated. Such a classification has recently been shown to be physically meaningful. This classification scheme is the appropriate generalization fo Elliott's SU 3 model of rotational states in deformed light nuclei to include core excitations. A restricted classification according to the Lie algebra, sp(4,R), is motivated. Truncation of the model space to a single sp(4,R) irreducible representation allows the inclusion of states possessing very high excitation energy. An sp(4,R) model study is performed on S = T = 0 positive-parity rotational bands in the deformed light nuclei 16 O and 24 Mg. States are included in the model space that possess up to 10h ω in excitation energy. Results for the B(E2) transition rates compare favorable with experiment, without resort to effective charges

  14. Order in large and chaos in small components of nuclear wave functions

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1992-06-01

    An investigation of the order and chaos of the nuclear excited states has shown that there is order in the large and chaos in the small quasiparticle or phonon components of the nuclear wave functions. The order-to-chaos transition is treated as a transition from the large to the small components of the nuclear wave function. The analysis has shown that relatively large many-quasiparticle components of the wave function at an excitation energy (4-8)MeV may exist. The large many-quasiparticle components of the wave functions of the neutron resonances are responsible for enhanced E1-, M1- and E2-transition probabilities from neutron resonance to levels lying (1-2)MeV below them. (author)

  15. Boson models of quadrupole collective motion

    International Nuclear Information System (INIS)

    Zelevinskij, V.G.

    1985-01-01

    The subject of the lecture is the low-lying excitations of even-even (e-e) spherical nuclei. The predominant role of the quadrupole mode, which determines the structure of spectra and transitions, is obvious on the background of shell periodicity and pair correlations. Typical E2-transitions are strengthened Ω ∼ A 2/3 times in comparison with single particle evaluations. Together with the regularity of the whole picture it gives evidence about collectivization of quadrupole motion. The collective states are combined in bands, where the transition probability are especially great; frequencies ω of the strengthened transitions are small in comparison with pair separation energies of 2 E-bar ∼ 2 MeV. Thus, the description of low-lying excitations of spherical nuclei has to be based on three principles: collectivity (Ω >> 1), adiabaticity (τ ≡ ω/2E-bar << 1) and quadrupole symmetry

  16. Comparison of IBM-2 calculations with X(5) critical point symmetry for low lying states in 128-140Nd

    International Nuclear Information System (INIS)

    Uluer, I.; Olgun, D.; Inan, S.; Tuerkan, N.

    2006-01-01

    The X(5) would take place when moving continuously from the pure U(5) symmetry to the SU(3) symmetry and it implies a definite relations among the level energies and among the E2 transition strengths. It was recently shown that a signature of phase transition is observed in the chain of Sm, Mo and Nd isotopes, where 1 52Sm, 1 04Mo and 1 50Nd display the predicted features of the X(5) symmetry and mark therefore the critical point. However, more detailed studies and experiments are needed to get ideas about this signature. Without entering into detail we have firstly compared the results obtained in our previous study of 1 28- 1 40Nd with that of the limits in X(5) symmetry and then given a clear description about the validity of the Hamiltonian parameters used in the study. At the end, we have concluded that some of Nd isotopes display X(5) symmetry features

  17. Interrelation between the isoscalar octupole phonon and the proton-neutron mixed-symmetry quadrupole phonon in near-spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, N.A.; Van Isacker, P. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Smirnova, N.A [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse]|[Institute for Nuclear Physics, Moscow State University (Russian Federation); Pietralla, N. [Institut fur Kernphysik, Universitat zu Koln (Germany)]|[Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab; Mizusaki, T. [Tokyo Univ. (Japan). Dept. of Physics

    2000-07-01

    The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2{sup +}{sub 1} state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the {gamma}-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei {sup 142}Ce and {sup 94}Mo. (authors)

  18. Systematic behavior of B(E2) values in the yrast bands of doubly even nuclei

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Rutgers - the State Univ., New Brunswick, NJ; Nadjakov, E.; Venkova, T.

    1980-01-01

    The experimental information on B(E2) transition rates in the yrast bands of doubly even nuclei (126 2 (J: moment of inertia) are plotted versus the rotational frequency squared h/2π 2 ω 2 for each nucleus. In strongly deformed nuclei (N >= 90), the Ssub(exp) curves smoothly increase for low rotational frequencies suggesting that up to spin values I approx. 8 the ratio Q 2 0 /J is nearly constant (Q 0 : quadrupole moment). This is not the case in nuclei with a soft core (N <= 88). In the relevant discussion, the hydrodynamical model as well as the CAP effect are considered. The results in the backbending region are qualitatively discussed in terms of the two-band crossing model. Evidence is found supporting the prediction of an oscillating behavior of the yrast-yrare interaction. (orig.)

  19. Evidence for a smooth onset of deformation in the neutron-rich Kr isotopes

    CERN Document Server

    Albers, M; Nomura, K; Blazhev, A; Jolie, J; Mucher, D; Bastin, B; Bauer, C; Bernards, C; Bettermann, L; Bildstein, V; Butterworth, J; Cappellazzo, M; Cederkall, J; Cline, D; Darby, I; Das Gupta, S; Daugas, J M; Davinson, T; De Witte, H; Diriken, J; Filipescu, D; Fiori, E; Fransen, C; Gaffney, L P; Georgiev, G; Gernhauser, R; Hackstein, M; Heinze, S; Hess, H; Huyse, M; Jenkins, D; Konki, J; Kowalczyk, M; Kroll, T; Krucken, R; Litzinger, J; Lutter, R; Marginean, N; Mihai, C; Moschner, K; Napiorkowski, P; Nara Singh, B S; Nowak, K; Otsuka, T; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Rigby, S; Robledo, L M; Rodriguez-Guzman, R; Rudigier, M; Sarriguren, P; Scheck, M; Seidlitz, M; Siebeck, B; Simpson, G; Thole, P; Thomas, T; Van de Walle, J; Van Duppen, P; Vermeulen, M; Voulot, D; Wadsworth, R; Wenander, F; Wimmer, K; Zell, K O; Zielinska, M

    2012-01-01

    The neutron-rich nuclei $^{94,96}$Kr were studied via projectile Coulomb excitation at the REX-ISOLDE facility at CERN. Level energies of the first excited 2$^{+}$ states and their absolute $E2$ transition strengths to the ground state are determined and discussed in the context of the $E(2^{+}_{1})$ and $B(E2;2^{+}_{1} \\rightarrow 0^{+}_{1})$ systematics of the krypton chain. Contrary to previously published results no sudden onset of deformation is observed. This experimental result is supported by a new proton-neutron interacting boson model calculation based on the constrained Hartree-Fock-Bogoliubov approach using the microscopic Gogny-D1M energy density functional.

  20. 17F breakup reactions: a touchstone for indirect measurements

    International Nuclear Information System (INIS)

    De Napoli, M.; Raciti, G.; Sfienti, C.; Capel, P.; Baye, D.; Descouvemont, P.; Sparenberg, J.-M.; Giacoppo, F.; Rapisarda, E.; Cardella, G.; Mazzocchi, C.

    2011-01-01

    An exclusive study of 17 F breakup reactions has been performed at the FRIBs facility of the Laboratori Nazionali del Sud in Catania (Italy). The experiment has been performed with the aim of testing the accuracy of the Coulomb-breakup indirect technique used to infer radiative-capture cross sections at low energies. This technique has been used in the 7 Be(p,γ) 8 B case, but has never been tested. By measuring the breakup of 17 F into 16 O+p, and comparing the inferred cross section for 16 O(p,γ) 17 F to direct precise measurements, the influence of E2 transitions and higher-order effects, that are predicted to be significant in Coulomb-breakup reactions, can be evaluated. The first results and preliminary model comparison are reported.

  1. Large boson number IBM calculations and their relationship to the Bohr model

    International Nuclear Information System (INIS)

    Thiamova, G.; Rowe, D.J.

    2009-01-01

    Recently, the SO(5) Clebsch-Gordan (CG) coefficients up to the seniority v max =40 were computed in floating point arithmetic (T.A. Welsh, unpublished (2008)); and, in exact arithmetic, as square roots of rational numbers (M.A. Caprio et al., to be published in Comput. Phys. Commun.). It is shown in this paper that extending the QQQ model calculations set up in the work by D.J. Rowe and G. Thiamova (Nucl. Phys. A 760, 59 (2005)) to N=v max =40 is sufficient to obtain the IBM results converged to its Bohr contraction limit. This will be done by comparing some important matrix elements in both models, by looking at the seniority decomposition of low-lying states and at the behavior of the energy and B(E2) transition strengths ratios with increasing seniority. (orig.)

  2. Band mixing effects in mean field theories

    International Nuclear Information System (INIS)

    Kuyucak, S.; Morrison, I.

    1989-01-01

    The 1/N expansion method, which is an angular momentum projected mean field theory, is used to investigate the nature of electromagnetic transitions in the interacting boson model (IBM). Conversely, comparison with the exact IBM results sheds light on the range of validity of the mean field theory. It is shown that the projected mean field results for the E2 transitions among the ground, β and γ bands are incomplete for the spin dependent terms and it is essential to include band mixing effect for a correct (Mikhailov) analysis of E2 data. The algebraic expressions derived are general and will be useful in the analysis of experimental data in terms of both the sd and sdg boson models. 17 refs., 7 figs., 8 tabs

  3. The decay of /sup 120/Xe

    CERN Document Server

    Münnich, F; Lode, D; Pessara, W; Schrader, H

    1974-01-01

    The decay scheme of 40 min /sup 120/Xe has been investigated using isotopically separated sources produced by the ISOLDE facility at CERN. A total number of 202 gamma -transitions has been observed in this decay; 188 of them have been placed in a level scheme involving 34 excited states in /sup 120/I. Most of these levels are based on the results of gamma - gamma coincidence experiments with two Ge(Li) detectors. Internal conversion coefficients have been obtained with a Si(Li) detector and a magnetic spectrometer. The half-life of 4 low- lying levels in /sup 120/I has been measured by delayed coincidence techniques. From these measurements, partial half-lives for some transitions have been deduced and are compared with the single- particle estimates. Two E2 transitions are strongly enhanced. (24 refs).

  4. Coexisting shape- and high-K isomers in the shape transitional nucleus {sup 188}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S., E-mail: somm@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Biswas, D.C. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Tandel, S.K. [UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098 (India); Danu, L.S.; Joshi, B.N.; Prajapati, G.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Nag, Somnath [Dept. of Physics, IIT Kharagpur, Kharagpur 721302 (India); Trivedi, T.; Saha, S.; Sethi, J.; Palit, R. [Dept. of Nuclear and Atomic Physics, TIFR, Mumbai 400005 (India); Joshi, P.K. [Homi Bhabha Centre for Science Education, TIFR, Mumbai 400088 (India)

    2014-12-12

    A high-spin study of the shape transitional nucleus {sup 188}Pt reveals the unusual coexistence of both shape- and K-isomeric states. Reduced B(E2) transition probabilities for decays from these states inferred from the data clearly establish their hindered character. In addition to other excited structures, a rotational band built upon the K isomer is identified, and its configuration has been assigned through an analysis of alignments and branching ratios. The shape evolution with spin in this nucleus has been inferred from both experimental observables and cranking calculations. The yrast positive parity structure appears to evolve from a near-prolate deformed shape through triaxial at intermediate excitation, and eventually to oblate at the highest spins.

  5. Coexisting shape- and high-K isomers in the shape transitional nucleus 188Pt

    Science.gov (United States)

    Mukhopadhyay, S.; Biswas, D. C.; Tandel, S. K.; Danu, L. S.; Joshi, B. N.; Prajapati, G. K.; Nag, Somnath; Trivedi, T.; Saha, S.; Sethi, J.; Palit, R.; Joshi, P. K.

    2014-12-01

    A high-spin study of the shape transitional nucleus 188Pt reveals the unusual coexistence of both shape- and K-isomeric states. Reduced B (E2) transition probabilities for decays from these states inferred from the data clearly establish their hindered character. In addition to other excited structures, a rotational band built upon the K isomer is identified, and its configuration has been assigned through an analysis of alignments and branching ratios. The shape evolution with spin in this nucleus has been inferred from both experimental observables and cranking calculations. The yrast positive parity structure appears to evolve from a near-prolate deformed shape through triaxial at intermediate excitation, and eventually to oblate at the highest spins.

  6. On the d{sub 5/2}<->g{sub 7/2} Transitions in Odd Mass Pm Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Baecklin, A; Malmskog, S G

    1967-05-15

    The half-lives of the first excited levels in {sup 145}Pm and {sup 147}Pm have been measured by the delayed coincidence method and are 2.69 {+-} 0.08 nsec and 2.51 {+-} 0.05 nsec, respectively. From a measurement of the L subshell ratios of the 61 keV transition in {sup 145}Pm, an E2 admixture of 0.15 {+-} 0.05 per cent has been obtained. The transition energy was found to be 61.25 {+-} 0.05 keV. The experimental reduced E2 transition probabilities from the first excited states to the ground states of {sup 145}Pm, {sup 147}Pm and {sup 149}Pm have been compared to the theoretical predictions by Sorensen.

  7. Description of superdeformed nuclear states in the interacting boson model

    International Nuclear Information System (INIS)

    Liu, Y.; Zhao, E.; Liu, Y.; Song, J.; Liu, Y.; Sun, H.; Zhao, E.; Liu, Y.; Sun, H.

    1997-01-01

    We show in this paper that the superdeformed nuclear states can be described with a four parameter formula in the spirit of the perturbated SU(3) limit of the sdg IBM. The E2 transition γ-ray energies, the dynamical moments of inertia of the lowest superdeformed (SD) bands in even-even Hg, Pb, Gd, and Dy isotopes, and the energy differences ΔE γ -ΔE γ ref of the SD band 1 of 194 Hg are calculated. The calculated results agree with experimental data well. This indicates that the SD states are governed by a rotational interaction plus a perturbation with SO sdg (5) symmetry. The perturbation causing the ΔI=4 bifurcation to emerge in the ΔI=2 superdeformed rotational band may then possess SO sdg (5) symmetry. copyright 1997 The American Physical Society

  8. Investigation of triaxiality in 54122-128Xe isotopes in the framework of sdg-IBM

    Science.gov (United States)

    Jafarizadeh, M. A.; Ranjbar, Z.; Fouladi, N.; Ghapanvari, M.

