WorldWideScience

Sample records for dystrophy protein kinase

  1. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    Science.gov (United States)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  2. Role of myotonic dystrophy protein kinase (DMPK in glucose homeostasis and muscle insulin action.

    Directory of Open Access Journals (Sweden)

    Esther Llagostera

    Full Text Available Myotonic dystrophy 1 (DM1 is caused by a CTG expansion in the 3'-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk-/- mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk-/- mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk-/- mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.

  3. A tail-anchored myotonic dystrophy protein kinase isoform induces perinuclear clustering of mitochondria, autophagy, and apoptosis.

    Directory of Open Access Journals (Sweden)

    Ralph J A Oude Ophuis

    Full Text Available BACKGROUND: Studies on the myotonic dystrophy protein kinase (DMPK gene and gene products have thus far mainly concentrated on the fate of length mutation in the (CTGn repeat at the DNA level and consequences of repeat expansion at the RNA level in DM1 patients and disease models. Surprisingly little is known about the function of DMPK protein products. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate here that transient expression of one major protein product of the human gene, the hDMPK A isoform with a long tail anchor, results in mitochondrial fragmentation and clustering in the perinuclear region. Clustering occurred in a variety of cell types and was enhanced by an intact tubulin cytoskeleton. In addition to morphomechanical changes, hDMPK A expression induces physiological changes like loss of mitochondrial membrane potential, increased autophagy activity, and leakage of cytochrome c from the mitochondrial intermembrane space accompanied by apoptosis. Truncation analysis using YFP-hDMPK A fusion constructs revealed that the protein's tail domain was necessary and sufficient to evoke mitochondrial clustering behavior. CONCLUSION/SIGNIFICANCE: Our data suggest that the expression level of the DMPK A isoform needs to be tightly controlled in cells where the hDMPK gene is expressed. We speculate that aberrant splice isoform expression might be a codetermining factor in manifestation of specific DM1 features in patients.

  4. Generation and characterisation of a full-length cDNA encoding murine myotonic dystrophy protein kinase from cardiac tissue

    Energy Technology Data Exchange (ETDEWEB)

    Carey, N.; Tongeren, T. van; Winchester, C. [Charing Cross & Wesminster Medical School, London (United Kingdom)] [and others

    1994-09-01

    The mutation underlying myotonic dystrophy (DM) is a CTG trinucleotide expansion in the 3{prime} untranslated region of a putative protein kinase gene (DMPK). We report the isolation of a full-length cDNA clone of the murine (DMPK) gene from a heart cDNA library. Sequence analysis shows that the clone is a splice isoform which has only previously been identified in brain, suggesting that there may be some flexibility of the splicing pattern in some tissues. We are currently analyzing the library for the presence of other isoforms. The full-length cDNA has been cloned into a bacterial expression system and the expressed protein is being used as an immunogen to generate both polyclonal and monoclonal antisera. These reagents will allow the analysis of the intracellular targets of the DMPK. Subclones of the cDNA have been generated for use as in situ hybridization probes, allowing investigation of the normal patterns of expression of the gene and the differential expression of the protein isoforms. These data will be essential for deciding on a rational use of rare patient material and will provide the necessary baseline for the analysis of transgenic and {open_quotes}knock-out{close_quotes} mice.

  5. Characterization of a CpG island at the 3{prime} end of the myotonic dystrophy protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, C.A.; Carey, N.; Rahman, S. [Charing Cross and Westminster Medical School, London (United Kingdom)] [and others

    1994-09-01

    Myotonic dystrophy (DM) is a multisystemic disorder characterized by a very variable presentation. The mutation underlying DM is an expansion of a CTG repeat in the 3{prime} untranslated region of the DM protein kinase (DMPK). However it is not yet clear how this expansion leads to the observed phenotype. Published data on the effects of the expansion on the expression of DMPK are equivocal, and do not yet explain how changes in expression of this gene lead to the broad range of symptoms found in this disorder. The region of chromosome 19 in which DMPK lies is extremely gene-rich, and it has been postulated that the expression of other genes may also be affected by the CTG expansion. We present sequencing and methylation data which show the full extent of a large CpG island which covers the 3{prime} end of DMPK (encompassing the CTG repeat) and extends downstream beyond this. As CpG islands are mostly found at the 5{prime} end of genes, this may indicate that there is another gene immediately downstream of the repeat. We are currently using a single-copy probe which we have isolated from this region to screen cDNA libraries in an attempt to find such a gene.

  6. Serum response factor regulates smooth muscle contractility via myotonic dystrophy protein kinases and L-type calcium channels

    Science.gov (United States)

    Lee, Moon Young; Park, Chanjae; Ha, Se Eun; Park, Paul J.; Berent, Robyn M.; Jorgensen, Brian G.; Corrigan, Robert D.; Grainger, Nathan; Blair, Peter J.; Slivano, Orazio J.; Miano, Joseph M.; Ward, Sean M.; Smith, Terence K.; Sanders, Kenton M.

    2017-01-01

    Serum response factor (SRF) transcriptionally regulates expression of contractile genes in smooth muscle cells (SMC). Lack or decrease of SRF is directly linked to a phenotypic change of SMC, leading to hypomotility of smooth muscle in the gastrointestinal (GI) tract. However, the molecular mechanism behind SRF-induced hypomotility in GI smooth muscle is largely unknown. We describe here how SRF plays a functional role in the regulation of the SMC contractility via myotonic dystrophy protein kinase (DMPK) and L-type calcium channel CACNA1C. GI SMC expressed Dmpk and Cacna1c genes into multiple alternative transcriptional isoforms. Deficiency of SRF in SMC of Srf knockout (KO) mice led to reduction of SRF-dependent DMPK, which down-regulated the expression of CACNA1C. Reduction of CACNA1C in KO SMC not only decreased intracellular Ca2+ spikes but also disrupted their coupling between cells resulting in decreased contractility. The role of SRF in the regulation of SMC phenotype and function provides new insight into how SMC lose their contractility leading to hypomotility in pathophysiological conditions within the GI tract. PMID:28152551

  7. Myotonic dystrophy protein kinase (DMPK) prevents ROS-induced cell death by assembling a hexokinase II-Src complex on the mitochondrial surface.

    Science.gov (United States)

    Pantic, B; Trevisan, E; Citta, A; Rigobello, M P; Marin, O; Bernardi, P; Salvatori, S; Rasola, A

    2013-10-17

    The biological functions of myotonic dystrophy protein kinase (DMPK), a serine/threonine kinase whose gene mutations cause myotonic dystrophy type 1 (DM1), remain poorly understood. Several DMPK isoforms exist, and the long ones (DMPK-A/B/C/D) are associated with the mitochondria, where they exert unknown activities. We have studied the isoform A of DMPK, which we have found to be prevalently associated to the outer mitochondrial membrane. The kinase activity of mitochondrial DMPK protects cells from oxidative stress and from the ensuing opening of the mitochondrial permeability transition pore (PTP), which would otherwise irreversibly commit cells to death. We observe that DMPK (i) increases the mitochondrial localization of hexokinase II (HK II), (ii) forms a multimeric complex with HK II and with the active form of the tyrosine kinase Src, binding its SH3 domain and (iii) it is tyrosine-phosphorylated by Src. Both interaction among these proteins and tyrosine phosphorylation of DMPK are increased under oxidative stress, and Src inhibition selectively enhances death in DMPK-expressing cells after HK II detachment from the mitochondria. Down-modulation of DMPK abolishes the appearance of muscle markers in in vitro myogenesis, which is rescued by oxidant scavenging. Our data indicate that, together with HK II and Src, mitochondrial DMPK is part of a multimolecular complex endowed with antioxidant and pro-survival properties that could be relevant during the function and differentiation of muscle fibers.

  8. Myotonic dystrophy protein kinase (DMPK) induces actin cytoskeletal reorganization and apoptotic-like blebbing in lens cells

    Science.gov (United States)

    Jin, S.; Shimizu, M.; Balasubramanyam, A.; Epstein, H. F.

    2000-01-01

    DMPK, the product of the DM locus, is a member of the same family of serine-threonine protein kinases as the Rho-associated enzymes. In DM, membrane inclusions accumulate in lens fiber cells producing cataracts. Overexpression of DMPK in cultured lens epithelial cells led to apoptotic-like blebbing of the plasma membrane and reorganization of the actin cytoskeleton. Enzymatically active DMPK was necessary for both effects; inactive mutant DMPK protein did not produce either effect. Active RhoA but not constitutive GDP-state mutant protein produced similar effects as DMPK. The similar actions of DMPK and RhoA suggest that they may function in the same regulatory network. The observed effects of DMPK may be relevant to the removal of membrane organelles during normal lens differentiation and the retention of intracellular membranes in DM lenses. Copyright 2000 Wiley-Liss, Inc.

  9. Creatine kinase response to high-intensity aerobic exercise in adult-onset muscular dystrophy

    DEFF Research Database (Denmark)

    Andersen, Søren P; Sveen, Marie-Louise; Hansen, Regitze S

    2013-01-01

    We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies.......We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies....

  10. Instability of the expanded (CTG){sub n} repeats in the myotonin protein kinase gene in cultured lymphoblastoid cell lines from patients with myotonic dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ashizawa, Tetsuo; Patel, B.J.; Monckton, D.G. [Baylor College of Medicine, Houston, TX (United States)] [and other

    1996-08-15

    The mutation associated with myotonic dystrophy (DM) is the expansion of an unstable trinucleotide repeat, (CTG){sub n}, in the 3{prime}-untranslated region of the myotonin protein kinase gene. Although expanded repeats show both germline and somatic instability, the mechanisms of the instability are poorly understood. To establish a model system in which somatic instability of the DM repeat could be studied in more detail, we established lymphoblastoid cell lines (LBCL) from DM patients. Analysis of the DNA from DM LBCL using Southern blotting showed that the (CTG). repeats were apparently stable up to 29 passages in culture. To study infrequent repeat size mutations that are undetectable due to the size heterogeneity, we established LBCL of single-cell origins by cloning using multiple steps of limiting dilution. After expansion to approximately 10{sup 6} cells (equivalent to approximately 20 cell cycles), the DNAs of these cell lines were analyzed by the small pool PCR technique using primers flanking the (CTG), repeat region. Two types of mutations of the expanded (CTG){sub n} repeat alleles were detected: (1) frequent mutations that show small changes of the (CTG){sub n} repeat size, resulting in alleles in a normal distribution around the progenitor allele, and (2) relatively rare mutations with large changes of the (CTG){sub n} repeat size, with a bias toward contraction. The former may represent the mechanism responsible for the so matic heterogeneity of the (CTG), repeat size observe in blood cells of DM patients. This in vitro experimental system will be useful for further studies on mechanisms involved in the regulation of the somatic stability of the (CTG). repeats in DM. 24 refs., 4 figs.

  11. Characterization of myotonic dystrophy kinase (DMK) in heterologous expression systems

    Energy Technology Data Exchange (ETDEWEB)

    Waring, J.D.; Haq, R.; Mahadevan, M.S. [Children`s Hospital of Eastern Ontario, Ottawa (Canada)] [and others

    1994-09-01

    Myotonic dystrophy is caused by expansion of a (CTG){sub n} repeat within the 3{prime} untranslated region of the DMK gene. This gene encodes a product with a predicted M.W. of {approximately}69 kDa which has homology to cAMP-regulated serine-threonine protein kinases. In addition, there is a domain with similarity to coiled-coil regions found in myofibrillar proteins and a predicted transmembrane domain found at the extreme C-terminus. As an approach to identifying the function of this gene, we have expressed various forms of DMK by both in vitro translation and in insect cells using a recombinant baculovirus system. These forms include one corresponding to a cDNA isoform which results in a C-terminal truncation, as well as constructs containing varying CTG repeat lengths in their transcripts. Affinity-purified immunoglobulin elicited to a GST fusion protein (including amino acids corresponding to exons 11 and 15 of DMK) specifically recognizes products close to the predicted size. The products have been analyzed for their levels of expression, post-translational modifications, subcellular localization, and kinase activity.

  12. Immunohistochemical distribution of myotonic dystrophy kinase (DNK) in muscle

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, E.J.; Tamai, K. [Univ. of Ottawa (Canada); Waring, J.D. [Chilrdren`s Hospital of Eastern Ontario, Ottawa (Canada)] [and others

    1994-09-01

    Myotonic dystrophy (DM) is the most common form of inherited neuromuscular disease in adults and is characterized by progressive muscle wasting and myotonia. The mutation responsible for DM has been identified as the expansion of a polymorphic (CTG)n repeat in the 3{prime} untranslated region of a gene encoding a putative serine/threonine kinase (DMK). We have raised a polyclonal raised a polyclonal rabbit antisera against a fusion protein encoding exons 11-15 of DMK. The antisera detects both the full length and a truncated isoform (missing amino acids corresponding to exons 13-15) of the human DMK expressed in a recombinant baculovirus system. In addition, it recognizes a 69 kDA protein on Western blots of both human and mouse myoblasts. Use of this antiserum in immunohistochemical studies of human tissue demonstrates that DMK is expressed in the cytoplasm of both skeletal and smooth muscle and is expressed postsynaptically (as determined by codistribution with acetylcholinesterase and acetylcholine receptors) within the vicinity of neuromuscular junction of skeletal muscle. Further, no obvious differences in DMK localization were observed between muscle tissues from normal and DM-affected individuals.

  13. An examination of some factors influencing creatine kinase in the blood of patients with muscular dystrophy.

    Science.gov (United States)

    Jackson, M J; Round, J M; Newham, D J; Edwards, R H

    1987-01-01

    The natural variability of plasma creatine kinase activity has been examined in patients suffering from muscular dystrophy and in normal subjects. The coefficient of variation of the plasma creatine kinase activities was found to be large (approximately 35%) in both patients with Duchenne muscular dystrophy and normal control subjects. A comparison of the plasma activities of creatine kinase with other muscle-derived enzymes suggests that the cause of this variability is changes in the release of enzymes from muscle. Data obtained concerning the effect of physical activity on plasma creatine kinase activity are contradictory, but several young patients with Duchenne muscular dystrophy and a very high creatine kinase activity (greater than 5000 IU/liter) showed a decreased activity following admission to hospital. An estimate of the rate of efflux of certain kinase from muscle has been made, indicating that young ambulant patients with Duchenne muscular dystrophy have a grossly elevated muscle creatine kinase efflux (495.0 +/- 61.3 IU/kg muscle/hr) compared to control subjects (1.4 +/- 0.5 IU/kg muscle/hr).

  14. Muscle-Derived Proteins as Serum Biomarkers for Monitoring Disease Progression in Three Forms of Muscular Dystrophy

    Science.gov (United States)

    Burch, Peter M.; Pogoryelova, Oksana; Goldstein, Richard; Bennett, Donald; Guglieri, Michela; Straub, Volker; Bushby, Kate; Lochmüller, Hanns; Morris, Carl

    2015-01-01

    Abstract Background: Identifying translatable, non-invasive biomarkers of muscular dystrophy that better reflect the disease pathology than those currently available would aid the development of new therapies, the monitoring of disease progression and the response to therapy. Objective: The goal of this study was to evaluate a panel of serum protein biomarkers with the potential to specifically detect skeletal muscle injury. Method: Serum concentrations of skeletal troponin I (sTnI), myosin light chain 3 (Myl3), fatty acid binding protein 3 (FABP3) and muscle-type creatine kinase (CKM) proteins were measured in 74 Duchenne muscular dystrophy (DMD), 38 Becker muscular dystrophy (BMD) and 49 Limb-girdle muscular dystrophy type 2B (LGMD2B) patients and 32 healthy controls. Results: All four proteins were significantly elevated in the serum of these three muscular dystrophy patient populations when compared to healthy controls, but, interestingly, displayed different profiles depending on the type of muscular dystrophy. Additionally, the effects of patient age, ambulatory status, cardiac function and treatment status on the serum concentrations of the proteins were investigated. Statistical analysis revealed correlations between the serum concentrations and certain clinical endpoints including forced vital capacity in DMD patients and the time to walk ten meters in LGMD2B patients. Serum concentrations of these proteins were also elevated in two preclinical models of muscular dystrophy, the mdx mouse and the golden-retriever muscular dystrophy dog. Conclusions: These proteins, therefore, are potential muscular dystrophy biomarkers for monitoring disease progression and therapeutic response in both preclinical and clinical studies. PMID:26870665

  15. Understanding the muscular dystrophy caused by deletion of choline kinase beta in mice.

    Science.gov (United States)

    Wu, Gengshu; Sher, Roger B; Cox, Gregory A; Vance, Dennis E

    2009-05-01

    Choline kinase in mice is encoded by two genes, Chka and Chkb. Disruption of murine Chka leads to embryonic lethality, whereas a spontaneously occurring genomic deletion in murine Chkb results in neonatal bone deformity and hindlimb muscular dystrophy. We have investigated the mechanism by which a lack of choline kinase beta, encoded by Chkb, causes hindlimb muscular dystrophy. The biosynthesis of phosphatidylcholine (PC) is impaired in the hindlimbs of Chkb -/- mice, with an accumulation of choline and decreased amount of phosphocholine. The activity of CTP: phosphocholine cytidylyltransferase is also decreased in the hindlimb muscle of mutant mice. Concomitantly, the activities of PC phospholipase C and phospholipase A2 are increased. The mitochondria in Chkb -/- mice are abnormally large and exhibit decreased inner membrane potential. Despite the muscular dystrophy in Chkb -/- mice, we observed increased expression of insulin like growth factor 1 and proliferating cell nuclear antigen. However, regeneration of hindlimb muscles of Chkb -/- mice was impaired when challenged with cardiotoxin. Injection of CDP-choline increased PC content of hindlimb muscle and decreased creatine kinase activity in plasma of Chkb -/- mice. We conclude that the hindlimb muscular dystrophy in Chkb -/- mice is due to attenuated PC biosynthesis and enhanced catabolism of PC.

  16. Small molecule kinase inhibitors alleviate different molecular features of myotonic dystrophy type 1.

    Science.gov (United States)

    Wojciechowska, Marzena; Taylor, Katarzyna; Sobczak, Krzysztof; Napierala, Marek; Krzyzosiak, Wlodzimierz J

    2014-01-01

    Expandable (CTG)n repeats in the 3' UTR of the DMPK gene are a cause of myotonic dystrophy type 1 (DM1), which leads to a toxic RNA gain-of-function disease. Mutant RNAs with expanded CUG repeats are retained in the nucleus and aggregate in discrete inclusions. These foci sequester splicing factors of the MBNL family and trigger upregulation of the CUGBP family of proteins resulting in the mis-splicing of their target transcripts. To date, many efforts to develop novel therapeutic strategies have been focused on disrupting the toxic nuclear foci and correcting aberrant alternative splicing via targeting mutant CUG repeats RNA; however, no effective treatment for DM1 is currently available. Herein, we present results of culturing of human DM1 myoblasts and fibroblasts with two small-molecule ATP-binding site-specific kinase inhibitors, C16 and C51, which resulted in the alleviation of the dominant-negative effects of CUG repeat expansion. Reversal of the DM1 molecular phenotype includes a reduction of the size and number of foci containing expanded CUG repeat transcripts, decreased steady-state levels of CUGBP1 protein, and consequent improvement of the aberrant alternative splicing of several pre-mRNAs misregulated in DM1.

  17. Carrier detection in Becker muscular dystrophy using creatine kinase estimation and DNA analysis.

    Science.gov (United States)

    Kingston, H M; Sarfarazi, M; Newcombe, R G; Willis, N; Harper, P S

    1985-04-01

    Serum creatine kinase levels in 39 control females and 59 obligate carriers of Becker muscular dystrophy (BMD) have been used to construct likelihood ratios for carrier detection. In 24 possible carriers of BMD, analysis of DNA with X chromosome specific DNA probes linked to the dystrophy gene, has been used in conjunction with creatine kinase measurement to calculate final risk estimates of carrier status. Incorporation of information from probe genotype into the Bayesian calculation, enables a substantially lower risk to be deliniated for some possible carriers of the BMD gene. Thus, although the existing DNA probes are not sufficiently closely linked to BMD to be used in prenatal diagnosis, they can make a major contribution to genetic counseling by refining the estimated probability of carrier status.

  18. Functional protein networks unifying limb girdle muscular dystrophy

    NARCIS (Netherlands)

    Morrée, Antoine de

    2011-01-01

    Limb Girdle Muscular Dystrophy (LGMD) is a rare progressive heterogeneous disorder that can be caused by mutations in at least 21 different genes. These genes are often widely expressed and encode proteins with highly differing functions. And yet mutations in all of them give rise to a similar clini

  19. Functional protein networks unifying limb girdle muscular dystrophy

    NARCIS (Netherlands)

    Morrée, Antoine de

    2011-01-01

    Limb Girdle Muscular Dystrophy (LGMD) is a rare progressive heterogeneous disorder that can be caused by mutations in at least 21 different genes. These genes are often widely expressed and encode proteins with highly differing functions. And yet mutations in all of them give rise to a similar

  20. An aberrant adenylate kinase isoenzyme from the serum of patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Hamada, M; Okuda, H; Oka, K; Watanabe, T; Ueda, K; Nojima, M; Kuby, S A; Manship, M; Tyler, F H; Ziter, F A

    1981-08-13

    The sera from patients with human Duchenne (X-linked) progressive muscular dystrophy contain elevated adenylate kinase (ATP: AMP phosphotransferase, EC 2.7.4.3) activities, in addition to their characteristically high creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) activities. By agarose gel electrophoresis of human Duchenne dystrophic serum, the presence of an apparently normal human serum adenylate kinase together with a variant species of adenylate kinase was detected. The latter enzyme species appeared, in its mobility, to be similar to that of the normal human liver-type adenylate kinase. The presence of this aberrant liver-type adenylate kinase could also be demonstrated by characteristic (for the liver type) inhibition patterns with P1,P5-di-(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate. On the other hand, by inhibition titrations with an anti-muscle-type adenylate kinase, hemolysates from the erythrocytes of several Duchenne and Becker's dystrophics were found to contain approx. 96% muscle-type adenylate kinase and their serum approx. 97% muscle-type adenylate kinase. These same patients contained approx. 89% M-M type creatine kinase in their serum (by inhibition against anti-human muscle-type creatine kinase) indicative of the presence also of M-B plus B-B type active isoenzymes. All of these data can best be explained by the presence of a variant or mutant adenylate kinase isoenzyme in the dystrophic serum. This isoenzyme appears to resemble the liver type in its inhibition patterns with P1,P5-di(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate, and in its heat stability (compare also the agarose gel electrophoresis pattern); but structurally, it is a muscle type, or derived from a muscle type, as shown immunologically by inhibition reactions with anti-muscle-type adenylate kinase. Whether this is a fetal-type isoenzyme of adenylate kinase will require further

  1. Aerobic training and postexercise protein in facioscapulohumeral muscular dystrophy

    DEFF Research Database (Denmark)

    Andersen, Grete; Prahm, Kira P; Dahlqvist, Julia R;

    2015-01-01

    OBJECTIVE: To investigate the effect of regular aerobic training and postexercise protein-carbohydrate supplementation in patients with facioscapulohumeral muscular dystrophy (FSHD). METHODS: In this randomized, double-blind, placebo-controlled parallel study, we randomized untrained men (n = 21...... not add any further improvement to training effects alone. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that regular aerobic training with or without postexercise protein-carbohydrate supplementation improves fitness and workload in patients with FSHD....

  2. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*

    Science.gov (United States)

    Turk, Rolf; Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Pospisil, Tyler C.; Jones, Kayla S.; Campbell, Kevin P.; Wright, Michael E.

    2016-01-01

    Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343

  3. Muscular dystrophy meets protein biochemistry, the mother of invention.

    Science.gov (United States)

    Funk, Steven D; Miner, Jeffrey H

    2017-03-01

    Muscular dystrophies result from a defect in the linkage between the muscle fiber cytoskeleton and the basement membrane (BM). Congenital muscular dystrophy type MDC1A is caused by mutations in laminin α2 that either reduce its expression or impair its ability to polymerize within the muscle fiber BM. Defects in this BM lead to muscle fiber damage from the force of contraction. In this issue of the JCI, McKee and colleagues use a laminin polymerization-competent, designer chimeric BM protein in vivo to restore function of a polymerization-defective laminin, leading to normalized muscle structure and strength in a mouse model of MDC1A. Delivery of such a protein to patients could ameliorate many aspects of their disease.

  4. Oncoprotein protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Karin, Michael (San Diego, CA); Hibi, Masahiko (San Diego, CA); Lin, Anning (La Jolla, CA); Davis, Roger (Princeton, MA); Derijard, Benoit (Shrewsbury, MA)

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  5. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine...

  6. Inhibitors of protein kinase C

    Institute of Scientific and Technical Information of China (English)

    LIU Shiying; JIANG Yuyang; CAO Jian; LIU Feng; MA Li; ZHAO Yufen

    2005-01-01

    Protein kinase catalyzes the transfer of the γ-phosphoryl group from ATP to the hydroxyl groups of protein side chains, which plays critical roles in signal transduction pathways by transmitting extracellular signals across the plasma membrane and nuclear membrane to the destination sites in the cytoplasm and the nucleus. Protein kinase C (PKC) is a superfamily of phospholipid-dependent Ser/Thr kinase. There are at least 12 isozymes in PKC family. They are distributed in different tissues and play different roles in physiological processes. On account of their concern with a variety of pathophysiologic states, such as cancer, inflammatory conditions, autoimmune disorder, and cardiac diseases, the inhibitors, which can inhibit the activity of PKC and the interaction of cytokine with receptor, and interfere signal transduction pathway, may be candidates of therapeutic drugs. Therefore, intense efforts have been made to develop specific protein kinase inhibitors as biological tools and therapeutic agents. This article reviews the recent development of some of PKC inhibitors based on their interaction with different conserved domains and different inhibition mechanisms.

  7. Protein-carbohydrate supplements improve muscle protein balance in muscular dystrophy patients after endurance exercise

    DEFF Research Database (Denmark)

    Andersen, Grete; Ørngreen, Mette C; Preisler, Nicolai

    2015-01-01

    In healthy individuals, postexercise protein supplementation increases muscle protein anabolism. In patients with muscular dystrophies, aerobic exercise improves muscle function, but the effect of exercise on muscle protein balance is unknown. Therefore, we investigated 1) muscle protein balance...... before, during, and after exercise and 2) the effect of postexercise protein-carbohydrate supplementation on muscle protein balance in patients with muscular dystrophies. In 17 patients [7 women and 10 men, aged 33 ± 11 yr (18-52), body mass index: 22 ± 3 kg/m(2) (16-26)] and 8 healthy matched controls...... [3 women and 5 men, age 33 ± 13 years (19-54), body mass index: 23 ± 3 kg/m(2) (19-27)], muscle protein synthesis, breakdown, and fractional synthesis rates (FSR) were measured across the leg using tracer dilution methodology on two occasions, with and without oral postexercise protein...

  8. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.

    Science.gov (United States)

    Terrill, Jessica R; Radley-Crabb, Hannah G; Iwasaki, Tomohito; Lemckert, Frances A; Arthur, Peter G; Grounds, Miranda D

    2013-09-01

    The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice.

  9. Assessing protein kinase target similarity

    DEFF Research Database (Denmark)

    Gani, Osman A; Thakkar, Balmukund; Narayanan, Dilip

    2015-01-01

    : focussed chemical libraries, drug repurposing, polypharmacological design, to name a few. Protein kinase target similarity is easily quantified by sequence, and its relevance to ligand design includes broad classification by key binding sites, evaluation of resistance mutations, and the use of surrogate......" of sequence and crystal structure information, with statistical methods able to identify key correlates to activity but also here, "the devil is in the details." Examples from specific repurposing and polypharmacology applications illustrate these points. This article is part of a Special Issue entitled...

  10. Synaptic protein dysregulation in myotonic dystrophy type 1

    Science.gov (United States)

    Hernández-Hernández, Oscar; Sicot, Géraldine; Dinca, Diana M.; Huguet, Aline; Nicole, Annie; Buée, Luc; Munnich, Arnold; Sergeant, Nicolas; Gourdon, Geneviève; Gomes-Pereira, Mário

    2013-01-01

    The toxicity of expanded transcripts in myotonic dystrophy type 1 (DM1) is mainly mediated by the disruption of alternative splicing. However, the detailed disease mechanisms in the central nervous system (CNS) have not been fully elucidated. In our recent study, we demonstrated that the accumulation of mutant transcripts in the CNS of a mouse model of DM1 disturbs splicing in a region-specific manner. We now discuss that the spatial- and temporal-regulated expression of splicing factors may contribute to the region-specific spliceopathy in DM1 brains. In the search for disease mechanisms operating in the CNS, we found that the expression of expanded CUG-containing RNA affects the expression and phosphorylation of synaptic vesicle proteins, possibly contributing to DM1 neurological phenotypes. Although mediated by splicing regulators with a described role in DM1, the misregulation of synaptic proteins was not associated with missplicing of their coding transcripts, supporting the view that DM1 mechanisms in the CNS have also far-reaching implications beyond the disruption of a splicing program. PMID:25003003

  11. The myotonic dystrophy kinase 3{prime}-untranslated region and its effect on gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Ang, C.W.Y.; Sabourin, L.A.; Narang, M.A. [Univ. of Ottawa, Ontario (Canada)] [and others

    1994-09-01

    Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease involving the expansion of an unstable CTG repeat in the 3{prime}-untranslated (3{prime}-UTR) region of the DM kinase (DMK) gene. Increased levels of mRNA in congenital compared to normal tissue have been shown, suggesting elevated DMK levels may be responsible for the disease phenotype. To study the effect of the DMK 3{prime}UTR on gene expression, a reporter gene system was constructed using the constitutive CMV promoter with the chloramphenicol acetyl transferase (CAT) open reading frame and the DMK 3{prime}UTR containing from 5 repeats up to 90 repeats. Transient transfection into a rhabdomyosarcoma cell line shows a three-fold increase in CAT activity from constructs containing a wildtype 3{prime}UTR (5 and 20 repeats) compared to a control construct containing only a poly(A) signal. Reporter constructs with repeats in the protomutation (50 repeats) and mutation (90 repeats) range show a greater than 10-fold increase over control CAT activity. These results suggest the presence of elements in the DMK 3{prime}UTR capable of conferring increased gene expression. We are currently investigating cell-specific activity of the constructs and conducting deletion mapping to identify regulatory elements in the 3{prime}-UTR.

