WorldWideScience

Sample records for e-toetuste ssteem star

  1. Peredele suunatud rahaliste toetuste mõju vaesuse leevendamisele Eestis / Andres Võrk, Alari Paulus

    Index Scriptorium Estoniae

    Võrk, Andres, 1974-

    2007-01-01

    PRAXIS-e uuringule toetuv artikkel jõuab järeldusele, et riiklikud peretoetused, vanemahüvitis ning täiendav maksuvaba tulu on vähendanud vaesuses elavate laste osakaalu, eriti positiivne on meetmete mõju olnud paljulastelistele peredele. Graafikud: Peredele suunatud rahaliste toetuste suurus; Peredele suunatud rahalised toetused ühe lapsetoetust saava lapse kohta keskmise palga ja tarbijahindadega võrreldes; Peredele suunatud rahaliste toetuste mõju absoluutses vaesuses elavate laste osakaalule; Peredele suunatud rahaliste toetuste mõju suhtelises vaesuses elavate laste ja lastega perede osakaalule aastail 2000-2005 keskmiselt; Suhtelises vaesuses elavate laste arvu vähenemine peredele suunatud rahaliste toetuste mõjul aastail 2000-2007 eri peretüüpides; Vaestele peredele minev toetuste osakaal aastate 2000-2005 kogutoetustest keskmiselt; Ühe protsendipunkti vaesuse vähendamise netokulu (arvestades koosmõju teiste toetuste ja maksudega) eri meetmetel 2004.-2005. aastal keskmiselt

  2. Riigilt saab toetust senisest rohkem inimesi / Heljo Pikhof

    Index Scriptorium Estoniae

    Pikhof, Heljo, 1958-

    2001-01-01

    Ilmunud ka: Meie Maa, 30. okt. 2001, lk. 2; Vooremaa, 30. okt. 2001, lk. 2; Koit, 30. okt. 2001, lk. 6; Lääne Elu, 30. okt. 2001, lk. 4. Vastuseks M. Treiali art.-le üle 80-aastastele pensionilisa maksmise kohta. Vanus ei ole objektiivne alus, et lisaraha maksta. Uuest toetuste süsteemist. Autor: Rahvaerakond Mõõdukad

  3. Eesti ei maksa Natura aladel toetust 7800 krooni hektari kohta / Ain Lember

    Index Scriptorium Estoniae

    Lember, Ain

    2004-01-01

    EL 2007-2013 eelarve eelnõu kohaselt võib Natura 2000 aladel tegutsevatele põllumajandustootjatele maksta põllumajanduskõlviku hektari kohta igal aastal kuni 7800 krooni. Põllumajandusministeeriumi spetsialistid ei pea nii suurte toetuste maksmist võimalikuks

  4. Üliõpilased soovivad Eesti valitsuselt toetust Valgevene tudengile / Hannes Krause

    Index Scriptorium Estoniae

    Krause, Hannes

    2005-01-01

    Reedel saatis Eesti Üliõpilaskondade Liit kirja peaministrile ja välisministrile, paludes toetust tudeng Tatjana Homale, kes heideti välja Valgene Riiklikust Majandusülikoolist, sest ta ei teavitanud oma ülikooli sõidust Prantsusmaale Euroopa üliõpilasliitude katusorganisatsiooni üldkogule

  5. Talumehed nõuavad Natura aladel ümbermõõtmisi / Silja Lättemäe

    Index Scriptorium Estoniae

    Lättemäe, Silja, 1952-

    2006-01-01

    Eestis tänavu esmakordselt makstavat Natura toetust saab ebasoodsamates piirkondades looduskaitse nõuete täitmise eest. Toetust saab vaid sellise põllu eest, mis asub tervikuna Natura 2000 võrgustiku alal

  6. 78 FR 72009 - Establishment of Class E Airspace; Star, NC

    Science.gov (United States)

    2013-12-02

    ...-0440; Airspace Docket No. 13-ASO-10] Establishment of Class E Airspace; Star, NC AGENCY: Federal... at Star, NC, to accommodate a new Area Navigation (RNAV) Global Positioning System (GPS) Standard... Federal Register a notice of proposed rulemaking to establish Class E airspace at Star, NC (78 FR 54413...

  7. 78 FR 54413 - Proposed Establishment of Class E Airspace; Star, NC

    Science.gov (United States)

    2013-09-04

    ...-0440; Airspace Docket No. 13-ASO-10] Proposed Establishment of Class E Airspace; Star, NC AGENCY... action proposes to establish Class E Airspace at Star, NC, to accommodate a new Area Navigation (RNAV... establish Class E airspace at Star, NC, providing the controlled airspace required to support the new RNAV...

  8. Unraveling the nature of B[e] star candidates

    Czech Academy of Sciences Publication Activity Database

    Arias, M.L.; Torres, A.F.; Cidale, L.S.; Kraus, Michaela

    2013-01-01

    Roč. 56, č. 1 (2013), s. 171-174 E-ISSN 1669-9521 Institutional support: RVO:67985815 Keywords : Be star * massive star * spectroscopic observations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://www. astronomia argentina.org.ar/b56/2013baaa...56...171A.pdf

  9. 75 FR 64972 - Proposed Revocation of Class E Airspace; Lone Star, TX

    Science.gov (United States)

    2010-10-21

    ...-0772; Airspace Docket No. 10-ASW-10] Proposed Revocation of Class E Airspace; Lone Star, TX AGENCY... action proposes to remove Class E airspace at Lone Star, TX. Abandonment of the former Lone Star Steel... need for controlled airspace in the Lone Star, TX, area. The FAA is taking this action to ensure the...

  10. Investeeringute ja erinevate toetuste ning käibemaksuskeemide kohaldamise mõju taimekasvatusettevõtte rahavoole = Effect of investments and various subsidies and application of value added tax schemes on crop cultivation enterprise's cash flow / J

    Index Scriptorium Estoniae

    Lehtsaar, Jüri, 1961-

    2005-01-01

    Kolme Eesti põllumajandusettevõtte 2003. aasta majandusnäitajate alusel loodud mudelettevõtte baasil tehtud analüüs investeeringute, toetuste ja alternatiivse käibemaksusüsteemi kohaldamise mõjude kohta. Selgitavad diagrammid. Tabel: Eesti põllumajandustootjate tulu kujunemine aastatel 2000-2003 mln kr; Skeem: Põllukultuuride ja teravilja kasvupind Eestis 2000-2004 tuh ha

  11. 32 CFR Appendix E to Part 246 - Stars and Stripes (S&S) Board of Directors

    Science.gov (United States)

    2010-07-01

    ... of directors shall monitor planning and execution of the S&S business activities. 2. The S&S board of... DEFENSE (CONTINUED) MISCELLANEOUS STARS AND STRIPES (S&S) NEWSPAPER AND BUSINESS OPERATIONS Pt. 246, App. E Appendix E to Part 246—Stars and Stripes (S&S) Board of Directors A. Organization and Management...

  12. Spectrophotometry of peculiar B and A stars. XVIII - The helium rich variable stars HR 1890, Sigma Orionis E, and HD 37776

    Science.gov (United States)

    Adelman, S. J.; Pyper, D. M.

    1985-01-01

    Optical region spectrophotometry at 3300-7850 A has been obtained for three helium rich stars, HR 1890, Sigma Ori E, and HD 37776, of the Orion OB1 Association. New uvby-beta photometry of HR 1890 and HD 37776 as well as published data are also used to investigate the variability of these stars. A new period of 1.53862 days was determined for HD 37776. For all three stars H-beta varies in antiphase with strong He I lines. The spectrophotometric bandpass containing the strong He I line at 4471 A varies in phase with the R index of Pedersen and Thomsen (1977). Evidence is found for weak absorption features which appear to be an extension of the 5200 A feature seen in cooler CP stars.

  13. Evidence of the evolved nature of the B[e] star MWC 137

    Energy Technology Data Exchange (ETDEWEB)

    Muratore, M. F.; Arias, M. L.; Cidale, L. [Departamento de Espectroscopía Estelar, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, and Instituto de Astrofísica de La Plata, CCT La Plata, CONICET-UNLP, Paseo del Bosque S/N, B1900FWA, La Plata (Argentina); Kraus, M.; Oksala, M. E. [Astronomický ústav, Akademie věd České Republiky, Fričova 298, 251 65 Ondřejov (Czech Republic); Fernandes, M. Borges [Observatório Nacional, Rua General José Cristino 77, 20921-400 São Cristovão, Rio de Janeiro (Brazil); Liermann, A., E-mail: fmuratore@carina.fcaglp.unlp.edu.ar [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-01-01

    The evolutionary phase of B[e] stars is difficult to establish due to the uncertainties in their fundamental parameters. For instance, possible classifications for the Galactic B[e] star MWC 137 include pre-main-sequence and post-main-sequence phases, with a large range in luminosity. Our goal is to clarify the evolutionary stage of this peculiar object, and to study the CO molecular component of its circumstellar medium. To this purpose, we modeled the CO molecular bands using high-resolution K-band spectra. We find that MWC 137 is surrounded by a detached cool (T=1900±100 K) and dense (N=(3±1)×10{sup 21} cm{sup −2}) ring of CO gas orbiting the star with a rotational velocity, projected to the line of sight, of 84 ± 2 km s{sup −1}. We also find that the molecular gas is enriched in the isotope {sup 13}C, excluding the classification of the star as a Herbig Be. The observed isotopic abundance ratio ({sup 12}C/{sup 13}C = 25 ± 2) derived from our modeling is compatible with a proto-planetary nebula, main-sequence, or supergiant evolutionary phase. However, based on some observable characteristics of MWC 137, we propose that the supergiant scenario seems to be the most plausible. Hence, we suggest that MWC 137 could be in an extremely short-lived phase, evolving from a B[e] supergiant to a blue supergiant with a bipolar ring nebula.

  14. Do All O Stars Form in Star Clusters?

    Science.gov (United States)

    Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.

  15. 76 FR 32141 - Proposed Information Collection; Comment Request; Application for the President's “E” and “E STAR...

    Science.gov (United States)

    2011-06-03

    ... DEPARTMENT OF COMMERCE International Trade Administration Proposed Information Collection; Comment Request; Application for the President's ``E'' and ``E STAR'' Awards for Export Expansion AGENCY... significant contributions to the increase of American exports. The President's ``E STAR'' Award recognizes the...

  16. Discovery of a New Dusty B[E] Star in the Small Magellanic Cloud

    Science.gov (United States)

    Wisniewski, John P.; Bjorkman, Karen S.; Bjorkman, Jon E.; Clampin, Mark

    2007-01-01

    We present new optical spectroscopic and Spitzer IRAC photometric observations of a B-type star in the SMC cluster NGC 346, NGC 346:KWBBe 200. We detect numerous Fe II, [O I], [Fe II], as well as strong P-Cygni profile H I emission lines in its optical spectrum. The star's near-IR color and optical to IR SED clearly indicate the presence of an infrared excess, consistent with the presence of gas and warm, T -800 K, circumstellar dust. Based on a crude estimate of the star's luminosity and the observed spectroscopic line profile morphologies, we find that the star is likely to be a B-type supergiant. We suggest that NGC 346:KWBBe 200 is a newly discovered B[e] supergiant star, and represents the fifth such object to be identified in the SMC.

  17. NuSTAR and XMM-Newton observations of 1e1743.1-2843: indications of a neutron star LMXB nature of the compact object

    DEFF Research Database (Denmark)

    Lotti, Simone; Natalucci, Lorenzo; Mori, Kaya

    2016-01-01

    We report on the results of NuSTAR and XMM-Newton observations of the persistent X-ray source 1E1743.1-2843, located in the Galactic Center region. The source was observed between 2012 September and October by NuSTAR and XMM-Newton, providing almost simultaneous observations in the hard and soft X......-ray bands. The high X-ray luminosity points to the presence of an accreting compact object. We analyze the possibilities of this accreting compact object being either a neutron star (NS) or a black hole, and conclude that the joint XMM-Newton and NuSTAR spectrum from 0.3 to 40 keV fits a blackbody spectrum...

  18. Energy star compliant voice over internet protocol (VoIP) telecommunications network including energy star compliant VoIP devices

    Science.gov (United States)

    Kouchri, Farrokh Mohammadzadeh

    2012-11-06

    A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.

  19. A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2016-12-01

    We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is a Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.

  20. Probing the structure and dynamics of B[e] supergiant stars' disks

    Czech Academy of Sciences Publication Activity Database

    Kraus, Michaela

    2016-01-01

    Roč. 58, č. 1 (2016), s. 70-76 E-ISSN 1669-9521 R&D Projects: GA ČR(CZ) GA14-21373S Institutional support: RVO:67985815 Keywords : circumstellar matter * infrared * stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://www. astronomia argentina.org.ar/b58/2016baaa...58...70K.pdf

  1. NuSTAR observations of the magnetar 1E 2259+586

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Julia K.; Craig, William W.; Pivovaroff, Michael J. [Physics Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Hascoët, Romain; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hailey, Charles J. [Physics Department and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kaspi, Victoria M.; An, Hongjun; Archibald, Robert [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); Boggs, Steven E. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Kennea, Jamie A. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-07-01

    We report on new broad band spectral and temporal observations of the magnetar 1E 2259+586, which is located in the supernova remnant CTB 109. Our data were obtained simultaneously with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift, and cover the energy range from 0.5-79 keV. We present pulse profiles in various energy bands and compare them to previous RXTE results. The NuSTAR data show pulsations above 20 keV for the first time and we report evidence that one of the pulses in the double-peaked pulse profile shifts position with energy. The pulsed fraction of the magnetar is shown to increase strongly with energy. Our spectral analysis reveals that the soft X-ray spectrum is well characterized by an absorbed double blackbody or blackbody plus power-law model in agreement with previous reports. Our new hard X-ray data, however, suggest that an additional component, such as a power law, is needed to describe the NuSTAR and Swift spectrum. We also fit the data with the recently developed coronal outflow model by Beloborodov for hard X-ray emission from magnetars. The outflow from a ring on the magnetar surface is statistically preferred over outflow from a polar cap.

  2. NuSTAR observations of the magnetar 1E 2259+586

    International Nuclear Information System (INIS)

    Vogel, Julia K.; Craig, William W.; Pivovaroff, Michael J.; Hascoët, Romain; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hailey, Charles J.; Kaspi, Victoria M.; An, Hongjun; Archibald, Robert; Boggs, Steven E.; Christensen, Finn E.; Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K.; Kennea, Jamie A.; Stern, Daniel; Zhang, William W.

    2014-01-01

    We report on new broad band spectral and temporal observations of the magnetar 1E 2259+586, which is located in the supernova remnant CTB 109. Our data were obtained simultaneously with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift, and cover the energy range from 0.5-79 keV. We present pulse profiles in various energy bands and compare them to previous RXTE results. The NuSTAR data show pulsations above 20 keV for the first time and we report evidence that one of the pulses in the double-peaked pulse profile shifts position with energy. The pulsed fraction of the magnetar is shown to increase strongly with energy. Our spectral analysis reveals that the soft X-ray spectrum is well characterized by an absorbed double blackbody or blackbody plus power-law model in agreement with previous reports. Our new hard X-ray data, however, suggest that an additional component, such as a power law, is needed to describe the NuSTAR and Swift spectrum. We also fit the data with the recently developed coronal outflow model by Beloborodov for hard X-ray emission from magnetars. The outflow from a ring on the magnetar surface is statistically preferred over outflow from a polar cap.

  3. CHAPTER 1. Miktoarm Star (µ-Star) Polymers: A Successful Story

    KAUST Repository

    Iatrou, Hermis; Avgeropoulos, Apostolos; Sakellariou, Georgios; Pitsikalis, Marinos; Hadjichristidis, Nikolaos

    2017-01-01

    The term miktoarm stars (coming from the Greek word μιτσ meaning mixed) was adopted in 1992 by our group for star polymers with either chemical (e.g., AB), molecular weight (e.g., AA′), topological (e.g., (AB)-junction-(BA)), or functional group (e.g., AA) asymmetry. The first μ-stars synthesized by anionic polymerization, on the one hand, guided polymer chemists working with other types of polymerization techniques towards this direction and, on the other hand, helped polymer physicists to carry out experiments and develop theories on the influence of the architecture on the morphology of block copolymers. Synthetic strategies based on anionic polymerization, as well as a few examples showing the influence of the miktoarm structure on the morphology of block copolymers, are reviewed in this chapter.

  4. CHAPTER 1. Miktoarm Star (µ-Star) Polymers: A Successful Story

    KAUST Repository

    Iatrou, Hermis

    2017-04-13

    The term miktoarm stars (coming from the Greek word μιτσ meaning mixed) was adopted in 1992 by our group for star polymers with either chemical (e.g., AB), molecular weight (e.g., AA′), topological (e.g., (AB)-junction-(BA)), or functional group (e.g., AA) asymmetry. The first μ-stars synthesized by anionic polymerization, on the one hand, guided polymer chemists working with other types of polymerization techniques towards this direction and, on the other hand, helped polymer physicists to carry out experiments and develop theories on the influence of the architecture on the morphology of block copolymers. Synthetic strategies based on anionic polymerization, as well as a few examples showing the influence of the miktoarm structure on the morphology of block copolymers, are reviewed in this chapter.

  5. Spectral and photometric observation of sg B[e] MWC 314 star

    International Nuclear Information System (INIS)

    Kurchakov, A.V.; Rspaev, F.K.

    2005-01-01

    In the paper spectrophotometric and photometric data, received for sg B[e] MWC 314 star during 2001-2004 years at high mounting Assy-Turgen observatory are given. In spectra the Hα, Hβ, HeI, numerous FeII intensity lines and forbidden [NII], [OI] lines are presented. The variety of Hα lines intensity relatively to continuum (from 24 to 33) is observed. For this time the Hα line equivalent width EW is changed in the limits 138-179 Angstrom, the brightness in range V=9, m 82-9. m 96; (B-V)=1. m 77-1. m 82; (V-R)=1. m 53-1. m 64. There are the distinct correlation's of Hα line equivalent width EW with star colour index (B-V): at the increasing of EW the (B-V) colour index is increased. (author)

  6. Baltikum ja Poola juhiks Vene gaasi mööda maad / Lauri Linnamäe

    Index Scriptorium Estoniae

    Linnamäe, Lauri

    2007-01-01

    Balti riigid ja Poola taotlevad Euroopa Komisjonilt toetust uuringu läbiviimiseks, mis keskenduks 2004. aastal välja pakutud Lätit, Leedut ja Poolat läbiva gaasijuhtme Amber projekti võrdlusele Nord Streami projektiga. Lisa: Nord Stream

  7. White Dwarf Stars

    OpenAIRE

    Kepler, S. O.; Romero, Alejandra Daniela; Pelisoli, Ingrid; Ourique, Gustavo

    2017-01-01

    White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5000 to 39000. This number includes only white dwarf stars with log g >= 6.5 stars, i.e., excluding the Extremely Low Mass white dw...

  8. Formation of stars and star clusters in colliding galaxies

    International Nuclear Information System (INIS)

    Belles, Pierre-Emmanuel

    2012-01-01

    Mergers are known to be essential in the formation of large-scale structures and to have a significant role in the history of galaxy formation and evolution. Besides a morphological transformation, mergers induce important bursts of star formation. These starburst are characterised by high Star Formation Efficiencies (SFEs) and Specific Star Formation Rates, i.e., high Star Formation Rates (SFR) per unit of gas mass and high SFR per unit of stellar mass, respectively, compared to spiral galaxies. At all redshifts, starburst galaxies are outliers of the sequence of star-forming galaxies defined by spiral galaxies. We have investigated the origin of the starburst-mode of star formation, in three local interacting systems: Arp 245, Arp 105 and NGC 7252. We combined high-resolution JVLA observations of the 21-cm line, tracing the HI diffuse gas, with UV GALEX observations, tracing the young star-forming regions. We probe the local physical conditions of the Inter-Stellar Medium (ISM) for independent star-forming regions and explore the atomic-to-dense gas transformation in different environments. The SFR/HI ratio is found to be much higher in central regions, compared to outer regions, showing a higher dense gas fraction (or lower HI gas fraction) in these regions. In the outer regions of the systems, i.e., the tidal tails, where the gas phase is mostly atomic, we find SFR/HI ratios higher than in standard HI-dominated environments, i.e., outer discs of spiral galaxies and dwarf galaxies. Thus, our analysis reveals that the outer regions of mergers are characterised by high SFEs, compared to the standard mode of star formation. The observation of high dense gas fractions in interacting systems is consistent with the predictions of numerical simulations; it results from the increase of the gas turbulence during a merger. The merger is likely to affect the star-forming properties of the system at all spatial scales, from large scales, with a globally enhanced turbulence

  9. An ultraviolet study of B[e] stars: evidence for pulsations, luminous blue variable type variations and processes in envelopes

    Science.gov (United States)

    Krtičková, I.; Krtička, J.

    2018-06-01

    Stars that exhibit a B[e] phenomenon comprise a very diverse group of objects in a different evolutionary status. These objects show common spectral characteristics, including the presence of Balmer lines in emission, forbidden lines and strong infrared excess due to dust. Observations of emission lines indicate illumination by an ultraviolet ionizing source, which is key to understanding the elusive nature of these objects. We study the ultraviolet variability of many B[e] stars to specify the geometry of the circumstellar environment and its variability. We analyse massive hot B[e] stars from our Galaxy and from the Magellanic Clouds. We study the ultraviolet broad-band variability derived from the flux-calibrated data. We determine variations of individual lines and the correlation with the total flux variability. We detected variability of the spectral energy distribution and of the line profiles. The variability has several sources of origin, including light absorption by the disc, pulsations, luminous blue variable type variations, and eclipses in the case of binaries. The stellar radiation of most of B[e] stars is heavily obscured by circumstellar material. This suggests that the circumstellar material is present not only in the disc but also above its plane. The flux and line variability is consistent with a two-component model of a circumstellar environment composed of a dense disc and an ionized envelope. Observations of B[e] supergiants show that many of these stars have nearly the same luminosity, about 1.9 × 105 L⊙, and similar effective temperatures.

  10. Keskkonnaraha kolis taotlejate juurde / Andres Pulver

    Index Scriptorium Estoniae

    Pulver, Andres, 1965-

    2005-01-01

    Keskkonnainvesteeringute keskus (KIK) avas maakondlikud esindused, mis abistavad projektide arendajaid keskkonnaprojektide toetuste taotlemisel, projektide elluviimisel ning kontrollivad toetuste sihipärast kasutamist. Lisa: KIK

  11. NuSTAR and integral observations of a low/hard state of 1E1740.7-2942

    Energy Technology Data Exchange (ETDEWEB)

    Natalucci, Lorenzo; Bazzano, Angela; Fiocchi, Mariateresa; Ubertini, Pietro [Istituto di Astrofisica e Planetologia Spaziali, INAF, via del Fosso del Cavaliere, I-00133 Roma (Italy); Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Krivonos, Roman [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Smith, David M. [Physics Department and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Bachetti, Matteo; Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fürst, Felix; Grefenstette, Brian W.; Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kuulkers, Erik [European Space Astronomy Centre (ESA/ESAC), Science Operations Department, E-28691 Villanueva de la Cañada (Madrid) (Spain); Miller, Jon M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Pottschmidt, Katja [CRESST and NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Stern, Daniel, E-mail: lorenzo.natalucci@iaps.inaf.it [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); and others

    2014-01-01

    The microquasar 1E1740.7-2942, also known as the 'Great Annihilator,' was observed by NuSTAR in the summer of 2012. We have analyzed in detail two observations taken ∼2 weeks apart, for which we measure hard and smooth spectra typical of the low/hard state. A few weeks later the source flux declined significantly. Nearly simultaneous coverage by INTEGRAL is available from its Galactic Center monitoring campaign lasting ∼2.5 months. These data probe the hard state spectrum from 1E1740.7-2942 before the flux decline. We find good agreement between the spectra taken with IBIS/ISGRI and NuSTAR, with the measurements being compatible with a change in flux with no spectral variability. We present a detailed analysis of the NuSTAR spectral and timing data and upper limits for reflection of the high energy emission. We show that the high energy spectrum of this X-ray binary is well described by thermal Comptonization.

  12. Spectroscopic survey of emission-line stars - I. B[e] stars

    Czech Academy of Sciences Publication Activity Database

    Aret, A.; Kraus, Michaela; Šlechta, Miroslav

    2016-01-01

    Roč. 456, č. 2 (2016), s. 1424-1437 ISSN 0035-8711 R&D Projects: GA ČR(CZ) GA14-21373S Institutional support: RVO:67985815 Keywords : circumstellar matter * stars * emission line Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  13. GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Tan, Jonathan C. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Christie, Duncan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Collins, David, E-mail: ben.wu@nao.ac.jp [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2017-06-01

    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.

  14. NuSTAR OBSERVATIONS OF MAGNETAR 1E 1048.1–5937

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C. [Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081 (China); Archibald, R. F.; Kaspi, V. M. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC, H3A 2T8 (Canada); Vogel, J. K.; Pivovaroff, M. [Lawrence Livermore National Laboratory, PLS/Physics, Livermore, CA 94550 (United States); An, H. [KIPAC, Stanford University, Stanford, CA 94305-4060 (United States); Guillot, S. [Instituto de Astrofisica, Facultad de Fisica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago (Chile); Beloborodov, A. M. [Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, NY 10027 (United States)

    2016-11-01

    We report on simultaneous Nuclear Spectroscopic Telescope Array ( NuSTAR ) and XMM-Newton observations of the magnetar 1E 1048.1−5937, along with Rossi X-ray Timing Explorer ( RXTE ) data for the same source. The NuSTAR data provide a clear detection of this magnetar’s persistent emission up to 20 keV. We detect a previously unreported small secondary peak in the average pulse profile in the 7–10 keV band, which grows to an amplitude comparable to that of the main peak in the 10–20 keV band. We show using RXTE data that this secondary peak is likely transient. We find that the pulsed fraction increases with energy from a value of ∼0.55 at ∼2 keV to a value of ∼0.75 near 8 keV but shows evidence of decreasing at higher energies. After filtering out multiple bright X-ray bursts during the observation, we find that the phase-averaged spectrum from combined NuSTAR and XMM data is well described by an absorbed double blackbody plus power-law model, with no evidence for the spectral turn-up near ∼10 keV as has been seen in some other magnetars. Our data allow us to rule out a spectral turn-up similar to those seen in magnetars 4U 0142+61 and 1E 2259+586 of ΔΓ ≳ 2, where ΔΓ is the difference between the soft-band and hard-band photon indexes. The lack of spectral turn-up is consistent with what has been observed from an active subset of magnetars given previously reported trends suggesting that the degree of spectral turn-up is correlated with spin-down rate and/or spin-inferred magnetic field.

  15. A disk asymmetry in motion around the B[e] star MWC158

    Science.gov (United States)

    Kluska, J.; Benisty, M.; Soulez, F.; Berger, J.-P.; Le Bouquin, J.-B.; Malbet, F.; Lazareff, B.; Thiébaut, E.

    2016-06-01

    Context. MWC158 is a star with the B[e] phenomenon that shows strong spectrophotometric variability (in lines and in UV and visible continuum) attributed to phases of shell ejection. The evolutionary stage of this star was never clearly determined. Previous interferometric, spectropolarimetric and spectro-interferometric studies suggest a disk morphology for its environment. Aims: We investigate the origin of the variability within the inner astronomical unit of the central star using near-infrared interferometric observations with PIONIER at the VLTI over a two-year period. Methods: We performed an image reconstruction of the circumstellar environment using the SPARCO method. We discovered that the morphology of the circumstellar environment could vary on timescales of weeks or days. We carried out a parametric fit of the data with a model consisting of a star, a disk and a bright spot that represents a brighter emission in the disk. Results: We detect strong morphological changes in the first astronomical unit around the star, that happen on a timescale of few months. We cannot account for such variability well with a binary model. Our parametric model fits the data well and allows us to extract the location of the asymmetry for different epochs. Conclusions: For the first time, we detect a morphological variability in the environment of MWC158. This variability is reproduced by a model of a disk and a bright spot. The locations of the bright spot suggest that it is located in the disk, but its precise motion is not determined. The origin of the asymmetry in the disk is complex and may be related to asymmetric shell ejections. Based on observations performed with PIONIER mounted on the ESO Very Large Telescope interferometer (programmes: 089.C-0211, 190.C-0963).

  16. The E-MOSAICS project: simulating the formation and co-evolution of galaxies and their star cluster populations

    Science.gov (United States)

    Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate

    2018-04-01

    We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome

  17. Flares on a Bp Star

    Science.gov (United States)

    Mullan, D. J.

    2009-09-01

    Two large X-ray flares have been reported from the direction of a magnetic B2p star (σ Ori E). Sanz-Forcada et al. have suggested that the flares did not occur on the B2p star but on a companion of late spectral type. A star which is a candidate for a late-type flare star near σ Ori E has recently been identified by Bouy et al. However, based on the properties of the flares, and based on a recent model of rotating magnetospheres, we argue that, rather than attributing the two flares to a late-type dwarf, it is a viable hypothesis that the flares were magnetic phenomena associated with the rotating magnetosphere of the B2p star itself.

  18. FLARES ON A Bp STAR

    International Nuclear Information System (INIS)

    Mullan, D. J.

    2009-01-01

    Two large X-ray flares have been reported from the direction of a magnetic B2p star (σ Ori E). Sanz-Forcada et al. have suggested that the flares did not occur on the B2p star but on a companion of late spectral type. A star which is a candidate for a late-type flare star near σ Ori E has recently been identified by Bouy et al. However, based on the properties of the flares, and based on a recent model of rotating magnetospheres, we argue that, rather than attributing the two flares to a late-type dwarf, it is a viable hypothesis that the flares were magnetic phenomena associated with the rotating magnetosphere of the B2p star itself.

  19. THE STAR FORMATION LAWS OF EDDINGTON-LIMITED STAR-FORMING DISKS

    International Nuclear Information System (INIS)

    Ballantyne, D. R.; Armour, J. N.; Indergaard, J.

    2013-01-01

    Two important avenues into understanding the formation and evolution of galaxies are the Kennicutt-Schmidt (K-S) and Elmegreen-Silk (E-S) laws. These relations connect the surface densities of gas and star formation (Σ gas and Σ-dot * , respectively) in a galaxy. To elucidate the K-S and E-S laws for disks where Σ gas ∼> 10 4 M ☉ pc –2 , we compute 132 Eddington-limited star-forming disk models with radii spanning tens to hundreds of parsecs. The theoretically expected slopes (≈1 for the K-S law and ≈0.5 for the E-S relation) are relatively robust to spatial averaging over the disks. However, the star formation laws exhibit a strong dependence on opacity that separates the models by the dust-to-gas ratio that may lead to the appearance of a erroneously large slope. The total infrared luminosity (L TIR ) and multiple carbon monoxide (CO) line intensities were computed for each model. While L TIR can yield an estimate of the average Σ-dot * that is correct to within a factor of two, the velocity-integrated CO line intensity is a poor proxy for the average Σ gas for these warm and dense disks, making the CO conversion factor (α CO ) all but useless. Thus, observationally derived K-S and E-S laws at these values of Σ gas that uses any transition of CO will provide a poor measurement of the underlying star formation relation. Studies of the star formation laws of Eddington-limited disks will require a high-J transition of a high density molecular tracer, as well as a sample of galaxies with known metallicity estimates.

  20. NuSTAR OBSERVATIONS OF THE MAGNETAR 1E 2259+586

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Julia K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hascoët, Romain [Columbia Univ., New York, NY (United States); Kaspi, Victoria M. [Univ. of Montreal, Quebec (Canada); An, Hongjun [Univ. of Montreal, Quebec (Canada); Archibald, Robert [Univ. of Montreal, Quebec (Canada); Beloborodov, Andrei M. [Columbia Univ., New York, NY (United States); Boggs, Steven E. [Univ. of California, Berkeley, CA (United States); Christensen, Finn E. [Technical Univ. of Denmark, Lyngby (Denmark); Craig, William W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gotthelf, Eric V. [Columbia Univ., New York, NY (United States); Grefenstette, Brian W. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Hailey, Charles J. [Columbia Univ., New York, NY (United States); Harrison, Fiona A. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Kennea, Jamie A. [Pennsylvania State Univ., State College, PA (United States); Madsen, Kristin K. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Pivovaroff, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stern, Daniel [California Inst. of Technology (CalTech), Pasadena, CA (United States); Zhang, William W. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)

    2014-07-01

    We report on new broad band spectral and temporal observations of the magnetar 1E 2259+586, which is located in the supernova remnant CTB 109. Our data were obtained simultaneously with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift, and cover the energy range from 0.5-79 keV. We present pulse profiles in various energy bands and compare them to previous RXTE results. The NuSTAR data show pulsations above 20 keV for the first time and we report evidence that one of the pulses in the double-peaked pulse profile shifts position with energy. The pulsed fraction of the magnetar is shown to increase strongly with energy. Our spectral analysis reveals that the soft X-ray spectrum is well characterized by an absorbed double blackbody or blackbody plus power-law model in agreement with previous reports. Our new hard X-ray data, however, suggest that an additional component, such as a power law, is needed to describe the NuSTAR and Swift spectrum. We also fit the data with the recently developed coronal outflow model by Beloborodov for hard X-ray emission from magnetars. The outflow from a ring on the magnetar surface is statistically preferred over outflow from a polar cap.

  1. NEAR-ULTRAVIOLET SPECTROSCOPY OF STAR-FORMING GALAXIES FROM eBOSS: SIGNATURES OF UBIQUITOUS GALACTIC-SCALE OUTFLOWS

    International Nuclear Information System (INIS)

    Zhu, Guangtun Ben; Comparat, Johan; Kneib, Jean-Paul; Delubac, Timothée; Raichoor, Anand; Yèche, Christophe; Dawson, Kyle S.; Newman, Jeffrey; Zhou, Xu; Schneider, Donald P.

    2015-01-01

    We present rest-frame near-ultraviolet (NUV) spectroscopy of star-forming galaxies (SFGs) at 0.6 < z < 1.2 from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) in SDSS-IV. One of the eBOSS programs is to obtain 2″ (about 15 kpc) fiber spectra of about 200,000 emission-line galaxies (ELGs) at redshift z ≳ 0.6. We use the data from the pilot observations of this program, including 8620 spectra of SFGs at 0.6 < z < 1.2. The median composite spectra of these SFGs at 2200 Å < λ < 4000 Å feature asymmetric, preferentially blueshifted non-resonant emission, Fe ii*, and blueshifted resonant absorption, e.g., Fe ii and Mg ii, indicating ubiquitous outflows driven by star formation at these redshifts. For the absorption lines, we find a variety of velocity profiles with different degrees of blueshift. Comparing our new observations with the literature, we do not observe the non-resonant emission in the small-aperture (<40 pc) spectra of local star-forming regions with the Hubble Space Telescope, and find the observed line ratios in the SFG spectra to be different from those in the spectra of local star-forming regions, as well as those of quasar absorption-line systems in the same redshift range. We introduce an outflow model that can simultaneously explain the multiple observed properties and suggest that the variety of absorption velocity profiles and the line ratio differences are caused by scattered fluorescent emission filling in on top of the absorption in the large-aperture eBOSS spectra. We develop an observation-driven, model-independent method to correct the emission infill to reveal the true absorption profiles. Finally, we show that the strengths of both the non-resonant emission and the emission-corrected resonant absorption increase with [O ii] λλ3727, 3730 rest equivalent width and luminosity, with a slightly larger dependence on the former. Our results show that the eBOSS and future dark-energy surveys (e.g., Dark Energy Spectroscopic

  2. Strangeon and Strangeon Star

    Science.gov (United States)

    Xiaoyu, Lai; Renxin, Xu

    2017-06-01

    The nature of pulsar-like compact stars is essentially a central question of the fundamental strong interaction (explained in quantum chromo-dynamics) at low energy scale, the solution of which still remains a challenge though tremendous efforts have been tried. This kind of compact objects could actually be strange quark stars if strange quark matter in bulk may constitute the true ground state of the strong-interaction matter rather than 56Fe (the so-called Witten’s conjecture). From astrophysical points of view, however, it is proposed that strange cluster matter could be absolutely stable and thus those compact stars could be strange cluster stars in fact. This proposal could be regarded as a general Witten’s conjecture: strange matter in bulk could be absolutely stable, in which quarks are either free (for strange quark matter) or localized (for strange cluster matter). Strange cluster with three-light-flavor symmetry is renamed strangeon, being coined by combining “strange nucleon” for the sake of simplicity. A strangeon star can then be thought as a 3-flavored gigantic nucleus, and strangeons are its constituent as an analogy of nucleons which are the constituent of a normal (micro) nucleus. The observational consequences of strangeon stars show that different manifestations of pulsarlike compact stars could be understood in the regime of strangeon stars, and we are expecting more evidence for strangeon star by advanced facilities (e.g., FAST, SKA, and eXTP).

  3. Discriminating strange star mergers from neutron star mergers by gravitational-wave measurements

    International Nuclear Information System (INIS)

    Bauswein, A.; Oechslin, R.; Janka, H.-T.

    2010-01-01

    We perform three-dimensional relativistic hydrodynamical simulations of the coalescence of strange stars and explore the possibility to decide on the strange matter hypothesis by means of gravitational-wave measurements. Self-binding of strange quark matter and the generally more compact stars yield features that clearly distinguish strange star from neutron star mergers, e.g. hampering tidal disruption during the plunge of quark stars. Furthermore, instead of forming dilute halo structures around the remnant as in the case of neutron star mergers, the coalescence of strange stars results in a differentially rotating hypermassive object with a sharp surface layer surrounded by a geometrically thin, clumpy high-density strange quark matter disk. We also investigate the importance of including nonzero temperature equations of state in neutron star and strange star merger simulations. In both cases we find a crucial sensitivity of the dynamics and outcome of the coalescence to thermal effects, e.g. the outer remnant structure and the delay time of the dense remnant core to black hole collapse depend on the inclusion of nonzero temperature effects. For comparing and classifying the gravitational-wave signals, we use a number of characteristic quantities like the maximum frequency during inspiral or the dominant frequency of oscillations of the postmerger remnant. In general, these frequencies are higher for strange star mergers. Only for particular choices of the equation of state the frequencies of neutron star and strange star mergers are similar. In such cases additional features of the gravitational-wave luminosity spectrum like the ratio of energy emitted during the inspiral phase to the energy radiated away in the postmerger stage may help to discriminate coalescence events of the different types. If such characteristic quantities could be extracted from gravitational-wave signals, for instance with the upcoming gravitational-wave detectors, a decision on the

  4. THE STAR FORMATION LAWS OF EDDINGTON-LIMITED STAR-FORMING DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, D. R.; Armour, J. N.; Indergaard, J., E-mail: david.ballantyne@physics.gatech.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2013-03-10

    Two important avenues into understanding the formation and evolution of galaxies are the Kennicutt-Schmidt (K-S) and Elmegreen-Silk (E-S) laws. These relations connect the surface densities of gas and star formation ({Sigma}{sub gas} and {Sigma}-dot{sub *}, respectively) in a galaxy. To elucidate the K-S and E-S laws for disks where {Sigma}{sub gas} {approx}> 10{sup 4} M{sub Sun} pc{sup -2}, we compute 132 Eddington-limited star-forming disk models with radii spanning tens to hundreds of parsecs. The theoretically expected slopes ( Almost-Equal-To 1 for the K-S law and Almost-Equal-To 0.5 for the E-S relation) are relatively robust to spatial averaging over the disks. However, the star formation laws exhibit a strong dependence on opacity that separates the models by the dust-to-gas ratio that may lead to the appearance of a erroneously large slope. The total infrared luminosity (L{sub TIR}) and multiple carbon monoxide (CO) line intensities were computed for each model. While L{sub TIR} can yield an estimate of the average {Sigma}-dot{sub *} that is correct to within a factor of two, the velocity-integrated CO line intensity is a poor proxy for the average {Sigma}{sub gas} for these warm and dense disks, making the CO conversion factor ({alpha}{sub CO}) all but useless. Thus, observationally derived K-S and E-S laws at these values of {Sigma}{sub gas} that uses any transition of CO will provide a poor measurement of the underlying star formation relation. Studies of the star formation laws of Eddington-limited disks will require a high-J transition of a high density molecular tracer, as well as a sample of galaxies with known metallicity estimates.

  5. Ülevaade Põllumajanduse Registrite ja Informatsiooni Ametist = About the Agricultural Registers and Information Board

    Index Scriptorium Estoniae

    2004-01-01

    Põllumajanduse Registrite ja Informatsiooni Amet on põllumajandusministeeriumi haldusalas olev järelevalveasutus, mille ülesandeks on põllumajandusloomade, -toetuste ja -massiivide registri pidamine ning erinevate toetuste jagamine. Skeem: PRIA struktuur 2003 = ARIB structure 2003

  6. Signed star (k,k-domatic number of a graph

    Directory of Open Access Journals (Sweden)

    S. M. Sheikholeslami

    2014-01-01

    Full Text Available Let \\(G\\ be a simple graph without isolated vertices with vertex set \\(V(G\\ and edge set \\(E(G\\ and let \\(k\\ be a positive integer. A function \\(f:E(G\\longrightarrow \\{-1, 1\\}\\ is said to be a signed star \\(k\\-dominating function on \\(G\\ if \\(\\sum_{e\\in E(v}f(e\\ge k\\ for every vertex \\(v\\ of \\(G\\, where \\(E(v=\\{uv\\in E(G\\mid u\\in N(v\\}\\. A set \\(\\{f_1,f_2,\\ldots,f_d\\}\\ of signed star \\(k\\-dominating functions on \\(G\\ with the property that \\(\\sum_{i=1}^df_i(e\\le k\\ for each \\(e\\in E(G\\, is called a signed star \\((k,k\\-dominating family (of functions on \\(G\\. The maximum number of functions in a signed star \\((k,k\\-dominating family on \\(G\\ is the signed star \\((k,k\\-domatic number of \\(G\\, denoted by \\(d^{(k,k}_{SS}(G\\. In this paper we study properties of the signed star \\((k,k\\-domatic number \\(d_{SS}^{(k,k}(G\\. In particular, we present bounds on \\(d_{SS}^{(k,k}(G\\, and we determine the signed \\((k,k\\-domatic number of some regular graphs. Some of our results extend these given by Atapour, Sheikholeslami, Ghameslou and Volkmann [Signed star domatic number of a graph, Discrete Appl. Math. 158 (2010, 213-218] for the signed star domatic number.

  7. Subluminous Wolf-Rayet stars: Observations

    International Nuclear Information System (INIS)

    Heap, S.R.

    1982-01-01

    The author has used the fact that some central stars are WR stars and others are say, O stars, as a focal point for his presentation. In attempting to answer this question he has considered how the properties of WR-type central stars differ from those of O-type stars. The study begins with the classification and calibration of WR spectra, then goes on to the physical properties of WR-type central stars, and at the end returns to the question of what distinguishes a Wolf-Rayet star. The observational data for central stars are neither complete nor precise. Nevertheless, they suggest that what distinguishes a WR central star is not so much its present physical properties (e.g. temperature, gravity), but rather, its fundamental properties (initial and evolutionary history). (Auth.)

  8. Upajmo si biti starši. Praktično delovanje dveh sol za starše

    Directory of Open Access Journals (Sweden)

    Andreja Jereb

    2005-12-01

    Full Text Available V prispevku predstavljam dva primera uspdne prakse sole za starSe. Prvi zasluzi pozornost, ker zajema vse potrebne vsebine za ozavdcanje starsev o kompleksnosti in konfliktnosti odnosov v druzini tako med zakoncema kot tudi med starsi in mladostniki. Program je pripravljen sistematicno, sreeanja so strukturirana in privlacna za starSe mladostnikov, ki marsikatero tezavo iz doma prepoznajo v stevilnih primerih iger vlog. Drugi, spanski primer, zasluzi pozornost predvsem zaradi aktivne vloge starsev pri pripravi na sreeanje, z leti vedno aktivnejSe vloge na srecanjih in v pogovorih v druZini, zaradi cesar je precej zahteven tako za voditelja kot za starSe, a sodee po izjavah starsev iskana in uspdna metoda dela s starsi.

  9. IUE observations of new A star candidate proto-planetary systems

    Science.gov (United States)

    Grady, Carol A.

    1994-01-01

    As a result of the detection of accreting gas in the A5e PMS Herbig Ae star, HR 5999, most of the observations for this IUE program were devoted to Herbig Ae stars rather than to main sequence A stars. Mid-UV emission at optical minimum light was detected for UX Ori (A1e), BF Ori (A5e), and CQ Tau (F2e). The presence of accreting gas in HD 45677 and HD 50138 prompted reclassification of these stars as Herbig Be stars rather than as protoplanetary nebulae. Detailed results are discussed.

  10. Inter-Division IV/V WG on Active OB Stars

    NARCIS (Netherlands)

    Owocki, S.; Aerts, C.; Fabregat, J.; Gies, D.; Henrichs, H.F.; McDavid, D.; Porter, J.; Rivinius, T.; Peters, G.; Stefl, S.

    2007-01-01

    Our group studies active early-type (OB) stars, with historical focus on classical Be stars, but extending in recent years to include Slowly Pulsating B-stars (SPB), Beta-Cephei stars, the strongly magnetic Bp stars, Luminous Blue Vairiable (LBV) stars, and B[e] stars. An overall goal is to

  11. Supernovae from Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1986-01-01

    Wolf-Rayet stars are known to originate from the most massive stars. Under the assumption that these stripped stars explode at the end of their evolution through the same instability mechanism as type II supernovae, we calculate their light curve. The latter is found to be quite similar to the typical SN I light curves but is fainter by about 2 magnitudes. A detailed study of its shape leads to identify the WR supernovae with the SNIp (or SNIb) subclass. The more massive WR stars should explode via the e + e - pair production mechanism, with negligible 56 Ni formation. Their rather dim light curve is predicted to have a ∼ 2 month plateau and afterwards a very sharp decline. A delayed manifestation of such an event might be the Cas A remnant

  12. Variations of the high-level Balmer line spectrum of the helium-strong star σ Orionis E

    Science.gov (United States)

    Smith, M. A.; Bohlender, D. A.

    2007-12-01

    Using the high-level Balmer lines and continuum, we trace the density structure of two magnetospheric disk segments of the prototypical Bp star σ Orionis E (B2p) as these segments occult portions of the star during the rotational cycle. High-resolution spectra of the Balmer lines ≥H9 and Balmer edge were obtained on seven nights in January-February 2007 at an average sampling of 0.01 cycles. We measured equivalent width variations due to the star occultations by two disk segments 0.4 cycles apart and constructed differential spectra of the migrations of the corresponding absorptions across the Balmer line profiles. We first estimated the rotational and magnetic obliquity angles. We then simulated the observed Balmer jump variation using the model atmosphere codes synspec/circus and evaluated the disk geometry and gas thermodynamics. We find that the two occultations are caused by two disk segments. The first of these transits quickly, indicating that the segment resides in a range of distances, perhaps 2.5-6 R*, from the star. The second consists of a more slowly moving segment situated closer to the surface and causing two semi-resolved absorbing maxima. During its transit this segment brushes across the star's “lower” limb. Judging from the line visibility up to H23-H24 during the occultations, both disk segments have mean densities near 1012 cm-3 and are opaque in the lines and continuum. They have semiheights less than 1/2 R*, and their temperatures are near 10 500 K and 12 000 K, respectively. In all, the disks of Bp stars have a much more complicated geometry than has been anticipated, as evidenced by their (sometimes) non-coplanarity, de-centerness, and from star to star, differences in disk height. Based on observations obtained at the the Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada.

  13. Massive binary stars and self-enrichment of Massive binary stars and self-enrichment of

    NARCIS (Netherlands)

    Izzard, R.G.; de Mink, S.E.; Pols, O.R.; Langer, N.; Sana, H.; de Koter, A.

    2013-01-01

    Globular clusters contain many stars with surface abundance patterns indicating contributions from hydrogen burning products, as seen in the anti-correlated elemental abundances of e.g. sodium and oxygen, and magnesium and aluminium. Multiple generations of stars can explain this phenomenon, with

  14. The Diversity of Neutron Stars

    Science.gov (United States)

    Kaplan, David L.

    2004-12-01

    Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the >1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby, isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population---distances, ages, and magnetic fields---the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 1e6 year-old cooling neutron stars with magnetic fields above 1e13 Gauss. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication of central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.

  15. Descendants of the first stars: the distinct chemical signature of second generation stars

    Science.gov (United States)

    Hartwig, Tilman; Yoshida, Naoki; Magg, Mattis; Frebel, Anna; Glover, Simon C. O.; Gómez, Facundo A.; Griffen, Brendan; Ishigaki, Miho N.; Ji, Alexander P.; Klessen, Ralf S.; O'Shea, Brian W.; Tominaga, Nozomu

    2018-05-01

    Extremely metal-poor (EMP) stars in the Milky Way (MW) allow us to infer the properties of their progenitors by comparing their chemical composition to the metal yields of the first supernovae. This method is most powerful when applied to mono-enriched stars, i.e. stars that formed from gas that was enriched by only one previous supernova. We present a novel diagnostic to identify this subclass of EMP stars. We model the first generations of star formation semi-analytically, based on dark matter halo merger trees that yield MW-like halos at the present day. Radiative and chemical feedback are included self-consistently and we trace all elements up to zinc. Mono-enriched stars account for only ˜1% of second generation stars in our fiducial model and we provide an analytical formula for this probability. We also present a novel analytical diagnostic to identify mono-enriched stars, based on the metal yields of the first supernovae. This new diagnostic allows us to derive our main results independently from the specific assumptions made regarding Pop III star formation, and we apply it to a set of observed EMP stars to demonstrate its strengths and limitations. Our results may provide selection criteria for current and future surveys and therefore contribute to a deeper understanding of EMP stars and their progenitors.

  16. Classification of O Stars in the Yellow-Green: The Exciting Star VES 735

    Science.gov (United States)

    Kerton, C. R.; Ballantyne, D. R.; Martin, P. G.

    1999-05-01

    Acquiring data for spectral classification of heavily reddened stars using traditional criteria in the blue-violet region of the spectrum can be prohibitively time consuming using small to medium sized telescopes. One such star is the Vatican Observatory emission-line star VES 735, which we have found excites the H II region KR 140. In order to classify VES 735, we have constructed an atlas of stellar spectra of O stars in the yellow-green (4800-5420 Å). We calibrate spectral type versus the line ratio He I lambda4922:He II lambda5411, showing that this ratio should be useful for the classification of heavily reddened O stars associated with H II regions. Application to VES 735 shows that the spectral type is O8.5. The absolute magnitude suggests luminosity class V. Comparison of the rate of emission of ionizing photons and the bolometric luminosity of VES 735, inferred from radio and infrared measurements of the KR 140 region, to recent stellar models gives consistent evidence for a main-sequence star of mass 25 M_solar and age less than a few million years with a covering factor 0.4-0.5 by the nebular material. Spectra taken in the red (6500-6700 Å) show that the stellar Hα emission is double-peaked about the systemic velocity and slightly variable. Hβ is in absorption, so that the emission-line classification is ``(e)''. However, unlike the case of the more well-known O(e) star zeta Oph, the emission from VES 735 appears to be long-lived rather than episodic.

  17. Natura 2000 kütab kirgi / Jüri Saar

    Index Scriptorium Estoniae

    Saar, Jüri, 1946-

    2005-01-01

    Ilmunud ka: Meie Maa 26. spr., lk. 2. Riigikogu keskkonnakomisjoni aseesimehe sõnul viib valitsusliit looduse mitmekesisuse säilitamiseks lõpule Natura 2000 võrgustiku alade kaitse alla võtmise, jätkab loodushoiu toetuste maksmist pärandkooslusel ja alustab toetuste maksmist Natura aladel

  18. Formas particulares de comunicação em blogs nerd/geek: expressões linguísticas relacionadas às produções das franquias Star Wars e Star Trek

    Directory of Open Access Journals (Sweden)

    Angela Dillmann Nunes Bicca

    2014-11-01

    Full Text Available Diversos blogs produzidos por integrantes de grupos culturais juvenis nerd/geek têm posto em circulação expressões linguísticas que assumem significados particulares para essas ‘tribos urbanas’, orquestrando os processos por meio dos quais suas identidades têm sido discursivamente produzidas. Nesta perspectiva, partindo das discussões promovidas pelos estudos culturais de vertente pós-estruturalista, e compreendendo os blogs como espaços de produção de saber, atentamos para os modos como expressões advindas das séries de filmes Star Wars e Star Trek são requeridas nos blogs para criar modos particulares de comunicação nerd/geek. Para desenvolver as análises, selecionamos sete blogs disponíveis na Internet, dentre um conjunto de 97 examinados nos meses de setembro e outubro de 2013. Excertos retirados dos blogs foram discutidos a partir do conceito de representação cultural, indicando que expressões, tais como ‘padawan’, ‘que a força esteja com vocês’ e ‘vida longa e prospera’, designam, respectivamente, sujeitos aprendizes e formas de despedida em situações nas quais um grande desafio está por ser assumido.