    In this paper, a transitional interacting boson model (IBM) Hamiltonian in both sd-(IBM) and sdg-IBM versions based on affine SU(1, 1) Lie algebra is employed to describe deviations from the gamma-unstable nature of Hamiltonian along the chain of Xe isotopes. sdg-IBM Hamiltonian proposed a better interpretation of this deviation which cannot be explained in the sd-boson models. The nuclei studied have well-known γ bands close to the γ-unstable limit. The energy levels, B(E2) transition rates and signature splitting of the γ -vibrational band are calculated via the affine SU(1,1) Lie algebra. An acceptable degree of agreement was achieved based on this procedure. It is shown that in these isotopes the signature splitting is better reproduced by the inclusion of sdg-IBM. In none of them, any evidence for a stable, triaxial ground state shape is found.

  9. Wobbling Motion in the Multi-Bands Crossing Region: Dynamical Coupling Mode Between High- and Low-K States

    International Nuclear Information System (INIS)

    Oi, M.; Ansari, A.; Horibata, T.; Onishi, N.; Walker, P.M.

    2001-01-01

    We analyze a mechanism of coupling of high- and low-K bands in terms of a dynamical treatment for nuclear rotations, i. e., wobbling motion. The wobbling states are produced through the Generator Coordinate Method after Angular Momentum Projection (GCM-after-AMP), in which the intrinsic states are constructed through fully self consistent calculations by the 2d-cranked (or tilted-axis-cranked) HFB method. In particular, the phenomena of ''signature inversion'' and ''signature splitting'' in the t-band (tilted rotational band) are explained in terms of the wobbling model. Our calculations will be compared with new data for in-band E2 transition rates in 182 0s, which may shed light on the mechanism of the anomalous K = 25 isomer decay, directly to the yrast band. (author)

  10. S-factor of 14 N (α, γ)18 F reaction at low-energies

    Science.gov (United States)

    Khalili, H.

    2018-06-01

    The astrophysical S-factor of the 14 N (α, γ)18 F reaction has been studied at range of bombarding energy 1-1.30 MeV. The 14 N (α, γ)18 F process is important in low energy astrophysics so that a possible source of energy in massive stars which have spent their hydrogen cycle. Using the Wood-saxon potential model, we have been calculated non resonances the astrophysical S-factors for the E 2 transition and our results for Eα = 0.0 MeV is S ≈ 0.5 MeV.b where from experimental is measured to Eα = 0.0 is S ≈ o . 7 MeV.b (Couch et al., 1971) that in comparison with our data good agreement is achieved for the astrophysical S-factor of this process.

  11. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    International Nuclear Information System (INIS)

    Sorri, J.; Greenlees, P.T.; Papadakis, P.; Konki, J.; Cox, D.M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P.J.; Barton, C.J.; Jenkins, D.G.

    2016-01-01

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of "1"5"4Sm, "1"5"2Sm and "1"6"6Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  12. Shape mixing in sup(184,186)Hg

    International Nuclear Information System (INIS)

    Baba, C.V.K.

    1976-01-01

    Recent potential energy calculations on even Hg isotopes have shown that sup(184,186)Hg are possibly deformed with two energy minima one each for oblate (β 2 =-0.14) and prolate (β 2 =0.28) shapes. The quasi-rotational levels in these nuclei have been studied by heavy ion reactions at Berley and Chalk River. The salient features of these studies are: a deviation of the energy levels from a rotational sequence for I + →2 + and 2 + →0 + , E2 transition rates from the rotational value with β 2 =0.28. These features of the spectra are explained on the basis of mixing of bands based on the oblate and prolate shapes. The results of a simple band mixing calculation are presented and they reproduce the observed level spacings and B(E2) values. (author)

  13. Study of phase transition of even and odd nuclei based on q-deforme SU(1,1) algebraic model

    Science.gov (United States)

    Jafarizadeh, M. A.; Amiri, N.; Fouladi, N.; Ghapanvari, M.; Ranjbar, Z.

    2018-04-01

    The q-deformed Hamiltonian for the SO (6) ↔ U (5) transitional case in s, d interaction boson model (IBM) can be constructed by using affine SUq (1 , 1) Lie algebra in the both IBM-1 and 2 versions and IBFM. In this research paper, we have studied the energy spectra of 120-128Xe isotopes and 123-131Xe isotopes and B(E2) transition probabilities of 120-128Xe isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes of the theory of quantum deformation. The theoretical results agree with the experimental data fairly well. It is shown that the q-deformed SO (6) ↔ U (5) transitional dynamical symmetry remains after deformation.

  14. Evidence of parity violation in 118Sn and 36Cl

    International Nuclear Information System (INIS)

    Benkoula, H.

    1978-01-01

    Parity violation in nuclear systems was studied by forward-backward asymmetry measurement methods in radiative capture of polarized neutrons in the reactions 117 Sn(n,γ) 118 Sn and 35 Cl(n,γ) 36 Cl. The experimental set ups used two INa detectors situated at left and right sides of the beam and parallel to polarisation direction, and an electronic system adapted to high-counting rate. The asymmetry measurement, A=(4.56+-0.6)x10 -4 in the 9.328 MeV Ml transition demonstrates the existence of parity violation effects. The 8.58 MeV (M1+E2) transition in 36 Cl was also studied and the asymmetry value is A=(1.11+-0.35)x10 -4 . Several beam and electronic tests have shown that there was no spurious asymmetry in the measurement due to the equipment [fr

  15. E2 decay strength of the M1 scissors mode of ^{156}Gd and its first excited rotational state.

    Science.gov (United States)

    Beck, T; Beller, J; Pietralla, N; Bhike, M; Birkhan, J; Derya, V; Gayer, U; Hennig, A; Isaak, J; Löher, B; Ponomarev, V Yu; Richter, A; Romig, C; Savran, D; Scheck, M; Tornow, W; Werner, V; Zilges, A; Zweidinger, M

    2017-05-26

    The E2/M1 multipole mixing ratio δ_{1→2} of the 1_{sc}^{+}→2_{1}^{+} γ-ray decay in ^{156}Gd and hence the isovector E2 transition rate of the scissors mode of a well-deformed rotational nucleus has been measured for the first time. It has been obtained from the angular distribution of an artificial quasimonochromatic linearly polarized γ-ray beam of energy 3.07(6) MeV scattered inelastically off an isotopically highly enriched ^{156}Gd target. The data yield first direct support for the deformation dependence of effective proton and neutron quadrupole boson charges in the framework of algebraic nuclear models. First evidence for a low-lying J^{π}=2^{+} member of the rotational band of states on top of the 1^{+} band head is obtained, too, indicating a significant signature splitting in the K=1 scissors mode rotational band.

  16. Systematic investigation of electromagnetic properties of all stable hafnium isotopes

    International Nuclear Information System (INIS)

    Napiorkowski, T.J.; Choinski, J.; Czosnyka, T.; Iwanicki, J.; Kownacki, J.; Zemlo, L.; Srebrny, J.; Starosta, K.; Boer, J. de.; Gollwitzer, A.; Loewe, M.; Wuerkner, M.; Guenther, C.; Weber, T.; Hagemann, G.; Sletten, G.

    1996-01-01

    In a systematic investigation of the electromagnetic structure of hafnium stable isotopes enriched targets of 176, 177, 178, 179, 180 Hf were Coulomb exciting using: 67 MeV 19 F beam from NBITAL FN Tandem, 125 MeV 32 S beam from MP Tandem in Accelerator Laboratory LMU and TU Munich, 225 MeV 58 Ni beam from NBITAL FN Tandem plus 2 Liniac Boosters complex. Scattered particle-gamma as well as p-γ-γ coincidence were registered. A further simultaneous analysis of Coulomb excitation cross section as a function of scattering angle of 19 F, 32 S, 58 Ni projectiles should be sufficient to deduce reduced probabilities of E2 transitions in ground state band

  17. Semimicroscopic description of the giant quadrupole resonances in deformed nuclei

    International Nuclear Information System (INIS)

    Kurchev, G.; Malov, L.A.; Nesterenko, V.O.; Soloviev, V.G.

    1976-01-01

    The calculation results of the giant quadrupole isoscalar and isovector resonances performed within the random phase approximation are represented. The strength functions for E2-transitions are calculated for doubly even deformed nuclei in the regions 150 (<=) A < 190 and 228 (<=) A < 248 in the energy interval (0-40) MeV. The following integral characteristics of giant quadrupole resonances are obtained: the position, widths, the contribution to the energy weighted sum rule and the contribution to the total cross section of photoabsorption. The calculations have shown that giant quadrupole resonances are common for all the considered nuclei. The calculated characteristics of the isoscalar giant quadrupole resonance agree with the available experimental data. The calculations also show that the semimicroscopic theory can be successfully applied for the description of giant multipole resonances

  18. Studies on the decoupled rotation bands in the nuclei 79Rb, 81Rb, and 79Kr

    International Nuclear Information System (INIS)

    Panqueva Alvarez, J.H.

    1982-01-01

    High spin states in 79 Rb, 81 Rb, and 79 Kr were studied by means of the following reactions: 63 Cu( 19 F,p2n) 79 Rb, 70 Ge( 12 C,p2n) 79 Rb, 65 Cu( 16 O,2n) 79 Rb, 65 Cu( 19 F,p2n) 81 Rb, 63 Cu( 19 F,2pn) 79 Kr, and 70 Ge( 12 C,2pn) 79 Kr. On the base of γ single spectra, excitation functions, γ angular distributions, γγ and nγ coincidences, RDDS- and DSA lifetime measurements a level scheme of 79 Rb with 13 new found excited states is proposed. Also a series of stretched E2-transitions between posivite parity states in 79 Kr could be identified. The observed M1 and E2 transition probabilities, which were obtained via the experimental determination of the lifetime as well the branching ratio of 26 excited states, form the base for a comprehensive discussion of the nuclear structure of the studied isotopes. For this reason theoretical calculations with the asymmetric rotor-plus-quasiparticle with variable moment of inertia (AROVMI) as well with the interacting boson-fermion (IBVM) model were performed. The good agreement between experiment and theory permits to relate the decrease of the B(E2)-values in 79 Rb to a finite dimensional (N=8) boson space, to cancel the discrepancies stated by Friederichs et.al., and to analyze 79 Kr the influence of a gsub(9/2) neutron on the deformation of the 78 Kr core. (orig./HSI) [de

  19. In-Beam Studies of High-Spin States in Mercury -183 and MERCURY-181

    Science.gov (United States)

    Shi, Detang

    The high-spin states of ^{183 }Hg were studied by using the reaction ^{155}Gd(^{32}S, 4n)^{183}Hg at a beam energy of 160 MeV with the tandem-linac accelerator system and the multi-element gamma-ray detection array at Florida State University. Two new bands, consisting of stretched E2 transitions and connected by M1 inter-band transitions, were identified in ^{183}Hg. Several new levels were added to the previously known bands at higher spin. The spins and parities to the levels in ^{183}Hg were determined from the analysis of their DCO ratios and B(M1)/B(E2) ratios. While the two pairs of previously known bands in ^ {183}Hg were proposed to 7/2^ -[514] and 9/2^+ [624], the two new bands are assigned as the 1/2^-[521] ground state configuration based upon the systematics of Nilsson orbitals in this mass region. The 354-keV transition previously was considered to be an E2 transition and assigned as the only transition from a band which is built on an oblate deformed i_{13/2} isomeric state. However, our DCO ratio analysis indicates that the 354-keV gamma-ray is an M1 transition. This changes the decay pattern of the 9/2^+[624 ] prolate structure in ^ {183}Hg, so it is seen to feed only into the i_{13/2} isomer band head. Our knowledge of the mercury nuclei far from stability was then extended through an in-beam study of the reaction ^{144}Sm(^{40 }Ar, 3n)^{181}Hg by using the Fragment Mass Analyzer (FMA) and the ten-Compton-suppressed -germanium-detector system at Argonne National Laboratory. Band structures to high-spin states are established for the first time in ^{181}Hg in the present experiment. The observed level structure of ^{181}Hg is midway between those in ^{185}Hg and in ^{183}Hg. The experimental results are analyzed in the framework of the cranking shell model (CSM). Alternative theoretical explanations are also presented and discussed. Systematics of neighboring mercury isotopes and N = 103 isotones is analyzed.

  20. Studies of the 198Hg(d,d') and 198Hg(d,p) reactions

    Science.gov (United States)

    Diaz Varela, Alejandra; Garrett, P. E.; Rand, E. T.; Ball, G. C.; Bilstein, V.; Laffoley, A. T.; Maclean, A. D.; Svensson, C. E.; Faestermann, T.; Hertenberger, R.; Wirth, H.-F.

    2017-09-01

    Limits on the electric dipole moment (EDM) continue to decrease for 199Hg, the most stringent upper limit for a nuclear EDM to date. The experimental limit on the observed atomic EDM for 199Hg is converted to a limit on the nuclear EDM via a calculation of the Schiff moment, requiring knowledge of the nuclear structure of 199Hg. The E 3 and E 1 strength distributions to the ground state of 199Hg, and E 2 transitions amongst excited states, would be ideal information to further constrain 199Hg Schiff moment theoretical models. The high level density of 199Hg makes those determinations challenging, however the similar information can be obtained from exploring surrounding even-even Hg isotopes. As part of a campaign to study the Hg isotopes near 199Hg, two experiments, 198Hg(d,d') 198Hg and 198Hg(d,p)199Hg reaction were performed using the Q3D spectrograph at the Maier-Leibnitz Laboratory (MLL) at Garching, Germany. A 22 MeV deuterium beam was used to impinge a 198Hg32S target. The (d,d') reaction allows us to probe the desired E 2 and E 3 matrix elements, while the (d,p) reaction provides information on the neutron single-particle states of 199Hg.

