WorldWideScience

Sample records for e0-transitions

  1. E0 transitions in {sup 106}Pd: Implications for shape coexistence

    Energy Technology Data Exchange (ETDEWEB)

    Peters, E.E.; Mynk, M.G. [University of Kentucky, Department of Chemistry, Lexington, KY (United States); Prados-Estevez, F.M.; Chakraborty, A.; Yates, S.W. [University of Kentucky, Department of Chemistry, Lexington, KY (United States); University of Kentucky, Department of Physics and Astronomy, Lexington, KY (United States); Bandyopadhyay, D.; Choudry, S.N.; Crider, B.P.; Kumar, A.; Lesher, S.R.; McKay, C.J.; Orce, J.N.; Scheck, M. [University of Kentucky, Department of Physics and Astronomy, Lexington, KY (United States); Garrett, P.E. [University of Guelph, Department of Physics, Guelph, Ontario (Canada); Hicks, S.F. [University of Dallas, Department of Physics, Irving, TX (United States); Vanhoy, J.R. [United States Naval Academy, Department of Physics, Annapolis, MD (United States); Wood, J.L. [Georgia Institute of Technology, School of Physics, Atlanta, GA (United States)

    2016-04-15

    Level lifetimes in {sup 106}Pd were measured with the Doppler-shift attenuation method following inelastic neutron scattering, and electric monopole transition strengths between low-lying 2{sup +} states were deduced. The large ρ{sup 2} (E0) values obtained provide evidence for shape coexistence, extending observation of such structures in the N = 60 isotones. Included in these results is the first determination of the E0 transition strength in the Pd nuclei between levels with K = 2. (orig.)

  2. First identification of the 0{sub 2}{sup +} state in {sup 30}Mg via its E0 transition

    Energy Technology Data Exchange (ETDEWEB)

    Schwerdtfeger, Wolfgang Norbert Erik

    2008-08-28

    The known 1789 keV level in {sup 30}Mg turned out to be a candidate for the 0{sub 2}{sup +} state due to its long lifetime of 3.9(4) ns and the absence of a {gamma} transition to the ground state. This triggered our search on the 0{sub 2}{sup +}{yields}0{sub 1}{sup +} E0 transition in {sup 30}Mg following the {beta} decay of {sup 30}Na: {beta} decay electrons were detected in a scintillation detector, while conversion electrons were focused onto a cooled Si(Li) detector using a Mini-Orange and detected with high resolution, which simultaneously suppresses the high background of {beta} decay electrons. Due to the large Q value of the {beta} decay of {sup 30}Na (17.3 MeV) the suppression of the coincident background induced by high-energy {gamma} rays and subsequently Compton-scattered electrons turned out to be the key challenge for the success of this experiment. In order to optimise the background suppression and thus the sensitivity to weak E0 transitions, offline test measurements using an {sup 90}Y and a {sup 152}Eu source were performed together with GEANT4 simulations. Resulting from these test measurements a highly sensitive experimental setup was designed and built, consequently minimising the amount of high-Z material in the target chamber, reducing X-ray production. As a by-product from test measurements the database value of the half-life of the 0{sub 2}{sup +} state in {sup 90}Zr could be corrected by more than 30 % to be t{sub 1/2}=41(1) ns. Finally, in a {beta} decay experiment at the ISOLDE facility at CERN the 0{sub 2}{sup +}{yields}0{sub 1}{sup +} E0 transition in {sup 30}Mg could be identified at the expected transition energy of 1788 keV proving for the first time shape coexistence at the borderline of the 'Island of Inversion'. This identification allows to determine the electric monopole strength as {rho}{sup 2}(E0)=26.2(7.5) x 10{sup -3}, indicating a rather weak mixing between the states in two potential minima in a simplified two