  12. Structure and function of adenylate kinase isozymes in normal humans and muscular dystrophy patients.

    Science.gov (United States)

    Hamada, M; Takenaka, H; Fukumoto, K; Fukamachi, S; Yamaguchi, T; Sumida, M; Shiosaka, T; Kurokawa, Y; Okuda, H; Kuby, S A

    1987-01-01

    Two isozymes of adenylate kinase from human Duchenne muscular dystrophy serum, one of which was an aberrant form specific to DMD patients, were separated by Blue Sepharose CL-6B affinity chromatography. The separated aberrant form possessed a molecular weight of 98,000 +/- 1,500, whereas the normal serum isozyme had a weight of 87,000 +/- 1,600, as determined by SDS-polyacrylamide gel electrophoresis, gel filtration, and sedimentation equilibrium. The sedimentation coefficients were 5.8 S and 5.6 S for the aberrant form and the normal form, respectively. Both serum isozymes are tetramers. The subunit size of the aberrant isozyme (Mr = 24,700) was very similar to that of the normal human liver isozyme, and the subunit size of the normal isozyme (Mr = 21,700) was very similar to that of the normal human muscle enzyme. The amino acid composition of the normal serum isozyme was similar to that of the muscle-type enzyme, and that of the aberrant isozyme was similar to that of the liver enzyme, with some exceptions in both cases.

  13. Diagnostic clues and manifesting carriers in fukutin-related protein (FKRP) limb-girdle muscular dystrophy.

    Science.gov (United States)

    Schottlaender, Lucia V; Petzold, Axel; Wood, Nicholas; Houlden, Henry

    2015-01-15

    Mutations in the fukutin-related protein (FKRP) gene are a known cause of autosomal recessive limb-girdle muscular dystrophy. Clinically, patients resemble Becker's muscular dystrophy and generally present in the first two decades of life with a mild, progressive phenotype. Cardiac involvement is variable. Heterozygous carriers are usually clinically unaffected. We report a patient presenting later in life with life-threatening cardiac failure and we describe for the first time clinically manifesting carriers in the family.

  14. Anticancer Alkaloid Lamellarins Inhibit Protein Kinases

    Directory of Open Access Journals (Sweden)

    Laurent Meijer

    2008-10-01

    Full Text Available Lamellarins, a family of hexacyclic pyrrole alkaloids originally isolated from marine invertebrates, display promising anti-tumor activity. They induce apoptotic cell death through multi-target mechanisms, including inhibition of topoisomerase I, interaction with DNA and direct effects on mitochondria. We here report that lamellarins inhibit several protein kinases relevant to cancer such as cyclin-dependent kinases, dualspecificity tyrosine phosphorylation activated kinase 1A, casein kinase 1, glycogen synthase kinase-3 and PIM-1. A good correlation is observed between the effects of lamellarins on protein kinases and their action on cell death, suggesting that inhibition of specific kinases may contribute to the cytotoxicity of lamellarins. Structure/activity relationship suggests several paths for the optimization of lamellarins as kinase inhibitors.

  15. Actin-organising properties of the muscular dystrophy protein myotilin.

    Science.gov (United States)

    von Nandelstadh, Pernilla; Grönholm, Mikaela; Moza, Monica; Lamberg, Arja; Savilahti, Harri; Carpén, Olli

    2005-10-15

    Myotilin is a sarcomeric Z-disc protein that binds F-actin directly and bundles actin filaments, although it does not contain a conventional actin-binding domain. Expression of mutant myotilin leads to sarcomeric alterations in the dominantly inherited limb-girdle muscular dystrophy 1A and in myofibrillar myopathy/desmin-related myopathy. Together, with previous in vitro studies, this indicates that myotilin has an important function in the assembly and maintenance of Z-discs. This study characterises further the interaction between myotilin and actin. Functionally important regions in myotilin were identified by actin pull-down and yeast two-hybrid assays and with a novel strategy that combines in vitro DNA transposition-based peptide insertion mutagenesis with phenotype analysis in yeast cells. The shortest fragment to bind actin was the second Ig domain together with a short C-terminal sequence. Concerted action of the first and second Ig domain was, however, necessary for the functional activity of myotilin, as verified by analysis of transposon mutants, actin binding and phenotypic effect in mammalian cells. Furthermore, the Ig domains flanked with N- and C-terminal regions were needed for actin-bundling, indicating that the mere actin-binding sequence was insufficient for the actin-regulating activity. None of the four known disease-associated mutations altered the actin-organising ability. These results, together with previous studies in titin and kettin, identify the Ig domain as an actin-binding unit.

  16. Protein Kinase A in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Caretta, Antonio; Mucignat-Caretta, Carla, E-mail: carla.mucignat@unipd.it [Department of Human Anatomy and Physiology, University of Padova, Via Marzolo 3, 35131 Padova (Italy)

    2011-02-28

    In the past, many chromosomal and genetic alterations have been examined as possible causes of cancer. However, some tumors do not display a clear molecular and/or genetic signature. Therefore, other cellular processes may be involved in carcinogenesis. Genetic alterations of proteins involved in signal transduction have been extensively studied, for example oncogenes, while modifications in intracellular compartmentalization of these molecules, or changes in the expression of unmodified genes have received less attention. Yet, epigenetic modulation of second messenger systems can deeply modify cellular functioning and in the end may cause instability of many processes, including cell mitosis. It is important to understand the functional meaning of modifications in second messenger intracellular pathways and unravel the role of downstream proteins in the initiation and growth of tumors. Within this framework, the cAMP system has been examined. cAMP is a second messenger involved in regulation of a variety of cellular functions. It acts mainly through its binding to cAMP-activated protein kinases (PKA), that were suggested to participate in the onset and progression of various tumors. PKA may represent a biomarker for tumor detection, identification and staging, and may be a potential target for pharmacological treatment of tumors.

  17. Fibronectin phosphorylation by ecto-protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru (Meiji Institute of Health Science, Odawara (Japan))

    1988-12-01

    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with ({gamma}-{sup 32})ATP for 10 min at 37{degree}C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with ({gamma}-{sup 32}P)ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation.

  18. Purine inhibitors of protein kinases, G proteins and polymerases

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Nathanael S. (Berkeley, CA); Schultz, Peter (Oakland, CA); Kim, Sung-Hou (Moraga, CA); Meijer, Laurent (Roscoff, FR)

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  19. The mechanism of protein kinase C regulation

    Institute of Scientific and Technical Information of China (English)

    Julhash U. KAZI

    2011-01-01

    Protein kinase C (PKC) is a family ofserine/threonine protein kinases that plays a central role in transducing extracellular signals into a variety of intracellular responses ranging from cell proliferation to apoptosis.Nine PKC genes have been identified in the human genome,which encode 10 proteins.Each member of this protein kinase family displays distinct biochemical characteristics and is enriched in different cellular and subcellular locations.Activation of PKC has been implicated in the regulation of cell growth and differentiation.This review summarizes works of the past years in the field of PKC biochemistry that covers regulation and activation mechanism of different PKC isoforms.

  20. Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Registry

    Science.gov (United States)

    2016-08-26

    Myotonic Dystrophy; Facioscapulohumeral Muscular Dystrophy; Muscular Dystrophy; Myotonic Dystrophy Type 1; Myotonic Dystrophy Type 2; Congenital Myotonic Dystrophy; PROMM (Proximal Myotonic Myopathy); Steinert's Disease; Myotonic Muscular Dystrophy

  1. Evolutionary Ancestry of Eukaryotic Protein Kinases and Choline Kinases*

    Science.gov (United States)

    Lai, Shenshen; Safaei, Javad

    2016-01-01

    The reversible phosphorylation of proteins catalyzed by protein kinases in eukaryotes supports an important role for eukaryotic protein kinases (ePKs) in the emergence of nucleated cells in the third superkingdom of life. Choline kinases (ChKs) could also be critical in the early evolution of eukaryotes, because of their function in the biosynthesis of phosphatidylcholine, which is unique to eukaryotic membranes. However, the genomic origins of ePKs and ChKs are unclear. The high degeneracy of protein sequences and broad expansion of ePK families have made this fundamental question difficult to answer. In this study, we identified two class-I aminoacyl-tRNA synthetases with high similarities to consensus amino acid sequences of human protein-serine/threonine kinases. Comparisons of primary and tertiary structures supported that ePKs and ChKs evolved from a common ancestor related to glutaminyl aminoacyl-tRNA synthetases, which may have been one of the key factors in the successful of emergence of ancient eukaryotic cells from bacterial colonies. PMID:26742849

  2. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    Sergiy; Kostenko; Gianina; Dumitriu; Kari; Jenssen; Lgreid; Ugo; Moens

    2011-01-01

    Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.

  3. Dystropathology increases energy expenditure and protein turnover in the Mdx mouse model of Duchenne muscular dystrophy

    Science.gov (United States)

    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the diet...

  4. Non-Alcoholic Steatohepatitis in Myotonic Dystrophy: DMPK Gene Mutation, Insulin Resistance and Development of Steatohepatitis

    OpenAIRE

    Bhardwaj, Rishi R.; Andrea Duchini

    2010-01-01

    Myotonic dystrophy is a multisystemic disorder characterized by repeat expansion mutations of the dystrophia myotonica protein kinase (DMPK) gene resulting in a defective muscular insulin receptor and insulin resistance. We describe a patient with myotonic dystrophy who developed biopsy-proven non-alcoholic steatohepatitis. We suggest that patients with myotonic dystrophy are at risk of developing steatohepatitis. The relationship between defective insulin receptor and development of steatohe...

  5. Purine inhibitors of protein kinases, G proteins and polymerases

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  6. Protein kinase C-associated kinase (PKK), a novel membrane-associated, ankyrin repeat-containing protein kinase.

    Science.gov (United States)

    Chen, L; Haider, K; Ponda, M; Cariappa, A; Rowitch, D; Pillai, S

    2001-06-15

    A novel murine membrane-associated protein kinase, PKK (protein kinase C-associated kinase), was cloned on the basis of its physical association with protein kinase Cbeta (PKCbeta). The regulated expression of PKK in mouse embryos is consistent with a role for this kinase in early embryogenesis. The human homolog of PKK has over 90% identity to its murine counterpart, has been localized to chromosome 21q22.3, and is identical to the PKCdelta-interacting kinase, DIK (Bahr, C., Rohwer, A., Stempka, L., Rincke, G., Marks, F., and Gschwendt, M. (2000) J. Biol. Chem. 275, 36350-36357). PKK comprises an N-terminal kinase domain and a C-terminal region containing 11 ankyrin repeats. PKK exhibits protein kinase activity in vitro and associates with cellular membranes. PKK exists in three discernible forms at steady state: an underphosphorylated form of 100 kDa; a soluble, cytosolic, phosphorylated form of 110 kDa; and a phosphorylated, detergent-insoluble form of 112 kDa. PKK is initially synthesized as an underphosphorylated soluble 100-kDa protein that is quantitatively converted to a detergent-soluble 110-kDa form. This conversion requires an active catalytic domain. Although PKK physically associates with PKCbeta, it does not phosphorylate this PKC isoform. However, PKK itself may be phosphorylated by PKCbeta. PKK represents a developmentally regulated protein kinase that can associate with membranes. The functional significance of its association with PKCbeta remains to be ascertained.

  7. Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour.

    Science.gov (United States)

    Hernández-Hernández, Oscar; Guiraud-Dogan, Céline; Sicot, Géraldine; Huguet, Aline; Luilier, Sabrina; Steidl, Esther; Saenger, Stefanie; Marciniak, Elodie; Obriot, Hélène; Chevarin, Caroline; Nicole, Annie; Revillod, Lucile; Charizanis, Konstantinos; Lee, Kuang-Yung; Suzuki, Yasuhiro; Kimura, Takashi; Matsuura, Tohru; Cisneros, Bulmaro; Swanson, Maurice S; Trovero, Fabrice; Buisson, Bruno; Bizot, Jean-Charles; Hamon, Michel; Humez, Sandrine; Bassez, Guillaume; Metzger, Friedrich; Buée, Luc; Munnich, Arnold; Sergeant, Nicolas; Gourdon, Geneviève; Gomes-Pereira, Mário

    2013-03-01

    Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which displays multiple debilitating neurological manifestations. Despite recent progress in the understanding of the molecular pathogenesis of myotonic dystrophy type 1 in skeletal muscle and heart, the pathways affected in the central nervous system are largely unknown. To address this question, we studied the only transgenic mouse line expressing CTG trinucleotide repeats in the central nervous system. These mice recreate molecular features of RNA toxicity, such as RNA foci accumulation and missplicing. They exhibit relevant behavioural and cognitive phenotypes, deficits in short-term synaptic plasticity, as well as changes in neurochemical levels. In the search for disease intermediates affected by disease mutation, a global proteomics approach revealed RAB3A upregulation and synapsin I hyperphosphorylation in the central nervous system of transgenic mice, transfected cells and post-mortem brains of patients with myotonic dystrophy type 1. These protein defects were associated with electrophysiological and behavioural deficits in mice and altered spontaneous neurosecretion in cell culture. Taking advantage of a relevant transgenic mouse of a complex human disease, we found a novel connection between physiological phenotypes and synaptic protein dysregulation, indicative of synaptic dysfunction in myotonic dystrophy type 1 brain pathology.

  8. A systematic evaluation of protein kinase A-A-kinase anchoring protein interaction motifs

    NARCIS (Netherlands)

    Burgers, Pepijn P; van der Heyden, MAG; Kok, Bart; Heck, Albert J R; Scholten, Arjen

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  9. Oncoprotein protein kinase antibody kit

    Science.gov (United States)

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  10. Statistical analysis of protein kinase specificity determinants

    DEFF Research Database (Denmark)

    Kreegipuu, Andres; Blom, Nikolaj; Brunak, Søren;

    1998-01-01

    The site and sequence specificity of protein kinase, as well as the role of the secondary structure and surface accessibility of the phosphorylation sites on substrate proteins, was statistically analyzed. The experimental data were collected from the literature and are available on the World Wide...

  11. From proteins to genes: immunoanalysis in the diagnosis of muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Barresi Rita

    2011-06-01

    Full Text Available Abstract Muscular dystrophies are a large heterogeneous group of inherited diseases that cause progressive muscle weakness and permanent muscle damage. Very few muscular dystrophies show sufficient specific clinical features to allow a definite diagnosis. Because of the currently limited capacity to screen for numerous genes simultaneously, muscle biopsy is a time and cost-effective test for many of these disorders. Protein analysis interpreted in correlation with the clinical phenotype is a useful way of directing genetic testing in many types of muscular dystrophies. Immunohistochemistry and western blot are complementary techniques used to gather quantitative and qualitative information on the expression of proteins involved in this group of diseases. Immunoanalysis has a major diagnostic application mostly in recessive conditions where the absence of labelling for a particular protein is likely to indicate a defect in that gene. However, abnormalities in protein expression can vary from absence to very subtle reduction. It is good practice to test muscle biopsies with antibodies for several proteins simultaneously and to interpret the results in context. Indeed, there is a degree of direct or functional association between many of these proteins that is reflected by the presence of specific secondary abnormalities that are of value, especially when the diagnosis is not straightforward.

  12. Non-degradative Ubiquitination of Protein Kinases.

    Directory of Open Access Journals (Sweden)

    K Aurelia Ball

    2016-06-01

    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  13. Non-degradative Ubiquitination of Protein Kinases.

    Science.gov (United States)

    Ball, K Aurelia; Johnson, Jeffrey R; Lewinski, Mary K; Guatelli, John; Verschueren, Erik; Krogan, Nevan J; Jacobson, Matthew P

    2016-06-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  14. Rational design of protein kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Yarmoluk S. M.

    2013-07-01

    Full Text Available Modern methodological approaches to rational design of low molecular weight compounds with specific activity in relation to predetermined biomolecular targets are considered by example of development of high effective protein kinase inhibitors. The application of new computational methods that allow to significantly improve the quality of computational experiments (in, particular, accuracy of low molecular weight compounds activity prediction without increase of computational and time costs are highlighted. The effectiveness of strategy of rational design is demonstrated by examples of several own investigations devoted to development of new inhibitors that are high effective and selective towards protein kinases CK2, FGFR1 and ASK1.

  15. Cardiac protein kinases: the cardiomyocyte kinome and differential kinase expression in human failing hearts

    OpenAIRE

    Fuller, Stephen J.; Osborne, Sally A.; Leonard, Sam J.; Hardyman, Michelle A.; Vaniotis, George; Allen, Bruce G.; Sugden, Peter H.; Clerk, Angela

    2015-01-01

    Aims. Protein kinases are potential therapeutic targets for heart failure, but most studies of cardiac protein kinases derive from other systems, an approach that fails to account for specific kinases expressed in the heart and the contractile cardiomyocytes. We aimed to define the cardiomyocyte kinome (i.e. the protein kinases expressed in cardiomyocytes) and identify kinases with altered expression in human failing hearts. Methods and Results. Expression profiling (Affymetrix microarrays) d...

  16. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1)

    DEFF Research Database (Denmark)

    Dettori, Rosalia; Sonzogni, Silvina; Meyer, Lucas;

    2009-01-01

    The members of the AGC kinase family frequently exhibit three conserved phosphorylation sites: the activation loop, the hydrophobic motif (HM), and the zipper (Z)/turn-motif (TM) phosphorylation site. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates the activation loop of numer...

  17. Protein kinase CK2 in health and disease: Protein kinase CK2: from structures to insights

    DEFF Research Database (Denmark)

    Niefind, K; Raaf, J; Issinger, Olaf-Georg

    2009-01-01

    Within the last decade, 40 crystal structures corresponding to protein kinase CK2 (former name 'casein kinase 2'), to its catalytic subunit CK2alpha and to its regulatory subunit CK2beta were published. Together they provide a valuable, yet by far not complete basis to rationalize the biochemical...

  18. Reciprocal regulation of protein kinase and pyruvate kinase activities of pyruvate kinase M2 by growth signals.

    Science.gov (United States)

    Gao, Xueliang; Wang, Haizhen; Yang, Jenny J; Chen, Jing; Jie, Jiang; Li, Liangwei; Zhang, Yinwei; Liu, Zhi-Ren

    2013-05-31

    Pyruvate kinase isoform M2 (PKM2) is an enzyme-catalyzing conversion of phosphoenolpyruvate to pyruvate in the glycolysis pathway. It was demonstrated that PKM2 interacts with tyrosine phosphopeptide, and the interaction with the tyrosine phosphopeptide affects the pyruvate kinase activity of PKM2. Our experiments suggest that PKM2 is also an active protein kinase (Gao, X., Wang, H., Yang, J. J., Liu, X., and Liu, Z. R. (2012) Mol. Cell 45, 598-609). We report here that growth signals reciprocally regulate the pyruvate kinase and protein kinase activities of PKM2 by different mechanisms. On the one hand, growth signals induce protein tyrosine phosphorylations. The tyrosine-phosphorylated protein(s) regulates the conversion of pyruvate kinase and protein kinase of PKM2 by directly interacting with PKM2. Binding of the tyrosyl-phosphorylated proteins at the fructose 1,6-bisphosphate-binding site converts the tetrameric PKM2 to a dimer. On the other hand, growth stimulations also lead to PKM2 phosphorylation, which consequently regulates the conversion of protein kinase and pyruvate kinase activities. Growth factor stimulations significantly increase the dimer/tetramer PKM2 ratio in cells and consequently activate the protein kinase activity of PKM2. Our study suggests that the conversion between the pyruvate kinase and protein kinase activities of PKM2 may be an important mechanism mediating the effects of growth signals in promoting cell proliferation.

  19. ABL Tyrosine Kinase Stimulates PUMA Protein Expression

    OpenAIRE

    Oon, Chet K

    2016-01-01

    ABL is an ubiquitously expressed non-receptor tyrosine kinase involved in multiple cellular functions including programmed cell death. Upon DNA damage, ABL has been shown to upregulate PUMA, p53 upregulated modulator of apoptosis, and causes downstream mitochondrial intrinsic apoptotic events. However, the mechanism by which ABL regulates PUMA expression remains unknown. We have shown that ABL does not change PUMA protein subcellular localization through immunofluorescence. Through protein an...

  20. Lipid activators of protein kinase C

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, V.P.S.; Chauhan, A.; Deshmukh, D.S.; Brockerhoff, H. (New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY (USA))

    1990-01-01

    Among the many reported lipid activators of protein kinase C only those of high affinity can be considered true physiological effectors, at present the tumor promoters, e.g., phorbol esters; 1,2-diacyl-sn-glycerols; and phosphatidylinositol 4,5-bisphosphate. Many other compounds (including arachidonic acid) are activators at high, unphysiological concentrations only, and they seem to be sterically unsuited for bonding to the enzyme. Such pseudoactivators possibly act by scrambling the structure of the regulatory moiety of the kinase.

  1. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase.

    Directory of Open Access Journals (Sweden)

    Mutsuki Amano

    Full Text Available BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  2. A retroviral-derived peptide phosphorylates protein kinase D/protein kinase Cmu involving phospholipase C and protein kinase C.

    Science.gov (United States)

    Luangwedchakarn, Voravich; Day, Noorbibi K; Hitchcock, Remi; Brown, Pam G; Lerner, Danica L; Rucker, Rajivi P; Cianciolo, George J; Good, Robert A; Haraguchi, Soichi

    2003-05-01

    CKS-17, a synthetic peptide representing a unique amino acid motif which is highly conserved in retroviral transmembrane proteins and other immunoregulatory proteins, induces selective immunomodulatory functions, both in vitro and in vivo, and activates intracellular signaling molecules such as cAMP and extracellular signal-regulated kinases. In the present study, using Jurkat T-cells, we report that CKS-17 phosphorylates protein kinase D (PKD)/protein kinase C (PKC) mu. Total cell extracts from CKS-17-stimulated Jurkat cells were immunoblotted with an anti-phospho-PKCmu antibody. The results show that CKS-17 significantly phosphorylates PKD/PKCmu in a dose- and time-dependent manner. Treatment of cells with the PKC inhibitors GF 109203X and Ro 31-8220, which do not act directly on PKD/PKCmu, attenuates CKS-17-induced phosphorylation of PKD/PKCmu. In contrast, the selective protein kinase A inhibitor H-89 does not reverse the action of CKS-17. Furthermore, a phospholipase C (PLC) selective inhibitor, U-73122, completely blocks the phosphorylation of PKD/PKCmu by CKS-17 while a negative control U-73343 does not. In addition, substitution of lysine for arginine residues in the CKS-17 sequence completely abrogates the ability of CKS-17 to phosphorylate PKD/PKCmu. These results clearly indicate that CKS-17 phosphorylates PKD/PKCmu through a PLC- and PKC-dependent mechanism and that arginine residues play an essential role in this activity of CKS-17, presenting a novel modality of the retroviral peptide CKS-17 and molecular interaction of this compound with target cells.

  3. Mining protein kinases regulation using graphical models.

    Science.gov (United States)

    Chen, Qingfeng; Chen, Yi-Ping Phoebe

    2011-03-01

    Abnormal kinase activity is a frequent cause of diseases, which makes kinases a promising pharmacological target. Thus, it is critical to identify the characteristics of protein kinases regulation by studying the activation and inhibition of kinase subunits in response to varied stimuli. Bayesian network (BN) is a formalism for probabilistic reasoning that has been widely used for learning dependency models. However, for high-dimensional discrete random vectors the set of plausible models becomes large and a full comparison of all the posterior probabilities related to the competing models becomes infeasible. A solution to this problem is based on the Markov Chain Monte Carlo (MCMC) method. This paper proposes a BN-based framework to discover the dependency correlations of kinase regulation. Our approach is to apply the MCMC method to generate a sequence of samples from a probability distribution, by which to approximate the distribution. The frequent connections (edges) are identified from the obtained sampling graphical models. Our results point to a number of novel candidate regulation patterns that are interesting in biology and include inferred associations that were unknown.

  4. Protein Kinase D family kinases: roads start to segregate.

    Science.gov (United States)

    Wille, Christoph; Seufferlein, Thomas; Eiseler, Tim

    2014-01-01

    Highly invasive pancreatic tumors are often recognized in late stages due to a lack of clear symptoms and pose major challenges for treatment and disease management. Broad-band Protein Kinase D (PKD) inhibitors have recently been proposed as additional treatment option for this disease. PKDs are implicated in the control of cancer cell motility, angiogenesis, proliferation and metastasis. In particular, PKD2 expression is elevated in pancreatic cancer, whereas PKD1 expression is comparably lower. In our recent study we report that both kinases control PDAC cell invasive properties in an isoform-specific, but opposing manner. PKD1 selectively mediates anti-migratory/anti-invasive features by preferential regulation of the actin-regulatory Cofilin-phosphatase Slingshot1L (SSH1L). PKD2, on the other hand enhances invasion and angiogenesis of PDAC cells in 3D-ECM cultures and chorioallantois tumor models by stimulating expression and secretion of matrix-metalloproteinase 7 and 9 (MMP7/9). MMP9 also enhances PKD2-mediated tumor angiogenesis releasing extracellular matrix-bound VEGF-A. We thus suggest high PKD2 expression and loss of PKD1 may be beneficial for tumor cells to enhance their matrix-invading abilities. In our recent study we demonstrate for the first time PKD1 and 2 isoform-selective effects on pancreatic cancer cell invasion, in-vitro and in-vivo, defining isoform-specific regulation of PKDs as a major future issue.

  5. Heart failure-specific changes in protein kinase signalling.

    Science.gov (United States)

    Lorenz, Kristina; Stathopoulou, Konstantina; Schmid, Evelyn; Eder, Petra; Cuello, Friederike

    2014-06-01

    Among the myriad of molecular alterations occurring in heart failure development, aggravation of the disease is often attributed to global or local changes in protein kinase activity, thus making protein kinases attractive targets for therapeutic intervention. Since protein kinases do not only have maladaptive roles, but also contribute to the physiological integrity of cells, it is a challenging task to circumvent undesired inhibition of protein kinase activity. Identification of posttranslational modifications and/or protein-protein interactions that are exclusively apparent under pathophysiological conditions provides exciting information for alternative non-kinase inhibitory treatment strategies that eliminate maladaptive functions of a protein kinase, but preserve the beneficial ones. Here, we focus on the disease-specific regulation of a number of protein kinases, namely, Ca(2+)/calmodulin-dependent protein kinase II isoform δ (CaMKIIδ), G protein-coupled receptor kinase 2 (GRK2), extracellular signal-regulated kinase 1 and 2 (ERK1/2), protein kinase D (PKD) and protein kinase C isoform β2 (PKCβ2), which are embedded in complex signal transduction pathways implicated in heart failure development, and discuss potential avenues for novel treatment strategies to combat heart disease.

  6. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW;

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray......, approximately 100 cellular proteins were identified as HCV core-interacting partners. Of these candidates, mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) was selected for further characterization. MAPKAPK3 is a serine/threonine protein kinase that is activated by stress and growth...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...

  7. The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1

    NARCIS (Netherlands)

    Shah, K.; Russinova, E.; Gadella, T.W.J.; Willemse, J.; Vries, de S.C.

    2002-01-01

    The AtSERK1 protein is a plasma membrane-located LRR receptor-like serine threonine kinase that is transiently expressed during plant embryogenesis. Our results show that AtSERK1 interacts with the kinase-associated protein phosphatase (KAPP) in vitro. The kinase interaction (KI) domain of KAPP does

  8. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2).

    Science.gov (United States)

    Anderson, David R; Meyers, Marvin J; Vernier, William F; Mahoney, Matthew W; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Schindler, John F; Reitz, David B; Mourey, Robert J

    2007-05-31

    A new class of potent kinase inhibitors selective for mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK-2) for the treatment of rheumatoid arthritis has been prepared and evaluated. These inhibitors have IC50 values as low as 10 nM against the target and have good selectivity profiles against a number of kinases including CDK2, ERK, JNK, and p38. These MK-2 inhibitors have been shown to suppress TNFalpha production in U397 cells and to be efficacious in an acute inflammation model. The structure-activity relationships of this series, the selectivity for MK-2 and their activity in both in vitro and in vivo models are discussed. The observed selectivity is discussed with the aid of an MK-2/inhibitor crystal structure.

  9. CK2: a protein kinase in need of control

    DEFF Research Database (Denmark)

    Guerra, B; Boldyreff, B; Sarno, S;

    1999-01-01

    Protein kinase CK2 is a heterotetrameric alpha2beta2 Ser/Thr protein kinase with some features unusual among the eukaryotic protein kinases: (1) CK2 recognizes phosphoacceptor sites specified by several acidic determinants; (2) CK2 can use both ATP and GTP as phosphoryl donors; and (3...... response to nucleotide analogs. The increasing knowledge of CK2 structure-function relationships will allow the design of highly selective inhibitors of this pleiotropic kinase with oncogenic potential....

  10. Serine/Threonine Kinase 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1 as a Key Regulator of Cell Migration and Cancer Dissemination

    Directory of Open Access Journals (Sweden)

    Laura Di Blasio

    2017-03-01

    Full Text Available Dissecting the cellular signaling that governs the motility of eukaryotic cells is one of the fundamental tasks of modern cell biology, not only because of the large number of physiological processes in which cell migration is crucial, but even more so because of the pathological ones, in particular tumor invasion and metastasis. Cell migration requires the coordination of at least four major processes: polarization of intracellular signaling, regulation of the actin cytoskeleton and membrane extension, focal adhesion and integrin signaling and contractile forces generation and rear retraction. Among the molecular components involved in the regulation of locomotion, the phosphatidylinositol-3-kinase (PI3K pathway has been shown to exert fundamental role. A pivotal node of such pathway is represented by the serine/threonine kinase 3-phosphoinositide-dependent protein kinase-1 (PDPK1 or PDK1. PDK1, and the majority of its substrates, belong to the AGC family of kinases (related to cAMP-dependent protein kinase 1, cyclic Guanosine monophosphate-dependent protein kinase and protein kinase C, and control a plethora of cellular processes, downstream either to PI3K or to other pathways, such as RAS GTPase-MAPK (mitogen-activated protein kinase. Interestingly, PDK1 has been demonstrated to be crucial for the regulation of each step of cell migration, by activating several proteins such as protein kinase B/Akt (PKB/Akt, myotonic dystrophy-related CDC42-binding kinases alpha (MRCKα, Rho associated coiled-coil containing protein kinase 1 (ROCK1, phospholipase C gamma 1 (PLCγ1 and β3 integrin. Moreover, PDK1 regulates cancer cell invasion as well, thus representing a possible target to prevent cancer metastasis in human patients. The aim of this review is to summarize the various mechanisms by which PDK1 controls the cell migration process, from cell polarization to actin cytoskeleton and focal adhesion regulation, and finally, to discuss the evidence

  11. Protein kinase CK2 in human diseases

    DEFF Research Database (Denmark)

    Guerra, Barbara; Issinger, Olaf-Georg

    2008-01-01

    in various disease processes including cancer has been gained in recent years, and the present review may help to further elucidate its aberrant role in many disease states. Its peculiar structural features [3-9] may be advantageous in designing tailor-made compounds with the possibility to specifically...... target this protein kinase [10]. Since not all the aspects of what has been published on CK2 can be covered in this review, we would like to recommend the following reviews; (i) for general information on CK2 [11-18] and (ii) with a focus on aberrant CK2 [19-22]....