  1. Branching ratios of radiative transitions in O VI

    International Nuclear Information System (INIS)

    Sur, Chiranjib; Chaudhuri, Rajat K

    2007-01-01

    We study the branching ratios of the allowed and forbidden radiative transitions among the first few (9) fine structure levels of O VI using relativistic coupled-cluster theory. We find irregular patterns for a number of transitions within n-complexes with n ≤ 4. We have used the existing values of the allowed electric dipole (E1) transition as a benchmark of our theory. Good agreement with the existing values establish accuracies of not only the theoretical method but the basis function as well. In general, the electric quadrupole (E2) transition probabilities are greater in magnitude than magnetic dipole (M1) transition probabilities, whereas for medium atomic transition frequencies they are of the same order of magnitude. On the other hand, if the transitions involved are in between two fine-structure components of the same term, then the M1 transition probability is more probable than that of E2. The results presented here in tabular and graphical form are compared with the available theoretical and observed data. Graphical analysis helps to understand the trends of electric and magnetic transitions for the decay channels presented here. Our calculated values of the lifetimes of the excited states are in very good agreement with the available results

  2. Quantum phase transitional patterns of nuclei

    International Nuclear Information System (INIS)

    Dai Lianrong; Wang Lixing; Pan Feng; Zhong Weiwei; Liu Qi

    2013-01-01

    With the framework of Interacting Boson Model (IBM), transitional patterns from the spherical to the axially deformed limit of the IBM with a schematic Hamiltonian are studied by replacing the SU (3) quadrupole-quadrupole term with O (6) cubic interaction. But, we use the two schemes to investigate some energy ratios and B (E2) ratios for different bosons N = 8 and N = 20. The results show that with the increasing of the numbers of bosons, the transitional behaviors can be enhanced; the transitional behaviors are very similar in the two schemes. However, there are some distinctive differences for some quantities across the entire transitional region, such as energy levels and ratios, B (E2) values and ratios, and expectation values of the shape variables. Generally speaking, the transition is smoother and the nuclear shape is less well defined in the new scheme. Then we apply the two schemes to the critical point symmetry candidate, such as 152 Sm, and find the overall fitting quality of the UQ scheme is better than that of the U (5)-SU (3) scheme, especially for the inter-band E2 transitions in 152 Sm. (authors)

  3. Electromagnetic excitation with very heavy ions at and above the Coulomb barrier

    International Nuclear Information System (INIS)

    Wollersheim, H.J.

    1988-08-01

    The present report is part of a systematic study of the electromagnetic properties of strongly deformed and shape transitional nuclei carried out at GSI. The high efficiency particle-gamma detector system is described to perform multiple Coulomb excitation experiments with very heavy projectiles. Some results obtained for the shape transitional nucleus 196 Pt will be presented to exemplify the importance of having access to both the level energies and the E2-transition matrix elements when discussing the possible structure of these states. The second part of this paper is devoted to transfer reactions between very heavy nuclei. In contrast to light projectiles heavy ions offer the possibility to study new phenomena which originate in the much larger Coulomb contribution to the total interaction. In particular, heavy deformed nuclei will be Coulomb excited by the strong electromagnetic field to high spin states already at the time when they start interacting through the nuclear forces. The particle transfer therefore takes place mainly between excited collective states and thus should give information about the interplay between single-particle degrees of freedom, pair correlations and collective excitations. In this paper results of experiments will be reported in which nuclei from the rare earth and the actinide region have been bombarded by 206,208 Pb projectiles at incident energies near the Coulomb barrier. (orig./HSI)

  4. Sensitive lifetime measurement of excited states of {sup 98}Ru via the (p,p{sup '}γ) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vielmetter, Vera; Hennig, Andreas; Derya, Vera; Pickstone, Simon G.; Prill, Sarah; Spieker, Mark; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne (Germany); Petkov, Pavel [Institute for Nuclear Physics, University of Cologne (Germany); INRNE, Bulgarian Academy of Sciences, Sofia (Bulgaria); National Institute for Physics and Nuclear Engineering, Bucharest-Magurele (Romania)

    2016-07-01

    The one-phonon mixed-symmetry quadrupole excitation 2{sup +}{sub ms} is a well established excitation mode in near-spherical nuclei, especially in the A ∼ 100 mass region. However, it is largely unknown how mixed-symmetry states evolve along shape-transitional paths, e.g. from spherical to deformed shapes. The chain of stable ruthenium isotopes is well suited for this study since it exhibits a smooth transition from spherical ({sup 96,98}Ru) to deformed shapes ({sup 104}Ru). To identify the 2{sup +}{sub ms} state of {sup 98}Ru on the basis of absolute M1 and E2 transition strengths, we performed a proton-scattering experiment on {sup 98}Ru using the SONIC rate at HORUS setup at the University of Cologne. Lifetimes of excited states were measured via the Doppler-shift attenuation method (DSAM), which benefits from the acquired pγ-coincidence data. First results of this experiment are presented and compared to the neighbouring nuclei {sup 96}Ru and {sup 100}Ru.

  5. Search for α + core states in even-even Cr isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.A. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo, Departamento de Mecanica, Sao Paulo, SP (Brazil); Miyake, H. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil)

    2017-07-15

    The α + core structure is investigated in even-even Cr isotopes from the viewpoint of the local potential model. The comparison of Q{sub α}/A values for even-even Cr isotopes and even-even A = 46, 54, 56, 58 isobars indicates that {sup 46}Cr and {sup 54}Cr are the most favorable even-even Cr isotopes for the α + core configuration. The ground state bands of the two Cr isotopes are calculated through a local α + core potential containing a nuclear term with (1 + Gaussian) x (W.S. + W.S.{sup 3}) shape. The calculated spectra give a very good description of most experimental {sup 46}Cr and {sup 54}Cr levels, including the 0{sup +} bandheads. The reduced α-widths, rms intercluster separations and B(E2) transition rates are determined for the ground state bands. The calculations reproduce the order of magnitude of the available experimental B(E2) values without using effective charges, indicate that the low-spin members of the ground state bands present a stronger α-cluster character, and point out that the {sup 46}Cr ground state band has a significant degree of α-clustering in comparison with {sup 44}Ti. The volume integral per nucleon pair and rms radius obtained for the α + {sup 50}Ti potential are consistent with those reported previously in the analysis of α elastic scattering on {sup 50}Ti. (orig.)

  6. Characterization of the low-lying 0$^{+}$ and 2$^{+}$ states of $^{68}$ Ni

    CERN Multimedia

    Recently, a number of low-lying low-spin states have been firmly identified in $^{68}$Ni; the position of the first excited state (which is a 0$^{+}$ state), the spin and parity of the second excited 0$^{+}$ state and the spin and parity of the second and third 2$^+$ states have been fixed. The identification of these three pairs of 0$^+$ and 2$^+$ states in $^{68}$Ni (Z=28 and N=40) forms ideal tests to validate shell-model calculations and the effective interactions developed for the nickel region but also hints to triple shape coexistence including even strongly deformed structures. The aim of this proposal is to collect detailed spectroscopic data of the low-spin states of $^{68}$Ni (Z=28, N=40) in order to characterize these triple pairs of 0$^+$ and 2$^+$ states. $\\gamma$-branching ratios of the 0$^+$ and 2$^+$ states and the E0 transition strengths as well as the E2 transition rate of the 0$_3^+$ will be obtained using the new ISOLDE decay station that is constructed from an efficient array of germaniu...

  7. Absolute Transition Rates in {sup 188}lr

    Energy Technology Data Exchange (ETDEWEB)

    Malmskog, S G; Berg, V

    1969-09-15

    Half-lives of several excited levels in {sup 188}lr have been measured using an electron-electron delayed coincidence spectrometer. Active {sup 188}Pt sources were prepared from spallation products using the ISOLDE on-line mass separator facility at CERN. The following half-lives were obtained: T{sub 1/2} (54.8 keV level) = (1.93 {+-} 0.10) nsec; T{sub 1/2} (96.7 keV level) = (0.59 {+-} 0.12) nsec; T{sub 1/2} (187.6 keV level) = (0.056 {+-} 0.013) nsec; T{sub 1/2} (195.1 keV level) = (0.051 {+-} 0.010) nsec; T{sub 1/2} (478. 3 keV level) {<=} 0.15 nsec The 54.8 keV transition was found to have an enhanced E2 transition probability indicating a collective character for this transition.

  8. Accurate measurements of E2 lifetimes using the coincidence recoil-distance method

    Science.gov (United States)

    Bhalla, R. K.; Poletti, A. R.

    1984-05-01

    Mean lives of four E2 transitions in the (2s, 1d) shell have been measured using the recoil-distance method (RDM), γ-rays de-exciting the level of interest were detected in coincidence with particles detected in an annular detector at a backward angle thereby reducing the background and producing a beam of recoiling nuclei of well-defined energy and recoil direction. Lifetimes measured were: 22Ne, 1.275 MeV level (2 + → 0 +), 5.16±0.13 ps; 26Mg, 3.588 MeV level (0 + → 2 +), 9.29±0.23 ps; 30Si, 3.788 MeV level (0 +→ 2 +), 12.00±0.70 ps; 38Ar, 3.377 MeV level (0 + → 2 +), 34.5±1.5 ps. The present measurements are compared to those of previous investigators. For the 22Ne level, averaged results from four different measurement techniques are compared and found to be in good agreement. The experimental results are compared to shell-model calculations.

  9. Accurate measurements of E2 lifetimes using the coincidence recoil-distance method

    International Nuclear Information System (INIS)

    Bhalla, R.K.; Poletti, A.R.

    1984-01-01

    Mean lives of four E2 transitions in the (2s, 1d) shell have been measured using the recoil-distance method (RDM). γ-rays de-exciting the level of interest were detected in coincidence with particles detected in an annular detector at a backward angle thereby reducing the background and producing a beam of recoiling nuclei of well-defined energy and recoil direction. Lifetimes measured were: 22 Ne, 1.275 MeV level (2 + -> 0 + ), 5.16 +- 0.13 ps; 26 Mg, 3.588 MeV level (0 + -> 2 + ), 9.29 +- 0.23 ps; 30 Si, 3.788 MeV level (0 + -> 2 + ), 12.00 +- 0.70 ps; 38 Ar, 3.377 MeV level (0 + -> 2 + ), 34.5 +- 1.5 ps. The present measurements are compared to those of previous investigators. For the 22 Ne level, averaged results from four different measurement techniques are compared and found to be in good agreement. The experimental results are compared to shell-model calculations. (orig.)

  10. Spectroscopy of 96-98Ru and neighboring nuclei: shell model calculations and lifetime measurements

    International Nuclear Information System (INIS)

    Kharraja, B.; Garg, U.; Ghugre, S.S.

    1997-01-01

    High Spin states in 94,95 Mo, 94-96 Tc, 96-98 Ru and 97,98 Rh were populated via the 65 Cu( 36 S,xpyn) reactions at 142 MeV. Level schemes of these nuclei have been extended up to a spin of J ∼ 20ℎ and an excitation energy of E x ∼12 -14 MeV. Information on the high spin structure for 96 Tc and 98 Rh has been obtained for the first time. Spherical shell model calculations have been performed and compared with the experimental excitation energies. The level structures of the N=51, 52 isotones exhibit single-particle nature even at the highest spins and excitation energies. A fragmentation of intensity into several branches after breaking of the N = 50 core has been observed. There are indications for the onset of collectivity around neutron number N = 53 in this mass region. A sequence of E2 transitions, reminiscent of vibrational degree of freedom, were observed in 98 Ru at spins just above the observed N = 50 core breaking. RDM lifetime measurements have been performed to ascertain the intrinsic structures of these level sequences. (author)

  11. Some sub-structures of many-particle correlation in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C; Chao, W; Li, K

    1977-01-01

    The coherent structures of two phonons were proposed as the sub-structure ..cap alpha..' of four-particle clusters for the light nuclei. In the same way the sub-structure ..beta../sup +/ of four-hole clusters can also be given. Based on this the sub-structures between particle clusters and hole clusters in /sup 16/O and /sup 18/O were chosen as examples for investigation. It is found that there is a very strong repulsive force between them. Therefore the loose structure between particle cluster and hole cluster is of the lowest energy state. In this way, the deformations of these states were explained from the microscopic structures. Moreover, these structures can coherently strengthen the E2 transition. Further in order to study the particle correlation in the medium nuclei, the L-S coupling coherent structure is extended to the pseudo L-S coupling coherent structure and the expressions are given in the j-j coupling representation. Some preliminary analyses are made for the nuclei around /sup 56/Ni by using these structures.

  12. Spectroscopic criteria for identification of nuclear tetrahedral and octahedral symmetries: Illustration on a rare earth nucleus

    Science.gov (United States)

    Dudek, J.; Curien, D.; Dedes, I.; Mazurek, K.; Tagami, S.; Shimizu, Y. R.; Bhattacharjee, T.

    2018-02-01

    We formulate criteria for identification of the nuclear tetrahedral and octahedral symmetries and illustrate for the first time their possible realization in a rare earth nucleus 152Sm. We use realistic nuclear mean-field theory calculations with the phenomenological macroscopic-microscopic method, the Gogny-Hartree-Fock-Bogoliubov approach, and general point-group theory considerations to guide the experimental identification method as illustrated on published experimental data. Following group theory the examined symmetries imply the existence of exotic rotational bands on whose properties the spectroscopic identification criteria are based. These bands may contain simultaneously states of even and odd spins, of both parities and parity doublets at well-defined spins. In the exact-symmetry limit those bands involve no E 2 transitions. We show that coexistence of tetrahedral and octahedral deformations is essential when calculating the corresponding energy minima and surrounding barriers, and that it has a characteristic impact on the rotational bands. The symmetries in question imply the existence of long-lived shape isomers and, possibly, new waiting point nuclei—impacting the nucleosynthesis processes in astrophysics—and an existence of 16-fold degenerate particle-hole excitations. Specifically designed experiments which aim at strengthening the identification arguments are briefly discussed.

  13. The SU(3) structure of rotational states in heavy deformed nuclei

    International Nuclear Information System (INIS)

    Jarrio, M.; Wood, J.L.; Rowe, D.J.

    1991-01-01

    The SU(3) coupling scheme provides an informative basis for the expansion of shell-model wave functions and their interpretation in collective-model terms. We show in this paper that it is possible, using the coupled-rotor-vibrator model, to infer averages of the distributions of SU(3) representation labels in heavy rotational nuclei by direct interpretation of physically observed E2 transition rates and quadrupole moments. We find that the distributions of SU(3) representation labels have nearly constant average values for states belonging to some well-defined rotational bands. These are bands of states having B(E2) values and quadrupole moments that follow the predictions of the rotor model. Such bands are interpreted as soft SU(3) bands in parallel with the concept of a soft rotor band with vibrational-shape fluctuations. The concept of a soft SU(3) band and its implications for beta-vibrational excited bands is developed. The average SU(3) representation labels inferred from experiment are interpreted by calculating those implied by the Nilsson model. An analysis of the SU(3) content of Nilsson wave functions also leads to two remarkable predictions. The first is that, in the asymptotic limit, the Nilsson model implies intrinsic states for a rotor band that are beta rigid. The second is that, although the intrinsic Nilsson state is axially symmetric, it generates a sequence of K=0, 2, 4,...bands. (orig.)