  3. Cluster-shell competition and its effect on the $E0$ transition probability in $^{20}$Ne

    CERN Document Server

    Itagaki, N

    2016-01-01

    $^{20}$Ne has been known as a typical example of a nucleus with $\\alpha$ cluster structure ($^{16}$O+$\\alpha$ structure). However according to the spherical shell model, the spin-orbit interaction acts attractively for four nucleons outside of the $^{16}$O core, and this spin-orbit effect cannot be taken into account in the simple $\\alpha$ cluster models. We investigate how the $\\alpha$ cluster structure competes with independent particle motions of these four nucleons. The antisymmetrized quasi-cluster model (AQCM) is a method to describe a transition from the $\\alpha$ cluster wave function to the $jj$-coupling shell model wave function. In this model, the cluster-shell transition is characterized by only two parameters; $R$ representing the distance between clusters and $\\Lambda$ describing the breaking of $\\alpha$ clusters, and the contribution of the spin-orbit interaction, very important in the $jj$-coupling shell model, can be taken into account by changing $\\alpha$ clusters to quasi clusters. In this a...

  4. Gamma-Rays and E0 and M1+E0 Transitions in $^{152}Tb \\to ^{152}$Gd Decay

    CERN Document Server

    Adam, J; Honusek, M; Kalinnikov, V G; Mrazek, J; Pronskikh, V S; Caloun, P; Lebedev, N A; Stegailov, V I; Tsoupko-Sitnikov, V M

    2001-01-01

    The decay of ^{152}Tb has been investigated by means of measurements of single gamma-spectra. The 704 transitions were observed, of which 347 were identified to the decay of ^{152}Tb for the first time. Using the more precise and full data about intensities of gamma-transitions and previously reported conversion electron intensities the E0 or M1+E0 multipolarities were established for several transitions.

  5. Electric Monopole Transition Strengths in Stable Nickel Isotopes

    Science.gov (United States)

    Evitts, Lee; Garnsworthy, Adam; Kibedi, Tibor; Super-e Collaboration

    2016-09-01

    Electric monopole (E 0) transition strengths are a sensitive probe for investigating nuclear structure and shape coexistence. There is a need for E 0 transition strengths in closed shell nuclei in order to develop our understanding of the mechanisms responsible for the generation of electric monopole strength. Simultaneous detections of γ rays and internal conversion electrons must be measured in order to determine an E 0 transition strength. A series of measurements in the stable nickel isotopes were performed at the Australian National University. Excited states in 58 , 60 , 62Ni were populated via inelastic proton scattering. The CAESAR array of Compton-suppressed HPGe detectors was used to measure the (E 2 / M 1) mixing ratio of transitions from angular distributions of γ rays. The Super-e spectrometer was used to measure electron-gamma branching ratios in order to extract E 0 transition strengths for a number of Jπ ->Jπ transitions. An overview of the experiments will be presented, along with preliminary results for E 0 transition strengths between Jπ ≠ 0 states in the semi-magic nuclei, 58 , 60 , 62Ni. A comparison with the matrix elements obtained from a new microscopic model for E 0 transitions will be made. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC).

  6. Electric monopole transitions from low energy excitations in nuclei

    CERN Document Server

    Wood, J L; De Coster, C; Heyde, Kris L G

    1999-01-01

    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, $\\rho^2$(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between $\\rho^2$(E0) and isotopic shifts.

  7. The Spectrometer for Internal Conversion Electrons at TRIUMF-ISAC

    Science.gov (United States)

    Smallcombe, James; Evitts, Lee; Garnsworthy, Adam; Moukaddam, Mohamad; Spice Collaboration