  12. Structural Evolution of the Protein Kinase-Like Superfamily.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs, appear to have distinct evolutionary histories. While the PIPKs probably have an

  13. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain

    DEFF Research Database (Denmark)

    Naik, M U; Benedikz, Eirikur; Hernandez, I

    2000-01-01

    Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region o...

  14. The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy.

    Science.gov (United States)

    Assereto, Stefania; Piccirillo, Rosanna; Baratto, Serena; Scudieri, Paolo; Fiorillo, Chiara; Massacesi, Manuela; Traverso, Monica; Galietta, Luis J; Bruno, Claudio; Minetti, Carlo; Zara, Federico; Gazzerro, Elisabetta

    2016-08-01

    Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.

  15. Protein kinases are potential targets to treat inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Lei; Yang; Yutao; Yan

    2014-01-01

    Protein kinases play a crucial role in the pathogenesis of inflammatory bowel disease(IBD), the two main forms of which are ulcerative colitis and Crohn’s dis-ease. In this article, we will review the mechanisms of involvement of protein kinases in the pathogenesis of and intervention against IBD, in terms of their effects on genetics, microbiota, mucous layer and tight junc-tion, and the potential of protein kinases as therapeutic targets against IBD.

  16. Mitogen-activated protein kinase cascades in Vitis vinifera

    Science.gov (United States)

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761

  17. Studying the role of dystrophin-associated proteins in influencing Becker muscular dystrophy disease severity.

    Science.gov (United States)

    van den Bergen, J C; Wokke, B H A; Hulsker, M A; Verschuuren, J J G M; Aartsma-Rus, A M

    2015-03-01

    Becker muscular dystrophy is characterized by a variable disease course. Many factors have been implicated to contribute to this diversity, among which the expression of several components of the dystrophin associated glycoprotein complex. Together with dystrophin, most of these proteins anchor the muscle fiber cytoskeleton to the extracellular matrix, thus protecting the muscle from contraction induced injury, while nNOS is primarily involved in inducing vasodilation during muscle contraction, enabling adequate muscle oxygenation. In the current study, we investigated the role of three components of the dystrophin associated glycoprotein complex (beta-dystroglycan, gamma-sarcoglycan and nNOS) and the dystrophin homologue utrophin on disease severity in Becker patients. Strength measurements, data about disease course and fresh muscle biopsies of the anterior tibial muscle were obtained from 24 Becker patients aged 19 to 66. The designation of Becker muscular dystrophy in this study was based on the mutation and not on the clinical severity. Contrary to previous studies, we were unable to find a relationship between expression of nNOS, beta-dystroglycan and gamma-sarcoglycan at the sarcolemma and disease severity, as measured by muscle strength in five muscle groups and age at reaching several disease milestones. Unexpectedly, we found an inverse correlation between utrophin expression at the sarcolemma and age at reaching disease milestones.

  18. 14-3-3 proteins interact with specific MEK kinases.

    Science.gov (United States)

    Fanger, G R; Widmann, C; Porter, A C; Sather, S; Johnson, G L; Vaillancourt, R R

    1998-02-06

    MEK (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase) kinases (MEKKs) regulate c-Jun N-terminal kinase and extracellular response kinase pathways. The 14-3-3zeta and 14-3-3epsilon isoforms were isolated in a two-hybrid screen for proteins interacting with the N-terminal regulatory domain of MEKK3. 14-3-3 proteins bound both the N-terminal regulatory and C-terminal kinase domains of MEKK3. The binding affinity of 14-3-3 for the MEKK3 N terminus was 90 nM, demonstrating a high affinity interaction. 14-3-3 proteins also interacted with MEKK1 and MEKK2, but not MEKK4. Endogenous 14-3-3 protein and MEKK1 and MEKK2 were similarly distributed in the cell, consistent with their in vitro interactions. MEKK1 and 14-3-3 proteins colocalized using two-color digital confocal immunofluorescence. Binding of 14-3-3 proteins mapped to the N-terminal 393 residues of 196-kDa MEKK1. Unlike MEKK2 and MEKK3, the C-terminal kinase domain of MEKK1 demonstrated little or no ability to interact with 14-3-3 proteins. MEKK1, but not MEKK2, -3 or -4, is a caspase-3 substrate that when cleaved releases the kinase domain from the N-terminal regulatory domain. Functionally, caspase-3 cleavage of MEKK1 releases the kinase domain from the N-terminal 14-3-3-binding region, demonstrating that caspases can selectively alter protein kinase interactions with regulatory proteins. With regard to MEKK1, -2 and -3, 14-3-3 proteins do not appear to directly influence activity, but rather function as "scaffolds" for protein-protein interactions.

  19. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID.

    Science.gov (United States)

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inês C R; Willige, Björn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the--in many cells--asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  20. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  1. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    Science.gov (United States)

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  2. Recent advances in designing substrate-competitive protein kinase inhibitors.

    Science.gov (United States)

    Han, Ki-Cheol; Kim, So Yeon; Yang, Eun Gyeong

    2012-01-01

    Protein kinases play central roles in cellular signaling pathways and their abnormal phosphorylation activity is inseparably linked with various human diseases. Therefore, modulation of kinase activity using potent inhibitors is an attractive strategy for the treatment of human disease. While most protein kinase inhibitors in clinical development are mainly targeted to the highly conserved ATP-binding sites and thus likely promiscuously inhibit multiple kinases including kinases unrelated to diseases, protein substrate-competitive inhibitors are more selective and expected to be promising therapeutic agents. Most substrate-competitive inhibitors mimic peptides derived from substrate proteins, or from inhibitory domains within kinases or inhibitor proteins. In addition, bisubstrate inhibitors are generated by conjugating substrate-competitive peptide inhibitors to ATP-competitive inhibitors to improve affinity and selectivity. Although structural information on protein kinases provides invaluable guidance in designing substrate-competitive inhibitors, other strategies including bioinformatics, computational modeling, and high-throughput screening are often employed for developing specific substrate-competitive kinase inhibitors. This review focuses on recent advances in the design and discovery of substrate-competitive inhibitors of protein kinases.

  3. MAP kinase meets mitosis: A role for Raf Kinase Inhibitory Protein in spindle checkpoint regulation

    Directory of Open Access Journals (Sweden)

    Rosner Marsha

    2007-01-01

    Full Text Available Abstract Raf Kinase Inhibitory Protein (RKIP is an evolutionarily conserved protein that functions as a modulator of signaling by the MAP kinase cascade. Implicated as a metastasis suppressor, Raf Kinase Inhibitory Protein depletion correlates with poor prognosis for breast, prostate and melanoma tumors but the mechanism is unknown. Recent evidence indicates that Raf Kinase Inhibitory Protein regulates the mitotic spindle assembly checkpoint by controlling Aurora B Kinase activity, and the mechanism involves Raf/MEK/ERK signaling. In contrast to elevated MAP kinase signaling during the G1, S or G2 phases of the cell cycle that activates checkpoints and induces arrest or senescence, loss of RKIP during M phase leads to bypass of the spindle assembly checkpoint and the generation of chromosomal abnormalities. These results reveal a role for Raf Kinase Inhibitory Protein and the MAP kinase cascade in ensuring the fidelity of chromosome segregation prior to cell division. Furthermore, these data highlight the need for precise titration of the MAP kinase signal to ensure the integrity of the spindle assembly process and provide a mechanism for generating genomic instability in tumors. Finally, these results raise the possibility that RKIP status in tumors could influence the efficacy of treatments such as poisons that stimulate the Aurora B-dependent spindle assembly checkpoint.

  4. Prediction of 492 human protein kinase substrate specificities.

    Science.gov (United States)

    Safaei, Javad; Maňuch, Ján; Gupta, Arvind; Stacho, Ladislav; Pelech, Steven

    2011-10-14

    Complex intracellular signaling networks monitor diverse environmental inputs to evoke appropriate and coordinated effector responses. Defective signal transduction underlies many pathologies, including cancer, diabetes, autoimmunity and about 400 other human diseases. Therefore, there is high impetus to define the composition and architecture of cellular communications networks in humans. The major components of intracellular signaling networks are protein kinases and protein phosphatases, which catalyze the reversible phosphorylation of proteins. Here, we have focused on identification of kinase-substrate interactions through prediction of the phosphorylation site specificity from knowledge of the primary amino acid sequence of the catalytic domain of each kinase. The presented method predicts 488 different kinase catalytic domain substrate specificity matrices in 478 typical and 4 atypical human kinases that rely on both positive and negative determinants for scoring individual phosphosites for their suitability as kinase substrates. This represents a marked advancement over existing methods such as those used in NetPhorest (179 kinases in 76 groups) and NetworKIN (123 kinases), which consider only positive determinants for kinase substrate prediction. Comparison of our predicted matrices with experimentally-derived matrices from about 9,000 known kinase-phosphosite substrate pairs revealed a high degree of concordance with the established preferences of about 150 well studied protein kinases. Furthermore for many of the better known kinases, the predicted optimal phosphosite sequences were more accurate than the consensus phosphosite sequences inferred by simple alignment of the phosphosites of known kinase substrates. Application of this improved kinase substrate prediction algorithm to the primary structures of over 23, 000 proteins encoded by the human genome has permitted the identification of about 650, 000 putative phosphosites, which are posted on the

  5. Diversity, classification and function of the plant protein kinase superfamily.

    Science.gov (United States)

    Lehti-Shiu, Melissa D; Shiu, Shin-Han

    2012-09-19

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants.

  6. Prostaglandin E2 negatively regulates AMP-activated protein kinase via protein kinase A signaling pathway.

    Science.gov (United States)

    Funahashi, Koji; Cao, Xia; Yamauchi, Masako; Kozaki, Yasuko; Ishiguro, Naoki; Kambe, Fukushi

    2009-01-01

    We investigated possible involvement of prostaglandin (PG) E2 in regulation of AMP-activated protein kinase (AMPK). When osteoblastic MG63 cells were cultured in serum-deprived media, Thr-172 phosphorylation of AMPK alpha-subunit was markedly increased. Treatment of the cells with PGE2 significantly reduced the phosphorylation. Ser-79 phosphorylation of acetyl-CoA carboxylase, a direct target for AMPK, was also reduced by PGE2. On the other hand, PGE2 reciprocally increased Ser-485 phosphorylation of the alpha-subunit that could be associated with inhibition of AMPK activity. These effects of PGE2 were mimicked by PGE2 receptor EP2 and EP4 agonists and forskolin, but not by EP1 and EP3 agonists, and the effects were suppressed by an adenylate cyclase inhibitor SQ22536 and a protein kinase A inhibitor H89. Additionally, the PGE2 effects were duplicated in primary calvarial osteoblasts. Together, the present study demonstrates that PGE2 negatively regulates AMPK activity via activation of protein kinase A signaling pathway.

  7. PINCH proteins regulate cardiac contractility by modulating integrin-linked kinase-protein kinase B signaling.

    Science.gov (United States)

    Meder, Benjamin; Huttner, Inken G; Sedaghat-Hamedani, Farbod; Just, Steffen; Dahme, Tillman; Frese, Karen S; Vogel, Britta; Köhler, Doreen; Kloos, Wanda; Rudloff, Jessica; Marquart, Sabine; Katus, Hugo A; Rottbauer, Wolfgang

    2011-08-01

    Integrin-linked kinase (ILK) is an essential component of the cardiac mechanical stretch sensor and is bound in a protein complex with parvin and PINCH proteins, the so-called ILK-PINCH-parvin (IPP) complex. We have recently shown that inactivation of ILK or β-parvin activity leads to heart failure in zebrafish via reduced protein kinase B (PKB/Akt) activation. Here, we show that PINCH proteins localize at sarcomeric Z disks and costameres in the zebrafish heart and skeletal muscle. To investigate the in vivo role of PINCH proteins for IPP complex stability and PKB signaling within the vertebrate heart, we inactivated PINCH1 and PINCH2 in zebrafish. Inactivation of either PINCH isoform independently leads to instability of ILK, loss of stretch-responsive anf and vegf expression, and progressive heart failure. The predominant cause of heart failure in PINCH morphants seems to be loss of PKB activity, since PKB phosphorylation at serine 473 is significantly reduced in PINCH-deficient hearts and overexpression of constitutively active PKB reconstitutes cardiac function in PINCH morphants. These findings highlight the essential function of PINCH proteins in controlling cardiac contractility by granting IPP/PKB-mediated signaling.

  8. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity.

    Science.gov (United States)

    Oh, Man-Ho; Wu, Xia; Kim, Hyoung Seok; Harper, Jeffrey F; Zielinski, Raymond E; Clouse, Steven D; Huber, Steven C

    2012-11-30

    Although calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases, autophosphorylation on tyrosine residues was observed for soybean CDPKβ and several Arabidopsis isoforms (AtCPK4 and AtCPK34). We identified Ser-8, Thr-17, Tyr-24 (in the kinase domain), Ser-304, and Ser-358 as autophosphorylation sites of His(6)-GmCDPKβ. Overall autophosphorylation increased kinase activity with synthetic peptides, but autophosphorylation of Tyr-24 appears to attenuate kinase activity based on studies with the Y24F directed mutant. While much remains to be done, it is clear that several CDPKs are dual-specificity kinases, which raises the possibility that phosphotyrosine signaling may play a role in Ca(2+)/CDPK-mediated processes. Published by Elsevier B.V.

  9. Association of protein kinase Cmu with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase.

    Science.gov (United States)

    Nishikawa, K; Toker, A; Wong, K; Marignani, P A; Johannes, F J; Cantley, L C

    1998-09-04

    Protein kinase Cmu (PKCmu), also named protein kinase D, is an unusual member of the PKC family that has a putative transmembrane domain and pleckstrin homology domain. This enzyme has a substrate specificity distinct from other PKC isoforms (Nishikawa, K., Toker, A., Johannes, F. J., Songyang, Z., and Cantley, L. C. (1997) J. Biol. Chem. 272, 952-960), and its mechanism of regulation is not yet clear. Here we show that PKCmu forms a complex in vivo with a phosphatidylinositol 4-kinase and a phosphatidylinositol-4-phosphate 5-kinase. A region of PKCmu between the amino-terminal transmembrane domain and the pleckstrin homology domain is shown to be involved in the association with the lipid kinases. Interestingly, a kinase-dead point mutant of PKCmu failed to associate with either lipid kinase activity, indicating that autophosphorylation may be required to expose the lipid kinase interaction domain. Furthermore, the subcellular distribution of the PKCmu-associated lipid kinases to the particulate fraction depends on the presence of the amino-terminal region of PKCmu including the predicted transmembrane region. These results suggest a novel model in which the non-catalytic region of PKCmu acts as a scaffold for assembly of enzymes involved in phosphoinositide synthesis at specific membrane locations.

  10. Dystropathology increases energy expenditure and protein turnover in the mdx mouse model of duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Hannah G Radley-Crabb

    Full Text Available The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the dietary requirements for these macronutrients at different stages of the disease, are not well-understood. This study used juvenile (4- to 5- wk-old and adult (12- to 14-wk-old male dystrophic C57BL/10ScSn-mdx/J and age-matched C57BL/10ScSn/J control male mice to measure total and resting energy expenditure, food intake, spontaneous activity, body composition, whole body protein turnover, and muscle protein synthesis rates. In juvenile mdx mice that have extensive muscle damage, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were higher than in age-matched controls. Adaptations in food intake and decreased activity were insufficient to meet the increased energy and protein needs of juvenile mdx mice and resulted in stunted growth. In (non-growing adult mdx mice with less severe dystropathology, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were also higher than in age-matched controls. Food intake was sufficient to meet their protein and energy needs, but insufficient to result in fat deposition. These data show that dystropathology impacts the protein and energy needs of mdx mice and that tailored dietary interventions are necessary to redress this imbalance. If not met, the resultant imbalance blunts growth, and may limit the benefits of therapies designed to protect and repair dystrophic muscles.

  11. Dystropathology increases energy expenditure and protein turnover in the mdx mouse model of duchenne muscular dystrophy.

    Science.gov (United States)

    Radley-Crabb, Hannah G; Marini, Juan C; Sosa, Horacio A; Castillo, Liliana I; Grounds, Miranda D; Fiorotto, Marta L

    2014-01-01

    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the dietary requirements for these macronutrients at different stages of the disease, are not well-understood. This study used juvenile (4- to 5- wk-old) and adult (12- to 14-wk-old) male dystrophic C57BL/10ScSn-mdx/J and age-matched C57BL/10ScSn/J control male mice to measure total and resting energy expenditure, food intake, spontaneous activity, body composition, whole body protein turnover, and muscle protein synthesis rates. In juvenile mdx mice that have extensive muscle damage, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were higher than in age-matched controls. Adaptations in food intake and decreased activity were insufficient to meet the increased energy and protein needs of juvenile mdx mice and resulted in stunted growth. In (non-growing) adult mdx mice with less severe dystropathology, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were also higher than in age-matched controls. Food intake was sufficient to meet their protein and energy needs, but insufficient to result in fat deposition. These data show that dystropathology impacts the protein and energy needs of mdx mice and that tailored dietary interventions are necessary to redress this imbalance. If not met, the resultant imbalance blunts growth, and may limit the benefits of therapies designed to protect and repair dystrophic muscles.

  12. Activation of cGMP-dependent protein kinase by protein kinase C.

    Science.gov (United States)

    Hou, Yali; Lascola, Judith; Dulin, Nickolai O; Ye, Richard D; Browning, Darren D

    2003-05-09

    The cGMP-dependent protein kinases (PKG) are emerging as important components of mainstream signal transduction pathways. Nitric oxide-induced cGMP formation by stimulation of soluble guanylate cyclase is generally accepted as being the most widespread mechanism underlying PKG activation. In the present study, PKG was found to be a target for phorbol 12-myristate 13-acetate (PMA)-responsive protein kinase C (PKC). PKG1alpha became phosphorylated in HEK-293 cells stimulated with PMA and also in vitro using purified components. PKC-dependent phosphorylation was found to activate PKG as measured by phosphorylation of vasodilator-stimulated phosphoprotein, and by in vitro kinase assays. Although there are 11 potential PKC substrate recognition sites in PKG1alpha, threonine 58 was examined due to its proximity to the pseudosubstrate domain. Antibodies generated against the phosphorylated form of this region were used to demonstrate phosphorylation in response to PMA treatment of the cells with kinetics similar to vasodilator-stimulated phosphoprotein phosphorylation. A phospho-mimetic mutation at this site (T58E) generated a partially activated PKG that was more sensitive to cGMP levels. A phospho-null mutation (T58A) revealed that this residue is important but not sufficient for PKG activation by PKC. Taken together, these findings outline a novel signal transduction pathway that links PKC stimulation with cyclic nucleotide-independent activation of PKG.

  13. Regulation of tomato Prf by Pto-like protein kinases.

    Science.gov (United States)

    Mucyn, Tatiana S; Wu, Ai-Jiuan; Balmuth, Alexi L; Arasteh, Julia Maryam; Rathjen, John P

    2009-04-01

    Tomato Prf encodes a nucleotide-binding domain shared by Apaf-1, certain R proteins, and CED-4 fused to C-terminal leucine-rich repeats (NBARC-LRR) protein that is required for bacterial immunity to Pseudomonas syringae and sensitivity to the organophosphate fenthion. The signaling pathways involve two highly related protein kinases. Pto kinase mediates direct recognition of the bacterial effector proteins AvrPto or AvrPtoB. Fen kinase is required for fenthion sensitivity and recognition of bacterial effectors related to AvrPtoB. The role of Pto and its association with Prf has been characterized but Fen is poorly described. We show that, similar to Pto, Fen requires N-myristoylation and kinase activity for signaling and interacts with the N-terminal domain of Prf. Thus, the mechanisms of activation of Prf by the respective protein kinases are similar. Prf-Fen interaction is underlined by coregulatory mechanisms in which Prf negatively regulates Fen, most likely by controlling kinase activity. We further characterized negative regulation of Prf by Pto, and show that regulation is mediated by the previously described negative regulatory patch. Remarkably, the effectors released negative regulation of Prf in a manner dependent on Pto kinase activity. The data suggest a model in which Prf associates generally with Pto-like kinases in tightly regulated complexes, which are activated by effector-mediated disruption of negative regulation. Release of negative regulation may be a general feature of activation of NBARC-LRR proteins by cognate effectors.

  14. Protein kinase A regulates molecular chaperone transcription and protein aggregation.

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    Full Text Available Heat shock factor 1 (HSF1 regulates one of the major pathways of protein quality control and is essential for deterrence of protein-folding disorders, particularly in neuronal cells. However, HSF1 activity declines with age, a change that may open the door to progression of neurodegenerative disorders such as Huntington's disease. We have investigated mechanisms of HSF1 regulation that may become compromised with age. HSF1 binds stably to the catalytic domain of protein kinase A (PKAcα and becomes phosphorylated on at least one regulatory serine residue (S320. We show here that PKA is essential for effective transcription of HSP genes by HSF1. PKA triggers a cascade involving HSF1 binding to the histone acetylase p300 and positive translation elongation factor 1 (p-TEFb and phosphorylation of the c-terminal domain of RNA polymerase II, a key mechanism in the downstream steps of HSF1-mediated transcription. This cascade appears to play a key role in protein quality control in neuronal cells expressing aggregation-prone proteins with long poly-glutamine (poly-Q tracts. Such proteins formed inclusion bodies that could be resolved by HSF1 activation during heat shock. Resolution of the inclusions was inhibited by knockdown of HSF1, PKAcα, or the pTEFb component CDK9, indicating a key role for the HSF1-PKA cascade in protein quality control.

  15. [Protein kinase C activation induces platelet apoptosis].

    Science.gov (United States)

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  16. Auto-phosphorylation Represses Protein Kinase R Activity

    Science.gov (United States)

    Wang, Die; de Weerd, Nicole A.; Willard, Belinda; Polekhina, Galina; Williams, Bryan R. G.; Sadler, Anthony J.

    2017-01-01

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity. PMID:28281686

  17. Auto-phosphorylation Represses Protein Kinase R Activity.

    Science.gov (United States)

    Wang, Die; de Weerd, Nicole A; Willard, Belinda; Polekhina, Galina; Williams, Bryan R G; Sadler, Anthony J

    2017-03-10

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity.

  18. Protein kinase C-associated kinase can activate NFkappaB in both a kinase-dependent and a kinase-independent manner.

    Science.gov (United States)

    Moran, Stewart T; Haider, Khaleda; Ow, Yongkai; Milton, Peter; Chen, Luojing; Pillai, Shiv

    2003-06-13

    Protein kinase C-associated kinase (PKK, also known as RIP4/DIK) activates NFkappaB when overexpressed in cell lines and is required for keratinocyte differentiation in vivo. However, very little is understood about the factors upstream of PKK or how PKK activates NFkappaB. Here we show that certain catalytically inactive mutants of PKK can activate NFkappaB, although to a lesser degree than wild type PKK. The deletion of specific domains of wild type PKK diminishes the ability of this enzyme to activate NFkappaB; the same deletions made on a catalytically inactive PKK background completely ablate NFkappaB activation. PKK may be phosphorylated by two specific mitogen-activated protein kinase kinase kinases, MEKK2 and MEKK3, and this interaction may in part be mediated through a critical activation loop residue, Thr184. Catalytically inactive PKK mutants that block phorbol ester-induced NFkappaB activation do not interfere with, but unexpectedly enhance, the activation of NFkappaB by these two mitogen-activated protein kinase kinase kinases. Taken together, these data indicate that PKK may function in both a kinase-dependent as well as a kinase-independent manner to activate NFkappaB.

  19. The Link between Protein Kinase CK2 and Atypical Kinase Rio1

    Directory of Open Access Journals (Sweden)

    Konrad Kubiński

    2017-02-01

    Full Text Available The atypical kinase Rio1 is widespread in many organisms, ranging from Archaebacteria to humans, and is an essential factor in ribosome biogenesis. Little is known about the protein substrates of the enzyme and small-molecule inhibitors of the kinase. Protein kinase CK2 was the first interaction partner of Rio1, identified in yeast cells. The enzyme from various sources undergoes CK2-mediated phosphorylation at several sites and this modification regulates the activity of Rio1. The aim of this review is to present studies of the relationship between the two different kinases, with respect to CK2-mediated phosphorylation of Rio1, regulation of Rio1 activity, and similar susceptibility of the kinases to benzimidazole inhibitors.

  20. [The role of Gilgamesh protein kinase in Drosophila melanogaster spermatogenesis].

    Science.gov (United States)

    Nerusheva, O O; Dorogova, N V; Gubanova, N V; Omel'ianchuk, L V

    2008-09-01

    The cellular function of the gilgamesh mutation (89B9-12) of casein kinase gene in Drosophila spermatogenesis was studied. It was demonstrated that the sterility resulting from this mutation is connected with the abnormalities in spermatid individualization. A phylogenetic study of the protein sequences of casein kinases 1 from various organisms was conducted. The Gilgamesh protein was shown to be phylogenetically closer to the cytoplasmic casein kinase family, represented by the YCK3, YCK2, and YCK1 proteins of Saccharomyces cerevisiae and animal gamma-casein kinases. It is known that these yeast casein kinases are involved in vesicular trafficking, which, in turn, is related in its genetic control to the cell membrane remodeling during spermatid individualization. Thus, the data of phylogenetic analysis fit well the results obtained by studying the mutation phenotype.

  1. Myotonin protein-kinase [AGC]n trinucleotide repeat in seven nonhuman primates

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, G.; Sineo, L.; Pontieri, E. [Catholic Univ. of Rome (Italy)]|[Univ. of Milan (Italy)]|[Univ. Florence (Italy)] [and others

    1994-09-01

    Myotonic dystrophy (DM) is due to a genomic instability of a trinucleotide [AGC]n motif, located at the 3{prime} UTR region of a protein-kinase gene (myotonin protein kinase, MT-PK). The [AGC] repeat is meiotically and mitotically unstable, and it is directly related to the manifestations of the disorder. Although a gene dosage effect of the MT-PK has been demonstrated n DM muscle, the mechanism(s) by which the intragenic repeat expansion leads to disease is largely unknown. This non-standard mutational event could reflect an evolutionary mechanism widespread among animal genomes. We have isolated and sequenced the complete 3{prime}UTR region of the MT-PK gene in seven primates (macaque, orangutan, gorilla, chimpanzee, gibbon, owl monkey, saimiri), and examined by comparative sequence nucleotide analysis the [AGC]n intragenic repeat and the surrounding nucleotides. The genomic organization, including the [AGC]n repeat structure, was conserved in all examined species, excluding the gibbon (Hylobates agilis), in which the [AGC]n upstream sequence (GGAA) is replaced by a GA dinucleotide. The number of [AGC]n in the examined species ranged between 7 (gorilla) and 13 repeats (owl monkeys), with a polymorphism informative content (PIC) similar to that observed in humans. These results indicate that the 3{prime}UTR [AGC] repeat within the MT-PK gene is evolutionarily conserved, supporting that this region has important regulatory functions.

  2. A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Issinger, O G

    1997-01-01

    In a search for protein kinase CK2 beta subunit binding proteins using the two-hybrid system, more than 1000 positive clones were isolated. Beside clones for the alpha' and beta subunit of CK2, there were clones coding for a so far unknown protein, whose partial cDNA sequence was already deposite...

  3. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    Science.gov (United States)

    Li, H.; Roux, S. J.

    1992-01-01

    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  4. Synaptic protein dysregulation in myotonic dystrophy type 1: Disease neuropathogenesis beyond missplicing.

    Science.gov (United States)

    Hernández-Hernández, Oscar; Sicot, Géraldine; Dinca, Diana M; Huguet, Aline; Nicole, Annie; Buée, Luc; Munnich, Arnold; Sergeant, Nicolas; Gourdon, Geneviève; Gomes-Pereira, Mário

    2013-01-01

    The toxicity of expanded transcripts in myotonic dystrophy type 1 (DM1) is mainly mediated by the disruption of alternative splicing. However, the detailed disease mechanisms in the central nervous system (CNS) have not been fully elucidated. In our recent study, we demonstrated that the accumulation of mutant transcripts in the CNS of a mouse model of DM1 disturbs splicing in a region-specific manner. We now discuss that the spatial- and temporal-regulated expression of splicing factors may contribute to the region-specific spliceopathy in DM1 brains. In the search for disease mechanisms operating in the CNS, we found that the expression of expanded CUG-containing RNA affects the expression and phosphorylation of synaptic vesicle proteins, possibly contributing to DM1 neurological phenotypes. Although mediated by splicing regulators with a described role in DM1, the misregulation of synaptic proteins was not associated with missplicing of their coding transcripts, supporting the view that DM1 mechanisms in the CNS have also far-reaching implications beyond the disruption of a splicing program.

  5. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    Science.gov (United States)

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  6. Side-effects of protein kinase inhibitors on ion channels

    Indian Academy of Sciences (India)

    Youn Kyoung Son; Hongzoo Park; Amy L Firth; Won Sun Park

    2013-12-01

    Protein kinases are one of the largest gene families and have regulatory roles in all aspects of eukaryotic cell function. Modulation of protein kinase activity is a desirable therapeutic approach for a number of human diseases associated with aberrant kinase activity, including cancers, arthritis and cardiovascular disorders. Several strategies have been used to develop specific and selective protein kinase modulators, primarily via inhibition of phosphorylation and down-regulation of kinase gene expression. These strategies are effective at regulating intracellular signalling pathways, but are unfortunately associated with several undesirable effects, particularly those that modulate ion channel function. In fact, the side-effects have precluded these inhibitors from being both useful experimental tools and therapeutically viable. This review focuses on the ion channel side-effects of several protein kinase inhibitors and specifically on those modulating K+, Na+ and Ca2+ ion channels. It is hoped that the information provided with a detailed summary in this review will assist the future development of novel specific and selective compounds targeting protein kinases both for experimental tools and for therapeutic approaches.

  7. Muscular Dystrophy

    Science.gov (United States)

    ... Devices The Search for a Cure en español Distrofia muscular About MD Muscular dystrophy (MD) is a genetic ... muscles and cause different degrees of muscle weakness. Duchenne muscular dystrophy is the most common and the most ...