  14. Investigation of 124Xe nuclear structure with the 8Pi spectrometer at TRIUMF-ISAC

    Science.gov (United States)

    Radich, Allison; Garrett, P.; Jigmeddorj, B.; Michetti-Wilson, J.; Diaz Varela, A.; Hadinia, B.; Bianco, L.; Wong, J.; Chagnon-Lessard, S.; Dunlop, R.; Finlay, P.; Laffoley, A.; Leach, K. G.; Rand, E.; Sumithrarachchi, C.; Svennson, C. E.; Wood, J. L.; Yates, S. W.; Andreoiu, C.; Starosta, K.; Cross, D.; Garnsworthy, A. B.; Hackman, G.; Ball, G.; Triambak, S.

    2013-10-01

    The 124Xe nucleus has been thought to obey O(6) symmetry but a recent Coulomb excitation study has found that while O(5) may be preserved, O(6) appears to be badly broken. To further characterize the structure of this nucleus, a beta-decay experiment was performed at the TRIUMF-ISAC facility. A beam of radioactive 124Cs at a rate of 9.8 × 107 ions/s was implanted at the center of the 8Pi spectrometer where it underwent β + /EC decay into stable 124Xe. High-statistics gamma-gamma coincidence measurements have been analyzed to add to the level scheme of 124Xe, which has been extended considerably. The high statistics data set has revealed a new decay branch from a 124Cs high-spin isomer as well as several very-weak transitions between low-spin states in 124Xe. Branching ratios and B(E2) transition strengths have been calculated for the updated level scheme. The results will be important in determining collective properties and nuclear structure of the 124Xe.

  15. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2001-01-01

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of 20,22 Ne, 24 Mg and 28 Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed

  16. The collective bands of positive parity states in odd-A (fp) shell nuclei

    International Nuclear Information System (INIS)

    Ahalpara, D.P.

    1979-01-01

    The low-lying collective bands of positive parity states in (fp) shell nuclei are described in the deformed Hartree-Fock method by projecting states of definite angular momenta from 'the lowest energy intrinsic states in (sd)sup(-1)(fp)sup(n+1) configurations. The modified Kuo-Brown effective interaction for (fp) shell and modified surface delta interaction (MSDI) for a hole in (sd) shell with a particle in (fp) shell have been used. The collective bands of states are in general well reproduced by the effective interactions. The excitation energies of the band head states are however off by about one MeV. The calculated magnetic moments of the band head j = 3/2 + states are in reasonable agreement with experiment. Using effective charges esub(p) = 1.33 e and esub(n) = 0.64 e fairly good agreement is obtained for E(2) transitions. The hindered M(1) transition strengths are reproduced to the correct order, however they are slightly higher compared to the experiment. (author)

  17. Large low-energy M1 strength for ^{56,57}Fe within the nuclear shell model.

    Science.gov (United States)

    Brown, B Alex; Larsen, A C

    2014-12-19

    A strong enhancement at low γ-ray energies has recently been discovered in the γ-ray strength function of ^{56,57}Fe. In this work, we have for the first time obtained theoretical γ decay spectra for states up to ≈8  MeV in excitation for ^{56,57}Fe. We find large B(M1) values for low γ-ray energies that provide an explanation for the experimental observations. The role of mixed E2 transitions for the low-energy enhancement is addressed theoretically for the first time, and it is found that they contribute a rather small fraction. Our calculations clearly show that the high-ℓ(=f) diagonal terms are most important for the strong low-energy M1 transitions. As such types of 0ℏω transitions are expected for all nuclei, our results indicate that a low-energy M1 enhancement should be present throughout the nuclear chart. This could have far-reaching consequences for our understanding of the M1 strength function at high excitation energies, with profound implications for astrophysical reaction rates.

  18. Coupled SU(3) models of rotational states in nuclei and quasi-dynamical symmetry

    International Nuclear Information System (INIS)

    Thiamova, G.; Rowe, D. J.

    2007-01-01

    This contribution reports a first step towards the development of a model of low-lying nuclear collective states based on the progression from weak to strong coupling of a combination of systems in multiple SU(3) irreps. The motivation for such a model comes partly from the remarkable persistence of rotational structure observed experimentally and in many model calculations. This work considers the spectra obtainable by coupling just two SU(3) irreps by means of a quadrupole-quadrupole interaction. For a particular value of this interaction, the two irreps combine to form strongly-coupled irreps while for zero interaction the weakly-coupled results are mixtures of many such strongly-coupled irreps. A notable result is the persistence of the rotor character of the low-energy states for a wide range of the interaction strength. Also notable is the fact that, for very weak interaction strengths, the energy levels of the yrast band resemble those of a vibrational sequence while the B(E2) transition strengths remain close to those of an axially symmetric rotor, as observed in many nuclei. (Author)

  19. On the structure of collective bands in 78Kr

    International Nuclear Information System (INIS)

    Hellmeister, H.P.

    1980-01-01

    Using 16 O, 19 F, and 12 C induced reactions high spin states in 78 Kr were excited. The targets consisted of 65 Cu, 69 Ni, and 68 Zn. On the base of gamma spectroscopic methods as γγ-coincidences, angular distributions and excitation functions a level scheme of 78 Kr is proposed. Four bands could be identified, which decay mostly by stretched E2-transitions. From recoil distance Doppler shift as well as Doppler shift attenuation measurements lifetimes of about 20 states were measured. The β-decay of the 103 keV isomeric state and the ground state in 78 Rb was observed and the half-lifes determined. Altogether a very good agreement of the level scheme and the E2- and E1-transition strength with predictions of the interacting boson model were found. Using a Monte Carlo code the γ-decay of the continuum of highly excited nuclei is described. Entry states, mean γ-energies, γ-spectra, mean multiplicities, multipolarities, and mean feeding times as well as e.g. their second moments were calculated for the reactions 58 Ni( 16 O,2p) 72 Se and 68 Zn( 12 C,2n) 78 Kr. The results are discussed and compared with experimental data. (HSI) [de

  20. Strength functions of primary transitions following thermal neutron capture in strontium

    International Nuclear Information System (INIS)

    Winter, C.; Lieb, K.P.

    1989-01-01

    The primary E1, M1 and E2 γ-radiation in 87,88,89 Sr observed after thermal neutron capture was compared with the predictions of single particle and giant resonance models. The nuclei feature a wide range of neutron binding energies between 6.3 and 11.1 MeV, which makes a 5.5 MeV spectrum of primary transition energies available for investigation. The (n, γ) reaction was used to estimate the parameters of the spin-flip M1 giant resonance in strontium. The total energy weighted M1 strength of this resonance exceeds the results of shell model and random phase approximation calculations for 90 Zr by a factor of 3-4. The E1 strengths were found to agree with the established giant dipole resonance model. The few data on primary E2 transitions do not allow to differentiate between the giant quadrupole resonance and the single particle models. (orig.)

  1. Structure of two-, four-, and six-quasiparticle isomers in 174Yb and K-forbidden decays

    Science.gov (United States)

    Dracoulis, G. D.; Lane, G. J.; Kondev, F. G.; Byrne, A. P.; Kibédi, T.; Watanabe, H.; Ahmad, I.; Carpenter, M. P.; Freeman, S. J.; Janssens, R. V.; Hammond, N. J.; Lauritsen, T.; Lister, C. J.; Mukherjee, G.; Seweryniak, D.; Chowdhury, P.; Tandel, S. K.

    2005-04-01

    The stable nucleus 174Yb has been studied using deep-inelastic reactions and time-correlated γ-ray spectroscopy. New intrinsic states assigned include a 370-ns isomer at 1765 keV, which we associate with a predicted Kπ=7- two-quasineutron configuration. Analysis of the alignment and in-band properties of its rotational band, identified using time-correlated coincidences, allows characterization of the configuration. The properties of a newly identified rotational band built on the known 830-μs isomer at 1518 keV support the 6+, 2-quasineutron configuration assignment proposed previously. The 6+ band is fed by a four-quasiparticle, Kπ=14+ isomer at 3699 keV and several higher multiquasiparticle states, including a six-quasiparticle isomer at 6147 keV with K=(22,23). The results are discussed in terms of the states predicted on the basis of multiquasiparticle calculations. The anomalously fast K-forbidden transition strengths from the 14+ isomer are attributed to either K mixing in the neutron configuration or to random mixing in the high-level-density region. The 7- isomer decays are not abnormal, whereas the very hindered E2 transition from the 6+ isomer to the ground-state band remains unexplained.

  2. Role of quasiparticle x phonon components in gamma-decay of hogh-lying states

    International Nuclear Information System (INIS)

    Ponomarev, V.Yu.; Solov'ev, V.G.; Vdovin, A.I.; Stoyanov, Ch.

    1986-01-01

    In the framework of quasiparticle-phonon model of a nucleus the probabilities of gamma-transitions (E1, M1, E2) from a high-lying resonance-similar structure to the excitation of neutron hole state (lg 9/2 ) -1 of 111 Sn nucleus to the main and low-excited one-quasiparticle states have been calculated. Wave function of a highly excited state comprised the components ''quasiparticle x phonon'' and ''quasiparticle x two phonons''. For E1-transitions 9/2 + → 11/2 1 - the main contribution to the transition is made by one-quasiparticle components of wave functions of the initial and final states. E2-transition 9/2 + → 7/2 g,s + takes place at the expense of impurities in ''quasiparticle x phonon'' states. For M1-transition from the states 9/2 + to the main one a strong destructive interference of contributions of one-quasiparticle and ''quasiparticle x phonon'' components is observed. Thus it is shown that components ''quasiparticle x phonon'' may play the major role in correct description of gamma-transitions from high-lying one-particle or low-lying hole states

  3. Observation of an isomeric level in 239U by means of the 238U(n,γ)239U reaction

    International Nuclear Information System (INIS)

    Thomas, B.W.; Murray, J.; Rae, E.R.

    1970-01-01

    Low-energy-capture gamma-ray spectra ( 238 U up to a neutron energy of 350 eV. The data were obtained using a 25-cm 3 Ge(Li) detector at the Harwell 45 MeV Electron Linac. Capture events were recorded as functions of gamma-ray energy and neutron time-of-flight, and by suitable analysis of the data time-of-flight spectra have been obtained for individual gamma-rays. The strongest low-energy gamma-ray, at 134 keV, depopulates a level in 239 U at the same energy by an E2-transition to the ground state. The time-of-flight spectrum for this transition indicates that the 134-keV level is isomeric with a half-life of approximately 1 microsecond. This is evident from the long tails on the low-energy side of each resonance, which are not present for other regions of the gamma-ray spectrum. The possibility of using low-energy gamma-rays as a measure of the total capture cross-section is investigated by comparing the time-of-flight spectrum for the 134-keV transition with that for a Moxon-Rae detector under the same experimental conditions. (author)

  4. Observation of electric quadrupole X-ray transitions in muonic thallium, lead and bismuth

    CERN Document Server

    Schneuwly, H; Engfer, R; Jahnke, U; Kankeleit, E; Lindenberger, K H; Pearce, R M; Petitjean, C; Schellenberg, L; Schröder, W U; Walter, H K; Zehnder, A

    1972-01-01

    Electric quadrupole X-ray transitions (5g to 3d, 4f to 2p, and 3d to 1s) have been observed in muonic Tl, Pb and Bi. From the 3 to 1 transitions, energy splittings of the n=3 levels were deduced. From a comparison of the relative intensities of E1 and E2 transitions the population ratios 5g/5f, 4f/4d, and 3d/3p were deduced. These ratios are well reproduced by a cascade calculation assuming a statistical initial population at n=20, including K, L and M shell conversion. In the case of /sup 205/Tl discrepancies between the experimental and the calculated 3d-1s/3p-is intensity ratio can be explained by nuclear excitation. From the 3p/sub 3/2/ to 1s/sub 1/2/ intensity in /sup 209 /Bi one can deduce the ratio of the radiationless to the X-ray transition width and give limits for prompt neutron emission from the 3d level. (23 refs).

  5. E0 and E2 decay of low-lying 0+ states in the even-even nuclei 206Pb, 208Po, 112-120 Sn and 112114Cd

    International Nuclear Information System (INIS)

    Julin, Rauno.

    1979-04-01

    Several new methods of in-beam conversion-electron and γ-ray spectrometry, applicable in the determination of E0 and E2 decay properties of low-lying 0 + states in even-mass nuclei, have been developed. The main attention has been paid to direct lifetime-measurement and coincidence methods based on the use of the natural pulsing of a cyclotron beam. With the aid of these methods, the similarity of the absolute decay rates of the two-neutron-hole 0 + 2 states in the N = 124 nuclei 206 Pb and 208 Po has been shown. A systematic investigation of the de-excitation of the 0 + 2 and 0 + 3 states in 112 , 11 4 , 116 , 118 , 120 Sn has been carried out. Twelve E0 transitions connecting the 0 + states have been observed, including very strong low-energy E0 transitions between the excited 0 + states, and several absolute transition probabilities have been determined. Furthermore, the new techniques have been applied successfully in determining the absolute E0 and E2 transition rates from the 0 + 2 and 0 + 3 states in 112 Cd and 114 Cd. The use of isotope-shift data in the calculation of the monopole strengths in 206 Pb and 208 Po is discussed. The results on even Sn and Cd nuclei are discussed within the framework of the coexistence of different shapes and of configuration mixing. (author)

  6. Lifetime and spin measurements in 40Ar

    International Nuclear Information System (INIS)

    Southon, J.

    1976-01-01

    Lifetimes of levels in 40 Ar populated by the 40 Ar(p,p') reaction have been measured using the Doppler shift attenuation method with a p-γ coincidence technique. A solid argon target was used. The lifetimes determined were (in psec.): 1461 keV level, 1.95 +- 0.15; 2121 keV, >25; 2524 keV, 0.53 +- 0.06; 2893 keV, 4.4 [+2.6,-1.3]; 3208 keV, 0.27. A comprehensive set of branching ratios was also derived and the spins and parities of the 3208 and 4481 keV states were determined to be 2 + and 1 +- respectively. Some of these results suggest that 2 particle -2 hole and 4 particle - 4 hole components are strongly mixed in the low-lying positive parity states in a manner similar to the 2 particle and 4 particle - 2 hole mixing that occurs in 42 Ca. An additional lifetime measurement for the recently discovered high spin state at 3464 keV was carried out using direct electronic timing. The level was excited by the 37 Cl(α,p) reaction and was found to have a lifetime of 1.00 +- 0.03 nsec, which taken together with other evidence indicates that its spin and parity are 6 + . The E2 transition strengths of the 40 Ar 6 + - 4 + - 2 + - 0 + cascade can be simply interpreted in terms of a weak coupling model. (author)

  7. G-Boson renormalizations and mixed symmetry states

    International Nuclear Information System (INIS)

    Scholten, O.