  19. The origin of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Doom, C.

    1987-01-01

    The paper reviews the origin of Wolf-Rayet (WR) stars, with emphasis on the so-called Population I WR stars which are associated with the young and luminous stellar population. A description is given of the observational characteristics i.e. classification, luminosities composition, etc. of WR stars. The origin and evolution of WR stars is described, including the single, binary, subtypes and ratio WR/O. The interaction of the WR stars with their environment is discussed with respect to the energy deposition and composition anomalies. A brief account of the discovery of WR stars in other galaxies is given. Finally, some of the main issues in the research into the structure and evolution of WR stars are outlined. (U.K.)

  20. Report of the CEBAF PAC4 Subcomittee on STAR

    International Nuclear Information System (INIS)

    Barnes, P.D.

    1990-01-01

    This report discusses the following topics: the symmetric toroidal array (STAR) spectrometer facility; investigation of the N → Δ transition; Hyperon production in the (e, e'k) reactions; investigation of few-body systems with the (e, e'p) reaction; nuclear structure studies with the (e,e'pp) reaction; Measurement of G Em in a recoil polarimetry measurement; parity violation measurements; and STAR design and performance

  1. Circulation of Stars

    Science.gov (United States)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  2. NuSTAR and INTEGRAL observations of a low/hard state of 1E1740.7-2942

    DEFF Research Database (Denmark)

    Natalucci, Lorenzo; Tomsick, John A.; Bazzano, Angela

    2014-01-01

    The microquasar 1E1740.7-2942, also known as the "Great Annihilator", was observed by NuSTAR in the Summer of 2012. We have analyzed in detail two observations taken ~2 weeks apart, for which we measure hard and smooth spectra typical of the low/hard state. A few weeks later the source flux decli...

  3. Produção de mudas de caramboleiras 'B-10' e 'Golden Star': II - marcha de absorção e acúmulo de nutrientes

    Directory of Open Access Journals (Sweden)

    Danilo Eduardo Rozane

    2011-12-01

    Full Text Available A participação do Brasil no mercado externo de frutas tem aumentado consideravelmente e com potencial para crescer ainda mais. A constante ascensão dos dados de exportação brasileira é resultado da combinação de avanços tecnológicos do setor produtivo e de acesso a novos mercados consumidores. A caramboleira apresenta-se como uma excelente opção de cultivo de frutas exóticas, com grande potencial para atender ao mercado interno e às exportações. Assim, objetivou-se avaliar a marcha de absorção e de acúmulo de nutrientes em mudas de caramboleiras cultivadas em solução nutritiva. O experimento foi realizado em parcelas subdivididas, sendo utilizadas como parcela as duas cultivares de caramboleira ('B-10' e 'Golden Star' e, como subparcelas, cinco épocas de coleta de plantas, realizadas aos 208; 233; 258; 283 e 308 dias após o transplantio para a solução nutritiva. O delineamento foi inteiramente casualizado, com três repetições. As mudas foram cultivadas em vasos (8L com solução nutritiva (pH=5,5 ± 0,5, com aeração. O experimento iniciou-se em 24-08-2005. Nos diferentes órgãos das mudas (folhas, caule e raízes, determinaram-se a marcha de absorção, o acúmulo de nutrientes e os índices nutricionais. Não houve diferenças no acúmulo de nutrientes entre as mudas de caramboleira de ambas as cultivares, sendo a ordem decrescente dos nutrientes em cada muda de 'B-10', no final do período experimental: N > K > Ca > Mg > S > P > Fe > Mn > B > Cu > Zn. Para a 'Golden Star', a ordem foi: N > K > Ca > Mg > P > S > Fe > Mn > B > Cu > Zn. Para as duas cultivares, o acúmulo médio foi maior nas folhas > caule > raízes. O período de maior exigência para 'B-10' foi entre 208 - 233 e, para 'Golden Star', entre 233 - 283 dias após o transplantio. As diferentes taxas de acumulação líquida dos nutrientes, nos diferentes órgãos da caramboleira, nem sempre acompanharam a taxa de acumulação de nutrientes do

  4. Luminous and Variable Stars in M31 and M33. IV. Luminous Blue Variables, Candidate LBVs, B[e] Supergiants, and the Warm Hypergiants: How to Tell Them Apart

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, Roberta M.; Gordon, Michael S.; Hahn, David [Minnesota Institute for Astrophysics, 116 Church Street SE, University of Minnesota, Minneapolis, MN 55455 (United States); Martin, John C. [University of Illinois Springfield, Springfield, IL 62703 (United States); Weis, Kerstin, E-mail: roberta@umn.edu [Astronomical Institute, Ruhr-Universitaet Bochum (Germany)

    2017-02-10

    In this series of papers we have presented the results of a spectroscopic survey of luminous stars in the nearby spirals M31 and M33. Here, we present spectroscopy of 132 additional stars. Most have emission-line spectra, including luminous blue variables (LBVs) and candidate LBVs, Fe ii emission line stars, the B[e] supergiants, and the warm hypergiants. Many of these objects are spectroscopically similar and are often confused with each other. We examine their similarities and differences and propose the following guidelines that can be used to help distinguish these stars in future work. (1) The B[e] supergiants have emission lines of [O i] and [Fe ii] in their spectra. Most of the spectroscopically confirmed sgB[e] stars also have warm circumstellar dust in their spectral energy distributions (SEDs). (2) Confirmed LBVs do not have the [O i] emission lines in their spectra. Some LBVs have [Fe ii] emission lines, but not all. Their SEDs show free–free emission in the near-infrared but no evidence for warm dust . Their most important and defining characteristic is the S Dor-type variability. (3) The warm hypergiants spectroscopically resemble the LBVs in their dense wind state and the B[e] supergiants. However, they are very dusty. Some have [Fe ii] and [O i] emission in their spectra like the sgB[e] stars, but are distinguished by their A- and F-type absorption-line spectra. In contrast, the B[e] supergiant spectra have strong continua and few if any apparent absorption lines. Candidate LBVs should share the spectral characteristics of the confirmed LBVs with low outflow velocities and the lack of warm circumstellar dust.

  5. Metal-poor star formation triggered by the feedback effects from Pop III stars

    Science.gov (United States)

    Chiaki, Gen; Susa, Hajime; Hirano, Shingo

    2018-04-01

    Metal enrichment by first-generation (Pop III) stars is the very first step of the matter cycle in structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by Pop III stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), Mhalo, and Pop III stars, MPopIII. We find that the metal-rich ejecta reach neighbouring haloes and external enrichment (EE) occurs when the H II region expands before the SN explosion. The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta fall back and recollapse to form an enriched cloud, i.e. an internal-enrichment (IE) process takes place. In the case where a Pop III star explodes as a core-collapse SN (CCSN), the MH undergoes IE, and the metallicity in the recollapsing region is -5 ≲ [Fe/H] ≲ -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass ranges of MHs, consistent with the lack of observational signs of PISNe among EMP stars.

  6. On the Origin of Hyperfast Neutron Stars

    Science.gov (United States)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2008-05-01

    We propose an explanation for the origin of hyperfast neutron stars (e.g. PSR B1508+55, PSR B2224+65, RX J0822 4300) based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star (or its helium core) which attained its peculiar velocity (similar to that of the neutron star) in the course of a strong three- or four-body dynamical encounter in the core of a young massive star cluster. This hypothesis implies that the dense cores of star clusters (located either in the Galactic disk or near the Galactic centre) could also produce the so-called hypervelocity stars ordinary stars moving with a speed of ~ 1 000 km s-1.

  7. The Search for New Luminous Blue Variable Stars: Near-Infrared Spectroscopy of Stars With 24 micron Shells

    Science.gov (United States)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2010-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous and massive stars. Only about a dozen confirmed Galactic LBV stars are known to date, which precludes us from determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. The known LBV stars each have their own unique properties, so new discoveries add insight into the properties and evolutionary status of LBVs and massive stars; even one new discovery of objects of this type could provide break-through results in the understanding of the intermediate stages of massive star evolution. We have culled a prime sample of possible LBV candidates from the Spitzer 24 (micron) archival data. All have circumstellar nebulae, rings, and shells (typical of LBVs and related stars) surrounding reddened central stars. Spectroscopic followup of about two dozen optically visible central stars associated with the shells from this sample showed that they are either candidate LBVs, late WN-type Wolf-Rayet stars or blue supergiants. We propose infrared spectroscopic observations of the central stars for a large fraction (23 stars) of our northern sample to determine their nature and discover additional LBV candidates. These stars have no plausible optical counterparts, so infrared spectra are needed. This program requires two nights of Hale time using TripleSpec.

  8. Numerical evidence for 'multiscalar stars'

    International Nuclear Information System (INIS)

    Hawley, Scott H.; Choptuik, Matthew W.

    2003-01-01

    We present a class of general relativistic solitonlike solutions composed of multiple minimally coupled, massive, real scalar fields which interact only through the gravitational field. We describe a two-parameter family of solutions we call ''phase-shifted boson stars'' (parametrized by central density ρ 0 and phase δ), which are obtained by solving the ordinary differential equations associated with boson stars and then altering the phase between the real and imaginary parts of the field. These solutions are similar to boson stars as well as the oscillating soliton stars found by Seidel and Suen [E. Seidel and W. M. Suen, Phys. Rev. Lett. 66, 1659 (1991)]; in particular, long-time numerical evolutions suggest that phase-shifted boson stars are stable. Our results indicate that scalar solitonlike solutions are perhaps more generic than has been previously thought

  9. Origin of stars and structure of galaxies

    International Nuclear Information System (INIS)

    Palous, J.

    1988-01-01

    The substance is described of molecular clouds from interstellar mass and the origin, process and termination of the gravitational collapse are described which lead to the creation of stars. The probability is described of the origin of high-mass and lower-mass stars. The connection is discussed between the creation of stars, molecular clouds and the structure of galaxies. (E.S.). 7 figs

  10. Wolf-Rayet Stars

    Science.gov (United States)

    Hamann, Wolf-Rainer; Sander, Andreas; Todt, Helge

    Nearly 150 years ago, the French astronomers Charles Wolf and Georges Rayet described stars with very conspicuous spectra that are dominated by bright and broad emission lines. Meanwhile termed Wolf-Rayet Stars after their discoverers, those objects turned out to represent important stages in the life of massive stars. As the first conference in a long time that was specifically dedicated to Wolf-Rayet stars, an international workshop was held in Potsdam, Germany, from 1.-5. June 2015. About 100 participants, comprising most of the leading experts in the field as well as as many young scientists, gathered for one week of extensive scientific exchange and discussions. Considerable progress has been reported throughout, e.g. on finding such stars, modeling and analyzing their spectra, understanding their evolutionary context, and studying their circumstellar nebulae. While some major questions regarding Wolf-Rayet stars still remain open 150 years after their discovery, it is clear today that these objects are not just interesting stars as such, but also keystones in the evolution of galaxies. These proceedings summarize the talks and posters presented at the Potsdam Wolf-Rayet workshop. Moreover, they also include the questions, comments, and discussions emerging after each talk, thereby giving a rare overview not only about the research, but also about the current debates and unknowns in the field. The Scientific Organizing Committee (SOC) included Alceste Bonanos (Athens), Paul Crowther (Sheffield), John Eldridge (Auckland), Wolf-Rainer Hamann (Potsdam, Chair), John Hillier (Pittsburgh), Claus Leitherer (Baltimore), Philip Massey (Flagstaff), George Meynet (Geneva), Tony Moffat (Montreal), Nicole St-Louis (Montreal), and Dany Vanbeveren (Brussels).

  11. Neutron Stars and NuSTAR

    Science.gov (United States)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  12. Rotational studies of late-type stars. II. Ages of solar-type stars and the rotational history of the sun

    International Nuclear Information System (INIS)

    Soderblom, D.R.

    1983-01-01

    In the first part of this investigation, age indicators for solar-type stars are discussed. A Li abundance-age calibration is derived; it indicates that 1 M/sub sun/ stars have lost as much as 80% of their initial Li before reaching the main sequence. The e-folding time for Li depletion on the main sequence is 1 1/4 Gyr. The distribution of Li abundances for 1 M/sub sun/ stars is consistent with a uniform initial Li abundance for all stars

  13. Galaxies in the act of quenching star formation

    Science.gov (United States)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  14. The s-Process Nucleosynthesis in Extremely Metal-Poor Stars as the Generating Mechanism of Carbon Enhanced Metal-Poor Stars

    Science.gov (United States)

    Suda, Takuma; Yamada, Shimako; Fujimoto, Masayuki Y.

    The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-metal-poor (EMP) stars with [Fe/H] ≤ -2.5 share the common features of carbon enhancement in their surface chemical compositions. The origin of these stars is not yet established due to the controversy of the origin of CEMP stars without the enhancement of s-process element abundances, i.e., so called CEMP-no stars. In this paper, we elaborate the s-process nucleosynthesis in the EMP AGB stars and explore the origin of CEMP stars. We find that the efficiency of the s-process is controlled by O rather than Fe at [Fe/H] ≲ -2. We demonstrate that the relative abundances of Sr, Ba, Pb to C are explained in terms of the wind accretion from AGB stars in binary systems.

  15. Observational constraints for the circumstellar disk of the B[e] star CPD-52 9243

    Science.gov (United States)

    Cidale, L. S.; Borges Fernandes, M.; Andruchow, I.; Arias, M. L.; Kraus, M.; Chesneau, O.; Kanaan, S.; Curé, M.; de Wit, W. J.; Muratore, M. F.

    2012-12-01

    Context. The formation and evolution of gas and dust environments around B[e] supergiants are still open issues. Aims: We intend to study the geometry, kinematics and physical structure of the circumstellar environment (CE) of the B[e] supergiant CPD-52 9243 to provide further insights into the underlying mechanism causing the B[e] phenomenon. Methods: The influence of the different physical mechanisms acting on the CE (radiation pressure, rotation, bi-stability or tidal forces) is somehow reflected in the shape and kinematic properties of the gas and dust regions (flaring, Keplerian, accretion or outflowing disks). To investigate these processes we mainly used quasi-simultaneous observations taken with high spatial resolution optical long-baseline interferometry (VLTI/MIDI), near-IR spectroscopy of CO bandhead features (Gemini/Phoenix and VLT/CRIRES) and optical spectra (CASLEO/REOSC). Results: High angular resolution interferometric measurements obtained with VLTI/MIDI provide strong support for the presence of a dusty disk(ring)-like structure around CPD-52 9243, with an upper limit for its inner edge of ~8 mas (~27.5 AU, considering a distance of 3.44 kpc to the star). The disk has an inclination angle with respect to the line of sight of 46 ± 7°. The study of CO first overtone bandhead evidences a disk structure in Keplerian rotation. The optical spectrum indicates a rapid outflow in the polar direction. Conclusions: The IR emission (CO and warm dust) indicates Keplerian rotation in a circumstellar disk while the optical line transitions of various species are consistent with a polar wind. Both structures appear simultaneously and provide further evidence for the proposed paradigms of the mass-loss in supergiant B[e] stars. The presence of a detached cold CO ring around CPD-52 9243 could be due to a truncation of the inner disk caused by a companion, located possibly interior to the disk rim, clearing the center of the system. More spectroscopic and

  16. Thermal evolution of compact stars

    International Nuclear Information System (INIS)

    Schaab, C.; Glendenning, N.K.

    1996-01-01

    A collection of modern, field-theoretical equations of state is applied to the investigation of cooling properties of compact stars. These comprise neutron stars as well as hypothetical strange-matter stars, made up of absolutely stable 3-flavor strange-quark matter. Various uncertainties in the behavior of matter at supernuclear densities, e.g., hyperonic degrees of freedom, behavior of coupling strengths in matter, pion and meson condensation, superfluidity, transition to quark matter, absolute stability of strange-quark matter, and last but not least the many-body technique itself are tested against the body of observed cooling data. (orig.)

  17. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, P E [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Avgeropoulos, A [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Universidad Nacional de Educacion a Distancia, Facultad de Ciencias, Senda del Rey 9, 28040 Madrid (Spain); Kosmas, M [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Vlahos, C [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2007-11-21

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  18. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Science.gov (United States)

    Theodorakis, P. E.; Avgeropoulos, A.; Freire, J. J.; Kosmas, M.; Vlahos, C.

    2007-11-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  19. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    International Nuclear Information System (INIS)

    Theodorakis, P E; Avgeropoulos, A; Freire, J J; Kosmas, M; Vlahos, C

    2007-01-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results

  20. Compact Stars with Sequential QCD Phase Transitions

    Science.gov (United States)

    Alford, Mark; Sedrakian, Armen

    2017-10-01

    Compact stars may contain quark matter in their interiors at densities exceeding several times the nuclear saturation density. We explore models of such compact stars where there are two first-order phase transitions: the first from nuclear matter to a quark-matter phase, followed at a higher density by another first-order transition to a different quark-matter phase [e.g., from the two-flavor color-superconducting (2SC) to the color-flavor-locked (CFL) phase]. We show that this can give rise to two separate branches of hybrid stars, separated from each other and from the nuclear branch by instability regions, and, therefore, to a new family of compact stars, denser than the ordinary hybrid stars. In a range of parameters, one may obtain twin hybrid stars (hybrid stars with the same masses but different radii) and even triplets where three stars, with inner cores of nuclear matter, 2SC matter, and CFL matter, respectively, all have the same mass but different radii.

  1. Metallicity dependence of envelope inflation in massive stars

    Czech Academy of Sciences Publication Activity Database

    Sanyal, D.; Langer, N.; Szécsi, Dorottya; Yoon, S.-C.; Grassitelli, L.

    2017-01-01

    Roč. 597, January (2017), A71/1-A71/16 E-ISSN 1432-0746 R&D Projects: GA ČR(CZ) GA14-02385S Institutional support: RVO:67985815 Keywords : stars evolution * stars massive * stars interiors Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  2. Old and new neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10 38 s -1 of 10 12 eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10 8 old dead pulsars in the Galaxy are the most probable source for the isotropically distributed γ-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables

  3. Millet's Shooting Stars

    Science.gov (United States)

    Beech, M.

    1988-12-01

    In this essay two paintings by the French artist Jean-Francois Millet are described. These paintings, Les Etoiles Filantes and Nuit Etoilée are particularly interesting since they demonstrate the rare artistic employment of the shooting-star image and metaphor.

  4. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  5. Neutral currents and neutrino emission of stars

    International Nuclear Information System (INIS)

    Gershtejn, S.S.; Folomeshkin, V.N.; Khlopov, M.Yu.; Eramzhyan, R.A.

    1975-01-01

    Possible emission of ν sub(e) ν tilde sub(e) and ν sub(μ) ν tilde sub(μ) pairs in nucleon collisions or nuclear transitions has been studied. Neutrino pair emission in neutron collision turns out to be essential for cooling of neutron stars. Neutrino pair emission in nuclear transitions is effective just before the core implosion of a hot massive star and at the initial stage of implosion (till a full dissociation of nuclei into nucleons)

  6. THE GALACTIC POTENTIAL AND THE ASYMMETRIC DISTRIBUTION OF HYPERVELOCITY STARS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Alexander, Tal; Wu Xufen; Zhao Hongsheng; Famaey, Benoit; Gentile, Gianfranco

    2009-01-01

    In recent years several hypervelocity stars (HVSs) have been observed in the halo of our Galaxy. Such HVSs have possibly been ejected from the Galactic center and then propagated in the Galactic potential up to their current position. The recent survey for candidate HVSs show an asymmetry in the kinematics of candidate HVSs (position and velocity vectors), where more outgoing stars than ingoing stars (i.e., positive Galactocentric velocities versus negative ones) are observed. We show that such kinematic asymmetry, which is likely due to the finite lifetime of the stars and Galactic potential structure, could be used in a novel method to probe and constrain the Galactic potential, identify the stellar type of the stars in the survey and estimate the number of HVSs. Kinematics-independent identification of the stellar types of the stars in such surveys (e.g., spectroscopic identification) could further improve these results. We find that the observed asymmetry between ingoing and outgoing stars favors specific Galactic potential models. It also implies a lower limit of ∼54 ± 8 main-sequence HVSs in the survey sample (∼>648 ± 96 in the Galaxy), assuming that all of the MS stars in the survey originate from the GC. The other stars in the survey are likely to be hot blue horizontal branch stars born in the halo rather than stars ejected from the GC.

  7. DISCOVERY OF TWO RARE RIGIDLY ROTATING MAGNETOSPHERE STARS IN THE APOGEE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Eikenberry, Stephen S.; Garner, Alan [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Chojnowski, S. Drew; Majewski, Steven R.; Whelan, David G.; Borish, H. Jacob; Hearty, Fred; Li, Zhi-Yun; Nidever, David L.; Skrutskie, Michael [Department of Astronomy, University of Virginia, 530 McCormick Rd, Charlottesville, VA 22904 (United States); Wisniewski, John [Department of Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Shetrone, Matthew [University of Texas, McDonald Observatory, 3640 Dark Sky Drive, Fort Davis, TX (United States); Bizyaev, Dmitry; Ebelke, Garrett [Apache Point Observatory, 2001 Apache Point Rd, Sunspot, NM 88349 (United States); Davenport, James R. A. [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); Feuillet, Diane; Holtzman, Jon [Department of Astronomy, New Mexico State University, 1780 E University Ave, Las Cruces, NM 88003 (United States); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, Box 298840, Fort Worth, TX 76129 (United States); Mészáros, Sz. [Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); and others

    2014-04-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE)—one of the Sloan Digital Sky Survey III programs—is using near-infrared (NIR) spectra of ∼100,000 red giant branch star candidates to study the structure of the Milky Way. In the course of the survey, APOGEE also acquires spectra of hot field stars to serve as telluric calibrators for the primary science targets. We report the serendipitous discovery of two rare, fast-rotating B-stars of the σ Ori E type among those blue field stars observed during the first year of APOGEE operations. Both of the discovered stars display the spectroscopic signatures of rigidly rotating magnetospheres (RRM) common to this class of highly magnetized (B ∼ 10 kGauss) stars, increasing the number of known RRM stars by ∼10%. One (HD 345439) is a main-sequence B-star with unusually strong He absorption (similar to σ Ori E), while the other (HD 23478) fits a ''He-normal'' B3IV classification. We combine the APOGEE discovery spectra with other optical and NIR spectra of these two stars, and of σ Ori E itself, to show how NIR spectroscopy can be a uniquely powerful tool for discovering more of these rare objects, which may show little/no RRM signatures in their optical spectra. We discuss the potential for further discovery of σ Ori E type stars, as well as the implications of our discoveries for the population of these objects and insights into their origin and evolution.

  8. DISCOVERY OF TWO RARE RIGIDLY ROTATING MAGNETOSPHERE STARS IN THE APOGEE SURVEY

    International Nuclear Information System (INIS)

    Eikenberry, Stephen S.; Garner, Alan; Chojnowski, S. Drew; Majewski, Steven R.; Whelan, David G.; Borish, H. Jacob; Hearty, Fred; Li, Zhi-Yun; Nidever, David L.; Skrutskie, Michael; Wisniewski, John; Shetrone, Matthew; Bizyaev, Dmitry; Ebelke, Garrett; Davenport, James R. A.; Feuillet, Diane; Holtzman, Jon; Frinchaboy, Peter M.; Mészáros, Sz.; Schneider, Donald P.

    2014-01-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE)—one of the Sloan Digital Sky Survey III programs—is using near-infrared (NIR) spectra of ∼100,000 red giant branch star candidates to study the structure of the Milky Way. In the course of the survey, APOGEE also acquires spectra of hot field stars to serve as telluric calibrators for the primary science targets. We report the serendipitous discovery of two rare, fast-rotating B-stars of the σ Ori E type among those blue field stars observed during the first year of APOGEE operations. Both of the discovered stars display the spectroscopic signatures of rigidly rotating magnetospheres (RRM) common to this class of highly magnetized (B ∼ 10 kGauss) stars, increasing the number of known RRM stars by ∼10%. One (HD 345439) is a main-sequence B-star with unusually strong He absorption (similar to σ Ori E), while the other (HD 23478) fits a ''He-normal'' B3IV classification. We combine the APOGEE discovery spectra with other optical and NIR spectra of these two stars, and of σ Ori E itself, to show how NIR spectroscopy can be a uniquely powerful tool for discovering more of these rare objects, which may show little/no RRM signatures in their optical spectra. We discuss the potential for further discovery of σ Ori E type stars, as well as the implications of our discoveries for the population of these objects and insights into their origin and evolution

  9. StarSmasher: Smoothed Particle Hydrodynamics code for smashing stars and planets

    Science.gov (United States)

    Gaburov, Evghenii; Lombardi, James C., Jr.; Portegies Zwart, Simon; Rasio, F. A.

    2018-05-01

    Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle method that approximates a continuous fluid as discrete nodes, each carrying various parameters such as mass, position, velocity, pressure, and temperature. In an SPH simulation the resolution scales with the particle density; StarSmasher is able to handle both equal-mass and equal number-density particle models. StarSmasher solves for hydro forces by calculating the pressure for each particle as a function of the particle's properties - density, internal energy, and internal properties (e.g. temperature and mean molecular weight). The code implements variational equations of motion and libraries to calculate the gravitational forces between particles using direct summation on NVIDIA graphics cards. Using a direct summation instead of a tree-based algorithm for gravity increases the accuracy of the gravity calculations at the cost of speed. The code uses a cubic spline for the smoothing kernel and an artificial viscosity prescription coupled with a Balsara Switch to prevent unphysical interparticle penetration. The code also implements an artificial relaxation force to the equations of motion to add a drag term to the calculated accelerations during relaxation integrations. Initially called StarCrash, StarSmasher was developed originally by Rasio.

  10. Gravitational waves from freely precessing neutron stars

    International Nuclear Information System (INIS)

    Jones, D.I.

    2001-01-01

    The purpose of this study is to assess the likely detectability of gravitational waves from freely precessing neutron stars. We begin by presenting a neutron star model of sufficient complexity to take into account both the elasticity and fluidity of a realistic neutron star. We then examine the effect of internal dissipation (i.e. heat generation within the star) and gravitational radiation reaction on the wobble. This is followed by an examination of various astrophysical scenarios where some mechanism might pump the precessional motion. We estimate the gravitational wave amplitude in these situations. Finally, we conclude that gravitational radiation from freely precessing neutron stars is almost certainly limited to a level undetectable by a LIGO II detector by internal dissipation. (author)

  11. Fallen star legends and traditional religion of Japan: an aspect of star lore

    Science.gov (United States)

    Goto, Akira

    2015-08-01

    Japanese star lore is a complex mixture of animism, Buddhism, Shinto-ism, Confucianism and folk beliefs. Although some studies have been done on rituals concerning constellation developed in esoteric Buddhism (e.g. Journal Culture and Cosmos, Vol. 10 no 1 and 2), studies on other aspects of Japanese star lore are limited, in particular, to the English audience.In historic literatures, there often mentioned abnormal astronomical phenomena, such as, eclipse, meteors and comets. In this paper, I will discuss the possibility of reference to these astronomical phenomena in order to talk about some historical facts.In western part of Japan, there are Shinto shrines and Buddhistic temples that are said to be built as monuments of fallen stars. Usually fallen stars were divided into three, and a trio of shrines/temples are said to be the remnants of this phenomenon. Similar legends are found in Kudamatsu (that means "fallen pine=pine where stars fallen") of Yamaguchi Prefecture, Bisei-cho (that means "beautiful star") of Okayama Prefecture, Hoshida (that means "rice field or village of star") shrine of Osaka, and also Hoshida shrine of Nagoya.The purpose of this presentation is not to argue whether fallen star legend was truly astronomical phenomenon, such as, meteor or not. Instead, I will discuss why similar legends have been talked concerning the origin of particular shrines or temples. Citing Eliade who related gorge and alchemy producing spark to astronomical phenomena, I will disclose the possibility to relate these astronomical legends to the coming of the naturalized Japanese from Korean Peninsula who introducd forge to Japan abound 5 to 6 centuries.

  12. SPITZER SAGE-SMC INFRARED PHOTOMETRY OF MASSIVE STARS IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Bonanos, A. Z.; Lennon, D. J.; Massa, D. L.

    2010-01-01

    We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE-SMC survey database, for which we present uniform photometry from 0.3to24 μm in the UBVIJHK s +IRAC+MIPS24 bands. We compare the color-magnitude diagrams and color-color diagrams to those of stars in the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 μm in the SMC are a few very luminous hypergiants, four B-type stars with peculiar, flat spectral energy distributions, and all three known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in our SMC catalog, respectively, when compared to the LMC catalog, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A and F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.

  13. IOTA interferometer observations of the B[e] star/X-ray transient object CI Cam.

    Science.gov (United States)

    Thureau, N. D.; Traub, W.; Millan-Gabet, R.; Monnier, J. D.; Pedretti, E.; Berger, J.-P.; Schloerb, P.

    2005-12-01

    We present the results from an observing campaign on the star CI Cam carried out at the IOTA interferometer in November-December 2004 using the IONIC 3 telescope beam combiner in the H spectral band with projected baselines in the range 10-36m. CI Cam is a known B[e] star and X-ray transient source and has been intensively observed since its powerful X-ray, radio and optical outburst occurred in April 1998. Our visibility measurements put strong constraints on the nature of the source and we can rule out all existing SED models available in the literature. Our new results are in agreement with previous observations of CI Cam obtained with IOTA2 in the H and K' spectral bands in September-November 1998, indicating the infrared excess is long-lived and not directly associated with the outburst. We have explored new models that can better fit our observations. Additionally, we have measured small non-zero closure phases which are the signature of asymmetries in the brightness distribution function. Financial support for NDT is provided by the European Commission through a Marie Curie Outgoing International Fellowships MOIF-CT-2004-002990.

  14. Anisotropic models for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K.; Dayanandan, Baiju [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2015-05-15

    In the present paper we obtain an anisotropic analog of the Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) perfect fluid solution. The methodology consists of contraction of the anisotropic factor Δ with the help of both metric potentials e{sup ν} and e{sup λ}. Here we consider e{sup λ} the same as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) did, whereas e{sup ν} is as given by Lake (Phys Rev D 67:104015, 2003). The field equations are solved by the change of dependent variable method. The solutions set mathematically thus obtained are compared with the physical properties of some of the compact stars, strange star as well as white dwarf. It is observed that all the expected physical features are available related to the stellar fluid distribution, which clearly indicates the validity of the model. (orig.)

  15. Interstellar Extinction in 20 Open Star Clusters

    Science.gov (United States)

    Rangwal, Geeta; Yadav, R. K. S.; Durgapal, Alok K.; Bisht, D.

    2017-12-01

    The interstellar extinction law in 20 open star clusters namely, Berkeley 7, Collinder 69, Hogg 10, NGC 2362, Czernik 43, NGC 6530, NGC 6871, Bochum 10, Haffner 18, IC 4996, NGC 2384, NGC 6193, NGC 6618, NGC 7160, Collinder 232, Haffner 19, NGC 2401, NGC 6231, NGC 6823, and NGC 7380 have been studied in the optical and near-IR wavelength ranges. The difference between maximum and minimum values of E(B - V) indicates the presence of non-uniform extinction in all the clusters except Collinder 69, NGC 2362, and NGC 2384. The colour excess ratios are consistent with a normal extinction law for the clusters NGC 6823, Haffner 18, Haffner 19, NGC 7160, NGC 6193, NGC 2401, NGC 2384, NGC 6871, NGC 7380, Berkeley 7, Collinder 69, and IC 4996. We have found that the differential colour-excess ΔE(B - V), which may be due to the occurrence of dust and gas inside the clusters, decreases with the age of the clusters. A spatial variation of colour excess is found in NGC 6193 in the sense that it decreases from east to west in the cluster region. For the clusters Berkeley 7, NGC 7380, and NGC 6871, a dependence of colour excess E(B - V) with spectral class and luminosity is observed. Eight stars in Collinder 232, four stars in NGC 6530, and one star in NGC 6231 have excess flux in near-IR. This indicates that these stars may have circumstellar material around them.

  16. Neutron Star Science with the NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  17. Pulsar-irradiated stars in dense globular clusters

    Science.gov (United States)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  18. Synthesis and characterization of a star shaped supramolecular block copolymer

    NARCIS (Netherlands)

    Meier, M.A.R.; Schubert, U.S.

    2004-01-01

    A novel 5-arm star shaped block copolymer consisting of an poly(ethylene glycol) inner block and an poly(e-caprolactone) outer block was prepd. by utilizing an 5-arm star shaped poly(ethylene glycol) macroinitiator for the controlled ring opening polymn. of e-caprolactone. Furthermore, the resulting

  19. O stars and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Underhill, A.B.; Jordan, S.; Thomas, R.

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented

  20. O stars and Wolf-Rayet stars

    Science.gov (United States)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  1. A robust star identification algorithm with star shortlisting

    Science.gov (United States)

    Mehta, Deval Samirbhai; Chen, Shoushun; Low, Kay Soon

    2018-05-01

    A star tracker provides the most accurate attitude solution in terms of arc seconds compared to the other existing attitude sensors. When no prior attitude information is available, it operates in "Lost-In-Space (LIS)" mode. Star pattern recognition, also known as star identification algorithm, forms the most crucial part of a star tracker in the LIS mode. Recognition reliability and speed are the two most important parameters of a star pattern recognition technique. In this paper, a novel star identification algorithm with star ID shortlisting is proposed. Firstly, the star IDs are shortlisted based on worst-case patch mismatch, and later stars are identified in the image by an initial match confirmed with a running sequential angular match technique. The proposed idea is tested on 16,200 simulated star images having magnitude uncertainty, noise stars, positional deviation, and varying size of the field of view. The proposed idea is also benchmarked with the state-of-the-art star pattern recognition techniques. Finally, the real-time performance of the proposed technique is tested on the 3104 real star images captured by a star tracker SST-20S currently mounted on a satellite. The proposed technique can achieve an identification accuracy of 98% and takes only 8.2 ms for identification on real images. Simulation and real-time results depict that the proposed technique is highly robust and achieves a high speed of identification suitable for actual space applications.

  2. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  3. Searching for dust around hyper metal poor stars

    International Nuclear Information System (INIS)

    Venn, Kim A.; Divell, Mike; Starkenburg, Else; Puzia, Thomas H.; Côté, Stephanie; Lambert, David L.

    2014-01-01

    We examine the mid-infrared fluxes and spectral energy distributions for stars with iron abundances [Fe/H] <–5, and other metal-poor stars, to eliminate the possibility that their low metallicities are related to the depletion of elements onto dust grains in the formation of a debris disk. Six out of seven stars examined here show no mid-IR excesses. These non-detections rule out many types of circumstellar disks, e.g., a warm debris disk (T ≤ 290 K), or debris disks with inner radii ≤1 AU, such as those associated with the chemically peculiar post-asymptotic giant branch spectroscopic binaries and RV Tau variables. However, we cannot rule out cooler debris disks, nor those with lower flux ratios to their host stars due to, e.g., a smaller disk mass, a larger inner disk radius, an absence of small grains, or even a multicomponent structure, as often found with the chemically peculiar Lambda Bootis stars. The only exception is HE0107-5240, for which a small mid-IR excess near 10 μm is detected at the 2σ level; if the excess is real and associated with this star, it may indicate the presence of (recent) dust-gas winnowing or a binary system.

  4. Searching for dust around hyper metal poor stars

    Energy Technology Data Exchange (ETDEWEB)

    Venn, Kim A.; Divell, Mike; Starkenburg, Else [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2 (Canada); Puzia, Thomas H. [Institute of Astrophysics, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, 7820436 Macul, Santiago (Chile); Côté, Stephanie [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Lambert, David L., E-mail: kvenn@uvic.ca [McDonald Observatory and the Department of Astronomy, University of Texas at Austin, RLM 15.308, Austin, TX 78712 (United States)

    2014-08-20

    We examine the mid-infrared fluxes and spectral energy distributions for stars with iron abundances [Fe/H] <–5, and other metal-poor stars, to eliminate the possibility that their low metallicities are related to the depletion of elements onto dust grains in the formation of a debris disk. Six out of seven stars examined here show no mid-IR excesses. These non-detections rule out many types of circumstellar disks, e.g., a warm debris disk (T ≤ 290 K), or debris disks with inner radii ≤1 AU, such as those associated with the chemically peculiar post-asymptotic giant branch spectroscopic binaries and RV Tau variables. However, we cannot rule out cooler debris disks, nor those with lower flux ratios to their host stars due to, e.g., a smaller disk mass, a larger inner disk radius, an absence of small grains, or even a multicomponent structure, as often found with the chemically peculiar Lambda Bootis stars. The only exception is HE0107-5240, for which a small mid-IR excess near 10 μm is detected at the 2σ level; if the excess is real and associated with this star, it may indicate the presence of (recent) dust-gas winnowing or a binary system.

  5. A Hard X-Ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR

    DEFF Research Database (Denmark)

    Yukita, M.; Hornschemeier, A. E.; Lehmer, B. D.

    2016-01-01

    We present the results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d = 4.6 Mpc). This is the first investigation to spatially resolve the hard (E > 10 keV) X-ray emission of this galaxy. The nuclear region and similar to 20 off-nuclear point sources......, including a previously discovered ultraluminous X-ray source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most...

  6. The diskmass survey. VIII. On the relationship between disk stability and star formation

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, Kyle B.; Verheijen, Marc A. W. [Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen (Netherlands); Andersen, David R. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Martinsson, Thomas P. K. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Swaters, Robert A., E-mail: westfall@astro.rug.nl [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2014-04-10

    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo and Wiegert (Q {sub RW}), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21 cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averaging over this subsample, we find a meridional shape of σ{sub z}/σ{sub R}=0.51{sub −0.25}{sup +0.36} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q {sub RW} = 2.0 ± 0.9. We also find that the disk-averaged star-formation-rate surface density ( Σ-dot {sub e,∗}) is correlated with the disk-averaged gas and stellar mass surface densities (Σ {sub e,} {sub g} and Σ {sub e,} {sub *}) and anti-correlated with Q {sub RW}. We show that an anti-correlation between Σ-dot {sub e,∗} and Q {sub RW} can be predicted using empirical scaling relations, such that this outcome is consistent with well-established statistical properties of star-forming galaxies. Interestingly, Σ-dot {sub e,∗} is not correlated with the gas-only or star-only Toomre parameters, demonstrating the merit of calculating a multi-component stability parameter when comparing to star-formation activity. Finally, our results are consistent with the Ostriker et al. model of self-regulated star-formation, which predicts Σ-dot {sub e,∗}/Σ{sub e,g}∝Σ{sub e,∗}{sup 1/2}. Based on this and other theoretical expectations, we discuss the possibility of a physical link between disk stability level and star-formation rate in light of our empirical results.

  7. On the origin of hyperfast neutron stars

    NARCIS (Netherlands)

    Gvaramadze, V.V.; Gualandris, A.; Portegies Zwart, S.

    2007-01-01

    We propose an explanation for the origin of hyperfast neutron stars (e.g. PSR B1508+55, PSR B2224+65, RX J0822-4300) based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star (or its helium core) which attained its peculiar velocity

  8. Statistical investigation of flare stars. III. Flare stars in the general galactic star field

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.; Ambaryan, V.V.; Garibdzhanyan, A.T.; Mirzoyan, A.L.

    1989-01-01

    Some questions relating to the existence of a large number of flare stars in the general star field of the Galaxy are discussed. It is shown that only a small proportion of them can be found by photographic observations, and the fraction of field flare stars among such stars found in the regions of star clusters and associations does not exceed 10%. The ratio of the numbers of flare stars of the foreground and the background for a particular system depends on its distance, reaching zero at a distance of about 500 pc. The spatial density of flare stars in the Pleiades is at least two orders of magnitude greater than in the general galactic field. A lower limit for the number of flare stars in the Galaxy is estimated at 4.2 ·10 9 , and the number of nonflare red dwarfs at 2.1·10 10 . There are grounds for believing that they were all formed in star clusters and associations

  9. SUPERNOVAE, NEUTRON STARS, AND TWO KINDS OF NEUTRINO

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, H Y

    1962-08-15

    The role of neutrinos in the core of a star that has undergone a supernova explosion is discussed. The existence of neutron stars, the Schwarzchild singularity in general relativity, and the meaning of conservation of baryons in the neighborhood of a Schwarzchild singularity are also considered. The problem of detection of neutron stars is discussed. It is concluded that neutron stars are the most plausible alternative for the remnant of the core of a supernova. The neutrino emission processes are divided into two groups: the neutrino associated with the meson (mu) and the production of electron neutrinos. (C.E.S.)

  10. Neutron star/red giant encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1988-01-01

    The author presents a simple expression for the amount by which xsub(crit) is diminished as a star evolves xsub(crit) Rsub(crit)/R*, where Rsub(crit) is the maximum distance of closest approach between two stars for which the tidal energy is sufficient to bind the system, and R* is the radius of the star on which tides are being raised. Also it is concluded that tidal capture of giants by neutron stars resulting in binary systems is unlikely in globular clusters. However, collisions between neutron stars and red giants, or an alternative process involving tidal capture of a main-sequence star into an initially detached binary system, may result either in rapidly rotating neutron stars or in white dwarf/neutron star binaries. (author)

  11. Symbiotic stars

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1975-01-01

    There are some arguments that the symbiotic stars are binary, where one component is a red giant and the other component is a small hot star which is exciting a nebula. The symbiotic stars belong to the old disc population. Probably, symbiotic stars are just such an evolutionary stage for double stars as planetary nebulae for single stars. (Auth.)

  12. Quark core stars, quark stars and strange stars

    International Nuclear Information System (INIS)

    Grassi, F.

    1988-01-01

    A recent one flavor quark matter equation of state is generalized to several flavors. It is shown that quarks undergo a first order phase transition. In addition, this equation of state depends on just one parameter in the two flavor case, two parameters in the three flavor case, and these parameters are constrained by phenomenology. This equation of state is then applied to the hadron-quark transition in neutron stars and the determination of quark star stability, the investigation of strange matter stability and possible strange star existence. 43 refs., 6 figs

  13. Cosmic-ray energy densities in star-forming galaxies

    Directory of Open Access Journals (Sweden)

    Persic Massimo

    2017-01-01

    Full Text Available The energy density of cosmic ray protons in star forming galaxies can be estimated from π0-decay γ-ray emission, synchrotron radio emission, and supernova rates. To galaxies for which these methods can be applied, the three methods yield consistent energy densities ranging from Up ~ 0.1 − 1 eV cm−3 to Up ~ 102 − 103 eV cm−3 in galaxies with low to high star-formation rates, respectively.

  14. Kinematic and spatial distributions of barium stars - are the barium stars and Am stars related?

    International Nuclear Information System (INIS)

    Hakkila, J.

    1989-01-01

    The possibility of an evolutionary link between Am stars and barium stars is considered, and an examination of previous data suggests that barium star precursors are main-sequence stars of intermediate mass, are most likely A and/or F dwarfs, and are intermediate-mass binaries with close to intermediate orbital separations. The possible role of mass transfer in the later development of Am systems is explored. Mass transfer and loss from systems with a range of masses and orbital separations may explain such statistical peculiarities of barium stars as the large dispersion in absolute magnitude, the large range of elemental abundances from star to star, and the small number of stars with large peculiar velocities. 93 refs

  15. Cooling of Accretion-Heated Neutron Stars

    Science.gov (United States)

    Wijnands, Rudy; Degenaar, Nathalie; Page, Dany

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  16. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    Science.gov (United States)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as

  17. The STAR experiment at RHIC

    International Nuclear Information System (INIS)

    Marx, J.N.

    1994-01-01

    STAR (Solenoidal Tracker at RHIC) will be one of two large, sophisticated experiments ready to take data when the Relativistic Heavy Ion Collider (RHIC) comes on-line in 1999. The design of STAR, its construction and commissioning and the physics program using the detector are the responsibility of a collaboration of over 250 members from 30 institutions, world-wide. The overall approach of the STAR Collaboration to the physics challenge of studying collisions of highly relativistic nuclei is to focus on measurements of the properties of the many hadrons produced in the collisions. The STAR detector is optimized to detect and identify hadrons over a large solid angle so that individual events can be characterized, in detail, based on their hadronic content. The broad capabilities of the STAR detector will permit an examination of a wide variety of proposed signatures for the Quark Gluon Plasma (QGP), using the sample of events which, on an event-by-event basis, appear to come from collisions resulting in a large energy density over a nuclear volume. In order to achieve this goal, the STAR experiment is based on a solenoid geometry with tracking detectors using the time projection chamber approach and covering a large range of pseudo-rapidity so that individual tracks can be seen within the very high track density expected in central collisions at RHIC. STAR also uses particle identification by the dE/dx technique and by time-of-flight. Electromagnetic energy is detected in a large, solid-angle calorimeter. The construction of STAR, which will be located in the Wide Angle Hall at the 6 o'clock position at RHIC, formally began in early 1993

  18. A spectral atlas of λ Bootis stars

    Directory of Open Access Journals (Sweden)

    Paunzen E.

    2014-01-01

    Full Text Available Since the discovery of λ Bootis stars, a permanent confusion about their classification can be found in literature. This group of non-magnetic, Population I, metal-poor A to F-type stars, has often been used as some sort of trash can for "exotic" and spectroscopically dubious objects. Some attempts have been made to establish a homogeneous group of stars which share the same common properties. Unfortunately, the flood of "new" information (e.g. UV and IR data led again to a whole zoo of objects classified as λ Bootis stars, which, however, are apparent non-members. To overcome this unsatisfying situation, a spectral atlas of well established λ Bootis stars for the classical optical domain was compiled. It includes intermediate dispersion (40 and 120Å mm-1 spectra of three λ Bootis, as well as appropriate MK standard stars. Furthermore, "suspicious" objects, such as shell and Field Horizontal Branch stars, have been considered in order to provide to classifiers a homogeneous reference. As a further step, a high resolution (8Å mm-1 spectrum of one "classical" λ Bootis star in the same wavelength region (3800-4600Å is presented. In total, 55 lines can be used for this particular star to derive detailed abundances for nine heavy elements (Mg, Ca, Sc, Ti, Cr, Mn, Fe, Sr and Ba.

  19. STATISTICAL PROPERTIES OF GALACTIC δ SCUTI STARS: REVISITED

    International Nuclear Information System (INIS)

    Chang, S.-W.; Kim, D.-W.; Byun, Y.-I.; Protopapas, P.

    2013-01-01

    We present statistical characteristics of 1578 δ Scuti stars including nearby field stars and cluster member stars within the Milky Way. We obtained 46% of these stars (718 stars) from work by Rodríguez and collected the remaining 54% of stars (860 stars) from other literature. We updated the entries with the latest information of sky coordinates, color, rotational velocity, spectral type, period, amplitude, and binarity. The majority of our sample is well characterized in terms of typical period range (0.02-0.25 days), pulsation amplitudes (<0.5 mag), and spectral types (A-F type). Given this list of δ Scuti stars, we examined relations between their physical properties (i.e., periods, amplitudes, spectral types, and rotational velocities) for field stars and cluster members, and confirmed that the correlations of properties are not significantly different from those reported in Rodríguez's work. All the δ Scuti stars are cross-matched with several X-ray and UV catalogs, resulting in 27 X-ray and 41 UV-only counterparts. These counterparts are interesting targets for further study because of their uniqueness in showing δ Scuti-type variability and X-ray/UV emission at the same time. The compiled catalog can be accessed through the Web interface http://stardb.yonsei.ac.kr/DeltaScuti.

  20. RADIATION-DRIVEN IMPLOSION AND TRIGGERED STAR FORMATION

    International Nuclear Information System (INIS)

    Bisbas, Thomas G.; Wuensch, Richard; Whitworth, Anthony P.; Walch, Stefanie; Hubber, David A.

    2011-01-01

    We present simulations of initially stable isothermal clouds exposed to ionizing radiation from a discrete external source, and identify the conditions that lead to radiatively driven implosion and star formation. We use the smoothed particle hydrodynamics code SEREN and a HEALPix-based photoionization algorithm to simulate the propagation of the ionizing radiation and the resulting dynamical evolution of the cloud. We find that the incident ionizing flux, Φ LyC , is the critical parameter determining the cloud evolution. At moderate fluxes, a large fraction of the cloud mass is converted into stars. As the flux is increased, the fraction of the cloud mass that is converted into stars and the mean masses of the individual stars both decrease. Very high fluxes simply disperse the cloud. Newly formed stars tend to be concentrated along the central axis of the cloud (i.e., the axis pointing in the direction of the incident flux). For given cloud parameters, the time, t * , at which star formation starts is proportional to Φ -1/3 LyC . The pattern of star formation found in the simulations is similar to that observed in bright-rimmed clouds.

  1. Field O stars: formed in situ or as runaways?

    Science.gov (United States)

    Gvaramadze, V. V.; Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.

    2012-08-01

    A significant fraction of massive stars in the Milky Way and other galaxies are located far from star clusters and star-forming regions. It is known that some of these stars are runaways, i.e. possess high space velocities (determined through the proper motion and/or radial velocity measurements), and therefore most likely were formed in embedded clusters and then ejected into the field because of dynamical few-body interactions or binary-supernova explosions. However, there exists a group of field O stars whose runaway status is difficult to prove via direct proper motion measurements (e.g. in the Magellanic Clouds) or whose (measured) low space velocities and/or young ages appear to be incompatible with their large separation from known star clusters. The existence of this group led some authors to believe that field O stars can form in situ. Since the question of whether or not O stars can form in isolation is of crucial importance for star formation theory, it is important to thoroughly test candidates of such stars in order to improve the theory. In this paper, we examine the runaway status of the best candidates for isolated formation of massive stars in the Milky Way and the Magellanic Clouds by searching for bow shocks around them, by using the new reduction of the Hipparcos data, and by searching for stellar systems from which they could originate within their lifetimes. We show that most of the known O stars thought to have formed in isolation are instead very likely runaways. We show also that the field must contain a population of O stars whose low space velocities and/or young ages are in apparent contradiction to the large separation of these stars from their parent clusters and/or the ages of these clusters. These stars (the descendants of runaway massive binaries) cannot be traced back to their parent clusters and therefore can be mistakenly considered as having formed in situ. We argue also that some field O stars could be detected in optical

  2. Produção de mudas de caramboleiras 'B-10' e 'Golden Star': I - parâmetros biológicos

    Directory of Open Access Journals (Sweden)

    Danilo Eduardo Rozane

    2011-12-01

    Full Text Available O Brasil é um dos maiores produtores de carambola do mundo, entretanto há poucas informações científicas, especialmente estudos de nutrição mineral com mudas dessa frutífera. Objetivando contribuir com o conhecimento desse importante aspecto, desenvolveu-se estudo que permitisse avaliar o crescimento e o acúmulo de nutrientes em mudas de caramboleiras, cultivadas em solução nutritiva. O experimento foi realizado em parcelas subdivididas, sendo utilizadas como parcela as duas cultivares de caramboleira ('B-10' e 'Golden Star' e, como subparcelas, as cinco épocas de coleta de plantas, realizadas aos 208; 233; 258; 283 e 308 dias após o transplantio para a solução nutritiva. O delineamento foi inteiramente casualizado, com três repetições. As mudas foram cultivadas em vasos (8L com solução nutritiva (pH=5,5 ± 0,5, com aeração. O experimento iniciou-se em 24-08-2005. Nos diferentes órgãos das mudas (folhas, caule e raízes, avaliaram-se o crescimento e o acúmulo de nutrientes, e os índices nutricionais. Não houve diferenças no crescimento e, em geral, no acúmulo da massa da matéria seca entre as duas cultivares. Houve acúmulo linear da massa da matéria seca das mudas de caramboleira com o tempo de cultivo, sendo maior nas folhas > caule > raízes. O período de maior acúmulo da massa de matéria seca e da taxa de crescimento relativo na planta inteira esteve compreendido entre 208 - 233 e 233 - 258 dias após o transplantio para a 'B-10' e a 'Golden Star', respectivamente.

  3. Parameters and abundances in luminous stars

    International Nuclear Information System (INIS)

    Earle Luck, R.

    2014-01-01

    Parameters and abundances for 451 stars of spectral types F, G, and K of luminosity classes I and II have been derived. Absolute magnitudes and E(B – V) have been derived for the warmer stars in order to investigate the galactic abundance gradient. The value found here: d[Fe/H]/dR ∼ –0.06 dex kpc –1 , agrees well with previous determinations. Stellar evolution indicators have also been investigated with the derived C/O ratios indicating that standard CN processing has been operating. Perhaps the most surprising result found in these supposedly relatively young intermediate-mass stars is that both [O/Fe] and [C/Fe] show a correlation with [Fe/H] much the same as found in older populations. While the stars were selected based on luminosity class, there does exist a significant [Fe/H] range in the sample. The likely explanation of this is that there is a significant range in age in the sample; that is, some of the sample are low-mass red-giant stars with types that place them within the selection criteria.