  8. Muscular Dystrophy

    Science.gov (United States)

    ... Devices The Search for a Cure en español Distrofia muscular About MD Muscular dystrophy (MD) is a ... muscles and cause different degrees of muscle weakness. Duchenne muscular dystrophy is the most common and the ...

  9. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Science.gov (United States)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  10. Thrombopoietin potentiates the protein-kinase-C-mediated activation of mitogen-activated protein kinase/ERK kinases and extracellular signal-regulated kinases in human platelets.

    Science.gov (United States)

    Ezumi, Y; Uchiyama, T; Takayama, H

    1998-12-15

    The thrombopoietin (TPO) receptor is expressed in the megakaryocytic lineage from late progenitors to platelets. We investigated the effect of TPO on the extracellular signal-regulated kinase (ERK) activation pathway in human platelets. TPO by itself did not activate ERK1, ERK2 and protein kinase C (PKC), whereas TPO directly enhanced the PKC-dependent activation of ERKs induced by other agonists including thrombin and phorbol esters, without affecting the PKC activation by those agonists. TPO did not activate the mitogen-activated protein kinase/ERK kinases, MEK1 and MEK2, but activated Raf-1 and directly augmented the PKC-mediated MEK activation, suggesting that TPO primarily potentiates the ERK pathway through regulating MEKs or upstream steps of MEKs including Raf-1. The MEK inhibitor PD098059 failed to affect not only thrombin-induced or phorbol ester-induced aggregation, but also potentiation of aggregation by TPO, denying the primary involvement of ERKs and MEKs in those events. ERKs and MEKs were located mainly in the detergent-soluble/non-cytoskeletal fractions. ERKs but not MEKs were relocated to the cytoskeleton following platelet aggregation and actin polymerization. These data indicate that TPO synergizes with other agonists in the ERK activation pathway of platelets and that this synergy might affect functions of the cytoskeleton possibly regulated by ERKs.

  11. Conservation, variability and the modeling of active protein kinases.

    Directory of Open Access Journals (Sweden)

    James D R Knight

    Full Text Available The human proteome is rich with protein kinases, and this richness has made the kinase of crucial importance in initiating and maintaining cell behavior. Elucidating cell signaling networks and manipulating their components to understand and alter behavior require well designed inhibitors. These inhibitors are needed in culture to cause and study network perturbations, and the same compounds can be used as drugs to treat disease. Understanding the structural biology of protein kinases in detail, including their commonalities, differences and modes of substrate interaction, is necessary for designing high quality inhibitors that will be of true use for cell biology and disease therapy. To this end, we here report on a structural analysis of all available active-conformation protein kinases, discussing residue conservation, the novel features of such conservation, unique properties of atypical kinases and variability in the context of substrate binding. We also demonstrate how this information can be used for structure prediction. Our findings will be of use not only in understanding protein kinase function and evolution, but they highlight the flaws inherent in kinase drug design as commonly practiced and dictate an appropriate strategy for the sophisticated design of specific inhibitors for use in the laboratory and disease therapy.

  12. Protein Kinases and Parkinson’s Disease

    Science.gov (United States)

    Mehdi, Syed Jafar; Rosas-Hernandez, Hector; Cuevas, Elvis; Lantz, Susan M.; Barger, Steven W.; Sarkar, Sumit; Paule, Merle G.; Ali, Syed F.; Imam, Syed Z.

    2016-01-01

    Currently, the lack of new drug candidates for the treatment of major neurological disorders such as Parkinson’s disease has intensified the search for drugs that can be repurposed or repositioned for such treatment. Typically, the search focuses on drugs that have been approved and are used clinically for other indications. Kinase inhibitors represent a family of popular molecules for the treatment and prevention of various cancers, and have emerged as strong candidates for such repurposing because numerous serine/threonine and tyrosine kinases have been implicated in the pathobiology of Parkinson’s disease. This review focuses on various kinase-dependent pathways associated with the expression of Parkinson’s disease pathology, and evaluates how inhibitors of these pathways might play a major role as effective therapeutic molecules. PMID:27657053

  13. Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.M.; Walker, J.C. [Univ. of Missouri, Columbia, MO (United States). Div. of Biological Sciences; Trotochaud, A.E.; Clark, S.E. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Biology

    1998-08-01

    The CLAVATA1 (CLV1) gene encodes a putative receptor kinase required for the proper balance between cell proliferation and differentiation in Arabidopsis shoot and flower meristems. Impaired CLV1 signaling results in masses of undifferentiated cells at the shoot and floral meristems. Although many putative receptor kinases have been identified in plants, the mechanism of signal transduction mediated by plant receptor-like kinases is largely unknown. One potential effector of receptor kinase signaling is kinase-associated protein phosphatase (KAPP), a protein that binds to multiple plant receptor-like kinases in a phosphorylation-dependent manner. To examine a possible role for KAPP in CLV1-dependent plant development, the interaction of CLV1 and KAPP was investigated in vitro and in vivo. KAPP binds directly to autophosphorylated CLV1 in vitro and co-immunoprecipitates with CLV1 in plant extracts derived from meristematic tissue. Reduction of KAPP transcript accumulation in an intermediate clv1 mutant suppresses the mutant phenotype, and the degree of suppression is inversely correlated with KAPP mRNA levels. These data suggest that KAPP functions as a negative regulator of CLV1 signaling in plant development. This may represent a general model for the interaction of KAPP with receptor kinases.

  14. A Novel Mode of Protein Kinase Inhibition Exploiting Hydrophobic Motifs of Autoinhibited Kinases

    Energy Technology Data Exchange (ETDEWEB)

    S Eathiraj; R Palma; M Hirschi; E Volckova; E Nakuci; J Castro; C Chen; T Chan; D France; M Ashwell

    2011-12-31

    Protein kinase inhibitors with enhanced selectivity can be designed by optimizing binding interactions with less conserved inactive conformations because such inhibitors will be less likely to compete with ATP for binding and therefore may be less impacted by high intracellular concentrations of ATP. Analysis of the ATP-binding cleft in a number of inactive protein kinases, particularly in the autoinhibited conformation, led to the identification of a previously undisclosed non-polar region in this cleft. This ATP-incompatible hydrophobic region is distinct from the previously characterized hydrophobic allosteric back pocket, as well as the main pocket. Generalized hypothetical models of inactive kinases were constructed and, for the work described here, we selected the fibroblast growth factor receptor (FGFR) tyrosine kinase family as a case study. Initial optimization of a FGFR2 inhibitor identified from a library of commercial compounds was guided using structural information from the model. We describe the inhibitory characteristics of this compound in biophysical, biochemical, and cell-based assays, and have characterized the binding mode using x-ray crystallographic studies. The results demonstrate, as expected, that these inhibitors prevent activation of the autoinhibited conformation, retain full inhibitory potency in the presence of physiological concentrations of ATP, and have favorable inhibitory activity in cancer cells. Given the widespread regulation of kinases by autoinhibitory mechanisms, the approach described herein provides a new paradigm for the discovery of inhibitors by targeting inactive conformations of protein kinases.

  15. POPDC1S201F causes muscular dystrophy and arrhythmia by affecting protein trafficking

    Science.gov (United States)

    Schindler, Roland F.R.; Scotton, Chiara; Zhang, Jianguo; Passarelli, Chiara; Ortiz-Bonnin, Beatriz; Simrick, Subreena; Schwerte, Thorsten; Poon, Kar-Lai; Fang, Mingyan; Rinné, Susanne; Froese, Alexander; Nikolaev, Viacheslav O.; Grunert, Christiane; Müller, Thomas; Tasca, Giorgio; Sarathchandra, Padmini; Drago, Fabrizio; Dallapiccola, Bruno; Rapezzi, Claudio; Arbustini, Eloisa; Di Raimo, Francesca Romana; Neri, Marcella; Selvatici, Rita; Gualandi, Francesca; Fattori, Fabiana; Pietrangelo, Antonello; Li, Wenyan; Jiang, Hui; Xu, Xun; Bertini, Enrico; Decher, Niels; Wang, Jun; Brand, Thomas; Ferlini, Alessandra

    2015-01-01

    The Popeye domain–containing 1 (POPDC1) gene encodes a plasma membrane–localized cAMP-binding protein that is abundantly expressed in striated muscle. In animal models, POPDC1 is an essential regulator of structure and function of cardiac and skeletal muscle; however, POPDC1 mutations have not been associated with human cardiac and muscular diseases. Here, we have described a homozygous missense variant (c.602C>T, p.S201F) in POPDC1, identified by whole-exome sequencing, in a family of 4 with cardiac arrhythmia and limb-girdle muscular dystrophy (LGMD). This allele was absent in known databases and segregated with the pathological phenotype in this family. We did not find the allele in a further screen of 104 patients with a similar phenotype, suggesting this mutation to be family specific. Compared with WT protein, POPDC1S201F displayed a 50% reduction in cAMP affinity, and in skeletal muscle from patients, both POPDC1S201F and WT POPDC2 displayed impaired membrane trafficking. Forced expression of POPDC1S201F in a murine cardiac muscle cell line (HL-1) increased hyperpolarization and upstroke velocity of the action potential. In zebrafish, expression of the homologous mutation (popdc1S191F) caused heart and skeletal muscle phenotypes that resembled those observed in patients. Our study therefore identifies POPDC1 as a disease gene causing a very rare autosomal recessive cardiac arrhythmia and LGMD, expanding the genetic causes of this heterogeneous group of inherited rare diseases. PMID:26642364

  16. POPDC1(S201F) causes muscular dystrophy and arrhythmia by affecting protein trafficking.

    Science.gov (United States)

    Schindler, Roland F R; Scotton, Chiara; Zhang, Jianguo; Passarelli, Chiara; Ortiz-Bonnin, Beatriz; Simrick, Subreena; Schwerte, Thorsten; Poon, Kar-Lai; Fang, Mingyan; Rinné, Susanne; Froese, Alexander; Nikolaev, Viacheslav O; Grunert, Christiane; Müller, Thomas; Tasca, Giorgio; Sarathchandra, Padmini; Drago, Fabrizio; Dallapiccola, Bruno; Rapezzi, Claudio; Arbustini, Eloisa; Di Raimo, Francesca Romana; Neri, Marcella; Selvatici, Rita; Gualandi, Francesca; Fattori, Fabiana; Pietrangelo, Antonello; Li, Wenyan; Jiang, Hui; Xu, Xun; Bertini, Enrico; Decher, Niels; Wang, Jun; Brand, Thomas; Ferlini, Alessandra

    2016-01-01

    The Popeye domain-containing 1 (POPDC1) gene encodes a plasma membrane-localized cAMP-binding protein that is abundantly expressed in striated muscle. In animal models, POPDC1 is an essential regulator of structure and function of cardiac and skeletal muscle; however, POPDC1 mutations have not been associated with human cardiac and muscular diseases. Here, we have described a homozygous missense variant (c.602C>T, p.S201F) in POPDC1, identified by whole-exome sequencing, in a family of 4 with cardiac arrhythmia and limb-girdle muscular dystrophy (LGMD). This allele was absent in known databases and segregated with the pathological phenotype in this family. We did not find the allele in a further screen of 104 patients with a similar phenotype, suggesting this mutation to be family specific. Compared with WT protein, POPDC1(S201F) displayed a 50% reduction in cAMP affinity, and in skeletal muscle from patients, both POPDC1(S201F) and WT POPDC2 displayed impaired membrane trafficking. Forced expression of POPDC1(S201F) in a murine cardiac muscle cell line (HL-1) increased hyperpolarization and upstroke velocity of the action potential. In zebrafish, expression of the homologous mutation (popdc1(S191F)) caused heart and skeletal muscle phenotypes that resembled those observed in patients. Our study therefore identifies POPDC1 as a disease gene causing a very rare autosomal recessive cardiac arrhythmia and LGMD, expanding the genetic causes of this heterogeneous group of inherited rare diseases.

  17. Bietti's Crystalline Dystrophy

    Science.gov (United States)

    ... Dystrophy > Facts About Bietti's Crystalline Dystrophy Facts About Bietti's Crystalline Dystrophy This information was developed by the ... is the best person to answer specific questions. Bietti’s Crystalline Dystrophy Defined What is Bietti’s Crystalline Dystrophy? ...

  18. Modulation of the MAP kinase signaling cascade by Raf kinase inhibitory protein

    Institute of Scientific and Technical Information of China (English)

    Nicholas TRAKUL; Marsha R. ROSNER

    2005-01-01

    Proteins like Raf kinase inhibitory protein (RKIP) that serve as modulators of signaling pathways, either by promoting or inhibiting the formation of productive signaling complexes through protein-protein interactions, have been demonstrated to play an increasingly important role in a number of cell types and organisms. These proteins have been implicated in development as well as the progression of cancer. RKIP is a particularly interesting regulator, as it is a highly conserved, ubiquitously expressed protein that has been shown to play a role in growth and differentiation in a number of organisms and can regulate multiple signaling pathways. RKIP is also the first MAP kinase signaling modulator to be identified as playing a role in cancer metastasis, and identification of the mechanism by which it regulates Raf-1 activation provides new targets for therapeutic intervention.

  19. Modulation of the Chromatin Phosphoproteome by the Haspin Protein Kinase

    DEFF Research Database (Denmark)

    Maiolica, Alessio; de Medina-Redondo, Maria; Schoof, Erwin

    2014-01-01

    protein- protein interaction network. We determined the Haspin consensus motif and the co-crystal structure of the kinase with the histone H3 tail. The structure revealed a unique bent substrate binding mode positioning the histone H3 residues Arg2 and Lys4 adjacent to the Haspin phosphorylated threonine...... into acidic binding pockets. This unique conformation of the kinase-substrate complex explains the reported modulation of Haspin activity by methylation of Lys4 of the histone H3. In addition, the identification of the structural basis of substrate recognition and the amino acid sequence preferences of Haspin......Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr3 of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date...

  20. Merosin-deficient congenital muscular dystrophy. Partial genetic correction in two mouse models

    DEFF Research Database (Denmark)

    Kuang, W; Xu, H; Vachon, P H

    1998-01-01

    Humans and mice with deficiency of the alpha2 subunit of the basement membrane protein laminin-2/merosin suffer from merosin-deficient congenital muscular dystrophy (MCMD). We have expressed a human laminin alpha2 chain transgene under the regulation of a muscle-specific creatine kinase promoter...

  1. Design and analysis of effects of triplet repeat oligonucleotides in cell models for myotonic dystrophy

    NARCIS (Netherlands)

    Gonzalez-Barriga, A.; Mulders, S.A.M.; Giessen, J. van der; Hooijer, J.D.; Bijl, S.; Kessel, I.D.G. van; Beers, J. van; Deutekom, J.C. van; Fransen, J.A.M.; Wieringa, B.; Wansink, D.G.

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is caused by DM protein kinase (DMPK) transcripts containing an expanded (CUG)n repeat. Antisense oligonucleotide (AON)-mediated suppression of these mutant RNAs is considered a promising therapeutic strategy for this severe disorder. Earlier, we identified a 2'-O-met

  2. Design and analysis of effects of triplet repeat oligonucleotides in cell models for myotonic dystrophy

    NARCIS (Netherlands)

    Gonzalez-Barriga, A.; Mulders, S.A.M.; Giessen, J. van der; Hooijer, J.D.; Bijl, S.; Kessel, I.D.G. van; Beers, J. van; Deutekom, J.C. van; Fransen, J.A.M.; Wieringa, B.; Wansink, D.G.

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is caused by DM protein kinase (DMPK) transcripts containing an expanded (CUG)n repeat. Antisense oligonucleotide (AON)-mediated suppression of these mutant RNAs is considered a promising therapeutic strategy for this severe disorder. Earlier, we identified a 2'-O-met

  3. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation of subs...... the Arabidopsis thaliana MAPKs MPK3, 4, and 6 and MAP2Ks MKK1, 2, 4, and 5. Future work needs to focus on identifying substrates of MAPKs, and on understanding how specificity is achieved among MAPK signaling pathways....

  4. Protein Kinases of the Hippo Pathway: Regulation and Substrates

    Science.gov (United States)

    Avruch, Joseph; Zhou, Dawang; Fitamant, Julien; Bardeesy, Nabeel; Mou, Fan; Barrufet, Laura Regué

    2012-01-01

    The “Hippo” signaling pathway has emerged as a major regulator of cell proliferation and survival in metazoans. The pathway, as delineated by genetic and biochemical studies in Drosophila, consists of a kinase cascade regulated by cell-cell contact and cell polarity that inhibits the transcriptional coactivator Yorkie and its proliferative, anti-differentiation, antiapoptotic transcriptional program. The core pathway components are the GC kinase Hippo, which phosphorylates the noncatalytic polypeptide Mats/Mob1 and, with the assistance of the scaffold protein Salvador, phosphorylates the ndr-family kinase Lats. In turn phospho-Lats, after binding to phospho-Mats, autoactivates and phosphorylates Yorkie, resulting in its nuclear exit. Hippo also uses the scaffold protein Furry and a different Mob protein to control another ndr-like kinase, the morphogenetic regulator Tricornered. Architecturally homologous kinase cascades consisting of a GC kinase, a Mob protein, a scaffolding polypeptide and an ndr-like kinase are well described in yeast; in S. cerevisiae e.g., the MEN pathway promotes mitotic exit whereas the RAM network, using a different GC kinase, Mob protein, scaffold and ndr-like kinase, regulates cell polarity and morphogenesis. In mammals, the Hippo orthologues Mst1 and Mst2 utilize the Salvador ortholog WW45/Sav1 and other scaffolds to regulate the kinases Lats1/Lats2 and ndr1/ndr2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in the epithelial cells of the liver and gut; loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by reduction or elimination of YAP. Despite this conservation, considerable diversification in pathway composition and regulation is already evident; in skin e.g., YAP phosphorylation is independent of Mst1Mst2 and Lats1Lats2. Moreover, in lymphoid cells, Mst1/Mst2, under the control of the Rap1 GTPase and independent of YAP

  5. Plant protein kinase genes induced by drought, high salt and cold stresses

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Drought, high salt and cold are three different kinds of environment stresses that severely influence the growth, development and productivity of crops. They all decrease the water state of plant cells, and consequently result in the harm of plant from water deficit. Several genes encoding protein kinases and induced by drought, high salt and low temperature have been isolated from Arabidopsis. These protein kinases include receptor protein kinase (RPK), MAP kinases, ribosomal-protein kinases and transcription-regulation protein kinase. The expression features of these genes and the regulatory roles of these protein kinases in stress response and signal transduction are discussed.

  6. Regulation of protein kinase C by the cytoskeletal protein calponin.

    Science.gov (United States)

    Leinweber, B; Parissenti, A M; Gallant, C; Gangopadhyay, S S; Kirwan-Rhude, A; Leavis, P C; Morgan, K G

    2000-12-22

    Previous studies from this laboratory have shown that, upon agonist activation, calponin co-immunoprecipitates and co-localizes with protein kinase Cepsilon (PKCepsilon) in vascular smooth muscle cells. In the present study we demonstrate that calponin binds directly to the regulatory domain of PKC both in overlay assays and, under native conditions, by sedimentation with lipid vesicles. Calponin was found to bind to the C2 region of both PKCepsilon and PKCalpha with possible involvement of C1B. The C2 region of PKCepsilon binds to the calponin repeats with a requirement for the region between amino acids 160 and 182. We have also found that calponin can directly activate PKC autophosphorylation. By using anti-phosphoantibodies to residue Ser-660 of PKCbetaII, we found that calponin, in a lipid-independent manner, increased auto-phosphorylation of PKCalpha, -epsilon, and -betaII severalfold compared with control conditions. Similarly, calponin was found to increase the amount of (32)P-labeled phosphate incorporated into PKC from [gamma-(32)P]ATP. We also observed that calponin addition strongly increased the incorporation of radiolabeled phosphate into an exogenous PKC peptide substrate, suggesting an activation of enzyme activity. Thus, these results raise the possibility that calponin may function in smooth muscle to regulate PKC activity by facilitating the phosphorylation of PKC.

  7. The molecular basis of targeting protein kinases in cancer therapeutics.

    Science.gov (United States)

    Tsai, Chung-Jung; Nussinov, Ruth

    2013-08-01

    In this paper, we provide an overview of targeted anticancer therapies with small molecule kinase inhibitors. First, we discuss why a single constitutively active kinase emanating from a variety of aberrant genetic alterations is capable of transforming a normal cell, leading it to acquire the hallmarks of a cancer cell. To draw attention to the fact that kinase inhibition in targeted cancer therapeutics differs from conventional cytotoxic chemotherapy, we exploit a conceptual framework explaining why suppressed kinase activity will selectively kill only the so-called oncogene 'addicted' cancer cell, while sparing the healthy cell. Second, we introduce the protein kinase superfamily in light of its common active conformation with precisely positioned structural elements, and the diversified auto-inhibitory conformations among the kinase families. Understanding the detailed activation mechanism of individual kinases is essential to relate the observed oncogenic alterations to the elevated constitutively active state, to identify the mechanism of consequent drug resistance, and to guide the development of the next-generation inhibitors. To clarify the vital importance of structural guidelines in studies of oncogenesis, we explain how somatic mutations in EGFR result in kinase constitutive activation. Third, in addition to the common theme of secondary (acquired) mutations that prevent drug binding from blocking a signaling pathway which is hijacked by the aberrant activated kinase, we discuss scenarios of drug resistance and relapse by compensating lesions that bypass the inactivated pathway in a vertical or horizontal fashion. Collectively, these suggest that the future challenge of cancer therapy with small molecule kinase inhibitors will rely on the discovery of distinct combinations of optimized drugs to target individual subtypes of different cancers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Sayed, M; Kim, S O; Salh, B S

    2000-01-01

    Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of C...

  9. A novel Toxoplasma gondii calcium-dependent protein kinase

    Directory of Open Access Journals (Sweden)

    Tzen M.

    2007-06-01

    Full Text Available Toxoplasma gondii is an obligate intracellular parasite that infects all types of cells in humans. A family of calcium-dependent protein kinases (CDPKs, previously identified as important in the development of plants and protists, was recently shown to play a role in the infectivity of apicomplexans, and in motility and host cell invasion in particular. We report here the isolation of a new calcium-dependent protein kinase gene from the human toxoplasmosis parasite, Toxoplasma gondii. The gene consists of 12 exons. The encoded protein, TgCDPK4, consists of the four characteristic domains of members of the CDPK family and is most similar to PfCDPK2 from Plasmodium falciparum. We measured TgCDPK4 activity, induced by calcium influx, using a kinase assay. A calcium chelator (EGTA inhibited this activity. These findings provide evidence of signal transduction involving members of the CDPK family in T. gondii.

  10. Differences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2

    OpenAIRE

    2010-01-01

    Aberrant transcription and mRNA processing of multiple genes due to RNA-mediated toxic gain-of-function has been suggested to cause the complex phenotype in myotonic dystrophies type 1 and 2 (DM1 and DM2). However, the molecular basis of muscle weakness and wasting and the different pattern of muscle involvement in DM1 and DM2 are not well understood. We have analyzed the mRNA expression of genes encoding muscle-specific proteins and transcription factors by microarray profiling and studied s...

  11. A molecular protocol for diagnosing myotonic dystrophy.

    Science.gov (United States)

    Guida, M; Marger, R S; Papp, A C; Snyder, P J; Sedra, M S; Kissel, J T; Mendell, J R; Prior, T W

    1995-01-01

    Myotonic dystrophy (DM) is an autosomal dominant genetic disease caused by an unstable CTG repeat sequence in the 3' untranslated region of the myotonin protein kinase gene. The CTG repeat is present 5-30 times in the normal population, whereas DM patients have CTG expansions of 50 to several thousand repeats. The age of onset of the disorder and the severity of the phenotype is roughly correlated with the size of the CTG expansion. We developed a molecular protocol for the diagnosis of DM based on an initial polymerase chain reaction screen to detect normal-sized alleles and small expansions, followed by an improved Southern protocol to detect larger expansions.

  12. Protein kinase C gamma mutations in spinocerebellar ataxia 14 increase kinase activity and alter membrane targeting

    NARCIS (Netherlands)

    Verbeek, D. S.; Knight, M. A.; Harmison, G. G.; Fischbeck, K. H.; Howell, B. W.

    2005-01-01

    The protein kinase C gamma (PKCgamma) gene is mutated in spinocerebellar ataxia type 14 (SCA14). In this study, we investigated the effects of two SCA14 missense mutations, G118D and C150F, on PKCgamma function. We found that these mutations increase the intrinsic activity of PKCgamma. Direct visual

  13. Diacylglycerol kinase counteracts protein kinase C-mediated inactivation of the EGF receptor

    NARCIS (Netherlands)

    Baal, van J.; Widt, de J.; Divecha, N.; Blitterswijk, van W.J.

    2012-01-01

    Epidermal growth factor receptor (EGFR) activation is negatively regulated by protein kinase C (PKC)signaling. Stimulation of A431 cells with EGF, bradykinin or UTP increased EGFR phosphorylation at Thr654 in a PKC-dependent manner. Inhibition of PKC signaling enhanced EGFR activation, as assessed b

  14. TTBK2: A Tau Protein Kinase beyond Tau Phosphorylation

    Directory of Open Access Journals (Sweden)

    Jung-Chi Liao

    2015-01-01

    Full Text Available Tau tubulin kinase 2 (TTBK2 is a kinase known to phosphorylate tau and tubulin. It has recently drawn much attention due to its involvement in multiple important cellular processes. Here, we review the current understanding of TTBK2, including its sequence, structure, binding sites, phosphorylation substrates, and cellular processes involved. TTBK2 possesses a casein kinase 1 (CK1 kinase domain followed by a ~900 amino acid segment, potentially responsible for its localization and substrate recruitment. It is known to bind to CEP164, a centriolar protein, and EB1, a microtubule plus-end tracking protein. In addition to autophosphorylation, known phosphorylation substrates of TTBK2 include tau, tubulin, CEP164, CEP97, and TDP-43, a neurodegeneration-associated protein. Mutations of TTBK2 are associated with spinocerebellar ataxia type 11. In addition, TTBK2 is essential for regulating the growth of axonemal microtubules in ciliogenesis. It also plays roles in resistance of cancer target therapies and in regulating glucose and GABA transport. Reported sites of TTBK2 localization include the centriole/basal body, the midbody, and possibly the mitotic spindles. Together, TTBK2 is a multifunctional kinase involved in important cellular processes and demands augmented efforts in investigating its functions.

  15. Role of calcium, protein kinase C and MAP kinase in the activation of mast cells

    Directory of Open Access Journals (Sweden)

    Michael A. Beaven

    1996-01-01

    Full Text Available The mechanisms of activation of mast cells have been studied in most detail in rat RBL-2H3 cells. These cells respond to antigen via the IgE receptor (FceRI through sequential activation of the tyrosine kinases, Lyn and Syk, and to adenosine analogs via the adenosine A3 receptor (A3R and a pertussis toxin-sensitive G protein, most likely Gi-3. Other receptors, introduced through gene transfection, include the muscarinic ml receptor (mlR which acts via Gq/11. Stimulation of cells via FceRI, A3R or ml R leads to the activation of phospholipase (PL C, PLD and mitogen-activated protein (MAP kinase resulting in the generation of inositol phosphates and diglycerides, an increase of cytosolic Ca2+, the activation of protein kinase C (PKC and the phosphorylation of various proteins by PKC and MAP kinase. The extent and time course of these events varies for each receptor. These variations, as well as the effects of pharmacologic probes, gene transfection and reconstitution of responses in washed permeabilized cells, indicate how these events relate to functional responses. A modest but sustained elevation of cytosolic Ca2+ through an influx of extracellular Ca2+ and activation of PKCβ and PKCδ are sufficient for optimal release of preformed secretory granules. Phosphorylation of a cytosolic PLAj by AMP kinase (p42mapk and a modest increase in cytosolic Ca2+ are necessary for the activation of Pl^ and the binding of PLA2 to membranes, respectively. Finally, both de novo generation and secretion via Golgi-derived vesicles of certain cytokines are dependent on Ca2+ and PKC as well as additional signals most probably phosphorylation of proteins by Syk and p42mapk.

  16. Bryostatins activate protein kinase C in intact human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.B.; Tallant, E.A.; Pettit, G.R.; Wallace, R.W.

    1986-05-01

    Bryostatins, macrocyclic lactones isolated from a marine bryozoan, have antineoplastic activity in the P388 lymphocytic leukemia system. These compounds also stimulate growth in Swiss 3T3 cells, induce secretion in leukocytes, inhibit phorbol dibutyrate binding to a high affinity receptor, and activate the C-kinase in vitro. In human platelets, phorbol esters induce aggregation and activate protein kinase C, resulting in phosphorylation of a 47K protein and the 20K myosin light chain. The authors now show that bryostatin 7 (B-7) triggers platelet aggregation to the same rate and extent as phorbol 12-myristate 13-acetate (PMA). B-7 also causes the in vivo activation of the C-kinase, resulting in phosphorylation of both the 47K and the 20K proteins; the time courses and dose-responses of these B-7-induced phosphorylations were similar to those found with PMA. In addition, B-7 increases the level of /sup 32/P-incorporation into the platelet polyphosphoinositides, which also occurs in response to PMA. Bryostatin 3 (B-3), which has been shown to be much less potent than B-7 in mimicking other PMA effects, was much less effective than PMA or B-7 in inducing platelet aggregation and in stimulating /sup 32/P-incorporation into both proteins and the phosphoinositides. These results demonstrate that, intact human platelets, bryostatins mimic the phorbol esters tumor promoters and directly activate protein kinase C.

  17. Rapamycin induces mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) expression through activation of protein kinase B and mitogen-activated protein kinase kinase pathways.