    1986-01-01

    In the IBA model the low-lying collective states are described in terms of a system of interacting s- and d-bosons. A boson can be interpreted as corresponding to collective J=0 or J=2 fermion pair states. As such the IBA model space can be seen as only a small subsector of the full shell model space. For medium heavy nuclei such a truncation of the model space is necessary to make calculations feasible. As is well known truncations of a model space make it necessary to renormalize the model parameters. In this work some renormalizations of the Hamiltonian and the E2 transition operator will be discussed. Special attention will be given to the implication of these renormalizations for the properties of mixed symmetry states. The effects of renormalization are obtained by considering the influence of fermion pair states that have been omitted from the model basis. Here the authors focus attention on the effect of the low-lying two particle J=4 state, referred to as g-boson or G-pair state. Renormalizations of the d-boson energy, the E2 effective charges, and symmetry force are discussed

  8. Dipole bands in high spin states of {sub 57}{sup 135}La{sub 78}

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Ritika; Kumar, S.; Saxena, Mansi; Goyal, Savi; Siwal, Davinder; Verma, S.; Mandal, S. [Department of Physics and Astrophysics, University of Delhi, Delhi - 110007 (India); Palit, R.; Saha, Sudipta; Sethi, J.; Sharma, Sushil K.; Trivedi, T.; Jadav, S. K.; Donthi, R.; Naidu, B. S. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005 (India)

    2014-08-14

    High spin states of {sup 135}La have been investigated using the reaction {sup 128}Te({sup 11}B,4n){sup 135}La at a beam energy of 50.5 MeV. Two negative parity dipole bands (ΔI = 1) have been established. Crossover E2 transitions have been observed for the first time in one of the dipole bands. For the Tilted Axis Cranking (TAC) calculations, a three-quasiparticle (3qp) configuration π(h{sub 11/2}){sup 1}⊗ν(h{sub 11/2}){sup −2} and a five-quasiparticle (5qp) configuration π(h{sub 11/2}){sup 1}(g{sub 7/2}/d{sub 5/2}){sup 2}⊗ν(h{sub 11/2}){sup −2} have been taken for the two negative parity dipole bands. The comparison of experimental observables with TAC calculations supports the configuration assignments for both the dipole bands.

  9. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, C.E. E-mail: cvargas@fis.cinvestav.mx; Hirsch, J.G. E-mail: hirsch@nuclecu.unam.mx; Draayer, J.P. E-mail: draayer@lsu.edu

    2001-07-30

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of {sup 20,22}Ne, {sup 24}Mg and {sup 28}Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed.

  10. Decay spectroscopy of 160Sm: The lightest four-quasiparticle K isomer

    Directory of Open Access Journals (Sweden)

    Z. Patel

    2016-02-01

    Full Text Available The decay of a new four-quasiparticle isomeric state in 160Sm has been observed using γ-ray spectroscopy at the RIBF, RIKEN. The four-quasiparticle state is assigned a 2π⊗2ν π52−[532], π52+[413], ν52−[523], ν72+[633] configuration. The half-life of this (11+ state is measured to be 1.8(4 μs. The (11+ isomer decays into a rotational band structure, based on a (6− ν52−[523]⊗ν72+[633] bandhead, consistent with the gK−gR values. This decays to a (5− two-proton quasiparticle state, which in turn decays to the ground state band. Potential energy surface and blocked-BCS calculations were performed in the deformed midshell region around 160Sm. They reveal a significant influence from β6 deformation and that 160Sm is the best candidate for the lightest four-quasiparticle K isomer to exist in this region. The relationship between reduced hindrance and isomer excitation energy for E1 transitions from multiquasiparticle states is considered with the new data from 160Sm. The E1 data are found to agree with the existing relationship for E2 transitions.

  11. New features in the spectrum of {sup 152}Dy

    Energy Technology Data Exchange (ETDEWEB)

    Galindo-Uribarri, A; Andrews, H R; Ball, G C; Radford, D C; Janzen, V P; Ward, D [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Kuehner, J A; Mullins, S; Persson, L; Prevost, D; Waddington, J C [McMaster Univ., Hamilton, ON (Canada). Dept. of Physics; Drake, T E [Toronto Univ., ON (Canada). Dept. of Physics; Wyss, R [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States)

    1992-08-01

    One of the most important recent developments in nuclear structure physics has been the prediction and observation of superdeformed (SD) shapes at high angular momentum in several nuclei in the rare earth region. The first experimental observation was a ridge-valley structure in a {gamma}-{gamma} coincidence matrix for the {sup 152}Dy nucleus. The ridge was found to be generated by sequences of stretched E2 transitions and corresponded to a moment of inertia J{sup (2)} of 85 {Dirac_h}{sup 2}MeV{sup -1}. Subsequently a discrete SD band was discovered in {sup 152}Dy and the lifetimes were measured. More recently the discovery of SD bands in several nuclei in the neighbourhood of {sup 152}Dy, the discovery of multiple SD bands in some nuclei, and the discovery of new SD regions at mass A {approx} 190 and A {approx} 140 have stimulated intense research activity in this area of nuclear physics. (author). 15 refs., 4 figs.

  12. Spectroscopy of {sup 96}Ru and {sup 98}Ru: structures of varied character at N {>=} 52

    Energy Technology Data Exchange (ETDEWEB)

    Reviol, W; Garg, U; Aprahamian, A; Davis, B F; Herr, M C; Naguleswaran, S; Walpe, J C; Ye, D [Notre Dame Univ., IN (United States); Ahmad, I; Carpenter, M P; Janssens, R V.F.; Khoo, T L; Lauritsen, T; Liang, Y [Argonne National Lab., IL (United States)

    1992-08-01

    The authors have investigated the onset of deformation at N {>=} 52 by performing high-spin gamma spectroscopy of {sup 96-98}Ru using the {sup 65}Cu({sup 36}S,pxn) reaction with the Argonne-Notre Dame {gamma}-ray facility. From the coincidence data associated with high multiplicity (k {>=} 8) events, they have established two main band structures in {sup 96-98}Ru which extend the previously-known level schemes significantly (up to > 20 {Dirac_h}). In {sup 96}Ru, one of the newly observed structures consists of five rotation-like E2 transitions and feeds into the known 9{sup (-)} state; the other structure bypasses the first one, and based on the observed level-spacings, is tentatively described as vibration-like. A rotational-like structure above a spin of 8 {Dirac_h}, along with a parallel vibration-like structure, has been observed in {sup 98}Ru as well. The data also contain some evidence for a weak sequence of dipole (presumably M1) transitions in {sup 96}Ru. This structure might be similar to the high-K oblate bands recently observed in {sup 119-123}I and {sup 198-20P}b. 9 refs., 3 figs.

  13. Super rigid nature of super-deformed bands

    International Nuclear Information System (INIS)

    Sharma, Neha; Mittal, H.M.; Jain, A.K.

    2012-01-01

    The phenomenon of high-spin super-deformation represents one of the most remarkable discoveries in nuclear physics. A large number of SD bands have been observed in A = 60, 80, 130, 150, 190 mass regions. The cascades of SD bands are known to be connected by electric quadruple E2 transitions. Because of absence of linking transitions between superdeformed (SD) and normal deformed (ND) levels, the spin assignments of most of these bands carry a minimum uncertainty ≈ 1-2ħ. It was found in an analysis of SD bands in the context of semi classical approach that moment of inertia comes close to the rigid body value in most of the cases. Lack of knowledge of spins has led to an emphasis on the study of dynamical moment of inertia of SD bands and systematic of kinematic moment of inertia has not been examined so far. In this paper, we extract the band moment of inertia J 0 and softness parameter (σ) of all the SD bands corresponding to axes ratio (x) = 1.5 and present their systematic

  14. Microscopic study of neutron-rich dysprosium isotopes

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Velazquez, Victor; Lerma, Sergio

    2013-01-01

    Microscopic studies in heavy nuclei are very scarce due to large valence spaces involved. This computational problem can be avoided by means of the use of symmetry-based models. Ground-state, γ and β bands, and their B(E2) transition strengths in 160-168 Dy isotopes, are studied in the framework of the pseudo-SU(3) model which includes the preserving symmetry Q . Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized. Additionally, three rotor-like terms are considered, whose free parameters, fixed for all members of the chain, are used to fine tune the moment of inertia of rotational bands and the band head of γ and β bands. The model succesfully describes in a systematic way rotational features in these nuclei and allows to extrapolate toward the midshell nucleus 170 Dy. The results presented show that it is possible to study a full chain of isotopes or isotones in the region with the present model. (orig.)

  15. Microscopic study of neutron-rich dysprosium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Carlos E. [Universidad Veracruzana, Facultad de Fisica e Inteligencia Artificial, Xalapa (Mexico); Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Apartado Postal 70-542, Mexico D.F. (Mexico); Velazquez, Victor [Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Apartado Postal 70-542, Mexico D.F. (Mexico); Lerma, Sergio [Universidad Veracruzana, Facultad de Fisica e Inteligencia Artificial, Xalapa (Mexico)

    2013-01-15

    Microscopic studies in heavy nuclei are very scarce due to large valence spaces involved. This computational problem can be avoided by means of the use of symmetry-based models. Ground-state, {gamma} and {beta} bands, and their B(E2) transition strengths in {sup 160-168}Dy isotopes, are studied in the framework of the pseudo-SU(3) model which includes the preserving symmetry Q . Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized. Additionally, three rotor-like terms are considered, whose free parameters, fixed for all members of the chain, are used to fine tune the moment of inertia of rotational bands and the band head of {gamma} and {beta} bands. The model succesfully describes in a systematic way rotational features in these nuclei and allows to extrapolate toward the midshell nucleus {sup 170}Dy. The results presented show that it is possible to study a full chain of isotopes or isotones in the region with the present model. (orig.)

  16. Regular-chaos transition of the energy spectrum and electromagnetic transition intensities in 44V nucleus using the framework of the nuclear shell model

    International Nuclear Information System (INIS)

    Hamoudi, A.K.; Abdul Majeed Al-Rahmani, A.

    2012-01-01

    The spectral fluctuations and the statistics of electromagnetic transition intensities and electromagnetic moments in 44 V nucleus are studied by the framework of the interacting shell model, using the FPD6 as a realistic effective interaction in the isospin formalism for 4 particles move in the fp-model space with a 40 Ca core. To look for a regular-chaos transition in 44 V nucleus, we perform shell model calculations using various interaction strengths β to the off-diagonal matrix elements of the FPD6. The nearest-neighbors level spacing distribution P(s) and the distribution of electromagnetic transition intensities [such as, B(M1) and B(E2) transitions] are found to have a regular dynamic at β=0, a chaotic dynamic at β⩾0.3 and an intermediate situation at 0 3 statistic we have found a regular dynamic at β=0, a chaotic dynamic at β⩾0.4 and an intermediate situation at 0<β<0.4. It is also found that the statistics of the squares of M1 and E2 moments, which are consistent with a Porter-Thomas distribution, have no dependence on the interaction strength β.

  17. Systematics of triaxial moment of inertia and deformation parameters (β, γ) in even-even nuclei of mass region A = 90-120

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, D.K.; Singh, M.; Gupta, K.K.; Bihari, Chhail; Varshney, A.K.; Dhiman, S.K.

    2012-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. In recent past the sets of deformation parameters ((β, γ) have been extracted from both level energies and E2 transition rates in even Xe, Ba and Ce nuclei (A∼120-140) and Hf, W, Os, Pt and Hg nuclei (A∼160-200) using rigid triaxial rotor model of Davydov-Filippov (DF). Researcher have found that the values of β obtained separately from energy and transition rate (β e and β b respectively), though, are found almost equal in heavy mass region (A ∼160-200) but, not so in medium mass (A∼120-140) nuclei. This observation puts a question mark whether the ββ dependence of moment of inertia in hydrodynamic model is reliable. The purpose of the present work is to study a relatively lighter mass region (A∼90-120) where the gap between values of two sets of β may further increase. To improve the calculations for extracting β e , the use of Grodzins rule will be made along with uncertainties, since only through this rule the E2 1 + is related with β G (value of β for symmetric nucleus and evaluated using Grodzins rule)

  18. A systematic and detailed investigation of radiative rates for forbidden transitions of astrophysical interest in doubly ionized iron peak elements

    Science.gov (United States)

    Quinet, Pascal; Fivet, Vanessa; Bautista, Manuel

    2015-08-01

    The knowledge of accurate and reliable atomic data for lowly ionized iron peak elements, from scandium to copper, is of paramount importance for the analysis of the high resolution spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly ionized species have been little investigated so far and radiative rates for those lines remain sparse or inexistent.In the present contribution, we report on the recent study we have performed concerning the determination of magnetic dipole (M1) and electric quadrupole (E2) transition probabilities in those ions. For the calculations, we have extensively used the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allowed us to check the consistency and to assess the accuracy of the results obtained.[1] Mesa-Delgado A. et al., MNRAS 395, 855 (2009)[2] Johansson S. et al., A&A 361, 977 (2000)[3] Cowan R.D., The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley (1981)[4] Badnell N.R., J. Phys. B: At. Mol. Opt. Phys. 30, 1 (1997)

  19. Symmetries of Quadrupole-Collective Vibrational Motion in Transitional Even-Even 124−134Xenon Nuclei

    CERN Document Server

    Pietralla, N; Rainovski, G; Ahn, T; Bauer, C; Leske, J; Möller, O; Möller, T

    2010-01-01

    Projectile-Coulomb excitation of Xe isotopes has been performed at ANL using the Gammasphere array for the detection of γ-rays. The one-quadrupole phonon 2+ 1,ms mixed-symmetry state (MSS) has been traced in the stable N=80 isotones down to 134Xe. First, the data on absolute E2 andM1 transition rates quantify the amount of F-spin symmetry in these nuclei and provide a new local measure for the pn-QQ interaction. Second, the evolution of the 2+ 1,ms state has been studied along the sequence of stable even-even 124−134Xe isotopes that are considered to form a shape transition path from vibrational nuclei with vibrational U(5) symmetry near N=82 to γ-softly deformed shapes with almost O(6) symmetry. Third, our data on more than 50 absolute E2 transition rates between off-yrast low-spin states of 124,126Xe enable us to quantitatively test O(6) symmetry in these nuclei. As a result we find that O(6) symmetry is more strongly broken in the A=130 mass region than previously thought. The data will be discussed.