    2016-09-01

    SPICE (SPectrometer for Internal Conversion Electrons) is a powerful tool to measure conversion coefficients and E 0 transitions in nuclei. E 0 transition strengths, which are not accessible by gamma-ray spectroscopy, are a sparsely measured observable. Such transition strengths are particularly sensitive to nuclear shape and state mixing effects and as such are a key item of data in studying the evolution of shape coexistence. SPICE is an ancillary detector that has been commissioned for use with Radioactive Ion Beams (RIBs) at the ISAC-II facility of TRIUMF. The main feature of SPICE is high efficiency over a range of electron energies from 100 to 3500 keV, crucial for work with RIBs, and an effective reduction of beam-induced backgrounds. This is achieved with an upstream magnetic lens, a high- Z photon shield and a large-area lithium-drifted silicon detector. A major theme of the physics program will be the investigation of shape coexistence and state mixing in exotic nuclei. An overview of the main features of SPICE will be presented alongside details of the commissioning and preliminary data from the first experiment studying excited structures in 110Pd. Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI), Ontario Ministry of Research and Innovation (MRI).

  8. Probing intruder configurations in $^{186, 188}$Pb using Coulomb excitation

    CERN Multimedia

    Columb excitation measurements to study the shape coexistence, mixing and quadrupole collectivity of the low-lying levels in neutron-deficient $^{188}$Pb nuclei are proposed with a view to extending similar studies to the $^{186}$Pb midshell nucleus. The HIE-ISOLDE beam of $^{186,188}$Pb nuclei will be delivered to MINIBALL+SPEDE set-up for simultaneous in-beam $\\gamma$-ray and conversion electron spectroscopy. The proposed experiment will allow the sign of the quadrupole deformation parameter to be extracted for the two lowest 2$^{+}$ states in $^{188}$Pb. Moreover, the advent of SPEDE will allow probing of the bandhead 0$^{+}$ states via direct measurements of E0 transitions. Beam development is requested to provide pure and instense $^{186}$Pb beam.

  9. Fast-timing lifetime measurement of 152Gd

    Science.gov (United States)

    Wiederhold, J.; Kern, R.; Lizarazo, C.; Pietralla, N.; Werner, V.; Jolos, R. V.; Bucurescu, D.; Florea, N.; Ghita, D.; Glodariu, T.; Lica, R.; Marginean, N.; Marginean, R.; Mihai, C.; Mihai, R.; Mitu, I. O.; Negret, A.; Nita, C.; Olacel, A.; Pascu, S.; Stroe, L.; Toma, S.; Turturica, A.

    2016-10-01

    The lifetime τ (02+) of 152Gd has been measured using fast electronic scintillation timing (FEST) with an array of high-purity germanium (HPGe) and cerium-doped lanthanum bromide (LaBr3) detectors. 152Gd was produced via an (α ,n ) reaction on a gold backed 149Sm target. The measured lifetime of τ (02+) =96 (6 ) ps corresponds to a reduced transition strength of B (E 2 ;02+→21+) =111 (7 ) W.u. and an E 0 transition strength of ρ2(E 0 ) =39 (3 ) ×10-3 to the ground state. This result provides experimental support for the validity of a correlation that would be a novel indicator for a quantum phase transition (QPT).

  10. SPectrometer for Internal Conversion Electrons (SPICE) at TRIUMF-ISAC

    Science.gov (United States)

    Smallcombe, J.; Moukaddam, M.; Evitts, L. J.; Garnsworthy, A. B.; Hallam, S.; Andreoiu, C.; Ball, G. C.; Bolton, C.; Caballero-Folch, R.; Constable, M.; Cross, D. S.; Garrett, P. E.; Hackman, G.; Henderson, J.; Henderson, R.; Ketelhut, S.; Kruecken, R.; Kurchaninov, L.; Park, J.; Pore, J. L.; Rand, E. T.; Ruotsalainen, P.; Smith, J. K.; Svensson, C. E.; Williams, M.

    2016-09-01

    A new ancillary detector, SPICE (SPectrometer for Internal Conversion Electrons) has been constructed and recently commissioned for use with radioactive ion beams at the TRIUMF-ISAC II facility. SPICE is designed to be operated in conjunction with the TIGRESS High-Purity Germanium (HPGe) spectrometer to perform combined in-beam γ-ray and internal-conversion-electron spectroscopy. The main feature of SPICE is high effciency over a wide range of electron energies from 100 to 3500 keV, with an effective reduction of beam-induced backgrounds. SPICE will be a powerful tool to measure conversion coeffcients and E0 transitions in atomic nuclei. A recent in-beam commissioning experiment demonstrates the effectiveness of the basic design concept of SPICE in background suppression.