  4. Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events

    Energy Technology Data Exchange (ETDEWEB)

    Hamers, Adrian S. [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States); Perets, Hagai B., E-mail: hamers@ias.edu [Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2017-09-10

    Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to the SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.

  5. Construction of Database for Pulsating Variable Stars

    Science.gov (United States)

    Chen, B. Q.; Yang, M.; Jiang, B. W.

    2011-07-01

    A database for the pulsating variable stars is constructed for Chinese astronomers to study the variable stars conveniently. The database includes about 230000 variable stars in the Galactic bulge, LMC and SMC observed by the MACHO (MAssive Compact Halo Objects) and OGLE (Optical Gravitational Lensing Experiment) projects at present. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided to search the photometric data and the light curve in the database through the right ascension and declination of the object. More data will be incorporated into the database.

  6. Modeling of charged anisotropic compact stars in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Dayanandan, Baiju; Maurya, S.K.; T, Smitha T. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)

    2017-06-15

    A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e{sup λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model. (orig.)

  7. A Brightness-Referenced Star Identification Algorithm for APS Star Trackers

    Science.gov (United States)

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-01-01

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4∼5 times that of the pyramid method and 35∼37 times that of the geometric method. PMID:25299950

  8. Infrared Observations of FS CMa Stars

    Science.gov (United States)

    Sitko, Michael L.; Russell, R. W.; Lynch, D. K.; Grady, C. A.; Hammel, H. B.; Beerman, L. C.; Day, A. N.; Huelsman, D.; Rudy, R. J.; Brafford, S. M.; Halbedel, E. M.

    2009-01-01

    A subset of non-supergiant B[e] stars has recently been recognized as forming a fairly unique class of objects with very strong emission lines, infrared excesses, and locations not associated with star formation. The exact evolutionary state of these stars, named for the prototype FS CMa, is uncertain, and they have often been classified as isolated Herbig AeBe stars. We present infrared observations of two of these stars, HD 45677 (FS CMa), HD 50138 (MWC 158), and the candidate FS CMa star HD 190073 (V1295 Aql) that span over a decade in time. All three exhibit an emission band at 10 microns due to amorphous silicates, confirming that much (if not all) of the infrared excess is due to dust. HD 50138 is found to exhibit 20% variability between 3-13 microns that resembles that found in pre-main sequence systems (HD 163296 and HD 31648). HD 45677, despite large changes at visual wavelengths, has remained relatively stable in the infrared. To date, no significant changes have been observed in HD 190073. This work is supported in part by NASA Origins of Solar Systems grant NAG5-9475, NASA Astrophysics Data Program contract NNH05CD30C, and the Independent Research and Development program at The Aerospace Corporation.

  9. Cartography of the sun and the stars

    CERN Document Server

    Neiner, Coralie

    2016-01-01

    The mapping of the surface of stars requires diverse skills, analysis techniques and advanced modeling, i.e. the collaboration of scientists in various specialties. This volume gives insights into new techniques allowing for the first time to obtain resolved images of stars. It takes stock of what has been achieved so far in Chile, on the ESO VLTI instrument or, in the States, on the CHARA instrument. In recent times interferometry, combined with adaptive optics has allowed to reconstruct images of stars. Besides the Sun (of course) by now five stars have been resolved in detail. In addition to interferometry, this book highlights techniques used for mapping the surfaces of stars using photometry made by space observatories; Zeeman- and Doppler Imaging; mapping the surface element abundances via spectroscopy. This book will also take stock of the best images of the  solar surface, made by connecting the differential rotation to the underlying physical parameters derived from helioseismology. Recent measureme...

  10. DARK STARS: A NEW LOOK AT THE FIRST STARS IN THE UNIVERSE

    International Nuclear Information System (INIS)

    Spolyar, Douglas; Bodenheimer, Peter; Freese, Katherine; Gondolo, Paolo

    2009-01-01

    We have proposed that the first phase of stellar evolution in the history of the universe may be dark (matter powered) stars (DSs), luminous objects powered by dark matter (DM) heating rather than by nuclear fusion, and in this paper we examine the history of these DSs. The power source is annihilation of weakly interacting massive particles (WIMPs) which are their own antiparticles. These WIMPs are the best motivated DM candidates and may be discovered by ongoing direct or indirect detection searches (e.g., Fermi/GLAST) or at the Large Hadron Collider at CERN. A new stellar phase results, powered by DM annihilation as long as there is a DM fuel, from millions to billions of years. We build up the DSs from the time DM heating becomes the dominant power source, accreting more and more matter onto them. We have included many new effects in the current study, including a variety of particle masses and accretion rates, nuclear burning, feedback mechanisms, and possible repopulation of DM density due to capture. Remarkably, we find that in all these cases, we obtain the same result: the first stars are very large, 500-1000 times as massive as the Sun; as well as puffy (radii 1-10 AU), bright (10 6 -10 7 L sun ), and cool (T surf sun and the temperatures are much hotter (T surf > 50,000 K). Hence DSs should be observationally distinct from standard Pop III stars. In addition, DSs avoid the (unobserved) element enrichment produced by the standard first stars. Once the DM fuel is exhausted, the DS becomes a heavy main-sequence star; these stars eventually collapse to form massive black holes that may provide seeds for the supermassive black holes observed at early times as well as explanations for recent ARCADE data and for intermediate-mass black holes.

  11. 12000 rotation periods of Kepler stars (Nielsen+, 2013)

    DEFF Research Database (Denmark)

    Nielsen, M. B.; Gizon, L.; Schunker, H.

    2013-01-01

    Rotation periods of 12253 stars in the Kepler field. The periods are determined by the brightness variations, from star spots or active regions, in the light curves of the white light photometry obtained by the Kepler spacecraft. The median absolute deviation from the median (MAD) of the periods...... shows the scatter of periods for each star, over 6 or more (out of 8 analyzed) Kepler quarters. The g-r color index, E(B-V), radius, surface gravity, and effective temperature are from the Kepler Input Catalog (KIC). Column 9 (TF) indicates whether or not the msMAP data for a given star satisfies...... the selection criteria described in section 2. Of these, there are 86 stars with periods from the msMAP data that differ from the period derived from the PDCMAP data by more than one frequency resolution element (1/90d-1). For these stars the msMAP periods are therefore given in column 10 as a none-zero value...

  12. FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY

    International Nuclear Information System (INIS)

    Ocvirk, P.

    2010-01-01

    Model color-magnitude diagrams of low-metallicity globular clusters (GCs) usually show a deficit of hot evolved stars with respect to observations. We investigate quantitatively the impact of such modeling inaccuracies on the significance of star formation history reconstructions obtained from optical integrated spectra. To do so, we analyze the sample of spectra of galactic globular clusters of Schiavon et al. with STECKMAP (Ocvirk et al.), and the stellar population models of Vazdekis et al. and Bruzual and Charlot, and focus on the reconstructed stellar age distributions. First, we show that background/foreground contamination correlates with E(B - V), which allows us to define a clean subsample of uncontaminated GCs, on the basis of an E(B - V) filtering. We then identify a 'confusion zone' where fake young bursts of star formation pop up in the star formation history although the observed population is genuinely old. These artifacts appear for 70%-100% of cases depending on the population model used, and contribute up to 12% of the light in the optical. Their correlation with the horizontal branch (HB) ratio indicates that the confusion is driven by HB morphology: red HB clusters are well fitted by old stellar population models while those with a blue HB require an additional hot component. The confusion zone extends over [Fe/H] = [ - 2, - 1.2], although we lack the data to probe extreme high and low metallicity regimes. As a consequence, any young starburst superimposed on an old stellar population in this metallicity range could be regarded as a modeling artifact, if it weighs less than 12% of the optical light, and if no emission lines typical of an H II region are present. This work also provides a practical method for constraining HB morphology from high signal to noise integrated light spectroscopy in the optical. This will allow post-asymptotic giant branch evolution studies in a range of environments and at distances where resolving stellar populations

  13. Olivier Chesneau's Work on Low Mass Stars

    Science.gov (United States)

    Lagadec, E.

    2015-12-01

    During his too short career, Olivier Chesneau pioneered the study of the circumstellar environments of low mass evolved stars using very high angular resolution techniques. He applied state of the art high angular resolution techniques, such as optical interferometry and adaptive optics imaging, to the the study of a variety of objects, from AGB stars to Planetary Nebulae, via e.g. Born Again stars, RCB stars and Novae. I present here an overview of this work and most important results by focusing on the paths he followed and key encounters he made to reach these results. Olivier liked to work in teams and was very strong at linking people with complementary expertises to whom he would communicate his enthusiasm and sharp ideas. His legacy will live on through the many people he inspired.

  14. Deriving temperature, mass, and age of evolved stars from high-resolution spectra. Application to field stars and the open cluster IC 4651

    Science.gov (United States)

    Biazzo, K.; Pasquini, L.; Girardi, L.; Frasca, A.; da Silva, L.; Setiawan, J.; Marilli, E.; Hatzes, A. P.; Catalano, S.

    2007-12-01

    Aims:We test our capability of deriving stellar physical parameters of giant stars by analysing a sample of field stars and the well studied open cluster IC 4651 with different spectroscopic methods. Methods: The use of a technique based on line-depth ratios (LDRs) allows us to determine with high precision the effective temperature of the stars and to compare the results with those obtained with a classical LTE abundance analysis. Results: (i) For the field stars we find that the temperatures derived by means of the LDR method are in excellent agreement with those found by the spectral synthesis. This result is extremely encouraging because it shows that spectra can be used to firmly derive population characteristics (e.g., mass and age) of the observed stars. (ii) For the IC 4651 stars we use the determined effective temperature to derive the following results. a) The reddening E(B-V) of the cluster is 0.12±0.02, largely independent of the color-temperature calibration used. b) The age of the cluster is 1.2±0.2 Gyr. c) The typical mass of the analysed giant stars is 2.0±0.2~M⊙. Moreover, we find a systematic difference of about 0.2 dex in log g between spectroscopic and evolutionary values. Conclusions: We conclude that, in spite of known limitations, a classical spectroscopic analysis of giant stars may indeed result in very reliable stellar parameters. We caution that the quality of the agreement, on the other hand, depends on the details of the adopted spectroscopic analysis. Based on observations collected at the ESO telescopes at the Paranal and La Silla Observatories, Chile.

  15. Construction of the Database for Pulsating Variable Stars

    Science.gov (United States)

    Chen, Bing-Qiu; Yang, Ming; Jiang, Bi-Wei

    2012-01-01

    A database for pulsating variable stars is constructed to favor the study of variable stars in China. The database includes about 230,000 variable stars in the Galactic bulge, LMC and SMC observed in an about 10 yr period by the MACHO(MAssive Compact Halo Objects) and OGLE(Optical Gravitational Lensing Experiment) projects. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided for searching the photometric data and light curves in the database through the right ascension and declination of an object. Because of the flexibility of this database, more up-to-date data of variable stars can be incorporated into the database conveniently.

  16. Interaction between bosonic dark matter and stars

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos

    2016-02-01

    We provide a detailed analysis of how bosonic dark matter "condensates" interact with compact stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass mB , such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically form "breathing" configurations, where both the spacetime geometry and the field oscillate, and can interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-matter-rich environments. These composite stars oscillate at a frequency which is a multiple of f =2.5 ×1014(mBc2/eV ) Hz . Using perturbative analysis and numerical relativity techniques, we show that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star, nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories.

  17. Design and application of star map simulation system for star sensors

    Science.gov (United States)

    Wu, Feng; Shen, Weimin; Zhu, Xifang; Chen, Yuheng; Xu, Qinquan

    2013-12-01

    Modern star sensors are powerful to measure attitude automatically which assure a perfect performance of spacecrafts. They achieve very accurate attitudes by applying algorithms to process star maps obtained by the star camera mounted on them. Therefore, star maps play an important role in designing star cameras and developing procession algorithms. Furthermore, star maps supply significant supports to exam the performance of star sensors completely before their launch. However, it is not always convenient to supply abundant star maps by taking pictures of the sky. Thus, star map simulation with the aid of computer attracts a lot of interests by virtue of its low price and good convenience. A method to simulate star maps by programming and extending the function of the optical design program ZEMAX is proposed. The star map simulation system is established. Firstly, based on analyzing the working procedures of star sensors to measure attitudes and the basic method to design optical system by ZEMAX, the principle of simulating star sensor imaging is given out in detail. The theory about adding false stars and noises, and outputting maps is discussed and the corresponding approaches are proposed. Then, by external programming, the star map simulation program is designed and produced. Its user interference and operation are introduced. Applications of star map simulation method in evaluating optical system, star image extraction algorithm and star identification algorithm, and calibrating system errors are presented completely. It was proved that the proposed simulation method provides magnificent supports to the study on star sensors, and improves the performance of star sensors efficiently.

  18. The galactic unclassified B[e] star HD 50138: I. A possible new shell-phase

    Czech Academy of Sciences Publication Activity Database

    Borges Fernandes, M.; Kraus, Michaela; Chesneau, O.; Domiciano de Souza, A.; de Araújo, F. X.; Stee, P.; Meilland, A.

    2009-01-01

    Roč. 508, č. 1 (2009), s. 309-320 ISSN 0004-6361 R&D Projects: GA AV ČR KJB300030701 Institutional research plan: CEZ:AV0Z10030501 Keywords : star s * fundamental parameters * star s winds Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.179, year: 2009

  19. Regular Generalized Star Star closed sets in Bitopological Spaces

    OpenAIRE

    K. Kannan; D. Narasimhan; K. Chandrasekhara Rao; R. Ravikumar

    2011-01-01

    The aim of this paper is to introduce the concepts of τ1τ2-regular generalized star star closed sets , τ1τ2-regular generalized star star open sets and study their basic properties in bitopological spaces.

  20. The first detection on Wolf-Rayet stars in M31

    International Nuclear Information System (INIS)

    Shara, M.M.; Moffat, A.F.J.

    1982-01-01

    A search to continuum magnitude B approximately equal to 21.5 (Msub(B) approximately equal to -3) using a narrow band filter at lambda4670A and a wide B-band filter has revealed 21 Wolf-Rayet star candidates in about half the giant Sb galaxy M31. Some weak-line WR stars, particularly WN subtypes, may have escaped detection. These numbers are compatible with the total number of luminous (i.e. massive) stars in M31. Eighteen of twenty confirmed candidate stars in M31 lie in the direction of OB associations in the ring of prominent star formation 5-16 kpc from the center. (Auth.)

  1. HD 38452 - J. R. Hind's star that changed colour

    Science.gov (United States)

    Warner, Brian; Sneden, Christopher

    1988-01-01

    In 1851, John Russell Hind announced that a star previously observed by him to be very red had become bluish white in color. It is shown that this star, HD 38451, is a ninth magnitude shell star which presumably was ejecting a shell when Hind first observed it. From high dispersion coude spectra, low dispersion IUE spectra, and ground-based photometry, HD 38451 is found to be a normal A21V shell star. Its current values of E(B-V) of about 0.14 is probably caused by interstellar rather than circumstellar reddening. There remains a problem to reconcile the large amount of reddening present when Hind first observed the star with its evidently small diminution in visual brightness at that time.

  2. HD 38451: J.R. Hind's star that changed colour

    International Nuclear Information System (INIS)

    Warner, B.; Cape Town Univ.; Snedon, C.

    1988-01-01

    In 1851, John Russell Hind announced that a star previously observed by him to be very red had become bluish white in colour. We show that this star, HD 38451, is a ninth magnitude shell star which presumably was ejecting a shell when Hind first observed it. From high dispersion coude spectra, low dispersion IUE spectra and ground-based photometry we find HD 38451 to be a normal A2IV shell star. Its current value of E(B-V) approx. ident to 0.14 is probably caused by interstellar rather than circumstellar reddening. There remains a problem to reconcile the large amount of reddening present when Hind first observed the star with its evidently small diminution in visual brightness at that time. (author)

  3. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  4. Revealing evolved massive stars with Spitzer

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  5. I-Love relations for incompressible stars and realistic stars

    Science.gov (United States)

    Chan, T. K.; Chan, AtMa P. O.; Leung, P. T.

    2015-02-01

    In spite of the diversity in the equations of state of nuclear matter, the recently discovered I-Love-Q relations [Yagi and Yunes, Science 341, 365 (2013), 10.1126/science.1236462], which relate the moment of inertia, tidal Love number (deformability), and the spin-induced quadrupole moment of compact stars, hold for various kinds of realistic neutron stars and quark stars. While the physical origin of such universality is still a current issue, the observation that the I-Love-Q relations of incompressible stars can well approximate those of realistic compact stars hints at a new direction to approach the problem. In this paper, by establishing recursive post-Minkowskian expansion for the moment of inertia and the tidal deformability of incompressible stars, we analytically derive the I-Love relation for incompressible stars and show that the so-obtained formula can be used to accurately predict the behavior of realistic compact stars from the Newtonian limit to the maximum mass limit.

  6. An accurate metric for the spacetime around neutron stars

    OpenAIRE

    Pappas, George

    2016-01-01

    The problem of having an accurate description of the spacetime around neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a neutron star. Furthermore, an accurate appropriately parameterised metric, i.e., a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to inf...

  7. Photometric and spectroscopic investigation of carbon stars. 1

    International Nuclear Information System (INIS)

    Vetesnik, M.

    1984-01-01

    The photoelectric light curves for carbon star UX Dra were derived in three colours and are discussed. Their shape shows a regular alternation of one deep and one shallow minima, which suggest the light curve of an eclipsing binary. The period variations of the star are analyzed on the basis of old photographic observations. The radial velocity curve of the star based on the measurements of the Swan molecular bands C 2 (1,0) and C 2 (0,1) exhibits a minimum preceding the primary light minima by about 0.15 P. The period P is 336 days, i.e. twice the mean period observed so far for the light variations of the star. The total absorption in the Swan molecular bands in dependence on the light phase of the star is investigated. The period of variability in molecular absorption equals the period of the radial velocity curve. Three possible mechanisms are considered to explain the light, radial velocity and molecular absorption chanqes of the star: radial pulsations, rotation of a heterogeneous single star, and occultations of two revolving components in a binary system. (author)

  8. The Stars behind the Curtain

    Science.gov (United States)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are

  9. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  10. SPITZER SAGE INFRARED PHOTOMETRY OF MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Bonanos, A. Z.; Massa, D. L.; Sewilo, M.

    2009-01-01

    We present a catalog of 1750 massive stars in the Large Magellanic Cloud (LMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3 to 24 μm in the UBVIJHK s +IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant, and luminous blue variable (LBV) stars are among the brightest infrared point sources in the LMC, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among ∼900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/L sun ≥ 4) and the rare, dusty progenitors of the new class of optical transients (e.g., SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.

  11. Evolution of newborn neutron stars: role of quark matter nucleation

    International Nuclear Information System (INIS)

    Bombaci, Ignazio; Logoteta, Domenico; Providencia, Constança; Vidaña, Isaac

    2011-01-01

    A phase of strong interacting matter with deconfined quarks is expected in the core of massive neutron stars. We study the quark deconfinement phase transition in cold (T = 0) and hot β-stable hadronic matter. Assuming a first order phase transition, we calculate and compare the nucleation rate and the nucleation time due to thermal and quantum nucleation mechanisms. We show that above a threshold value of the central pressure a pure hadronic star (HS) is metastable to the conversion to a quark star (QS) (i.e. hybrid star or strange star). We introduce the concept of critical mass M cr for cold HSs and proto-hadronic stars (PHSs), and the concept of limiting conversion temperature for PHSs. We show that PHSs with a mass M cr could survive the early stages of their evolution without decaying to QSs. Finally, we discuss the possible evolutionary paths of proto-hadronic stars.

  12. Web-Based STAR E-Learning Course Increases Empathy and Understanding in Dementia Caregivers: Results from a Randomized Controlled Trial in the Netherlands and the United Kingdom

    Science.gov (United States)

    Meiland, Franka; van der Roest, Henriëtte; Kevern, Peter; Abiuso, Francesca; Bengtsson, Johan; Giuliano, Angele; Duca, Annalise; Sanders, Jennifer; Basnett, Fern; Nugent, Chris; Kingston, Paul; Dröes, Rose-Marie

    2015-01-01

    Background The doubling of the number of people with dementia in the coming decades coupled with the rapid decline in the working population in our graying society is expected to result in a large decrease in the number of professionals available to provide care to people with dementia. As a result, care will be supplied increasingly by untrained informal caregivers and volunteers. To promote effective care and avoid overburdening of untrained and trained caregivers, they must become properly skilled. To this end, the European Skills Training and Reskilling (STAR) project, which comprised experts from the domains of education, technology, and dementia care from 6 countries (the Netherlands, Sweden, Italy, Malta, Romania, and the United Kingdom), worked together to create and evaluate a multilingual e-learning tool. The STAR training portal provides dementia care training both for informal and formal caregivers. Objective The objective of the current study was to evaluate the user friendliness, usefulness, and impact of STAR with informal caregivers, volunteers, and professional caregivers. Methods For 2 to 4 months, the experimental group had access to the STAR training portal, a Web-based portal consisting of 8 modules, 2 of which had a basic level and 6 additional modules at intermediate and advanced levels. The experimental group also had access to online peer and expert communities for support and information exchange. The control group received free access to STAR after the research had ended. The STAR training portal was evaluated in a randomized controlled trial among informal caregivers and volunteers in addition to professional caregivers (N=142) in the Netherlands and the United Kingdom. Assessments were performed with self-assessed, online, standardized questionnaires at baseline and after 2 to 4 months. Primary outcome measures were user friendliness, usefulness, and impact of STAR on knowledge, attitudes, and approaches of caregivers regarding dementia

  13. Web-Based STAR E-Learning Course Increases Empathy and Understanding in Dementia Caregivers: Results from a Randomized Controlled Trial in the Netherlands and the United Kingdom.

    Science.gov (United States)

    Hattink, Bart; Meiland, Franka; van der Roest, Henriëtte; Kevern, Peter; Abiuso, Francesca; Bengtsson, Johan; Giuliano, Angele; Duca, Annalise; Sanders, Jennifer; Basnett, Fern; Nugent, Chris; Kingston, Paul; Dröes, Rose-Marie

    2015-10-30

    The doubling of the number of people with dementia in the coming decades coupled with the rapid decline in the working population in our graying society is expected to result in a large decrease in the number of professionals available to provide care to people with dementia. As a result, care will be supplied increasingly by untrained informal caregivers and volunteers. To promote effective care and avoid overburdening of untrained and trained caregivers, they must become properly skilled. To this end, the European Skills Training and Reskilling (STAR) project, which comprised experts from the domains of education, technology, and dementia care from 6 countries (the Netherlands, Sweden, Italy, Malta, Romania, and the United Kingdom), worked together to create and evaluate a multilingual e-learning tool. The STAR training portal provides dementia care training both for informal and formal caregivers. The objective of the current study was to evaluate the user friendliness, usefulness, and impact of STAR with informal caregivers, volunteers, and professional caregivers. For 2 to 4 months, the experimental group had access to the STAR training portal, a Web-based portal consisting of 8 modules, 2 of which had a basic level and 6 additional modules at intermediate and advanced levels. The experimental group also had access to online peer and expert communities for support and information exchange. The control group received free access to STAR after the research had ended. The STAR training portal was evaluated in a randomized controlled trial among informal caregivers and volunteers in addition to professional caregivers (N=142) in the Netherlands and the United Kingdom. Assessments were performed with self-assessed, online, standardized questionnaires at baseline and after 2 to 4 months. Primary outcome measures were user friendliness, usefulness, and impact of STAR on knowledge, attitudes, and approaches of caregivers regarding dementia. Secondary outcome measures

  14. Giant CP stars

    International Nuclear Information System (INIS)

    Loden, L.O.; Sundman, A.

    1989-01-01

    This study is part of an investigation of the possibility of using chemically peculiar (CP) stars to map local galactic structure. Correct luminosities of these stars are therefore crucial. CP stars are generally regarded as main-sequence or near-main-sequence objects. However, some CP stars have been classified as giants. A selection of stars, classified in literature as CP giants, are compared to normal stars in the same effective temperature interval and to ordinary 'non giant' CP stars. There is no clear confirmation of a higher luminosity for 'CP giants', than for CP stars in general. In addition, CP characteristics seem to be individual properties not repeated in a component star or other cluster members. (author). 50 refs., 5 tabs., 3 figs

  15. Bursting star formation and the overabundance of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Bodigfee, G.; Deloore, C.

    1985-01-01

    The ratio of the number of WR-stars to their OB progenitors appears to be significantly higher in some extragalactic systems than in our Galaxy. This overabundance of Wolf-Rayet-stars can be explained as a consequence of a recent burst of star formation. It is suggested that this burst is the manifestation of a long period nonlinear oscillation in the star formation process, produced by positive feedback effects between young stars and the interstellar medium. Star burst galaxies with large numbers of WR-stars must generate gamma fluxes but due to the distance, all of them are beyond the reach of present-day detectors, except probably 30 Dor

  16. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tie; Wu Yuefang; Zhang Huawei [Department of Astronomy, Peking University, 100871 Beijing (China); Qin Shengli, E-mail: liutiepku@gmail.com [I. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)

    2012-05-20

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  17. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    International Nuclear Information System (INIS)

    Liu Tie; Wu Yuefang; Zhang Huawei; Qin Shengli

    2012-01-01

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10 3 cm –3 and kinematic temperature ∼20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  18. Hearily reddened Hg-Mn star HD 29647

    International Nuclear Information System (INIS)

    Strajzhis, V.; Glagolevskij, Yu.V.; Romanyuk, I.I.; Bychkov, V.D.; AN SSSR, Nizhnij Arkhyz. Spetsial'naya Astrofizicheskaya Observatoriya)

    1982-01-01

    A heavily reddened HD 29647 (V=8sup(m).4) star is investigated using the 6-meter telescope spectrograms with dispersions 9 and 28 A/mm and photometric observations in the Vilnius seven- color system. Parameters Tsub(e)=15600 K (corresponding spectral type B5) and log g=3.70 from hydrogen lines and Balmer jump were obtained. HD 29647 is a peculiar star of the Hg-Mn type. The radial velocity of the star is+14.1+-1.0 km/s, almost identical with that of the dark Taurus cloud and its T Tauri-type variables. If the star is near the front edge of the dark cloud at the distance of 165 pc and has Esub(B-V)=1.06, its visual absolute magnitude is - 0sup(m).9. Photometric observations permit to suspect a slight varia bility in the U, P, and X colors [ru

  19. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  20. Luminous and Variable Stars in M31 and M33. V. The Upper HR Diagram

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, Roberta M.; Davidson, Kris; Hahn, David [Minnesota Institute for Astrophysics, 116 Church St SE, University of Minnesota, Minneapolis, MN 55455 (United States); Martin, John C. [Barber Observatory, University of Illinois, Springfield, IL 62703 (United States); Weis, Kerstin, E-mail: roberta@umn.edu [Astronomical Institute, Ruhr-Universitaet Bochum (Germany)

    2017-07-20

    We present HR diagrams for the massive star populations in M31 and M33, including several different types of emission-line stars: the confirmed luminous blue variables (LBVs), candidate LBVs, B[e] supergiants, and the warm hypergiants. We estimate their apparent temperatures and luminosities for comparison with their respective massive star populations and evaluate the possible relationships of these different classes of evolved, massive stars, and their evolutionary state. Several of the LBV candidates lie near the LBV/S Dor instability strip that supports their classification. Most of the B[e] supergiants, however, are less luminous than the LBVs. Many are very dusty with the infrared flux contributing one-third or more to their total flux. They are also relatively isolated from other luminous OB stars. Overall, their spatial distribution suggests a more evolved state. Some may be post-RSGs (red supergiants) like the warm hypergiants, and there may be more than one path to becoming a B[e] star. There are sufficient differences in the spectra, luminosities, spatial distribution, and the presence or lack of dust between the LBVs and B[e] supergiants to conclude that one group does not evolve into the other.

  1. NuSTAR Observations of the Magnetar 1E 2259+586

    DEFF Research Database (Denmark)

    Vogel, Julia K.; Hascoet, Romain; Kaspi, Victoria M.

    2014-01-01

    , such as a power law, is needed to describe the NuSTAR and Swift spectrum. We also fit the data with the recently developed coronal outflow model by Beloborodov for hard X-ray emission from magnetars. The outflow from a ring on the magnetar surface is statistically preferred over outflow from a polar cap....

  2. Wolf-Rayet stars

    Energy Technology Data Exchange (ETDEWEB)

    Sahade, J

    1981-12-01

    Aspects of the problems of the Wolf-Rayet stars related to their chemical composition, their evolutionary status, and their apparent dichotomy in two spectral sequences are discussed. Dogmas concerning WR stars are critically discussed, including the belief that WR stars lack hydrogen, that they are helium stars evolved from massive close binaries, and the existence of a second WR stage in which the star is a short-period single-lined binary. The relationship of WR stars with planetary nebulae is addressed, as is the membership of these stars in clusters and associations. The division of WR stars into WN and WC sequences is considered, questioning the reasonability of accounting for WR line formation in terms of abundance differences.

  3. On neutron star/supernova remnant associations

    OpenAIRE

    Gvaramadze, V. V.

    2000-01-01

    It is pointed out that a cavity supernova (SN) explosion of a moving massive star could result in a significant offset of the neutron star (NS) birth-place from the geometrical centre of the supernova remnant (SNR). Therefore: a) the high implied transverse velocities of a number of NSs (e.g. PSR B1610-50, PSR B1757-24, SGR0525-66) could be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR; c) the circle of possibl...

  4. Star Formation in Dwarf-Dwarf Mergers: Fueling Hierarchical Assembly

    Science.gov (United States)

    Stierwalt, Sabrina; Johnson, K. E.; Kallivayalil, N.; Patton, D. R.; Putman, M. E.; Besla, G.; Geha, M. C.

    2014-01-01

    We present early results from the first systematic study a sample of isolated interacting dwarf pairs and the mechanisms governing their star formation. Low mass dwarf galaxies are ubiquitous in the local universe, yet the efficiency of gas removal and the enhancement of star formation in dwarfs via pre-processing (i.e. dwarf-dwarf interactions occurring before the accretion by a massive host) are currently unconstrained. Studies of Local Group dwarfs credit stochastic internal processes for their complicated star formation histories, but a few intriguing examples suggest interactions among dwarfs may produce enhanced star formation. We combine archival UV imaging from GALEX with deep optical broad- and narrow-band (Halpha) imaging taken with the pre- One Degree Imager (pODI) on the WIYN 3.5-m telescope and with the 2.3-m Bok telescope at Steward Observatory to confirm the presence of stellar bridges and tidal tails and to determine whether dwarf-dwarf interactions alone can trigger significant levels of star formation. We investigate star formation rates and global galaxy colors as a function of dwarf pair separation (i.e. the dwarf merger sequence) and dwarf-dwarf mass ratio. This project is a precursor to an ongoing effort to obtain high spatial resolution HI imaging to assess the importance of sequential triggering caused by dwarf-dwarf interactions and the subsequent affect on the more massive hosts that later accrete the low mass systems.

  5. StarDOM: From STAR format to XML

    International Nuclear Information System (INIS)

    Linge, Jens P.; Nilges, Michael; Ehrlich, Lutz

    1999-01-01

    StarDOM is a software package for the representation of STAR files as document object models and the conversion of STAR files into XML. This allows interactive navigation by using the Document Object Model representation of the data as well as easy access by XML query languages. As an example application, the entire BioMagResBank has been transformed into XML format. Using an XML query language, statistical queries on the collected NMR data sets can be constructed with very little effort. The BioMagResBank/XML data and the software can be obtained at http://www.nmr.embl-heidelberg.de/nmr/StarDOM/

  6. STARS no star on Kauai

    International Nuclear Information System (INIS)

    Jones, M.

    1993-01-01

    The island of Kuai, home to the Pacific Missile Range Facility, is preparing for the first of a series of Star Wars rocket launches expected to begin early this year. The Strategic Defense Initiative plans 40 launches of the Stategic Target System (STARS) over a 10-year period. The focus of the tests appears to be weapons and sensors designed to combat multiple-warhead ICBMs, which will be banned under the START II Treaty that was signed in January. The focus of this article is to express the dubious value of testing the STARS at a time when their application will not be an anticipated problem

  7. Eclipsing binary stars with a δ Scuti component

    Science.gov (United States)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  8. Relativistic modeling of compact stars for anisotropic matter distribution

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)

    2017-05-15

    In this paper we have solved Einstein's field equations of spherically symmetric spacetime for anisotropic matter distribution by assuming physically valid expressions of the metric function e{sup λ} and radial pressure (p{sub r}). Next we have discussed the physical properties of the model in details by taking the radial pressure p{sub r} equal to zero at the boundary of the star. The physical analysis of the star indicates that its model parameters such as density, redshift, radial pressure, transverse pressure and anisotropy are well behaved. Also we have obtained the mass and radius of our compact star which are 2.29M {sub CircleDot} and 11.02 km, respectively. It is observed that the model obtained here for compact stars is compatible with the mass and radius of the strange star PSR 1937 +21. (orig.)

  9. DRIVING TURBULENCE AND TRIGGERING STAR FORMATION BY IONIZING RADIATION

    International Nuclear Information System (INIS)

    Gritschneder, Matthias; Naab, Thorsten; Walch, Stefanie; Burkert, Andreas; Heitsch, Fabian

    2009-01-01

    We present high-resolution simulations on the impact of ionizing radiation of massive O stars on the surrounding turbulent interstellar medium (ISM). The simulations are performed with the newly developed software iVINE which combines ionization with smoothed particle hydrodynamics (SPH) and gravitational forces. We show that radiation from hot stars penetrates the ISM, efficiently heats cold low-density gas and amplifies overdensities seeded by the initial turbulence. The formation of observed pillar-like structures in star-forming regions (e.g. in M16) can be explained by this scenario. At the tip of the pillars gravitational collapse can be induced, eventually leading to the formation of low-mass stars. Detailed analysis of the evolution of the turbulence spectra shows that UV radiation of O stars indeed provides an excellent mechanism to sustain and even drive turbulence in the parental molecular cloud.

  10. SOVCAN STAR: An international satellite system

    Science.gov (United States)

    Skatchkov, Valery A.

    SOVCAN STAR is a Russian-Canadian cooperative venture company formed to manufacture, test, launch and operate a Ku-band satellite system. Drawing on the more than twenty years communications satellite experience of the founding companies, the SOVCAN STAR satellites are being designed to be competitive and cost effective. They will be equipped with 24 transponders and four steerable antennas. The design allows the operators to switch individual transponders between the various antenna coverage beams. These satellites will offer a high degree of operational flexibility and performance. The SOVCAN STAR strategy is to develop a network of satellites in parallel with the growth and evolution of the traffic requirements. Such an approach minimizes the technical, schedule and program risks while at the same time significantly reduces the financial exposure. The first SOVCAN STAR satellite will be commissioned in 1996 and operated at 14 deg W. The beams will be aligned to North America and Europe offering International service between Canada, the Eastern U.S.A., Europe, Russia and the Western C.I.S. Republics. The second SOVCAN STAR satellite will be commissioned a year later and operated at 145 deg E. This satellite will cover the Western Pacific Ocean, Eastern Asia and Australasia.

  11. From the sun to the Galactic Center: dust, stars and black hole(s)

    Science.gov (United States)

    Fritz, Tobias

    2013-07-01

    The centers of galaxies are their own ultimate gravitational sinks. Massive black holes and star clusters as well as gas are especially likely to fall into the centers of galaxies by dynamical friction or dissipation. Many galactic centers harbor supermassive black holes (SMBH) and dense nuclear (star) clusters which possibly arrived there by these processes. Nuclear clusters can be formed in situ from gas, or from smaller star clusters which fall to the center. Since the Milky Way harbors both an SMBH and a nuclear cluster, both can be studied best in the Galactic Center (GC), which is the closest galactic nucleus to us. In Chapter 1, I introduce the different components of the Milky Way, and put these into the context of the GC. I then give an overview of relevant properties (e.g. star content and distribution) of the GC. Afterwards, I report the results of four different studies about the GC. In Chapter 2, I analyze the limitations of astrometry, one of the most useful methods for the study of the GC. Thanks to the high density of stars and its relatively small distance from us it is possible to measure the motions of thousands of stars in the GC with images, separated by few years only. I find two main limitations to this method: (1) for bright stars the not perfectly correctable distortion of the camera limits the accuracy, and (2) for the majority of the fainter stars, the main limitation is crowding from the other stars in the GC. The position uncertainty of faint stars is mainly caused by the seeing halos of bright stars. In the very center faint unresolvable stars are also important for the position uncertainty. In Chapter 3, I evaluate the evidence for an intermediate mass black hole in the small candidate cluster IRS13E within the GC. Intermediate mass black holes (IMBHs) have a mass between the two types of confirmed black hole: the stellar remnants and the supermassive black holes in the centers of galaxies. One possibility for! their formation is the

  12. Pulsating stars in SuperWASP

    Directory of Open Access Journals (Sweden)

    Holdsworth Daniel L.

    2017-01-01

    Full Text Available SuperWASP is one of the largest ground-based surveys for transiting exoplanets. To date, it has observed over 31 million stars. Such an extensive database of time resolved photometry holds the potential for extensive searches of stellar variability, and provide solid candidates for the upcoming TESS mission. Previous work by e.g. [15], [5], [12] has shown that the WASP archive provides a wealth of pulsationally variable stars. In this talk I will provide an overview of the SuperWASP project, present some of the published results from the survey, and some of the on-going work to identify key targets for the TESS mission.

  13. The Optical/UV Excess of X-Ray-dim Isolated Neutron Stars. I. Bremsstrahlung Emission from a Strangeon Star Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weiyang; Lu, Jiguang; Men, Yunpeng; Xu, Renxin [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Tong, Hao [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011 (China); Ge, Mingyu [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Li, Zhaosheng, E-mail: r.x.xu@pku.edu.cn [Department of Physics, Xiangtan University, Xiangtan 411105 (China)

    2017-03-01

    X-ray-dim isolated neutron stars (XDINSs) are characterized by Planckian spectra in X-ray bands, but show optical/ultraviolet (UV) excesses: the factors by which the measured photometry exceeds those extrapolated from X-ray spectra. To solve this problem, a radiative model of bremsstrahlung emission from a plasma atmosphere is established in the regime of a strangeon star. A strangeon star atmosphere could simply be regarded as the upper layer of a normal neutron star. This plasma atmosphere, formed and maintained by the interstellar-medium-accreted matter due to the so-called strangeness barrier, is supposed to be of two temperatures. All seven XDINS spectra could be well fitted by the radiative model, from optical/UV to X-ray bands. The fitted radiation radii of XDINSs are from 7 to 13 km, while the modeled electron temperatures are between 50 and 250 eV, except RX J0806.4–4123, with a radiation radius of ∼3.5 km, indicating that this source could be a low-mass strangeon star candidate. This strangeon star model could further be tested by soft X-ray polarimetry, such as the Lightweight Asymmetry and Magnetism Probe, which is expected to be operational on China’s space station around 2020.

  14. A spin-down mechanism for accreting neutron stars

    International Nuclear Information System (INIS)

    Illarionov, A.F.; AN SSSR, Moscow. Fizicheskij Inst.); Kompaneets, D.A.

    1990-01-01

    We propose a new spin-down mechanism for accreting neutron stars that explains the existence of a number of long-period (p≅100-1000 s) X-ray pulsars in wide binaries with OB-stars. The spin-down is a result of efficient angular momentum transfer from the rotating magnetosphere of the accreting star to an outflowing stream of magnetized matter. The outflow is formed within a limited solid angle, and the outflow rate is less than the accretion rate. The outflow formation is connected with the anisotropy and intensity of the hard X-ray emission of the neutron star. X-rays from the pulsar heat through Compton scattering the accreting matter anisotropically. The heated matter has a lower density than the surrounding accreting matter and flows up by the action of the buoyancy force. We find the criterion for the outflow to form deep in the accretion flow (i.e., close to the neutron star magnetosphere). The neutron star loses angular momentum when the outflow forms so deep as to capture the magnetic field lines from the rotating magnetosphere. The balance between angular momentum gain by accreting gas and loss by outflowing matter takes place at a particular value of the period of the spinning neutron star. (orig.)

  15. The Chemical Abundances of Stars in the Halo (CASH) Project. II. New Extremely Metal-poor Stars

    Science.gov (United States)

    Krugler, Julie A.; Frebel, A.; Roederer, I. U.; Sneden, C.; Shetrone, M.; Beers, T.; Christlieb, N.

    2011-01-01

    We present new abundance results from the Chemical Abundances of Stars in the Halo (CASH) project. The 500 CASH spectra were observed using the Hobby-Eberly Telescope in "snapshot" mode and are analyzed using an automated stellar parameter and abundance pipeline called CASHCODE. For the 20 most metal-poor stars of the CASH sample we have obtained high resolution spectra using the Magellan Telescope in order to test the uncertainties and systematic errors associated with the snapshot quality (i.e., R 15,000 and S/N 65) HET spectra and to calibrate the newly developed CASHCODE by making a detailed comparison between the stellar parameters and abundances determined from the high resolution and snapshot spectra. We find that the CASHCODE stellar parameters (effective temperature, surface gravity, metallicity, and microturbulence) agree well with the results of the manual analysis of the high resolution spectra. We present the abundances of three newly discovered stars with [Fe/H] ratios with alpha-enhancement and Fe-peak depletion and a range of n-capture elements. The full CASH sample will be used to derive statistically robust abundance trends and frequencies (e.g. carbon and n-capture), as well as placing constraints on nucleosynthetic processes that occurred in the early universe.

  16. The Origin of Scales and Scaling Laws in Star Formation

    Science.gov (United States)

    Guszejnov, David; Hopkins, Philip; Grudich, Michael

    2018-01-01

    Star formation is one of the key processes of cosmic evolution as it influences phenomena from the formation of galaxies to the formation of planets, and the development of life. Unfortunately, there is no comprehensive theory of star formation, despite intense effort on both the theoretical and observational sides, due to the large amount of complicated, non-linear physics involved (e.g. MHD, gravity, radiation). A possible approach is to formulate simple, easily testable models that allow us to draw a clear connection between phenomena and physical processes.In the first part of the talk I will focus on the origin of the IMF peak, the characteristic scale of stars. There is debate in the literature about whether the initial conditions of isothermal turbulence could set the IMF peak. Using detailed numerical simulations, I will demonstrate that not to be the case, the initial conditions are "forgotten" through the fragmentation cascade. Additional physics (e.g. feedback) is required to set the IMF peak.In the second part I will use simulated galaxies from the Feedback in Realistic Environments (FIRE) project to show that most star formation theories are unable to reproduce the near universal IMF peak of the Milky Way.Finally, I will present analytic arguments (supported by simulations) that a large number of observables (e.g. IMF slope) are the consequences of scale-free structure formation and are (to first order) unsuitable for differentiating between star formation theories.

  17. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    particular to "resolve" it among the many absorption lines from other elements, present in the stellar spectrum in this wavelength region. Moreover, a fairly large telescope is needed as the stars to be observed are relatively rare, hence distant and faint for this kind of demanding observations. The Belgian and French astronomers decided to use the Coude Echelle Spectrometer (CES) at the ESO 3.6-m telescope on La Silla, a telescope/instrument combination offering some hope of success for these difficult observations. Spectra of three southern stars, HD 187861, HD 196944 and HD 224959 , were obtained during two nights in September 2000 and found to be of excellent quality. The scientists were very pleased to find that the Lead absorption line was clearly present and very strong in the spectra of all three stars . A subsequent, detailed analysis demonstrated that the three stars all have a substantial overabundance of Lead. Moreover, from the measured abundances of other elements in these spectra, it is also clear that this Lead has been formed in the s-process . The astronomers were able to prove that the Lead cannot originate from the competing "r-process" that occurs in other environments like supernova explosions. " This is the first detection of a Lead-star ", explains Sophie Van Eck from the Institut d'Astronomie et d'Astrophysique of the Université Libre de Bruxelles (Belgium). " These stars are almost exclusively enriched with Lead. Moreover, the abundances in all three stars show a remarkable similarity ." How does the s-process operate? The high abundance of Lead in these otherwise low-metallicity stars also provides detailed clues on how the s-process operates inside the AGB stars. When a Carbon-13 nucleus (i.e. a nucleus with 6 protons and 7 neutrons [2]) is hit by a Helium-4 nucleus (2 protons and 2 neutrons), they fuse to form Oxygen-16 (8 protons and 8 neutrons). In this process - as can be seen by adding the numbers - one neutron is released. It is exactly

  18. White Dwarf Stars as Polytropic Gas Spheres

    OpenAIRE

    Nouh, M. I.; Saad, A. S.; Elkhateeb, M. M.; Korany, B.

    2014-01-01

    Due to the highly degeneracy of electrons in white dwarf stars, we expect that the relativistic effects play very important role in these stars. In the present article, we study the properties of the condensed matter in white dwarfs using Newtonian and relativistic polytropic fluid sphere. Two polytropic indices (namely n=3 and n=1.5) are proposed to investigate the physical characteristics of the models. We solve the Lane-Emden equations numerically.. The results show that the relativistic e...

  19. Star-forming galaxy models: Blending star formation into TREESPH

    Science.gov (United States)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  20. EMACSS: Evolve Me A Cluster of StarS

    Science.gov (United States)

    Alexander, Poul E. R.; Gieles, Mark

    2012-03-01

    The star cluster evolution code Evolve Me A Cluster of StarS (EMACSS) is a simple yet physically motivated computational model that describes the evolution of some fundamental properties of star clusters in static tidal fields. The prescription is based upon the flow of energy within the cluster, which is a constant fraction of the total energy per half-mass relaxation time. According to Henon's predictions, this flow is independent of the precise mechanisms for energy production within the core, and therefore does not require a complete description of the many-body interactions therein. Dynamical theory and analytic descriptions of escape mechanisms is used to construct a series of coupled differential equations expressing the time evolution of cluster mass and radius for a cluster of equal-mass stars. These equations are numerically solved using a fourth-order Runge-Kutta integration kernel; the results were benchmarked against a data base of direct N-body simulations. EMACSS is publicly available and reproduces the N-body results to within 10 per cent accuracy for the entire post-collapse evolution of star clusters.

  1. Alchemy of stars

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, D [A.R.S.D. Coll., New Delhi (India); Bhatia, V B [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1976-05-01

    Developments in studies on stellar evolution during this century are reviewed. Recent considerations indicate that almost all elements between helium and zinc (a range which comprises more than 99 percent by mass of elements heavier than helium) can be synthesised in nuclear processes occurring during the late violent stages of an exploding star or supernova and a vigorous study in the new field of explosive nucleosynthesis is in progress. The process of nucleosynthesis has been classified into 8 sets of nuclear reactions, namely, (1) hydrogen burning, (2) helium burning, (3) ..cap alpha..-process, (4) e-process, (5) s-process, (6) r-process, (7) p-process and (8) x-process. The abundance of helium and heavier elements are explained and the formation of various elements during supernova explosions is discussed. The questions regarding the appropriate astrophysical conditions for the formation of massive stars (3 to 8 times solar mass) is still unanswered.

  2. Neutron stars with orbiting light

    International Nuclear Information System (INIS)

    Lukacs, B.

    1987-11-01

    There is a wide-spread belief in the literature of relativistic astrophysics concerning nonsingular final states of the stellar evolution: the external gravitational field of a physically nonsingular central symmetric body (e.g. a neutron star) is asymptotically empty and simple, i.e. there are no closed or trapped light-like causal geodesics. Present paper shows that this belief is false: some examples are presented for nonsingular bodies with various equations of state, around which there are closed light-like trajectories: 'orbiting light'. The reality of the used equations of state is discussed in detail. Present state of particle physics does not establish the existence of matter with such equations of state, but the hypothetical subquark level of matter may have such equation of state, thus 'subquark-stars' may exist with orbiting light around them. So the criterion of 'nonsingularity' must be further analyzed and accurately defined. (D.Gy.) 24 refs.; 5 figs

  3. THE DUSTIEST POST-MAIN SEQUENCE STARS IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Olivia C.; Meixner, Margaret; Roman-Duval, Julia [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sargent, Benjamin A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sewiło, Marta [The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Hony, Sacha [Institut für Theoretische Astrophysik, Zentrum für Astronomie, Universitt Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2015-10-01

    Using observations from the Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds (MC), we have found 35 evolved stars and stellar end products that are bright in the far-infrared. These 28 (LMC) and 7 (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found 13 low- to intermediate-mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae, and a symbiotic star. We also identify 10 high mass stars, including 4 of the 15 known B[e] stars in the MC, 3 extreme red supergiants that are highly enshrouded by dust, a Luminous Blue Variable, a Wolf–Rayet star, and two supernova remnants. Further, we report the detection of 9 probable evolved objects which were previously undescribed in the literature. These sources are likely to be among the dustiest evolved objects in the MC. The Herschel emission may either be due to dust produced by the evolved star or it may arise from swept-up interstellar medium material.

  4. Demonstrating the Likely Neutron Star Nature of Five M31 Globular Cluster Sources with Swift-NuSTAR Spectroscopy

    Science.gov (United States)

    Maccarone, Thomas J.; Yukita, Mihoko; Hornschemeier, Ann; Lehmer, Bret D.; Antoniou, Vallia; Ptak, Andrew; Wik, Daniel R.; Zezas, Andreas; Boyd, Padi; Kennea, Jamie; hide

    2016-01-01

    We present the results of a joint Swift-NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6-8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM-Newton. We show that the other three sources are also likely to be bright neutron star X-ray binaries, rather than black hole X-ray binaries. We discuss why it should already have been realized that it was unlikely that these objects were black holes on the basis of their being persistent sources, and we re-examine past work which suggested that tidal capture products would be persistently bright X-ray emitters. We discuss how this problem is likely due to neglecting disc winds in older work that predict which systems will be persistent and which will be transient.

  5. Barium and Tc-poor S stars: Binary masqueraders among carbon stars

    OpenAIRE

    Jorissen, A.; Van Eck, S.

    1997-01-01

    The current understanding of the origin of barium and S stars is reviewed, based on new orbital elements and binary frequencies. The following questions are addressed: (i) Is binarity a necessary condition to produce a barium star? (ii) What is the mass transfer mode (wind accretion or RLOF?) responsible for their formation? (iii) Do barium stars form as dwarfs or as giants? (iv) Do barium stars evolve into Tc-poor S stars? (v) What is the relative frequency of Tc-rich and Tc-poor S stars?

  6. Formation of massive stars in OB associations and giant molecular clouds

    International Nuclear Information System (INIS)

    Lada, C.J.

    1980-01-01

    Certain interesting patterns are being perceived in the morphology of the regions which have recently produced massive OB stars. In particular, current evidence seems to favour the notion that the formation of massive stars takes place at the edges and not the centres of large molecular cloud complexes. It is this aspect of the observations that is discussed in the present paper. The phenomena described here will pertain to massive stars only. Specifically, stars with spectral types earlier than B3 will be considered since it is usually only these stars that produce sufficient havoc (e.g., maser sources, CO bright spots, H II regions) to noticeably affect their early environments. The corresponding phenomena for lower mass stars could be entirely different. A review is first presented of what has been learned about the OB star formation process from studies of the visible OB stars themselves. Then, newly derived information pertaining to the most recent episodes of OB star birth in galactic molecular clouds is discussed. Finally, a short discussion of the significance of the results and their implications for possible star formation mechanisms will be made. (U.K.)

  7. Very massive runaway stars from three-body encounters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia

    2011-01-01

    Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.

  8. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  9. TURBOVELOCITY STARS: KICKS RESULTING FROM THE TIDAL DISRUPTION OF SOLITARY STARS

    International Nuclear Information System (INIS)

    Manukian, Haik; Guillochon, James; Ramirez-Ruiz, Enrico; O'Leary, Ryan M.

    2013-01-01

    The centers of most known galaxies host supermassive black holes (SMBHs). In orbit around these black holes are a centrally concentrated distribution of stars, both in single and in binary systems. Occasionally, these stars are perturbed onto orbits that bring them close to the SMBH. If the star is in a binary system, the three-body interaction with the SMBH can lead to large changes in orbital energy, depositing one of the two stars on a tightly-bound orbit, and its companion into a hyperbolic orbit that may escape the galaxy. In this Letter, we show that the disruption of solitary stars can also lead to large positive increases in orbital energy. The kick velocity depends on the amount of mass the star loses at pericenter, but not on the ratio of black hole to stellar mass, and are at most the star's own escape velocity. We find that these kicks are usually too small to result in the ejection of stars from the Milky Way, but can eject the stars from the black hole's sphere of influence, reducing their probability of being disrupted again. We estimate that ∼ 10 5 stars, ∼ 1% of all stars within 10 pc of the galactic center, are likely to have had mass removed by the central black hole through tidal interaction, and speculate that these 'turbovelocity' stars will at first be redder, but eventually bluer, and always brighter than their unharassed peers.