  20. Hydrodynamic model wavefunctions in intrinsic coordinates and their application to the structure of even-even nuclei

    International Nuclear Information System (INIS)

    Margetan, F.J.

    1979-01-01

    A closed expression is presented for intrinsic-coordinate (β, γ, theta/sub i/) eigenfunctions of the hydrodynamic, quadrupole-vibration Hamiltonian of A. Bohr. These functions are used as an expansion basis for the treatment of more general collective Hamiltonians. Two classes of such Hamiltonians are considered. In each the potential energy term of the Bohr Hamiltonian, 1/2 Cβ 2 , was replaced with a more general function of the shape coordinates, V(β, γ). The potential of Gneuss and Greiner (1) is used to demonstrate the soundness of the calculational techniques, and to illustrate convergence properties of calculated energies. Potentials possessing a single minimum on 0 less than or equal to γ less than or equal to 60 0 are considered through the study of a quadratic-potential [QP] Hamiltonian. The smooth development from spherical to asymmetrically deformed nuclear shapes is investigated by systematically varying the parameters β 0 and C/sub γ/. Model energies and E2 transition rates are traced during this process. The QP model is then applied to 106 Pd, 166 Er, 182 W, 122 Te, and 186 188 190 192 Os. Low-energy γ vibrations appear to play a prominent role in the latter five nuclei, and the QP model offers a better accounting of experimental spectra than does the model of Davydov and Chaban (2). 74 references

  1. New information on the T1/2=47 s isomer in the 136I nucleus

    International Nuclear Information System (INIS)

    Urban, W.; Rzaca-Urban, T.; Saha Sarkar, M.; Sarkar, S.; Durell, J.L.; Smith, A.G.; Genevey, J.A.; Pinston, J.A.; Simpson, G.S.; Ahmad, I.

    2006-01-01

    The 136 I nucleus, populated in the spontaneous fission of 248 Cm, was studied by means of prompt γ-ray spectroscopy using the EUROGAM2 array. The observation in this work of the 42.6 keV prompt-γ, M1+E2 transition de-exciting the 7 - level in 136 I indicates that this level, interpreted as the (πg 7/2 3 νf 7/2 ) 7- configuration, does not correspond to the T=47 s, β-decaying isomer in 136 I. The isomer is placed 42.6 keV below the 7 - level. It has spin 6 - and is interpreted as the (πg 7/2 2 d 5/2 νf 7/2 ) 6- configuration. This and other members of both multiplets can be reproduced properly only if one assumes that the πd 5/2 orbital in 136 I is located 400keV lower than in 133 Sb. Possible mechanisms causing this effect are discussed. (orig.)

  2. Rotational band structure in 132La

    International Nuclear Information System (INIS)

    Oliveira, J.R.B.; Emediato, L.G.R.; Rizzutto, M.A.; Ribas, R.V.; Seale, W.A.; Rao, M.N.; Medina, N.H.; Botelho, S.; Cybulska, E.W.

    1989-01-01

    '3'2La was studied using on-line gamma-spectroscopy through the reactions '1 24,126 Te( 11,10 B, 3, 4n) 132 La. The excitation function was obtained with 10 B(E lab =41.4; 45.4 and 48 MeV) in order to identify 132 La gamma-transitions. Gamma-gamma coincidences and angular distributions were performed for the 126 Te( 10 B, 4n) 132 La reaction. From the experimental results a rotational band with strongest M1 transitions and less intense 'cross-overs' E2 transitions was constructed. Using the methods of Bengtsson and Frauendorf the alignment (ix) and the Routhian (e') as a function of the angular velocity (ω) were also obtained from the experimental data. It was observed a constant alignment up to ω≅0.4 MeV, and a signature-splitting Δe'=25keV. Preliminary triaxial Cranking-Shell Model calculations indicate that a γ=-8deg deformation is consistent with the signature-splitting value of 25 keV experimentally observed. (Author) [es

  3. Tests of the methods of analysis of picosecond lifetimes and measurement of the half-life of the 569.6 keV level in 207Pb

    International Nuclear Information System (INIS)

    Lima, E. de; Kawakami, H.; Lima, A. de; Hichwa, R.; Ramayya, A.V.; Hamilton, J.H.; Dunn, W.; Kim, H.J.

    1978-01-01

    Customarily one extracts the half-life of the nuclear state from a delayed time spectrum by an analysis of the centroid shift, the slope and lately by the convolution method. Recently there have been two formulas relating the centroid shift to the half-life of the nuclear state. These two procedures can give different results for the half-life when Tsub(1/2) the same order or less than the time width of one channel. An extensive investigation of these two formulas and precedures has been made by measuring the half-life of the first excited state in 207 Pb at 569.6 keV. This analysis confirms Bay's formula relating the centroid shift to the half-life of the state. The half-life of the 569.6 keV level in 207 Pb is measured to be (129+-3) ps in excellent agreement with Weisskopf's single particle estimate of 128 ps for an E2 transition. (Auth.)

  4. Nuclear structure research. Annual progress report

    International Nuclear Information System (INIS)

    Wood, J.L.

    1996-01-01

    The most significant development this year has been the realization that EO transition strength is a fundamental manifestation of nuclear mean-square charge radius differences. Thus, EO transitions provide a fundamental signature for shape coexistence in nuclei. In this sense, EO transitions are second only to E2 transitions for signaling (quadrupole) shapes in nuclei and do so when shape differences occur. A major effort has been devoted to the review of EO transitions in nuclei. Experiments have been carried out or are scheduled at: ATLAS/FMA (α decay of very neutron-deficient Bi isotopes); MSU/NSCL (β decay of 56 Cu); and HRIBF/RMS (commissioning of tape collector, internal conversion/internal-pair spectrometer; β decay of 58 Cu). A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using HRIBF. Theoretical investigations have continued in collaboration with Prof. K. Heyde, Prof. D.J. Rowe, Prof. J.O. Rasmussen, and Prof. P.B. Semmes. These studies focus on shape coexistence and particle-core coupling

  5. X-ray yields of superdeformed states in 193Hg

    International Nuclear Information System (INIS)

    Cullen, D.M.; Lee, I.Y.; Baktash, C.

    1993-01-01

    The K α =x-ray yields associated with the superdeformed and normal-deformed bands in 193 Hg have been measured. The results indicate an excess yield of K α -x rays in coincidence with the superdeformed cascade relative to that in coincidence with the normal-deformed cascade. The internal conversion of known transitions along the superdeformed cascade cannot account for the observed K α -x ray yield. It is likely that this excess x-ray yield is associated with low energy M1 transitions competing with the low-spin superdeformed E2 transitions. These M1 γ rays are expected to connect the two superdeformed bands which are observed in coincidence with each other. Calculations based on the measured γ-ray intensities indicate that within the experimental uncertainties the excess K α yield can be entirely accounted for by interband-M1 transitions. X-ray yields from the recent 193 Hg EUROGAM experiment will also be discussed

  6. NUSTART: A PC code for NUclear STructure And Radiative Transition analysis and supplementation

    International Nuclear Information System (INIS)

    Larsen, G.L.; Gardner, D.G.; Gardner, M.A.

    1990-10-01

    NUSTART is a computer program for the IBM PC/At. It is designed for use with the nuclear reaction cross-section code STAPLUS, which is a STAPRE-based CRAY computer code that is being developed at Lawrence Livermore National Laboratory. The NUSTART code was developed to handle large sets of discrete nuclear levels and the multipole transitions among these levels; it operates in three modes. The Data File Error Analysis mode analyzes an existing STAPLUS input file containing the levels and their multipole transition branches for a number of physics and/or typographical errors. The Interactive Data File Generation mode allows the user to create input files of discrete levels and their branching fractions in the format required by STAPLUS, even though the user enters the information in the (different) format used by many people in the nuclear structure field. In the Branching Fractions Calculations mode, the discrete nuclear level set is read, and the multipole transitions among the levels are computed under one of two possible assumptions: (1) the levels have no collective character, or (2) the levels are all rotational band heads. Only E1, M1, and E2 transitions are considered, and the respective strength functions may be constants or, in the case of E1 transitions, the strength function may be energy dependent. The first option is used for nuclei closed shells; the bandhead option may be used to vary the E1, M1, and E2 strengths for interband transitions. K-quantum number selection rules may be invoked if desired. 19 refs

  7. Elimination Reactions of (E)-2,4,6-Trinitrobenzaldehyde O-benzoyloximes Promoted by R2NH in MeCN. Change of Reaction Mechanism

    International Nuclear Information System (INIS)

    Cho, Bong Rae; Pyun, Sang Yong

    2010-01-01

    We have studied the nitrile-forming elimination reactions from 1 promoted by R 2 NH in MeCN. The reaction proceeded by (E1cb) irr mechanism. Change of the β-aryl group from 2,4-dinitrophenyl to a more strongly electron-withdrawing 2,4,6-trinitrophenyl increased the reaction rate by 470-fold, shifted the transition state toward more reactant-like, and changed the reaction mechanism from E2 to (E1cb) irr . To the best of our knowledge, this is the first example of nitrile-forming elimination reaction that proceeds by the (E1cb) irr mechanism in MeCN. Noteworthy is the carbanion stabilizing ability of the 2,4,6-trinitrophenyl group in aprotic solvent. Nitrile-forming elimination reactions of (E)-benzaldoxime derivatives have been extensively investigated under various conditions. The reactions proceeded by the E2 mechanism in MeCN despite the fact that the reactants have syn stereochemistry, poor leaving, and sp 2 hybridized β-carbon atom, all of which favor E1cb- or E1cb-like transition state. Moreover, the transition state structures were relatively insensitive to the variation of the reactant structures. The results have been attributed to the poor anion solvating ability of MeCN, which favors E2 transition state with maximum charge dispersal. For eliminations from strongly activated (E)-2,4-(NO 2 ) 2 C 6 H 3 CH=NOC(O)C 6 H 4 X, a change in the reaction mechanism from E2 to (E1cb) irr was observed as the base-solvent was changed from R 2 NH in MeCN to R 2 NH/R 2 NH 2 + in 70 mol % MeCN(aq). A combination of a strong electron-withdrawing β-aryl group and anion-solvating protic solvent was required for the mechanistic change

  8. Search for the two-photon decay of the 2+ first excited states in 18O and 28Si

    International Nuclear Information System (INIS)

    Music, M.

    1986-01-01

    The present work describes an attempt to measure the probability for the two-photon transition between two adjacent nuclear states in the presence of an allowed, strongly predominant one-photon decay, using the Heidelberg-Darmstadt Crystal Ball Spectrometer. The branching ratios of the two-photon decay of the first excited, 2 + levels of 18 O and 28 Si relative to the one-photon, E2 transitions to the 0 + ground states were determined to be: Wγγ/Wγ = (0.7±2.4) x 10 -6 for the 2 + >0 + transition in 18 O and Wγγ/Wγ = (1.6±1.8) x 10 -6 for the 2 + >0 + transition in 28 Si. Since both results are consistent with zero, it is possible to express them as the upper limits for the two-photon decay (3 δ) of 7.9 x 10 -6 of 18 O and 6.9 x 10 -6 of 28 Si 2 + levels. These values are by far the smallest ones reported to be observed in a two-photon decay of a nuclear state. For 18 O, the result disproves theoretical estimates of the corresponding two-photon E1F1 matrix element was well as experimental values deduced from multiple-Coulomb-excitation measurements. The main experimental difficulties were caused by the gamma rays from one-photon transitions and were found to be connected with cross-talk events due to Bremsstrahlung of Compton electrons and not - as generally believed - positron annihilation in flight. (orig.)

  9. The study of structure in 224–234 thorium nuclei within the framework IBM

    Directory of Open Access Journals (Sweden)

    Lee Su Youn

    2017-01-01

    Full Text Available An investigation has been made of the behaviour of nuclear structure as a function of an increase in neutron number from 224Th to 234Th. Thorium of mass number 234 is a typical rotor nucleus that can be explained by the SU(3 limit of the interacting boson model(IBM in the algebraic nuclear model. Furthermore, 224−232Th lie on the path of the symmetry-breaking phase transition. Moreover, the nuclear structure of 224Th can be explained using X(5 symmetry. However, as 226−230Th nuclei are not fully symmetrical nuclei, they can be represented by adding a perturbed term to express symmetry breaking. Through the following three calculation steps, we identified the tendency of change in nuclear structure. Firstly, the structure of 232Th is described using the matrix elements of the Hamiltonian and the electric quadrupole operator between basis states of the SU(3 limit in IBM. Secondly, the low-lying energy levels and E2 transition ratios corresponding to the observable physical values are calculated by adding a perturbed term with the first-order Casimir operator of the U(5 limit to the SU(3 Hamiltonian in IBM. We compared the results with experimental data of 224−234Th. Lastly, the potential of the Bohr Hamiltonian is represented by a harmonic oscillator, as a result of which the structure of 224−234Th could be expressed in closed form by an approximate separation of variables. The results of these theoretical predictions clarify nuclear structure changes in Thorium nuclei over mass numbers of practical significance.

  10. Possible Deformed States in 115In and 117ln

    International Nuclear Information System (INIS)

    Baecklin, A.; Fogelberg, B.; Malmskog, S.G.