  11. Off-Yrast low-spin structure of deformed nuclei at mass number A∼150

    Energy Technology Data Exchange (ETDEWEB)

    Krugmann, Andreas

    2014-07-14

    The present work consists of two independent parts. The first part deals with the investigation of the 0{sup +}{sub 1}→0{sup +}{sub 2} transition in {sup 150}Nd with inelastic electron scattering and in the second part a proton scattering experiment for the investigation of dipole excitations is presented. In the first part of this thesis a pioneer experiment in inelastic electron scattering is introduced. At an electron energy of 75 MeV, excitation energy spectra have been measured at the high resolution 169 spectrometer at the S-DALINAC. The aim of this investigation was the determination of the ρ{sup 2}(E0;0{sup +}{sub 1}→0{sup +}{sub 2}) transition strength in the heavy deformed nucleus {sup 150}Nd. The experimental form factor of this particular transition has been compared to a theoretical form factor that has been constructed by an effective density operator on a microscopic level with the help of the generator coordinate method. The required collective wave functions have been calculated in the Confined β soft rotor model. In this model-dependent analysis the E0 transition strength has been determined for the first time. Furthermore the evolution of the E0 transition strength as a function of the potential stiffness has been investigated from the X(5) phase shape transitional point to the Rigid Rotor limit. It has been shown, that the E0 strength is relatively high at the shape-phase transitional point and starts to decrease with increasing stiffness and vanishes completely at the Rigid Rotor limit. Additionally the wave functions of the macroscopic collective Confined β-soft rotor model have been compared to those from a microscopic mean field Hamiltonian. Good agreement has been found. The second part of this thesis covers a polarized-proton scattering experiment on the heavy deformed nucleus {sup 154}Sm, that has been performed at the RCNP in Osaka, Japan. Utilizing the method of polarization transfer observables, a separation of spinflip and non

  12. Characterization of the low-lying 0$^{+}$ and 2$^{+}$ states of $^{68}$ Ni

    CERN Multimedia

    Recently, a number of low-lying low-spin states have been firmly identified in $^{68}$Ni; the position of the first excited state (which is a 0$^{+}$ state), the spin and parity of the second excited 0$^{+}$ state and the spin and parity of the second and third 2$^+$ states have been fixed. The identification of these three pairs of 0$^+$ and 2$^+$ states in $^{68}$Ni (Z=28 and N=40) forms ideal tests to validate shell-model calculations and the effective interactions developed for the nickel region but also hints to triple shape coexistence including even strongly deformed structures. The aim of this proposal is to collect detailed spectroscopic data of the low-spin states of $^{68}$Ni (Z=28, N=40) in order to characterize these triple pairs of 0$^+$ and 2$^+$ states. $\\gamma$-branching ratios of the 0$^+$ and 2$^+$ states and the E0 transition strengths as well as the E2 transition rate of the 0$_3^+$ will be obtained using the new ISOLDE decay station that is constructed from an efficient array of germaniu...

  13. High-Statistics β+ / EC -Decay Study of 122Xe

    Science.gov (United States)

    Jigmeddorj, Badamsambuu; S1292 Collaboration

    2016-09-01

    The Xe isotopes are centrally located in the Z > 50 , N vibrational structure influenced by proton subshell gaps, perhaps leading to shape-coexistence that could give rise to strong E 0 transitions. Recent work on 124Xe has established nearly identical quadrupole collectivity for the pairing vibrational 03+ band and the ground state band. However, in 122Xe, the 03+ state has not been firmly identified. A high-statistics 122Cs β+ / EC decay experiment to obtain detailed spectroscopic data for low-spin states was performed at the TRIUMF-ISAC facility using the 8 π γ-ray spectrometer and its auxiliary detectors including PACES, an array of five Si(Li) detectors, for conversion electron spectroscopy. The decay scheme has been considerably extended through a γ- γ coincidence analysis, and 0+ states have been identified via γ- γ angular correlations. This work supported by the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada.