  10. Possibility of star (pyramid) dune development in the area of bimodal wind regime

    Science.gov (United States)

    Biejat, K.

    2012-04-01

    Star (pyramid) dunes are the largest aeolian landforms. They can occur in three types - simple, complex and compound. Development of this type of dunes is usually connected with multidirectional or complex wind regimes. The aim of this study was to verify a hypothesis that the star dunes can also develop by a bimodal wind regime and by local modifications of nearsurface wind flow directions. Field study was performed on Erg Chebbi, in southern Morocco. Several star and transverse dunes were selected for the study of their shape. The star dunes were analysed concerning their type and position in the dune field. This erg contains all of three types of star dunes together with transverse dunes. The regional wind data show that there are two dominant wind directions - NE (Chergui) and SW (Saheli). To determine the difference in shape of star dunes, we performed topographic surveying by GPS RTK. The results allowed to create 3D models of star dunes. The models were used to determine metric characteristics of star dunes, including area of dune basis, volume, and slope angles. On the basis of 3D models, primary, secondary and, on the compound dunes, tertiary arms were determined. Primary arms on each type of star dunes, as well as crestlines of transverse dunes, have dominant orientation NW-SE, perpendicular to two dominant wind directions. This clearly confirms that star dunes of Erg Chebbi develop by a bimodal wind regime In contrast to primary arms, subsidiary (secondary and tertiary) arms are not connected to general wind regime. The secondary arms of star dunes occur to be differentially developer. There are more subsidiary arms on SW sides in comparison to the E sides of the dunes where inclination of slopes is constant. It can be therefore inferred that sand has been supplied predominantly from SW direction. This is supported by distribution of the dunes on the erg. Most compound star dunes compose a chain along the E margin of the erg. Comparison of compound star

  11. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  12. The Next Generation of Numerical Modeling in Mergers- Constraining the Star Formation Law

    Science.gov (United States)

    Chien, Li-Hsin

    2010-09-01

    Spectacular images of colliding galaxies like the "Antennae", taken with the Hubble Space Telescope, have revealed that a burst of star/cluster formation occurs whenever gas-rich galaxies interact. A?The ages and locations of these clusters reveal the interaction history and provide crucial clues to the process of star formation in galaxies. A?We propose to carry out state-of-the-art numerical simulations to model six nearby galaxy mergers {Arp 256, NGC 7469, NGC 4038/39, NGC 520, NGC 2623, NGC 3256}, hence increasing the number with this level of sophistication by a factor of 3. These simulations provide specific predictions for the age and spatial distributions of young star clusters. The comparison between these simulation results and the observations will allow us to answer a number of fundamental questions including: 1} is shock-induced or density-dependent star formation the dominant mechanism; 2} are the demographics {i.e. mass and age distributions} of the clusters in different mergers similar, i.e. "universal", or very different; and 3} will it be necessary to include other mechanisms, e.g., locally triggered star formation, in the models to better match the observations?

  13. Probing the crust of the neutron star in EXO 0748-676

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Medin, Z. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cumming, A. [Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A 2T8 (Canada); Wijnands, R. [Astronomical Institute Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Wolff, M. T. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Cackett, E. M. [Department of Physics and Astronomy, Wayne State University, 666 West Hancock Street, Detroit, MI 48201 (United States); Jonker, P. G. [SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht (Netherlands); Homan, J. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Brown, E. F., E-mail: degenaar@umich.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2014-08-10

    X-ray observations of quiescent X-ray binaries have the potential to provide insight into the structure and the composition of neutron stars. EXO 0748-676 had been actively accreting for over 24 yr before its outburst ceased in late 2008. Subsequent X-ray monitoring revealed a gradual decay of the quiescent thermal emission that can be attributed to cooling of the accretion-heated neutron star crust. In this work, we report on new Chandra and Swift observations that extend the quiescent monitoring to ≅5 yr post-outburst. We find that the neutron star temperature remained at ≅117 eV between 2009 and 2011, but had decreased to ≅110 eV in 2013. This suggests that the crust has not fully cooled yet, which is supported by the lower temperature (≅95 eV) measured ≅4 yr prior to the accretion phase in 1980. Comparing the data to thermal evolution simulations reveals that the apparent lack of cooling between 2009 and 2011 could possibly be a signature of convection driven by phase separation of light and heavy nuclei in the outer layers of the neutron star.

  14. A hybrid method for accurate star tracking using star sensor and gyros.

    Science.gov (United States)

    Lu, Jiazhen; Yang, Lie; Zhang, Hao

    2017-10-01

    Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.

  15. Star Products and Applications

    OpenAIRE

    Iida, Mari; Yoshioka, Akira

    2010-01-01

    Star products parametrized by complex matrices are defined. Especially commutative associative star products are treated, and star exponentials with respect to these star products are considered. Jacobi's theta functions are given as infinite sums of star exponentials. As application, several concrete identities are obtained by properties of the star exponentials.

  16. Effective star tracking method based on optical flow analysis for star trackers.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; Wang, Xiaochu; Li, Jin; Wei, Minsong; You, Zheng

    2016-12-20

    Benefiting from rapid development of imaging sensor technology, modern optical technology, and a high-speed computing chip, the star tracker's accuracy, dynamic performance, and update rate have been greatly improved with low power consumption and miniature size. The star tracker is currently one of the most competitive attitude measurement sensors. However, due to restrictions of the optical imaging system, difficulties still exist in moving star spot detection and star tracking when in special motion conditions. An effective star tracking method based on optical flow analysis for star trackers is proposed in this paper. Spot-based optical flow, based on a gray gradient between two adjacent star images, is analyzed to distinguish the star spot region and obtain an accurate star spot position so that the star tracking can keep continuous under high dynamic conditions. The obtained star vectors and extended Kalman filter (EKF) are then combined to conduct an angular velocity estimation to ensure region prediction of the star spot; this can be combined with the optical flow analysis result. Experiment results show that the method proposed in this paper has advantages in conditions of large angular velocity and large angular acceleration, despite the presence of noise. Higher functional density and better performance can be achieved; thus, the star tracker can be more widely applied in small satellites, remote sensing, and other complex space missions.

  17. Nucleation of Quark Matter in Neutron Stars:. Role of Color Superconductivity

    Science.gov (United States)

    Bombaci, Ignazio; Lugones, Germán; Vidaña, Isaac

    2008-02-01

    Pure hadronic compact stars ("neutron stars") above a critical mass Mcr are metastable1,2 for the conversion to quark stars (hybrid or strange stars). This conversion process liberates an enormous amount of energy (Econv ~ 1053 ergs), which could power some of the observed gamma ray bursts.1-3 In cold deleptonized hadronic stars, the conversion process is triggered by the quantum nucleation of a quark matter drop in the stellar center. These drops can be made up of normal (i.e. unpaired) quark matter, or color superconducting quark matter, depending on the details of the equation of state of quark and hadronic matter.4 In this talk, we present the results of recent calculations5 of the effects of color superconductivity on the conversion of hadronic stars to quark stars. In particular, we study the dependence of the critical mass Mcr and conversion energy Econv on the quark-quark pairing gap Δ, the bag constant B, and the surface tension σ of the quark-hadron interface.

  18. THE NATURE OF STARBURSTS. III. THE SPATIAL DISTRIBUTION OF STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Holtzman, Jon, E-mail: kmcquinn@astro.umn.edu [Department of Astronomy, New Mexico State University, Box 30001-Department 4500, 1320 Frenger Street, Las Cruces, NM 88003 (United States)

    2012-11-01

    We map the spatial distribution of recent star formation over a few Multiplication-Sign 100 Myr timescales in 15 starburst dwarf galaxies using the location of young blue helium burning stars identified from optically resolved stellar populations in archival Hubble Space Telescope observations. By comparing the star formation histories from both the high surface brightness central regions and the diffuse outer regions, we measure the degree to which the star formation has been centrally concentrated during the galaxies' starbursts, using three different metrics for the spatial concentration. We find that the galaxies span a full range in spatial concentration, from highly centralized to broadly distributed star formation. Since most starbursts have historically been identified by relatively short timescale star formation tracers (e.g., H{alpha} emission), there could be a strong bias toward classifying only those galaxies with recent, centralized star formation as starbursts, while missing starbursts that are spatially distributed.

  19. Accretion of dark matter by stars.

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Okawa, Hirotada

    2015-09-11

    Searches for dark matter imprints are one of the most active areas of current research. We focus here on light fields with mass m_{B}, such as axions and axionlike candidates. Using perturbative techniques and full-blown nonlinear numerical relativity methods, we show the following. (i) Dark matter can pile up in the center of stars, leading to configurations and geometries oscillating with a frequency that is a multiple of f=2.5×10^{14}(m_{B}c^{2}/eV)  Hz. These configurations are stable throughout most of the parameter space, and arise out of credible mechanisms for dark-matter capture. Stars with bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories. We also show that (ii) collapse of the host star to a black hole is avoided by efficient gravitational cooling mechanisms.

  20. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    International Nuclear Information System (INIS)

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-01-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres

  1. The low-metallicity starburst NGC346: massive-star population and feedback

    Science.gov (United States)

    Oskinova, Lida

    2017-08-01

    The Small Magellanic Cloud (SMC) is ideal to study young, massive stars at low metallicity. The compact cluster NGC346 contains about half of all O-type stars in the entire SMC. The massive-star population of this cluster powers N66, the brightest and largest HII region in the SMC. We propose to use HST-STIS to slice NGC346 with 20 long-slit exposures, in order to obtain the UV spectra of most of the massive early-type stars of this cluster. Archival data of 13 exposures that cover already a minor part of this cluster will be included in our analyses. Our aim is to quantitatively analyze virtually the whole massive-star population of NGC346. We have already secured the optical spectra of all massive stars in the field with the integral-field spectrograph MUSE at the ESO-VLT. However, for the determination of the stellar-wind parameters, i.e. the mass-loss rates and the wind velocities, ultraviolet spectra are indispensable. Our advanced Potsdam Wolf-Rayet (PoWR) code will be used for modeling the stellar and wind spectra in the course of the analysis. Finally, we will obtain:(a) the fundamental stellar and wind parameters of all stars brighter than spectral type B2V in the field, which, e,g,, will constrain the initial mass function in this young low-metallicity starburst;(b) mass-loss rates of many more OB-type stars at SMC metallicity than hitherto known, allowing to better constrain their metallicity dependence;(c) the integrated feedback by ionizing radiation and stellar winds of the whole massive-star population of NGC346, which will be used as input to model the ecology of the giant HII region N66.These HST UV data will be of high legacy value.

  2. A new Wolf-Rayet star and its circumstellar nebula in Aquila

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Hamann, W.-R.; Berdnikov, L. N.; Fabrika, S.; Valeev, A. F.

    2010-04-01

    We report the discovery of a new Wolf-Rayet star in Aquila via detection of its circumstellar nebula (reminiscent of ring nebulae associated with late WN stars) using the Spitzer Space Telescope archival data. Our spectroscopic follow-up of the central point source associated with the nebula showed that it is a WN7h star (we named it WR121b). We analysed the spectrum of WR121b by using the Potsdam Wolf-Rayet model atmospheres, obtaining a stellar temperature of ~=50kK. The stellar wind composition is dominated by helium with ~20 per cent of hydrogen. The stellar spectrum is highly reddened [E(B - V) = 2.85mag]. Adopting an absolute magnitude of Mv = -5.7, the star has a luminosity of logL/Lsolar = 5.75 and a mass-loss rate of 10-4.7Msolaryr-1, and resides at a distance of 6.3kpc. We searched for a possible parent cluster of WR121b and found that this star is located at ~=1° from the young star cluster embedded in the giant HII region W43 (containing a WN7+a/OB? star - WR121a). We also discovered a bow shock around the O9.5III star ALS9956, located at from the cluster. We discuss the possibility that WR121b and ALS9956 are runaway stars ejected from the cluster in W43. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); wrh@astro.physik.uni-potsdam.de (WRH); berdnik@sai.msu.ru (LNB); fabrika@sao.ru (SF); azamat@sao.ru (AFV)

  3. The Destructive Birth of Massive Stars and Massive Star Clusters

    Science.gov (United States)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is

  4. First stars X. The nature of three unevolved carbon-enhanced metal-poor stars

    DEFF Research Database (Denmark)

    Sivarani, T.; Beers, T.C.; Bonifacio, P.

    2006-01-01

    Stars: abundances, stars: population II, Galaxy: abundances, stars: AGB and post-AGB Udgivelsesdato: Nov.......Stars: abundances, stars: population II, Galaxy: abundances, stars: AGB and post-AGB Udgivelsesdato: Nov....

  5. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Science.gov (United States)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  6. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B. [Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); De Mink, S. E. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); De Koter, A.; Sana, H. [Astronomical Institute " Anton Pannekoek" , Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands); Gvaramadze, V. V. [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskij Pr. 13, Moscow 119992 (Russian Federation); Liermann, A., E-mail: fschneid@astro.uni-bonn.de [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range

  7. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    International Nuclear Information System (INIS)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B.; De Mink, S. E.; Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" data-affiliation=" (Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" >De Koter, A.; Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" data-affiliation=" (Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" >Sana, H.; Gvaramadze, V. V.; Liermann, A.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ☉ limit and observations of four stars with initial masses of 165-320 M ☉ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ☉ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ☉ .

  8. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    Science.gov (United States)

    Schneider, F. R. N.; Izzard, R. G.; de Mink, S. E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V. V.; Hußmann, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ⊙ limit and observations of four stars with initial masses of 165-320 M ⊙ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ⊙ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ⊙.

  9. NuSTAR Search for Hard X-ray Emission from the Star Formation Regions in Sh2-104

    Science.gov (United States)

    Gotthelf, Eric V.

    2016-04-01

    We present NuSTAR hard X-ray observations of Sh2-104, a compact Hii region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Faint, diffuse X-ray emission coincident with the eastern YMSC in Sh2-104 is likely the result of colliding winds of component stars. Just outside the radio shell of Sh2-104 lies 3XMM J201744.7+365045 and nearby nebula NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with NH = (3.1+/-1.0)E22 1/cm^2 and photon index Gamma = 2.1+/-0.1. Based on possible long-term flux variation and lack of detected pulsations (Sh2-104 will help identify the nature of the X-ray sources and their relation to MGRO J2019+37.

  10. SDSS-IV MaNGA - the spatially resolved transition from star formation to quiescence

    Science.gov (United States)

    Belfiore, Francesco; Maiolino, Roberto; Maraston, Claudia; Emsellem, Eric; Bershady, Matthew A.; Masters, Karen L.; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Bundy, Kevin; Diamond-Stanic, Aleksandar M.; Drory, Niv; Heckman, Timothy M.; Law, David R.; Malanushenko, Olena; Oravetz, Audrey; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2017-04-01

    Using spatially resolved spectroscopy from SDSS-IV MaNGA we have demonstrated that low ionization emission-line regions (LIERs) in local galaxies result from photoionization by hot evolved stars, not active galactic nuclei, hence tracing galactic region hosting old stellar population where, despite the presence of ionized gas, star formation is no longer occurring. LIERs are ubiquitous in both quiescent galaxies and in the central regions of galaxies where star formation takes place at larger radii. We refer to these two classes of galaxies as extended LIER (eLIER) and central LIER (cLIER) galaxies, respectively. cLIERs are late-type galaxies primarily spread across the green valley, in the transition region between the star formation main sequence and quiescent galaxies. These galaxies display regular disc rotation in both stars and gas, although featuring a higher central stellar velocity dispersion than star-forming galaxies of the same mass. cLIERs are consistent with being slowly quenched inside-out; the transformation is associated with massive bulges, pointing towards the importance of bulge growth via secular evolution. eLIERs are morphologically early types and are indistinguishable from passive galaxies devoid of line emission in terms of their stellar populations, morphology and central stellar velocity dispersion. Ionized gas in eLIERs shows both disturbed and disc-like kinematics. When a large-scale flow/rotation is observed in the gas, it is often misaligned relative to the stellar component. These features indicate that eLIERs are passive galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Importantly, quiescent galaxies devoid of line emission reside in denser environments and have significantly higher satellite fraction than eLIERs. Environmental effects thus represent the likely cause for the existence of line-less galaxies on the red sequence.

  11. False star detection and isolation during star tracking based on improved chi-square tests.

    Science.gov (United States)

    Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Yang, Yanqiang; Su, Guohua

    2017-08-01

    The star sensor is a precise attitude measurement device for a spacecraft. Star tracking is the main and key working mode for a star sensor. However, during star tracking, false stars become an inevitable interference for star sensor applications, which may result in declined measurement accuracy. A false star detection and isolation algorithm in star tracking based on improved chi-square tests is proposed in this paper. Two estimations are established based on a Kalman filter and a priori information, respectively. The false star detection is operated through adopting the global state chi-square test in a Kalman filter. The false star isolation is achieved using a local state chi-square test. Semi-physical experiments under different trajectories with various false stars are designed for verification. Experiment results show that various false stars can be detected and isolated from navigation stars during star tracking, and the attitude measurement accuracy is hardly influenced by false stars. The proposed algorithm is proved to have an excellent performance in terms of speed, stability, and robustness.

  12. Rotational Evolution and Magnetic Field of AP Stars

    Science.gov (United States)

    Xiaojun, C.; Matsuura, O. T.

    1990-11-01

    RESUMO. Prop6e- se qLie 0 campo de estrelas Ap pode ser 9cr ado pelo mecanismo de na base clo envelope c 0 fl V C C t V 0, C t r a ri S p 0 r t a d C) p a r a a S LI p e r f C 1 e p e I a Instabllidade de boiament 0 na ase de Haya hi. Campos cibservados permit em est imar uma perda de momento durante a ase pr -Seque%nC:ia P r ri C: p a I a ci ni p a t V C I C: C) m a s C) b s e r V a nT C 5. E S t r C I a S A normals, que ro t a ao , ria0 most ram camp Os :os superficia; importantes e isto pode ac:oriteaer C LIma protoestrela evolue para Sequencia Principal em passar pela fase de Hayashi. ABSTRACT: It 5 proposed that the ma9netic field o Ap stars may be enerated by the dynamo at the base of the convective envelope, arid transported to the surface b y t h C i ri s t a b iii t y C) f b LI 0 y a n c y i n t h C H a y a s hi p h a s e. Observed surface ma9netic fields allow to estimate a 1055 of an9ular momentum during the pre-Main Sequence phase compatible with the observations. apidIy rotating normal A stars do not shciw important surface magnetic fields and this may occur if a protostar evcilves to Main Sequence skipping the Hayashi phase. Key words: HYDROMAGNETICS - STARS-PECULIAR A

  13. Kepler and the Star of Bethlehem

    Science.gov (United States)

    Hansen, Rahlf

    Johannes Kepler (1571-1630) was a famous astronomer. But like other astronomers he had a problem to find work that would guarantee a regular income. So he was lucky to get work as "Styrian landscape mathematician" in Graz. One of his tasks was to write an annual calendar of weather forecasts and policital developments on the basis of astrological facts. He correctly predicted a conflict with the Osmanic Empire, although it is not clear whether the stars or the newspapers were the cause for that. Both his horoscope for Wallenstein and his book "Warnung an die Gegner der Astrologie" are well known. Kepler believed in some aspects of astrology, the influence of the planets for example. He deduced this front his ideas about physics. He neglected other aspects of astrology. e.g. the significance of the zodiac. In 1604 Kepler observed a new star and believed in a connection to a special and very rare planetary conjunction. After a Jupiter-Saturn-conjunction Jupiter met Mars. Kepler speculated that the star of Bethlehem might be a new star which was generated after a similar conjunction and recalculated it for 6/7 BC. Nowadays examples of both astronomical (and astrological) interpretations of the star of Bethlehem exist. The best known is the three time conjunction of 6/7 BC. But the interpretation of Martin (1980) for 213 BC seems equally excellent. Vardaman (1989) takes the Halley comet of 12 BC to be the star of Bethlehem. Other speculations arise from two Novae in the years 5 and 4 BC, tabulated in sources from the Far East. But historians tell us that there is no need fo a real star. The text in Matthew, book 2 is a legend. What is important in regard to the understanding of the star of Bethlehem is the "sidus Julium" the comet which could be seen in the sky during Caesar's funeral and the match of the King of Armenia Tiridates to Nero in Rome during. There was no real star over Bethlehem. All we have are interesting speculations, like those by Kepler.

  14. THE PREVALENCE AND IMPACT OF WOLF–RAYET STARS IN EMERGING MASSIVE STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Massey, Philip, E-mail: krs9tb@virginia.edu [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-08-01

    We investigate Wolf–Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point in the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.{sup 4} We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ∼50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.

  15. Egyptian "Star Clocks"

    Science.gov (United States)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  16. Symbiotic stars

    International Nuclear Information System (INIS)

    Kafatos, M.; Michalitsianos, A.G.

    1984-01-01

    Among the several hundred million binary systems estimated to lie within 3000 light years of the solar system, a tiny fraction, no more than a few hundred, belong to a curious subclass whose radiation has a wavelength distribution so peculiar that it long defied explanation. Such systems radiate strongly in the visible region of the spectrum, but some of them do so even more strongly at both shorter and longer wavelengths: in the ultraviolet region and in the infrared and radio regions. This odd distribution of radiation is best explained by the pairing of a cool red giant star and an intensely hot small star that is virtually in contact with its larger companion. Such objects have become known as symbiotic stars. On photographic plate only the giant star can be discerned, but evidence for the existence of the hot companion has been supplied by satellite-born instruments capable of detecting ultraviolet radiation. The spectra of symbiotic stars indicate that the cool red giant is surrounded by a very hot ionized gas. Symbiotic stars also flared up in outbursts indicating the ejection of material in the form of a shell or a ring. Symbiotic stars may therefore represent a transitory phase in the evolution of certain types of binary systems in which there is substantial transfer of matter from the larger partner to the smaller

  17. Star clusters and K2

    Science.gov (United States)

    Dotson, Jessie; Barentsen, Geert; Cody, Ann Marie

    2018-01-01

    The K2 survey has expanded the Kepler legacy by using the repurposed spacecraft to observe over 20 star clusters. The sample includes open and globular clusters at all ages, including very young (1-10 Myr, e.g. Taurus, Upper Sco, NGC 6530), moderately young (0.1-1 Gyr, e.g. M35, M44, Pleiades, Hyades), middle-aged (e.g. M67, Ruprecht 147, NGC 2158), and old globular clusters (e.g. M9, M19, Terzan 5). K2 observations of stellar clusters are exploring the rotation period-mass relationship to significantly lower masses than was previously possible, shedding light on the angular momentum budget and its dependence on mass and circumstellar disk properties, and illuminating the role of multiplicity in stellar angular momentum. Exoplanets discovered by K2 in stellar clusters provides planetary systems ripe for modeling given the extensive information available about their ages and environment. I will review the star clusters sampled by K2 across 16 fields so far, highlighting several characteristics, caveats, and unexplored uses of the public data set along the way. With fuel expected to run out in 2018, I will discuss the closing Campaigns, highlight the final target selection opportunities, and explain the data archive and TESS-compatible software tools the K2 mission intends to leave behind for posterity.

  18. The WFCAM multiwavelength Variable Star Catalog

    Science.gov (United States)

    Ferreira Lopes, C. E.; Dékány, I.; Catelan, M.; Cross, N. J. G.; Angeloni, R.; Leão, I. C.; De Medeiros, J. R.

    2015-01-01

    Context. Stellar variability in the near-infrared (NIR) remains largely unexplored. The exploitation of public science archives with data-mining methods offers a perspective for a time-domain exploration of the NIR sky. Aims: We perform a comprehensive search for stellar variability using the optical-NIR multiband photometric data in the public Calibration Database of the WFCAM Science Archive (WSA), with the aim of contributing to the general census of variable stars and of extending the current scarce inventory of accurate NIR light curves for a number of variable star classes. Methods: Standard data-mining methods were applied to extract and fine-tune time-series data from the WSA. We introduced new variability indices designed for multiband data with correlated sampling, and applied them for preselecting variable star candidates, i.e., light curves that are dominated by correlated variations, from noise-dominated ones. Preselection criteria were established by robust numerical tests for evaluating the response of variability indices to the colored noise characteristic of the data. We performed a period search using the string-length minimization method on an initial catalog of 6551 variable star candidates preselected by variability indices. Further frequency analysis was performed on positive candidates using three additional methods in combination, in order to cope with aliasing. Results: We find 275 periodic variable stars and an additional 44 objects with suspected variability with uncertain periods or apparently aperiodic variation. Only 44 of these objects had been previously known, including 11 RR Lyrae stars on the outskirts of the globular cluster M 3 (NGC 5272). We provide a preliminary classification of the new variable stars that have well-measured light curves, but the variability types of a large number of objects remain ambiguous. We classify most of the new variables as contact binary stars, but we also find several pulsating stars, among which

  19. Star tracking method based on multiexposure imaging for intensified star trackers.

    Science.gov (United States)

    Yu, Wenbo; Jiang, Jie; Zhang, Guangjun

    2017-07-20

    The requirements for the dynamic performance of star trackers are rapidly increasing with the development of space exploration technologies. However, insufficient knowledge of the angular acceleration has largely decreased the performance of the existing star tracking methods, and star trackers may even fail to track under highly dynamic conditions. This study proposes a star tracking method based on multiexposure imaging for intensified star trackers. The accurate estimation model of the complete motion parameters, including the angular velocity and angular acceleration, is established according to the working characteristic of multiexposure imaging. The estimation of the complete motion parameters is utilized to generate the predictive star image accurately. Therefore, the correct matching and tracking between stars in the real and predictive star images can be reliably accomplished under highly dynamic conditions. Simulations with specific dynamic conditions are conducted to verify the feasibility and effectiveness of the proposed method. Experiments with real starry night sky observation are also conducted for further verification. Simulations and experiments demonstrate that the proposed method is effective and shows excellent performance under highly dynamic conditions.

  20. NICER Eyes on Bursting Stars

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    , we dont yet understand the impact that these X-ray flashes have on the accretion disk and the environment surrounding the neutron star. In a new study led by Laurens Keek (University of Maryland), a team of scientists now details what NICER has learned on this subject.Extra X-RaysLight curve (top) and hardness ratio (bottom) for the X-ray burst from Aql X-1 captured by NICER on 3 July 2017. [Keek et al. 2018]In addition to thermal emission from the neutron star, NICER revealed an excess of soft X-ray photons below 1 keV during Aql X-1s burst. The authors propose two possible models for this emission:The burst radiation from the neutron stars surface was reprocessed i.e., either scattered or absorbed and re-emitted by the accretion disk.The persistent, usual accretion flow was enhanced as a result of the bursts radiation drag on the disk, briefly bumping up the disks X-ray flux.While we cant yet conclusively statewhich mechanismdominates, NICERs observations do show that bursts have a substantial impact on their accretion environment. And, as there are over 100 such X-ray burster systems in our galaxy, we can expect that NICER will allow us to better explore the effect of X-ray bursts on neutron-star disks and their surroundings inmany different systems in the future.BonusCheck out the awesome gif below, provided by NASA, which shows NICER being extracted fromthe Dragon capsules trunk by a robotic arm.CitationL. Keek et al 2018 ApJL 855 L4. doi:10.3847/2041-8213/aab104

  1. Ap stars with resolved magnetically split lines: Magnetic field determinations from Stokes I and V spectra⋆

    Science.gov (United States)

    Mathys, G.

    2017-05-01

    rotation and orbital periods are mutually exclusive: all but one of the non-synchronised systems that contain an Ap component with Prot 1000 d. Conclusions: Stars with resolved magnetically split lines represent a significant fraction, of the order of several percent, of the whole population of Ap stars. Most of these stars are genuine slow rotators, whose consideration provides new insight into the long-period tail of the distribution of the periods of Ap stars. Emerging correlations between rotation periods and magnetic properties provide important clues for the understanding of the braking mechanisms that have been at play in the early stages of stellar evolution. The geometrical structures of the magnetic fields of Ap stars with magnetically resolved lines appear in general to depart slightly, but not extremely, from centred dipoles. However, there are a few remarkable exceptions, which deserve further consideration. Confirmation that pulsational crossover is indeed occurring at a detectable level would open the door to the study of non-radial pulsation modes of degree ℓ, which is too high for photometric or spectroscopic observations. How the lack of short orbital periods among binaries containing an Ap component with magnetically resolved lines is related to their (extremely) slow rotation remains to be fully understood, but the very existence of a correlation between the two periods lends support to the merger scenario for the origin of Ap stars. Based on observations collected at the European Southern Observatory, Chile (ESO Programmes 56.E-0688, 56.E-0690, 57.E-0557, 57.E-0637, 58.E-0155, 58.E-0159, 59.E-0372, 59.E-0373, 60.E-0564, 60.E-0565, 61.E-0711, and Period 56 Director Discretionary Time); at Observatoire de Haute Provence (CNRS), France; at Kitt Peak National Observatory, National Optical Astronomy Observatory (NOAO Prop. ID: KP2442; PI: T. Lanz), which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative

  2. B- AND A-TYPE STARS IN THE TAURUS-AURIGA STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-01-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), τ Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  3. Life of a star

    International Nuclear Information System (INIS)

    Henbest, Nigel.

    1988-01-01

    The paper concerns the theory of stellar evolution. A description is given of:- how a star is born, main sequence stars, red giants, white dwarfs, supernovae, neutron stars and black holes. A brief explanation is given of how the death of a star as a supernova can trigger off the birth of a new generation of stars. Classification of stars and the fate of our sun, are also described. (U.K.)

  4. Evidence of the Evolved Nature of the B[e] Star MWC 137

    Czech Academy of Sciences Publication Activity Database

    Muratore, M.F.; Kraus, Michaela; Oksala, Mary E.; Arias, M.L.; Cidale, L.S.; Borges Fernandes, M.; Liermann, A.

    2015-01-01

    Roč. 149, č. 1 (2015), 13/1-13/9 ISSN 0004-6256 Institutional support: RVO:67985815 Keywords : circumstellar matter * early-type stars * emission-line Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.617, year: 2015

  5. Understand B-type stars

    Science.gov (United States)

    1982-01-01

    When observations of B stars made from space are added to observations made from the ground and the total body of observational information is confronted with theoretical expectations about B stars, it is clear that nonthermal phenomena occur in the atmospheres of B stars. The nature of these phenomena and what they imply about the physical state of a B star and how a B star evolves are examined using knowledge of the spectrum of a B star as a key to obtaining an understanding of what a B star is like. Three approaches to modeling stellar structure (atmospheres) are considered, the characteristic properties of a mantle, and B stars and evolution are discussed.

  6. Neutrino opacities in kaon condensation and evolution of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Takumi [Chiba Institute of Technology, Dept. of Physics, Narashino, Chiba (Japan); Yasuhira, Masatomi [Kyoto Univ., Yukawa Institute for Theoretical Physics, Kyoto (Japan); Tatsumi, Toshitaka [Kyoto Univ., Dept. of Physics, Kyoto (Japan); Iwamoto, Naoki [Kagawa Univ., Faculty of Engineering, Takamatsu, Kagawa (Japan)

    2002-09-01

    The neutrino mean free paths are obtained in kaon condensates realized from hot neutron-star matter. Kaon-induced neutrino absorption processes (KA), {nu}{sub e}N {yields} e{sup -}N (N stands for the nucleon), which are unique in the presence of kaon condensates, are mainly considered in nondegenerate neutrino case. The mean free paths for the KA processes are compared with the neutrino scatterings (S), {nu}{sub e}N {yields} {nu}{sub e}N. It is shown that the mean free paths for KA are shorter than the ordinary two-nucleon processes, {nu}{sub e}nN {yields} e{sup -}pN by several orders of magnitude when the temperature is not very high. However, the scattering processes have a dominant contribution to the neutrino opacities as compared with KA, so that KA has a minor effect on the thermal and dynamical evolution of protoneutron stars. (author)

  7. Flare stars

    International Nuclear Information System (INIS)

    Nicastro, A.J.

    1981-01-01

    The least massive, but possibly most numerous, stars in a galaxy are the dwarf M stars. It has been observed that some of these dwarfs are characterized by a short increase in brightness. These stars are called flare stars. These flare stars release a lot of energy in a short amount of time. The process producing the eruption must be energetic. The increase in light intensity can be explained by a small area rising to a much higher temperature. Solar flares are looked at to help understand the phenomenon of stellar flares. Dwarfs that flare are observed to have strong magnetic fields. Those dwarf without the strong magnetic field do not seem to flare. It is believed that these regions of strong magnetic fields are associated with star spots. Theories on the energy that power the flares are given. Astrophysicists theorize that the driving force of a stellar flare is the detachment and collapse of a loop of magnetic flux. The mass loss due to stellar flares is discussed. It is believed that stellar flares are a significant contributor to the mass of interstellar medium in the Milky Way

  8. By Draconis Stars

    Science.gov (United States)

    Bopp, Bernard W.

    An optical spectroscopic survey of dK-M stars has resulted in the discovery of several new H-alpha emission objects. Available optical data suggest these stars have a level of chromospheric activity midway between active BY Dra stars and quiet dM's. These "marginal" BY Dra stars are single objects that have rotation velocities slightly higher than that of quiet field stars but below that of active flare/BY Dra objects. The marginal BY Dra stars provide us with a class of objects rotating very near a "trigger velocity" (believed to be 5 km/s) which appears to divide active flare/BY Dra stars from quiet dM's. UV data on Mg II emission fluxes and strength of transition region features such as C IV will serve to fix activity levels in the marginal objects and determine chromosphere and transition-region heating rates. Simultaneous optical magnetic field measures will be used to explore the connection between fieldstrength/filling-factor and atmospheric heating. Comparison of these data with published information on active and quiet dM stars will yield information on the character of the stellar dynamo as it makes a transition from "low" to "high" activity.

  9. A New Method for Obtaining the Star Formation Law in Galaxies

    NARCIS (Netherlands)

    Heiner, Jonathan S.; Allen, Ronald J.; van der Kruit, Pieter C.

    2010-01-01

    We present a new observational method to evaluate the exponent of the star formation law as initially formulated by Schmidt, i.e., the power-law expression assumed to relate the rate of star formation in a volume of space to the local total gas volume density present there. Total volume densities in

  10. Kultuuriprojektid said linnalt toetust

    Index Scriptorium Estoniae

    2005-01-01

    Pärnu linnavalitsus toetas rahaliselt Kägara Seltsi noorte vabaõhumuusikali "Väike Merineitsi" lavastamiseks, rahvatantsuansamblit Kajakas tänavustel Tartu hansapäevadel etenduva keskaegse muusika- ja tantsukava eest, mittetulundusühingut Eesti Muusikaagentuur kontsertetenduse "Kaotajad" lavastamiseks, osaühingut Baltic Guest Service rahvusvahelise kontsertkava "Laliya" korraldamiseks

  11. Shooting stars

    International Nuclear Information System (INIS)

    Maurette, M.; Hammer, C.

    1985-01-01

    A shooting star passage -even a star shower- can be sometimes easily seen during moonless black night. They represent the partial volatilization in earth atmosphere of meteorites or micrometeorites reduced in cosmic dusts. Everywhere on earth, these star dusts are searched to be gathered. This research made one year ago on the Greenland ice-cap is this article object; orbit gathering projects are also presented [fr

  12. The Vixen Star Book user guide how to use the star book ten and the original star book

    CERN Document Server

    Chen, James

    2016-01-01

    This book is for anyone who owns, or is thinking of owning, a Vixen Star Book Ten telescope mount or its predecessor. A revolution in amateur astronomy has occurred in the past decade with the wide availability of high tech, computer-driven, Go-To telescopes. Vixen Optics is leading the way by offering the Star Book Ten system, with its unique star map graphics software. The Star Book Ten is the latest version of computer telescope control using star map graphics as a user interface, first introduced in the original Star Book first offered in 2003. The increasingly complicated nature of this software means that learning to optimize this program is not straightforward, and yet the resulting views when all features are correctly deployed can be phenomenal. After a short history of computerized Go-To telescopes for the consumer amateur astronomer market, Chen offers a treasury of technical information. His advice, tips, and solutions aid the user in getting the most out of the Star Book Ten system in observing s...

  13. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    International Nuclear Information System (INIS)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-01-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  14. Star-to-star Iron Abundance Variations in Red Giant Branch Stars in the Galactic Globular Cluster NGC 3201

    Science.gov (United States)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-02-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  15. A K-band spectral mini-survey of Galactic B[e] stars

    Czech Academy of Sciences Publication Activity Database

    Liermann, A.; Schnurr, O.; Kraus, Michaela; Kreplin, A.; Arias, M.L.; Cidale, L.S.

    2014-01-01

    Roč. 443, č. 2 (2014), s. 947-956 ISSN 0035-8711 R&D Projects: GA ČR(CZ) GA14-21373S; GA MŠk(CZ) 7AMB14AR017 Institutional support: RVO:67985815 Keywords : circumstellar matter * stars: emission lines * supergiants Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 5.107, year: 2014

  16. The first stars: CEMP-no stars and signatures of spinstars

    Science.gov (United States)

    Maeder, André; Meynet, Georges; Chiappini, Cristina

    2015-04-01

    Aims: The CEMP-no stars are "carbon-enhanced-metal-poor" stars that in principle show no evidence of s- and r-elements from neutron captures. We try to understand the origin and nucleosynthetic site of their peculiar CNO, Ne-Na, and Mg-Al abundances. Methods: We compare the observed abundances to the nucleosynthetic predictions of AGB models and of models of rotating massive stars with internal mixing and mass loss. We also analyze the different behaviors of α- and CNO-elements, as well the abundances of elements involved in the Ne-Na and Mg-Al cycles. Results: We show that CEMP-no stars exhibit products of He-burning that have gone through partial mixing and processing by the CNO cycle, producing low 12C/13C and a broad variety of [C/N] and [O/N] ratios. From a 12C/13C vs. [C/N] diagram, we conclude that neither the yields of AGB stars (in binaries or not) nor the yields of classic supernovae can fully account for the observed CNO abundances in CEMP-no stars. Better agreement is obtained once the chemical contribution by stellar winds of fast-rotating massive stars is taken into account, where partial mixing takes place, leading to various amounts of CNO being ejected. The [(C+N+O)/H] ratios of CEMP-no stars vary linearly with [Fe/H] above [Fe/H] = -4.0 indicating primary behavior by (C+N+O). Below [Fe/H] = -4.0, [(C+N+O)/H] is almost constant as a function of [Fe/H], implying very high [(C+N+O)/Fe] ratios up to 4 dex. In view of the timescales, such abundance ratios reflect more individual nucleosynthetic properties, rather than an average chemical evolution. The high [(C+N+O)/Fe] ratios (as well as the high [(C+N+O)/α-elements]) imply that stellar winds from partially mixed stars were the main source of these excesses of heavy elements now observed in CEMP-no stars. The ranges covered by the variations of [Na/Fe], [Mg/Fe], and [Al/Fe] are much broader than for the α-elements (with an atomic mass number above 24) and are comparable to the wide ranges covered

  17. Self-consistent semi-analytic models of the first stars

    Science.gov (United States)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2018-04-01

    We have developed a semi-analytic framework to model the large-scale evolution of the first Population III (Pop III) stars and the transition to metal-enriched star formation. Our model follows dark matter haloes from cosmological N-body simulations, utilizing their individual merger histories and three-dimensional positions, and applies physically motivated prescriptions for star formation and feedback from Lyman-Werner (LW) radiation, hydrogen ionizing radiation, and external metal enrichment due to supernovae winds. This method is intended to complement analytic studies, which do not include clustering or individual merger histories, and hydrodynamical cosmological simulations, which include detailed physics, but are computationally expensive and have limited dynamic range. Utilizing this technique, we compute the cumulative Pop III and metal-enriched star formation rate density (SFRD) as a function of redshift at z ≥ 20. We find that varying the model parameters leads to significant qualitative changes in the global star formation history. The Pop III star formation efficiency and the delay time between Pop III and subsequent metal-enriched star formation are found to have the largest impact. The effect of clustering (i.e. including the three-dimensional positions of individual haloes) on various feedback mechanisms is also investigated. The impact of clustering on LW and ionization feedback is found to be relatively mild in our fiducial model, but can be larger if external metal enrichment can promote metal-enriched star formation over large distances.

  18. A strongly heated neutron star in the transient z source MAXI J0556-332

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Jeroen; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Fridriksson, Joel K.; Wijnands, Rudy [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St., Detroit, MI 48201 (United States); Degenaar, Nathalie [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Linares, Manuel [Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Lin, Dacheng, E-mail: jeroen@space.mit.edu [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2014-11-10

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ∼16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ☉}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ∼500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ∞} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (∼200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ∞} = 190-336 eV) and a shorter e-folding time (∼160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  19. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  20. Motion-blurred star acquisition method of the star tracker under high dynamic conditions.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; You, Zheng; Wei, Minsong

    2013-08-26

    The star tracker is one of the most promising attitude measurement devices used in spacecraft due to its extremely high accuracy. However, high dynamic performance is still one of its constraints. Smearing appears, making it more difficult to distinguish the energy dispersive star point from the noise. An effective star acquisition approach for motion-blurred star image is proposed in this work. The correlation filter and mathematical morphology algorithm is combined to enhance the signal energy and evaluate slowly varying background noise. The star point can be separated from most types of noise in this manner, making extraction and recognition easier. Partial image differentiation is then utilized to obtain the motion parameters from only one image of the star tracker based on the above process. Considering the motion model, the reference window is adopted to perform centroid determination. Star acquisition results of real on-orbit star images and laboratory validation experiments demonstrate that the method described in this work is effective and the dynamic performance of the star tracker could be improved along with more identified stars and guaranteed position accuracy of the star point.

  1. Capturing Neutrinos from a Star's Final Hours

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    What happens on the last day of a massive stars life? In the hours before the star collapses and explodes as a supernova, the rapid evolution of material in its core creates swarms of neutrinos. Observing these neutrinos may help us understand the final stages of a massive stars life but theyve never been detected.A view of some of the 1,520 phototubes within the MiniBooNE neutrino detector. Observations from this and other detectors are helping to illuminate the nature of the mysterious neutrino. [Fred Ullrich/FNAL]Silent Signposts of Stellar EvolutionThe nuclear fusion that powers stars generates tremendous amounts of energy. Much of this energy is emitted as photons, but a curious and elusive particle the neutrino carries away most of the energy in the late stages of stellar evolution.Stellar neutrinos can be created through two processes: thermal processesand beta processes. Thermal processes e.g.,pair production, in which a particle/antiparticle pair are created depend on the temperature and pressure of the stellar core. Beta processes i.e.,when a proton converts to a neutron, or vice versa are instead linked to the isotopic makeup of the stars core. This means that, if we can observe them, beta-process neutrinos may be able to tell us about the last steps of stellar nucleosynthesis in a dying star.But observing these neutrinos is not so easilydone. Neutrinos arenearly massless, neutral particles that interact only feebly with matter; out of the whopping 1060neutrinos released in a supernova explosion, even the most sensitive detectors only record the passage of just a few. Do we have a chance of detectingthe beta-process neutrinos that are released in the final few hours of a stars life, beforethe collapse?Neutrino luminosities leading up to core collapse. Shortly before collapse, the luminosity of beta-process neutrinos outshines that of any other neutrino flavor or origin. [Adapted from Patton et al. 2017]Modeling Stellar CoresTo answer this question, Kelly

  2. Pristine Survey : High-Resolution Spectral Analyses of New Metal-poor Stars

    Science.gov (United States)

    Venn, Kim; Starkenburg, Else; Martin, Nicolas; Kielty, Collin; Youakim, Kris; Arnetsen, Anke

    2018-06-01

    The Pristine survey (Starkenburg et al. 2017) is a new and very successful metal-poor star survey. Combining high-quality narrow-band CaHK CFHT/MegaCam photometry with existing broadband photometry from SDSS, then very metal-poor stars have been found as confirmed from low-resolution spectroscopy (Youakim et al. 2017). Furthermore, we have extended this survey towards the Galactic bulge in a pilot program to test the capabilities in the highly crowded and (inhomogeneously) extincted bulge (Arentsen et al. 2018). High resolution spectral follow-up analyses have been initiated at the CFHT with Espadons (Vevolution or changes in the IMF, e.g., carbon enrichment, high [alpha/Fe] ratios vs alpha-challenged stars, and details in the neutron capture element ratios. While these early studies are being carried out using classical model atmospheres and synthetic spectral fitting (Venn et al. 2017, 2018), we are also exploring the use of a neural network for the fast, efficient, and precise determination of these stellar parameters and chemical abundances (e.g., StarNet, Fabbro et al. 2018).

  3. Further stable neutron star models from f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I–80126 (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)

    2013-12-01

    Neutron star models in perturbative f(R) gravity are considered with realistic equations of state. In particular, we consider the FPS, SLy and other equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for f(R) = R+R(e{sup −R/R{sub 0}}−1) model and for R{sup 2} models with logarithmic and cubic corrections are obtained. In the case of R{sup 2} gravity with cubic corrections, we obtain that at high central densities (ρ > 10ρ{sub ns}, where ρ{sub ns} = 2.7 × 10{sup 14} g/cm{sup 3} is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ∼ 1.9M{sub ⊙} (SLy equation). A similar situation takes place for AP4 and BSK20 EoS. Such an effect can give rise to more compact stars than in General Relativity. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level. Another interesting result can be achieved in modified gravity with only a cubic correction. For some EoS, the upper limit of neutron star mass increases and therefore these EoS can describe realistic star configurations (although, in General Relativity, these EoS are excluded by observational constraints)

  4. Further stable neutron star models from f(R) gravity

    International Nuclear Information System (INIS)

    Astashenok, Artyom V.; Capozziello, Salvatore; Odintsov, Sergei D.

    2013-01-01

    Neutron star models in perturbative f(R) gravity are considered with realistic equations of state. In particular, we consider the FPS, SLy and other equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for f(R) = R+R(e −R/R 0 −1) model and for R 2 models with logarithmic and cubic corrections are obtained. In the case of R 2 gravity with cubic corrections, we obtain that at high central densities (ρ > 10ρ ns , where ρ ns = 2.7 × 10 14 g/cm 3 is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ∼ 1.9M ⊙ (SLy equation). A similar situation takes place for AP4 and BSK20 EoS. Such an effect can give rise to more compact stars than in General Relativity. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level. Another interesting result can be achieved in modified gravity with only a cubic correction. For some EoS, the upper limit of neutron star mass increases and therefore these EoS can describe realistic star configurations (although, in General Relativity, these EoS are excluded by observational constraints)

  5. NGC 1866: First Spectroscopic Detection of Fast-rotating Stars in a Young LMC Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Dotter, A.; Johnson, C. I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Marino, A. F.; Milone, A. P. [Australian National University, The Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Weston Creek, ACT 2611 (Australia); Bailey, J. I. III [Leiden Observatory, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Crane, J. D. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mateo, M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Olszewski, E. W. [The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-09-01

    High-resolution spectroscopic observations were taken of 29 extended main-sequence turnoff (eMSTO) stars in the young (∼200 Myr) Large Magellanic Cloud (LMC) cluster, NGC 1866, using the Michigan/ Magellan Fiber System and MSpec spectrograph on the Magellan -Clay 6.5 m telescope. These spectra reveal the first direct detection of rapidly rotating stars whose presence has only been inferred from photometric studies. The eMSTO stars exhibit H α emission (indicative of Be-star decretion disks), others have shallow broad H α absorption (consistent with rotation ≳150 km s{sup −1}), or deep H α core absorption signaling lower rotation velocities (≲150 km s{sup −1}). The spectra appear consistent with two populations of stars—one rapidly rotating, and the other, younger and slowly rotating.

  6. ASAS-SN Discovery of a Bright Be Star Undergoing a Possible Outburst

    Science.gov (United States)

    Jayasinghe, T.; Stanek, K. Z.; Kochanek, C. S.; Thorstensen, J.; Rupert, J.; Prieto, J. L.; Shields, J. V.; Thompson, T. A.; Holoien, T. W.-S.; Shappee, B. J.; Dong, Subo

    2017-09-01

    As part of an ongoing effort by ASAS-SN project (Shappee et al. 2014; Kochanek et al. 2017) to characterize and catalog all bright variable stars (e.g., Jayasinghe et al. 2017, ATel #10634, #10677), we report the discovery of a bright Be star undergoing a possible outburst.

  7. A Rigidly Rotating Magnetosphere Model for the Circumstellar Environments of Magnetic OB Stars

    Science.gov (United States)

    Townsend, R.; Owocki, S.; Groote, D.

    2005-11-01

    We report on a new model for the circumstellar environments of rotating, magnetic hot stars. This model predicts the channeling of wind plasma into a corotating magnetosphere, where -- supported against gravity by centrifugal forces -- it can steadily accumulate over time. We apply the model to the B2p star σ Ori E, demonstrating that it can simultaneously reproduce the spectroscopic, photometric and magnetic variations exhibited by the star.

  8. In Orbit Performance of a Fully Autonomous Star Tracker

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The Department of Automation at DTU has developed the Advanced Stellar Compass (ASC), a fully autonomous star tracker, for use as high precision attitude reference onboard spacecrafts. The ASC is composed of a CCD-based camera and a powerful microprocessor containing star catalogue, image......-analysis software and a search engine. The unit autonomously performs all tasks necessary to calculate the inertial attitude from a star image. To allow for flexible attitude manoeuvres, the ASC can, simultaneously, drive from one to four cameras, efficiently removing dropouts from, e.g., sun blinding of one camera......, it is difficult to test and verify the true robustness and accuracy of a star tracker on ground. This is caused by the fact that only real-sky tests offer high fidelity stimulation of the sensor, while the atmosphere instabilities result in a dominant noise source intrinsically limiting the achievable accuracy...

  9. Energy production in stars

    International Nuclear Information System (INIS)

    Bethe, Hans.

    1977-01-01

    Energy in stars is released partly by gravitation, partly by nuclear reactions. For ordinary stars like our sun, nuclear reactions predominate. However, at the end of the life of a star very large amounts of energy are released by gravitational collapse; this can amount to as much as 10 times the total energy released nuclear reactions. The rotational energy of pulsars is a small remnant of the energy of gravitation. The end stage of small stars is generally a white dwarf, of heavy stars a neutron star of possibly a black hole

  10. Stellar Feedback in Massive Star-Forming Regions

    Science.gov (United States)

    Baldwin, Jack; Pellegrini, Eric; Ferland, Gary; Murray, Norm; Hanson, Margaret

    2008-02-01

    Star formation rates and chemical evolution are controlled in part by the interaction of stellar radiation and winds with the remnant molecular gas from which the stars have formed. We are carrying out a detailed, panchromatic study in the two nearest giant star-forming regions to nail down the physics that produces the 10-20 parsec bubbles seen to surround young massive clusters in the Milky Way. This will determine if and how the clusters disrupt their natal giant molecular clouds (GMCs). Here we request 4 nights on the Blanco telescope to obtain dense grids of optical long-slit spectra criss-crossing each nebula. These will cover the [S II] doublet (to measure N_e) and also [O III], H(beta), [O I], H(alpha) and [N II] to measure the ionization mechanism and ionization parameter, at ~3000 different spots in each nebula. From this we can determine a number of dynamically important quantities, such as the gas density and temperature, hence pressure in and around these bubbles. These quantities can be compared to the dynamical (gravitationally induced) pressure, and the radiation pressure. All can be employed in dynamical models for the evolution of a GMC under the influence of an embedded massive star cluster. This research will elucidate the detailed workings of the star-forming regions which dominate the star formation rate in the Milky Way, and also will steadily improve our calibration and understanding of more distant, less well-resolved objects such as ULIRGS, Lyman break, and submillimeter galaxies.

  11. Flux-Vortex Pinning and Neutron Star Evolution

    Indian Academy of Sciences (India)

    M. Ali Alpar

    2017-09-12

    Sep 12, 2017 ... M. ALI ALPAR. Faculty of Engineering and Natural Sciences, Sabancı University, 34956, Istanbul, Turkey. E-mail: ... netic field of the neutron star were B ∼ 109 G. At the ..... across pinning energy barriers by thermal activation.

  12. Stars and Flowers, Flowers and Stars

    Science.gov (United States)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  13. How bright planets became dim stars: planetary speculations in John Herschel's double star astronomy.