    Science.gov (United States)

    Rastogi, Ruchi; Jiang, Zhongliang; Ahmad, Nisar; Rosati, Rita; Liu, Yusen; Beuret, Laurent; Monks, Robert; Charron, Jean; Birnbaum, Morris J; Samavati, Lobelia

    2013-11-22

    Mitogen-activated protein kinase phosphatase-1 (MKP-1), also known as dual specificity phosphatase-1 (DUSP-1), plays a crucial role in the deactivation of MAPKs. Several drugs with immune-suppressive properties modulate MKP-1 expression as part of their mechanism of action. We investigated the effect of mTOR inhibition through rapamycin and a dual mTOR inhibitor (AZD2014) on MKP-1 expression. Low dose rapamycin led to a rapid activation of both AKT and ERK pathways with a subsequent increase in MKP-1 expression. Rapamycin treatment led to phosphorylation of CREB, transcription factor 1 (ATF1), and ATF2, three transcription factors that bind to the cyclic AMP-responsive elements on the Mkp-1 promoter. Inhibition of either the MEK/ERK or the AKT pathway attenuated rapamycin-mediated MKP-1 induction. AZD2014 did not activate AKT but activated the ERK pathway, leading to a moderate MKP-1 induction. Using bone marrow-derived macrophages (BMDMs) derived from wild-type (WT) mice or mice deficient in AKT1 and AKT2 isoforms or BMDM from targeted deficiency in MEK1 and MEK2, we show that rapamycin treatment led to an increased MKP1 expression in BMDM from WT but failed to do so in BMDMs lacking the AKT1 isoform or MEK1 and MEK2. Importantly, rapamycin pretreatment inhibited LPS-mediated p38 activation and decreased nitric oxide and IL-6 production. Our work provides a conceptual framework for the observed immune modulatory effect of mTOR inhibition.

  18. Comparative analysis of human and bovine protein kinases reveals unique relationship and functional diversity

    Directory of Open Access Journals (Sweden)

    Nuzhat N. Kabir

    2011-01-01

    Full Text Available Reversible protein phosphorylation by protein kinases and phosphatases is a common event in various cellular processes. The eukaryotic protein kinase superfamily, which is one of the largest superfamilies of eukaryotic proteins, plays several roles in cell signaling and diseases. We identified 482 eukaryotic protein kinases and 39 atypical protein kinases in the bovine genome, by searching publicly accessible genetic-sequence databases. Bovines have 512 putative protein kinases, each orthologous to a human kinase. Whereas orthologous kinase pairs are, on an average, 90.6% identical, orthologous kinase catalytic domain pairs are, on an average, 95.9% identical at the amino acid level. This bioinformatic study of bovine protein kinases provides a suitable framework for further characterization of their functional and structural properties.

  19. Development of an AP-FRET based analysis for characterizing RNA-protein interactions in myotonic dystrophy (DM1.

    Directory of Open Access Journals (Sweden)

    Shagufta Rehman

    Full Text Available Förster Resonance Energy Transfer (FRET microscopy is a powerful tool used to identify molecular interactions in live or fixed cells using a non-radiative transfer of energy from a donor fluorophore in the excited state to an acceptor fluorophore in close proximity. FRET can be a very sensitive tool to study protein-protein and/or protein-nucleic acids interactions. RNA toxicity is implicated in a number of disorders; especially those associated with expanded repeat sequences, such as myotonic dystrophy. Myotonic dystrophy (DM1 is caused by a (CTGn repeat expansion in the 3' UTR of the DMPK gene which results in nuclear retention of mutant DMPK transcripts in RNA foci. This results in toxic gain-of-function effects mediated through altered functions of RNA-binding proteins (e.g. MBNL1, hnRNPH, CUGBP1. In this study we demonstrate the potential of a new acceptor photobleaching assay to measure FRET (AP-FRET between RNA and protein. We chose to focus on the interaction between MBNL1 and mutant DMPK mRNA in cells from DM1 patients due to the strong microscopic evidence of their co-localization. Using this technique we have direct evidence of intracellular interaction between MBNL1 and the DMPK RNA. Furthermore using the AP-FRET assay and MBNL1 mutants, we show that all four zinc-finger motifs in MBNL1 are crucial for MBNL1-RNA foci interactions. The data derived using this new assay provides compelling evidence for the interaction between RNA binding proteins and RNA foci, and mechanistic insights into MBNL1-RNA foci interaction demonstrating the power of AP-FRET in examining RNA-Protein interactions in DM1.

  20. Identification of a fungi-specific lineage of protein kinases closely related to tyrosine kinases.

    Directory of Open Access Journals (Sweden)

    Zhongtao Zhao

    Full Text Available Tyrosine kinases (TKs specifically catalyze the phosphorylation of tyrosine residues in proteins and play essential roles in many cellular processes. Although TKs mainly exist in animals, recent studies revealed that some organisms outside the Opisthokont clade also contain TKs. The fungi, as the sister group to animals, are thought to lack TKs. To better understand the origin and evolution of TKs, it is important to investigate if fungi have TK or TK-related genes. We therefore systematically identified possible TKs across the fungal kingdom by using the profile hidden Markov Models searches and phylogenetic analyses. Our results confirmed that fungi lack the orthologs of animal TKs. We identified a fungi-specific lineage of protein kinases (FslK that appears to be a sister group closely related to TKs. Sequence analysis revealed that members of the FslK clade contain all the conserved protein kinase sub-domains and thus are likely enzymatically active. However, they lack key amino acid residues that determine TK-specific activities, indicating that they are not true TKs. Phylogenetic analysis indicated that the last common ancestor of fungi may have possessed numerous members of FslK. The ancestral FslK genes were lost in Ascomycota and Ustilaginomycotina and Pucciniomycotina of Basidiomycota during evolution. Most of these ancestral genes, however, were retained and expanded in Agaricomycetes. The discovery of the fungi-specific lineage of protein kinases closely related to TKs helps shed light on the origin and evolution of TKs and also has potential implications for the importance of these kinases in mushroom fungi.

  1. Identification of a fungi-specific lineage of protein kinases closely related to tyrosine kinases.

    Science.gov (United States)

    Zhao, Zhongtao; Jin, Qiaojun; Xu, Jin-Rong; Liu, Huiquan

    2014-01-01

    Tyrosine kinases (TKs) specifically catalyze the phosphorylation of tyrosine residues in proteins and play essential roles in many cellular processes. Although TKs mainly exist in animals, recent studies revealed that some organisms outside the Opisthokont clade also contain TKs. The fungi, as the sister group to animals, are thought to lack TKs. To better understand the origin and evolution of TKs, it is important to investigate if fungi have TK or TK-related genes. We therefore systematically identified possible TKs across the fungal kingdom by using the profile hidden Markov Models searches and phylogenetic analyses. Our results confirmed that fungi lack the orthologs of animal TKs. We identified a fungi-specific lineage of protein kinases (FslK) that appears to be a sister group closely related to TKs. Sequence analysis revealed that members of the FslK clade contain all the conserved protein kinase sub-domains and thus are likely enzymatically active. However, they lack key amino acid residues that determine TK-specific activities, indicating that they are not true TKs. Phylogenetic analysis indicated that the last common ancestor of fungi may have possessed numerous members of FslK. The ancestral FslK genes were lost in Ascomycota and Ustilaginomycotina and Pucciniomycotina of Basidiomycota during evolution. Most of these ancestral genes, however, were retained and expanded in Agaricomycetes. The discovery of the fungi-specific lineage of protein kinases closely related to TKs helps shed light on the origin and evolution of TKs and also has potential implications for the importance of these kinases in mushroom fungi.

  2. Kinase activity ranking using phosphoproteomics data (KARP) quantifies the contribution of protein kinases to the regulation of cell viability.

    Science.gov (United States)

    Wilkes, Edmund H; Casado, Pedro; Rajeeve, Vinothini; Cutillas, Pedro R

    2017-09-01

    Cell survival is regulated by a signaling network driven by the activity of protein kinases; however, determining the contribution that each kinase in the network makes to such regulation remains challenging. Here, we report a computational approach that uses mass spectrometry-based phosphoproteomics data to rank protein kinases based on their contribution to cell regulation. We found that the scores returned by this algorithm, which we have termed kinase activity ranking using phosphoproteomics data (KARP), were a quantitative measure of the contribution that individual kinases make to the signaling output. Application of KARP to the analysis of eight hematological cell lines revealed that cyclin-dependent kinase (CDK) 1/2, casein kinase (CK) 2, extracellular signal-related kinase (ERK), and p21-activated kinase (PAK) were the most frequently highly ranked kinases in these cell models. The patterns of kinase activation were cell-line specific yet showed a significant association with cell viability as a function of kinase inhibitor treatment. Thus, our study exemplifies KARP as an untargeted approach to empirically and systematically identify regulatory kinases within signaling networks. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Muscular Dystrophy

    Science.gov (United States)

    ... muscular dystrophy. It's important to be vaccinated for pneumonia and to keep up to date with influenza shots. Dietary changes haven't been shown to slow the progression of muscular dystrophy. But proper nutrition is essential because limited mobility can contribute to ...

  4. Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein ...

    African Journals Online (AJOL)

    (ALDH1) and Raf kinase inhibitor protein (RKIP) as cervical cancer stem cell markers. Methods: To ..... Leukemia & lymphoma 2006; 47: 2017-2027. 6. Mao X-g, Guo G, Wang P .... significance in human non-small-cell lung cancer. International ...

  5. Mitogen-Activated Protein Kinases Regulate Susceptibility to Ventilator-Induced Lung Injury

    OpenAIRE

    2008-01-01

    BACKGROUND: Mechanical ventilation causes ventilator-induced lung injury in animals and humans. Mitogen-activated protein kinases have been implicated in ventilator-induced lung injury though their functional significance remains incomplete. We characterize the role of p38 mitogen-activated protein kinase/mitogen activated protein kinase kinase-3 and c-Jun-NH(2)-terminal kinase-1 in ventilator-induced lung injury and investigate novel independent mechanisms contributing to lung injury during ...

  6. 壽Activation of the mitogen-activated protein kinase pathways by heat shock

    OpenAIRE

    Dorion, Sonia; Landry, Jacques

    2002-01-01

    In addition to inducing new transcriptional activities that lead within a few hours to the accumulation of heat shock proteins (Hsps), heat shock activates within minutes the major signaling transduction pathways involving mitogen-activated protein kinases, extracellular signal–regulated kinase, stress-activated protein kinase 1 (SAPK1)–c-Jun N-terminal kinase, and SAPK2-p38. These kinases are involved in both survival and death pathways in response to other stresses and may, therefore, contr...

  7. Protein kinase C-associated kinase regulates NF-κB activation through inducing IKK activation.

    Science.gov (United States)

    Kim, Sang-Woo; Schifano, Matthew; Oleksyn, David; Jordan, Craig T; Ryan, Daniel; Insel, Richard; Zhao, Jiyong; Chen, Luojing

    2014-10-01

    Activation of the transcription factor NF-κB induced by extracellular stimuli requires IKKα and IKKβ kinase activity. How IKKα and IKKβ are activated by various upstream signaling molecules is not fully understood. We previously showed that protein kinase C-associated kinase (PKK, also known as DIK/RIP4), which belongs to the receptor-interacting protein (RIP) kinase family, mediates the B cell activating factor of the TNF family (BAFF)-induced NF-κB activation in diffuse large B cell lymphoma (DLBCL) cell lines. Here we have investigated the mechanism underlying NF-κB activation regulated by PKK. Our results suggest that PKK can activate both the classical and the alternative NF-κB activation pathways. PKK associates with IKKα and IKKβ in mammalian cells and induces activation of both IKKα and IKKβ via phosphorylation of their serine residues 176/180 and 177/181, respectively. Unlike other members of the RIP family that activate NF-κB through a kinase-independent pathway, PKK appears to activate IKK and NF-κB mainly in a kinase-dependent manner. Suppression of PKK expression by RNA interference inhibits phosphorylation of IKKα and IKKβ as well as activation of NF-κB in human cancer cell lines. Thus, PKK regulates NF-κB activation by modulating activation of IKKα and IKKβ in mammalian cells. We propose that PKK may provide a critical link between IKK activation and various upstream signaling cascades, and may represent a potential target for inhibiting abnormal NF-κB activation in human cancers.

  8. Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP).

    Science.gov (United States)

    Oka, Tsutomu; Mazack, Virginia; Sudol, Marius

    2008-10-10

    The Hippo pathway in Drosophila controls the size and shape of organs. In the fly, activation of this pathway conveys growth-inhibitory signals and promotes apoptosis in epithelial cells. We "reconstituted" the Hippo pathway in a human epithelial cell line and showed that, in contrast to flies, the activation of this pathway results in anti-apoptotic signals. We have shown that in human embryonic kidney (HEK) 293 cells, the complex formation between transcriptional co-activators YAPs (Yes kinase-associated proteins) and Lats kinases requires the intact WW domains of YAPs, as well as intact Pro-Pro-AA-Tyr (where AA is any amino acid) motifs in Lats kinases. These kinases cooperate with the upstream Mst2 kinase to phosphorylate YAPs at Ser-127. Overexpression of YAP2 in HEK293 cells promoted apoptosis, whereas the Mst2/Lats1-induced phosphorylation of YAP partially rescued the cells from apoptotic death. Apoptotic signaling of YAP2 was mediated via stabilization of p73, which formed a complex with YAP2. All components of the Hippo pathway that we studied were localized in the cytoplasm, with the exception of YAP, which also localized in the nucleus. The localization of YAP2 in the nucleus was negatively controlled by the Lats1 kinase. Our apoptotic "readout" of the Hippo pathway in embryonic kidney cells represents a useful experimental system for the identification of the putative upstream receptor, membrane protein, or extracellular factor that initiates an entire signaling cascade and ultimately controls the size of organs.

  9. Contribution of casein kinase 2 and spleen tyrosine kinase to CFTR trafficking and protein kinase A-induced activity.

    Science.gov (United States)

    Luz, Simão; Kongsuphol, Patthara; Mendes, Ana Isabel; Romeiras, Francisco; Sousa, Marisa; Schreiber, Rainer; Matos, Paulo; Jordan, Peter; Mehta, Anil; Amaral, Margarida D; Kunzelmann, Karl; Farinha, Carlos M

    2011-11-01

    Previously, the pleiotropic "master kinase" casein kinase 2 (CK2) was shown to interact with CFTR, the protein responsible for cystic fibrosis (CF). Moreover, CK2 inhibition abolished CFTR conductance in cell-attached membrane patches, native epithelial ducts, and Xenopus oocytes. CFTR possesses two CK2 phosphorylation sites (S422 and T1471), with unclear impact on its processing and trafficking. Here, we investigated the effects of mutating these CK2 sites on CFTR abundance, maturation, and degradation coupled to effects on ion channel activity and surface expression. We report that CK2 inhibition significantly decreased processing of wild-type (wt) CFTR, with no effect on F508del CFTR. Eliminating phosphorylation at S422 and T1471 revealed antagonistic roles in CFTR trafficking: S422 activation versus T1471 inhibition, as evidenced by a severe trafficking defect for the T1471D mutant. Notably, mutation of Y512, a consensus sequence for the spleen tyrosine kinase (SYK) possibly acting in a CK2 context adjacent to the common CF-causing defect F508del, had a strong effect on both maturation and CFTR currents, allowing the identification of this kinase as a novel regulator of CFTR. These results reinforce the importance of CK2 and the S422 and T1471 residues for regulation of CFTR and uncover a novel regulation of CFTR by SYK, a recognized controller of inflammation.

  10. Targeting mitogen-activated protein kinase kinase (MEK) in solid tumors.

    Science.gov (United States)

    Duffy, Austin; Kummar, Shivaani

    2009-12-01

    The Raf-mitogen activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) protein kinase signaling cascade is an important intracellular pathway whose activation influences many fundamental cellular processes and whose aberrancy is associated with cancer cell growth. In addition to activation from within by, for example, Raf mutations, this pathway is frequently activated from above by mutated Ras or epidermal growth factor receptor (EGFR). Given the near ubiquity of derangements affecting at least part of this network in cancer, there is a strong and clear rationale for interrupting it. In recent times, in colorectal and lung cancer, Ras and EGFR mutant status have been shown to be critically important and mutually exclusive predictors of response to anti-EGFR therapies. These developments underline the importance of targeting downstream effectors, and MEK inhibition has been the subject of intense scientific and clinical research for some time now. This article reviews the current status of MEK inhibitors with regard to their clinical development.

  11. Enzyme kinetics and distinct modulation of the protein kinase N family of kinases by lipid activators and small molecule inhibitors

    OpenAIRE

    Falk, Matthew D.; Liu, Wei; Bolaños, Ben; Unsal-Kacmaz, Keziban; Klippel, Anke; Grant, Stephan; Brooun, Alexei; Timofeevski, Sergei

    2014-01-01

    The PKN (protein kinase N) family of Ser/Thr protein kinases regulates a diverse set of cellular functions, such as cell migration and cytoskeletal organization. Inhibition of tumour PKN activity has been explored as an oncology therapeutic approach, with a PKN3-targeted RNAi (RNA interference)-derived therapeutic agent in Phase I clinical trials. To better understand this important family of kinases, we performed detailed enzymatic characterization, determining the kinetic mechanism and lipi...

  12. Overinhibition of Mitogen-Activated Protein Kinase Inducing Tau Hyperphosphorylation

    Institute of Scientific and Technical Information of China (English)

    LI Hong-lian; CHEN Juan; LIU Shi-jie; ZHANG Jia-yu; WANG Qun; WANG Jian-zhi

    2005-01-01

    To reveal the relationship between mitogen-activated protein kinase (MAPK) and tau phosphorylation, we used different concentration of PD98059, an inhibitor of MEK (MAPK kinase), to treat mice neuroblastma (N2a) cell line for 6 h. It showed that the activity of MAPK decreased in a dose-dependent manner. But Western blot and immunofluorescence revealed that just when the cells were treated with 16 μmol/L PD98059, tau was hyperphosphorylated at Ser396/404 and Ser199/202 sites. We obtained the conclusion that overinhibited MAPK induced tau hyperphosphorylation at Ser396/404 and Ser199/202 sites.

  13. Localisation of Protein Kinase C in Apoptosis and Neurite Outgrowth

    OpenAIRE

    Schultz, Anna

    2005-01-01

    Protein kinase C (PKC) is a family of serine/threonine kinases, which are subgrouped into classical (a, bI, bII, g), novel (d, e, h, q) and atypical (z, i/l) isoforms. One major aim of this thesis work was to investigate if altered levels of PKC isoforms influence the apoptotic responses of malignant cell-lines. We show that overexpression of PKCd or PKCq renders SK-N-BE(2) neuroblastoma cells sensitive to apoptosis induced by phorbol esters or C2-ceramide. Moreover, overexpression of PKCa, P...

  14. The Snf1 Protein Kinase in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Usaite, Renata

    2008-01-01

    . Failure in the AMPK regulatory cascade leads to metabolic disorders, such as obesity or type 2 diabetes. The knowledge about the Snf1 protein kinase remains to be of much interest in studying yeast carbon metabolism and human biology. To investigate the effect of Snf1 kinase and its regulatory subunit Snf......4 on the regulation of glucose and galactose metabolism, I physiologically characterized Δsnf1, Δsnf4, and Δsnf1Δsnf4 CEN.PK background yeast strains in glucose and glucose-galactose mixture batch cultivations (chapter 2). The results of this study showed that delayed induction of galactose...... proteome datasets (2388 proteins) to date was generated using Multidimensional Protein Identification Technology followed by quantitation using stable isotope labeling approach (chapter 3). The stable isotope labeling was compared to the spectral counting quantitative approach and the study showed...

  15. [Regulation of G protein-coupled receptor kinase activity].

    Science.gov (United States)

    Haga, T; Haga, K; Kameyama, K; Nakata, H

    1994-09-01

    Recent progress on the activation of G protein-coupled receptor kinases is reviewed. beta-Adrenergic receptor kinase (beta ARK) is activated by G protein beta gamma -subunits, which interact with the carboxyl terminal portion of beta ARK. Muscarinic receptor m2-subtypes are phosphorylated by beta ARK1 in the central part of the third intracellular loop (I3). Phosphorylation of I3-GST fusion protein by beta ARK1 is synergistically stimulated by the beta gamma -subunits and mastoparan or a peptide corresponding to portions adjacent to the transmembrane segments of m2-receptors or by beta gamma -subunits and the agonist-bound I3-deleted m2 variant. These results indicate that agonist-bound receptors serve as both substrates and activators of beta ARK.

  16. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1

    DEFF Research Database (Denmark)

    Jensen, Claus Antonio Juel; Buch, M B; Krag, T O;

    1999-01-01

    90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation of th...... of Ser(227), Ser(369), and Ser(386). Our study extend recent findings which implicate PDK1 in the activation of protein kinases B and C and p70(S6K), suggesting that PDK1 controls several major growth factor-activated signal transduction pathways.......90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation...... of the linker region at Ser(369), catalyzed by extracellular signal-regulated kinase (ERK), and at Ser(386), catalyzed by the C-terminal kinase, after its activation by ERK. In addition, the N-terminal kinase must be phosphorylated at Ser(227) in the activation loop by an as yet unidentified kinase. Here, we...

  17. Phosphorylation of the mRNA cap binding protein and eIF-4A by different protein kinases

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, C.H.

    1987-05-01

    These studies were done to determine the identity of a protein kinase that phosphorylates the mRNA cap binding protein (CBP). Two chromatographic steps (dye and ligand and ion exchange HPLC) produced a 500x purification of an enzyme activity in rabbit reticulocytes that phosphorylated CBP at serine residues. Isoelectric focusing analysis of kinase treated CBP demonstrated 5 isoelectric species of which the 2 most anodic species were phosphorylated (contained /sup 32/P). This kinase activity phosphorylated CBP when it was isolated or in the eIF-4F complex. Purified protein kinase C, cAMP or cGMP dependent protein kinase, casein kinase I or II, myosin light chain kinase or insulin receptor kinase did not significantly phosphorylate isolated CBP or CBP in the eIF-4F complex. However, cAMP and cGMP dependent protein kinases and casein kinase II phosphorylated eIF-4A but did not phosphorylate the 46 kDa component of eIF-4F. cAMP dependent protein kinase phosphorylated a approx. 220 kDa protein doublet in eIF-4F preparations. These studies indicate that CBP kinase activity probably represents a previously unidentified protein kinase. In addition, eIF-4A appears to be phosphorylated by several protein kinases whereas the 46 kDa component of the eIF-4F complex was not.

  18. Mitogen-activated protein kinases mediate Mycobacterium tuberculosis–induced CD44 surface expression in monocytes

    Indian Academy of Sciences (India)

    Natarajan Palaniappan; S Anbalagan; Sujatha Narayanan

    2012-03-01

    CD44, an adhesion molecule, has been reported to be a binding site for Mycobacterium tuberculosis (M. tuberculosis) in macrophages and it also mediates mycobacterial phagocytosis, macrophage recruitment and protective immunity against pulmonary tuberculosis in vivo. However, the signalling pathways that are involved in M. tuberculosis–induced CD44 surface expression in monocytic cells are currently unknown. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv and H37Ra induced distinct, time-dependent, phosphorylation of mitogen-activated protein kinase kinase-1, extracellular signal regulated kinase 1/2, mitogen-activated protein kinase kinase 3/6, p38 mitogen-activated protein kinase and c-jun N-terminal kinases. The strains also differed in their usage of CD14 and human leukocyte antigen-DR (HLA-DR) receptors in mediating mitogen-activated protein kinase activation. M. tuberculosis H37Rv strain induced lower CD44 surface expression and tumour necrosis factor-alpha levels, whereas H37Ra the reverse. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and c-jun N-terminal kinase, we report that inhibition of extracellular signal regulated kinase 1/2 and c-jun N-terminal kinases increases, but that inhibition of p38 mitogen-activated protein kinase decreases M. tuberculosis–induced CD44 surface expression in THP-1 human monocytes.

  19. Muscle diseases: the muscular dystrophies.

    Science.gov (United States)

    McNally, Elizabeth M; Pytel, Peter

    2007-01-01

    Dystrophic muscle disease can occur at any age. Early- or childhood-onset muscular dystrophies may be associated with profound loss of muscle function, affecting ambulation, posture, and cardiac and respiratory function. Late-onset muscular dystrophies or myopathies may be mild and associated with slight weakness and an inability to increase muscle mass. The phenotype of muscular dystrophy is an endpoint that arises from a diverse set of genetic pathways. Genes associated with muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, and the sarcomere and Z band, as well as nuclear membrane components. Because muscle has such distinctive structural and regenerative properties, many of the genes implicated in these disorders target pathways unique to muscle or more highly expressed in muscle. This chapter reviews the basic structural properties of muscle and genetic mechanisms that lead to myopathy and muscular dystrophies that affect all age groups.

  20. A defect in the RNA-processing protein HNRPDL causes limb-girdle muscular dystrophy 1G (LGMD1G).

    Science.gov (United States)

    Vieira, Natássia M; Naslavsky, Michel S; Licinio, Luciana; Kok, Fernando; Schlesinger, David; Vainzof, Mariz; Sanchez, Nury; Kitajima, João Paulo; Gal, Lihi; Cavaçana, Natale; Serafini, Peter R; Chuartzman, Silvia; Vasquez, Cristina; Mimbacas, Adriana; Nigro, Vincenzo; Pavanello, Rita C; Schuldiner, Maya; Kunkel, Louis M; Zatz, Mayana

    2014-08-01

    Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of genetically determined muscle disorders with a primary or predominant involvement of the pelvic or shoulder girdle musculature. More than 20 genes with autosomal recessive (LGMD2A to LGMD2Q) and autosomal dominant inheritance (LGMD1A to LGMD1H) have been mapped/identified to date. Mutations are known for six among the eight mapped autosomal dominant forms: LGMD1A (myotilin), LGMD1B (lamin A/C), LGMD1C (caveolin-3), LGMD1D (desmin), LGMD1E (DNAJB6), and more recently for LGMD1F (transportin-3). Our group previously mapped the LGMD1G gene at 4q21 in a Caucasian-Brazilian family. We now mapped a Uruguayan family with patients displaying a similar LGMD1G phenotype at the same locus. Whole genome sequencing identified, in both families, mutations in the HNRPDL gene. HNRPDL is a heterogeneous ribonucleoprotein family member, which participates in mRNA biogenesis and metabolism. Functional studies performed in S. cerevisiae showed that the loss of HRP1 (yeast orthologue) had pronounced effects on both protein levels and cell localizations, and yeast proteome revealed dramatic reorganization of proteins involved in RNA-processing pathways. In vivo analysis showed that hnrpdl is important for muscle development in zebrafish, causing a myopathic phenotype when knocked down. The present study presents a novel association between a muscular disorder and a RNA-related gene and reinforces the importance of RNA binding/processing proteins in muscle development and muscle disease. Understanding the role of these proteins in muscle might open new therapeutic approaches for muscular dystrophies.

  1. Benzoselendiazole-based responsive long-lifetime photoluminiscent probes for protein kinases

    DEFF Research Database (Denmark)

    Ekambaram, R; Enkvist, E; Manoharan, GB;

    2014-01-01

    Benzoselenadiazole-containing inhibitors of protein kinases were constructed and their capability to emit phosphorescence in the kinase-bound state was established. Labelling of the inhibitors with a red fluorescent dye led to sensitive responsive photoluminescent probes for protein kinase CK2 th...... that emitted red light with a long (microsecond-scale) decay time upon excitation of the probes with a pulse of near-UV light.......Benzoselenadiazole-containing inhibitors of protein kinases were constructed and their capability to emit phosphorescence in the kinase-bound state was established. Labelling of the inhibitors with a red fluorescent dye led to sensitive responsive photoluminescent probes for protein kinase CK2...

  2. Myotonic Dystrophy Family Registry

    Science.gov (United States)

    2016-03-28

    Myotonic Dystrophy; Congenital Myotonic Dystrophy; Myotonic Dystrophy 1; Myotonic Dystrophy 2; Dystrophia Myotonica; Dystrophia Myotonica 1; Dystrophia Myotonica 2; Myotonia Dystrophica; Myotonic Dystrophy, Congenital; Myotonic Myopathy, Proximal; PROMM (Proximal Myotonic Myopathy); Proximal Myotonic Myopathy; Steinert Disease; Steinert Myotonic Dystrophy; Steinert's Disease; Myotonia Atrophica

  3. Cellular reprogramming through mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  4. Effects of protein kinase C activators and staurosporine on protein kinase activity, cell survival, and proliferation in Tetrahymena thermophila

    DEFF Research Database (Denmark)

    Straarup, EM; Schousboe, P; Hansen, HQ;

    1997-01-01

    with either PMA or OAG, or at 2,500 cells ml-1. At 500 cells ml-1 PMA induced the in vivo phosphorylation of at least six proteins. The myelin basic protein fragment 4-14 was phosphorylated in vitro in crude extracts of a culture of 250,000 cells ml-1. Both the in vivo and the in vitro phosphorylation were......Autocrine factors prevent cell death in the ciliate Tetrahymena thermophila, a unicellular eukaryote, in a chemically defined medium. At certain growth conditions these factors are released at a sufficient concentration by > 500 cells ml-1 to support cell survival and proliferation. The protein...... kinase C activators phorbol 12-myristate 13-acetate (PMA) or 1-oleyl 2-acetate glycerol (OAG) when added to 250 cells ml-1 supported cell survival and proliferation. In the presence of the serine and threonine kinase inhibitor staurosporine the cells died both at 250 cells ml-1 in cultures supplemented...

  5. Signals fly when kinases meet Rho-of-plants (ROP) small G-proteins.

    Science.gov (United States)

    Fehér, Attila; Lajkó, Dézi Bianka

    2015-08-01

    Rho-type small GTP-binding plant proteins function as two-state molecular switches in cellular signalling. There is accumulating evidence that Rho-of-plants (ROP) signalling is positively controlled by plant receptor kinases, through the ROP guanine nucleotide exchange factor proteins. These signalling modules regulate cell polarity, cell shape, hormone responses, and pathogen defence, among other things. Other ROP-regulatory proteins might also be subjected to protein phosphorylation by cellular kinases (e.g., mitogen-activated protein kinases or calcium-dependent protein kinases), in order to integrate various cellular signalling pathways with ROP GTPase-dependent processes. In contrast to the role of kinases in upstream ROP regulation, much less is known about the potential link between ROP GTPases and downstream kinase signalling. In other eukaryotes, Rho-type G-protein-activated kinases are widespread and have a key role in many cellular processes. Recent data indicate the existence of structurally different ROP-activated kinases in plants, but their ROP-dependent biological functions still need to be validated. In addition to these direct interactions, ROPs may also indirectly control the activity of mitogen-activated protein kinases or calcium-dependent protein kinases. These kinases may therefore function as upstream as well as downstream kinases in ROP-mediated signalling pathways, such as the phosphatidylinositol monophosphate kinases involved in cell polarity establishment.

  6. Structural Bioinformatics and Protein Docking Analysis of the Molecular Chaperone-Kinase Interactions: Towards Allosteric Inhibition of Protein Kinases by Targeting the Hsp90-Cdc37 Chaperone Machinery

    Directory of Open Access Journals (Sweden)

    Gennady Verkhivker

    2013-11-01

    Full Text Available A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4 kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional “molecular brakes” that can lock (or unlock kinase from the system during client loading (release stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery.