    1967-01-01

    Levels and transitions in 115 In and 117 In have been studied from the beta decay of 2.3-day 115g Cd and 2.5-h 117g Cd. Using a Ge(Li) detector and a double focussing beta spectrometer energies, intensities, conversion coefficients and multipolarities were obtained for the following transitions (energies in keV and multipolarities are given): 115 In: 35.63 (97.0 % M1 + 3.0 % E2), 231.47 (E1), 260.80 (M1), 267, 336. 23 (M4 + 117 In: 71.0, 89.80 (E2 + 115 In and for 3 levels in 117 In. Energies, spins, parities and half lives are given for the following levels: In: 597.03, 3/2 - ; 828.39, 3/2 + , 5.4 ns; 863.95, l/2 + or 3/2 + , 1.1 ns. 117 In: 588.59, 3/2 - ; 0.20 ns; 659.56, 3/2 + , 58.7 ns; 749.37, 1/2 + or 3/2 + , 4.3 ns. Reduced transition probabilities are given for several transitions in both nuclei. The E2 transition rates between the two excited positive parity states in both nuclei were found to be about 100 s. p. u. indicating a possible deformation of these states. The energy spacing and transition rates between these states can be well accounted for within the Nilsson model assuming the states to form a K = 1/2 + rotational band. A deformation δ of about 0.20 is obtained for both nuclei

  11. Coulomb excitation of 206Hg at relativistic energies

    Science.gov (United States)

    Alexander, Tom

    The region of the nuclear chart surrounding the doubly-magic nucleus 208Pb provides a key area to constrain and develop contemporary nuclear structure models. One aspect of particular interest is the transition strength of the first excited 2+ state in even-even nuclei; this work describes the measurement of this value for the case of 206Hg, where the Z=80 line meets the N=126 shell closure. The nuclei of interest were synthesized using relativistic-energy projectile fragmentation at the GSI facility in Germany. They were produced in the fragmentation of a primary 208Pb beam at an energy of 1 GeV per nucleon, and separated and identifed using the Fragment Separator. The secondary beams with an energy of 140 MeV per nucleon were Coulomb excited on a secondary target of 400 mg/cm. 2 gold. Gamma-rays were detected with the Advanced GAmma Tracking Array (AGATA). The precise scattering angle for Doppler-correction was determined with position information from the Lund-York-Cologne-CAlorimeter(LYCCA). Using the sophisticated tracking algorithm native to AGATA in conjunction with pulse-shape analysis, a precise Doppler-correction is performed on the gamma spectra, and using a complex n-dimensional analysis, the B(E2) value for 206Hg is extracted relative to the known value also measured in 206Pb. A total of 409 million 206Hg particles were measured, and a cross-section of 50 mb was determined for the 2+ state at 1068 keV. The measurement of the B(E2) transition strength was found to be 1.109 W.u. This result is compared to a number of theoretical calculations, including two Gogny forces, and a modified shell model parametrization and is found to be smaller than all calculated estimations, implying that the first excited 2. + state in . {206}Hg is uncollective in nature.

  12. Atomic-level characterization of the activation mechanism of SERCA by calcium.

    Directory of Open Access Journals (Sweden)

    L Michel Espinoza-Fonseca

    Full Text Available We have performed molecular dynamics (MD simulations to elucidate, in atomic detail, the mechanism by which the sarcoplasmic reticulum Ca(2+-ATPase (SERCA is activated by Ca(2+. Crystal structures suggest that activation of SERCA occurs when the cytoplasmic head-piece, in an open (E1 conformation stabilized by Ca(2+, undergoes a large-scale open-to-closed (E1 to E2 transition that is induced by ATP binding. However, spectroscopic measurements in solution suggest that these structural states (E1 and E2 are not tightly coupled to biochemical states (defined by bound ligands; the closed E2 state predominates even in the absence of ATP, in both the presence and absence of Ca(2+. How is this loose coupling consistent with the high efficiency of energy transduction in the Ca(2+-ATPase? To provide insight into this question, we performed long (500 ns all-atom MD simulations starting from the open crystal structure, including a lipid bilayer and water. In both the presence and absence of Ca(2+, we observed a large-scale open-to-closed conformational transition within 400 ns, supporting the weak coupling between structural and biochemical states. However, upon closer inspection, it is clear that Ca(2+ is necessary and sufficient for SERCA to reach the precise geometrical arrangement necessary for activation of ATP hydrolysis. Contrary to suggestions from crystal structures, but in agreement with solution spectroscopy, the presence of ATP is not required for this activating transition. Principal component analysis showed that Ca(2+ reshapes the free energy landscape of SERCA to create a path between the open conformation and the activated closed conformation. Thus the malleability of the free energy landscape is essential for SERCA efficiency, ensuring that ATP hydrolysis is tightly coupled to Ca(2+ transport. These results demonstrate the importance of real-time dynamics in the formation of catalytically competent conformations of SERCA, with broad

  13. Electronic structure and X-ray spectroscopic properties of YbNi_2P_2

    International Nuclear Information System (INIS)

    Shcherba, I.D.; Bekenov, L.V.; Antonov, V.N.; Noga, H.; Uskokovic, D.; Zhak, O.; Kovalska, M.V.

    2016-01-01

    Highlights: • We present new experimental and theoretical data for YbNi_2P_2. • The presence of divalent and trivalent Yb ion found in YbNi_2P_2. • The calculation show good agreement with the experimental measurements. - Abstract: X-ray absorption spectrum at the Yb L_3 edge and X-ray emission spectra of Ni and P at the K and L_2_,_3 edges have been studied experimentally and theoretically in the mixed valent compound YbNi_2P_2 with ThCr_2Si_2 type crystal structure. The electronic structure of YbNi_2P_2 is investigated using the fully relativistic Dirac linear muffin-tin orbital (LMTO) band-structure method. The effect of the spin–orbit (SO) interaction and Coulomb repulsion U on the electronic structure of YbNi_2P_2 is examined in the frame of the LSDA + SO + U method. The core-hole effect in the final states as well as the effect of the electric quadrupole E_2 transitions have been investigated. A good agreement between the theory and the experiment was found. Both the trivalent and the divalent Yb ions in YbNi_2P_2 are reflected in the experimentally measured Yb L_3 X-ray absorption spectrum simultaneously. We found that the best agreement between the experimental spectrum and sum of the theoretically calculated Yb"2"+ and Yb"3"+ spectra is achieved with 73% ytterbium ions in 2+ state and 27% ions in 3+ state.

  14. Nuclear moments of inertia at high spins

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1984-01-01

    For nuclei in high spin states a yrast-like part of a continuum γ-ray spectrum shows naturally how angular momentum is generated as a function of frequency. In rotational nuclei, the rotational frequency is omega = dE/dI approx. E/sub γ/2, half the collective E2 transition energy. The height of the spectrum for a rotor is proportional to dN/dE/sub γ/ = dI/4d omega. dI/d omega is a dynamic (second derivative of energy with spin) moment of inertia. It contains both alignments and collective effects and is therefore an effective moment of inertia J/sub eff//sup (2)/. It shows how much angular momentum is generated at each frequency. If the collective moment of inertia J/sub band//sup (2)/(omega) is measured (from γ-γ correlation experiments) for the same system, the collective and aligned (Δi) contributions to the increase of angular momentum ΔI in a frequency interval Δ omega can be separated: Δi/ΔI = 1 - J/sub band//sup (2)//J/sub eff//sup (2)/. This is at present the only way to extract such detailed information at the highest spin states where discrete lines cannot be resolved. An example of the spectra obtained in several Er nuclei is shown. They are plotted in units of the moment of inertia J/sub eff//sup (2)/. The high-energy part of the spectra has been corrected for incomplete feeding at these frequencies

  15. A united phenomenological description of quadrupole excitations in even-even nuclei

    International Nuclear Information System (INIS)

    Lipas, P.O.; Haapakoski, P.; Honkaranta, T.

    1975-05-01

    A phenomenological model is developed for the collective quadrupole properties of all even-even nuclei. Rotational, vibrational, and transitional nuclei are included in the model on an equal footing. A Bohr-type intrinsic Hamiltonian for harmonic quadrupole vibrations about an axially deformed shape is solved exactly. States of good angular momentum are projected out of the intrinsic states, and they are made orthogonal by a Schmidt scheme. The angular-momentum and phonon-number composition of the states is analyzed at various stages; states with K=1 are found spurious. Excitation energies for the ground, β and γ bands are calculated as expectation values of a radically simplified nuclear Hamiltonian in our projected and orthogonalized states. With increasing deformation the calculated energies evolve smoothly from the evenly spaced phonon spectrum to the Bohr-Mottelson rotational-vibrational spectrum according to the scheme of Sheline and Sakai. The basic model contains only two parameters (deformation d and energy scale) to fix the entire quadrupole spectrum of a nucleus. The results are given in the form of graphs suitable for immediate application; numerical results are readily produced by our computer code. The ground bands are fitted comparably to the VMI model, while the β and γ bands are reproduced qualitatively. The nuclei 152 Sm, 152 Gd, and 114 Cd are used as test cases. Quadrupole moments and E2 transition rates are also calculated. Intra-ground-band transition ratios and branching ratios from the β and γ bands are given in terms of the single parameter d. The results are applied to 152 Sm, with fair success. Finally the model to include two more parameters (anisotropy) is extended. The improvement over the basic model is modest in view of added parameters and computational effort. (author)

  16. Radiative Rates for Forbidden Transitions in Doubly-Ionized Fe-Peak Elements

    Science.gov (United States)

    Fivet, Vanessa; Quinet, P.; Bautista, M.

    2012-05-01

    Accurate and reliable atomic data for lowly-ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu) are of paramount importance for the analysis of the high resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly-ionized iron-peak ions have been very little investigated so far and radiative rates for those lines remain sparse or inexistent. We are carrying out a systematic study of the electronic structure of doubly-ionized iron-peak elements. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities are computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allows for consistency checks and intercomparison and has proven very successful in the study of the complex Fe-peak species where many different effects contribute [5]. References [1] A. Mesa-Delgado et al., MNRAS 395 (2009) 855 [2] S. Johansson et al., A&A 361 (2000) 977 [3] R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley: Univ. California Press (1981) [4] N.R. Badnell, J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 1 [5] M. Bautista et al., ApJ 718 (2010) L189

  17. Secondary isotope effects and tunneling in elimination reaction of quaternary ammonium salts

    International Nuclear Information System (INIS)

    Lin, S.

    1993-01-01

    In order to gain more experimental evidence of the tunneling effect on the non-transferred isotopically-substituted hydrogen in the rate determining step and to investigate in more detail concerning the variable nature of the E2 transition state, tritium tracer-labeled β- and/or α-phenyl substituted ethyltrimethylammonium ions in the elimination reaction and their 2,2-d 2 analogues were studied. The three different substrates are 2-(p-trifluoromethylphenyl)ethyltrimethylammonium bromide (I), 1-phenylethyltrimethylammonium bromide (II) and 1-phenyl- 2-p-chlorophenylethyltrimethylammonium bromide (III). The reactions were found to proceed via a concerted E2 process. The proton is more than one-half transferred to the base at the transition state, especially for case I and III. There is more C beta -H and less C alpha -N bond rupture at the transition state when an electron-withdrawing group is introduced on the β-phenyl ring, i.e., more carbonion character in the transition state. The secondary tritium isotope effects were measured and they were found larger than the maximum value. (1.17) for rehybridization. It was found that these values were strongly temperature dependent. They increase as the temperature goes down. The Arrenhius pre-exponential factors were below unity and the exponential factor to convert the isotope effect of D/T to H/T were much greater than predicted for zero-point energy effects alone (3.26). Tunneling turns to be the only plausible explanation. By reviewing this evidence, one may conclude that the contribution of tunneling is indeed a common occurrence in proton transfer processes. For elimination of compound I, the tunneling effect is greatest while it is less for the other two, which are about the same, but the nature of their transition states is quite different. The variable nature of the transition states for the three eliminations are discussed in terms of the More O'Ferral-Jencks diagram

  18. Results and simulations on γ-spectroscopy of deformed nuclei: cases of isomers and tetrahedral nuclei

    International Nuclear Information System (INIS)

    Vancraeyenest, A.

    2010-10-01

    The major part of this work is about the realization and complete analysis of an experiment for studying isomeric states in 138,139,140 Nd nuclei. This was performed at Jyvaeskylae laboratory (Finland) using a fusion-evaporation reaction with 48 Ca beam on a thin 96 Zr target. Experimental setup consisted in the target position gamma ray detector Jurogam II which was coupled with the RITU recoil separator and the GREAT focal plane detector array. This particularly well adapted setup permit to manage γ spectroscopy of the interest nuclei around isomeric states. Indeed, we used prompt-delayed matrices to separate rays that come onto isomeric states and these who decay from them. Then, the correlations between the two components permit to establish feeding transitions of isomeric states. Thanks to this experiment, a new isomeric state was also highlighted in 139 Nd with spin 23/2+, which was predicted and interpreted in Cranked-Nilsson-Strutinsky calculation. Finally, very clean time spectra allow to determine precisely life-time of four states in four nuclei. This Ph.d. is also made of a part of the analysis of the first experimental search for fingerprints of tetrahedral symmetry in 156 Gd using high fold gamma ray spectroscopy. Thanks to a large number of triple coincidence events, we managed a detailed spectroscopy of this nucleus. Particularly, we found out 13 new transitions in positive parity bands. As a complement of this work, we have done GEANT4 simulations about the detection limits of low intensity transitions by Agata multidetector. Indeed, tetrahedral symmetry predicts vanishing of E2 transitions at lower spin states and simulations permit to determine observation limit of these transitions with different version of Agata. (author)

  19. Theoretical study on the low-lying excited states of the phosphorus monoiodide (PI) including the spin-orbit coupling

    Science.gov (United States)

    Zhang, Xiaomei; Liu, Xiaoting; Liang, Guiying; Li, Rui; Xu, Haifeng; Yan, Bing

    2016-01-01

    The potential energy curves (PECs) of the 22 Λ-S states of the phosphorus monoiodide (PI) molecule have been calculated at the level of MRCI+Q method with correlation-consistent quadruple-ζ quality basis set. The spectroscopic constants of the bound states are determined, which well reproduce the available measurements. The metastable a1Δ state has been reported for the first time, which lies between the X3Σ- and b1Σ+ states and have much deeper well than the ground state. The R-dependent spin-orbit (SO) matrix elements are calculated with the full-electron Breit-Pauli operator. Based on the SO matrix elements, the perturbations that the 23Π state may suffer from are analyzed in detail. The SOC effect makes the original Λ-S states split into 51 Ω states. In the zero-field splitting of the ground state X3Σ-, the spin-spin coupling contribution (2.23 cm-1) is found to be much smaller compared to the spin-orbit coupling contribution (50 cm-1). The avoided crossings between the Ω states lead to much shallower potential wells and the change of dissociation relationships of the states. The Ω-state wavefunctions are analyzed depending on their Λ-S compositions, showing the strong interactions among several quasidegenerate Λ-S states of the same total SO symmetry. The transition properties including electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition moments (TMs), the Franck-Condon factors, the transition probabilities and the radiative lifetimes are computed for the transitions between Ω components of a1Δ and b1Σ+ states and ground state. The transition probabilities induced by the E1, E2, and M1 transitions are evaluated. The E2 makes little effect on transition probabilities. In contrast, the E1 transition makes the main contribution to the transition probability and the M1 transition also brings the influence that cannot be neglected. Finally, the radiative lifetimes are determined with the transition moments including E