  14. Germanium quantum dots: Optical properties and synthesis

    Science.gov (United States)

    Heath, James R.; Shiang, J. J.; Alivisatos, A. P.

    1994-07-01

    Three different size distributions of Ge quantum dots (≳200, 110, and 60 Å) have been synthesized via the ultrasonic mediated reduction of mixtures of chlorogermanes and organochlorogermanes (or organochlorosilanes) by a colloidal sodium/potassium alloy in heptane, followed by annealing in a sealed pressure vessel at 270 °C. The quantum dots are characterized by transmission electron microscopy, x-ray powder diffraction, x-ray photoemission, infrared spectroscopy, and Raman spectroscopy. Colloidal suspensions of these quantum dots were prepared and their extinction spectra are measured with ultraviolet/visible (UV/Vis) and near infrared (IR) spectroscopy, in the regime from 0.6 to 5 eV. The optical spectra are correlated with a Mie theory extinction calculation utilizing bulk optical constants. This leads to an assignment of three optical features to the E(1), E(0'), and E(2) direct band gap transitions. The E(0') transitions exhibit a strong size dependence. The near IR spectra of the largest dots is dominated by E(0) direct gap absorptions. For the smallest dots the near IR spectrum is dominated by the Γ25→L indirect transitions.

  15. Dark Atoms and the Positron-Annihilation-Line Excess in the Galactic Bulge

    Directory of Open Access Journals (Sweden)

    J.-R. Cudell

    2014-01-01

    Full Text Available It was recently proposed that stable particles of charge −2, O--, can exist and constitute dark matter after they bind with primordial helium in O-helium (OHe atoms. We study here in detail the possibility that this model provides an explanation for the excess of gamma radiation in the positron-annihilation line from the galactic bulge observed by INTEGRAL. This explanation assumes that OHe, excited to a 2s state through collisions in the central part of the Galaxy, deexcites to its ground state via an E0 transition, emitting an electron-positron pair. The cross-section for OHe collisions with excitation to 2s level is calculated and it is shown that the rate of such excitations in the galactic bulge strongly depends not only on the mass of O-helium, which is determined by the mass of O--, but also on the density and velocity distribution of dark matter. Given the astrophysical uncertainties on these distributions, this mechanism constrains the O-- mass to lie in two possible regions. One of these is reachable in the experimental searches for stable multicharged particles at the LHC.

  16. Structure of krypton isotopes within the interacting boson model derived from the Gogny energy density functional

    Science.gov (United States)

    Nomura, K.; Rodríguez-Guzmán, R.; Humadi, Y. M.; Robledo, L. M.; Abusara, H.

    2017-09-01

    The evolution and coexistence of the nuclear shapes as well as the corresponding low-lying collective states and electromagnetic transition rates are investigated along the krypton isotopic chain within the framework of the interacting boson model (IBM). The IBM Hamiltonian is determined through mean-field calculations based on the several parametrizations of the Gogny energy density functional and the relativistic mean-field Lagrangian. The mean-field energy surfaces, as functions of the axial β and triaxial γ quadrupole deformations, are mapped onto the expectation value of the interacting-boson Hamiltonian that explicitly includes the particle-hole excitations. The resulting boson Hamiltonian is then used to compute low-energy excitation spectra as well as E 2 and E 0 transition probabilities for Kr-10070. Our results point to a number of examples of prolate-oblate shape transitions and coexistence both on the neutron-deficient and neutron-rich sides. A reasonable agreement with the available experimental data is obtained for the considered nuclear properties.