  7. Mitogen Activated Protein kinase signal transduction pathways in the prostate

    Directory of Open Access Journals (Sweden)

    Koul Sweaty

    2004-06-01

    Full Text Available Abstract The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy.

  8. Compartmentalization Role of A-Kinase Anchoring Proteins (AKAPs in Mediating Protein Kinase A (PKA Signaling and Cardiomyocyte Hypertrophy

    Directory of Open Access Journals (Sweden)

    Abeer Rababa'h

    2014-12-01

    Full Text Available The Beta-adrenergic receptors (β-ARs stimulation enhances contractility through protein kinase-A (PKA substrate phosphorylation. This PKA signaling is conferred in part by PKA binding to A-kinase anchoring proteins (AKAPs. AKAPs coordinate multi-protein signaling networks that are targeted to specific intracellular locations, resulting in the localization of enzyme activity and transmitting intracellular actions of neurotransmitters and hormones to its target substrates. In particular, mAKAP (muscle-selective AKAP has been shown to be present on the nuclear envelope of cardiomyocytes with various proteins including: PKA-regulatory subunit (RIIα, phosphodiesterase-4D3, protein phosphatase-2A, and ryanodine receptor (RyR2. Therefore, through the coordination of spatial-temporal signaling of proteins and enzymes, mAKAP controls cyclic-adenosine monophosphate (cAMP levels very tightly and functions as a regulator of PKA-mediated substrate phosphorylation leading to changes in calcium availability and myofilament calcium sensitivity. The goal of this review is to elucidate the critical compartmentalization role of mAKAP in mediating PKA signaling and regulating cardiomyocyte hypertrophy by acting as a scaffolding protein. Based on our literature search and studying the structure–function relationship between AKAP scaffolding protein and its binding partners, we propose possible explanations for the mechanism by which mAKAP promotes cardiac hypertrophy.

  9. Protein Kinase D Regulates Cell Death Pathways in Experimental Pancreatitis

    OpenAIRE

    Yuan, Jingzhen; Liu, Yannan; Tan, Tanya; Guha, Sushovan; Gukovsky, Ilya; Gukovskaya, Anna; Pandol, Stephen J.

    2012-01-01

    Inflammation and acinar cell necrosis are two major pathological responses of acute pancreatitis, a serious disorder with no current therapies directed to its molecular pathogenesis. Serine/threonine protein kinase D family, which includes PKD/PKD1, PKD2, and PKD3, has been increasingly implicated in the regulation of multiple physiological and pathophysiological effects. We recently reported that PKD/PKD1, the predominant PKD isoform expressed in rat pancreatic acinar cells, mediates early e...

  10. The Protein Kinase RSK Family - Roles in Prostate Cancer

    Science.gov (United States)

    2005-02-01

    of the prodrug, kaempferol 3-O-(2",3",4"-tri-O-acetyl-a-L-rhamnopyranoside)(3Ac- SL0101), a novel inhibitor of the Ser/Thr protein kinase, RSK...Y, Holman NJ, Hecht SM, Lannigan DA. Synthesis of the prodrug, kaempferol 3-O-(2", 3", 4"-tri-O-acetyl-a-L-rhamnopyranoside) (3Ac-SLO1 01), a novel

  11. Protein kinase-independent activation of CFTR by phosphatidylinositol phosphates

    OpenAIRE

    Himmel, Bettina; Nagel, Georg

    2003-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is expressed in many epithelia and in the heart. Phosphorylation of CFTR by protein kinases is thought to be an absolute prerequisite for the opening of CFTR channels. In addition, nucleoside triphosphates were shown to regulate the opening of phosphorylated CFTR. Here, we report that phosphatidylinositol 4,5-bisphosphate (PIP2) activates human CFTR, resulting in ATP responsiveness of PIP2-treated CFTR. ...

  12. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    OpenAIRE

    Claire Thornton; Carina Mallard; Rajanikant Krishnamurthy; Syam Nair; Henrik Hagberg

    2013-01-01

    Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk) family, DAPk1, has been implicated in cerebr...

  13. Enzymatic characteristics of the c-Raf-1 protein kinase.

    Science.gov (United States)

    Force, T; Bonventre, J V; Heidecker, G; Rapp, U; Avruch, J; Kyriakis, J M

    1994-02-15

    The c-Raf-1 protein kinase plays a central role in the mitogenic response of cells to growth factors, cytokines, and many oncogenes. Despite the critical importance of this enzyme, very little is known of its biochemical properties or mechanisms of regulation. In these experiments, we used the only candidate physiologic substrate identified as yet for c-Raf-1, mitogen-activated protein kinase kinase (MAPKK), to examine enzymatic characteristics and candidate modulators of c-Raf-1, c-Raf-1 was purified from Sf9 cells infected with recombinant baculovirus encoding a histidine-tagged c-Raf-1. The Km values of c-Raf-1 for ATP and MAPKK were 11.6 microM and 0.8 microM, respectively, and the stoichiometry of phosphorylation of MAPKK by c-Raf-1 was 1.67 mol of phosphate per mol of MAPKK. In contrast to prior reports, Mg2+ was the preferred cation at Mg2+ and Mn2+ concentrations > 5 mM. c-Raf-1 substrate specificity was extremely restricted, consistent with the identification of only one candidate physiologic substrate to date and highlighting the necessity of using MAPKK rather than artificial substrates in c-Raf-1 activity assays. Of multiple potential substrates tested, the only one phosphorylated to > 20% of the level of MAPKK phosphorylation was myelin basic protein (22%). Heat-denatured MAPKK was phosphorylated at only 2% the level of native MAPKK, indicating that the restricted substrate specificity may be due to tertiary-structural requirements. We also examined whether c-Raf-1 activity is modulated by lipid binding to the cysteine finger region in its regulatory domain. Of multiple mitogen-stimulated or cell-membrane lipids tested, only phosphatidylserine and diacylglycerol in the presence of Ca2+ (2.5 mM) increased c-Raf-1 kinase activity significantly (1.5-fold). The increase is probably not of physiologic significance because it was about two orders of magnitude less than the stimulation of protein kinase C by these lipids. On gel-filtration chromatography, the

  14. Pachastrissamine (jaspine B) and its stereoisomers inhibit sphingosine kinases and atypical protein kinase C.

    Science.gov (United States)

    Yoshimitsu, Yuji; Oishi, Shinya; Miyagaki, Jun; Inuki, Shinsuke; Ohno, Hiroaki; Fujii, Nobutaka

    2011-09-15

    Sphingosine kinases (SphKs) are oncogenic enzymes that regulate the critical balance between ceramide and sphingosine-1-phosphate. Much effort has been dedicated to develop inhibitors against these enzymes. Naturally occurring pachastrissamine (jaspine B) and all its stereoisomers were prepared and evaluated for their inhibitory effects against SphKs. All eight stereoisomers exhibited moderate to potent inhibitory activity against SphK1 and SphK2. Inhibitory effects were profiled against protein kinase C (PKC) isoforms by in vitro experiments. Atypical PKCs (PKCζ and PKCι) were inhibited by several pachastrissamine stereoisomers. The improved activity over N,N-dimethylsphingosine suggests that the cyclic scaffold in pachastrissamines facilitates potential favorable interactions with SphKs and PKCs.

  15. Protein kinase CK2: a newcomer in the 'druggable kinome'.

    Science.gov (United States)

    Pagano, M A; Cesaro, L; Meggio, F; Pinna, L A

    2006-12-01

    The acronym CK2 (derived from the misnomer 'casein kinase' 2) denotes one of the most pleiotropic members of the eukaryotic protein kinase superfamily, characterized by an acidic consensus sequence in which a carboxylic acid (or pre-phosphorylated) side chain at position n+3 relative to the target serine/threonine residue plays a crucial role. The latest repertoire of CK2 substrates includes approx. 300 proteins, but the analysis of available phosphopeptide databases from different sources suggests that CK2 alone may be responsible for the generation of a much larger proportion (10-20%) of the eukaryotic phosphoproteome. Although for the time being CK2 is not included among protein kinases whose inhibitors are in clinical practice or in advanced clinical trials, evidence is accumulating that elevated CK2 constitutive activity co-operates to induce a number of pathological conditions, including cancer, infectious diseases, neurodegeneration and cardiovascular pathologies. The development and usage of cell-permeant, selective inhibitors discloses a scenario whereby CK2 plays a global anti-apoptotic role, which under special circumstances may lead to untimely and pathogenic cell survival.

  16. Protein kinases as targets for interventive biogerontology: overview and perspectives.

    Science.gov (United States)

    Lai, Wing-Fu

    2012-04-01

    Protein kinases are enzymes that catalyze the transfer of γ phosphate from adenosine triphosphate to substrate proteins, and are important signal transduction mediators in a diversity of biological processes, ranging from apoptosis to energy metabolism. In this article, we will take this prominent class of proteins as an example to illustrate the involvement of proteins in modulation of aging and to highlight the prospects and challenges of protein-targeted interventions for anti-aging purposes. It is hoped that through this article, more empirical work on interventive gerontology will follow, and with collaborative endeavors among researchers, hurdles in anti-aging intervention development can be overcome in the near future. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. STO-609, a specific inhibitor of the Ca(2+)/calmodulin-dependent protein kinase kinase.

    Science.gov (United States)

    Tokumitsu, Hiroshi; Inuzuka, Hiroyuki; Ishikawa, Yumi; Ikeda, Masahiko; Saji, Ikutaro; Kobayashi, Ryoji

    2002-05-03

    STO-609, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KK) was synthesized, and its inhibitory properties were investigated both in vitro and in vivo. STO-609 inhibits the activities of recombinant CaM-KK alpha and CaM-KK beta isoforms, with K(i) values of 80 and 15 ng/ml, respectively, and also inhibits their autophosphorylation activities. Comparison of the inhibitory potency of the compound against various protein kinases revealed that STO-609 is highly selective for CaM-KK without any significant effect on the downstream CaM kinases (CaM-KI and -IV), and the IC(50) value of the compound against CaM-KII is approximately 10 microg/ml. STO-609 inhibits constitutively active CaM-KK alpha (glutathione S-transferase (GST)-CaM-KK-(84-434)) as well as the wild-type enzyme. Kinetic analysis indicates that the compound is a competitive inhibitor of ATP. In transfected HeLa cells, STO-609 suppresses the Ca(2+)-induced activation of CaM-KIV in a dose-dependent manner. In agreement with this observation, the inhibitor significantly reduces the endogenous activity of CaM-KK in SH-SY5Y neuroblastoma cells at a concentration of 1 microg/ml (approximately 80% inhibitory rate). Taken together, these results indicate that STO-609 is a selective and cell-permeable inhibitor of CaM-KK and that it may be a useful tool for evaluating the physiological significance of the CaM-KK-mediated pathway in vivo as well as in vitro.

  18. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation.

    Science.gov (United States)

    Jiang, Hai; Wu, Jianchun; He, Chen; Yang, Wending; Li, Honglin

    2009-04-01

    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kappaB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdk1 activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chk1 and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  19. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    Institute of Scientific and Technical Information of China (English)

    Hai Jiang; Jianchun Wu; Chen He; Wending Yang; Honglin Li

    2009-01-01

    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdkl activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chkl and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  20. Protein and genetic diagnosis of limb girdle muscular dystrophy type 2A: The yield and the pitfalls.

    Science.gov (United States)

    Fanin, Marina; Angelini, Corrado

    2015-08-01

    Limb girdle muscular dystrophy type 2A (LGMD2A) is the most frequent form of LGMD worldwide. Comprehensive clinical assessment and laboratory testing is essential for diagnosis of LGMD2A. Muscle immunoblot analysis of calpain-3 is the most useful tool to direct genetic testing, as detection of calpain-3 deficiency has high diagnostic value. However, calpain-3 immunoblot testing lacks sensitivity in about 30% of cases due to gene mutations that inactivate the enzyme. The best diagnostic strategy should be determined on a case-by-case basis, depending on which tissues are available, and which molecular and/or genetic methods are adopted. In this work we survey the current knowledge, advantages, limitations, and pitfalls of protein testing and mutation detection in LGMD2A and provide an update of genetic epidemiology.

  1. Expression of a gibberellin-induced leucine-rich repeat receptor-like protein kinase in deepwater rice and its interaction with kinase-associated protein phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Knaap, E. van der; Sauter, M.; Kende, H. (Michigan State Univ., East Lansing, MI (United States). DOE Plant Research Lab.); Song, W.Y.; Ruan, D.L.; Ronald, P.C. (Univ. of California, Davis, CA (United States). Dept. of Plant Pathology)

    1999-06-01

    The authors identified in deepwater rice (Oryza sativa L.) a gene encoding a leucine-rich repeat receptor-like transmembrane protein kinase, OsTMK (O. sativa transmembrane kinase). The transcript levels of OsTMK increased in the rice internode in response to gibberellin. Expression of OsTMK was especially high in regions undergoing cell division and elongation. The kinase domain of OsTMK was enzymatically active autophosphorylating on serine and threonine residues. A cDNA encoding a rice ortholog of a kinase-associated type 2C protein phosphatase (OsKAPP) was cloned. KAPPs are putative downstream components in kinase-mediated signal transduction pathways. The kinase interaction domain of OsKAPP was phosphorylated in vitro by the kinase domain of OsTMK. RNA gel-blot analysis indicated that the expression of OsTMK and OsKAPP was similar in different tissues of the rice plant. In protein-binding assays, OsKAPP interacted with a receptor-like protein kinase, RLK5 of Arabidopsis, but not with the protein kinase domains of the rice and maize receptor-like protein kinases Xa21 and ZmPK1, respectively.

  2. Mitogen-Activated Protein Kinases and Hypoxic/Ischemic Nephropathy

    Directory of Open Access Journals (Sweden)

    Fengbao Luo

    2016-08-01

    Full Text Available Tissue hypoxia/ischemia is a pathological feature of many human disorders including stroke, myocardial infarction, hypoxic/ischemic nephropathy, as well as cancer. In the kidney, the combination of limited oxygen supply to the tissues and high oxygen demand is considered the main reason for the susceptibility of the kidney to hypoxic/ischemic injury. In recent years, increasing evidence has indicated that a reduction in renal oxygen tension/blood supply plays an important role in acute kidney injury, chronic kidney disease, and renal tumorigenesis. However, the underlying signaling mechanisms, whereby hypoxia alters cellular behaviors, remain poorly understood. Mitogen-activated protein kinases (MAPKs are key signal-transducing enzymes activated by a wide range of extracellular stimuli, including hypoxia/ischemia. There are four major family members of MAPKs: the extracellular signal-regulated kinases-1 and -2 (ERK1/2, the c-Jun N-terminal kinases (JNK, p38 MAPKs, and extracellular signal-regulated kinase-5 (ERK5/BMK1. Recent studies, including ours, suggest that these MAPKs are differentially involved in renal responses to hypoxic/ischemic stress. This review will discuss their changes in hypoxic/ischemic pathophysiology with acute kidney injury, chronic kidney diseases and renal carcinoma.

  3. A catalytically inactive form of protein kinase C-associated kinase/receptor interacting protein 4, a protein kinase C beta-associated kinase that mediates NF-kappa B activation, interferes with early B cell development.

    Science.gov (United States)

    Cariappa, Annaiah; Chen, Luojing; Haider, Khaleda; Tang, Mei; Nebelitskiy, Eugene; Moran, Stewart T; Pillai, Shiv

    2003-08-15

    Protein kinase C-associated kinase (PKK)/receptor interacting protein 4 (RIP4) is a protein kinase C (PKC) beta-associated kinase that links PKC to NF-kappaB activation. The kinase domain of PKK is similar to that of RIP, RIP2, and RIP3. We show in this study that PKK is expressed early during lymphocyte development and can be detected in common lymphoid progenitor cells. Targeting of a catalytically inactive version of PKK to lymphoid cells resulted in a marked impairment in pro-B cell generation in the bone marrow. Although peripheral B cell numbers were markedly reduced, differentiation into follicular and marginal zone B cells was not defective in these mice. B-1a and B-1b B cells could not be detected in these mice, but this might be a reflection of the overall defect in B cell production observed in these animals. In keeping with a possible link to PKCbeta, peripheral B cells in these mice exhibit a defect in anti-IgM-mediated proliferation. These studies suggest that PKK may be required early in B cell development and for BCR-mediated B cell proliferation.

  4. Emerging Roles of AMP-Activated Protein Kinase

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel

    The cellular energy sensor AMP-activated protein kinase (AMPK) is activated, when the energy balance of the cell decreases. AMPK has been proposed to regulate multiple metabolic processes. However, much of the evidence for these general effects of AMPK relies on investigations in cell systems...... be of importance for prioritising energy dissipation, inhibition of lipid storage pathways and regulation of mitochondrial and metabolic proteins, but this needs further investigations. In addition, we provide evidence that AMPK is regulating autophagic signalling in skeletal muscle. Thus, in skeletal muscle AMPK...... in skeletal muscle during exercise, but AMPK activation alone appears not to be a sufficient stimulus....

  5. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    Science.gov (United States)

    Jette, Nicholas; Lees-Miller, Susan P.

    2015-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  6. Synthetic peptides and ribosomal proteins as substrate for 60S ribosomal protein kinase from yeast cells

    DEFF Research Database (Denmark)

    Grankowski, N; Gasior, E; Issinger, O G

    1993-01-01

    Kinetic studies on the 60S protein kinase were conducted with synthetic peptides and ribosomal proteins as substrate. Peptide RRREEESDDD proved to be the best synthetic substrate for this enzyme. The peptide has a sequence of amino acids which most closely resembles the structure of potential...... phosphorylation sites in natural substrates, i.e., acidic ribosomal proteins. The superiority of certain kinetic parameters for 60S kinase obtained with the native whole 80S ribosomes over those of the isolated fraction of acidic ribosomal proteins indicates that the affinity of 60S kinase to the specific protein...... substrate not only depends on the structure of the polypeptide chain around the target amino acid but also on its native structure within the 80S ribosome....

  7. PABPN1 overexpression leads to upregulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclusions.

    Science.gov (United States)

    Corbeil-Girard, Louis-Philippe; Klein, Arnaud F; Sasseville, A Marie-Josée; Lavoie, Hugo; Dicaire, Marie-Josée; Saint-Denis, Anik; Pagé, Martin; Duranceau, André; Codère, François; Bouchard, Jean-Pierre; Karpati, George; Rouleau, Guy A; Massie, Bernard; Langelier, Yves; Brais, Bernard

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease caused by expanded (GCN)12-17 stretches encoding the N-terminal polyalanine domain of the poly(A) binding protein nuclear 1 (PABPN1). OPMD is characterized by intranuclear inclusions (INIs) in skeletal muscle fibers, which contain PABPN1, molecular chaperones, ubiquitin, proteasome subunits, and poly(A)-mRNA. We describe an adenoviral model of PABPN1 expression that produces INIs in most cells. Microarray analysis revealed that PABPN1 overexpression reproducibly changed the expression of 202 genes. Sixty percent of upregulated genes encode nuclear proteins, including many RNA and DNA binding proteins. Immunofluorescence microscopy revealed that all tested nuclear proteins encoded by eight upregulated genes colocalize with PABPN1 within the INIs: CUGBP1, SFRS3, FKBP1A, HMG2, HNRPA1, PRC1, S100P, and HSP70. In addition, CUGBP1, SFRS3, and FKBP1A were also found in OPMD muscle INIs. This study demonstrates that a large number of nuclear proteins are sequestered in OPMD INIs, which may compromise cellular function.

  8. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    Science.gov (United States)

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  9. Dimerization via tandem leucine zippers is essential for the activation of the mitogen-activated protein kinase kinase kinase, MLK-3.

    Science.gov (United States)

    Leung, I W; Lassam, N

    1998-12-04

    Mixed lineage kinase-3 (MLK-3) is a mitogen-activated kinase kinase kinase that mediates stress-activating protein kinase (SAPK)/c-Jun NH2-terminal kinase activation. MLK-3 and other MLK family kinases are characterized by the presence of multiple protein-protein interaction domains including a tandem leucine/isoleucine zipper (LZs) motif. Leucine zippers are known to mediate protein dimerization raising the possibility that the tandem leucine/isoleucine zippers may function as a dimerization motif of MLK-3. Using both co-immunoprecipitation and nonreducing SDS-polyacrylamide gel electrophoresis, we demonstrated that MLK-3 forms disulfide bridged homo-dimers and that the LZs motif is sufficient for MLK-3 homodimerization. We next asked whether MLK-3 utilizes a dimerization-based activation mechanism analogous to that of receptor tyrosine kinases. We found that dimerization via the LZs motif is a prerequisite for MLK-3 autophosphorylation. We then demonstrated that co-expression of Cdc42 lead to a substantial increase in MLK-3 dimerization, indicating that binding by this GTPase may induce MLK-3 dimerization. Moreover, the LZs minus form of MLK-3 failed to activate the downstream target SAPK, and expression of a MLK-3 LZs polypeptide was found to block SAPK activation by wild type MLK-3. Taken together, these findings indicate that dimerization plays a pivotal role in MLK-3 activation.

  10. Protein kinase C involvement in focal adhesion formation

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1992-01-01

    Matrix molecules such as fibronectin can promote cell attachment, spreading and focal adhesion formation. Although some interactions of fibronectin with cell surface receptors have now been identified, the consequent activation of intracellular messenger systems by cell/matrix interactions have...... still to be elucidated. We show here that the kinase inhibitors H7 and HA1004 reduce focal adhesion and stress fiber formation in response to fibronectin in a dose-dependent manner, and that activators of protein kinase C can promote their formation under conditions where they do not normally form....... Fibroblasts spread within 1h on substrata composed of fibronectin and formed focal adhesions by 3h, as monitored by interference reflection microscopy (IRM) and by labeling for talin, vinculin and integrin beta 1 subunits. In addition, stress fibers were visible. When cells were allowed to spread for 1h...

  11. Sensitization of TRPA1 by Protein Kinase A

    Science.gov (United States)

    Meents, Jannis E.; Fischer, Michael J. M.; McNaughton, Peter A.

    2017-01-01

    The TRPA1 ion channel is expressed in nociceptive (pain-sensitive) somatosensory neurons and is activated by a wide variety of chemical irritants, such as acrolein in smoke or isothiocyanates in mustard. Here, we investigate the enhancement of TRPA1 function caused by inflammatory mediators, which is thought to be important in lung conditions such as asthma and COPD. Protein kinase A is an important kinase acting downstream of inflammatory mediators to cause sensitization of TRPA1. By using site-directed mutagenesis, patch-clamp electrophysiology and calcium imaging we identify four amino acid residues, S86, S317, S428, and S972, as the principal targets of PKA-mediated phosphorylation and sensitization of TRPA1. PMID:28076424

  12. Protein Kinase C and Toll-Like Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Daniel J. Loegering

    2011-01-01

    Full Text Available Protein kinase C (PKC is a family of kinases that are implicated in a plethora of diseases, including cancer and cardiovascular disease. PKC isoforms can have different, and sometimes opposing, effects in these disease states. Toll-like receptors (TLRs are a family of pattern recognition receptors that bind pathogens and stimulate the secretion of cytokines. It has long been known that PKC inhibitors reduce LPS-stimulated cytokine secretion by macrophages, linking PKC activation to TLR signaling. Recent studies have shown that PKC-α, -δ, -ε, and -ζ are directly involved in multiple steps in TLR pathways. They associate with the TLR or proximal components of the receptor complex. These isoforms are also involved in the downstream activation of MAPK, RhoA, TAK1, and NF-κB. Thus, PKC activation is intimately involved in TLR signaling and the innate immune response.

  13. Protein-tyrosine Phosphatase and Kinase Specificity in Regulation of SRC and Breast Tumor Kinase* ♦

    Science.gov (United States)

    Fan, Gaofeng; Aleem, Saadat; Yang, Ming; Miller, W. Todd; Tonks, Nicholas K.

    2015-01-01

    Despite significant evidence to the contrary, the view that phosphatases are “nonspecific” still pervades the field. Systems biology approaches to defining how signal transduction pathways are integrated at the level of whole organisms also often downplay the contribution of phosphatases, defining them as “erasers” that serve merely to restore the system to its basal state. Here, we present a study that counteracts the idea of “nonspecific phosphatases.” We have characterized two structurally similar and functionally related kinases, BRK and SRC, which are regulated by combinations of activating autophosphorylation and inhibitory C-terminal sites of tyrosine phosphorylation. We demonstrated specificity at the level of the kinases in that SRMS phosphorylated the C terminus of BRK, but not SRC; in contrast, CSK is the kinase responsible for C-terminal phosphorylation of SRC, but not BRK. For the phosphatases, we observed that RNAi-mediated suppression of PTP1B resulted in opposing effects on the activity of BRK and SRC and have defined the mechanisms underlying this specificity. PTP1B inhibited BRK by directly dephosphorylating the Tyr-342 autophosphorylation site. In contrast, PTP1B potentiated SRC activity, but not by dephosphorylating SRC itself directly; instead, PTP1B regulated the interaction between CBP/PAG and CSK. SRC associated with, and phosphorylated, the transmembrane protein CBP/PAG at Tyr-317, resulting in CSK recruitment. We identified PAG as a substrate of PTP1B, and dephosphorylation abolished recruitment of the inhibitory kinase CSK. Overall, these findings illustrate how the combinatorial effects of PTKs and PTPs may be integrated to regulate signaling, with both classes of enzymes displaying exquisite specificity. PMID:25897081

  14. Protein-tyrosine Phosphatase and Kinase Specificity in Regulation of SRC and Breast Tumor Kinase.

    Science.gov (United States)

    Fan, Gaofeng; Aleem, Saadat; Yang, Ming; Miller, W Todd; Tonks, Nicholas K

    2015-06-26

    Despite significant evidence to the contrary, the view that phosphatases are "nonspecific" still pervades the field. Systems biology approaches to defining how signal transduction pathways are integrated at the level of whole organisms also often downplay the contribution of phosphatases, defining them as "erasers" that serve merely to restore the system to its basal state. Here, we present a study that counteracts the idea of "nonspecific phosphatases." We have characterized two structurally similar and functionally related kinases, BRK and SRC, which are regulated by combinations of activating autophosphorylation and inhibitory C-terminal sites of tyrosine phosphorylation. We demonstrated specificity at the level of the kinases in that SRMS phosphorylated the C terminus of BRK, but not SRC; in contrast, CSK is the kinase responsible for C-terminal phosphorylation of SRC, but not BRK. For the phosphatases, we observed that RNAi-mediated suppression of PTP1B resulted in opposing effects on the activity of BRK and SRC and have defined the mechanisms underlying this specificity. PTP1B inhibited BRK by directly dephosphorylating the Tyr-342 autophosphorylation site. In contrast, PTP1B potentiated SRC activity, but not by dephosphorylating SRC itself directly; instead, PTP1B regulated the interaction between CBP/PAG and CSK. SRC associated with, and phosphorylated, the transmembrane protein CBP/PAG at Tyr-317, resulting in CSK recruitment. We identified PAG as a substrate of PTP1B, and dephosphorylation abolished recruitment of the inhibitory kinase CSK. Overall, these findings illustrate how the combinatorial effects of PTKs and PTPs may be integrated to regulate signaling, with both classes of enzymes displaying exquisite specificity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Multiple functions of G protein-coupled receptor kinases.

    Science.gov (United States)

    Watari, Kenji; Nakaya, Michio; Kurose, Hitoshi

    2014-03-06

    Desensitization is a physiological feedback mechanism that blocks detrimental effects of persistent stimulation. G protein-coupled receptor kinase 2 (GRK2) was originally identified as the kinase that mediates G protein-coupled receptor (GPCR) desensitization. Subsequent studies revealed that GRK is a family composed of seven isoforms (GRK1-GRK7). Each GRK shows a differential expression pattern. GRK1, GRK4, and GRK7 are expressed in limited tissues. In contrast, GRK2, GRK3, GRK5, and GRK6 are ubiquitously expressed throughout the body. The roles of GRKs in GPCR desensitization are well established. When GPCRs are activated by their agonists, GRKs phosphorylate serine/threonine residues in the intracellular loops and the carboxyl-termini of GPCRs. Phosphorylation promotes translocation of β-arrestins to the receptors and inhibits further G protein activation by interrupting receptor-G protein coupling. The binding of β-arrestins to the receptors also helps to promote receptor internalization by clathrin-coated pits. Thus, the GRK-catalyzed phosphorylation and subsequent binding of β-arrestin to GPCRs are believed to be the common mechanism of GPCR desensitization and internalization. Recent studies have revealed that GRKs are also involved in the β-arrestin-mediated signaling pathway. The GRK-mediated phosphorylation of the receptors plays opposite roles in conventional G protein- and β-arrestin-mediated signaling. The GRK-catalyzed phosphorylation of the receptors results in decreased G protein-mediated signaling, but it is necessary for β-arrestin-mediated signaling. Agonists that selectively activate GRK/β-arrestin-dependent signaling without affecting G protein signaling are known as β-arrestin-biased agonists. Biased agonists are expected to have potential therapeutic benefits for various diseases due to their selective activation of favorable physiological responses or avoidance of the side effects of drugs. Furthermore, GRKs are recognized as

  16. Calcium-binding proteins in skeletal muscles of the mdx mice: potential role in the pathogenesis of Duchenne muscular dystrophy.

    Science.gov (United States)

    Pertille, Adriana; de Carvalho, Candida Luiza Tonizza; Matsumura, Cintia Yuri; Neto, Humberto Santo; Marques, Maria Julia

    2010-02-01

    Duchenne muscular dystrophy is one of the most common hereditary diseases. Abnormal ion handling renders dystrophic muscle fibers more susceptible to necrosis and a rise in intracellular calcium is an important initiating event in dystrophic muscle pathogenesis. In the mdx mice, muscles are affected with different intensities and some muscles are spared. We investigated the levels of the calcium-binding proteins calsequestrin and calmodulin in the non-spared axial (sternomastoid and diaphragm), limb (tibialis anterior and soleus), cardiac and in the spared extraocular muscles (EOM) of control and mdx mice. Immunoblotting analysis showed a significant increase of the proteins in the spared mdx EOM and a significant decrease in the most affected diaphragm. Both proteins were comparable to the cardiac muscle controls. In limb and sternomastoid muscles, calmodulin and calsequestrin were affected differently. These results suggest that differential levels of the calcium-handling proteins may be involved in the pathogenesis of myonecrosis in mdx muscles. Understanding the signaling mechanisms involving Ca(2+)-calmodulin activation and calsequestrin expression may be a valuable way to develop new therapeutic approaches to the dystrophinopaties.