    Science.gov (United States)

    Case, Stephen

    2014-03-01

    Previous research on the origins of double star astronomy in the early nineteenth century emphasized the role mathematical methods and instrumentation played in motivating early observations of these objects. The work of the British astronomer John Herschel, however, shows that questions regarding the physical nature of double stars were also important. In particular, an analysis of John Herschel's early work on double stars illustrates the way in which speculations regarding these objects were shaped by assumptions of the properties of stars themselves. For Herschel, a major consideration in double star astronomy was distinguishing between types of double stars. Optical doubles were useful in determining parallax while binary doubles were not. In practice, classification of a specific double star pair into one of these categories was based on the assumption that stars were of approximately the same luminosity and thus differences in relative brightness between stars were caused by difference in distances. Such assumptions, though ultimately abandoned, would lead Herschel in the 1830s to advance the possibility that the dim companion stars in certain double star pairs were not stars at all but in fact planets. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of nuclear stars gravity on quasar radiation feedback on the parsec-scale

    Science.gov (United States)

    Yang, Xiao-Hong; Bu, De-Fu

    2018-05-01

    It is often suggested that a super massive black hole is embedded in a nuclear bulge of size of a few 102 parsec . The nuclear stars gravity is not negligible near ˜10parsec. In order to study the effect of nuclear stars gravity on quasar radiation feedback on the parsec scale, we have simulated the parsec scale flows irradiated by a quasar by taking into account the gravitational potential of both the black hole and the nuclear star cluster. We find that the effect of nuclear stars gravity on the parsec-scale flows is related to the fraction of X-ray photons in quasar radiation. For the models in which the fraction of X-ray photons is not small (e.g. the X-ray photons contribute to 20% of the quasar radiation), the nuclear stars gravity is very helpful to collimate the outflows driven by UV photons, significantly weakens the outflow power at the outer boundary and significantly enhances the net accretion rate onto the black hole. For the models in which X-ray photons are significantly decreased (e.g. the X-ray photons contribute to 5% of the quasar radiation), the nuclear stars gravity can just slightly change properties of outflow and slightly enhance the net accretion rate onto the black hole.

  15. Spectrophotometry of peculiar B and A stars. II. Eleven mercury-manganese stars

    International Nuclear Information System (INIS)

    Adelman, S.J.; Pyper, D.M.

    1979-01-01

    Spectrophotometry of eleven HgMn stars is presented for the optical region. As found in Paper I, the HgMn stars have systematically larger Δiota* and Δa values than the normal main sequence stars due to differences with respect to the mean continuum particularly of the lambda4464 values and the lambda5200 region, respectively. The HgMn stars exhibit a continuous range in the behavior of both the lambda4200 and lambda5200 regions between those stars that have index values larger than the appropriate criterion of presence and present definite evidence for the features to those stars with only a slight possibility of such features. The strengths of the lambda4200 and lambda5200 features appear not to be correlated. In the HgMn stars, both features may be due to differential line blocking. In the energy distribution of all eleven stars, the Balmer jump regions best fit the predictions of slightly hotter solar composition, log g=4.0, fully line blanketed model atmospheres than do the corresponding Paschen continua

  16. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    Science.gov (United States)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  17. The Orbit of X Persei and Its Neutron Star Companion

    Science.gov (United States)

    Delgado-Martí, Hugo; Levine, Alan M.; Pfahl, Eric; Rappaport, Saul A.

    2001-01-01

    We have observed the Be/X-ray pulsar binary system X Per/4U 0352+30 on 61 occasions spanning an interval of 600 days with the PCA instrument on board the Rossi X-Ray Timing Explorer (RXTE). Pulse timing analyses of the 837 s pulsations yield strong evidence for the presence of orbital Doppler delays. We confirm the Doppler delays by using measurements made with the All Sky Monitor (ASM) on RXTE. We infer that the orbit is characterized by a period Porb=250 days, a projected semimajor axis of the neutron star axsini=454 lt-s, a mass function f(M)=1.61 Msolar, and a modest eccentricity e=0.11. The measured orbital parameters, together with the known properties of the classical Be star X Per, imply a semimajor axis a=1.8-2.2 AU and an orbital inclination i~26deg-33deg. We discuss the formation of the system in the context of the standard evolutionary scenario for Be/X-ray binaries. We find that the system most likely formed from a pair of massive progenitor stars and probably involved a quasi-stable and nearly conservative transfer of mass from the primary to the secondary. We find that the He star remnant of the primary most likely had a mass probability of a system like that of X Per forming with an orbital eccentricity e<~0.11. We speculate that there may be a substantial population of neutron stars formed with little or no kick. Finally, we discuss the connected topics of the wide orbit and accretion by the neutron star from a stellar wind.

  18. X-ray sources in regions of star formation. I. The naked T Tauri stars

    International Nuclear Information System (INIS)

    Walter, F.M.

    1986-01-01

    Einstein X-ray observations of regions of active star formation in Taurus, Ophiuchus, and Corona Australis show a greatly enhanced surface density of stellar X-ray sources over that seen in other parts of the sky. Many of the X-ray sources are identified with low-mass, pre-main-sequence stars which are not classical T Tauri stars. The X-ray, photometric, and spectroscopic data for these stars are discussed. Seven early K stars in Oph and CrA are likely to be 1-solar-mass post-T Tauri stars with ages of 10-million yr. The late K stars in Taurus are not post-T Tauri, but naked T Tauri stars, which are coeval with the T Tauri stars, differing mainly in the lack of a circumstellar envelope. 72 references

  19. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  20. Neutron star formation in theoretical supernovae. Low mass stars and white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, K.

    1986-01-01

    The presupernova evolution of stars that form semi-degenerate or strongly degenerate O + Ne + Mg cores is discussed. For the 10 to 13 Msub solar stars, behavior of off-center neon flashes is crucial. The 8 to 10 m/sub solar stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. The conditions for which neutron stars form from accretion-induced collapse of white dwarfs in clsoe binary systems is also examined

  1. HDE 229189 - A variable Ae star in the field of NGC 6910

    International Nuclear Information System (INIS)

    Halbedel, E.M.

    1991-01-01

    The star HDE 229189 (BD + 40 4145; in the field, though probably not a member, of the open cluster NGC 6910) has been found to exhibit large photometric changes in V magnitude over relatively short time scales. The total observed range was 0.416 V magnitude. An outburst in 1982 showed an even greater V range (Delta V = 1.66) and concomitant color changes. A coude spectrum of the star taken a week before a minor outburst showed emission at H-alpha but no other unusual lines. The star is likely an A3 (V)e star, an unusual object in itself (since stars as late as A3 seldom show emission at H-α), or else possibly a member of a binary system undergoing mass transfer between the members. 19 refs

  2. Weighing the Smallest Stars

    Science.gov (United States)

    2005-01-01

    NACO SDI camera was able to distinguish it as a "redder" dot surrounded by the "bluer" light from AB Dor A. The orbit of AB Dor C around AB Dor A is shown as a yellow ellipse. It takes 11.75 years for the 93 Jupiter-mass companion to complete this orbit. Turning this camera towards AB Dor A in February 2004, they were able for the first time to image a companion so faint - 120 times fainter than its star - and so near its star. Says Markus Hartung (ESO), member of the team: "This world premiere was only possible because of the unique capabilities of the NACO SDI instrument on the VLT. In fact, the Hubble Space Telescope tried but failed to detect the companion, as it was too faint and too close to the glare of the primary star." The tiny distance between the star and the faint companion (0.156 arcsec) is the same as the width of a one Euro coin (2.3 cm) when seen 20 km away. The companion, called AB Dor C, was seen at a distance of 2.3 times the mean distance between the Earth and the Sun. It completes a cycle around its host star in 11.75 years on a rather eccentric orbit. Using the companion's exact location, along with the star's known 'wobble', the astronomers could then accurately determine the companion's mass. The object, more than 100 times fainter than its close primary star, has one tenth of the mass of its host star, i.e., it is 93 times more massive than Jupiter. It is thus slightly above the brown dwarf limit. Using NACO on the VLT, the astronomers further observed AB Dor C at near infrared wavelengths to measure its temperature and luminosity. "We were surprised to find that the companion was 400 degrees (Celsius) cooler and 2.5 times fainter than the most recent models predict for an object of this mass," Close said. "Theory predicts that this low-mass, cool object would be about 50 Jupiter masses. But theory is incorrect: this object is indeed between 88 to 98 Jupiter masses." These new findings therefore challenge current ideas about the brown dwarf

  3. Observational diagnostics of accretion on young stars and brown dwarfs

    Science.gov (United States)

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  4. General Relativity and Compact Stars

    International Nuclear Information System (INIS)

    Glendenning, Norman K.

    2005-01-01

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10 14 times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed

  5. Metal enrichment signatures of the first stars on high-z DLAs

    Science.gov (United States)

    Ma, Q.; Maio, U.; Ciardi, B.; Salvaterra, R.

    2017-12-01

    We use numerical N-body hydrodynamical simulations with varying PopIII stellar models to investigate the possibility of detecting first star signatures with observations of high-redshift damped Lyα absorbers (DLAs). The simulations include atomic and molecular cooling, star formation, energy feedback and metal spreading due to the evolution of stars with a range of masses and metallicities. Different initial mass functions (IMFs) and corresponding metal-dependent yields and lifetimes are adopted to model primordial stellar populations. The DLAs in the simulations are selected according to either the local gas temperature (temperature selected) or the host mass (mass selected). We find that 3 per cent (40 per cent) of mass (temperature)-selected high-z (z ≥ 5.5) DLAs retain signatures of pollution from PopIII stars, independent of the first star model. Such DLAs have low halo mass ( Z⊙) and star formation rate ( generation and to constrain the first star mass ranges. Comparing the abundance ratios derived from our simulations to those observed in DLAs at z ≥ 5, we find that most of these DLAs are consistent within errors with PopII star dominated enrichment and strongly disfavour the pollution pattern of very massive first stars (i.e. 100-500 M⊙). However, some of them could still result from the pollution of first stars in the mass range [0.1, 100] M⊙. In particular, we find that the abundance ratios from SDSS J1202+3235 are consistent with those expected from PopIII enrichment dominated by massive (but not extreme) first stars.

  6. Sounds of a Star

    Science.gov (United States)

    2001-06-01

    the models are necessarily quite uncertain (i.e., they are not well "constrained"). It is therefore imperative to enlarge the number of observables and this is possible with asteroseismology. Helioseismology has opened up the way. These observations severely constrain the possible models of the Sun's internal structure. But, depending on their mass and age, stars have very different internal structures, and may also harbour physical processes that are quite different from those in the Sun. Asteroseismological observations of stellar oscillations add crucial information that constrain the models of their inner structure, since the measured frequencies may be compared directly with those computed for the models. The observation of the full stellar disk allows to characterize certain (low degree) oscillation modes which penetrate deep inside the star and it is not necessary to resolve the stellar disk (as we can do for the Sun) in order to obtain useful seismological information. More stars to be observed Observations of bright solar-like stars are already planned with the CORALIE spectrograph. Even fainter stars can be observed with the HARPS spectrograph which will be installed on the 3.6-m telescope at La Silla Observatory at the end of 2002. It will be able to observe stars that are one hundred times fainter than those now reachable with CORALIE and with even better accuracy of the velocity measurements. While it will be mostly dedicated to the search of exoplanets, HARPS will be able to conduct an asteroseismological study of about 100 solar-like stars. More information The research reported in this Press Release is described in a scientific article ("P-mode observations on Alpha Cen A" by François Bouchy and Fabien Carrier) that has been accepted for publication as a Letter in the European journal "Astronomy & Astrophysics". Note [1]: Alpha Centauri was earlier known as Rigil Centauri , but that name is not much used because of the similarity with the name of the

  7. Star formation

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1978-01-01

    Theoretical models of star formation are discussed beginning with the earliest stages and ending in the formation of rotating, self-gravitating disks or rings. First a model of the implosion of very diffuse gas clouds is presented which relies upon a shock at the edge of a galactic spiral arm to drive the implosion. Second, models are presented for the formation of a second generation of massive stars in such a cloud once a first generation has formed. These models rely on the ionizing radiation from massive stars or on the supernova shocks produced when these stars explode. Finally, calculations of the gravitational collapse of rotating clouds are discussed with special focus on the question of whether rotating disks or rings are the result of such a collapse. 65 references

  8. Dark stars: a new study of the first stars in the Universe

    International Nuclear Information System (INIS)

    Freese, Katherine; Bodenheimer, Peter; Gondolo, Paolo; Spolyar, Douglas

    2009-01-01

    We have proposed that the first phase of stellar evolution in the history of the Universe may be dark stars (DSs), powered by dark matter (DM) heating rather than by nuclear fusion. Weakly interacting massive particles, which may be their own antipartners, collect inside the first stars and annihilate to produce a heat source that can power the stars. A new stellar phase results, a DS, powered by DM annihilation as long as there is DM fuel, with lifetimes from millions to billions of years. We find that the first stars are very bright (∼10 6 L o-dot ) and cool (T surf surf > 50 000 K); hence DS should be observationally distinct from standard Pop III stars. Once the DM fuel is exhausted, the DS becomes a heavy main sequence star; these stars eventually collapse to form massive black holes that may provide seeds for supermassive black holes observed at early times as well as explanations for recent ARCADE data and for intermediate black holes.

  9. Introduction to neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Lattimer, James M. [Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  10. Polarization of Be stars

    International Nuclear Information System (INIS)

    Johns, M.W.

    1975-01-01

    Linear polarization of starlight may be produced by electron scattering in the extended atmospheres of early type stars. Techniques are investigated for the measurement and interpretation of this polarization. Polarimetric observations were made of twelve visual double star systems in which at least one member was a B type star as a means of separating the intrinsic stellar polarization from the polarization produced in the interstellar medium. Four of the double stars contained a Be star. Evidence for intrinsic polarization was found in five systems including two of the Be systems, one double star with a short period eclipsing binary, and two systems containing only normal early type stars for which emission lines have not been previously reported. The interpretation of these observations in terms of individual stellar polarizations and their wavelength dependence is discussed. The theoretical basis for the intrinsic polarization of early type stars is explored with a model for the disk-like extended atmospheres of Be stars. Details of a polarimeter for the measurement of the linear polarization of astronomical point sources are also presented with narrow band (Δ lambda = 100A) measurements of the polarization of γ Cas from lambda 4000 to lambda 5800

  11. Rates of star formation

    International Nuclear Information System (INIS)

    Larson, R.B.

    1977-01-01

    It is illustrated that a theoretical understanding of the formation and evolution of galaxies depends on an understanding of star formation, and especially of the factors influencing the rate of star formation. Some of the theoretical problems of star formation in galaxies, some approaches that have been considered in models of galaxy evolution, and some possible observational tests that may help to clarify which processes or models are most relevant are reviewed. The material is presented under the following headings: power-law models for star formation, star formation processes (conditions required, ways of achieving these conditions), observational indications and tests, and measures of star formation rates in galaxies. 49 references

  12. Current star formation in S0 galaxies: NGC 4710

    International Nuclear Information System (INIS)

    Wrobel, J.M.

    1990-01-01

    Elliptical (E) and lenticular (S0) galaxies lack the substantial interstellar medium (ISM) found in the star-forming spiral galaxies. However, significant numbers of E and S0 galaxies are known to contain detectable amounts of interstellar matter (e.g., Jura 1988). Thus, it is worth investigating whether these galaxies are currently able to form stars from their ISM, or whether they should be consigned to the dustbin of inert objects (Thronson and Bally 1987). The results strongly imply that current star formation is responsible for NGC 4710's far infrared and radio continuum properties. If this is indeed the case, then one expects this star formation to be fueled by molecular gas, which is presumably dominated by H2 and can be traced by the CO-12 J=1 to 0 line. Both Kenney and Young (1988) and Sage and Wrobel (1989) have detected such an emission line from NGC 4710, and infer the presence of more than 10(exp 8) solar mass of H2. The origin of the molecular gas in NGC 4710 remains a mystery. The galaxy is very deficient in HI (Kenney and Young, in preparation), suggesting that it originally was a spiral galaxy from which the outer, mainly atomic, gas was stripped by the ram pressure of the Virgo Cluster's intracluster medium, leaving only a central interstellar medium (ISM) rich in molecular gas. Alternatively, the CO may have originated via stellar mass loss with subsequent cooling, cooling flows, or capture from a gas-rich companion. Information on the morphology and kinematics of the CO can be compared with that of the galaxy's other gases and stars to distinguish among these various possible origins for the molecular gas. Major axis CO mapping with single dishes indicate an unresolved source. Thus, a millimeter array is currently being used to image NGC 4710 in CO to provide the needed morphological and kinematical data

  13. The Drifting Star

    Science.gov (United States)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its

  14. A detailed study of lithium in 107 CHEPS dwarf stars

    Science.gov (United States)

    Pavlenko, Ya. V.; Jenkins, J. S.; Ivanyuk, O. M.; Jones, H. R. A.; Kaminsky, B. M.; Lyubchik, Yu. P.; Yakovina, L. A.

    2018-03-01

    Context. We report results from lithium abundance determinations using high resolution spectral analysis of the 107 metal-rich stars from the Calan-Hertfordshire Extrasolar Planet Search programme. Aims: We aim to set out to understand the lithium distribution of the population of stars taken from this survey. Methods: The lithium abundance taking account of non-local thermodynamical equilibrium effects was determined from the fits to the Li I 6708 Å resonance doublet profiles in the observed spectra. Results: We find that a) fast rotators tend to have higher lithium abundances; b) log N(Li) is higher in more massive and hot stars; c) log N(Li) is higher in stars of lower log g; d) stars with the metallicities >0.25 dex do not show the lithium lines in their spectra; e) most of our planet hosts rotate slower; and f) a lower limit of lithium isotopic ratio is 7Li/6Li > 10 in the atmospheres of two stars with planets (SWP) and two non-SWP stars. Conclusions: Measurable lithium abundances were found in the atmospheres of 45 stars located at distances of 20-170 pc from the Sun, for the other 62 stars the upper limits of log N(Li) were computed. We found well defined dependences of lithium abundances on Teff, V sin i, and less pronounced for the log g. In case of V sin i we see two sequences of stars: with measurable lithium and with the upper limit of log N(Li). About 10% of our targets are known to host planets. Only two SWP have notable lithium abundances, so we found a lower proportion of stars with detectable Li among known planet hosts than among stars without planets. However, given the small sample size of our planet-host sample, our analysis does not show any statistically significant differences in the lithium abundance between SWP and stars without known planets.

  15. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr [Department of Astronomy and Space Science, Chungbuk National University, Cheongju-City, 362-763 (Korea, Republic of)

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  16. A Massive Star Census of the Starburst Cluster R136

    Science.gov (United States)

    Crowther, Paul

    2012-10-01

    We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.

  17. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  18. Wolf-Rayet stars and O-star runaways with HIPPARCOS - I. Kinematics

    NARCIS (Netherlands)

    Moffat, AFJ; Marchenko, SV; Seggewiss, W; van der Hucht, KA; Schrijver, H; Stenholm, B; Lundstrom, [No Value; Gunawan, DYAS; Sutantyo, W; van den Heuvel, EPJ; De Cuyper, JP; Gomez, AE

    Reliable systemic radial velocities are almost impossible to secure for Wolf-Rayet stars, difficult for O stars. Therefore, to study the motions - both systematic in the Galaxy and peculiar - of these two related types of hot, luminous star, we have examined the Hipparcos proper motions of some 70

  19. Evolution of variable stars

    International Nuclear Information System (INIS)

    Becker, S.A.

    1986-08-01

    Throughout the domain of the H R diagram lie groupings of stars whose luminosity varies with time. These variable stars can be classified based on their observed properties into distinct types such as β Cephei stars, δ Cephei stars, and Miras, as well as many other categories. The underlying mechanism for the variability is generally felt to be due to four different causes: geometric effects, rotation, eruptive processes, and pulsation. In this review the focus will be on pulsation variables and how the theory of stellar evolution can be used to explain how the various regions of variability on the H R diagram are populated. To this end a generalized discussion of the evolutionary behavior of a massive star, an intermediate mass star, and a low mass star will be presented. 19 refs., 1 fig., 1 tab

  20. A new method for determining which stars are near a star sensor field-of-view

    Science.gov (United States)

    Yates, Russell E., Jr.; Vedder, John D.

    1991-01-01

    A new method is described for determining which stars in a navigation star catalog are near a star sensor field of view (FOV). This method assumes that an estimate of spacecraft inertial attitude is known. Vector component ranges for the star sensor FOV are computed, so that stars whose vector components lie within these ranges are near the star sensor FOV. This method requires no presorting of the navigation star catalog, and is more efficient than tradition methods.

  1. NuSTAR observations of magnetar 1E 1841–045

    Energy Technology Data Exchange (ETDEWEB)

    An, Hongjun; Kaspi, Victoria M.; Dufour, François; Archibald, Robert [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); Hascoët, Romain; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Bachetti, Matteo [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Greffenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Kitaguchi, Takao [RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kouveliotou, Chryssa [Space Science Office, ZP12, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Markwardt, Craig B. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Vogel, Julia K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others

    2013-12-20

    We report new spectral and temporal observations of the magnetar 1E 1841–045 in the Kes 73 supernova remnant obtained with the Nuclear Spectroscopic Telescope Array. Combined with new Swift and archival XMM-Newton and Chandra observations, the phase-averaged spectrum is well characterized by a blackbody plus double power law, in agreement with previous multimission X-ray results. However, we are unable to reproduce the spectral results reported based on Suzaku observations. The pulsed fraction of the source is found to increase with photon energy. The measured rms pulsed fractions are ∼12% and ∼17% at ∼20 and ∼50 keV, respectively. We detect a new feature in the 24-35 keV band pulse profile that is uniquely double peaked. This feature may be associated with a possible absorption or emission feature in the phase-resolved spectrum. We fit the X-ray data using the recently developed electron-positron outflow model by Beloborodov for the hard X-ray emission from magnetars. This produces a satisfactory fit, allowing a constraint on the angle between the rotation and magnetic axes of the neutron star of ∼20° and on the angle between the rotation axis and line of sight of ∼50°. In this model, the soft X-ray component is inconsistent with a single blackbody; adding a second blackbody or a power-law component fits the data. The two-blackbody interpretation suggests a hot spot of temperature kT ≈ 0.9 keV occupying ∼1% of the stellar surface.

  2. Star identification methods, techniques and algorithms

    CERN Document Server

    Zhang, Guangjun

    2017-01-01

    This book summarizes the research advances in star identification that the author’s team has made over the past 10 years, systematically introducing the principles of star identification, general methods, key techniques and practicable algorithms. It also offers examples of hardware implementation and performance evaluation for the star identification algorithms. Star identification is the key step for celestial navigation and greatly improves the performance of star sensors, and as such the book include the fundamentals of star sensors and celestial navigation, the processing of the star catalog and star images, star identification using modified triangle algorithms, star identification using star patterns and using neural networks, rapid star tracking using star matching between adjacent frames, as well as implementation hardware and using performance tests for star identification. It is not only valuable as a reference book for star sensor designers and researchers working in pattern recognition and othe...

  3. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  4. On the evolution of stars

    International Nuclear Information System (INIS)

    Kippenhahn, R.

    1989-01-01

    A popular survey is given of the present knowledge on evolution and ageing of stars. Main sequence stars, white dwarf stars, and red giant stars are classified in the Hertzsprung-Russell (HR)-diagram by measurable quantities: surface temperature and luminosity. From the HR-diagram it can be concluded to star mass and age. Star-forming processes in interstellar clouds as well as stellar burning processes are illustrated. The changes occurring in a star due to the depletion of the nuclear energy reserve are described. In this frame the phenomena of planetary nebulae, supernovae, pulsars, neutron stars as well as of black holes are explained

  5. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  6. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Brinchmann, Jarle [Sterrewacht Leiden, Leiden University, NL-2300 RA Leiden (Netherlands); Stierwalt, Sabrina [Spitzer Science Center, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Neff, Susan G., E-mail: shan@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: jarle@strw.leidenuniv.nl, E-mail: sabrina@ipac.caltech.edu, E-mail: susan.g.neff@nasa.gov [NASA GSFC, Code 665, Observational Cosmology Lab, Greenbelt, MD 20771 (United States)

    2012-06-15

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses <10{sup 7.7} M{sub Sun} and H I line widths <80 km s{sup -1}. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M{sub *}) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M{sub *} obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M{sub *} {approx}< 10{sup 8} M{sub Sun} is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M{sub *} than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.

  7. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    International Nuclear Information System (INIS)

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses 7.7 M ☉ and H I line widths –1 . Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M * ) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M * obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M * ∼ 8 M ☉ is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M * than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.

  8. STAR FORMATION LAWS: THE EFFECTS OF GAS CLOUD SAMPLING

    International Nuclear Information System (INIS)

    Calzetti, D.; Liu, G.; Koda, J.

    2012-01-01

    Recent observational results indicate that the functional shape of the spatially resolved star formation-molecular gas density relation depends on the spatial scale considered. These results may indicate a fundamental role of sampling effects on scales that are typically only a few times larger than those of the largest molecular clouds. To investigate the impact of this effect, we construct simple models for the distribution of molecular clouds in a typical star-forming spiral galaxy and, assuming a power-law relation between star formation rate (SFR) and cloud mass, explore a range of input parameters. We confirm that the slope and the scatter of the simulated SFR-molecular gas surface density relation depend on the size of the sub-galactic region considered, due to stochastic sampling of the molecular cloud mass function, and the effect is larger for steeper relations between SFR and molecular gas. There is a general trend for all slope values to tend to ∼unity for region sizes larger than 1-2 kpc, irrespective of the input SFR-cloud relation. The region size of 1-2 kpc corresponds to the area where the cloud mass function becomes fully sampled. We quantify the effects of selection biases in data tracing the SFR, either as thresholds (i.e., clouds smaller than a given mass value do not form stars) or as backgrounds (e.g., diffuse emission unrelated to current star formation is counted toward the SFR). Apparently discordant observational results are brought into agreement via this simple model, and the comparison of our simulations with data for a few galaxies supports a steep (>1) power-law index between SFR and molecular gas.

  9. Fluctuations in radiation backgrounds at high redshift and the first stars

    Science.gov (United States)

    Holzbauer, Lauren Nicole

    The first stars to light up our universe are as yet unseen, but there have been many attempts to elucidate their properties. The characteristics of these stars (`Population/Pop III' stars) that we do know lie mostly within theory; they formed out of metal-free hydrogen and helium gas contained in dark matter minihalos at redshifts z 20-30. The extent to which Pop III star formation reached into later times is unknown. Current and near future instruments are incapable of resolving individual Pop III stars. Consequently, astronomers must devise creative means with which to indirectly predict and measure and their properties. In this thesis, we will investigate a few of those means. We use a new method to model fluctuations of the Lyman-Werner (LW) and Lyman-alpha radiation backgrounds at high redshift. At these early epochs the backgrounds are symptoms of a universe newly lit with its first stars. LW photons (11.5-13.6 eV) are of particular interest because they dissociate molecular hydrogen, the primary coolant in the first minihalos that is necessary for star formation. By using a variation of the `halo model', which describes the spatial distribution and clustering of halos, we can efficiently generate power spectra for these backgrounds. Spatial fluctuations in the LW and (indirectly) the Lyman-alpha BG can tell us about the transition from primordial star formation to a more metal-enriched mode that marks the beginning of the second generation of stars in our Universe. The Near Infrared Background (NIRB) has for some time been considered a potential tool with which to indirectly observe the first stars. Ultraviolet (UV) emission from these stars is redshifted into the NIR band, making the NIRB amenable for hunting Pop III stellar signatures. There have been several measurements of the NIRB and subsequent theoretical studies attempting to explain them in recent years. Though controversial, residual levels of the mean NIRB intensity and anisotropies have been

  10. Which of Kepler's Stars Flare?

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  11. Symbiotic stars

    Science.gov (United States)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  12. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  13. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    Science.gov (United States)

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  14. Spectroscopy of late type giant stars

    Science.gov (United States)

    Spaenhauer, A.; Thevenin, F.

    1984-06-01

    An attempt to calibrate broadband RGU colors of late type giant stars in terms of the physical parameters of the objects is reported. The parameters comprise the effective temperature, surface gravity and global metal abundance with respect to the sun. A selection of 21 giant star candidates in the Basel fields Plaut 1, Centaurus III and near HD 95540 were examined to obtain a two color plot. Attention is focused on the G-R color range 1.5-2.15 mag, i.e., spectral types K0-K5. A relationship between R and the metallicity is quantified and shown to have a correlation coefficient of 0.93. No correlation is found between metallicity and gravity or R and the effective temperature.

  15. White dwarf stars and the age of the Galactic disk

    Science.gov (United States)

    Wood, M. A.

    1990-01-01

    The history of the Galaxy is written in its oldest stars, the white dwarf (WD) stars. Significant limits can be placed on both the Galactic age and star formation history. A wide range of input WD model sequences is used to derive the current limits to the age estimates suggested by fitting to the observed falloff in the WD luminosity function. The results suggest that the star formation rate over the history of the Galaxy has been relatively constant, and that the disk age lies in the range 6-12 billion years, depending upon the assumed structure of WD stars, and in particular on the core composition and surface helium layer mass. Using plausible mixed C/O core input models, the estimates for the disk age range from 8-10.5 Gyr, i.e.,sustantially younger than most age estimates for the halo globular clusters. After speculating on the significance of the results, expected observational and theoretical refinements which will further enhance the reliability of the method are discussed.

  16. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  17. Variable stars in the field of open cluster NGC 2126

    International Nuclear Information System (INIS)

    Liu Shunfang; Wu Zhenyu; Zhang Xiaobin; Wu Jianghua; Ma Jun; Jiang Zhaoji; Chen Jiansheng; Zhou Xu

    2009-01-01

    We report the results of a time-series CCD photometric survey of variable stars in the field of open cluster NGC 2126. In about a one square degree field covering the cluster, a total of 21 variable candidates are detected during this survey, of which 16 are newly found. The periods, classifications and spectral types of 14 newly discovered variables are discussed, which consist of six eclipsing binary systems, three pulsating variable stars, three long period variables, one RS CVn star, and one W UMa or δ Scuti star. In addition, there are two variable candidates, the properties of which cannot be determined. By a method based on fitting observed spectral energy distributions of stars with theoretical ones, the membership probabilities and the fundamental parameters of this cluster are determined. As a result, five variables are probably members of NGC 2126. The fundamental parameters of this cluster are determined as: metallicity to be 0.008 Z o-dot , age log(t) = 8.95, distance modulus (m - M) 0 = 10.34 and reddening value E (B - V) = 0.55 mag.

  18. America's Star Libraries

    Science.gov (United States)

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  19. Observing Double Stars

    Science.gov (United States)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  20. Kerry kangutab Bushi võimult koos Edwardsiga / Heiki Suurkask

    Index Scriptorium Estoniae

    Suurkask, Heiki, 1972-

    2004-01-01

    USA Demokraatliku Partei presidendikandidaat John Kerry valis oma asepresidendikandidaadiks endise konkurendi John Edwardsi eesmärgiga kindlustada omale toetust lõunaosariikides. Lisa: Presidendivalimiste paarisrakend

  1. 20 miljonit keskkonnaprojektidele / Riina Mägi

    Index Scriptorium Estoniae

    Mägi, Riina, 1957-

    2006-01-01

    Jõgevamaa keskkonnaprojektid said Keskkonnainvesteeringute Keskuselt (KIK) toetust. Suuremad toetusesaajad olid Põltsamaa vallavalitsuse piirkondliku jäätmejaama projekt, Mustvee linnavalitsuse ja Puurmani vallavalitsuse veekaitseprojektid

  2. Neutron star natal kicks and the long-term survival of star clusters

    Science.gov (United States)

    Contenta, Filippo; Varri, Anna Lisa; Heggie, Douglas C.

    2015-04-01

    We investigate the dynamical evolution of a star cluster in an external tidal field by using N-body simulations, with focus on the effects of the presence or absence of neutron star natal velocity kicks. We show that, even if neutron stars typically represent less than 2 per cent of the total bound mass of a star cluster, their primordial kinematic properties may affect the lifetime of the system by up to almost a factor of 4. We interpret this result in the light of two known modes of star cluster dissolution, dominated by either early stellar evolution mass-loss or two-body relaxation. The competition between these effects shapes the mass-loss profile of star clusters, which may either dissolve abruptly (`jumping'), in the pre-core-collapse phase, or gradually (`skiing'), after having reached core collapse.

  3. Orphan Stars Found in Long Galaxy Tail

    Science.gov (United States)

    2007-09-01

    ESO 137-001 and Tail in Abell 3627 H-alpha Image of ESO 137-001 and Tail in Abell 3627 "By our galactic standards, these are extremely lonely stars," said Mark Voit, another team member from MSU. "If life was to form out there on a planet a few billion years from now, they would have very dark skies." The gas that formed the orphan stars was stripped out of its parent galaxy by the pressure induced by the motion of the galaxy through the multimillion degree gas that pervades the intergalactic space of the galaxy cluster. Eventually most of the gas will be scoured from the galaxy, depleting the raw material for new stars, and effectively stopping further star formation in the galaxy. This process may represent an important but short-lived stage in the transformation of a galaxy. Although apparently rare in the present-day universe, galactic tails of gas and orphan stars may have been more common billions of years ago when galaxies were younger and richer in star-forming gas. These results will appear in the December 10th issue of The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. The SOAR (Southern Astrophysical Research Telescope) is a joint project of Michigan State University, Conselho Nacional de Pesquisas Científicas e Tecnológicas (CNPq-Brazil), The University of North Carolina at Chapel Hill, and the National Optical Astronomy Observatory.

  4. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  5. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, C. E.; Espaillat, C. C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Owen, J. E. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Adams, F. C., E-mail: connorr@bu.edu [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-04-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  6. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    International Nuclear Information System (INIS)

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.; Adams, F. C.

    2017-01-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  7. 2.0 to 2.4 micron spectroscopy of T Tauri stars

    Science.gov (United States)

    Hamann, F.; Simon, M.; Ridgway, S. T.

    1988-03-01

    Velocity-resolved 2.0-2.5-micron observations of the T Tau stars T, DF, DG, DK, HL, and RY Tau, SU Aur, and GW Ori are presented. For each of these stars except SU Aur, the Brackett gamma line was detected in emission with line widths inthe range of about 130-230 km/s. The Brackett gamma line profile of SU Aur is complex, having components of both emission and absorption. The first measurement of CO band-head emission in DG Tau is reported, and it is shown that published radio continuum fluxes of young stars far exceed what could be produced in an envelope ionized by only the stellar photospheric Lyman continuum. The excess of radio emission is found to be much greater in low-luminosity sources (e.g., the T Tau stars).

  8. Ultracompact X-ray binary stars

    NARCIS (Netherlands)

    Haaften, L.M. van

    2013-01-01

    Ultracompact X-ray binary stars usually consist of a neutron star and a white dwarf, two stars bound together by their strong gravity and orbiting each other very rapidly, completing one orbit in less than one hour. Neutron stars are extremely compact remnants of the collapsed cores of massive stars

  9. Reddening and blanketing of RR-Lyrae stars, ch. 3

    International Nuclear Information System (INIS)

    Lub, J.

    1977-01-01

    The effects of metal line blanketing and interstellar reddening upon the colours of the RR-Lyrae Stars are discussed. Due to the faintness of these stars in the ultraviolet W channel (at lambda 3720 A) the photometry is in most cases reduced to a four-colour VBLU photometry, i.e. there are only three colour indices available for the determination of the four quantities: interstellar reddening, effective temperature, atmospheric pressure (or effective gravity), and metal line strength which determine the energy distribution that was measured

  10. Possibility of higher-dimensional anisotropic compact star

    International Nuclear Information System (INIS)

    Bhar, Piyali; Rahaman, Farook; Ray, Saibal; Chatterjee, Vikram

    2015-01-01

    We provide a new class of interior solutions for anisotropic stars admitting conformal motion in higher-dimensional noncommutative spacetime. The Einstein field equations are solved by choosing a particular density distribution function of Lorentzian type as provided by Nazari and Mehdipour [1, 2] under a noncommutative geometry. Several cases with 4 and higher dimensions, e.g. 5, 6, and 11 dimensions, are discussed separately. An overall observation is that the model parameters, such as density, radial pressure, transverse pressure, and anisotropy, all are well behaved and represent a compact star with mass 2.27 M s un and radius 4.17 km. However, emphasis is put on the acceptability of the model from a physical point of view. As a consequence it is observed that higher dimensions, i.e. beyond 4D spacetime, exhibit several interesting yet bizarre features, which are not at all untenable for a compact stellar model of strange quark type; thus this dictates the possibility of its extra-dimensional existence. (orig.)

  11. Possibility of higher-dimensional anisotropic compact star

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali; Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chatterjee, Vikram [Central Footwear Training Centre, Department of Physics, Parganas, West Bengal (India)

    2015-05-15

    We provide a new class of interior solutions for anisotropic stars admitting conformal motion in higher-dimensional noncommutative spacetime. The Einstein field equations are solved by choosing a particular density distribution function of Lorentzian type as provided by Nazari and Mehdipour [1, 2] under a noncommutative geometry. Several cases with 4 and higher dimensions, e.g. 5, 6, and 11 dimensions, are discussed separately. An overall observation is that the model parameters, such as density, radial pressure, transverse pressure, and anisotropy, all are well behaved and represent a compact star with mass 2.27 M{sub s}un and radius 4.17 km. However, emphasis is put on the acceptability of the model from a physical point of view. As a consequence it is observed that higher dimensions, i.e. beyond 4D spacetime, exhibit several interesting yet bizarre features, which are not at all untenable for a compact stellar model of strange quark type; thus this dictates the possibility of its extra-dimensional existence. (orig.)

  12. Time-dependent spectral-feature variations of stars displaying the B[e] phenomenon

    Czech Academy of Sciences Publication Activity Database

    Kučerová, B.; Korčáková, D.; Polster, J.; Wolf, M.; Votruba, Viktor; Kubát, Jiří; Škoda, Petr; Šlechta, Miroslav; Křížek, M.

    2013-01-01

    Roč. 554, June (2013), A143/1-A143/26 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GP205/09/P476 Institutional research plan: CEZ:AV0Z10030501 Keywords : individual star MWC 342 * emission line Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  13. Flames High Resolution Spectroscopy of RGB Stars in the Carina Dwarf Spheroidal Galaxy

    NARCIS (Netherlands)

    Lemasle, B.; Hill, V.; Tolstoy, E.; Venn, K.; Koleva, M; Prugniel, P; Vauglin,

    Carina is a small and faint classical dwarf spheroidal galaxy in the halo of the Milky Way with a highly episodic star formation history (e.g., Hurley-Keller et al. 1998). Using VLT/FLAMES in high resolution mode, we significantly increase the sample of stars with abundance determinations in Carina,

  14. Star Masses and Star-Planet Distances for Earth-like Habitability.

    Science.gov (United States)

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M ⊙ planets with at least simple life is 0.57 M ⊙  < M < 1.64 M ⊙ . Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  15. X-ray sources in stars formation areas: T Tauri stars and proto-stars in the rho Ophiuchi dark cloud

    International Nuclear Information System (INIS)

    Grosso, Nicolas

    1999-01-01

    This thesis studies from large to small scales, X-ray sources in the rho Ophiuchi dark cloud. After some background on the formation of the low-mass young stars (Chapter 1), Chapter 2 takes an interest in the T Tauri star population. Chapter 3 tackles the search of the magnetic activity at the younger stage of protostar, presenting a powerful X-ray emission from an IR protostar, called YLW15, during a flare, and a quasi-periodic flare of the same source; as well as a new detection of another IR protostar in the ROSAT archives. It ends with a review of protostar detections. Some IR protostar flares show a very long increasing phase. Chapter 4 links this behaviour with a modulation by the central star rotation. The standard model of jet emission assumes that the central star rotates at the same speed that the inner edge of its accretion disk. This chapter shows that the observation of the YLW15 quasi-periodic flare suggests rather that the forming star rotates faster than its accretion disk, at the break up limit. The synchronism with the accretion disk, observed on T Tauri stars, must be reach progressively by magnetic breaking during the IR protostar stage, and more or less rapidly depending on the forming star mass. Recent studies have shown that T Tauri star X-ray emission could ionize the circumstellar disk, and play a role in the instability development, as well as stimulate the accretion. The protostar X-ray emission might be higher than the T Tauri star one, Chapter 5 presents a millimetric interferometric observation dedicated to measure this effect on YLW15. Finally, Chapter 6 reassembles conclusions and perspectives of this work. (author) [fr

  16. A New Photometric Study of Ap and Am Stars in the Infrared

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. S.; Liu, J. Y.; Shan, H. G., E-mail: chenps@ynao.ac.cn [Yunnan Observatories and Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 (China)

    2017-05-01

    In this paper, 426 well known confirmed Ap and Am stars are photometrically studied in the infrared. The 2MASS, Wide-field Infrared Survey Explorer ( WISE ), and IRAS data are employed to make analyses. The results in this paper have shown that in the 1–3 μ m region over 90% Ap and Am stars have no or little infrared excesses, and infrared radiations in the near-infrared from these stars are probably dominated by the free–free emissions. It is also shown that in the 3–12 μ m region, the majority of Ap stars and Am stars have very similar behavior, i.e., in the W 1– W 2 (3.4–4.6 μ m) region, over half of Ap and Am stars have clear infrared excesses, which are possibly due to the binarity, the multiplicity, and/or the debris disk, but in the W 2– W 3 (4.6–12 μ m) region they have no or little infrared excess. In addition, in the 12–22 μ m region, some of Ap stars and Am stars show the infrared excesses and infrared radiations for these Ap and Am stars are probably due to the free–free emissions. In addition, it is seen that the probability of being the binarity, the multiplicity and/or the debris disk for Am stars is much higher than that for Ap stars. Furthermore, it can be seen that, in general, no relations can be found between infrared colors and spectral types either for Ap stars or for Am stars.

  17. A New Photometric Study of Ap and Am Stars in the Infrared

    International Nuclear Information System (INIS)

    Chen, P. S.; Liu, J. Y.; Shan, H. G.

    2017-01-01

    In this paper, 426 well known confirmed Ap and Am stars are photometrically studied in the infrared. The 2MASS, Wide-field Infrared Survey Explorer ( WISE ), and IRAS data are employed to make analyses. The results in this paper have shown that in the 1–3 μ m region over 90% Ap and Am stars have no or little infrared excesses, and infrared radiations in the near-infrared from these stars are probably dominated by the free–free emissions. It is also shown that in the 3–12 μ m region, the majority of Ap stars and Am stars have very similar behavior, i.e., in the W 1– W 2 (3.4–4.6 μ m) region, over half of Ap and Am stars have clear infrared excesses, which are possibly due to the binarity, the multiplicity, and/or the debris disk, but in the W 2– W 3 (4.6–12 μ m) region they have no or little infrared excess. In addition, in the 12–22 μ m region, some of Ap stars and Am stars show the infrared excesses and infrared radiations for these Ap and Am stars are probably due to the free–free emissions. In addition, it is seen that the probability of being the binarity, the multiplicity and/or the debris disk for Am stars is much higher than that for Ap stars. Furthermore, it can be seen that, in general, no relations can be found between infrared colors and spectral types either for Ap stars or for Am stars.

  18. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). II. BRIGHT SOUTHERN STARS

    International Nuclear Information System (INIS)

    Sota, A.; Apellániz, J. Maíz; Alfaro, E. J.; Morrell, N. I.; Barbá, R. H.; Arias, J. I.; Walborn, N. R.; Gamen, R. C.

    2014-01-01

    We present the second installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ∼ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog (GOSC). In this paper we include bright stars and other objects drawn mostly from the first version of GOSC, all of them south of δ = –20°, for a total number of 258 O stars. We also revise the northern sample of Paper I to provide the full list of spectroscopically classified Galactic O stars complete to B = 8, bringing the total number of published GOSSS stars to 448. Extensive sequences of exceptional objects are given, including the early Of/WN, O Iafpe, Ofc, ON/OC, Onfp, Of?p, and Oe types, as well as double/triple-lined spectroscopic binaries. The new spectral subtype O9.2 is also discussed. The magnitude and spatial distributions of the observed sample are analyzed. We also present new results from OWN, a multi-epoch high-resolution spectroscopic survey coordinated with GOSSS that is assembling the largest sample of Galactic spectroscopic massive binaries ever attained. The OWN data combined with additional information on spectroscopic and visual binaries from the literature indicate that only a very small fraction (if any) of the stars with masses above 15-20 M ☉ are born as single systems. In the future we will publish the rest of the GOSSS survey, which is expected to include over 1000 Galactic O stars

  19. FIRST OBSERVATIONAL SIGNATURE OF ROTATIONAL DECELERATION IN A MASSIVE, INTERMEDIATE-AGE STAR CLUSTER IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaohan [School of Physics, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Li, Chengyuan; De Grijs, Richard [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Deng, Licai, E-mail: grijs@pku.edu.cn [Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China)

    2016-07-20

    While the extended main-sequence turnoffs (eMSTOs) found in almost all 1–2 Gyr old star clusters in the Magellanic Clouds are often explained by postulating extended star formation histories (SFHs), the tight subgiant branches (SGBs) seen in some clusters challenge this popular scenario. Puzzlingly, the SGB of the eMSTO cluster NGC 419 is significantly broader at bluer than at redder colors. We carefully assess and confirm the reality of this observational trend. If we would assume that the widths of the features in color–magnitude space were entirely owing to a range in stellar ages, the SFHs of the eMSTO stars and the blue SGB region would be significantly more prolonged than that of the red part of the SGB. This cannot be explained by assuming an internal age spread. We show that rotational deceleration of a population of rapidly rotating stars, a currently hotly debated alternative scenario, naturally explains the observed trend along the SGB. Our analysis shows that a “converging” SGB could be produced if the cluster is mostly composed of rapidly rotating stars that slow down over time owing to the conservation of angular momentum during their evolutionary expansion from main-sequence turnoff stars to red giants.

  20. Two massive stars possibly ejected from NGC 3603 via a three-body encounter

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Chené, A.-N.; Schnurr, O.

    2013-03-01

    We report the discovery of a bow-shock-producing star in the vicinity of the young massive star cluster NGC 3603 using archival data of the Spitzer Space Telescope. Follow-up optical spectroscopy of this star with Gemini-South led to its classification as O6 V. The orientation of the bow shock and the distance to the star (based on its spectral type) suggest that the star was expelled from the cluster, while the young age of the cluster (˜2 Myr) implies that the ejection was caused by a dynamical few-body encounter in the cluster's core. The relative position on the sky of the O6 V star and a recently discovered O2 If*/WN6 star (located on the opposite side of NGC 3603) allows us to propose that both objects were ejected from the cluster via the same dynamical event - a three-body encounter between a single (O6 V) star and a massive binary (now the O2 If*/WN6 star). If our proposal is correct, then one can `weigh' the O2 If*/WN6 star using the conservation of the linear momentum. Given a mass of the O6 V star of ≈30 M⊙, we found that at the moment of ejection the mass of the O2 If*/WN6 star was ≈175 M⊙. Moreover, the observed X-ray luminosity of the O2 If*/WN6 star (typical of a single star) suggests that the components of this originally binary system have merged (e.g., because of encounter hardening).

  1. Lithium in the barium stars

    International Nuclear Information System (INIS)

    Pinsonneault, M.H.; Sneden, C.

    1984-01-01

    New high-resolution spectra of the lithium resonance doublet have provided lithium abundances or upper limits for 26 classical and mild barium stars. The lithium lines always are present in the classical barium stars. Lithium abundances in these stars obey a trend with stellar masses consistent with that previously derived for ordinary K giants. This supports the notion that classical barium stars are post-core-He-flash or core-He-burning stars. Lithium contents in the mild barium stars, however, often are much smaller than those of the classical barium stars sometimes only upper limits may be determined. The cause for this difference is not easily understood, but may be related to more extensive mass loss by the mild barium stars. 45 references

  2. Improved autonomous star identification algorithm

    International Nuclear Information System (INIS)

    Luo Li-Yan; Xu Lu-Ping; Zhang Hua; Sun Jing-Rong

    2015-01-01

    The log–polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm. (paper)

  3. Ministeerium nõudis ELF-i ja ERL-i projektide rahata jätmist / Sander Silm

    Index Scriptorium Estoniae

    Silm, Sander, 1970-

    2004-01-01

    Keskkonnainvesteeringute Keskuse nõukogus ei leidnud keskkonnaministeeriumi programmide ekspertgrupi ettepanekul toetust üheksa Eestimaa Looduse Fondi ja Eesti Rohelise Liikumise projekti. Kommenteerib keskkonnaminister Villu Reiljan

  4. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  5. Peculiar early-type galaxies with central star formation

    International Nuclear Information System (INIS)

    Ge Chong; Gu Qiusheng

    2012-01-01

    Early-type galaxies (ETGs) are very important for understanding the formation and evolution of galaxies. Recent observations suggest that ETGs are not simply old stellar spheroids as we previously thought. Widespread recent star formation, cool gas and dust have been detected in a substantial fraction of ETGs. We make use of the radial profiles of g — r color and the concentration index from the Sloan Digital Sky Survey database to pick out 31 peculiar ETGs with central blue cores. By analyzing the photometric and spectroscopic data, we suggest that the blue cores are caused by star formation activities rather than the central weak active galactic nucleus. From the results of stellar population synthesis, we find that the stellar population of the blue cores is relatively young, spreading from several Myr to less than one Gyr. In 14 galaxies with H I observations, we find that the average gas fraction of these galaxies is about 0.55. The bluer galaxies show a higher gas fraction, and the total star formation rate (SFR) correlates very well with the H I gas mass. The star formation history of these ETGs is affected by the environment, e.g. in the denser environment the H I gas is less and the total SFR is lower. We also discuss the origin of the central star formation of these early-type galaxies.

  6. An infrared diagnostic for magnetism in hot stars

    Science.gov (United States)

    Oksala, M. E.; Grunhut, J. H.; Kraus, M.; Borges Fernandes, M.; Neiner, C.; Condori, C. A. H.; Campagnolo, J. C. N.; Souza, T. B.

    2015-06-01

    Magnetospheric observational proxies are used for indirect detection of magnetic fields in hot stars in the X-ray, UV, optical, and radio wavelength ranges. To determine the viability of infrared (IR) hydrogen recombination lines as a magnetic diagnostic for these stars, we have obtained low-resolution (R~ 1200), near-IR spectra of the known magnetic B2V stars HR 5907 and HR 7355, taken with the Ohio State Infrared Imager/Spectrometer (OSIRIS) attached to the 4.1 m Southern Astrophysical Research (SOAR) Telescope. Both stars show definite variable emission features in IR hydrogen lines of the Brackett series, with similar properties as those found in optical spectra, including the derived location of the detected magnetospheric plasma. These features also have the added advantage of a lowered contribution of stellar flux at these wavelengths, making circumstellar material more easily detectable. IR diagnostics will be useful for the future study of magnetic hot stars, to detect and analyze lower-density environments, and to detect magnetic candidates in areas obscured from UV and optical observations, increasing the number of known magnetic stars to determine basic formation properties and investigate the origin of their magnetic fields. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  7. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  8. Evolution of a massive binary in a star field

    International Nuclear Information System (INIS)

    Baranov, A.S.

    1984-01-01

    The orbital evolution of a massive binary system interacting with a background field of single stars whose phase density is homogeneous in configuration space is considered. The velocity distribution is assumed isotropic up to some limiting value, and a typical field star is regarded as having a velocity much higher than the orbital speed of the pair components. An expression is derived for the transfer of energy from the binary to the field stars. The time evolution of the orbit parameters a, e is established, and the evolution rate is estimated for Kardashev's (1983) model galactic nucleus containing a central black-hole binary. On the above assumptions the components should become twice as close together within only a few tens of millennia, although the picture may change fundamentally if the nucleus is rotating. 13 references

  9. Evidence for circumstellar obscuration of OB stars

    International Nuclear Information System (INIS)

    Bohannan, B.