  20. Possible Deformed States in {sup 115}In and {sup 117}ln

    Energy Technology Data Exchange (ETDEWEB)

    Baecklin, A; Fogelberg, B [Inst. of Physics, Univ. of Uppsala (Sweden); Swedish Research Councils' Laboratory, Studsvik, Nykoeping (Sweden); Malmskog, S G [AB Atomenergi, Nykoeping (Sweden)

    1967-01-15

    Levels and transitions in {sup 115}In and {sup 117}In have been studied from the beta decay of 2.3-day {sup 115g}Cd and 2.5-h {sup 117g}Cd. Using a Ge(Li) detector and a double focussing beta spectrometer energies, intensities, conversion coefficients and multipolarities were obtained for the following transitions (energies in keV and multipolarities are given): {sup 115}In: 35.63 (97.0 % M1 + 3.0 % E2), 231.47 (E1), 260.80 (M1), 267, 336. 23 (M4 + < 5 % E5), 492. 4 (96 % El +4 % M2), 527.70 (E1). {sup 117}In: 71.0, 89.80 (E2 + < 20 % M1), 273.32 (M1, E2), 315.27 (M4 + < 7 % E2), 344.29 (E1), 434.12 (E1). Using the delayed coincidence technique, half lives were measured for 2 levels in {sup 115}In and for 3 levels in {sup 117}In. Energies, spins, parities and half lives are given for the following levels: In: 597.03, 3/2{sup -}; 828.39, 3/2{sup +}, 5.4 ns; 863.95, l/2{sup +} or 3/2{sup +}, 1.1 ns. {sup 117}In: 588.59, 3/2{sup -}; 0.20 ns; 659.56, 3/2{sup +}, 58.7 ns; 749.37, 1/2{sup +} or 3/2{sup +}, 4.3 ns. Reduced transition probabilities are given for several transitions in both nuclei. The E2 transition rates between the two excited positive parity states in both nuclei were found to be about 100 s. p. u. indicating a possible deformation of these states. The energy spacing and transition rates between these states can be well accounted for within the Nilsson model assuming the states to form a K = 1/2{sup +} rotational band. A deformation {delta} of about 0.20 is obtained for both nuclei.

  1. Electromagnetic properties of some odd-odd nuclei in the A≈ 100 region and IBFFM description of 106Ag

    Science.gov (United States)

    Andrejtscheff, W.; Kostov, L. K.; Petkov, P.; Brant, S.; Paar, V.; Lopac, V.; Boehm, G.; Eberth, J.; Wirowski, R.; Zell, K. O.

    1990-09-01

    Electromagnetic properties of odd-odd transitional nuclei with A≈ 100 are investigated experimentally and theoretically. Nanosecond isomers are studied in-beam by means of delayed γγ-coincidences and the generalized centroid-shift method. The reactions 98Mo+30MeV 7Li and 92,94Mo+ 50 MeV 12C are utilized. Following half-lives are determined: T {1}/{2} (547.2 keV in 102Rh) = 0.25±0.07ns, T {1}/{2} (243.1 keV in 102Rh) = 0.30±0.10ns, T {1}/{2}(181.1 keV in 99Tc) = 3.8 ± 0.3ns, T {1}/{2} (2902.0keV in 104Cd) = 0.6±0.1 ns, T {1}/{2} (118.7keV in 103Pd) =0.8±0.2 ns, T {1}/{2} (131.1 keV in 105Cd) = 1.5 ±0.3 ns, T {1}/{2} (211.8 keV in 104Ag) = 1.4±0.1 ns, T {1}/{2} (181.0 keV in 102Ag) = 3.5±0.2 ns. Additionally, several upper limits of level lifetimes are derived. The systematics of E1, M1 and E2 transition rates in 100,102,104Rh and 102,104,106Ag is presented and discussed. Fast M1 transitions within the 2qp π g˜{9}/{2}ν h˜{1}/{2} band appear to be associated with the strong coupling of the π g˜{9}/{2} proton and the rotational alignment of the h˜{11}/{2} neutron. Extensive IBFFM calculations of level energies and electromagnetic properties of 106Ag as a typical case demonstrate that this model could account for the complex structural pattern of this type of nuclei. NUCLEAR REACTIONS 98Mo( 7Li, 3n), ( 7Li2nα), E=30 MeV; 92,94Mo( 12C, pn), 94Mo( 12C, 2n), ( 12C, 2pn), E = 50 MeV; measured Eγ, Iγ, γγ( t). 102Rh, 99Tc, 102,104Ag, 104Cd,

  2. Inelastic electron scattering at low momentum transfer

    International Nuclear Information System (INIS)

    Richter, A.

    1979-01-01

    Recent advances of high energy resolution (ΔE approx. 30 keV FWHM) inelastic electron scattering at low momentum transfer (q -1 ) using selected experimental data from the Darmstadt electron linear accelerator are discussed. Strong emphasis is given to a comparison of the data with theoretical nuclear model predictions. Of the low multipolarity electric transitions investigated, as examples only E1 transitions to unnatural parity states in 11 B and E2 transitions of the very fragmented isoscalar quadrupole giant resonance in 208 Pb are considered. In 11 B the role of the Os hole in the configuration of the 1/2 + , 3/2 + and 5/2 + states is quantitatively determined via an interference mechanism in the transition probability. By comparison of the high resolution data with RPA calculations the E2 EWSR in 208 Pb is found to be much less exhausted than anticipated from previous medium energy resolution (e,e) and hadron scattering experiments. In the case of M1 transitions it is shown that the simplest idealized independent particle shell-model prediction breaks down badly. In 28 Si, ground-state correlations influence largely the detected M1 strength and such ground-state correlations are also responsible for the occurence of a strong M1 transition to a state at Ex = 10.319 MeV in 40 Ca. In 90 Zr only about 10% of the theoretically expected M1 strength is seen in (e,e) and in 140 Ce and 208 Pb none (detection limit 1-2 μ 2 K). In the case of 208 Pb high resolution spectra exist now up to an excitation energy of Ex = approx. 12MeV. The continuous decrease of the M1 strength with mass number is corroborated by the behaviour of strong but very fragmented M2 transitions which are detected in 28 Si, 90 Zr, 140 Ce and 208 Pb concentrated at an excitation energy E x approx. 44A -1 / 3 MeV. In 90 Zr, the distribution of spacings and widths of the many Jπ = 2 states are consistent with a Wigner and Porter-Thomas distribution, respectively. (orig.) 891 KBE/orig. 892 ARA

  3. Gamma spectroscopical studies of strongly deformed rotational bands in 73Br and 79Sr

    International Nuclear Information System (INIS)

    Heese, J.

    1989-01-01

    In the framework of this thesis the excitation structures of the nuclei 73 Br and 79 Sr were studied. For the population of high-spin states the reactions 40 Ca( 36 Ar,3p) 73 Br, -58 Ni( 24 Mg,2αp) 73 Br and 58 Ni( 24 Mg,2pn) 79 Sr were used. The level scheme of 73 Br could be extended by γγ coincidence measurements by 18 new states up to the spins 45/2 + respectively 45/2 - . DSA lifetime measurements yielded information about the deformations of the observed rotational bands. The conversion coefficients of the low-energetic transitions in the range of the excitation spectrum below 500 keV were determined and allowed the assignments of spins and parities. Furthermore the converted decay of the 27-keV state was observed for the first time, from the measured intensities of the electron line the lifetime of this state was estimated to 1.1 ≤ τ ≤ 9.1 μs. The measurement of the lifetime and the g factor of the isomeric 240-keV state confirmed the already known spin values and allowed statements on the particle structure. Lifetime measurements in 79 Sr were performed up to the states 21/2 + and 17/2 - . They yielded informations on E2 and M1 transition strengthened in the rotational bands. The transition strengths calculated from the lifetimes show that both nuclei are strongly prolate deformed. The sign of the deformation could be concluded in the case of 73 Br from the observed band structure, in 79 Sr it was calculated from E2/M1 mixing ratios. The E2-transition strengths show a reduction in both nuclei in the region of the g 9/2 proton alignment. Alignment effects in the rotational bands were discussed in the framework of the cranked shell model. Microscopical calculations in the Hartree-Fock-Bogolyubov cranking model with a deformed Woods-Saxon potential were performed. (orig./HSI) [de

  4. K isomerism and collectivity in neutron-rich rare-earth isotopes

    Science.gov (United States)

    Patel, Zena

    around 160Sm. They reveal a significant influence from beta6 deformation and that 160Sm is the best candidate for the lightest four-quasiparticle K isomer to exist in this region. The relationship between reduced hindrance and isomer excitation energy for E1 transitions from multiquasiparticle states is considered with the new data from 160Sm. The E1 data are found to agree with the existing relationship for E2 transitions. K isomers were also observed in 159Sm, 161Sm, 162Sm, 163Eu, and 164Gd, some of them for the first time. Their level schemes are presented and discussed in terms of blocked BCS calculations. The reduced hindrance of E1 transitions in these isomers is discussed. Isomers are also observed in 164Eu, 165Eu, 167Tb, 168Tb, and 169Tb, however, the statistics are too low for analysis beyond gamma-ray energy measurements. The isotopes 160Sm, 161Sm, and 162Sm were populated for the first time via beta decay of 160Pm, 161Pm, and 162Pm respectively, also at the RIBF using in-flight fission. beta-delayed gamma rays are present in all three isotopes. Further analysis is needed to calculate the beta-decay half-lives.

  5. Excitation strengths and transition radii differences of one-phonon quadrupole excitations from electron scattering on {sup 92,94}Zr and {sup 94}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh Obeid, Abdulrahman

    2014-11-01

    In the framework of this thesis electron scattering experiments on low-energy excitations of {sup 92}Zr and {sup 94}Zr were performed at the S-DALINAC in a momentum transfer range q=0.3-0.6 fm{sup -1}. The nature of one-phonon symmetric and mixed-symmetric 2{sup +} and 3{sup -} states of {sup 92}Zr was investigated by comparison with predictions of the quasi-particle phonon model (QPM). Theoretical (e,e') cross sections have been calculated within the distorted wave Born approximation (DWBA) to account for Coulomb distortion effects. The reduced strengths of the one-quadrupole phonon states and the one-octupole phonon state have been extracted. The similarity of the momentum-transfer dependence of the form factors between the 2{sup +} states supports the one-phonon nature of the 2{sup +}{sub 2} state of {sup 92}Zr. A new method based on the Plane Wave Born Approximation (PWBA) for a model-independent determination of the ratio of the E2 transition strengths of fully symmetric (FSS) and mixed-symmetry (MSS) one-phonon excitations of heavy vibrational nuclei is introduced. Due to the sensitivity of electron scattering to charge distributions, the charge transition-radii difference can be determined. The basic assumptions (independence from the ratio of Coulomb corrections and from absolute values of transition radii) are tested within the Tassie model, which makes no specific assumptions about the structure of the states other than collectivity. It is shown that a PWBA analysis of the form factors, which usually fails for heavy nuclei, can nevertheless be applied in a relative analysis. This is a new promising approach to determine the ground state transition strength of the 2{sup +} MSS of vibrational nuclei with a precision limited only by the experimental information about the B(E2;2{sup +}{sub 1}→0{sup +}{sub 1}) strength. The PWBA approach furthermore provides information about differences of the proton transition radii of the respective states

  6. Electric quadruple moments of high-spin isomers in 209Po

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Nicolescu, G.; Plostinaru, D.

    1998-01-01

    calculation of their moments from measured E2 transitions rates. In order to deduce the values of the Q((17/2) - ) and Q((13/2) - ) quadrupole moments of 209 Po we considered a 210 Po calibration based on the fact that the 210 Po(8 + ) isomer is known to have a very pure πh 1/2 8 configuration and the quadrupole moments can be computed from the (8 + →6 + )B(E2) value as Q[ 210 Po(8 + )] = -57 efm 2 . We finally arrive at the values: |Q[ 209 Po(17/2) - ]| = 67(5) efm 2 and |Q[ 209 Po(13/2) - ]| = 26(6) efm 2 . The sign of the ratio Q((17/2) - )/Q((13/2) - ) was determined as being positive. The absolute signs of the moments cannot be determined from our experiment but they are expected to be negative. A measurement of the quadrupole interaction of 209 Po nuclei in a Bi single crystal target yielded the quadrupole coupling constants for 209 Po((17/2) - ) and 209 Po((13/2) - ) isomers employing a two-level analysis formalism. In summarizing our results for the investigation of quadrupole moments of isomeric states in Po nuclei near N=126, we have observed a quite large increase in the quadrupole moments when the p 1/2 neutron shell is empty. Within the concept of the deformed single particle model the larger polarization is interpreted as an increased preference for deformation. (authors)

  7. The Spectroscopic Evolution of the Symbiotic-like Recurrent Nova V407 Cygni During Its 2010 Outburst. 2. The Circumstellar Environment and the Aftermath

    Science.gov (United States)

    Shore, S. N.; Wahlgren, G. M.; Augusteijn, T.; Liimets, T.; Koubsky, P.; Slechta, M.; Votruba, V.

    2011-01-01

    contributor, and the lower states are collisionally quenched but emit from the low density surroundings. Absorption lines of Fe-peak ions formed in the Mira wind were visible as P Cyg profiles at low velocity before Day 69, around the time of the X-ray peak and we identified many absorption transitions without accompanying emission for metal lines. The H Balmer lines showed strong P Cyg absorption troughs that weakened during the 2010 observing period, through Day 128. The Fe-peak line profiles and flux variations were different for permitted and forbidden transitions: the E1 transitions were not visible after Day 128 but had shown a narrow peak superimposed on an extended (200 km/s) blue wing, while the M1 and E2 transitions persisted to Day 529, the last observation, and showed extended redshifted wings up of the same velocity. We distinguish the components from the shock, the photoionized environment, and the chromosphere and inner Mira wind using spectra taken more than one year after outburst. The multiple shells and radiative excitation phenomenology are similar to those recently cited for GRBs and SNIa .