  17. ABNORMAL PROTEIN TYROSINE KINASES ASSOCIATED WITH HUMAN HAEMATOLOGICAL MALIGNANCIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective: To survey the role of protein tyrosine kinases (PTKs) in the pathogenesis of several hematopoietic malignancies. Methods: By reviewing the published laboratory and clinical studies on PTK-related oncoproteins and their causative role in some leukemias and lymphomas. Results: Protein tyrosine kinases are key participants in signal transduction pathways that regulate cellular growth, activation and differentiations. Aberrant PTK activity resulting from gene mutation (often accompanying chromosome translocation) plays an etiologic role in several clonal hematopoietic malignancies. For example, the PTK product of the BCR-ABL fusion gene resulting from the t (9; 22) translocation exhibits several fold higher tyrosine kinase activity than the product of the ABL gene. Evidence suggests that the BCR-ABL oncoprotein alone is sufficient to case chronic myelogenous leukemia (CML) and other Ph positive acute leukemia. PTK over-activity resulting from chromosomal translocations creating TEL-ABL, TEL-JAK2 and TEL-PDGFR( fusion proteins plays an important role in the pathogenesis of other types of leukemia. Another example occurs in anaplastic large cell lymphoma (ALCL). Experimental and clinical evidences indicate that translocations involving ALK gene on chromosome 2p23, most commonly resulting in an NPM-ALK fusion oncogene, result in constitutive activation of ALK and cause ALCL. This group of lymphomas is now named ALK positive lymphoma or ALKoma. Conclusion: Genetic lesions creating aberrant fusion proteins that result in excessive PTK activity are increasingly being recognized as central to the pathogenesis of hemotopoietic malignancies. These chimeric PTK molecules represent attractive disease-specific targets against which new classes therapeutic agents are being developed.

  18. Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Deficiency Reduces Insulin Sensitivity in High-Fat Diet-Fed Mice

    NARCIS (Netherlands)

    de Boer, Jan Freark; Dikkers, Arne; Jurdzinski, Angelika; von Felden, Johann; Gaestel, Matthias; Bavendiek, Udo; Tietge, Uwe J. F.

    2014-01-01

    Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a major downstream target of p38 MAPK and enhances inflammatory processes. In line with the role of MK2 as contributor to inflammation,

  19. Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Deficiency Reduces Insulin Sensitivity in High-Fat Diet-Fed Mice

    NARCIS (Netherlands)

    de Boer, Jan Freark; Dikkers, Arne; Jurdzinski, Angelika; von Felden, Johann; Gaestel, Matthias; Bavendiek, Udo; Tietge, Uwe J. F.

    2014-01-01

    Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a major downstream target of p38 MAPK and enhances inflammatory processes. In line with the role of MK2 as contributor to inflammation, MK2(-

  20. The Bmx tyrosine kinase induces activation of the Stat signaling pathway, which is specifically inhibited by protein kinase Cdelta.

    Science.gov (United States)

    Saharinen, P; Ekman, N; Sarvas, K; Parker, P; Alitalo, K; Silvennoinen, O

    1997-12-01

    Members of the hematopoietically expressed Tec tyrosine kinase family have an important role in hematopoietic signal transduction, as exemplified by the crucial role of Btk for B-cell differentiation and activation. Although a variety of cell surface receptors have been found to activate Tec tyrosine kinases, the specific signaling pathways and substrate molecules used by Tec kinases are still largely unknown. In this study a Tec family kinase, Bmx, was found to induce activation of the Stat signaling pathway. Bmx induced the tyrosine phosphorylation and DNA binding activity of all the Stat factors tested, including Stat1, Stat3, and Stat5, both in mammalian and insect cells. Bmx also induced transcriptional activation of Stat1- and Stat5-dependent reporter genes. Other cytoplasmic tyrosine kinases, Syk, Fyn, and c-Src, showed no or only weak ability to activate Stat proteins. Expression of Bmx in mammalian cells was found to induce activation of endogenous Stat proteins without activation of endogenous Jak kinases. We further analyzed the Bmx-mediated activation of Stat1, which was found to be regulated by protein kinase C delta (PKCdelta) isoform, but not beta 1, epsilon, or zeta isoforms, leading to inhibition of Stat1 tyrosine phosphorylation. In conclusion, these studies show that Bmx, a Tec family kinase, can function as an activator of the Stat signaling pathway and identify a role for PKCdelta in the regulation of Bmx signaling.

  1. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance.

    Science.gov (United States)

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2017-02-01

    Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.

  2. Developmental Defects in a Zebrafish Model for Muscular Dystrophies Associated with the Loss of Fukutin-Related Protein (FKRP)

    Science.gov (United States)

    Thornhill, Paul; Bassett, David; Lochmuller, Hanns; Bushby, Kate; Straub, Volker

    2008-01-01

    A number of muscular dystrophies are associated with the defective glycosylation of [alpha]-dystroglycan and many are now known to result from mutations in a number of genes encoding putative or known glycosyltransferases. These diseases include severe forms of congenital muscular dystrophy (CMD) such as Fukuyama type congenital muscular dystrophy…

  3. Developmental Defects in a Zebrafish Model for Muscular Dystrophies Associated with the Loss of Fukutin-Related Protein (FKRP)

    Science.gov (United States)

    Thornhill, Paul; Bassett, David; Lochmuller, Hanns; Bushby, Kate; Straub, Volker

    2008-01-01

    A number of muscular dystrophies are associated with the defective glycosylation of [alpha]-dystroglycan and many are now known to result from mutations in a number of genes encoding putative or known glycosyltransferases. These diseases include severe forms of congenital muscular dystrophy (CMD) such as Fukuyama type congenital muscular dystrophy…

  4. Characterization of serine 916 as an in vivo autophosphorylation site for protein kinase D/Protein kinase Cmu.

    Science.gov (United States)

    Matthews, S A; Rozengurt, E; Cantrell, D

    1999-09-10

    Activation of the serine kinase protein kinase D (PKD)/PKCmicro is controlled by the phosphorylation of two serine residues within its activation loop via a PKC-dependent signaling cascade. In this study we have identified the C-terminal serine 916 residue as an in vivo phosphorylation site within active PKD/PKCmu. An antibody that recognized PKD/PKCmu proteins specifically phosphorylated on the serine 916 residue was generated and used to show that phosphorylation of Ser-916 is induced by phorbol ester treatment of cells. Thus, the pS916 antibody is a useful tool to study the regulation of PKD/PKCmu activity in vivo. Antigen receptor ligation of T and B lymphocytes also induced phosphorylation of the serine 916 residue of PKD/PKCmu. Furthermore the regulatory FcgammaRIIB receptor, which mediates vital negative feedback signals to the B cell antigen receptor complex, inhibited the antigen receptor-induced activation and serine 916 phosphorylation of PKD/PKCmu. The degree of serine 916 phosphorylation during lymphocyte activation and inhibition exactly correlated with the activation status of PKD/PKCmu. Moreover, using different mutants of PKD/PKCmu, we show that serine 916 is not trans-phosphorylated by an upstream kinase but is rather an autophosphorylation event that occurs following activation of PKD/PKCmu.

  5. Functional diversity of human protein kinase splice variants marks significant expansion of human kinome

    Directory of Open Access Journals (Sweden)

    Anamika Krishanpal

    2009-12-01

    Full Text Available Abstract Background Protein kinases are involved in diverse spectrum of cellular processes. Availability of draft version of the human genomic data in the year 2001 enabled recognition of repertoire of protein kinases. However, over the years the human genomic data is being refined and the current release of human genomic data has helped us to recognize a larger repertoire of over 900 human protein kinases represented mainly by splice variants. Results Many of these identified protein kinases are alternatively spliced products. Interestingly, some of the human kinase splice variants appear to be significantly diverged in terms of their functional properties as represented by incorporation or absence of one or more domains. Many sets of protein kinase splice variants have substantially different domain organization and in a few sets of splice variants kinase domains belong to different subfamilies of kinases suggesting potential participation in different signal transduction pathways. Conclusions Addition or deletion of a domain between splice variants of multi-domain kinases appears to be a means of generating differences in the functional features of otherwise similar kinases. It is intriguing that marked sequence diversity within the catalytic regions of some of the splice variant kinases result in kinases belonging to different subfamilies. These human kinase splice variants with different functions might contribute to diversity of eukaryotic cellular signaling.

  6. Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2)

    DEFF Research Database (Denmark)

    Theilade, Juliane; Lerche Hansen, Jakob; Haunsø, Stig;

    2002-01-01

    G protein-coupled receptor kinase 2 (GRK2) phosphorylates G protein-coupled receptors resulting in uncoupling from G proteins. Receptors modulate GRK2 expression, however the mechanistic basis for this effect is largely unknown. Here we report a novel mechanism by which receptors use...

  7. Mitogen-activated protein kinase kinase 4 (MAP2K4 promotes human prostate cancer metastasis.

    Directory of Open Access Journals (Sweden)

    Janet M Pavese

    Full Text Available Prostate cancer (PCa is the second leading cause of cancer death in the US. Death from PCa primarily results from metastasis. Mitogen-activated protein kinase kinase 4 (MAP2K4 is overexpressed in invasive PCa lesions in humans, and can be inhibited by small molecule therapeutics that demonstrate favorable activity in phase II studies. However, MAP2K4's role in regulating metastatic behavior is controversial and unknown. To investigate, we engineered human PCa cell lines which overexpress either wild type or constitutive active MAP2K4. Orthotopic implantation into mice demonstrated MAP2K4 increases formation of distant metastasis. Constitutive active MAP2K4, though not wild type, increases tumor size and circulating tumor cells in the blood and bone marrow. Complementary in vitro studies establish stable MAP2K4 overexpression promotes cell invasion, but does not affect cell growth or migration. MAP2K4 overexpression increases the expression of heat shock protein 27 (HSP27 protein and protease production, with the largest effect upon matrix metalloproteinase 2 (MMP-2, both in vitro and in mouse tumor samples. Further, MAP2K4-mediated increases in cell invasion are dependent upon heat shock protein 27 (HSP27 and MMP-2, but not upon MAP2K4's immediate downstream targets, p38 MAPK or JNK. We demonstrate that MAP2K4 increases human PCa metastasis, and prolonged over expression induces long term changes in cell signaling pathways leading to independence from p38 MAPK and JNK. These findings provide a mechanistic explanation for human studies linking increases in HSP27 and MMP-2 to progression to metastatic disease. MAP2K4 is validated as an important therapeutic target for inhibiting human PCa metastasis.

  8. ProKinO: an ontology for integrative analysis of protein kinases in cancer.

    Directory of Open Access Journals (Sweden)

    Gurinder Gosal

    Full Text Available BACKGROUND: Protein kinases are a large and diverse family of enzymes that are genomically altered in many human cancers. Targeted cancer genome sequencing efforts have unveiled the mutational profiles of protein kinase genes from many different cancer types. While mutational data on protein kinases is currently catalogued in various databases, integration of mutation data with other forms of data on protein kinases such as sequence, structure, function and pathway is necessary to identify and characterize key cancer causing mutations. Integrative analysis of protein kinase data, however, is a challenge because of the disparate nature of protein kinase data sources and data formats. RESULTS: Here, we describe ProKinO, a protein kinase-specific ontology, which provides a controlled vocabulary of terms, their hierarchy, and relationships unifying sequence, structure, function, mutation and pathway information on protein kinases. The conceptual representation of such diverse forms of information in one place not only allows rapid discovery of significant information related to a specific protein kinase, but also enables large-scale integrative analysis of protein kinase data in ways not possible through other kinase-specific resources. We have performed several integrative analyses of ProKinO data and, as an example, found that a large number of somatic mutations (∼288 distinct mutations associated with the haematopoietic neoplasm cancer type map to only 8 kinases in the human kinome. This is in contrast to glioma, where the mutations are spread over 82 distinct kinases. We also provide examples of how ontology-based data analysis can be used to generate testable hypotheses regarding cancer mutations. CONCLUSION: We present an integrated framework for large-scale integrative analysis of protein kinase data. Navigation and analysis of ontology data can be performed using the ontology browser available at: http://vulcan.cs.uga.edu/prokino.

  9. MBNL142 and MBNL143 gene isoforms, overexpressed in DM1-patient muscle, encode for nuclear proteins interacting with Src family kinases.

    Science.gov (United States)

    Botta, A; Malena, A; Tibaldi, E; Rocchi, L; Loro, E; Pena, E; Cenci, L; Ambrosi, E; Bellocchi, M C; Pagano, M A; Novelli, G; Rossi, G; Monaco, H L; Gianazza, E; Pantic, B; Romeo, V; Marin, O; Brunati, A M; Vergani, L

    2013-08-15

    Myotonic dystrophy type-1 (DM1) is the most prevalent form of muscular dystrophy in adults. This disorder is an RNA-dominant disease, caused by expansion of a CTG repeat in the DMPK gene that leads to a misregulation in the alternative splicing of pre-mRNAs. The longer muscleblind-like-1 (MBNL1) transcripts containing exon 5 and the respective protein isoforms (MBNL142-43) were found to be overexpressed in DM1 muscle and localized exclusively in the nuclei. In vitro assays showed that MBNL142-43 bind the Src-homology 3 domain of Src family kinases (SFKs) via their proline-rich motifs, enhancing the SFK activity. Notably, this association was also confirmed in DM1 muscle and myotubes. The recovery, mediated by an siRNA target to Ex5-MBNL142-43, succeeded in reducing the nuclear localization of both Lyn and MBNL142-43 proteins and in decreasing the level of tyrosine phosphorylated proteins. Our results suggest an additional molecular mechanism in the DM1 pathogenesis, based on an altered phosphotyrosine signalling pathway.

  10. Ablation of EYS in zebrafish causes mislocalisation of outer segment proteins, F-actin disruption and cone-rod dystrophy

    Science.gov (United States)

    Lu, Zhaojing; Hu, Xuebin; Liu, Fei; Soares, Dinesh C.; Liu, Xiliang; Yu, Shanshan; Gao, Meng; Han, Shanshan; Qin, Yayun; Li, Chang; Jiang, Tao; Luo, Daji; Guo, An-Yuan; Tang, Zhaohui; Liu, Mugen

    2017-01-01

    Mutations in EYS are associated with autosomal recessive retinitis pigmentosa (arRP) and autosomal recessive cone-rod dystrophy (arCRD) however, the function of EYS and the molecular mechanisms of how these mutations cause retinal degeneration are still unclear. Because EYS is absent in mouse and rat, and the structure of the retina differs substantially between humans and Drosophila, we utilised zebrafish as a model organism to study the function of EYS in the retina. We constructed an EYS-knockout zebrafish-line by TALEN technology which showed visual impairment at an early age, while the histological and immunofluorescence assays indicated the presence of progressive retinal degeneration with a cone predominately affected pattern. These phenotypes recapitulate the clinical manifestations of arCRD patients. Furthermore, the EYS−/− zebrafish also showed mislocalisation of certain outer segment proteins (rhodopsin, opn1lw, opn1sw1, GNB3 and PRPH2), and disruption of actin filaments in photoreceptors. Protein mislocalisation may, therefore, disrupt the function of cones and rods in these zebrafish and cause photoreceptor death. Collectively, these results point to a novel role for EYS in maintaining the morphological structure of F-actin and in protein transport, loss of this function might be the trigger for the resultant cellular events that ultimately lead to photoreceptor death. PMID:28378834

  11. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin

    2015-10-09

    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  12. Porcine models of muscular dystrophy.

    Science.gov (United States)

    Selsby, Joshua T; Ross, Jason W; Nonneman, Dan; Hollinger, Katrin

    2015-01-01

    Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein dystrophin. This disease has been studied using a variety of animal models including fish, mice, rats, and dogs. While these models have contributed substantially to our mechanistic understanding of the disease and disease progression, limitations inherent to each model have slowed the clinical advancement of therapies, which necessitates the development of novel large-animal models. Several porcine dystrophin-deficient models have been identified, although disease severity may be so severe as to limit their potential contributions to the field. We have recently identified and completed the initial characterization of a natural porcine model of dystrophin insufficiency. Muscles from these animals display characteristic focal necrosis concomitant with decreased abundance and localization of dystrophin-glycoprotein complex components. These pigs recapitulate many of the cardinal features of muscular dystrophy, have elevated serum creatine kinase activity, and preliminarily appear to display altered locomotion. They also suffer from sudden death preceded by EKG abnormalities. Pig dystrophinopathy models could allow refinement of dosing strategies in human-sized animals in preparation for clinical trials. From an animal handling perspective, these pigs can generally be treated normally, with the understanding that acute stress can lead to sudden death. In summary, the ability to create genetically modified pig models and the serendipitous discovery of genetic disease in the swine industry has resulted in the emergence of new animal tools to facilitate the critical objective of improving the quality and length of life for boys afflicted with such a devastating disease.

  13. Phosphorylation of tau by death-associated protein kinase 1 antagonizes the kinase-induced cell apoptosis.

    Science.gov (United States)

    Duan, Dong-Xiao; Chai, Gao-Shang; Ni, Zhong-Fei; Hu, Yu; Luo, Yu; Cheng, Xiang-Shu; Chen, Ning-Ning; Wang, Jian-Zhi; Liu, Gong-Ping

    2013-01-01

    The intracellular accumulation of hyperphosphorylated tau plays a crucial role in neurodegeneration of Alzheimer's disease (AD), but the mechanism is not fully understood. From the observation that tau hyperphosphorylation renders cells more resistant to chemically-induced cell apoptosis, we have proposed that tau-involved apoptotic abortion may be the trigger of neurodegeneration. Here, we further studied whether this phenomenon is also applicable for the cell death induced by constitutively expressed factors, such as death-associated protein kinase 1 (DAPK1). We found that DAPK1 was upregulated and accumulated in the brain of human tau transgenic mice. Overexpression of DAPK1 in HEK293 and N2a cells decreased cell viability with activation of caspase-3, whereas simultaneous expression of tau antagonized DAPK1-induced apoptotic cell death. Expression of DAPK1 induced tau hyperphosphorylation at Thr231, Ser262, and Ser396 with no effects on protein phosphatase 2A, glycogen synthase kinase-3β, protein kinase A, calcium/calmodulin dependent protein kinase II, cell division cycle 2, or cyclin dependent protein kinase 5. The phosphorylation level of microtubule affinity-regulating kinase 2 (MARK2) was increased by expression of DAPK1, but simultaneous downregulation of MARK2 did not affect the DAPK1-induced tau hyperphosphorylation. DAPK1 was co-immunoprecipitated with tau proteins both in vivo and in vitro, and expression of the kinase domain-truncated DAPK1 did not induce tau hyperphosphorylation. These data suggest that tau hyperphosphorylation at Thr231, Ser262, and Ser396 by DAPK1 renders the cells more resistant to the kinase-induced apoptotic cell death, providing new insights into the tau-involved apoptotic abortion in the course of chronic neurodegeneration.

  14. N-Terminus of the Protein Kinase CLK1 Induces SR Protein Hyper-Phosphorylation

    Science.gov (United States)

    Aubol, Brandon E.; Plocinik, Ryan M.; Keshwani, Malik M.; McGlone, Maria L.; Hagopian, Jonathan C.; Ghosh, Gourisankar; Fu, Xiang-Dong; Adams, Joseph A.

    2016-01-01

    SR proteins are essential splicing factors that are regulated through multisite phosphorylation of their RS (arginine-serine-rich) domains by two major families of protein kinases. The SRPKs efficiently phosphorylate the arginine-serine dipeptides in the RS domain using a conserved docking groove in the kinase domain. In contrast, CLKs lack a docking groove and phosphorylate both arginine-serine and serine-proline dipeptides, modifications that generate a hyper-phosphorylated state important for unique SR protein-dependent splicing activities. All CLKs contain long, flexible N-terminal extensions (140-300 residues) that resemble the RS domains present in their substrate SR proteins. We showed that the N-terminus in CLK1 contacts both the kinase domain and the RS domain of the SR protein SRSF1. This interaction not only is essential for facilitating hyper-phosphorylation but also induces cooperative binding of SRSF1 to RNA. The N-terminus of CLK1 enhances the total phosphoryl contents of a panel of physiological substrates including SRSF1, SRSF2, SRSF5 and Tra2β1 by 2–3-fold. These findings suggest that CLK1-dependent hyper-phosphorylation is the result of a general mechanism in which the N-terminus acts as a bridge connecting the kinase domain and the RS domain of the SR protein. PMID:24869919

  15. Detailed search for protein kinase(s) involved in plasma membrane H+-ATPase activity regulation of yeast cells.

    Science.gov (United States)

    Pereira, Renata R; Castanheira, Diogo; Teixeira, Janaina A; Bouillet, Leoneide E M; Ribeiro, Erica M C; Trópia, Maria M J; Alvarez, Florencia; Correa, Lygia F M; Mota, Bruno E F; Conceição, Luis Eduardo F R; Castro, Ieso M; Brandão, Rogelio L

    2015-03-01

    This study displays a screening using yeast strains deficient in protein kinases known to exist in Saccharomyces cerevisiae. From 95 viable single mutants, 20 mutants appear to be affected in the glucose-induced extracellular acidification. The mutants that are unaffected in calcium signaling were tested for their sensitivity to hygromycin B. Furthermore, we verified whether the remaining mutants produced enzymes that are appropriately incorporated at plasma membrane. Finally, we measure the kinetic properties of the enzyme in purified plasma membranes from glucose-starved as well as glucose-fermenting cells. We confirmed the kinase Ptk2 involvement in H(+)-ATPase regulation (increase of affinity for ATP). However, the identification of the kinase(s) responsible for phosphorylation that leads to an increase in Vmax appears to be more complex. Complementary experiments were performed to check how those protein kinases could be related to the control of the plasma membrane H(+)-ATPase and/or the potential membrane. In summary, our results did not permit us to identify the protein kinase(s) involved in regulating the catalytic efficiency of the plasma membrane H(+)-ATPase. Therefore, our results indicate that the current regulatory model based on the phosphorylation of two different sites located in the C-terminus tail of the enzyme could be inappropriate.

  16. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry.

    Science.gov (United States)

    Xiao, Yongsheng; Wang, Yinsheng

    2016-09-01

    Nucleotide-binding proteins, such as protein kinases, ATPases and GTP-binding proteins, are among the most important families of proteins that are involved in a number of pivotal cellular processes. However, global study of the structure, function, and expression level of nucleotide-binding proteins as well as protein-nucleotide interactions can hardly be achieved with the use of conventional approaches owing to enormous diversity of the nucleotide-binding protein family. Recent advances in mass spectrometry (MS) instrumentation, coupled with a variety of nucleotide-binding protein enrichment methods, rendered MS-based proteomics a powerful tool for the comprehensive characterizations of the nucleotide-binding proteome, especially the kinome. Here, we review the recent developments in the use of mass spectrometry, together with general and widely used affinity enrichment approaches, for the proteome-wide capture, identification and quantification of nucleotide-binding proteins, including protein kinases, ATPases, GTPases, and other nucleotide-binding proteins. The working principles, advantages, and limitations of each enrichment platform in identifying nucleotide-binding proteins as well as profiling protein-nucleotide interactions are summarized. The perspectives in developing novel MS-based nucleotide-binding protein detection platform are also discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:601-619, 2016.

  17. Muscular Dystrophy

    Science.gov (United States)

    Muscular dystrophy (MD) is a group of more than 30 inherited diseases. They all cause muscle weakness and muscle loss. Some forms of MD appear in infancy ... types can vary in whom they affect, which muscles they affect, and what the symptoms are. All ...

  18. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    Energy Technology Data Exchange (ETDEWEB)

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi; Kameshita, Isamu; Sueyoshi, Noriyuki, E-mail: sueyoshi@ag.kagawa-u.ac.jp

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with a Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.

  19. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    Science.gov (United States)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  20. Phosphorylation of the Goodpasture antigen by type A protein kinases.

    Science.gov (United States)

    Revert, F; Penadés, J R; Plana, M; Bernal, D; Johansson, C; Itarte, E; Cervera, J; Wieslander, J; Quinones, S; Saus, J

    1995-06-02

    Collagen IV is the major component of basement membranes. The human alpha 3 chain of collagen IV contains an antigenic domain called the Goodpasture antigen that is the target for the circulating immunopathogenic antibodies present in patients with Goodpasture syndrome. Characteristically, the gene region encoding the Goodpasture antigen generates multiple alternative products that retain the antigen amino-terminal region with a five-residue motif (KRGDS). The serine therein appears to be the major in vitro cAMP-dependent protein kinase phosphorylation site in the isolated antigen and can be phosphorylated in vitro by two protein kinases of approximately 50 and 41 kDa associated with human kidney plasma membrane, suggesting that it can also be phosphorylated in vivo. Consistent with this, the Goodpasture antigen is isolated from human kidney in phosphorylated and non-phosphorylated forms and only the non-phosphorylated form is susceptible to phosphorylation in vitro. Since this motif is exclusive to the human alpha 3(IV) chain and includes the RGD cell adhesion motif, its phosphorylation might play a role in pathogenesis and influence cell attachment to basement membrane.

  1. Activation of GABAB receptors inhibits protein kinase B /Glycogen Synthase Kinase 3 signaling

    Directory of Open Access Journals (Sweden)

    Lu Frances Fangjia

    2012-11-01

    Full Text Available Abstract Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt/glycogen synthase kinase (GSK-3 signaling. Here we report that activation of GABAB receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABAB receptors enhances the phosphorylation of Akt (Thr-308 and enhances the phosphorylation of GSK-3α (Ser-21/β (Ser-9 in both HEK-293T cells expressing GABAB receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABAB receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABAB receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  2. Activation of GABA(B) receptors inhibits protein kinase B/glycogen synthase kinase 3 signaling.

    Science.gov (United States)

    Lu, Frances Fangjia; Su, Ping; Liu, Fang; Daskalakis, Zafiris J

    2012-11-28

    Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt)/glycogen synthase kinase (GSK)-3 signaling. Here we report that activation of GABA(B) receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABA(B) receptors enhances the phosphorylation of Akt (Thr-308) and enhances the phosphorylation of GSK-3α (Ser-21)/β (Ser-9) in both HEK-293T cells expressing GABA(B) receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABA(B) receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABA(B) receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  3. Glucose regulates diacylglycerol intracellular levels and protein kinase C activity by modulating diacylglycerol kinase subcellular localization.

    Science.gov (United States)

    Miele, Claudia; Paturzo, Flora; Teperino, Raffaele; Sakane, Fumio; Fiory, Francesca; Oriente, Francesco; Ungaro, Paola; Valentino, Rossella; Beguinot, Francesco; Formisano, Pietro

    2007-11-02

    Although chronic hyperglycemia reduces insulin sensitivity and leads to impaired glucose utilization, short term exposure to high glucose causes cellular responses positively regulating its own metabolism. We show that exposure of L6 myotubes overexpressing human insulin receptors to 25 mm glucose for 5 min decreased the intracellular levels of diacylglycerol (DAG). This was paralleled by transient activation of diacylglycerol kinase (DGK) and of insulin receptor signaling. Following 30-min exposure, however, both DAG levels and DGK activity returned close to basal levels. Moreover, the acute effect of glucose on DAG removal was inhibited by >85% by the DGK inhibitor R59949. DGK inhibition was also accompanied by increased protein kinase C-alpha (PKCalpha) activity, reduced glucose-induced insulin receptor activation, and GLUT4 translocation. Glucose exposure transiently redistributed DGK isoforms alpha and delta, from the prevalent cytosolic localization to the plasma membrane fraction. However, antisense silencing of DGKdelta, but not of DGKalpha expression, was sufficient to prevent the effect of high glucose on PKCalpha activity, insulin receptor signaling, and glucose uptake. Thus, the short term exposure of skeletal muscle cells to glucose causes a rapid induction of DGK, followed by a reduction of PKCalpha activity and transactivation of the insulin receptor signaling. The latter may mediate, at least in part, glucose induction of its own metabolism.

  4. Functional modulation of AMP-activated protein kinase by cereblon.

    Science.gov (United States)

    Lee, Kwang Min; Jo, Sooyeon; Kim, Hyunyoung; Lee, Jongwon; Park, Chul-Seung

    2011-03-01

    Mutations in cereblon (CRBN), a substrate binding component of the E3 ubiquitin ligase complex, cause a form of mental retardation in humans. However, the cellular proteins that interact with CRBN remain largely unknown. Here, we report that CRBN directly interacts with the α1 subunit of AMP-activated protein kinase (AMPK α1) and inhibits the activation of AMPK activation. The ectopic expression of CRBN reduces phosphorylation of AMPK α1 and, thus, inhibits the enzyme in a nutrient-independent manner. Moreover, AMPK α1 can be potently activated by suppressing endogenous CRBN using CRBN-specific small hairpin RNAs. Thus, CRBN may act as a negative modulator of the AMPK signaling pathway in vivo.

  5. Presenilin dependence of phospholipase C and protein kinase C signaling

    DEFF Research Database (Denmark)

    Dehvari, Nodi; Cedazo-Minguez, Angel; Isacsson, Ola

    2007-01-01

    -stimulated phospholipase C (PLC) activity which was gamma-secretase dependent. To further evaluate the dependence of PLC on PSs we measured PLC activity and the activation of variant protein kinase C (PKC) isoforms in mouse embryonic fibroblasts (MEFs) lacking either PS1, PS2, or both. PLC activity and PKCalpha...... and PKCgamma activations were significantly lower in PS1 and PS2 double knockout MEFs after PLC stimulation. Protein levels of PKCalpha and PKCgamma were lower in PS1 and PS2 double knockout MEFs. In contrast, PKCdelta levels were significantly elevated in PS1 and PS2 double knockout as well as in PS1 knockout......). These results show that PLC and PKC activations are modulated by PS and also that PSs differentially regulate the expression of PKC isoforms by both APP/AICD-dependent and independent mechanisms....