    1975-01-01

    Reddish found a strong increase of color excess with increasing stellar luminosity: here referred to as the Reddish Effect: in ten young galactic clusters and associations. New photometric and spectroscopic observations drawn from the literature are combined with data used by Reddish to reconsider the color excess versus intrinsic magnitude diagrams of the same ten stellar groups. The reality of the Effect is questioned in all but one of the systems; this was accomplished by identifying possible foreground stars and by recognizing some of the brightest stars as supergiants, then applying correct intrinsic color indices. After careful reanalysis, the one stellar group to retain an indication of the Reddish Effect is Cygnus OB2. No correlation of reddening with luminosity was found for five additional very young stellar groups in the southern hemisphere; these groups should exhibit the Effect if it is a natural consequence of stellar evolution. Reddish ascribed the correlation to massive circumstellar remnants of material from which the stars formed. However, a peculiar dispersion in color excess could also be attributed to patchy dust within the stellar group. In several stellar systems previously identified as displaying the Reddish Effect, a correlation of observed color excess with dust and gas concentrations is noted on Palomar Sky Survey prints. If present, circumstellar dust clouds should []anifest their existence in modes other than a correlation of color excess with luminosity. The following possibilities are considered and all show negative results: correlation of color excess with spectral type; correlation of reddening slope E/subU//sub -//subB//E/subB//sub -//subV/ with spectral type; observable infrared excess. The preceding astrophysical arguments strongly imply that circumstellar dust remnants from stellar formation do not remain around stars during their main-sequence lifetimes. (auth)

  10. Starquakes, Heating Anomalies, and Nuclear Reactions in the Neutron Star Crust

    Science.gov (United States)

    Deibel, Alex Thomas

    When the most massive stars perish, their cores may remain intact in the form of extremely dense and compact stars. These stellar remnants, called neutron stars, are on the cusp of becoming black holes and reach mass densities greater than an atomic nucleus in their centers. Although the interiors of neutron stars were difficult to investigate at the time of their discovery, the advent of modern space-based telescopes (e.g., Chandra X-ray Observatory) has pushed our understanding of the neutron star interior into exciting new realms. It has been shown that the neutron star interior spans an enormous range of densities and contains many phases of matter, and further theoretical progress must rely on numerical calculations of neutron star phenomena built with detailed nuclear physics input. To further investigate the properties of the neutron star interior, this dissertation constructs numerical models of neutron stars, applies models to various observations of neutron star high-energy phenomena, and draws new conclusions about the neutron star interior from these analyses. In particular, we model the neutron star's outermost ? 1 km that encompasses the neutron star's envelope, ocean, and crust. The model must implement detailed nuclear physics to properly simulate the hydrostatic and thermal structure of the neutron star. We then apply our model to phenomena that occur in these layers, such as: thermonuclear bursts in the envelope, g-modes in the ocean, torsional oscillations of the crust, and crust cooling of neutron star transients. A comparison of models to observations provides new insights on the properties of dense matter that are often difficult to probe through terrestrial experiments. For example, models of the quiescent cooling of neutron stars, such as the accreting transient MAXI J0556-332, at late times into quiescence probe the thermal transport properties of the deep neutron star crust. This modeling provides independent data from astronomical

  11. Stars and Planets

    Science.gov (United States)

    Neta, Miguel

    2014-05-01

    'Estrelas e Planetas' (Stars and Planets) project was developed during the academic year 2009/2010 and was tested on three 3rd grade classes of one school in Quarteira, Portugal. The aim was to encourage the learning of science and the natural and physical phenomena through the construction and manipulation of materials that promote these themes - in this case astronomy. Throughout the project the students built a small book containing three themes of astronomy: differences between stars and planets, the solar system and the phases of the Moon. To each topic was devoted two sessions of about an hour each: the first to teach the theoretical aspects of the theme and the second session to assembly two pages of the book. All materials used (for theoretical sessions and for the construction of the book) and videos of the finished book are available for free use in www.miguelneta.pt/estrelaseplanetas. So far there is only a Portuguese version but soon will be published in English as well. This project won the Excellency Prize 2011 of Casa das Ciências, a portuguese site for teachers supported by the Calouste Gulbenkian Fundation (www.casadasciencias.org).

  12. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Whalen, Daniel J. [Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth (United Kingdom); Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S., E-mail: ken.chen@nao.ac.jp [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg (Germany)

    2017-08-01

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.

  13. Adubação nitrogenada na implantação e na formação de pomares de caramboleira Nitrogen fertilization at establishment and development of star fruit orchard

    Directory of Open Access Journals (Sweden)

    Renata Moreira Leal

    2007-08-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos da adubação nitrogenada na implantação e na formação de um pomar de caramboleira (Averrhoa carambola L., cv. B-10, e na acidificação do Latossolo Vermelho eutroférrico típico. O delineamento experimental adotado foi o de blocos ao acaso, com cinco tratamentos, que corresponderam a diferentes doses de nitrogênio (uréia. Na implantação, as doses utilizadas foram zero, 30, 60, 90 e 120 g por planta de N e no 1º, 2º e 3º anos experimentais, utilizou-se o dobro, o triplo e o quádruplo das doses iniciais. A adubação nitrogenada de formação, a partir do segundo ano de experimentação, promove diminuição significativa do pH, aumento da acidez potencial e diminuição das concentrações de potássio, cálcio e magnésio, soma de bases e saturação por bases do solo. Caramboleiras sem adubação nitrogenada apresentam menor teor foliar de N em relação às adubadas, e não floresceram até o terceiro ano de experimentação. No terceiro ano de experimentação, doses entre 110 e 180 g por planta de N proporcionam o melhor crescimento da caramboleira, o maior teor foliar de N, leitura SPAD e produção.The objective of this work was to study the effect of nitrogen fertilization at establishment and development of star fruit (Averrhoa carambola L., cv. B-10, orchads and the acidification of Eutrustox soil. The experiment design was in randomized blocks, comprising five treatments corresponding to different nitrogen (urea rates, with four replications. At the plant establishment, N rates were zero, 30, 60, 90 and 120 g plant-1 of N and, at the 1st, 2nd and 3rd years of experimentation, two fold, three fold and four fold of initial rate. Nitrogen fertilizer on star fruit at establishment, after the second year of experiment, result in significant pH reduction which increase potential acidity and decrease potassium, calcium and magnesium concentrations, as well as the sum of bases and

  14. Chemical Abundances of Red Giant Stars in the Globular Cluster M107 (NGC 6171)

    Science.gov (United States)

    O'Connell, Julia E.; Johnson, Christian I.; Pilachowski, Catherine A.; Burks, Geoffrey

    2011-10-01

    We present chemical abundances of Al and several Fe-Peak and neutron-capture elements for 13 red giant branch stars in the Galactic globular cluster NGC 6171 (M107). The abundances were determined using equivalent width and spectrum synthesis analyses of moderate-resolution ( R ˜ 15,000), moderate signal-to-noise ratio ( ˜ 80) spectra obtained with the WIYN telescope and Hydra multifiber spectrograph. A comparison between photometric and spectroscopic effective temperature estimates seems to indicate that a reddening value of E(B - V) = 0.46 may be more appropriate for this cluster than the more commonly used value of E(B - V) = 0.33. Similarly, we found that a distance modulus of (m - M)V ≈ 13.7 provided reasonable surface gravity estimates for the stars in our sample. Our spectroscopic analysis finds M107 to be moderately metal-poor with = -0.93 and also exhibits a small star-to-star metallicity dispersion (σ = 0.04). These results are consistent with previous photometric and spectroscopic studies. Aluminum appears to be moderately enhanced in all program stars ( = +0.39, σ = 0.11). The relatively small star-to-star scatter in [Al/Fe] differs from the trend found in more metal-poor globular clusters, and is more similar to what is found in clusters with [Fe/H] ≳ -1. The cluster also appears to be moderately r-process-enriched with = +0.32 (σ = 0.17).

  15. SPITZER VIEW OF YOUNG MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD H II COMPLEXES. II. N 159

    International Nuclear Information System (INIS)

    Chen, C.-H. Rosie; Indebetouw, Remy; Chu, You-Hua; Gruendl, Robert A.; Seale, Jonathan P.; Testor, Gerard; Heitsch, Fabian; Meixner, Margaret; Sewilo, Marta

    2010-01-01

    The H II complex N 159 in the Large Magellanic Cloud is used to study massive star formation in different environments, as it contains three giant molecular clouds (GMCs) that have similar sizes and masses but exhibit different intensities of star formation. We identify candidate massive young stellar objects (YSOs) using infrared photometry, and model their spectral energy distributions to constrain mass and evolutionary state. Good fits are obtained for less evolved Type I, I/II, and II sources. Our analysis suggests that there are massive embedded YSOs in N 159B, a maser source, and several ultracompact H II regions. Massive O-type YSOs are found in GMCs N 159-E and N 159-W, which are associated with ionized gas, i.e., where massive stars formed a few Myr ago. The third GMC, N 159-S, has neither O-type YSOs nor evidence of previous massive star formation. This correlation between current and antecedent formation of massive stars suggests that energy feedback is relevant. We present evidence that N 159-W is forming YSOs spontaneously, while collapse in N 159-E may be triggered. Finally, we compare star formation rates determined from YSO counts with those from integrated Hα and 24 μm luminosities and expected from gas surface densities. Detailed dissection of extragalactic GMCs like the one presented here is key to revealing the physics underlying commonly used star formation scaling laws.

  16. Mechanism of mRNA-STAR domain interaction: Molecular dynamics simulations of Mammalian Quaking STAR protein.

    Science.gov (United States)

    Sharma, Monika; Anirudh, C R

    2017-10-03

    STAR proteins are evolutionary conserved mRNA-binding proteins that post-transcriptionally regulate gene expression at all stages of RNA metabolism. These proteins possess conserved STAR domain that recognizes identical RNA regulatory elements as YUAAY. Recently reported crystal structures show that STAR domain is composed of N-terminal QUA1, K-homology domain (KH) and C-terminal QUA2, and mRNA binding is mediated by KH-QUA2 domain. Here, we present simulation studies done to investigate binding of mRNA to STAR protein, mammalian Quaking protein (QKI). We carried out conventional MD simulations of STAR domain in presence and absence of mRNA, and studied the impact of mRNA on the stability, dynamics and underlying allosteric mechanism of STAR domain. Our unbiased simulations results show that presence of mRNA stabilizes the overall STAR domain by reducing the structural deviations, correlating the 'within-domain' motions, and maintaining the native contacts information. Absence of mRNA not only influenced the essential modes of motion of STAR domain, but also affected the connectivity of networks within STAR domain. We further explored the dissociation of mRNA from STAR domain using umbrella sampling simulations, and the results suggest that mRNA binding to STAR domain occurs in multi-step: first conformational selection of mRNA backbone conformations, followed by induced fit mechanism as nucleobases interact with STAR domain.

  17. Tidal heating and mass loss in neutron star binaries - Implications for gamma-ray burst models

    Science.gov (United States)

    Meszaros, P.; Rees, M. J.

    1992-01-01

    A neutron star in a close binary orbit around another neutron star (or stellar-mass black hole) spirals inward owing to gravitational radiation. We discuss the effects of tidal dissipation during this process. Tidal energy dissipated in the neutron star's core escapes mainly as neutrinos, but heating of the crust, and outward diffusion of photons, blows off the outer layers of the star. This photon-driven mass loss precedes the final coalescence. The presence of this eject material impedes the escape of gamma-rays created via neutrino interactions. If an e(+) - e(-) fireball, created in the late stages of coalescence, were loaded with (or surrounded by) material with the mean column density of the ejecta, it could not be an efficient source of gamma-rays. Models for cosmologically distant gamma-rays burst that involve neutron stars must therefore be anisotropic, so that the fireball expands preferentially in directions where the column density of previously blown-off material is far below the spherically averaged value which we have calculated. Some possible 'scenarios' along these lines are briefly discussed.

  18. Making star teams out of star players.

    Science.gov (United States)

    Mankins, Michael; Bird, Alan; Root, James

    2013-01-01

    Top talent is an invaluable asset: In highly specialized or creative work, for instance, "A" players are likely to be six times as productive as "B" players. So when your company has a crucial strategic project, why not multiply all that firepower and have a team of your best performers tackle it? Yet many companies hesitate to do this, believing that all-star teams don't work: Big egos will get in the way. The stars won't be able to work with one another. They'll drive the team Leader crazy. Mankins, Bird, and Root of Bain & Company believe it's time to set aside that thinking. They have seen all-star teams do extraordinary work. But there is a right way and a wrong way to organize them. Before you can even begin to assemble such a team, you need to have the right talent management practices, so you hire and develop the best people and know what they're capable of. You have to give the team appropriate incentives and leaders and support staffers who are stars in their own right. And projects that are ill-defined or small scale are not for all-star teams. Use them only for critical missions, and make sure their objectives are clear. Even with the right setup, things can still go wrong. The wise executive will take steps to manage egos, prune non-team-players, and prevent average coworkers from feeling completely undervalued. She will also invest a lot of time in choosing the right team Leader and will ask members for lots of feedback to monitor how that leader is doing.

  19. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    International Nuclear Information System (INIS)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Gaudi, B. S.; Henderson, C. B.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Bos, M.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.

    2012-01-01

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θ E ∼ 0.08 mas combined with the short timescale of t E ∼ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ∼0.84 M ☉ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  20. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Gaudi, B. S.; Henderson, C. B. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis boulevard Arago, 75014 Paris (France); Street, R. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr, Suite 102, Goleta, CA 93117 (United States); Dominik, M. [School of Physics and Astronomy, SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Allen, W. [Vintage Lane Observatory, Blenheim (New Zealand); Almeida, L. A. [Instituto Nacional de Pesquisas Espaciais/MCTI, Sao Jose dos Campos, Sao Paulo (Brazil); Bos, M. [Molehill Astronomical Observatory, North Shore (New Zealand); Christie, G. W. [Auckland Observatory, P.O. Box 24-180, Auckland (New Zealand); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Dong, S. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Drummond, J. [Possum Observatory, Patutahi (New Zealand); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute (Israel); Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-05-20

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of {theta}{sub E} {approx} 0.08 mas combined with the short timescale of t{sub E} {approx} 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of {approx}0.84 M{sub Sun} is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  1. X-rays from stars

    Science.gov (United States)

    Güdel, Manuel

    2004-07-01

    Spectroscopic studies available from Chandra and XMM-Newton play a pivotal part in the understanding of the physical processes in stellar (magnetic and non-magnetic) atmospheres. It is now routinely possible to derive densities and to study the influence of ultraviolet radiation fields, both of which can be used to infer the geometry of the radiating sources. Line profiles provide important information on bulk mass motions and attenuation by neutral matter, e.g. in stellar winds. The increased sensitivity has revealed new types of X-ray sources in systems that were thought to be unlikely places for X-rays: flaring brown dwarfs, including rather old, non-accreting objects, and terminal shocks in jets of young stars are important examples. New clues concerning the role of stellar high-energy processes in the modification of the stellar environment (ionization, spallation, etc.) contribute significantly to our understanding of the "astro-ecology" in forming planetary systems. Technological limitations are evident. The spectral resolution has not reached the level where bulk mass motions in cool stars become easily measurable. Higher resolution would also be important to perform X-ray "Doppler imaging" in order to reconstruct the 3-D distribution of the X-ray sources around a rotating star. Higher sensitivity will be required to perform high-resolution spectroscopy of weak sources such as brown dwarfs or embedded pre-main-sequence sources. A new generation of satellites such as Constellation-X or XEUS should pursue these goals.

  2. Pljusõ i minusõ Jevropeiskogo Sojuza / Aleksandr Ikonnikov

    Index Scriptorium Estoniae

    Ikonnikov, Aleksandr

    2002-01-01

    Vene ajakirjanikele korraldatud briifing EL teemadel: EL fonde ja programme tutvustas rahandusministeeriumi asekantsler Rinaldo Mändmets. Eestis elavate vene elanike toetust liitumisele kommenteerib Paavo Palk Riigikantseleist

  3. Pärnu linn toetab kultuurikavasid 4,5 miljoni krooniga

    Index Scriptorium Estoniae

    2007-01-01

    Toetuste saajateks ka muusikaüritused: David Oistrahhi festival, laste- ja noorte muusikafestival "Muusikamoos", MTÜ Suupilliklubi Piccolo, Pärnu Ooperipäevad, rahvusvaheline folkloorifestival "Baltica 2007"

  4. Sotsiaalabi - viimane abinõu vaesuse vastu / Pille Liimal

    Index Scriptorium Estoniae

    Liimal, Pille

    2004-01-01

    Uue hoolekande kontseptsiooni kohaselt tuleb sotsiaalabi vajajatele osutada ka tööturuteenuseid, nõustamist, sotsiaalset rehabilitatsiooni jne. Joon.: toimetulekupiiri kindlustamiseks arvestatud toetuste summa 1998-2003

  5. Lightweight Double Neutron Star Found

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    for such a system.Through meticulous observations over the span of 2.5 years, Martinez and collaborators were able to obtain a number of useful measurements for the system, including the pulsars period (62 ms), the period of the binary (2.62 days), and the systems eccentricity (e = 0.17).In addition, the team measured the rate of advance of periastron of the system, allowing them to estimate the total mass of the system: M = 2.54 solar masses. This mass, combined with the eccentricity of the orbit, demonstrate that the companion of the pulsar in PSR J1411+2551 is almost certainly a neutron star and the system is one of the lightest known to date, even including the double neutron-star merger that was observed by LIGO in August this past year.Constraining Stellar PhysicsBased on its measured properties, PSR J1411+2551 is most likely a recycled pulsar in a double neutron-star system. [Martinez et al. 2017]The intriguing orbital properties and low mass of PSR J1411+2551 have already allowed the authors to explore a number of constraints to stellar evolution models, including narrowing the possible equations of state for neutron stars that could produce such a system. These constraints will be interesting to compare to constraints from LIGO and Virgo in the future, as more merging neutron-star systems are observed.Meanwhile, our best bet for obtaining further constraints is to continue searching for more pre-merger double neutron-star systems like the Hulse-Taylor binary and PSR J1411+2551. Let the hunt continue!CitationJ. G. Martinez et al 2017 ApJL 851 L29. doi:10.3847/2041-8213/aa9d87

  6. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  7. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  8. Four new Delta Scuti stars

    Science.gov (United States)

    Schutt, R. L.

    1991-01-01

    Four new Delta Scuti stars are reported. Power, modified into amplitude, spectra, and light curves are used to determine periodicities. A complete frequency analysis is not performed due to the lack of a sufficient time base in the data. These new variables help verify the many predictions that Delta Scuti stars probably exist in prolific numbers as small amplitude variables. Two of these stars, HR 4344 and HD 107513, are possibly Am stars. If so, they are among the minority of variable stars which are also Am stars.

  9. Design and DSP implementation of star image acquisition and star point fast acquiring and tracking

    Science.gov (United States)

    Zhou, Guohui; Wang, Xiaodong; Hao, Zhihang

    2006-02-01

    Star sensor is a special high accuracy photoelectric sensor. Attitude acquisition time is an important function index of star sensor. In this paper, the design target is to acquire 10 samples per second dynamic performance. On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architecture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows including the star to the on-chip memory of DSP is arranged in the invalid period of CCD frame signal. During the CCD saving the star image to memory, DSP processes the data in the on-chip memory. This parallelism greatly improves the efficiency of processing. The scheme proposed here results in enormous savings of memory normally required. In the scheme, DSP HOLD mode and CPLD technology are used to make a shared memory between CCD and DSP. The efficiency of processing is discussed in numerical tests. Only in 3.5ms is acquired the five lightest stars in the star acquisition stage. In 43us, the data in five expanded windows including stars are moved into the internal memory of DSP, and in 1.6ms, five star coordinates are achieved in the star tracking stage.

  10. On Neutron Star/Supernova Remnant Association

    Science.gov (United States)

    Gvaramadze, V. V.

    It is pointed out that a cavity supernova (SN) explosion of a moving massive star could result in a significant offset of the neutron star (NS) birth-place from the geometrical centre of the supernova remnant (SNR). Therefore: a) the high implied transverse velocities of a number of NSs (e.g. PSR B1610-50, PSR B1706-44, PSR B1757-24, SGR 0526-66) could be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR; c) the circle of possible NS/SNR associations could be enlarged. An observational test is discussed, which could provide a determination of the true birth-places of NSs associated with middle-aged SNRs, and thereby provide more reliable estimates of their transverse velocities.

  11. Spectrophotometry of Wolf-Rayet stars. I - Continuum energy distributions

    Science.gov (United States)

    Morris, Patrick W.; Brownsberger, Kenneth R.; Conti, Peter S.; Massey, Philip; Vacca, William D.

    1993-01-01

    All available low-resolution IUE spectra are assembled for Galactic, LMC, and SMC W-R stars and are merged with ground-based optical and NIR spectra in order to collate in a systematic fashion the shapes of these energy distributions over the wavelength range 0.1-1 micron. They can be consistently fitted by a power law of the form F(lambda) is approximately equal to lambda exp -alpha over the range 1500-9000 A to derive color excesses E(B-V) and spectral indices by removing the 2175-A interstellar absorption feature. The WN star color excesses derived are found to be in good agreement with those of Schmutz and Vacca (1991) and Koesterke et al. (1991). Significant heterogeneity in spectral index values was generally seen with any given subtype, but the groups consisting of the combined set of Galactic and LMC W-R stars, the separate WN and WC sequences, and the Galactic and LMC W-R stars all showed a striking and consistent Gaussian-like frequency distribution of values.

  12. Self and collective dynamics of ordered star polymer solutions

    CERN Document Server

    Stellbrink, J; Monkenbusch, M; Richter, D; Ehlers, G; Schleger, P

    2002-01-01

    We investigated the dynamics of 18-arm polyisoprene star polymer solutions well above their overlap concentration c sup *. Combining neutron spin echo spectroscopy (NSE) and selective H/D labelling, we were able to separate inter- (collective) and intra-star (self) dynamics. Only at low Q-vectors do self and collective dynamics become discernible. Here, collective dynamics are found to be consistent with a colloidal approach resulting from star-star interactions. The collective short time diffusion coefficient D sub e sub f sub f is well described by the term D sub 0 /S(Q), with D sub 0 the diffusion coefficient at infinite dilution. At Q sub m , the peak position in the structure factor S(Q), no difference is observable between collective and self dynamics. For covering the slowed-down dynamics at Q sub m the time range of NSE was extended for the first time up to 350 ns using long wavelengths, lambda=19 A, at IN15 (ILL, Grenoble). We found that S(Q,t)/S(Q,0) relaxes into a concentration-dependent plateau. T...

  13. A surface brightness analysis of eight RR Lyrae stars

    International Nuclear Information System (INIS)

    Hawley, S.L.; Barnes, T.G. III; Moffett, T.J.

    1987-01-01

    The authors have used a surface brightness, (V-R) relation to analyze new contemporaneous photometry and radial velocity data for 6 RR-ab type stars and to re-analyze previously published data for RR Lyrae and X Arietis. Systematic effects were found in the surface brightness at phases near minimum radius. Excluding these phases, they determine the slope of the surface brightness relation and the mean radius for each star. They also find a zero point which includes both a distance term and the zero point of the surface brightness relation. The sample includes stars with Preston's metallicity indicator ΔS = 0 to 9, with periods ranging from 0.397 days to 0.651 days. Their results indicate a log(R/R solar ) vs. log P relation in the sense that stars with longer periods have larger radii, in agreement with theoretical predictions. Their radii are consistent with bolometric magnitudes in the range 0.2 - 0.8 magnitude but accurate magnitudes must await a reliable T e - color calibration

  14. Time-dependent spectral-feature variations of stars displaying the B[e] phenomenon

    Czech Academy of Sciences Publication Activity Database

    Polster, J.; Korčáková, D.; Votruba, Viktor; Škoda, Petr; Šlechta, Miroslav; Kučerová, B.; Kubát, Jiří

    2012-01-01

    Roč. 542, June (2012), A57/1-A57/6 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GP205/09/P476; GA ČR GD205/08/H005 Institutional research plan: CEZ:AV0Z10030501 Keywords : line profiles * circumstellar matter * Be stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.084, year: 2012

  15. Orbiting radiation stars

    International Nuclear Information System (INIS)

    Foster, Dean P; Langford, John; Perez-Giz, Gabe

    2016-01-01

    We study a spherically symmetric solution to the Einstein equations in which the source, which we call an orbiting radiation star (OR-star), is a compact object consisting of freely falling null particles. The solution avoids quantum scale regimes and hence neither relies upon nor ignores the interaction of quantum mechanics and gravitation. The OR-star spacetime exhibits a deep gravitational well yet remains singularity free. In fact, it is geometrically flat in the vicinity of the origin, with the flat region being of any desirable scale. The solution is observationally distinct from a black hole because a photon from infinity aimed at an OR-star escapes to infinity with a time delay. (paper)

  16. The Origin of B-type Runaway Stars: Non-LTE Abundances as a Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, Catherine M.; Dufton, Philip L.; Smoker, Jonathan V.; Keenan, Francis P. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Lambert, David L. [The University of Texas at Austin, Department of Astronomy, RLM 16.316, Austin, TX 78712 (United States); Schneider, Fabian R. N. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); De Wit, Willem-Jan [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago 19 (Chile)

    2017-06-10

    There are two accepted mechanisms to explain the origin of runaway OB-type stars: the binary supernova (SN) scenario and the cluster ejection scenario. In the former, an SN explosion within a close binary ejects the secondary star, while in the latter close multibody interactions in a dense cluster cause one or more of the stars to be ejected from the region at high velocity. Both mechanisms have the potential to affect the surface composition of the runaway star. tlusty non-LTE model atmosphere calculations have been used to determine the atmospheric parameters and the C, N, Mg, and Si abundances for a sample of B-type runaways. These same analytical tools were used by Hunter et al. for their analysis of 50 B-type open-cluster Galactic stars (i.e., nonrunaways). Effective temperatures were deduced using the Si-ionization balance technique, surface gravities from Balmer line profiles, and microturbulent velocities derived using the Si spectrum. The runaways show no obvious abundance anomalies when compared with stars in the open clusters. The runaways do show a spread in composition that almost certainly reflects the Galactic abundance gradient and a range in the birthplaces of the runaways in the Galactic disk. Since the observed Galactic abundance gradients of C, N, Mg, and Si are of a similar magnitude, the abundance ratios (e.g., N/Mg) are as obtained essentially uniform across the sample.

  17. Accreting neutron stars, black holes, and degenerate dwarf stars.

    Science.gov (United States)

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  18. Infrared photometry of upper main sequence stars in M39

    International Nuclear Information System (INIS)

    Manteiga, M.; Martinez-Roger, C.; Morales, C.; Sabau, L.

    1991-01-01

    Infrared photometry of 19 Main sequence stars in the open cluster M39 is presented. Infrared-infrared and optical-infrared colour-colour and colour-magnitude diagrams are presented and compared with mean intrinsic colours for Population I stars. An interstellar reddening of E(B - V) = 0.01 is obtained by analysis of the colour-colour diagrams. Comparison with a set of theoretical isochrones leads to an age estimate for the cluster between 2.4 and 4.8 x 10 8 years

  19. Infrared photometry of upper main sequence stars in M39

    Energy Technology Data Exchange (ETDEWEB)

    Manteiga, M.; Martinez-Roger, C. (Instituto de Astrofisica de Canarias, Tenerife, (ES)); Morales, C.; Sabau, L. (Instituto de Tecnica Aeroespacial, Madrid, (ES))

    1991-03-01

    Infrared photometry of 19 Main sequence stars in the open cluster M39 is presented. Infrared-infrared and optical-infrared colour-colour and colour-magnitude diagrams are presented and compared with mean intrinsic colours for Population I stars. An interstellar reddening of E(B - V) = 0.01 is obtained by analysis of the colour-colour diagrams. Comparison with a set of theoretical isochrones leads to an age estimate for the cluster between 2.4 and 4.8 x 10{sup 8} years.

  20. Brilliant Star in a Colourful Neighbourhood

    Science.gov (United States)

    2010-07-01

    of gas and dust lies off the left side of this picture as can be seen in image eso1031b. This area includes the remarkable star Eta Carinae and was featured in an earlier press release (eso0905). Notes [1] More information about Wolf-Rayet stars More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  1. Search for OB stars running away from young star clusters. I. NGC 6611

    Science.gov (United States)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-11-01

    N-body simulations have shown that the dynamical decay of the young (~1 Myr) Orion Nebula cluster could be responsible for the loss of at least half of its initial content of OB stars. This result suggests that other young stellar systems could also lose a significant fraction of their massive stars at the very beginning of their evolution. To confirm this expectation, we used the Mid-Infrared Galactic Plane Survey (completed by the Midcourse Space Experiment satellite) to search for bow shocks around a number of young (⪉several Myr) clusters and OB associations. We discovered dozens of bow shocks generated by OB stars running away from these stellar systems, supporting the idea of significant dynamical loss of OB stars. In this paper, we report the discovery of three bow shocks produced by O-type stars ejected from the open cluster NGC 6611 (M16). One of the bow shocks is associated with the O9.5Iab star HD165319, which was suggested to be one of “the best examples for isolated Galactic high-mass star formation” (de Wit et al. 2005, A&A, 437, 247). Possible implications of our results for the origin of field OB stars are discussed.

  2. Lithium abundance patterns of late-F stars: an in-depth analysis of the lithium desert

    Science.gov (United States)

    Aguilera-Gómez, Claudia; Ramírez, Iván; Chanamé, Julio

    2018-06-01

    Aims: We address the existence and origin of the lithium (Li) desert, a region in the Li-Teff plane sparsely populated by stars. Here we analyze some of the explanations that have been suggested for this region, including mixing in the late main sequence, a Li dip origin for stars with low Li abundances in the region, and a possible relation with the presence of planets. Methods: To study the Li desert, we measured the atmospheric parameters and Li abundance of 227 late-F dwarfs and subgiants, chosen to be in the Teff range of the desert and without previous Li abundance measurements. Subsequently, we complemented those with literature data to obtain a homogeneous catalog of 2318 stars, for which we compute masses and ages. We characterize stars surrounding the region of the Li desert. Results: We conclude that stars with low Li abundances below the desert are more massive and more evolved than stars above the desert. Given the unexpected presence of low Li abundance stars in this effective temperature range, we concentrate on finding their origin. We conclude that these stars with low Li abundance do not evolve from stars above the desert: at a given mass, stars with low Li (i.e., below the desert) are more metal-poor. Conclusions: Instead, we suggest that stars below the Li desert are consistent with having evolved from the Li dip, discarding the need to invoke additional mixing to explain this feature. Thus, stars below the Li desert are not peculiar and are only distinguished from other subgiants evolved from the Li dip in that their combination of atmospheric parameters locates them in a range of effective temperatures where otherwise only high Li abundance stars would be found (i.e., stars above the desert). Full Tables 1 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A55This paper includes observations collected at The McDonald Observatory and

  3. Spectrophotometry of Symbiotic Stars (Abstract)

    Science.gov (United States)

    Boyd, D.

    2017-12-01

    (Abstract only) Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionizes the nebula, producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  4. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  5. Investigation of the binary fraction among candidate A-F type hybrid stars detected by Kepler

    Directory of Open Access Journals (Sweden)

    Lampens P.

    2015-01-01

    Full Text Available We are currently monitoring up to 40 Kepler candidate δ Scuti-γ Doradus (resp. γ Doradus-δ Scuti hybrid stars in radial velocity in order to identify the physical cause behind the low frequencies observed in the periodograms based on the ultra-high accuracy Kepler space photometry. The presence of low frequency variability in unevolved or slightly evolved oscillating A/F-type stars can generally be explained in three ways: either 1 the star is an (undetected binary or multiple system, or 2 the star is a g-mode pulsator (i.e. a genuine hybrid, or 3 the star’s atmosphere displays an asymmetric intensity distribution (caused by spots, i.e. chemical anomalies, or by (very high rotation, which is detected through rotational modulation. Our targets were selected from the globally characterized variable A/F-type stars of the Kepler mission [7]. We observe each star at least 4 times unevenly spread over a time lapse up to 2 months with the HERMES spectrograph [6]. In the case of composite, multiple-lined spectra, these observations also provide the atmospheric properties of each component. Our principal goal is to estimate the fraction of short-period, spectroscopic systems in the sample.

  6. Molecular Cloud Structures and Massive Star Formation in N159

    Science.gov (United States)

    Nayak, O.; Meixner, M.; Fukui, Y.; Tachihara, K.; Onishi, T.; Saigo, K.; Tokuda, K.; Harada, R.

    2018-02-01

    The N159 star-forming region is one of the most massive giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC). We show the 12CO, 13CO, CS molecular gas lines observed with ALMA in N159 west (N159W) and N159 east (N159E). We relate the structure of the gas clumps to the properties of 24 massive young stellar objects (YSOs) that include 10 newly identified YSOs based on our search. We use dendrogram analysis to identify properties of the molecular clumps, such as flux, mass, linewidth, size, and virial parameter. We relate the YSO properties to the molecular gas properties. We find that the CS gas clumps have a steeper size–linewidth relation than the 12CO or 13CO gas clumps. This larger slope could potentially occur if the CS gas is tracing shocks. The virial parameters of the 13CO gas clumps in N159W and N159E are low (<1). The threshold for massive star formation in N159W is 501 M ⊙ pc‑2, and the threshold for massive star formation in N159E is 794 M ⊙ pc‑2. We find that 13CO is more photodissociated in N159E than N159W. The most massive YSO in N159E has cleared out a molecular gas hole in its vicinity. All the massive YSO candidates in N159E have a more evolved spectral energy distribution type in comparison to the YSO candidates in N159W. These differences lead us to conclude that the giant molecular cloud complex in N159E is more evolved than the giant molecular cloud complex in N159W.

  7. FEROS Finds a Strange Star

    Science.gov (United States)

    1999-02-01

    ) in the same cluster. The comparatively strong absorption line at the centre, at wavelength 6708 Å (671 nm), is caused by Lithium atoms (Li I) in the upper layers of the star's atmosphere. Lines from Iron (Fe I) and Calcium (Ca I) atoms are also present in this spectral region. While they are of about equal strength in the two stars, the Lithium line is not seen in the comparison spectrum of S156 . Stellar evolution theories do not predict the presence of Lithium in a giant star like S50 . Technical information: FEROS obtained two spectra (each of 90 min exposure) of S50 , both showing this strong Lithium line and thus proving that it cannot have been caused by an instrumental effect. These spectra also illustrate the great amount of information that may be obtained in each exposure with FEROS - the shown spectral interval is just 1/280 of the total range recorded. The (visual) magnitude of S50 is 15.6, i.e., about 7,000 times fainter than what can be seen with the unaided eye. During the first tests of FEROS at the 1.52-m telescope, spectra were obtained of many different stars. Some of these observational data could be used for scientific purposes and, in one case, led to the discovery of unusual properties of a giant star in a stellar cluster. Its spectrum shows an unexplained large amount of the cosmologically important, light element Lithium, cf. PR Photo 03b/99 . The star is thus an obvious object for further, even more detailed studies with ESO's Very Large Telescope (VLT). This giant star, designated as S50 , is a member of the open-type stellar cluster Be21 (less dense than globular clusters). This cluster is of special interest, since its stars contain few elements heavier than hydrogen and helium. It is located in the direction opposite to the Galactic Center and the distance has been measured as approximately 16,000 light-years. All of its stars were formed at the same time, about 2,000 - 2,500 million years ago; this corresponds to half of the age of the

  8. Fast pulsars, strange stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1990-02-01

    The initial motivation for this work was the reported discovery in January 1989 of a 1/2 millisecond pulsar in the remnant of the spectacular supernova, 1987A. The status of this discovery has come into grave doubt as of data taken by the same group in February, 1990. At this time we must consider that the millisecond signal does not belong to the pulsar. The existence of a neutron star in remnant of the supernova is suspected because of recent observations on the light curve of the remnant, and of course by the neutrino burst that announced the supernova. However its frequency is unknown. I can make a strong case that a pulsar rotation period of about 1 ms divides those that can be understood quite comfortably as neutron stars, and those that cannot. What we will soon learn is whether there is an invisible boundary below which pulsar periods do not fall, in which case, all are presumable neutron stars, or whether there exist sub- millisecond pulsars, which almost certainly cannot be neutron stars. Their most plausible structure is that of a self-bound star, a strange-quark-matter star. The existence of such stars would imply that the ground state of the strong interaction is not, as we usually assume, hadronic matter, but rather strange quark matter. Let us look respectively at stars that are bound only by gravity, and hypothetical stars that are self-bound, for which gravity is so to speak, icing on the cake

  9. Highly integrated electronics for the star TPC

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, A.A.; Bieser, F.; Hearn, W.; Kleinfelder, S.; Merrick, T.; Millaud, J.; Noggle, T.; Rai, G.; Ritter, H.G.; Wieman, H. [Lawrence Berkeley Laboratory, CA (United States)

    1991-12-31

    The concept for the STAR TPC front-end electronics is presented and the progress toward the development of a fully integrated solution is described. It is the goal of the R+D program to develop the complete electronics chain for the STAR central TPC detector at RHIC. It is obvious that solutions chosen e.g. for ALEPH are not adequate for the 150000 channels that need to be instrumented for readout. It will be necessary to perform all the signal processing, digitization and multiplexing directly on the detector in order to reduce per channel cost and the amount of cabling necessary to read out the information. We follow the approach chosen by the EOS TPC project, where the readout electronics on the detector consists of an integrated preamplifier, a hybrid shaping amplifier, an integrated switched capacitor array and a highly multiplexed ADC. The STAR electronics will be further integrated so that approximately 16 channels of the preamplifier, the shaper, the analog store and the ADC will be contained in two integrated circuits located directly on the pad plane.

  10. Dynamic Properties of Star-Branched Polymer Brushes

    International Nuclear Information System (INIS)

    Sikorski, A.; Romiszowski, P.

    2004-01-01

    We studied a simplified model of a polymer brush. It consisted of star-branched chains, which were restricted to a simple cubic lattice. Each star-branched macromolecule consisted of three linear arms of equal length emanating from a common origin (the branching point). The chains were grafted to an impenetrable surface, i.e. they were terminally attached to the surface with one arm. The number of chains was varied from low to high grafting density. The model system was studied at good solvent conditions because the excluded volume effect was the only potential of interaction included in the model. The properties of this model system were studied by means of Monte Carlo simulation. The sampling algorithm was based on local changes of chain conformations. The dynamic properties of the polymer brush were studied and correlated with its structure. The differences in relaxation times of particular star arms were shown. The short-time mobility of polymer layers was analyzed. The lateral self-diffusion of chains was also studied and discussed. (author)

  11. Optical-NIR dust extinction towards Galactic O stars

    Science.gov (United States)

    Maíz Apellániz, J.; Barbá, R. H.

    2018-05-01

    Context. O stars are excellent tracers of the intervening ISM because of their high luminosity, blue intrinsic SED, and relatively featureless spectra. We are currently conducting the Galactic O-Star Spectroscopic Survey (GOSSS), which is generating a large sample of O stars with accurate spectral types within several kpc of the Sun. Aims: We aim to obtain a global picture of the properties of dust extinction in the solar neighborhood based on optical-NIR photometry of O stars with accurate spectral types. Methods: We have processed a carefully selected photometric set with the CHORIZOS code to measure the amount [E(4405 - 5495)] and type [R5495] of extinction towards 562 O-type stellar systems. We have tested three different families of extinction laws and analyzed our results with the help of additional archival data. Results: The Maíz Apellániz et al. (2014, A&A, 564, A63) family of extinction laws provides a better description of Galactic dust that either the Cardelli et al. (1989, ApJ, 345, 245) or Fitzpatrick (1999, PASP, 111, 63) families, so it should be preferentially used when analysing samples similar to the one in this paper. In many cases O stars and late-type stars experience similar amounts of extinction at similar distances but some O stars are located close to the molecular clouds left over from their births and have larger extinctions than the average for nearby late-type populations. In qualitative terms, O stars experience a more diverse extinction than late-type stars, as some are affected by the small-grain-size, low-R5495 effect of molecular clouds and others by the large-grain-size, high-R5495 effect of H II regions. Late-type stars experience a narrower range of grain sizes or R5495, as their extinction is predominantly caused by the average, diffuse ISM. We propose that the reason for the existence of large-grain-size, high-R5495 regions in the ISM in the form of H II regions and hot-gas bubbles is the selective destruction of small dust

  12. Measuring neutron-star properties via gravitational waves from neutron-star mergers.

    Science.gov (United States)

    Bauswein, A; Janka, H-T

    2012-01-06

    We demonstrate by a large set of merger simulations for symmetric binary neutron stars (NSs) that there is a tight correlation between the frequency peak of the postmerger gravitational-wave (GW) emission and the physical properties of the nuclear equation of state (EoS), e.g., expressed by the radius of the maximum-mass Tolman-Oppenheimer-Volkhoff configuration. Therefore, a single measurement of the peak frequency of the postmerger GW signal will constrain the NS EoS significantly. For optimistic merger-rate estimates a corresponding detection with Advanced LIGO is expected to happen within an operation time of roughly a year.

  13. Low-mass stars with mass loss and low-luminosity carbon star formation

    International Nuclear Information System (INIS)

    Boothroyd, A.I.

    1987-01-01

    The effects of large carbon enrichments in static stellar envelopes were investigated, using new Los Alamos opacities (including low-temperature carbon and molecular opacities) and including carbon ionizations. To search for the production of low-mass,low-luminosity carbon stars, detailed stellar evolutionary computations were carried out for a grid of low-mass stars of two different metallicities. The stars were evolved from the main sequence through all intermediate stages and through helium-shell flashes on the asymptotic giant branch. The effects of the latest nuclear reaction rates, the new Los Alamos opacities, Reimers-type wind mass loss, and detailed treatment of convection and semi-convection were investigated. Two low-luminosity carbon stars were achieved, in excellent agreement with observations. Conditions favoring dredge-up (and thus carbon-star production) include a reasonably large convective mixing length, low metallicity, relatively large envelope mass, and high flash strength. Mass loss was of major importance, tending to oppose dredge-up; the total mass-loss amounts inferred from observations suffice to prevent formation of high-mass, high-luminosity carbon stars

  14. Spectroscopic survey of Kepler stars - II. FIES/NOT observations of A- and F-type stars

    Science.gov (United States)

    Niemczura, E.; Polińska, M.; Murphy, S. J.; Smalley, B.; Kołaczkowski, Z.; Jessen-Hansen, J.; Uytterhoeven, K.; Lykke, J. M.; Triviño Hage, A.; Michalska, G.

    2017-09-01

    We have analysed high-resolution spectra of 28 A and 22 F stars in the Kepler field, observed using the Fibre-Fed Échelle Spectrograph at the Nordic Optical Telescope. We provide spectral types, atmospheric parameters and chemical abundances for 50 stars. Balmer, Fe I and Fe II lines were used to derive effective temperatures, surface gravities and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The stars analysed include chemically peculiar stars of the Am and λ Boo types, as well as stars with approximately solar chemical abundances. The wide distribution of projected rotational velocity, vsin I, is typical for A and F stars. The microturbulence velocities obtained are typical for stars in the observed temperature and surface gravity ranges. Moreover, we affirm the results of Niemczura et al. that Am stars do not have systematically higher microturbulent velocities than normal stars of the same temperature.

  15. Another Possibility for Boyajian's Star

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    The unusual light curve of the star KIC 8462852, also known as Tabbys star or Boyajians star, has puzzled us since its discovery last year. A new study now explores whether the stars missing flux is due to internal blockage rather than something outside of the star.Mysterious DipsMost explanations for the flux dips of Boyajians star rely on external factors, like this illustrated swarm of comets. [NASA/JPL-Caltech]Boyajians star shows unusual episodes of dimming in its light curve by as much as 20%, each lasting a few to tens of days and separated by periods of typically hundreds of days. In addition, archival observations show that it has gradually faded by roughly 15% over the span of the last hundred years. What could be causing both the sporadic flux dips and the long-term fading of this odd star?Explanations thus far have varied from mundane to extreme. Alien megastructures, pieces of smashed planets or comets orbiting the star, and intervening interstellar medium have all been proposed as possible explanations but these require some object external to the star. A new study by researcher Peter Foukal proposes an alternative: what if the source of the flux obstruction is the star itself?Analogy to the SunDecades ago, researchers discovered that our own stars total flux isnt as constant as we thought. When magnetic dark spots on the Suns surface block the heat transport, the Suns luminosity dips slightly. The diverted heat is redistributed in the Suns interior, becoming stored as a very small global heating and expansion of the convective envelope. When the blocking starspot is removed, the Sun appears slightly brighter than it did originally. Its luminosity then gradually relaxes, decaying back to its original value.Model of a stars flux after a 1,000-km starspot is inserted at time t = 0 and removed at time t = ts at a depth of 10,000 km in the convective zone. The stars luminosity dips, then becomes brighter than originally, and then gradually decays. [Foukal

  16. Stability of boson stars

    International Nuclear Information System (INIS)

    Gleiser, M.

    1988-01-01

    Boson stars are gravitationally bound, spherically symmetric equilibrium configurations of cold, free, or interacting complex scalar fields phi. As these equilibrium configurations naturally present local anisotropy, it is sensible to expect departures from the well-known stability criteria for fluid stars. With this in mind, I investigate the dynamical instability of boson stars against charge-conserving, small radial perturbations. Following the method developed by Chandrasekhar, a variational base for determining the eigenfrequencies of the perturbations is found. This approach allows one to find numerically an upper bound for the central density where dynamical instability occurs. As applications of the formalism, I study the stability of equilibrium configurations obtained both for the free and for the self-interacting [with V(phi) = (λ/4)chemical bondphichemical bond 4 ] massive scalar field phi. Instabilities are found to occur not for the critical central density as in fluid stars but for central densities considerably higher. The departure from the results for fluid stars is sensitive to the coupling λ; the higher the value of λ, the more the stability properties of boson stars approach those of a fluid star. These results are linked to the fractional anisotropy at the radius of the configuration

  17. Strange-quark-matter stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-11-01

    We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab

  18. VLA observations of dwarf M flare stars and magnetic stars

    Science.gov (United States)

    Willson, R. F.; Lang, K. R.; Foster, P.

    1988-01-01

    The VLA has been used to search for 6 cm emission from 16 nearby dwarf M stars, leading to the detection of only one of them - Gliese 735. The dwarf M flare stars AD Leonis and YZ Canis Minoris were also monitored at 6 cm and 20 cm wavelength in order to study variability. Successive oppositely circularly polarized bursts were detected from AD Leo at 6 cm, suggesting the presence of magnetic fields of both magnetic polarities. An impulsive 20-cm burst from YZ CMi preceded slowly varying 6-cm emission. The VLA was also used, unsuccessfully, to search for 6-cm emission from 13 magnetic Ap stars, all of which exhibit kG magnetic fields. Although the Ap magnetic stars have strong dipolar magnetic fields, the failure to detect gyroresonant radiation suggests that these stars do not have hot, dense coronae. The quiescent microwave emission from GL 735 is probably due to nonthermal radiation, since unusually high (H = 50 kG or greater) surface magnetic fields are inferred under the assumption that the 6-cm radiation is the gyroresonant radiation of thermal electrons.

  19. Little Bear’s pulsating stars: Variable star census of UMi dSph Galaxy

    Directory of Open Access Journals (Sweden)

    Kinemuchi K.

    2017-01-01

    Full Text Available Recent observations and a photometric search for variable stars in the Ursa Minor dwarf spheroidal galaxy (UMi dSph are presented. Our observations were taken at Apache Point Observatory in 2014 and 2016 using the 0.5m ARCSAT telescope and the West Mountain Observatory (WMO 0.9m telescope of Brigham Young University in 2016. Previously known RR Lyrae stars in our field of view of the UMi dSph are identified, and we also catalog new variable star candidates. Tentative classifications are given for some of the new variable stars. We have conducted period searches with the data collected with the WMO telescope. Our ultimate goal is to create an updated catalog of variable stars in the UMi dSph and to compare the RR Lyrae stellar characteristics to other RR Lyrae stars found in the Local Group dSph galaxies.

  20. Residual Gas and Dust around Transition Objects and Weak T Tauri Stars

    Energy Technology Data Exchange (ETDEWEB)

    Doppmann, Greg W. [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy., Kamuela, HI 96743 (United States); Najita, Joan R. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Carr, John S., E-mail: gdoppmann@keck.hawaii.edu, E-mail: najita@noao.edu, E-mail: carr@nrl.navy.mil [Naval Research Laboratory, Code 7213, Washington, DC 20375 (United States)

    2017-02-20

    Residual gas in disks around young stars can spin down stars, circularize the orbits of terrestrial planets, and whisk away the dusty debris that is expected to serve as a signpost of terrestrial planet formation. We have carried out a sensitive search for residual gas and dust in the terrestrial planet region surrounding young stars ranging in age from a few to ∼10 Myr. Using high-resolution 4.7 μ m spectra of transition objects (TOs) and weak T Tauri stars, we searched for weak continuum excesses and CO fundamental emission, after making a careful correction for the stellar contribution to the observed spectrum. We find that the CO emission from TOs is weaker and located farther from the star than CO emission from nontransition T Tauri stars with similar stellar accretion rates. The difference is possibly the result of chemical and/or dynamical effects (i.e., a low CO abundance or close-in low-mass planets). The weak T Tauri stars show no CO fundamental emission down to low flux levels (5 × 10{sup −20} to 10{sup −18} W m{sup −2}). We illustrate how our results can be used to constrain the residual disk gas content in these systems and discuss their potential implications for star and planet formation.

  1. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  2. Automatic grid azimuth by hour angle of the sun, a star or a planet using an electronic theodolite Kern E2

    Science.gov (United States)

    Solaric, Nikola

    1991-03-01

    The paper describes a procedure for automatic determinations of the grid azimuth of an object on the earth surface by the hour angle of a celestial object (the sun, a star, or a planet), using the electronic theodolite Kern E2. The observation procedure is simple because the electronic calculator is directing the procedure, and the degree of accuracy is immediately determined. With this method, the external rms error of a single set is approximately two times smaller than in the case of the altitude method. The paper includes a flowchart of the program.

  3. Wolf-Rayet stars associated to giant regions of star formation

    International Nuclear Information System (INIS)

    D'Odorico, S.; Rosa, M.

    1982-01-01

    Data on Wolf-Rayet (WR) stars in extragalactic H II regions and emission line galaxies are presented and discussed. The sample is still limited and inhomogeneous but two important points appear to be already established: a) The WR stars are more numerous than the blue supergiants at least in same phase of the evolution of the stellar clusters which ionize the giant H II regions, b) When the WR stars are detected, two cases are apparently observed, one in which only WN, the other in which both WN and WC, are present. (Auth.)

  4. Variable Stars in Large Magellanic Cloud Globular Clusters. III. Reticulum

    Science.gov (United States)

    Kuehn, Charles A.; Dame, Kyra; Smith, Horace A.; Catelan, Márcio; Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2013-06-01

    This is the third in a series of papers studying the variable stars in old globular clusters in the Large Magellanic Cloud. The primary goal of this series is to look at how the characteristics and behavior of RR Lyrae stars in Oosterhoff-intermediate systems compare to those of their counterparts in Oosterhoff-I/II systems. In this paper we present the results of our new time-series BVI photometric study of the globular cluster Reticulum. We found a total of 32 variables stars (22 RRab, 4 RRc, and 6 RRd stars) in our field of view. We present photometric parameters and light curves for these stars. We also present physical properties, derived from Fourier analysis of light curves, for some of the RR Lyrae stars. We discuss the Oosterhoff classification of Reticulum and use our results to re-derive the distance modulus and age of the cluster. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  5. Asteroseismology of white dwarf stars

    OpenAIRE

    Córsico, A. H.

    2014-01-01

    Most of low- and intermediate-mass stars that populate the Universe will end their lives as white dwarf stars. These ancient stellar remnants have encrypted inside a precious record of the evolutionary history of the progenitor stars, providing a wealth of information about the evolution of stars, star formation, and the age of a variety of stellar populations, such as our Galaxy and open and globular clusters. While some information like surface chemical composition, temperature and gravity ...

  6. VizieR Online Data Catalog: HIP and TGAS stars reddening and extinction (Gontcharov+ 2018)

    Science.gov (United States)

    Gontcharov, G. A.; Mosenkov, A. V.

    2018-01-01

    These are the reddening, interstellar extinction and extinction-to-reddening ratio estimates interpolated for 730,496 Gaia DR1 TGAS and Hipparcos stars within 415 pc from the Sun based on the 3D reddening map of Gontcharov (J/PAZh/43/521) and 3D extinction-to-reddening (total-to-selective extinction) ratio Rv=Av/E(B-V) map of Gontcharov (J/PAZh/38/15). For 711,237 Gaia DR1 TGAS stars the rMoMW distances from Astraatmadja and Bailer-Jones (2016ApJ...833..119A, Cat. J/ApJ/833/119) are used. For 19,259 Hipparcos stars, not in Gaia DR1 TGAS, the distances as the inversion of Hipparcos (I/311) parallaxes are used. The E(B-V) are calculated from initial E(J-Ks) as E(B-V)=E(J-Ks)*(0.047X3-0.1X2-0.09X+1.74), where X=(BT-VT) (B_T and V_T Tycho-2 bands) following the extinction law. This refined relation supersedes E(B-V)=1.655E(J-Ks) in the original 3D reddening map of Gontcharov. The Rv are interpolated from the 3D map of Rv of Gontcharov (2012AstL...38...12G, 2012PAZh...38...15G, Cat. J/PAZh/38/15). The Av are the product of E(B-V) and Rv. (2 data files).

  7. Comoving frame models of hot star winds II. Reduction of O star wind mass-loss rates in global models

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2017-01-01

    Roč. 606, October (2017), A31/1-A31/12 E-ISSN 1432-0746 R&D Projects: GA ČR GA13-10589S Institutional support: RVO:67985815 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  8. The 2001 U.S. Naval Observatory Double Star CD-Rom. III. The Third Catalog of Interferometric Measurements of Binary Stars

    Science.gov (United States)

    2001-12-01

    CHARA southern speckle program from 1989 to 1996 (cf. Hartkopf et al. 1996), and by the more recent speckle e†orts of Horch and colleagues (cf. Horch ...Mason, B. D. 2001, Third Catalog of Interferometric Measurements of Binary Stars (CHARA Contrib. No. 4) (Atlanta : Georgia State Univ.) Horch , E

  9. Spatially-resolved star formation histories of CALIFA galaxies. Implications for galaxy formation

    Science.gov (United States)

    González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; López Fernández, R.; Vale Asari, N.; Cortijo-Ferrero, C.; de Amorim, A. L.; Lacerda, E. A. D.; Sánchez, S. F.; Lehnert, M. D.; Walcher, C. J.

    2017-11-01

    This paper presents the spatially resolved star formation history (SFH) of nearby galaxies with the aim of furthering our understanding of the different processes involved in the formation and evolution of galaxies. To this end, we apply the fossil record method of stellar population synthesis to a rich and diverse data set of 436 galaxies observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, with stellar masses ranging from M⋆ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to retrieve the spatially resolved time evolution of the star formation rate (SFR), its intensity (ΣSFR), and other descriptors of the 2D SFH in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd) and five bins of stellar mass. Our main results are that (a) galaxies form very fast independently of their current stellar mass, with the peak of star formation at high redshift (z > 2). Subsequent star formation is driven by M⋆ and morphology, with less massive and later type spirals showing more prolonged periods of star formation. (b) At any epoch in the past, the SFR is proportional to M⋆, with most massive galaxies having the highest absolute (but lowest specific) SFRs. (c) While today, the ΣSFR is similar for all spirals and significantly lower in early-type galaxies (ETG), in the past, the ΣSFR scales well with morphology. The central regions of today's ETGs are where the ΣSFR reached the highest values (> 103 M⊙ Gyr-1 pc-2), similar to those measured in high-redshift star-forming galaxies. (d) The evolution of ΣSFR in Sbc systems matches that of models for Milky Way-like galaxies, suggesting that the formation of a thick disk may be a common phase in spirals at early epochs. (e) The SFR and ΣSFR in outer regions of E and S0 galaxies show that they have undergone an extended phase of growth in mass between z = 2 and 0.4. The mass assembled in this phase is in agreement with

  10. THE RUNAWAYS AND ISOLATED O-TYPE STAR SPECTROSCOPIC SURVEY OF THE SMC (RIOTS4)

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J. B.; Oey, M. S.; Segura-Cox, D. M.; Graus, A. S.; Golden-Marx, J. B. [Astronomy Department, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109-1107 (United States); Kiminki, D. C. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Parker, J. Wm., E-mail: joellamb@umich.edu [Southwest Research Institute, Department of Space Studies, Suite 300, 1050 Walnut Street, Boulder, CO 80302-5150 (United States)

    2016-02-01

    We present the Runaways and Isolated O-Type Star Spectroscopic Survey of the SMC (RIOTS4), a spatially complete survey of uniformly selected field OB stars that covers the entire star-forming body of the Small Magellanic Cloud (SMC). Using the IMACS (Inamori-Magellan Areal Camera and Spectrograph) multislit spectrograph and MIKE (Magellan Inamori Kyocera Echelle) echelle spectrograph on the Magellan telescopes, we obtained spectra of 374 early-type field stars that are at least 28 pc from any other OB candidates. We also obtained spectra of an additional 23 field stars in the SMC bar identified from slightly different photometric criteria. Here, we present the observational catalog of stars in the RIOTS4 survey, including spectral classifications and radial velocities. For three multi-slit fields covering 8% of our sample, we carried out monitoring observations over 9–16 epochs to study binarity, finding a spectroscopic, massive binary frequency of at least ∼60% in this subsample. Classical Oe/Be stars represent a large fraction of RIOTS4 (42%), occurring at much higher frequency than in the Galaxy, consistent with expectation at low metallicity. RIOTS4 confirmed a steep upper initial mass function in the field, apparently caused by the inability of the most massive stars to form in the smallest clusters. Our survey also yields evidence for in situ field OB star formation, and properties of field emission-line star populations, including sgB[e] stars and classical Oe/Be stars. We also discuss the radial velocity distribution and its relation to SMC kinematics and runaway stars. RIOTS4 presents a first quantitative characterization of field OB stars in an external galaxy, including the contributions of sparse, but normal, star formation; runaway stars; and candidate isolated star formation.

  11. Spectrophotometry of carbon stars

    Energy Technology Data Exchange (ETDEWEB)

    Oganesyan, R.K.; Karapetyan, M.S.; Nersisyan, S.E.

    1986-01-01

    The results are given of the spectrophotometric investigation of 56 carbon stars in the spectral range from 4000 to 6800 A with resolution 3 A. The observed energy distributions of these stars are determined relative to the flux at the wavelength /sub 0/ = 5556; they are presented in the form of graphs. The energy distributions have been obtained for the first time for 35 stars. Variation in the line Ba II 4554 A has been found in the spectra of St Cam, UU Aur, and RV Mon. Large changes have taken place in the spectra of RT UMa and SS Vir. It is noted that the spectra of carbon stars have a depression, this being situated in different spectral regions for individual groups of stars.

  12. BVI photometry of star clusters in M33

    International Nuclear Information System (INIS)

    Christian, C.A.; Schommer, R.A.

    1988-01-01

    CCD images of candidate star clusters in M33 were obtained for 13 fields in the B, V, and I bandpasses. The integrated visual colors and magnitudes are used to study the clusters, and evidence for extended giant branches and possibly carbon stars in several of the intermediate-aged clusters is presented. The colors, magnitudes, and positions are used to analyze stellar population of M33 and confirm the existence of massive star clusters with a 0.1-10-Gyr age range. That is, the cluster system of M33 shares some similarities to that of the Magellanic Clouds in that relatively massive clusters are found at all ages. In addition, more than 20 true (i.e., old, massive) globulars are identified. A substantial population of intermediate-color clusters are found, and it is argued that the cluster-formation rate for clusters less than 10 Gyr old may be more continuous in M33 than in the Magellanic Clouds. The chemical evolution of M33 as traced by the clusters suggests that an abundance gradient existed at all ages, in that the outer regions of the disk (i.e., R greater than 10 arcmin or 2 kpc) follow a slow enhancement history similar to the SMC, while the inner regions were enriched more dramatically. 59 references

  13. New ultra metal-poor stars from SDSS: follow-up GTC medium-resolution spectroscopy

    Science.gov (United States)

    Aguado, D. S.; Allende Prieto, C.; González Hernández, J. I.; Rebolo, R.; Caffau, E.

    2017-07-01

    Context. The first generation of stars formed in the Galaxy left behind the chemical signatures of their nucleosynthesis in the interstellar medium, visible today in the atmospheres of low-mass stars that formed afterwards. Sampling the chemistry of those low-mass provides insight into the first stars. Aims: We aim to increase the samples of stars with extremely low metal abundances, identifying ultra metal-poor stars from spectra with modest spectral resolution and signal-to-noise ratio (S/N). Achieving this goal involves deriving reliable metallicities and carbon abundances from such spectra. Methods: We carry out follow-up observations of faint, V > 19, metal-poor candidates selected from SDSS spectroscopy and observed with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at GTC. The SDSS and follow-up OSIRIS spectra were analyzed using the FERRE code to derive effective temperatures, surface gravities, metallicities and carbon abundances. In addition, a well-known extremely metal-poor star has been included in our sample to calibrate the analysis methodology. Results: We observed and analyzed five metal-poor candidates from modest-quality SDSS spectra. All stars in our sample have been confirmed as extremely metal-poor stars, in the [Fe/H] Palma. Programme ID GTC2E-16A and ID GTC65-16B.

  14. Synthesis and morphology of AgReO{sub 4} plates, rods, and stars

    Energy Technology Data Exchange (ETDEWEB)

    Bruetsch, Lennart; Feldmann, Claus [Institut fuer Anorganische Chemie, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2017-07-03

    AgReO{sub 4} nanoplates and micron-sized AgReO{sub 4} rods and stars are obtained for the first time from controlled particle growth in THF. [NBu{sub 4}][ReO{sub 4}] or [NMe{sub 4}][ReO{sub 4}] and Ag(OTf) (OTf: triflate) are used as the starting materials. The crystal growth is directed by the presence (i.e., plates) or absence (i.e., rods, stars) of trioctylphosphine (TOP) as a coordinating agent as well as by the temperature of the reaction (i.e., plates, rods in refluxing THF; stars at room temperature). Altogether, the growth of the respective morphology can be attributed to the availability and diffusion rate of dissolved Ag{sup +} that is influenced by the reaction temperature and the presence of TOP. The differently shaped AgReO{sub 4} particles are characterized by scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and Fourier-transform infrared (FT-IR) spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Near-infrared variability study of the central 2.3 × 2.3 arcmin2 of the Galactic Centre - II. Identification of RR Lyrae stars in the Milky Way nuclear star cluster

    Science.gov (United States)

    Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Rich, R. Michael; Morris, Mark R.; Do, Tuan; Ghez, Andrea

    2017-11-01

    Because of strong and spatially highly variable interstellar extinction and extreme source crowding, the faint (K ≥ 15) stellar population in the Milky Way's nuclear star cluster is still poorly studied. RR Lyrae stars provide us with a tool to estimate the mass of the oldest, relative dim stellar population. Recently, we analysed HST/WFC3/IR observations of the central 2.3 × 2.3 arcmin2 of the Milky Way and found 21 variable stars with periods between 0.2 and 1 d. Here, we present a further comprehensive analysis of these stars. The period-luminosity relationship of RR Lyrae is used to derive their extinctions and distances. Using multiple approaches, we classify our sample as 4 RRc stars, 4 RRab stars, 3 RRab candidates and 10 binaries. Especially, the four RRab stars show sawtooth light curves and fall exactly on to the Oosterhoff I division in the Bailey diagram. Compared to the RRab stars reported by Minniti et al., our new RRab stars have higher extinction (AK > 1.8) and should be closer to the Galactic Centre. The extinction and distance of one RRab stars match those for the Milky Way's nuclear star cluster given in previous works. We perform simulations and find that after correcting for incompleteness, there could be not more than 40 RRab stars within the Milky Way's nuclear star cluster and in our field of view. Through comparing with the known globular clusters of the Milky Way, we estimate that if there exists an old, metal-poor (-1.5 < [Fe/H] < -1) stellar population in the Milky Way nuclear star cluster on a scale of 5 × 5 pc, then it contributes at most 4.7 × 105 M⊙, I.e. ˜18 per cent of the stellar mass.

  16. CHEMICAL AND KINEMATICAL PROPERTIES OF BLUE STRAGGLER STARS AND HORIZONTAL BRANCH STARS IN NGC 6397

    International Nuclear Information System (INIS)

    Lovisi, L.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Contreras Ramos, R.; Gratton, R.

    2012-01-01

    We used three sets of high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 42 horizontal branch (HB) stars, 18 blue straggler stars (BSSs), and 86 main-sequence (MS) turnoff (TO) and sub-giant branch stars in the nearby globular cluster NGC 6397. We measured rotational velocities and Fe, O, and Mg abundances. All of the unevolved stars in our sample have low rotational velocites (vsin i –1 ), while the HB stars and BSSs show a broad distribution, with values ranging from 0 to ∼70 km s –1 . For HB stars with T 8200 K and T > 10,500 K, respectively) also show significant deviations in their iron abundance with respect to the cluster metallicity (as traced by the unevolved stars, [Fe/H] = –2.12). While similar chemical patterns have already been observed in other hot HB stars, this is the first evidence ever collected for BSSs. We interpret these abundance anomalies as due to the metal radiative levitation, occurring in stars with shallow or no convective envelopes.

  17. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Grasha, K.; Calzetti, D. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Elmegreen, B. G. [IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY (United States); Adamo, A.; Messa, M. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Aloisi, A.; Bright, S. N.; Lee, J. C.; Ryon, J. E.; Ubeda, L. [Space Telescope Science Institute, Baltimore, MD (United States); Cook, D. O. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY (United States); Fumagalli, M. [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham (United Kingdom); Gallagher III, J. S. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120, Heidelberg (Germany); Kahre, L. [Department of Astronomy, New Mexico State University, Las Cruces, NM (United States); Kim, H. [Gemini Observatory, La Serena (Chile); Krumholz, M. R., E-mail: kgrasha@astro.umass.edu [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2017-06-10

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25–0.6 power, and that the maximum size over which star formation is physically correlated ranges from ∼200 pc to ∼1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

  18. Asymmetric core collapse of rapidly rotating massive star

    Science.gov (United States)

    Gilkis, Avishai

    2018-02-01

    Non-axisymmetric features are found in the core collapse of a rapidly rotating massive star, which might have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly rotating MZAMS = 54 M⊙ star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This can contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity might induce strong r-process nucleosynthesis. The rapidly rotating PNS possesses a rotational energy of E_rot ≳ 10^{52} erg. Magnetar formation proceeding in a similar fashion will be able to deposit a portion of this energy later on in the supernova ejecta through a spin-down mechanism. These processes can be important for rare supernovae generated by rapidly rotating progenitors, even though a complete explosion is not simulated in the present study.

  19. PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603

    International Nuclear Information System (INIS)

    Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Andersen, Morten; Paresce, Francesco; Young, Erick; Panagia, Nino; Bond, Howard; Balick, Bruce; Calzetti, Daniela; Carollo, C. Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Saha, Abhijit

    2010-01-01

    Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with Hα excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Hα excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  20. Carbon Stars T. Lloyd Evans

    Indian Academy of Sciences (India)

    that the features used in estimating luminosities of ordinary giant stars are just those whose abundance ... This difference between the spectral energy distributions (SEDs) of CH stars and the. J stars, which belong to .... that the first group was binaries, as for the CH stars of the solar vicinity, while those of the second group ...

  1. The Spacelab IPS Star Simulator

    Science.gov (United States)

    Wessling, Francis C., III

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 degrees each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is 2 to 8 visual magnitudes. The star size is less than 100 arc seconds. The minimum star movement is less than 5 arc seconds and the relative position accuracy is approximately 40 arc seconds. The purpose of this paper is to describe the LPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  2. Rotating stars in relativity.

    Science.gov (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  3. Ecology of blue straggler stars

    CERN Document Server

    Carraro, Giovanni; Beccari, Giacomo

    2015-01-01

    The existence of blue straggler stars, which appear younger, hotter, and more massive than their siblings, is at odds with a simple picture of stellar evolution. Such stars should have exhausted their nuclear fuel and evolved long ago to become cooling white dwarfs. They are found to exist in globular clusters, open clusters, dwarf spheroidal galaxies of the Local Group, OB associations and as field stars. This book summarises the many advances in observational and theoretical work dedicated to blue straggler stars. Carefully edited extended contributions by well-known experts in the field cover all the relevant aspects of blue straggler stars research: Observations of blue straggler stars in their various environments; Binary stars and formation channels; Dynamics of globular clusters; Interpretation of observational data and comparison with models. The book also offers an introductory chapter on stellar evolution written by the editors of the book.

  4. What Determines Star Formation Rates?

    Science.gov (United States)

    Evans, Neal John

    2017-06-01

    The relations between star formation and gas have received renewed attention. We combine studies on scales ranging from local (within 0.5 kpc) to distant galaxies to assess what factors contribute to star formation. These include studies of star forming regions in the Milky Way, the LMC, nearby galaxies with spatially resolved star formation, and integrated galaxy studies. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. The star formation ``efficiency," defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas. We suggest ways to further develop the concept of "dense gas" to incorporate other factors, such as turbulence.

  5. Mass loss from S stars

    International Nuclear Information System (INIS)

    Jura, M.

    1988-01-01

    The mass-loss process in S stars is studied using 65 S stars from the listing of Wing and Yorka (1977). The role of pulsations in the mass-loss process is examined. It is detected that stars with larger mass-loss rates have a greater amplitude of pulsations. The dust-to-gas ratio for the S stars is estimated as 0.002 and the average mass-loss rate is about 6 x 10 to the -8th solar masses/yr. Some of the properties of the S stars, such as scale height, surface density, and lifetime, are measured. It is determined that scale height is 200 pc; the total duration of the S star phase is greater than or equal to 30,000 yr; and the stars inject 3 x 10 to the -6th solar masses/sq kpc yr into the interstellar medium. 46 references

  6. Neutron Star/supernova Remnant Associations

    Science.gov (United States)

    Gvaramadze, V. V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the (diffuse) supernova remnants (SNRs) can be products of an off-centred supernova (SN) explosion in a preexisting bubble created by the wind of a moving massive star. A cavity SN explosion of a moving star results in a considerable offset of the neutron star (NS) birth-place from the geometrical centre of the SNR. Therefore: a) the high transverse velocities inferred for a number of NSs (e.g. PSR B 1610-50, PSR B 1757-24, SGR 0525-66) through their association with SNRs can be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR. Taking into account of these two facts allow us to enlarge the circle of possible NS/SNR associations, and could significantly affect the results of previous studies of NS/SNR associations. The possibilities of our approach are illustrated with the example of the association between PSR B 1706-44 and SNR G 343.1-2.3. We show that this association could be real if both objects are the remnants of a SN exploded within a mushroom-like cavity (created by the SN progenitor wind breaking out of the parent molecular cloud and expanding into an intercloud medium of a much less density). We also show that the SN explosion sites in some middle-aged (shell-like) SNRs could be marked by (compact) nebulae of thermal X-ray emission. The possible detection of such nebulae within middle-aged SNRs could be used for the re-estimation of implied transverse velocities of known NSs or for the search of new stellar remnants possibly associated with these SNRs.

  7. E+A galaxies in the SDSS. Stellar population and morphology

    Science.gov (United States)

    Leiva, R.; Galaz, G.

    2014-10-01

    Galaxies with E+A spectrum have deep Balmer absorption and no H_{α} and [OII] emission. This suggest recent star formation and the lack of ongoing star formation. With an E+A sample from the SDSS DR 7 (Aihara et al. 2011) we study the morphology with Galaxy Zoo 1 data and the star formation history fitting models from Bruzual & Charlot (2003). We found an underpopulation of spiral and disk like galaxies and an overpopulation of interacting galaxies, the last seems consistent with the scenario where, at low z, the interaction mechanism is responsible for at least part of the E+A galaxies. The star formation history (SFH) fits most of the spectra indicating an increased star formation around 2 Gyr in the past. Additional parameters like dust internal extinction need to be included to improve the fitting.

  8. On the co-existence of chemically peculiar Bp stars, slowly pulsating B stars and constant B stars in the same part of the HR diagram

    NARCIS (Netherlands)

    Briquet, M.; Hubrig, S.; Cat, P. de; Aerts, C.C.; North, P.; Schöller, M.

    2007-01-01

    Aims. In order to better model massive B-type stars, we need to understand the physical processes taking place in slowly pulsating B (SPB) stars, chemically peculiar Bp stars, and non-pulsating normal B stars co-existing in the same part of the H-R diagram. Methods: We carry out a comparative study

  9. Evolution of White Dwarf Stars

    OpenAIRE

    L. G. Althaus

    2001-01-01

    This paper is aimed at presenting the main results we have obtained for the study of the evoution of white dwarf stars. The calculations are carried out by means of a detailed evolutionary code based on an updated physical description. In particular, we briefly discuss the results for the evolution of white dwarfs of different stellar masses and chemical composition, and the evolution of whit e dwarfs in the framework of a varying gravitational constant G scenario as well.

  10. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  11. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid

    2013-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  12. OBSERVATIONAL CONSTRAINTS ON FIRST-STAR NUCLEOSYNTHESIS. I. EVIDENCE FOR MULTIPLE PROGENITORS OF CEMP-NO STARS

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jinmi; Beers, Timothy C.; Placco, Vinicius M.; Rasmussen, Kaitlin C.; Carollo, Daniela [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); He, Siyu [Department of Physics, Xi’an Jiaotong University, Shaanxi, 710049 (China); Hansen, Terese T. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Roederer, Ian U. [Joint Institute for Nuclear Astrophysics-Center for the Evolution of the Elements (JINA-CEE) (United States); Zeanah, Jeff, E-mail: jinmi.yoon@nd.edu [Z Solutions, Inc., 9430 Huntcliff Trace, Atlanta, GA 30350 (United States)

    2016-12-10

    We investigate anew the distribution of absolute carbon abundance, A (C) = log ϵ (C), for carbon-enhanced metal-poor (CEMP) stars in the halo of the Milky Way, based on high-resolution spectroscopic data for a total sample of 305 CEMP stars. The sample includes 147 CEMP- s (and CEMP- r / s ) stars, 127 CEMP-no stars, and 31 CEMP stars that are unclassified, based on the currently employed [Ba/Fe] criterion. We confirm previous claims that the distribution of A (C) for CEMP stars is (at least) bimodal, with newly determined peaks centered on A (C) = 7.96 (the high-C region) and A (C) = 6.28 (the low-C region). A very high fraction of CEMP- s (and CEMP- r / s ) stars belongs to the high-C region, while the great majority of CEMP-no stars resides in the low-C region. However, there exists complexity in the morphology of the A (C)-[Fe/H] space for the CEMP-no stars, a first indication that more than one class of first-generation stellar progenitors may be required to account for their observed abundances. The two groups of CEMP-no stars we identify exhibit clearly different locations in the A (Na)- A (C) and A (Mg)- A (C) spaces, also suggesting multiple progenitors. The clear distinction in A (C) between the CEMP- s (and CEMP- r / s ) stars and the CEMP-no stars appears to be as successful, and likely more astrophysically fundamental, for the separation of these sub-classes as the previously recommended criterion based on [Ba/Fe] (and [Ba/Eu]) abundance ratios. This result opens the window for its application to present and future large-scale low- and medium-resolution spectroscopic surveys.

  13. IMAGE ANALYSIS FOR COSMOLOGY: RESULTS FROM THE GREAT10 STAR CHALLENGE

    International Nuclear Information System (INIS)

    Kitching, T. D.; Heymans, C.; Rowe, B.; Witherick, D.; Gill, M.; Massey, R.; Courbin, F.; Gentile, M.; Meylan, G.; Georgatzis, K.; Gruen, D.; Kilbinger, M.; Li, G. L.; Mariglis, A. P.; Storkey, A.; Xin, B.

    2013-01-01

    We present the results from the first public blind point-spread function (PSF) reconstruction challenge, the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Star Challenge. Reconstruction of a spatially varying PSF, sparsely sampled by stars, at non-star positions is a critical part in the image analysis for weak lensing where inaccuracies in the modeled ellipticity e and size R 2 can impact the ability to measure the shapes of galaxies. This is of importance because weak lensing is a particularly sensitive probe of dark energy and can be used to map the mass distribution of large scale structure. Participants in the challenge were presented with 27,500 stars over 1300 images subdivided into 26 sets, where in each set a category change was made in the type or spatial variation of the PSF. Thirty submissions were made by nine teams. The best methods reconstructed the PSF with an accuracy of σ(e) ≈ 2.5 × 10 –4 and σ(R 2 )/R 2 ≈ 7.4 × 10 –4 . For a fixed pixel scale, narrower PSFs were found to be more difficult to model than larger PSFs, and the PSF reconstruction was severely degraded with the inclusion of an atmospheric turbulence model (although this result is likely to be a strong function of the amplitude of the turbulence power spectrum).

  14. Close binary star type x-ray star and its mechanism of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, R [Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    1975-09-01

    Recent progress of the study of an X-ray star is described. In 1970, the periodical emission of pulsed X-rays from Cen X-3 and Her X-1 was observed. An optically corresponding celestial object for the Cen X-3 was reported in 1973, and the mass of Cen X-3 was revised. The optical object was named after Krzeminsky. From the observed variation of luminosity, it is said that the Krzeminsky's star is deformed. This fact gave new data on the mass of the Cen X-3, and the mass is several times as large as the previously estimated value. The behavior of the Her X-1 shows four kinds of clear time variation, and indicates the characteristics of an X-ray star. The Her X-1 is an X-ray pulser the same as Cen X-3, and is a close binary star. The opposite star is known as HZ-Her, and shows weaker luminosity than the intensity of X-ray from the Her X-1. Thirty-five day period was seen in the intensity variation of X-ray. The mechanism of X-ray pulsing can be explained by material flow into a neutron star. The energy spectrum from Her X-1 is different from that from the Cen X-3. Another X-ray star, Cyg X-1, is considered to be a black hole from its X-ray spectrum.

  15. From Star Wars to 'turf wars'.

    Science.gov (United States)

    1999-09-01

    Just as we are witnessing the re-emergence of Star Wars, it seems the 'turf wars' that have dogged A&E care are back. Since its inception as a specialty, A&E nurses have been accused of being 'Jacks (and Jill's, to be politically correct) of all trades and masters of none'. The inference being that all we do is 'mind' patients until they receive definitive care. Clearly this is not the case. As A&E nurses have demonstrated over the years, our skills are in the recognition and management of acute illness or injury, regardless of the patient's age, physical or psychological condition. Rather than being a 'master of none' we are masters of immediate care.

  16. COSMIC EVOLUTION OF STAR FORMATION ENHANCEMENT IN CLOSE MAJOR-MERGER GALAXY PAIRS SINCE z = 1

    International Nuclear Information System (INIS)

    Xu, C. K.; Shupe, D. L.; Bock, J.; Bridge, C.; Cooray, A.; Lu, N.; Schulz, B.; Béthermin, M.; Aussel, H.; Elbaz, D.; Le Floc'h, E.; Riguccini, L.; Berta, S.; Lutz, D.; Magnelli, B.; Conley, A.; Franceschini, A.; Marsden, G.; Oliver, S. J.; Pozzi, F.

    2012-01-01

    The infrared (IR) emission of 'M * galaxies' (10 10.4 ≤ M star ≤ 10 11.0 M ☉ ) in galaxy pairs, derived using data obtained in Herschel (PEP/HerMES) and Spitzer (S-COSMOS) surveys, is compared to that of single-disk galaxies in well-matched control samples to study the cosmic evolution of the star formation enhancement induced by galaxy-galaxy interaction. Both the mean IR spectral energy distribution and mean IR luminosity of star-forming galaxies (SFGs) in SFG+SFG (S+S) pairs in the redshift bin of 0.6 < z < 1 are consistent with no star formation enhancement. SFGs in S+S pairs in a lower redshift bin of 0.2 < z < 0.6 show marginal evidence for a weak star formation enhancement. Together with the significant and strong sSFR enhancement shown by SFGs in a local sample of S+S pairs (obtained using previously published Spitzer observations), our results reveal a trend for the star formation enhancement in S+S pairs to decrease with increasing redshift. Between z = 0 and z = 1, this decline of interaction-induced star formation enhancement occurs in parallel with the dramatic increase (by a factor of ∼10) of the sSFR of single SFGs, both of which can be explained by the higher gas fraction in higher-z disks. SFGs in mixed pairs (S+E pairs) do not show any significant star formation enhancement at any redshift. The difference between SFGs in S+S pairs and in S+E pairs suggests a modulation of the sSFR by the intergalactic medium (IGM) in the dark matter halos hosting these pairs.

  17. Collapse of differentially rotating neutron stars and cosmic censorship

    International Nuclear Information System (INIS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Stergioulas, Nikolaos

    2011-01-01

    We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M 2 , where J and M are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M 2 2 >1, i.e. 'supra-Kerr' models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity.

  18. Destruction of a Magnetized Star

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    What happens when a magnetized star is torn apart by the tidal forces of a supermassive black hole, in a violent process known as a tidal disruption event? Two scientists have broken new ground by simulating the disruption of stars with magnetic fields for the first time.The magnetic field configuration during a simulation of the partial disruption of a star. Top left: pre-disruption star. Bottom left: matter begins to re-accrete onto the surviving core after the partial disruption. Right: vortices form in the core as high-angular-momentum debris continues to accrete, winding up and amplifying the field. [Adapted from Guillochon McCourt 2017]What About Magnetic Fields?Magnetic fields are expected to exist in the majority of stars. Though these fields dont dominate the energy budget of a star the magnetic pressure is a million times weaker than the gas pressure in the Suns interior, for example they are the drivers of interesting activity, like the prominences and flares of our Sun.Given this, we can wonder what role stars magnetic fields might play when the stars are torn apart in tidal disruption events. Do the fields change what we observe? Are they dispersed during the disruption, or can they be amplified? Might they even be responsible for launching jets of matter from the black hole after the disruption?Star vs. Black HoleIn a recent study, James Guillochon (Harvard-Smithsonian Center for Astrophysics) and Michael McCourt (Hubble Fellow at UC Santa Barbara) have tackled these questions by performing the first simulations of tidal disruptions of stars that include magnetic fields.In their simulations, Guillochon and McCourt evolve a solar-mass star that passes close to a million-solar-mass black hole. Their simulations explore different magnetic field configurations for the star, and they consider both what happens when the star barely grazes the black hole and is only partially disrupted, as well as what happens when the black hole tears the star apart

  19. Numerical study of rotating relativistic stars

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1975-01-01

    The equations of structure for rotating stars in general relativity are presented and put in a form suitable for computer calculations. The results of equilibrium calculations for supermassive stars, neutron stars, and magnetically supported stars are reported, as are calculations of collapsing, rotating, and magnetized stars in the slowly changing gravitational field approximation. (auth)

  20. Estonian ambassador ensures support for Ignalina extension

    Index Scriptorium Estoniae

    2008-01-01

    Eesti saadik Vilniuses Andres Tropp kinnitas Eesti toetust Leedu püüdlustele pikendada Ignalina tuumareaktori töötamisaega. Einari Kisel majandusministeeriumist arvas, et sulgemine kiirendaks uue tuumajaama ehitust

  1. Merkel valiti veel neljaks aastaks Saksa valitsusjuhiks / Kaivo Kopli

    Index Scriptorium Estoniae

    Kopli, Kaivo

    2009-01-01

    Saksa parlament kiitis heaks kantsler Angela Merkeli kandidatuuri, samas ei saanud ta toetust kõigilt valitsusliidu saadikutelt. Kriitikast uue valitsuse koalitsioonileppes ette nähtud maksude vähenemise kohta

  2. Simulating the Birth of Massive Star Clusters: Is Destruction Inevitable?

    Science.gov (United States)

    Rosen, Anna

    2013-10-01

    Very early in its operation, the Hubble Space Telescope {HST} opened an entirely new frontier: study of the demographics and properties of star clusters far beyond the Milky Way. However, interpretation of HST's observations has proven difficult, and has led to the development of two conflicting models. One view is that most massive star clusters are disrupted during their infancy by feedback from newly formed stars {i.e., "infant mortality"}, independent of cluster mass or environment. The other model is that most star clusters survive their infancy and are disrupted later by mass-dependent dynamical processes. Since observations at present have failed to discriminate between these views, we propose a theoretical investigation to provide new insight. We will perform radiation-hydrodynamic simulations of the formation of massive star clusters, including for the first time a realistic treatment of the most important stellar feedback processes. These simulations will elucidate the physics of stellar feedback, and allow us to determine whether cluster disruption is mass-dependent or -independent. We will also use our simulations to search for observational diagnostics that can distinguish bound from unbound clusters, and to predict how cluster disruption affects the cluster luminosity function in a variety of galactic environments.

  3. Resolved star formation on sub-galactic scales in a merger at z = 1.7

    International Nuclear Information System (INIS)

    Whitaker, Katherine E.; Rigby, Jane R.; Teng, Stacy H.; Brammer, Gabriel B.; Gladders, Michael D.; Sharon, Keren; Wuyts, Eva

    2014-01-01

    We present a detailed analysis of Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) G141 grism spectroscopy for seven star-forming regions of the highly magnified lensed starburst galaxy RCSGA 032727-132609 at z = 1.704. We measure the spatial variations of the extinction in RCS0327 through the observed Hγ/Hβ emission line ratios, finding a constant average extinction of E(B – V) gas = 0.40 ± 0.07. We infer that the star formation is enhanced as a result of an ongoing interaction, with measured star formation rates derived from demagnified, extinction-corrected Hβ line fluxes for the individual star-forming clumps falling >1-2 dex above the star formation sequence. When combining the HST/WFC3 [O III] λ5007/Hβ emission line ratio measurements with [N II]/Hα line ratios from Wuyts et al., we find that the majority of the individual star-forming regions fall along the local 'normal' abundance sequence. With the first detections of the He I λ5876 and He II λ4686 recombination lines in a distant galaxy, we probe the massive-star content of the star-forming regions in RCS0327. The majority of the star-forming regions have a He I λ5876 to Hβ ratio consistent with the saturated maximum value, which is only possible if they still contain hot O-stars. Two regions have lower ratios, implying that their last burst of new star formation ended ∼5 Myr ago. Together, the He I λ5876 and He II λ4686 to Hβ line ratios provide indirect evidence for the order in which star formation is stopping in individual star-forming knots of this high-redshift merger. We place the spatial variations of the extinction, star formation rate and ionization conditions in the context of the star formation history of RCS0327.

  4. Profiles of the stochastic star formation process in spiral galaxies

    International Nuclear Information System (INIS)

    Comins, N.

    1981-01-01

    The formation of spiral arms in disc galaxies is generally attributed to the effects of spiral density waves. These relatively small (i.e. 5 per cent) non-axisymmetric perturbations of the interstellar medium cause spiral arms highlighted by O and B type stars to be created. In this paper another mechanism for spiral arm formation, the stochastic self-propagating star formation (SSPSF) process is examined. The SSPSF process combines the theory that shock waves from supernovae will compress the interstellar medium to create new stars, some of which will be massive enough to also supernova, with a disc galaxy's differential rotation to create spiral arms. The present work extends this process to the case where the probability of star formation from supernova shocks decreases with galactic radius. Where this work and previous investigations overlap (namely the uniform probability case), the agreement is very good, pretty spirals with various numbers of arms are generated. The decreasing probability cases, taken to vary as rsup(-j), still form spiral arms for 0 1.5 the spiral structure is essentially non-existent. (author)

  5. Asteroseismology of solar-type stars: particular physical effects

    Energy Technology Data Exchange (ETDEWEB)

    Carrier, F [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); Eggenberger, P; Leyder, J-C [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 aout, 4000 Liege (Belgium)], E-mail: fabien@ster.kuleuven.be

    2008-10-15

    Since the success of helioseismology, numerous efforts have been made to detect solar-like oscillations on other stars. The measurement of the frequencies of p-mode oscillations provides an insight into the internal structure and is nowadays the most powerful constraint on the theory of stellar evolution. The existing asteroseismic observations were mainly motivated by the need to explore the seismological properties of stars with various global parameters, i.e. various locations in the HR diagram. With the aim of testing different physical effects on solar-like oscillations, we report here detection of acoustic modes on solar-like targets achieved with the spectrograph HARPS installed on the 3.6-m telescope at ESO La Silla Observatory.

  6. Statistical properties of barium stars

    International Nuclear Information System (INIS)

    Hakkila, J.E.

    1986-01-01

    Barium stars are G- and K-giant stars with atmospheric excesses of s-process elements, and a broadband spectral depression in the blue portion of the spectrum. The strength of the λ4554 Ball line is used as a classification parameter known as the Barium Intensity. They have a mean absolute magnitude of 1.0 and a dispersion of 1.2 magnitudes (assuming a Gaussian distribution in absolute magnitude) as measured from secular and statistical parallaxes. These stars apparently belong to a young-disk population from analyses of both the solar reflex motion and their residual velocity distribution, which implies that they have an upper mass limit of around three solar masses. There is no apparent correlation of barium intensity with either luminosity or kinematic properties. The barium stars appear to be preferentially distributed in the direction of the local spiral arm, but show no preference to associate with or avoid the direction of the galactic center. They do not appear related to either the carbon or S-stars because of these tendencies and because of the stellar population to which each type of star belongs. The distribution in absolute magnitude combined with star count analyses implies that these stars are slightly less numerous than previously believed. Barium stars show infrared excesses that correlate with their barium intensities

  7. Retired A Stars and Their Companions. III. Comparing the Mass-Period Distributions of Planets Around A-Type Stars and Sun-Like Stars

    Science.gov (United States)

    Bowler, Brendan P.; Johnson, John Asher; Marcy, Geoffrey W.; Henry, Gregory W.; Peek, Kathryn M. G.; Fischer, Debra A.; Clubb, Kelsey I.; Liu, Michael C.; Reffert, Sabine; Schwab, Christian; Lowe, Thomas B.

    2010-01-01

    We present an analysis of ~5 years of Lick Observatory radial velocity measurements targeting a uniform sample of 31 intermediate-mass (IM) subgiants (1.5 lsim M */M sunlsim 2.0) with the goal of measuring the occurrence rate of Jovian planets around (evolved) A-type stars and comparing the distributions of their orbital and physical characteristics to those of planets around Sun-like stars. We provide updated orbital solutions incorporating new radial velocity measurements for five known planet-hosting stars in our sample; uncertainties in the fitted parameters are assessed using a Markov-Chain Monte Carlo method. The frequency of Jovian planets interior to 3 AU is 26+9 -8%, which is significantly higher than the 5%-10% frequency observed around solar-mass stars. The median detection threshold for our sample includes minimum masses down to {0.2, 0.3, 0.5, 0.6, 1.3} M Jup within {0.1, 0.3, 0.6, 1.0, 3.0} AU. To compare the properties of planets around IM stars to those around solar-mass stars we synthesize a population of planets based on the parametric relationship dN vprop M α P β dlnMdlnP, the observed planet frequency, and the detection limits we derived. We find that the values of α and β for planets around solar-type stars from Cumming et al. fail to reproduce the observed properties of planets in our sample at the 4σ level, even when accounting for the different planet occurrence rates. Thus, the properties of planets around A stars are markedly different than those around Sun-like stars, suggesting that only a small (~50%) increase in stellar mass has a large influence on the formation and orbital evolution of planets. Based on observations obtained at the Lick Observatory, which is operated by the University of California.

  8. Star-forming Filament Models

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2017-01-01

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  9. Star-forming Filament Models

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-20

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  10. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  11. Eesti dokfilm sai Euroopast toetust

    Index Scriptorium Estoniae

    2005-01-01

    Euroopa Liidu MEDIA Plus programm toetab kaht Eesti dokumentaalfilmi projekti : "Maria teatri fantoomid" (Baltic Film Production ; autor Marianna Kaat) ja "Müümise kunst" (Kuukulgur Film ; autorid Andres Maimik, Jaak Kilmi)

  12. Photometry-based estimation of the total number of stars in the Universe.

    Science.gov (United States)

    Manojlović, Lazo M

    2015-07-20

    A novel photometry-based estimation of the total number of stars in the Universe is presented. The estimation method is based on the energy conservation law and actual measurements of the extragalactic background light levels. By assuming that every radiated photon is kept within the Universe volume, i.e., by approximating the Universe as an integrating cavity without losses, the total number of stars in the Universe of about 6×1022 has been obtained.

  13. The Mystery of the Lonely Neutron Star

    Science.gov (United States)

    2000-09-01

    The VLT Reveals Bowshock Nebula around RX J1856.5-3754 Deep inside the Milky Way, an old and lonely neutron star plows its way through interstellar space. Known as RX J1856.5-3754 , it measures only ~ 20 km across. Although it is unusually hot for its age, about 700,000 °C, earlier observations did not reveal any activity at all, contrary to all other neutron stars known so far. In order to better understand this extreme type of object, a detailed study of RX J1856.5-3754 was undertaken by Marten van Kerkwijk (Institute of Astronomy of the University of Utrecht, The Netherlands) and Shri Kulkarni (California Institute of Technology, Pasadena, California, USA). To the astronomers' delight and surprise, images and spectra obtained with the ESO Very Large Telescope (VLT) now show a small nearby cone-shaped ("bowshock") nebula. It shines in the light from hydrogen atoms and is obviously a product of some kind of interaction with this strange star. Neutron stars - remnants of supernova explosions Neutron stars are among the most extreme objects in the Universe. They are formed when a massive star dies in a "supernova explosion" . During this dramatic event, the core of the star suddenly collapses under its own weight and the outer parts are violently ejected into surrounding space. One of the best known examples is the Crab Nebula in the constellation Taurus (The Bull). It is the gaseous remnant of a star that exploded in the year 1054 and also left behind a pulsar , i.e., a rotating neutron star [1]. A supernova explosion is a very complex event that is still not well understood. Nor is the structure of a neutron star known in any detail. It depends on the extreme properties of matter that has been compressed to incredibly high densities, far beyond the reach of physics experiments on Earth [2]. The ultimate fate of a neutron star is also unclear. From the observed rates of supernova explosions in other galaxies, it appears that several hundred million neutron stars

  14. X-ray sources in regions of star formation. II. The pre-main-sequence G star HDE 283572

    International Nuclear Information System (INIS)

    Walter, F.M.; Brown, A.; Linsky, J.L.; Rydgren, A.E.; Vrba, F.; Joint Institute for Laboratory Astrophysics, Boulder, CO; Computer Sciences Corp., El Segundo, CA; Naval Observatory, Flagstaff, AZ)

    1987-01-01

    This paper reports the detection of HDE 283572, a ninth-magnitude G star 8 arcmin south of RY Tau, as a bright X-ray source. The observations reveal this object to be a fairly massive (about 2 solar masses) pre-main-sequence star associated with the Taurus-Auriga star formation complex. It exhibits few of the characteristics of the classical T Tauri stars and is a good example of a naked T Tauri star. The star is a mid-G subgiant, of about three solar radii and rotates with a period of 1.5 d. The coronal and chromospheric surface fluxes are similar to those of the most active late type stars (excluding T Tauri stars). The X-ray and UV lines most likely arise in different atmospheric structures. Radiative losses are some 1000 times the quiet solar value and compare favorably with those of T Tauri stars. 49 references

  15. STAR FORMATION EFFICIENCY IN THE COOL CORES OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    McDonald, Michael; Veilleux, Sylvain; Mushotzky, Richard; Reynolds, Christopher; Rupke, David S. N.

    2011-01-01

    We have assembled a sample of high spatial resolution far-UV (Hubble Space Telescope Advanced Camera for Surveys/Solar Blind Channel) and Hα (Maryland-Magellan Tunable Filter) imaging for 15 cool core galaxy clusters. These data provide a detailed view of the thin, extended filaments in the cores of these clusters. Based on the ratio of the far-UV to Hα luminosity, the UV spectral energy distribution, and the far-UV and Hα morphology, we conclude that the warm, ionized gas in the cluster cores is photoionized by massive, young stars in all but a few (A1991, A2052, A2580) systems. We show that the extended filaments, when considered separately, appear to be star forming in the majority of cases, while the nuclei tend to have slightly lower far-UV luminosity for a given Hα luminosity, suggesting a harder ionization source or higher extinction. We observe a slight offset in the UV/Hα ratio from the expected value for continuous star formation which can be modeled by assuming intrinsic extinction by modest amounts of dust (E(B - V) ∼ 0.2) or a top-heavy initial mass function in the extended filaments. The measured star formation rates vary from ∼0.05 M sun yr -1 in the nuclei of non-cooling systems, consistent with passive, red ellipticals, to ∼5 M sun yr -1 in systems with complex, extended, optical filaments. Comparing the estimates of the star formation rate based on UV, Hα, and infrared luminosities to the spectroscopically determined X-ray cooling rate suggests a star formation efficiency of 14 +18 -8 %. This value represents the time-averaged fraction, by mass, of gas cooling out of the intracluster medium, which turns into stars and agrees well with the global fraction of baryons in stars required by simulations to reproduce the stellar mass function for galaxies. This result provides a new constraint on the efficiency of star formation in accreting systems.

  16. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    Science.gov (United States)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  17. MMT HYPERVELOCITY STAR SURVEY. II. FIVE NEW UNBOUND STARS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-05-20

    We present the discovery of five new unbound hypervelocity stars (HVSs) in the outer Milky Way halo. Using a conservative estimate of Galactic escape velocity, our targeted spectroscopic survey has now identified 16 unbound HVSs as well as a comparable number of HVSs ejected on bound trajectories. A Galactic center origin for the HVSs is supported by their unbound velocities, the observed number of unbound stars, their stellar nature, their ejection time distribution, and their Galactic latitude and longitude distribution. Other proposed origins for the unbound HVSs, such as runaway ejections from the disk or dwarf galaxy tidal debris, cannot be reconciled with the observations. An intriguing result is the spatial anisotropy of HVSs on the sky, which possibly reflects an anisotropic potential in the central 10-100 pc region of the Galaxy. Further progress requires measurement of the spatial distribution of HVSs over the southern sky. Our survey also identifies seven B supergiants associated with known star-forming galaxies; the absence of B supergiants elsewhere in the survey implies there are no new star-forming galaxies in our survey footprint to a depth of 1-2 Mpc.

  18. Optimized Trajectories to the Nearest Stars Using Lightweight High-velocity Photon Sails

    Science.gov (United States)

    Heller, René; Hippke, Michael; Kervella, Pierre

    2017-09-01

    New means of interstellar travel are now being considered by various research teams, assuming lightweight spaceships to be accelerated via either laser or solar radiation to a significant fraction of the speed of light (c). We recently showed that gravitational assists can be combined with the stellar photon pressure to decelerate an incoming lightsail from Earth and fling it around a star or bring it to rest. Here, we demonstrate that photogravitational assists are more effective when the star is used as a bumper (I.e., the sail passes “in front of” the star) rather than as a catapult (I.e., the sail passes “behind” or “around” the star). This increases the maximum deceleration at α Cen A and B and reduces the travel time of a nominal graphene-class sail (mass-to-surface ratio 8.6× {10}-4 {{g}} {{{m}}}-2) from 95 to 75 years. The maximum possible velocity reduction upon arrival depends on the required deflection angle from α Cen A to B and therefore on the binary’s orbital phase. Here, we calculate the variation of the minimum travel times from Earth into a bound orbit around Proxima for the next 300 years and then extend our calculations to roughly 22,000 stars within about 300 lt-yr. Although α Cen is the most nearby star system, we find that Sirius A offers the shortest possible travel times into a bound orbit: 69 years assuming 12.5% c can be obtained at departure from the solar system. Sirius A thus offers the opportunity of flyby exploration plus deceleration into a bound orbit of the companion white dwarf after relatively short times of interstellar travel.

  19. Cold dense baryonic matter and compact stars

    International Nuclear Information System (INIS)

    Hyun Kyu Lee; Sang-Jin Sin; Mannque Rho

    2011-01-01

    Probing dense hadronic matter is thus far an uncharted field of physics. Here we give a brief summary of the highlights of what has been so far accomplished and what will be done in the years ahead by the World Class University III Project at Hanyang University in the endeavor to unravel and elucidate the multi-facet of the cold dense baryonic matter existing in the interior of the densest visible stable object in the universe, i.e. neutron stars, strangeness stars and/or quark stars, from a modest and simplified starting point of an effective field theory modeled on the premise of QCD as well as from a gravity dual approach of hQCD. The core of the matter of our research is the possible origin of the ∼ 99% of the proton mass that is to be accounted for and how the 'vacuum' can be tweaked so that the source of the mass generation can be uncovered by measurements made in terrestrial as well as space laboratories. Some of the issues treated in the program concern what can be done - both theoretically and experimentally - in anticipation of what's to come for basic physics research in Korea. (authors)

  20. Star-formation history of very young clusters

    International Nuclear Information System (INIS)

    Stahler, S.W.

    1985-01-01

    The popular idea that star formation has proceeded sequentially from lowest to highest mass members in open clusters is examined critically. For extremely young clusters, such as NGC 2264 and NGC 6530, this sequential hypothesis is a consequence of the assignment of pre-main-sequence contraction ages to all member stars. However, such ages yield a formation history which is implausible from a physical point of view, since the critical time for the onset of formation at any stellar mass is equal to the pre-main-sequence contraction time for that mass. Moreover, these ages are in conflict with the strong observational evidence that a substantial fraction of cluster members have already reached the main sequence. After reconsideration of the probable main-sequence members, the stellar ages in NGC 2264 and NGC 6530 are consistent with a variety of formation histories, and, in particular, with the view that all stellar masses form in approximately the same interval of time within a given cluster, i.e., that there is no mass-age correlation. A notion closely related to the sequential hypothesis, that the total star-formation rate increases exponentially with time, is subject to the same criticism

  1. THE CHANDRA VARIABLE GUIDE STAR CATALOG

    International Nuclear Information System (INIS)

    Nichols, Joy S.; Lauer, Jennifer L.; Morgan, Douglas L.; Sundheim, Beth A.; Henden, Arne A.; Huenemoerder, David P.; Martin, Eric

    2010-01-01

    Variable stars have been identified among the optical-wavelength light curves of guide stars used for pointing control of the Chandra X-ray Observatory. We present a catalog of these variable stars along with their light curves and ancillary data. Variability was detected to a lower limit of 0.02 mag amplitude in the 4000-10000 A range using the photometrically stable Aspect Camera on board the Chandra spacecraft. The Chandra Variable Guide Star Catalog (VGUIDE) contains 827 stars, of which 586 are classified as definitely variable and 241 are identified as possibly variable. Of the 586 definite variable stars, we believe 319 are new variable star identifications. Types of variables in the catalog include eclipsing binaries, pulsating stars, and rotating stars. The variability was detected during the course of normal verification of each Chandra pointing and results from analysis of over 75,000 guide star light curves from the Chandra mission. The VGUIDE catalog represents data from only about 9 years of the Chandra mission. Future releases of VGUIDE will include newly identified variable guide stars as the mission proceeds. An important advantage of the use of space data to identify and analyze variable stars is the relatively long observations that are available. The Chandra orbit allows for observations up to 2 days in length. Also, guide stars were often used multiple times for Chandra observations, so many of the stars in the VGUIDE catalog have multiple light curves available from various times in the mission. The catalog is presented as both online data associated with this paper and as a public Web interface. Light curves with data at the instrumental time resolution of about 2 s, overplotted with the data binned at 1 ks, can be viewed on the public Web interface and downloaded for further analysis. VGUIDE is a unique project using data collected during the mission that would otherwise be ignored. The stars available for use as Chandra guide stars are

  2. Spectrophotometry of carbon stars

    International Nuclear Information System (INIS)

    Gow, C.E.

    1975-01-01

    Observations of over one hundred carbon stars have been made with the Indiana rapid spectral scanner in the red and, when possible, in the visual and blue regions of the spectrum. Five distinct subtypes of carbon stars (Barium, CH, R, N, and hydrogen deficient) are represented in the list of observed stars, although the emphasis was placed on the N stars when the observations were made. The rapid scanner was operated in the continuous sweep mode with the exit slit set at twenty angstroms, however, seeing fluctuations and guiding errors smear the spectrum to an effective resolution of approximately thirty angstroms. Nightly observations of Hayes standard stars yielded corrections for atmospheric extinction and instrumental response. The reduction scheme rests on two assumptions, that thin clouds are gray absorbers and the wavelength dependence of the sky transparency does not change during the course of the night. Several stars have been observed in the blue region of the spectrum with the Indiana SIT vidicon spectrometer at two angstroms resolution. It is possible to derive a color temperature for the yellow--red spectral region by fitting a black-body curve through two chosen continuum points. Photometric indices were calculated relative to the blackbody curve to measure the C 2 Swan band strength, the shape of the CN red (6,1) band to provide a measure of the 12 C/ 13 C isotope ratio, and in the hot carbon stars (Barium, CH, and R stars) the strength of an unidentified feature centered at 400 angstroms. An extensive abundance grid of model atmospheres was calculated using a modified version of the computer code ATLAS

  3. Direct Urca Processes Involving Proton 1 S 0 Superfluidity in Neutron Star Cooling

    Science.gov (United States)

    Xu, Yan; Yu, Zi; Zhang, Xiao-Jun; Fan, Cun-Bo; Liu, Guang-Zhou; Zhao, En-Guang; Huang, Xiu-Lin; Liu, Cheng-Zhi

    2018-04-01

    A detailed description of the baryon direct Urca processes A: n\\to p+e+{\\bar{ν }}e, B: Λ \\to p+e+{\\bar{ν }}e and C: {\\Xi }-\\to Λ +e+{\\bar{ν }}e related to the neutron star cooling is given in the relativistic mean field approximation. The contributions of the reactions B and C on the neutrino luminosity are calculated by means of the relativistic expressions of the neutrino energy losses. Our results show that the total neutrino luminosities of the reactions A, B and C within the mass range (1.603–2.067) M⊙ ((1.515–1.840) M⊙ for TM1 model) for GM1 model are larger than the corresponding values for neutron star without hyperons. Furthermore, although the neutrino emissivity of the reaction A is suppressed with the appearance of the proton 1 S 0 superfluid, the contribution of the reactions B and C can still quicken a massive neutron star cooling. In particular, the reaction C in PSR J1614-2230 and J0348+0432 is not suppressed by the proton 1 S 0 superfluid due to the higher threshold density of the reaction C, which will further speed up the two pulsars cooling. Supported by the National Natural Science Foundation of China under Grant Nos. 11447165, 11373047, 11404336 and U1731240, Youth Innovation Promotion Association, CAS under Grant No. 2016056, and the Development Project of Science and Technology of Jilin Province under Grant No. 20180520077JH

  4. Stacked Star Formation Rate Profiles of Bursty Galaxies Exhibit “Coherent” Star Formation

    Science.gov (United States)

    Orr, Matthew E.; Hayward, Christopher C.; Nelson, Erica J.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Chan, T. K.; Schmitz, Denise M.; Miller, Tim B.

    2017-11-01

    In a recent work based on 3200 stacked Hα maps of galaxies at z˜ 1, Nelson et al. find evidence for “coherent star formation”: the stacked star formation rate (SFR) profiles of galaxies above (below) the “star formation main sequence” (MS) are above (below) that of galaxies on the MS at all radii. One might interpret this result as inconsistent with highly bursty star formation and evidence that galaxies evolve smoothly along the MS rather than crossing it many times. We analyze six simulated galaxies at z˜ 1 from the Feedback in Realistic Environments (FIRE) project in a manner analogous to the observations to test whether the above interpretations are correct. The trends in stacked SFR profiles are qualitatively consistent with those observed. However, SFR profiles of individual galaxies are much more complex than the stacked profiles: the former can be flat or even peak at large radii because of the highly clustered nature of star formation in the simulations. Moreover, the SFR profiles of individual galaxies above (below) the MS are not systematically above (below) those of MS galaxies at all radii. We conclude that the time-averaged coherent star formation evident stacks of observed galaxies is consistent with highly bursty, clumpy star formation of individual galaxies and is not evidence that galaxies evolve smoothly along the MS.

  5. STAR facility tritium accountancy

    International Nuclear Information System (INIS)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-01-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  6. Young Stars with SALT

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Adric R. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Alam, Munazza K.; Rice, Emily L.; Cruz, Kelle L. [Department of Astrophysics, The American Museum of Natural History, New York, NY 10024 (United States); Henry, Todd J., E-mail: arr@caltech.edu [RECONS Institute, Chambersburg, PA (United States)

    2017-05-10

    We present a spectroscopic and kinematic analysis of 79 nearby M dwarfs in 77 systems. All of these dwarfs are low-proper-motion southern hemisphere objects and were identified in a nearby star survey with a demonstrated sensitivity to young stars. Using low-resolution optical spectroscopy from the Red Side Spectrograph on the South African Large Telescope, we have determined radial velocities, H-alpha, lithium 6708 Å, and potassium 7699 Å equivalent widths linked to age and activity, and spectral types for all of our targets. Combined with astrometric information from literature sources, we identify 44 young stars. Eighteen are previously known members of moving groups within 100 pc of the Sun. Twelve are new members, including one member of the TW Hydra moving group, one member of the 32 Orionis moving group, 9 members of Tucana-Horologium, one member of Argus, and two new members of AB Doradus. We also find 14 young star systems that are not members of any known groups. The remaining 33 star systems do not appear to be young. This appears to be evidence of a new population of nearby young stars not related to the known nearby young moving groups.

  7. Cataclysmic Variable Stars

    Science.gov (United States)

    Hellier, Coel

    2001-01-01

    Cataclysmic variable stars are the most variable stars in the night sky, fluctuating in brightness continually on timescales from seconds to hours to weeks to years. The changes can be recorded using amateur telescopes, yet are also the subject of intensive study by professional astronomers. That study has led to an understanding of cataclysmic variables as binary stars, orbiting so closely that material transfers from one star to the other. The resulting process of accretion is one of the most important in astrophysics. This book presents the first account of cataclysmic variables at an introductory level. Assuming no previous knowledge of the field, it explains the basic principles underlying the variability, while providing an extensive compilation of cataclysmic variable light curves. Aimed at amateur astronomers, undergraduates, and researchers, the main text is accessible to those with no mathematical background, while supplementary boxes present technical details and equations.

  8. Post-giant evolution of helium stars

    International Nuclear Information System (INIS)

    Schoenberner, D.

    1977-01-01

    Extremely hydrogen deficient stars (helium stars and R Coronae Borealis variables) are considered to be remnants of double shell source stars (of the asymptotic giant branch). The evolution of stars with a condensed C/O-core and a helium envelope is followed numerically from the red giant stage to the white dwarf domain, crossing the regions of R CrB- and helium stars (so far analyzed). They have typically masses M/M(sun) = 0.7 and luminosities log L/L(sun) = 4.1. The time for crossing the helium star domain is some 10 3 years. The corresponding times in the R CrB-region amounts up to several 10 4 years. The lower limit of the death rate of helium stars is estimated to be 4 x 10 -14 pc -3 yr -1 . This value is only a factor of ten lower than the birth rate of all non-DA white dwarfs. It is therefore possible that the helium stars are the precursors of helium rich white dwarfs. As a consequence, a significant fraction of all stars which end their lives as white dwarfs should pass through the helium star phase. (orig.) [de

  9. Shock-front compression of the magnetic field in the Canis Majoris R1 star-formation region

    International Nuclear Information System (INIS)

    Vrba, F.J.; Baierlein, R.; Herbst, W.; Wesleyan Univ., Middletown, CT; Van Vleck Observatory, Middletown, CT)

    1987-01-01

    Results are presented from a linear polarization survey at optical wavelengths of over 140 stars in the direction of the CMa R1 star-formation region; 26 of these are clearly associated with nebulosity within the area. The observations were obtained in order to test the argument of Herbst et al. (1978) that star formation in CMa R1 is driven by a shock wave from a nearby supernova (Herbs and Assousa, 1977 and 1978). The polarizations are found to be consistent with a simple model of the compression by a supernova-induced spherical shock front of an initially uniform interstellar magnetic field. The polarization vectors are inconsistent with a scenario of quiescent cloud collapse along magnetic-field lines. Multicolor polarimetry of the nebular stars provides evidence of grain growth toward increasing cloud optical depth, characterized by a ratio of total-to-selective extinction of R = 3.0 at E(B-V) = 0.23, increasing to R = 4.2 at E(B-V) = 0.7. 15 references

  10. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid

    2015-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting...... tree is isomorphic to T? We prove that in the general setting, CST is NP-complete, which implies that the tree edit distance considered here is also NP-hard, even when both input trees having diameters bounded by 10. We also show that, when the number of distinct stars is bounded by a constant k, CTS...

  11. AGB [asymptotic giant branch]: Star evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1987-01-01

    Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs

  12. Galactic binaries with eLISA

    OpenAIRE

    Nelemans, G.

    2013-01-01

    I review what eLISA will see from Galactic binaries -- double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I very briefly sketch...

  13. CEMP Stars in the Halo and Their Origin in Ultra-Faint Dwarf Galaxies

    Science.gov (United States)

    Beers, Timothy C.

    2018-06-01

    The very metal-poor (VMP; [Fe/H] 3.0) stars provide a direct view of Galactic chemical and dynamical evolution; detailed spectroscopic studies of these objects are the best way to identify and distinguish between various scenarios for the enrichment of early star-forming gas clouds soon after the Big Bang. It has been recognized that a large fraction of VMP (15-20%) and EMP stars (30-40%) possess significant over-abundances of carbon relative to iron, [C/Fe] > +0.7. This fraction rises to at least 80% for stars with [Fe/H] 3.0 belong to the CEMP-no sub-class, characterized by the lack of strong enhancements in the neutron-capture elements (e.g., [Ba/Fe] < 0.0). The CEMP-no abundance signature is commonly observed among stars ultra-faint dwarf spheroidal galaxies such as SEGUE-1. In addition, kinematic studies of CEMP-no stars strongly suggest an association with the outer-halo population of the Galaxy, which was likely formed from the accretion of low-mass mini-halos. These observations, and other lines of evidence, indicate that the CEMP-no stars of the Milky Way were born in low-mass dwarf galaxies, and later subsumed into the halo.

  14. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira; Hayashi, Mayumi; Ito, Shotaro; Goseki, Raita; Higashihara, Tomoya; Hadjichristidis, Nikolaos

    2015-01-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic

  15. Localized thermonuclear runaways and volcanoes on degenerate dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Shara, M.M.

    1982-10-15

    Practically all studies to date of thermonuclear runaways on degenerate dwarf stars in binary systems have considered only spherically symmetric eruptions. We emphasize that even slightly non-spherically symmetric accretion leads to transverse temperature gradients in the dwarfs' accreted envelopes. Over a rather broad range of parameter space, thermalization time scales in accreted envelopes are much longer than thermonuclear runaway time scales. Thus localized thermonuclear runaways (i.e., runaways much smaller than the host degenerate star) rather than spherically symmetric global eruptions are likely to occur on many degenerate dwarfs. Localized runaways are more likely to occur on more massive and/or hotter dwarfs.

  16. Star-pseudopolyrotaxane organized in nanoplatelets for poly(ε-caprolactone)-based nanofibrous scaffolds with enhanced surface reactivity.

    Science.gov (United States)

    Oster, Murielle; Hébraud, Anne; Gallet, Sébastien; Lapp, Alain; Pollet, Eric; Avérous, Luc; Schlatter, Guy

    2015-02-01

    Herein, it is demonstrated that star pseudopolyrotaxanes (star-pPRs) obtained from the inclusion complexation of α-cyclodextrin (CD) and four-branched star poly(ε-caprolactone) (star-PCL) organize into nanoplatelets in dimethyl sulfoxide at 35 °C. This peculiar property, not observed for linear pseudopolyrotaxanes, allows the processing of star-pPRs while preserving their supramolecular assembly. Thus, original PCL:star-pPR core:shell nanofibers are elaborated by coaxial electrospinning. The star-pPR shell ensures the presence of available CD hydroxyl functions on the fiber surface allowing its postfunctionalization. As proof of concept, fluorescein isothiocyanate is grafted. Moreover, the morphology of the fibers is maintained due to the star-pPR shell that acts as a shield, preventing the fiber dissolution during chemical modification. The proposed strategy is simple and avoids the synthesis of polyrotaxanes, i.e., pPR end-capping to prevent the CD dethreading. As PCL is widely used for biomedical applications, this strategy paves the way for simple functionalization with any bioactive molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. VizieR Online Data Catalog: Catalogue of Radio Stars (Wendker, 2001)

    Science.gov (United States)

    Wendker, H. J.

    2015-06-01

    The first version of this catalogue was published in Abh.Hamburger Sternw. 1978, Vol.10, p 1ff. (CDS Catalogue II/129). A second version was published in 1987 (1987A&AS...69...87W) and microfiches (CDS Catalogue II/147). A third version was published 1995A&AS..109..177W (CDS Catalogue II/199). The basic concept of the earlier versions is preserved (in file "catalog.txt"), namely one entry per star per frequency per paper. Space is now provided, however, to add more informations. These may be of technical or astronomical nature. Usually month and year of observation and the number of independent data points or length of monitoring session are given. In the file "catalog.txt", all radio data are preceded by a header which contains information on the star or stellar system. (Note, that a physical stellar system is regarded as one single entry and that comments pertaining to individual components are found directly behind the observational data). Stellar data like names, position, proper motion, magnitudes and spectroscopic types are given in fixed format in a self-explanatory fashion. It is tried to have typical values from commonly available references. It is not intended to compete here with other compilations. These header informations are collected when the star is entered for the first time. They are only changed when new values are available while additional radio references are added. An arbitrarily expandable section for unformatted text finishes the header. Finally, the units of the radio data remain in MHz (column#1) and mJy (columns #2. and #3). All coordinates refer to epoch and equinox 1950.0 (e.g. B1950). This is a so-called merged version e.g. all stars, those detected at least once and those with upper limits only, are listed in order of ascending right ascension. The detected stars are marked with a "D" in the outermost right hand column in lines 1 to 5 ('D' in column "Det" of the file "stars.dat"). The last updating occurred on 2001-Mar-06. In this

  18. RADIAL STABILITY IN STRATIFIED STARS

    International Nuclear Information System (INIS)

    Pereira, Jonas P.; Rueda, Jorge A.

    2015-01-01

    We formulate within a generalized distributional approach the treatment of the stability against radial perturbations for both neutral and charged stratified stars in Newtonian and Einstein's gravity. We obtain from this approach the boundary conditions connecting any two phases within a star and underline its relevance for realistic models of compact stars with phase transitions, owing to the modification of the star's set of eigenmodes with respect to the continuous case

  19. From clouds to stars

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1982-01-01

    At the present time, the theory of star formation must be limited to what we know about the lowest density gas, or about the pre-main sequence stars themselves. We would like to understand two basic processes: 1) how star-forming clouds are created from the ambient interstellar gas in the first place, and 2) how small parts of these clouds condense to form individual stars. We are interested also in knowing what pre-main sequence stars are like, and how they can interact with their environment. These topics are reviewed in what follows. In this series of lectures, what we know about the formation of stars is tentatively described. The lectures begin with a description of the interstellar medium, and then they proceed along the same direction that a young star would follow during its creation, namely from clouds through the collapse phase and onto the proto-stellar phase. The evolution of viscous disks and two models for the formation of the solar system are described in the last lectures. The longest lectures, and the topics that are covered in most detail, are not necessarily the ones for which we have the most information. Physically intuitive explanations for the various processes are emphasized, rather then mathematical explanations. In some cases, the mathematical aspects are developed as well, but only when the equations can be used to give important numerical values for comparison with the observations

  20. Quark phases in neutron stars and a third family of compact stars as signature for phase transitions

    International Nuclear Information System (INIS)

    Schertler, K.; Greiner, C.; Schaffner-Bielich, J.; Thoma, M.H.

    2000-01-01

    The appearance of quark phases in the dense interior of neutron stars provides one possibility to soften the equation of state (EOS) of neutron star matter at high densities. This softening leads to more compact equilibrium configurations of neutron stars compared to pure hadronic stars of the same mass. We investigate the question to which amount the compactness of a neutron star can be attributed to the presence of a quark phase. For this purpose we employ several hadronic EOS in the framework of the relativistic mean-field (RMF) model and an extended MIT bag model to describe the quark phase. We find that -- almost independent of the model parameters -- the radius of a pure hadronic neutron star gets typically reduced by 20-30% if a pure quark phase in the center of the star does exist. For some EOS we furthermore find the possibility of a third family of compact stars which may exist besides the two known families of white dwarfs and neutron stars. We show how an experimental proof of the existence of a third family by mass and radius measurements may provide a unique signature for a phase transition inside neutron stars

  1. Star Formation Activity Beyond the Outer Arm. I. WISE -selected Candidate Star-forming Regions

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Natsuko; Yasui, Chikako; Saito, Masao [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan); Kobayashi, Naoto; Hamano, Satoshi, E-mail: natsuko.izumi@nao.ac.jp [Laboratory of Infrared High-resolution spectroscopy (LIH), Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan)

    2017-10-01

    The outer Galaxy beyond the Outer Arm provides a good opportunity to study star formation in an environment significantly different from that in the solar neighborhood. However, star-forming regions in the outer Galaxy have never been comprehensively studied or cataloged because of the difficulties in detecting them at such large distances. We studied 33 known young star-forming regions associated with 13 molecular clouds at R {sub G} ≥ 13.5 kpc in the outer Galaxy with data from the Wide-field Infrared Survey Explorer ( WISE ) mid-infrared all-sky survey. From their color distribution, we developed a simple identification criterion of star-forming regions in the outer Galaxy with the WISE color. We applied the criterion to all the WISE sources in the molecular clouds in the outer Galaxy at R {sub G} ≥ 13.5 kpc detected with the Five College Radio Astronomy Observatory (FCRAO) {sup 12}CO survey of the outer Galaxy, of which the survey region is 102.°49 ≤  l  ≤ 141.°54, −3.°03 ≤  b  ≤ 5.°41, and successfully identified 711 new candidate star-forming regions in 240 molecular clouds. The large number of samples enables us to perform the statistical study of star formation properties in the outer Galaxy for the first time. This study is crucial to investigate the fundamental star formation properties, including star formation rate, star formation efficiency, and initial mass function, in a primordial environment such as the early phase of the Galaxy formation.

  2. Wolf-Rayet stars and galactic structure

    International Nuclear Information System (INIS)

    Stenholm, B.

    1975-01-01

    A 15 0 wide strip along the galactic equator between longitudes 250 0 and 360 0 has been searched for Wolf-Rayet stars. Six new WR stars and four new planetary nebulae have been found. Seven stars earlier listed as WR stars have been rejected as such. The new WR stars in the 'Luminous Stars in the Southern Milky Way' are discussed. A sample of 154 WR stars has been treated statistically. For the distribution in longitude, comparisons are made with OB stars and classical cepheids. The differences in distribution are thought to be an age effect. An effort to explain the empty interval towards the anticentre is made. The distribution in latitude is compared with young clusters and long-period cepheids. The physical plane formed by these objects is tilted about one degree to the galactic plane and the tilt is upwards in the Cygnus direction. This result is also received by a least squares solution of the objects when given in rectangular coordinates. The WR star sample is regarded as fairly complete up to a distance of 5 kpc. (orig.) [de

  3. Life and death of the stars

    CERN Document Server

    Srinivasan, Ganesan

    2014-01-01

    This volume is devoted to one of the fascinating things about stars: how they evolve as they age. This evolution is different for stars of different masses. How stars end their lives when their supply of energy is exhausted also depends on their masses. Interestingly, astronomers conjectured about the ultimate fate of the stars even before the details of their evolution became clear. Part I of this book gives an account of the remarkable predictions made during the 1920s and 1930s concerning the ultimate fate of stars. Since much of this development hinged on quantum physics that emerged during this time, a detailed introduction to the relevant physics is included in the book. Part II is a summary of the life history of stars. This discussion is divided into three parts: low-mass stars, like our Sun, intermediate-mass stars, and massive stars. Many of the concepts of contemporary astrophysics were built on the foundation erected by Subrahmanyan Chandrasekhar in the 1930s. This book, written during his birth c...

  4. I-Love-Q relations: from compact stars to black holes

    International Nuclear Information System (INIS)

    Yagi, Kent; Yunes, Nicolás

    2016-01-01

    The relations between most observables associated with a compact star, such as the mass and radius of a neutron star or a quark star, typically depend strongly on their unknown internal structure. The recently discovered I-Love-Q relations (between the moment of inertia, the tidal deformability and the quadrupole moment) are however approximately insensitive to this structure. These relations become exact for stationary black holes (BHs) in General Relativity as shown by the no-hair theorems, mainly because BHs are vacuum solutions with event horizons. In this paper, we take the first steps toward studying how the approximate I-Love-Q relations become exact in the limit as compact stars become BHs. To do so, we consider a toy model for compact stars, i.e. incompressible stars with anisotropic pressure, which allows us to model an equilibrium sequence of stars with ever increasing compactness that approaches the BH limit arbitrarily closely. We numerically construct such a sequence in the slow-rotation and in the small-tide approximations by extending the Hartle–Thorne formalism, and then extract the I-Love-Q trio from the asymptotic behavior of the metric tensor at spatial infinity. We find that the I-Love-Q relations approach the BH limit in a nontrivial way, with the quadrupole moment and the tidal deformability changing sign as the compactness and the amount of anisotropy are increased. Through a generalization of Maclaurin spheroids to anisotropic stars, we show that the multipole moments also change sign in the Newtonian limit as the amount of anisotropy is increased because the star becomes prolate. We also prove analytically that the stellar moment of inertia reaches the BH limit as the compactness reaches a critical BH value in the strongly anisotropic limit. Modeling the BH limit through a sequence of anisotropic stars, however, can fail when considering other theories of gravity. We calculate the scalar dipole charge and the moment of inertia in a

  5. From nuclei to stars Festschrift in Honor of Gerald E. Brown

    CERN Document Server

    2011-01-01

    In one way or another, Gerry Brown has been concerned with questions about the universe, about its vast expanse as well as about its most miniscule fundamental constituents of matter throughout his entire life. In his endeavours to understand the universe in many manifestations from nuclei all the way to the stars, he has been influenced by some of the most prominent physicists of the 20th century, and he himself, in turn, has influenced a great many scholars. This volume, a collection of articles dedicated to Gerry on his 85th birthday, contains discussions of many of the issues which have at

  6. STAR FORMATION IN THE TAURUS FILAMENT L 1495: FROM DENSE CORES TO STARS

    International Nuclear Information System (INIS)

    Schmalzl, Markus; Kainulainen, Jouni; Henning, Thomas; Launhardt, Ralf; Quanz, Sascha P.; Alves, Joao; Goodman, Alyssa A.; Pineda, Jaime E.; Roman-Zuniga, Carlos G.

    2010-01-01

    We present a study of dense structures in the L 1495 filament in the Taurus Molecular Cloud and examine its star-forming properties. In particular, we construct a dust extinction map of the filament using deep near-infrared observations, exposing its small-scale structure in unprecedented detail. The filament shows highly fragmented substructures and a high mass-per-length value of M line = 17 M sun pc -1 , reflecting star-forming potential in all parts of it. However, a part of the filament, namely B 211, is remarkably devoid of young stellar objects. We argue that in this region the initial filament collapse and fragmentation is still taking place and star formation is yet to occur. In the star-forming part of the filament, we identify 39 cores with masses from 0.4 to 10 M sun and preferred separations in agreement with the local Jeans length. Most of these cores exceed the Bonnor-Ebert critical mass, and are therefore likely to collapse and form stars. The dense core mass function follows a power law with exponent Γ = 1.2 ± 0.2, a form commonly observed in star-forming regions.

  7. PHOTOMETRIC VARIABILITY IN KEPLER TARGET STARS: THE SUN AMONG STARS-A FIRST LOOK

    International Nuclear Information System (INIS)

    Basri, Gibor; Walkowicz, Lucianne M.; Batalha, Natalie; Jenkins, Jon; Borucki, William J.; Koch, David; Caldwell, Doug; Gilliland, Ronald L.; Dupree, Andrea K.; Latham, David W.; Meibom, Soeren; Howell, Steve; Brown, Tim

    2010-01-01

    The Kepler mission provides an exciting opportunity to study the light curves of stars with unprecedented precision and continuity of coverage. This is the first look at a large sample of stars with photometric data of a quality that has heretofore been only available for our Sun. It provides the first opportunity to compare the irradiance variations of our Sun to a large cohort of stars ranging from very similar to rather different stellar properties, at a wide variety of ages. Although Kepler data are in an early phase of maturity, and we only analyze the first month of coverage, it is sufficient to garner the first meaningful measurements of our Sun's variability in the context of a large cohort of main-sequence stars in the solar neighborhood. We find that nearly half of the full sample is more active than the active Sun, although most of them are not more than twice as active. The active fraction is closer to a third for the stars most similar to the Sun, and rises to well more than half for stars cooler than mid-K spectral types.

  8. ALMA Reveals Sequential High-mass Star Formation in the G9.62+0.19 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tie; Kim, Kee-Tae [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, Korea 34055 (Korea, Republic of); Lacy, John [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Li, Pak Shing [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Wang, Ke [European Southern Observatory, Karl-Schwarzschild-Str.2, D-85748 Garching bei München (Germany); Qin, Sheng-Li [Department of Astronomy, Yunnan University, and Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming, 650091 (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Garay, Guido; Mardones, Diego [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Wu, Yuefang [Department of Astronomy, Peking University, Beijing 100871 (China); Zhu, Qingfeng [Astronomy Department, University of Science and Technology, Chinese Academy of Sciences, Hefei 210008 (China); Tatematsu, Ken’ichi; Hirota, Tomoya [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ren, Zhiyuan; Li, Di [National Astronomical Observatories, Chinese Academy of Science, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Liu, Sheng-Yuan; Chen, Huei-Ru; Su, Yu-Nung, E-mail: liutiepku@gmail.com [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2017-11-01

    Stellar feedback from high-mass stars (e.g., H ii regions) can strongly influence the surrounding interstellar medium and regulate star formation. Our new ALMA observations reveal sequential high-mass star formation taking place within one subvirial filamentary clump (the G9.62 clump) in the G9.62+0.19 complex. The 12 dense cores (MM1–MM12) detected by ALMA are at very different evolutionary stages, from the starless core phase to the UC H ii region phase. Three dense cores (MM6, MM7/G, MM8/F) are associated with outflows. The mass–velocity diagrams of the outflows associated with MM7/G and MM8/F can be well-fit by broken power laws. The mass–velocity diagram of the SiO outflow associated with MM8/F breaks much earlier than other outflow tracers (e.g., CO, SO, CS, HCN), suggesting that SiO traces newly shocked gas, while the other molecular lines (e.g., CO, SO, CS, HCN) mainly trace the ambient gas continuously entrained by outflow jets. Five cores (MM1, MM3, MM5, MM9, MM10) are massive starless core candidates whose masses are estimated to be larger than 25 M {sub ☉}, assuming a dust temperature of ≤20 K. The shocks from the expanding H ii regions (“B” and “C”) to the west may have a great impact on the G9.62 clump by compressing it into a filament and inducing core collapse successively, leading to sequential star formation. Our findings suggest that stellar feedback from H ii regions may enhance the star formation efficiency and suppress low-mass star formation in adjacent pre-existing massive clumps.

  9. The distribution of warm gas in the G327.3-0.6 star forming region

    NARCIS (Netherlands)

    Leurini, S.; Wyrowski, F.; van der Tak, F.; Herpin, F.; Herschel WISH Team, [Unknown

    Water is a key molecule for determining the physical chemical structure of star forming regions because of its large abundance variations between warm and cold regions. As a part of the HIFI-led Key Program WISH (P.I. E. van Dishoeck), we are mapping six massive star forming region in different H2O

  10. On the Evolutionary Stage of the Unclassified B[e] Star CD-42°11721

    Czech Academy of Sciences Publication Activity Database

    Borges Fernandes, M.; Kraus, Michaela; Lorenz Martins, S.; de Araújo, F. X.

    2007-01-01

    Roč. 377, č. 3 (2007), s. 1343-1362 ISSN 0035-8711 R&D Projects: GA AV ČR KJB300030701 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * emission-line * identification Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.249, year: 2007

  11. Observational constraints for the circumstellar disk of the B[e] star CPD-52 9243

    Czech Academy of Sciences Publication Activity Database

    Cidale, L.S.; Borges Fernandes, M.; Andruchow, I.; Arias, M.L.; Kraus, Michaela; Chesneau, O.; Kanaan, S.; Curé, M.; de Wit, W.J.; Muratore, M.F.

    2012-01-01

    Roč. 548, November (2012), A72/1-A72/9 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GAP209/11/1198 Institutional support: RVO:67985815 Keywords : supergiants * stars * winds Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.084, year: 2012

  12. Deep NuSTAR and Swift monitoring observations of the magnetar 1E 1841-045

    DEFF Research Database (Denmark)

    An, Hongjun; Archibald, Robert F.; Hascoët, Romain

    2015-01-01

    consistent with the footprint of the twisted magnetic field lines on the star. We also report on the 3 yr Swift monitoring observations obtained since 2011 July. The soft-X-ray spectrum remained stable during this period, and the timing behavior was noisy, with large timing residuals....

  13. Eesti toetab Montenegro lahku löömist Serbiast / Hannes Krause

    Index Scriptorium Estoniae

    Krause, Hannes

    2006-01-01

    Eestis viibis Montenegro välisminister Miodrag Vlahovic. Montenegros toimub referendum iseseisvuse küsimuses, välisministri sõnul loodab tema rahvas referendumi positiivse tulemuse korral esimesena toetust Brüsselist

  14. Res Publica : umbusaldamine võib lõpetada senise koalitsiooni / Villy Paimets

    Index Scriptorium Estoniae

    Paimets, Villy, 1972-

    2005-01-01

    Res Publica erakorraline volikogu avaldas toetust justiitsministrile ja andis peaministrile volitused lõpetada justiitsministri umbusaldamise korral senine koalitsioon ning alustada läbirääkimisi Isamaaliiduga. Lisa: Res Publica toetab Vaherit

  15. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  16. Connecting the Cosmic Star Formation Rate with the Local Star Formation

    Science.gov (United States)

    Gribel, Carolina; Miranda, Oswaldo D.; Williams Vilas-Boas, José

    2017-11-01

    We present a model that unifies the cosmic star formation rate (CSFR), obtained through the hierarchical structure formation scenario, with the (Galactic) local star formation rate (SFR). It is possible to use the SFR to generate a CSFR mapping through the density probability distribution functions commonly used to study the role of turbulence in the star-forming regions of the Galaxy. We obtain a consistent mapping from redshift z˜ 20 up to the present (z = 0). Our results show that the turbulence exhibits a dual character, providing high values for the star formation efficiency ( ˜ 0.32) in the redshift interval z˜ 3.5{--}20 and reducing its value to =0.021 at z = 0. The value of the Mach number ({{ M }}{crit}), from which rapidly decreases, is dependent on both the polytropic index (Γ) and the minimum density contrast of the gas. We also derive Larson’s first law associated with the velocity dispersion ( ) in the local star formation regions. Our model shows good agreement with Larson’s law in the ˜ 10{--}50 {pc} range, providing typical temperatures {T}0˜ 10{--}80 {{K}} for the gas associated with star formation. As a consequence, dark matter halos of great mass could contain a number of halos of much smaller mass, and be able to form structures similar to globular clusters. Thus, Larson’s law emerges as a result of the very formation of large-scale structures, which in turn would allow the formation of galactic systems, including our Galaxy.

  17. VARIABILITY AND STAR FORMATION IN LEO T, THE LOWEST LUMINOSITY STAR-FORMING GALAXY KNOWN TODAY

    Energy Technology Data Exchange (ETDEWEB)

    Clementini, Gisella; Cignoni, Michele; Ramos, Rodrigo Contreras; Federici, Luciana; Tosi, Monica [INAF, Osservatorio Astronomico di Bologna, I-40127 Bologna (Italy); Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria, E-mail: gisella.clementini@oabo.inaf.it, E-mail: rodrigo.contreras@oabo.inaf.it, E-mail: luciana.federici@oabo.inaf.it, E-mail: monica.tosi@oabo.inaf.it, E-mail: michele.cignoni@unibo.it, E-mail: ripepi@na.astro.it, E-mail: marcella@na.astro.it, E-mail: ilaria@na.astro.it [INAF, Osservatorio Astronomico di Capodimonte, I-80131 Napoli (Italy)

    2012-09-10

    We present results from the first combined study of variable stars and star formation history (SFH) of the Milky Way 'ultra-faint' dwarf (UFD) galaxy Leo T, based on F606W and F814W multi-epoch archive observations obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. We have detected 14 variable stars in the galaxy. They include one fundamental-mode RR Lyrae star and 11 Anomalous Cepheids with periods shorter than 1 day, thus suggesting the occurrence of multiple star formation episodes in this UFD, of which one about 10 Gyr ago produced the RR Lyrae star. A new estimate of the distance to Leo T of 409{sup +29}{sub -27} kpc (distance modulus of 23.06 {+-} 0.15 mag) was derived from the galaxy's RR Lyrae star. Our V, V - I color-magnitude diagram (CMD) of Leo T reaches V {approx} 29 mag and shows features typical of a galaxy in transition between dwarf irregular and dwarf spheroidal types. A quantitative analysis of the SFH, based on the comparison of the observed V, V - I CMD with the expected distribution of stars for different evolutionary scenarios, confirms that Leo T has a complex SFH dominated by two enhanced periods about 1.5 and 9 Gyr ago, respectively. The distribution of stars and gas shows that the galaxy has a fairly asymmetric structure.

  18. Dark stars

    DEFF Research Database (Denmark)

    Maselli, Andrea; Pnigouras, Pantelis; Nielsen, Niklas Grønlund

    2017-01-01

    to the formation of compact objects predominantly made of dark matter. Considering both fermionic and bosonic (scalar φ4) equations of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties and comparing them with baryonic neutron stars. We also show that these dark......Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead...... objects admit the I-Love-Q universal relations, which link their moments of inertia, tidal deformabilities, and quadrupole moments. Finally, we prove that stars built with a dark matter equation of state are not compact enough to mimic black holes in general relativity, thus making them distinguishable...

  19. SX Phoenicis stars

    International Nuclear Information System (INIS)

    Nemec, J.; Mateo, M.

    1990-01-01

    The purpose of this paper is to review the basic observational information concerning SX Phe stars, including recent findings such as the discovery of about 40 low-luminosity variable stars in the Carina dwarf galaxy and identification of at least one SX Phe star in the metal-rich globular cluster M71. Direct evidence supporting the hypothesis that at least some BSs are binary systems comes from the discovery of two contact binaries and a semidetached binary among the 50 BSs in the globular cluster NGC 5466. Since these systems will coalesce on a time scale 500 Myr, it stands to reason that many (if not most) BSs are coalesced binaries. The merger hypothesis also explains the relatively-large masses (1.0-1.2 solar masses) that have been derived for SX Phe stars and halo BSs, and may also account for the nonvariable BSs in the 'SX Phe instability strip'. 132 refs

  20. The Merger of Two Compact Stars: A Tool for Dense Matter Nuclear Physics

    Directory of Open Access Journals (Sweden)

    Alessandro Drago

    2018-03-01

    Full Text Available We discuss the different signals, in gravitational and electromagnetic waves, emitted during the merger of two compact stars. We will focus in particular on the possible contraints that those signals can provide on the equation of state of dense matter. Indeed, the stiffness of the equation of state and the particle composition of the merging compact stars strongly affect, e.g., the life time of the post-merger remnant and its gravitational wave signal, the emission of the short gamma-ray-burst, the amount of ejected mass and the related kilonova. The first detection of gravitational waves from the merger of two compact stars in August 2017, GW170817, and the subsequent detections of its electromagnetic counterparts, GRB170817A and AT2017gfo, is the first example of the era of “multi-messenger astronomy”: we discuss what we have learned from this detection on the equation of state of compact stars and we provide a tentative interpretation of this event, within the two families scenario, as being due to the merger of a hadronic star with a quark star.

  1. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    Science.gov (United States)

    O. Silva, Hector; Berti, Emanuele; Sotani, Hajime

    2016-03-01

    Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.

  2. Distances of Dwarf Carbon Stars

    Science.gov (United States)

    Harris, Hugh C.; Dahn, Conard C.; Subasavage, John P.; Munn, Jeffrey A.; Canzian, Blaise J.; Levine, Stephen E.; Monet, Alice B.; Pier, Jeffrey R.; Stone, Ronald C.; Tilleman, Trudy M.; Hartkopf, William I.

    2018-06-01

    Parallaxes are presented for a sample of 20 nearby dwarf carbon stars. The inferred luminosities cover almost two orders of magnitude. Their absolute magnitudes and tangential velocities confirm prior expectations that some originate in the Galactic disk, although more than half of this sample are halo stars. Three stars are found to be astrometric binaries, and orbital elements are determined; their semimajor axes are 1–3 au, consistent with the size of an AGB mass-transfer donor star.

  3. Discovery of a New Nearby Star

    Science.gov (United States)

    Teegarden, B. J.; Pravdo, S. H.; Covey, K.; Frazier, O.; Hawley, S. L.; Hicks, M.; Lawrence, K.; McGlynn, T.; Reid, I. N.; Shaklan, S. B.

    2003-01-01

    We report the discovery of a nearby star with a very large proper motion of 5.06 +/- 0.03 arcsec/yr. The star is called SO025300.5+165258 and referred to herein as HPMS (high proper motion star). The discovery came as a result of a search of the SkyMorph database, a sensitive and persistent survey that is well suited for finding stars with high proper motions. There are currently only 7 known stars with proper motions greater than 5 arcsec/yr. We have determined a preliminary value for the parallax of pi = 0.43 +/- 0.13 arcsec. If this value holds our new star ranks behind only the Alpha Centauri system (including Proxima Centauri) and Barnard's star in the list of our nearest stellar neighbours. The spectrum and measured tangential velocity indicate that HPMS is a main-sequence star with spectral type M6.5. However, if our distance measurement is correct, the HPMS is underluminous by 1.2 +/- 0.7 mag.

  4. APASS Landolt-Sloan BVgri photometry of Rave stars. I. Data, effective temperatures, and reddenings

    Energy Technology Data Exchange (ETDEWEB)

    Munari, U.; Siviero, A. [INAF Osservatorio Astronomico di Padova, I-36012 Asiago (VI) (Italy); Henden, A. [AAVSO, Cambridge, MA (United States); Frigo, A. [ANS Collaboration, c/o Astronomical Observatory, Padova (Italy); Zwitter, T. [Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana (Slovenia); Bienaymé, O.; Siebert, A. [Observatoire Astronomique, Université de Strasbourg, CNRS, 11 rue de l' université F-67000 Strasbourg (France); Bland-Hawthorn, J. [Sydney Institute for Astronomy, University of Sydney, NSW 2006 (Australia); Boeche, C.; Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Freeman, K. C. [Mount Stromlo Observatory, RSAA, Australian National University, Weston Creek, Canberra, ACT 2611 (Australia); Gibson, B. K. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Gilmore, G.; Kordopatis, G. [Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom); Helmi, A. [Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen (Netherlands); Levine, S. E. [Lowell Observatory, Flagstaff, AZ (United States); Navarro, J. F. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); Parker, Q. A.; Reid, W. [Department of Physics and Astronomy, Macquarie University, NSW 2109 (Australia); Seabroke, G. M. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, RH5 6NT (United Kingdom); and others

    2014-11-01

    We provide AAVSO Photometric All-Sky Survey (APASS) photometry in the Landolt BV and Sloan g'r'i' bands for all 425,743 stars included in the fourth RAVE Data Release. The internal accuracy of the APASS photometry of RAVE stars, expressed as the error of the mean of data obtained and separately calibrated over a median of four distinct observing epochs and distributed between 2009 and 2013, is 0.013, 0.012, 0.012, 0.014, and 0.021 mag for the B, V, g', r', and i' bands, respectively. The equally high external accuracy of APASS photometry has been verified on secondary Landolt and Sloan photometric standard stars not involved in the APASS calibration process and on a large body of literature data on field and cluster stars, confirming the absence of offsets and trends. Compared with the Carlsberg Meridian Catalog (CMC-15), APASS astrometry of RAVE stars is accurate to a median value of 0.098 arcsec. Brightness distribution functions for the RAVE stars have been derived in all bands. APASS photometry of RAVE stars, augmented by 2MASS JHK infrared data, has been χ{sup 2} fitted to a densely populated synthetic photometric library designed to widely explore temperature, surface gravity, metallicity, and reddening. Resulting T {sub eff} and E {sub B–V}, computed over a range of options, are provided and discussed, and will be kept updated in response to future APASS and RAVE data releases. In the process, we find that the reddening caused by a homogeneous slab of dust, extending for 140 pc on either side of the Galactic plane and responsible for E{sub B−V}{sup poles} = 0.036 ± 0.002 at the Galactic poles, is a suitable approximation of the actual reddening encountered at Galactic latitudes |b| ≥ 25°.

  5. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)]. A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼ 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the δ-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing δmeson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab

  6. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1998-01-01

    We study the equation of state (EOS) of β-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson (a 0 (980)). A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼30 MeV. We find that the quantity most sensitive to the δ-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the δ-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger δ-meson coupling. (author)

  7. Neutron stars in relativistic mean field theory with isovector scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M.; Stachniewicz, S. [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)]. A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s} {approx} 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the {delta}-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing {delta}meson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab.

  8. IMAGE ANALYSIS FOR COSMOLOGY: RESULTS FROM THE GREAT10 STAR CHALLENGE

    Energy Technology Data Exchange (ETDEWEB)

    Kitching, T. D.; Heymans, C. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Rowe, B.; Witherick, D. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Gill, M. [Center for Cosmology and AstroParticle Physics, Physics Department, The Ohio State University, Columbus, OH (United States); Massey, R. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Courbin, F.; Gentile, M.; Meylan, G. [Laboratoire d' Astrophysique, Ecole Polytechnique Federale de Lausanne (EPFL) (Switzerland); Georgatzis, K. [Department of Information and Computer Science, Aalto University, P.O. Box 15400, FI-00076 Aalto (Finland); Gruen, D. [Department of Physics and Astronomy, 209 South 33rd Street, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kilbinger, M. [Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching (Germany); Li, G. L. [Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China); Mariglis, A. P.; Storkey, A. [School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB (United Kingdom); Xin, B., E-mail: t.kitching@ucl.ac.uk [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)

    2013-04-01

    We present the results from the first public blind point-spread function (PSF) reconstruction challenge, the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Star Challenge. Reconstruction of a spatially varying PSF, sparsely sampled by stars, at non-star positions is a critical part in the image analysis for weak lensing where inaccuracies in the modeled ellipticity e and size R {sup 2} can impact the ability to measure the shapes of galaxies. This is of importance because weak lensing is a particularly sensitive probe of dark energy and can be used to map the mass distribution of large scale structure. Participants in the challenge were presented with 27,500 stars over 1300 images subdivided into 26 sets, where in each set a category change was made in the type or spatial variation of the PSF. Thirty submissions were made by nine teams. The best methods reconstructed the PSF with an accuracy of {sigma}(e) Almost-Equal-To 2.5 Multiplication-Sign 10{sup -4} and {sigma}(R {sup 2})/R {sup 2} Almost-Equal-To 7.4 Multiplication-Sign 10{sup -4}. For a fixed pixel scale, narrower PSFs were found to be more difficult to model than larger PSFs, and the PSF reconstruction was severely degraded with the inclusion of an atmospheric turbulence model (although this result is likely to be a strong function of the amplitude of the turbulence power spectrum).

  9. Pasta structures in neutron stars

    International Nuclear Information System (INIS)

    Gupta, Neha; Shabnam, I.S.; Arumugam, P.

    2011-01-01

    A neutron star (NS) is a stellar remnant, a super-compressed object left over when stars with a mass between 1.4 and about 3 times the mass of our Sun exhaust their nuclear fuel and collapse inwards. The result of such an implosion is a condensed sphere of matter about 10 km across. The outer layer of the of NS, with density less than the nuclear saturation density, represent different challenges and observational opportunities like thermal evolution, X-ray burst, glitches and the very important core-crust transition region. At this density, nucleons are correlated at short distances by attractive strong interactions, they are anti-correlated at large distances because of the Coulomb repulsion. Competition among short- and long-range interactions (i.e., frustration) leads to the development of complex and exotic nuclear shapes, such as sphere, bubbles, rods, slabs and tubes. The term 'pasta phases' has been coined to describe these complex structures. In this work the nuclear pasta phases using different mean-field models along with a droplet model has been studied

  10. A modern search for Wolf-Rayet stars in the Magellanic Clouds: First results

    Energy Technology Data Exchange (ETDEWEB)

    Massey, Philip; Neugent, Kathryn F. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Morrell, Nidia [Las Campanas Observatory, Carnegie Observatories, Casilla 601 La Serena (Chile); Hillier, D. John, E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: nmorrell@lco.cl, E-mail: hillier@pitt.edu [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2014-06-10

    Over the years, directed surveys and incidental spectroscopy have identified 12 Wolf-Rayet (WR) stars in the Small Magellanic Cloud (SMC) and 139 in the Large Magellanic Cloud (LMC), numbers which are often described as 'essentially complete'. Yet, new WRs are discovered in the LMC almost yearly. We have therefore initiated a new survey of both Magellanic Clouds using the same interference-filter imaging technique previously applied to M31 and M33. We report on our first observing season, in which we have successfully surveyed ∼15% of our intended area of the SMC and LMC. Spectroscopy has confirmed nine newly found WRs in the LMC (a 6% increase), including one of WO-type, only the third known in that galaxy and the second to be discovered recently. The other eight are WN3 stars that include an absorption component. In two, the absorption is likely from an O-type companion, but the other six are quite unusual. Five would be classified naively as 'WN3+O3 V', but such a pairing is unlikely given the rarity of O3 stars, the short duration of this phase (which is incommensurate with the evolution of a companion to a WN star), and because these stars are considerably fainter than O3 V stars. The sixth star may also fall into this category. CMFGEN modeling suggests these stars are hot, bolometrically luminous, and N-rich like other WN3 stars, but lack the strong winds that characterize WNs. Finally, we discuss two rare Of?p stars and four Of supergiants we found, and propose that the B[e] star HD 38489 may have a WN companion.

  11. Star trackers for attitude determination

    DEFF Research Database (Denmark)

    Liebe, Carl Christian

    1995-01-01

    One problem comes to all spacecrafts using vector information. That is the problem of determining the attitude. This paper describes how the area of attitude determination instruments has evolved from simple pointing devices into the latest technology, which determines the attitude by utilizing...... a CCD camera and a powerful microcomputer. The instruments are called star trackers and they are capable of determining the attitude with an accuracy better than 1 arcsecond. The concept of the star tracker is explained. The obtainable accuracy is calculated, the numbers of stars to be included...... in the star catalogue are discussed and the acquisition of the initial attitude is explained. Finally the commercial market for star trackers is discussed...

  12. THE CLASSIFICATION OF KEPLER B-STAR VARIABLES

    International Nuclear Information System (INIS)

    McNamara, Bernard J.; Jackiewicz, Jason; McKeever, Jean

    2012-01-01

    The light curves of 252 B-star candidates in the Kepler database are analyzed in a similar fashion to that done by Balona et al. to further characterize B-star variability, increase the sample of variable B stars for future study, and to identify stars whose power spectra include particularly interesting features such as frequency groupings. Stars are classified as either constant light emitters, β Cep stars, slowly pulsating B stars (SPBs), hybrid pulsators, binaries or stars whose light curves are dominated by rotation (Bin/Rot), hot subdwarfs, or white dwarfs. One-hundred stars in our sample were found to be either light constants or to be variable at a level of less than 0.02 mmag. We increase the number of candidate B-star variables found in the Kepler database by Balona et al. in the following fashion: β Cep stars from 0 to 10, SPBs from eight to 54, hybrid pulsators from seven to 21, and Bin/Rot stars from 23 to 82. For comparison purposes, approximately 51 SPBs and six hybrids had been known prior to 2007. The number of β Cep stars known prior to 2004 was 93. A secondary result of this study is the identification of an additional 11 pulsating white dwarf candidates, four of which possess frequency groupings.

  13. Neutron star equilibrium configurations within a fully relativistic theory with strong, weak, electromagnetic, and gravitational interactions

    International Nuclear Information System (INIS)

    Belvedere, Riccardo; Pugliese, Daniela; Rueda, Jorge A.; Ruffini, Remo; Xue, She-Sheng

    2012-01-01

    We formulate the equations of equilibrium of neutron stars taking into account strong, weak, electromagnetic, and gravitational interactions within the framework of general relativity. The nuclear interactions are described by the exchange of the σ, ω, and ρ virtual mesons. The equilibrium conditions are given by our recently developed theoretical framework based on the Einstein–Maxwell–Thomas–Fermi equations along with the constancy of the general relativistic Fermi energies of particles, the “Klein potentials”, throughout the configuration. The equations are solved numerically in the case of zero temperatures and for selected parameterizations of the nuclear models. The solutions lead to a new structure of the star: a positively charged core at supranuclear densities surrounded by an electronic distribution of thickness ∼ℏ/(m e c)∼10 2 ℏ/(m π c) of opposite charge, as well as a neutral crust at lower densities. Inside the core there is a Coulomb potential well of depth ∼m π c 2 /e. The constancy of the Klein potentials in the transition from the core to the crust, imposes the presence of an overcritical electric field ∼(m π /m e ) 2 E c , the critical field being E c =m e 2 c 3 /(eℏ). The electron chemical potential and the density decrease, in the boundary interface, until values μ e crust e core and ρ crust core . For each central density, an entire family of core–crust interface boundaries and, correspondingly, an entire family of crusts with different mass and thickness, exist. The configuration with ρ crust =ρ drip ∼4.3×10 11 gcm −3 separates neutron stars with and without inner crust. We present here the novel neutron star mass–radius for the especial case ρ crust =ρ drip and compare and contrast it with the one obtained from the traditional Tolman–Oppenheimer–Volkoff treatment.

  14. Stars get dizzy after lunch

    International Nuclear Information System (INIS)

    Zhang, Michael; Penev, Kaloyan

    2014-01-01

    Exoplanet searches have discovered a large number of h ot Jupiters — high-mass planets orbiting very close to their parent stars in nearly circular orbits. A number of these planets are sufficiently massive and close-in to be significantly affected by tidal dissipation in the parent star, to a degree parameterized by the tidal quality factor Q * . This process speeds up their star's rotation rate while reducing the planet's semimajor axis. In this paper, we investigate the tidal destruction of hot Jupiters. Because the orbital angular momenta of these planets are a significant fraction of their star's rotational angular momenta, they spin up their stars significantly while spiraling to their deaths. Using the Monte Carlo simulation, we predict that for Q * = 10 6 , 3.9 × 10 –6 of stars with the Kepler Target Catalog's mass distribution should have a rotation period shorter than 1/3 day (8 hr) due to accreting a planet. Exoplanet surveys such as SuperWASP, HATnet, HATsouth, and KELT have already produced light curves of millions of stars. These two facts suggest that it may be possible to search for tidally destroyed planets by looking for stars with extremely short rotational periods, then looking for remnant planet cores around those candidates, anomalies in the metal distribution, or other signatures of the recent accretion of the planet.

  15. Insights from simulations of star formation

    International Nuclear Information System (INIS)

    Larson, Richard B

    2007-01-01

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604) (key issues review)

  16. Insights from simulations of star formation

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard B [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States)

    2007-03-15

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604) (key issues review)

  17. The role of turbulence in star formation laws and thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Kraljic, Katarina; Renaud, Florent; Bournaud, Frédéric [CEA, IRFU, SAp, F-91191 Gif-sur-Yvette Cedex (France); Combes, Françoise [Observatoire de Paris, LERMA et CNRS, 61 Av de l' Observatoire, F-75014 Paris (France); Elmegreen, Bruce [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Emsellem, Eric [European Southern Observatory, D-85748 Garching bei Muenchen (Germany); Teyssier, Romain [Institute for Theoretical Physics, University of Zürich, CH-8057 Zürich (Switzerland)

    2014-04-01

    The Schmidt-Kennicutt relation links the surface densities of gas to the star formation rate in galaxies. The physical origin of this relation, and in particular its break, i.e., the transition between an inefficient regime at low gas surface densities and a main regime at higher densities, remains debated. Here, we study the physical origin of the star formation relations and breaks in several low-redshift galaxies, from dwarf irregulars to massive spirals. We use numerical simulations representative of the Milky Way and the Large and Small Magellanic Clouds with parsec up to subparsec resolution, and which reproduce the observed star formation relations and the relative variations of the star formation thresholds. We analyze the role of interstellar turbulence, gas cooling, and geometry in drawing these relations at 100 pc scale. We suggest in particular that the existence of a break in the Schmidt-Kennicutt relation could be linked to the transition from subsonic to supersonic turbulence and is independent of self-shielding effects. With this transition being connected to the gas thermal properties and thus to the metallicity, the break is shifted toward high surface densities in metal-poor galaxies, as observed in dwarf galaxies. Our results suggest that together with the collapse of clouds under self-gravity, turbulence (injected at galactic scale) can induce the compression of gas and regulate star formation.

  18. The role of turbulence in star formation laws and thresholds

    International Nuclear Information System (INIS)

    Kraljic, Katarina; Renaud, Florent; Bournaud, Frédéric; Combes, Françoise; Elmegreen, Bruce; Emsellem, Eric; Teyssier, Romain

    2014-01-01

    The Schmidt-Kennicutt relation links the surface densities of gas to the star formation rate in galaxies. The physical origin of this relation, and in particular its break, i.e., the transition between an inefficient regime at low gas surface densities and a main regime at higher densities, remains debated. Here, we study the physical origin of the star formation relations and breaks in several low-redshift galaxies, from dwarf irregulars to massive spirals. We use numerical simulations representative of the Milky Way and the Large and Small Magellanic Clouds with parsec up to subparsec resolution, and which reproduce the observed star formation relations and the relative variations of the star formation thresholds. We analyze the role of interstellar turbulence, gas cooling, and geometry in drawing these relations at 100 pc scale. We suggest in particular that the existence of a break in the Schmidt-Kennicutt relation could be linked to the transition from subsonic to supersonic turbulence and is independent of self-shielding effects. With this transition being connected to the gas thermal properties and thus to the metallicity, the break is shifted toward high surface densities in metal-poor galaxies, as observed in dwarf galaxies. Our results suggest that together with the collapse of clouds under self-gravity, turbulence (injected at galactic scale) can induce the compression of gas and regulate star formation.

  19. MTÜ-del raskeneb toetusraha taotlemine / Ahto Jakson

    Index Scriptorium Estoniae

    Jakson, Ahto

    2005-01-01

    Mittetulundusühingutel ja väiksematel sihtasutustel läheb järgmisest aastast hasartmängumaksu rahast toetuste taotlemine raskemaks, kuna nad peavad esitama siiani nõutud tehnilise kirjelduse asemel ehitusprojekti

  20. EU gateway to Japan - toetusprogramm ehitusettevõtjatele / Kairi Jõesalu

    Index Scriptorium Estoniae

    Jõesalu, Kairi

    2004-01-01

    Ilmunud ka: Delovõje Vedomosti 12. jaan. lk. 13. Euroopa Komisjon toetab ehitussektori ettevõtteid Jaapani turule sisenemiseks. Lisad: Toetust saavad ehitusmaterjalid jagunevad 3 gruppi; Programm aitab turule sisenemise riske vähendada