  6. Differences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2.

    Science.gov (United States)

    Vihola, Anna; Bachinski, Linda L; Sirito, Mario; Olufemi, Shodimu-Emmanuel; Hajibashi, Shohrae; Baggerly, Keith A; Raheem, Olayinka; Haapasalo, Hannu; Suominen, Tiina; Holmlund-Hampf, Jeanette; Paetau, Anders; Cardani, Rosanna; Meola, Giovanni; Kalimo, Hannu; Edström, Lars; Krahe, Ralf; Udd, Bjarne

    2010-04-01

    Aberrant transcription and mRNA processing of multiple genes due to RNA-mediated toxic gain-of-function has been suggested to cause the complex phenotype in myotonic dystrophies type 1 and 2 (DM1 and DM2). However, the molecular basis of muscle weakness and wasting and the different pattern of muscle involvement in DM1 and DM2 are not well understood. We have analyzed the mRNA expression of genes encoding muscle-specific proteins and transcription factors by microarray profiling and studied selected genes for abnormal splicing. A subset of the abnormally regulated genes was further analyzed at the protein level. TNNT3 and LDB3 showed abnormal splicing with significant differences in proportions between DM2 and DM1. The differential abnormal splicing patterns for TNNT3 and LDB3 appeared more pronounced in DM2 relative to DM1 and are among the first molecular differences reported between the two diseases. In addition to these specific differences, the majority of the analyzed genes showed an overall increased expression at the mRNA level. In particular, there was a more global abnormality of all different myosin isoforms in both DM1 and DM2 with increased transcript levels and a differential pattern of protein expression. Atrophic fibers in DM2 patients expressed only the fast myosin isoform, while in DM1 patients they co-expressed fast and slow isoforms. However, there was no increase of total myosin protein levels, suggesting that aberrant protein translation and/or turnover may also be involved.

  7. Pin1: Intimate involvement with the regulatory protein kinase networks in the global phosphorylation landscape.

    Science.gov (United States)

    Litchfield, David W; Shilton, Brian H; Brandl, Christopher J; Gyenis, Laszlo

    2015-10-01

    Protein phosphorylation is a universal regulatory mechanism that involves an extensive network of protein kinases. The discovery of the phosphorylation-dependent peptidyl-prolyl isomerase Pin1 added an additional layer of complexity to these regulatory networks. We have evaluated interactions between Pin1 and the regulatory kinome and proline-dependent phosphoproteome taking into consideration findings from targeted studies as well as data that has emerged from systematic phosphoproteomic workflows and from curated protein interaction databases. The relationship between Pin1 and the regulatory protein kinase networks is not restricted simply to the recognition of proteins that are substrates for proline-directed kinases. In this respect, Pin1 itself is phosphorylated in cells by protein kinases that modulate its functional properties. Furthermore, the phosphorylation-dependent targets of Pin1 include a number of protein kinases as well as other enzymes such as phosphatases and regulatory subunits of kinases that modulate the actions of protein kinases. As a result of its interactions with numerous protein kinases and their substrates, as well as itself being a target for phosphorylation, Pin1 has an intricate relationship with the regulatory protein kinase and phosphoproteomic networks that orchestrate complex cellular processes and respond to environmental cues. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Protein kinase D1 deficiency promotes differentiation in epidermal keratinocytes

    Science.gov (United States)

    Choudhary, Vivek; Olala, Lawrence O.; Kaddour-Djebbar, Ismail; Helwa, Inas; Bollag, Wendy B.

    2014-01-01

    Background Protein kinase D (PKD or PKD1) is a serine/threonine protein kinase that has been shown to play a role in a variety of cellular processes; however, the function of PKD1 in the skin has not been fully investigated. The balance between proliferation and differentiation processes in the predominant cells of the epidermis, the keratinocytes, is essential for normal skin function. Objective To investigate the effect of PKD1 deficiency on proliferation and differentiation of epidermal keratinocytes. Methods We utilized a floxed PKD1 mouse model such that infecting epidermal keratinocytes derived from these mice with an adenovirus expressing Cre-recombinase allowed us to determine the effect of PKD1 gene loss in vitro. Proliferation and differentiation were monitored using qRT-PCR, Western blot, transglutaminase activity assays, [3H]thymidine incorporation into DNA and cell cycle analysis. Results A significant decrease in PKD1 mRNA and protein levels was achieved in adenoviral Cre-recombinase-infected cells. Deficiency of PKD1 resulted in significant increases in the mRNA and protein expression of various differentiation markers such as loricrin, involucrin, and keratin 10 either basally and/or upon stimulation of differentiation. PKD1-deficient keratinocytes also showed an increase in transglutaminase expression and activity, indicating an anti-differentiative role of PKD1. Furthermore, the PKD1-deficient keratinocytes exhibited decreased proliferation. However, PKD1 loss had no effect on stem cell marker expression. Conclusions Cre-recombinase-mediated knockdown represents an additional approach demonstrating that PKD1 is an anti-differentiative, pro-proliferative signal in mouse keratinocytes. PMID:25450094

  9. Regulation of the activity of protein kinases by endogenous heat stable protein inhibitors.

    Science.gov (United States)

    Szmigielski, A

    1985-01-01

    Protein kinase activities are regulated by endogenous thermostable protein inhibitors. Type I inhibitor is a protein of MW 22,000-24,000 which inhibits specifically cyclic AMP-(cAMP) dependent protein kinase (APK) as a competitive inhibitor of catalytic subunits of the enzyme. Type I inhibitor activity changes inversely according to the activation of adenylate cyclase and the changes in cAMP content in tissues. It seems that type I inhibitor serves as a factor preventing spontaneous cAMP-dependent phosphorylation in unstimulated cell. The other thermostable protein which inhibits APK activity has been found in Sertoli cell-enriched testis (testis inhibitor). Physiological role of the testis inhibitor is unknown. Type II inhibitor is a protein of MW 15,000 which blocks phosphorylation mediated by cAMP and cyclic GMP (cGMP) dependent (APK and GPK) and cyclic nucleotide independent protein kinases as a competitive inhibitor of substrate proteins. Activity of this inhibitor specifically changes in reciprocal manner to the changes in cGMP content. It seems that type II inhibitor serves as a factor preventing the phosphorylation catalyzed by GPK when cGMP content is low. Stimulation of guanylate cyclase and activation of GPK is followed by a decrease of type II inhibitor activity. This change in relationship between activities of GPK and type II inhibitor allows for effective phosphorylation catalyzed by this enzyme when cGMP content is increased.

  10. Protein kinase C-beta II (PKC-betaII) expression in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise; Lindebjerg, Jan; Lahn, Michael;

    2009-01-01

    PURPOSE: Current development of targeted agents for the treatment of colorectal cancer include the clinical evaluation of kinase inhibitors, such as enzastaurin, a serine/threonine kinase inhibitor designed to suppress signaling through Protein Kinase C (PKC) and AKT pathways. Little is known abo...

  11. Mapping of protein-protein interactions within the DNA-dependent protein kinase complex.

    Science.gov (United States)

    Gell, D; Jackson, S P

    1999-01-01

    In mammalian cells, the Ku and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) proteins are required for the correct and efficient repair of DNA double-strand breaks. Ku comprises two tightly-associated subunits of approximately 69 and approximately 83 kDa, which are termed Ku70 and Ku80 (or Ku86), respectively. Previously, a number of regions of both Ku subunits have been demonstrated to be involved in their interaction, but the molecular mechanism of this interaction remains unknown. We have identified a region in Ku70 (amino acid residues 449-578) and a region in Ku80 (residues 439-592) that participate in Ku subunit interaction. Sequence analysis reveals that these interaction regions share sequence homology and suggests that the Ku subunits are structurally related. On binding to a DNA double-strand break, Ku is able to interact with DNA-PKcs, but how this interaction is mediated has not been defined. We show that the extreme C-terminus of Ku80, specifically the final 12 amino acid residues, mediates a highly specific interaction with DNA-PKcs. Strikingly, these residues appear to be conserved only in Ku80 sequences from vertebrate organisms. These data suggest that Ku has evolved to become part of the DNA-PK holo-enzyme by acquisition of a protein-protein interaction motif at the C-terminus of Ku80. PMID:10446239

  12. Interaction between protein kinase C and protein kinase A can modulate transmitter release at the rat neuromuscular synapse.

    Science.gov (United States)

    Santafé, M M; Garcia, N; Lanuza, M A; Tomàs, M; Tomàs, J

    2009-02-15

    We used intracellular recording to investigate the functional interaction between protein kinase C (PKC) and protein kinase A (PKA) signal transduction cascades in the control of transmitter release in the neuromuscular synapses from adult rats. Our results indicate that: 1) PKA and PKC are independently involved in asynchronous release. 2) Evoked acetylcholine (ACh) release is enhanced with the PKA agonist Sp-8-BrcAMP and the PKC agonist phorbol ester (PMA). 3) PKA has a constitutive role in promoting a component of normal evoked transmitter release because, when the kinase is inhibited with H-89, the release diminishes. However, the PKC inhibitor calphostin C (CaC) does not affect ACh release. 4) PKA regulates neurotransmission without PKC involvement because, after PMA or CaC modulation of the PKC activity, coupling to the ACh release of PKA can normally be stimulated with Sp-8-BrcAMP or inhibited with H-89. 5) After PKA inhibition with H-89, PKC stimulation with PMA (or inhibition with CaC) does not lead to any change in evoked ACh release. However, in PKA-stimulated preparations with Sp-8-BrcAMP, PKC becomes tonically active, thus potentiating a component of release that can now be blocked with CaC. In normal conditions, therefore, PKA was able to modulate ACh release independently of PKC activity, whereas PKA stimulation caused the PKC coupling to evoked release. In contrast, PKA inhibition prevent PKC stimulation (with the phorbol ester) and coupling to ACh output. There was therefore some dependence of PKC on PKA activity in the fine control of the neuromuscular synaptic functionalism and ACh release.

  13. Effects of selective inhibition of protein kinase C, cyclic AMP-dependent protein kinase, and Ca(2+)-calmodulin-dependent protein kinase on neurite development in cultured rat hippocampal neurons.

    Science.gov (United States)

    Cabell, L; Audesirk, G

    1993-06-01

    A variety of experimental evidence suggests that calmodulin and protein kinases, especially protein kinase C, may participate in regulating neurite development in cultured neurons, particularly neurite initiation. However, the results are somewhat contradictory. Further, the roles of calmodulin and protein kinases on many aspects of neurite development, such as branching or elongation of axons vs dendrites, have not been extensively studied. Cultured embryonic rat hippocampal pyramidal neurons develop readily identifiable axons and dendrites. We used this culture system and the new generation of highly specific protein kinase inhibitors to investigate the roles of protein kinases and calmodulin in neurite development. Neurons were cultured for 2 days in the continuous presence of calphostin C (a specific inhibitor of protein kinase C), KT5720 (inhibitor of cyclic AMP-dependent protein kinase), KN62 (inhibitor of Ca(2+)-calmodulin-dependent protein kinase II), or calmidazolium (inhibitor of calmodulin), each at concentrations from approximately 1 to 10 times the concentration reported in the literature to inhibit each kinase by 50%. The effects of phorbol 12-myristate 13-acetate (an activator of protein kinase C) and 4 alpha-phorbol 12,13-didecanoate (an inactive phorbol ester) were also tested. At concentrations that had no effect on neuronal viability, calphostin C reduced neurite initiation and axon branching without significantly affecting the number of dendrites per neuron, dendrite branching, dendrite length, or axon length. Phorbol 12-myristate 13-acetate increased axon branching and the number of dendrites per cell, compared to the inactive 4 alpha-phorbol 12,13-didecanoate. KT5720 inhibited only axon branching. KN62 reduced axon length, the number of dendrites per neuron, and both axon and dendrite branching. At low concentrations, calmidazolium had no effect on any aspect of neurite development, but at high concentrations, calmidazolium inhibited every

  14. Rho kinase acts as a downstream molecule to participate in protein kinase Cε regulation of vascular reactivity after hemorrhagic shock in rats.

    Science.gov (United States)

    Li, Tao; Zhu, Yu; Zang, Jia-tao; Peng, Xiao-yong; Lan, Dan; Yang, Guang-ming; Xu, Jing; Liu, Liang-ming

    2014-09-01

    Our previous study demonstrated that Rho kinase and protein kinase C (PKC) played important parts in the regulation of vascular reactivity after shock. Using superior mesenteric arteries (SMAs) from hemorrhagic shock rats and hypoxia-treated vascular smooth muscle cells (VSMCs), relationship of PKCε regulation of vascular reactivity to Rho kinase, as well as the signal transduction after shock, was investigated. The results showed that inhibition of Rho kinase with the Rho kinase-specific inhibitor Y-27632 antagonized the PKCε-specific agonist carbachol and highly expressed PKCε-induced increase of vascular reactivity in SMAs and VSMCs, whereas inhibition of PKCε with its specific inhibitory peptide did not antagonize the Rho kinase agonist (U-46619)-induced increase of vascular reactivity in SMAs and VSMCs. Activation of PKCε or highly expressed PKCε upregulated the activity of Rho kinase and the phosphorylation of PKC-dependent phosphatase inhibitor 17 (CPI-17), zipper interacting protein kinase (ZIPK), and integrin-linked kinase (ILK), whereas activation of Rho kinase increased only CPI-17 phosphorylation. The specific neutralization antibodies of ZIPK and ILK antagonized PKCε-induced increases in the activity of Rho kinase, but CPI-17 neutralization antibody did not antagonize this effect. These results suggested that Rho kinase takes part in the regulation of PKCε on vascular reactivity after shock. Rho kinase is downstream of PKCε. Protein kinase Cε activates Rho kinase via ZIPK and ILK; CPI-17 is downstream of Rho kinase.

  15. Contraction-associated translocation of protein kinase C in rat skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Cleland, P J; Rattigan, S

    1987-01-01

    Electrical stimulation of the sciatic nerve of the anaesthetized rat in vivo led to a time-dependent translocation of protein kinase C from the muscle cytosol to the particulate fraction. Maximum activity of protein kinase C in the particulate fraction occurred after 2 min of intermittent short t...... tetanic contractions of the gastrocnemius-plantaris-soleus muscle group and coincided with the loss of activity from the cytosol. Translocation of protein kinase C may imply a role for this kinase in contraction-initiated changes in muscle metabolism.......Electrical stimulation of the sciatic nerve of the anaesthetized rat in vivo led to a time-dependent translocation of protein kinase C from the muscle cytosol to the particulate fraction. Maximum activity of protein kinase C in the particulate fraction occurred after 2 min of intermittent short...

  16. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    Energy Technology Data Exchange (ETDEWEB)

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen (Sanofi); (Michigan); (Texas)

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  17. Mammalian mitogen-activated protein kinase pathways are regulated through formation of specific kinase-activator complexes.

    Science.gov (United States)

    Zanke, B W; Rubie, E A; Winnett, E; Chan, J; Randall, S; Parsons, M; Boudreau, K; McInnis, M; Yan, M; Templeton, D J; Woodgett, J R

    1996-11-22

    Mammalian cells contain at least three signaling systems which are structurally related to the mitogen-activated protein kinase (MAPK) pathway. Growth factors acting through Ras primarily stimulate the Raf/MEK/MAPK cascade of protein kinases. In contrast, many stress-related signals such as heat shock, inflammatory cytokines, and hyperosmolarity induce the MEKK/SEK(MKK4)/SAPK(JNK) and/or the MKK3 or MKK6/p38(hog) pathways. Physiological agonists of these pathway types are either qualitatively or quantitatively distinct, suggesting few common proximal signaling elements, although past studies performed in vitro, or in cells using transient over-expression, reveal interaction between the components of all three pathways. These studies suggest a high degree of cross-talk apparently not seen in vivo. We have examined the possible molecular basis of the differing agonist profiles of these three MAPK pathways. We report preferential association between MAP kinases and their activators in eukaryotic cells. Furthermore, using the yeast 2-hybrid system, we show that association between these components can occur independent of additional eukaryotic proteins. We show that SAPK(JNK) or p38(hog) activation is specifically impaired by co-expression of cognate dominant negative MAP kinase kinase mutants, demonstrating functional specificity at this level. Further divergence and insulation of the stress pathways occurs proximal to the MAPK kinases since activation of the MAPK kinase kinase MEKK results in SAPK(JNK) activation but does not cause p38(hog) phosphorylation. Therefore, in intact cells, the three MAPK pathways may be independently regulated and their components show specificity in their interaction with cognate cascade members. The degree of intermolecular specificity suggests that mammalian MAPK signaling pathways may remain distinct without the need for specific scaffolding proteins to sequester components of individual pathways.

  18. Growth inhibition of human gastric adenocarcinoma cells in vitro by STO-609 is independent of calcium/calmodulin-dependent protein kinase kinase-beta and adenosine monophosphate-activated protein kinase.

    Science.gov (United States)

    Ma, Zhiming; Wen, Dacheng; Wang, Xudong; Yang, Longfei; Liu, Tianzhou; Liu, Jingjing; Zhu, Jiaming; Fang, Xuedong

    2016-01-01

    Adenosine monophosphate (AMP)-activated protein kinase is a recently identified downstream target of calcium/calmodulin-dependent protein kinase kinase-beta, and is involved in the regulation of cell metabolism and cell proliferation. STO-609 is a selective antagonist of calcium/calmodulin-dependent protein kinase kinase-beta. In the present study, we found that STO-609 suppressed AMP-activated protein kinase activity, reduced expression of Akt and ERK, and increased cell apoptosis in SNU-1 and N87 cells but not normal gastric epithelial cells (CCL-241). Interestingly, we found such effects of STO-609 on gastric cancer cells were not affected after the knock-down of CaMKK-β and AMPK. In conclusion, STO-609 is an effective cytotoxic agent for gastric adenocarcinoma in vivo.

  19. Using bacteria to determine protein kinase specificity and predict target substrates.

    Directory of Open Access Journals (Sweden)

    Michael F Chou

    Full Text Available The identification of protein kinase targets remains a significant bottleneck for our understanding of signal transduction in normal and diseased cellular states. Kinases recognize their substrates in part through sequence motifs on substrate proteins, which, to date, have most effectively been elucidated using combinatorial peptide library approaches. Here, we present and demonstrate the ProPeL method for easy and accurate discovery of kinase specificity motifs through the use of native bacterial proteomes that serve as in vivo libraries for thousands of simultaneous phosphorylation reactions. Using recombinant kinases expressed in E. coli followed by mass spectrometry, the approach accurately recapitulated the well-established motif preferences of human basophilic (Protein Kinase A and acidophilic (Casein Kinase II kinases. These motifs, derived for PKA and CK II using only bacterial sequence data, were then further validated by utilizing them in conjunction with the scan-x software program to computationally predict known human phosphorylation sites with high confidence.

  20. The fatty liver dystrophy (fld) mutation: Developmentally related alterations in hepatic triglyceride metabolism and protein expression

    Energy Technology Data Exchange (ETDEWEB)

    Reue, K.; Rehnmark, S.; Cohen, R.D.; Leete, T.H.; Doolittle, M.H. [West Los Angeles VA Medical Center, CA (United States). Lipid Research Lab.]|[Univ. of California, Los Angeles, CA (United States). Dept. of Medicine; Giometti, C.S.; Mishler, K. [Argonne National Lab., IL (United States); Slavin, B.G. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-07-01

    Fatty liver dystrophy (fld) is an autosomal recessive mutation in mice characterized by hypertriglyceridemia and development of a fatty liver in the early neonatal period. Also associated with the fld phenotype is a tissue-specific deficiency in the expression of lipoprotein lipase and hepatic lipase, as well as elevations in hepatic apolipoprotein A-IV and apolipoprotein C-II mRNA levels. Although these lipid abnormalities resolve at the age of weaning, adult mutant mice exhibit a peripheral neuropathy associated with abnormal myelin formation. The fatty liver in fld/fld neonates is characterized by the accumulation of large triglyceride droplets within the parenchymal cells, and these droplets persist within isolated hepatocytes maintained in culture for several days. To identify the metabolic defect that leads to lipid accumulation, the authors investigated several aspects of cellular triglyceride metabolism. The mutant mice exhibited normal activity of acid triacylglycerol lipase, an enzyme thought to be responsible for hydrolysis of dietary triglycerides in the liver. Metabolic labeling studies performed with oleic acid revealed that free fatty acids accumulate in the liver of 3 day old fld/fld mice, but not in adults. This accumulation in liver was mirrored by elevated free fatty acid levels in plasma of fld/fld neonates, with levels highest in very young mice and returning to normal by the age of one month. Quantitation of fatty acid oxidation in cells isolated from fld/fld neonates revealed that oxidation rate is reduced 60% in hepatocytes and 40% in fibroblasts; hepatocytes from adult fld/fld mice exhibited an oxidation rate similar to those from wild-type mice.

  1. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    Energy Technology Data Exchange (ETDEWEB)

    Muchir, Antoine, E-mail: a.muchir@institut-myologie.org [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Wu, Wei [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Sera, Fusako; Homma, Shunichi [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Worman, Howard J., E-mail: hjw14@columbia.edu [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States)

    2014-10-03

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  2. Expression pattern of protein kinase C δ during mouse embryogenesis

    Directory of Open Access Journals (Sweden)

    Carracedo Sergio

    2013-01-01

    Full Text Available Abstract Background The members of the protein kinase C (PKC family consist of serine/threonine kinases classified according to their regulatory domain. Those that belong to the novel PKC subfamily, such as PKCδ, are dependent on diacylglycerol but not Calcium when considering their catalytic activity. Although several studies have shown the importance of PKCδ in different cellular events in health and disease, the overall in vivo distribution of this PKC isoform during development is still lacking. Through Lac Z and antibody staining procedures, we show here the in vivo expression of PKCδ during mouse embryogenesis. Results Ganglia were the domains with most prominent expression of PKCδ in most of the stages analysed, although PKCδ could also be detected in heart and somites at earlier stages, and cartilage primordium and skin among other sites in older embryos. Conclusions The strong expression of PKCδ in ganglia during murine development shown in this study suggests a significant role of this isoform as well as redundancy with other PKCs within the nervous system, since PKCδ deficient mice develop normally.

  3. Regulation of Greatwall kinase by protein stabilization and nuclear localization

    Science.gov (United States)

    Yamamoto, Tomomi M; Wang, Ling; Fisher, Laura A; Eckerdt, Frank D; Peng, Aimin

    2014-01-01

    Greatwall (Gwl) functions as an essential mitotic kinase by antagonizing protein phosphatase 2A. In this study we identified Hsp90, Cdc37 and members of the importin α and β families as the major binding partners of Gwl. Both Hsp90/Cdc37 chaperone and importin complexes associated with the N-terminal kinase domain of Gwl, whereas an intact glycine-rich loop at the N-terminus of Gwl was essential for binding of Hsp90/Cdc37 but not importins. We found that Hsp90 inhibition led to destabilization of Gwl, a mechanism that may partially contribute to the emerging role of Hsp90 in cell cycle progression and the anti-proliferative potential of Hsp90 inhibition. Moreover, in agreement with its importin association, Gwl exhibited nuclear localization in interphase Xenopus S3 cells, and dynamic nucleocytoplasmic distribution during mitosis. We identified KR456/457 as the locus of importin binding and the functional NLS of Gwl. Mutation of this site resulted in exclusion of Gwl from the nucleus. Finally, we showed that the Gwl nuclear localization is indispensable for the biochemical function of Gwl in promoting mitotic entry. PMID:25483093

  4. Facioscapulohumeral muscular dystrophy region gene-1 (FRG-1) is an actin-bundling protein associated with muscle-attachment sites.

    Science.gov (United States)

    Liu, Qian; Jones, Takako Iida; Tang, Vivian W; Brieher, William M; Jones, Peter L

    2010-04-01

    In vertebrates, overexpression of facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) recapitulates the pathophysiology exhibited by FSHD patients, although the role of FRG1 in FSHD remains controversial and no precise function for FRG1 has been described in any organism. To gain insight into the function and potential role of FRG1 in FSHD, we analyzed the highly conserved Caenorhabditis elegans ortholog, frg-1. C. elegans body-wall muscles contain two distinct subcellular pools of FRG-1: nuclear FRG-1, concentrated in the nucleoli; and cytoplasmic FRG-1, associated with the Z-disk and costamere-like structures known as dense bodies. Functionally, we demonstrate that FRG-1 is an F-actin-bundling protein, consistent with its localization to dense bodies; this activity is conserved in human FRG1. This is particularly intriguing because it places FRG-1 along side the list of dense-body components whose vertebrate orthologs are involved in the myriad myopathies associated with disrupted costameres and Z-disks. Interestingly, overexpressed FRG-1 preferentially accumulates in the nucleus and, when overexpressed specifically from the frg-1 promoter, disrupts the adult ventral muscle structure and organization. Together, these data further support a role for FRG1 overexpression in FSHD pathophysiology and reveal the previously unsuspected direct involvement of FRG-1 in muscle structure and integrity.

  5. Flies deficient in Muscleblind protein model features of myotonic dystrophy with altered splice forms of Z-band associated transcripts.

    Science.gov (United States)

    Machuca-Tzili, Laura; Thorpe, Helena; Robinson, Thelma E; Sewry, Caroline; Brook, J David

    2006-11-01

    Myotonic dystrophy (DM) is a dominantly inherited neuromuscular disorder characterised by muscle weakness and wasting. There are two forms of DM; both of which are caused by the expansion of repeated DNA sequences. DM1 is associated with a CTG repeat located in the 3' untranslated region of a gene, DMPK and DM2 with a tetranucleotide repeat expansion, CCTG, located in the first intron of a different gene, ZNF9. Recent data suggest a dominant RNA gain-of-function mechanism underlying DM, as transcripts containing either CUG or CCUG repeat expansions accumulate as foci in the nuclei of DM1 and DM2 cells respectively, where they exert a toxic effect, sequestering specific RNA binding proteins such as Muscleblind, which leads to splicing defects and the disruption of normal cellular functions. Z-band disruption is a well-known histological feature of DM1 muscle, which has also been reported in Muscleblind deficient flies. In order to determine whether there is a common molecular basis for this abnormality we have examined the alternative splicing pattern of transcripts that encode proteins associated with the Z-band in both organisms. Our results demonstrate that the missplicing of ZASP/LDB3 leads to the expression of an isoform in DM1 patient muscle, which is not present in normal controls, nor in other myopathies. Furthermore the Drosophila homologue, CG30084, is also misspliced, in Muscleblind deficient flies. Another Z-band transcript, alpha actinin, is misspliced in mbl mutant flies, but not in DM1 patient samples. These results point to similarities but subtle differences in the molecular breakdown of Z-band structures in flies and DM patients and emphasise the relevance of Muscleblind proteins in DM pathophysiology.

  6. Protein and DNA analysis for the prenatal diagnosis of alpha2-laminin-deficient congenital muscular dystrophy.

    Science.gov (United States)

    Yamamoto, Lydia U; Gollop, Thomas R; Naccache, Nadyr F; Pavanello, Rita C M; Zanoteli, Edmar; Zatz, Mayana; Vainzof, Mariz

    2004-09-01

    Congenital muscular dystrophies (CMD) are characterized by neonatal hypotonia and/or artrogriposis associated with a dystrophic muscle biopsy. The CMD1A form is caused by a deficiency of the alpha2 chain of laminin 2 (LAMA2 gene at 6q2), a protein present in the basal lamina of muscle fibers, in Schwann cells, epidermis, and in fetal trophoblastic tissue. This allows its study for prenatal diagnosis in the chorionic villous (CV), which was performed in a family with one deceased affected CMD1A child. Immunohistochemical analysis of the CV using antibodies against the C- and N-terminal domains of the alpha2-laminin protein showed a normal positive labeling for both antibodies in the "at-risk" CV, which did not differ from the normal control CV. The integrity of the CV membrane was confirmed through the analysis with antibodies against alpha1, beta1, and gamma1 laminins. DNA study using markers flanking the 6q2 region showed that the affected patient and the "at-risk" fetus did not share the same haplotype. Therefore, the fetus was considered normal through both methodologies, which was confirmed after the birth of a clinically normal male baby. As the LAMA2 gene is very large and the spectrum of mutations causing disease is wide, the analysis of the protein in muscle biopsy has been largely used for the diagnosis. Besides, the possibility to detect it in the chorionic villous, mainly using positive markers, also offers a powerful tool for prenatal diagnosis.

  7. Telencephalin protects PAJU cells from amyloid beta protein-induced apoptosis by activating the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway

    Institute of Scientific and Technical Information of China (English)

    Heping Yang; Dapeng Wu; Xiaojie Zhang; Xiang Wang; Yi Peng; Zhiping Hu

    2012-01-01

    Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU.In this study,we examined the role of the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway in this process.Western blot analysis demonstrated that telencephalin,phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B were not expressed in PAJU cells transfected with empty plasmid,while they were expressed in PAJU cells transfected with a telencephalin expression plasmid.After treatment with 1.0 nM amyloid beta protein 42,expression of telencephalin and phosphorylated phosphatidylinositol-3-kinase/protein kinase B in the transfected cells gradually diminished,while levels of phosphorylated ezrin/radixin/moesin increased.In addition,the high levels of telencephalin,phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B expression in PAJU cells transfected with a telencephalin expression plasmid could be suppressed by the phosphatidylinositol-3-kinase inhibitor LY294002.These findings indicate that telencephalin activates the ezrin/radixin/moesin family/phosphatidylinositol-3-kinase/protein kinase B pathway and protects PAJU cells from amyloid beta protein-induced apoptosis.

  8. A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy.

    Science.gov (United States)

    Hicks, Debbie; Sarkozy, A; Muelas, N; Koehler, K; Huebner, A; Hudson, G; Chinnery, P F; Barresi, R; Eagle, M; Polvikoski, T; Bailey, G; Miller, J; Radunovic, A; Hughes, P J; Roberts, R; Krause, S; Walter, M C; Laval, S H; Straub, V; Lochmüller, H; Bushby, K

    2011-01-01

    The limb-girdle muscular dystrophies are a group of disorders with wide genetic and clinical heterogeneity. Recently, mutations in the ANO5 gene, which encodes a putative calcium-activated chloride channel belonging to the Anoctamin family of proteins, were identified in five families with one of two previously identified disorders, limb-girdle muscular dystrophy 2L and non-dysferlin Miyoshi muscular dystrophy. We screened a candidate group of 64 patients from 59 British and German kindreds and found the truncating mutation, c.191dupA in exon 5 of ANO5 in 20 patients, homozygously in 15 and in compound heterozygosity with other ANO5 variants in the rest. An intragenic single nucleotide polymorphism and an extragenic microsatellite marker are in linkage disequilibrium with the mutation, suggesting a founder effect in the Northern European population. We have further defined the clinical phenotype of ANO5-associated muscular dystrophy. Patients show adult onset proximal lower limb weakness with highly raised serum creatine kinase values (average 4500 IU/l) and frequent muscle atrophy and asymmetry of muscle involvement. Onset varies from the early 20 s to 50 s and the weakness is generally slowly progressive, with most patients remaining ambulant for several decades. Distal presentation is much less common but a milder degree of distal lower limb weakness is often observed. Upper limb strength is only mildly affected and cardiac and respiratory function is normal. Females appear less frequently affected. In the North of England population we have identified eight patients with ANO5 mutations, suggesting a minimum prevalence of 0.27/100,000, twice as common as dysferlinopathy. We suggest that mutations in ANO5 represent a relatively common cause of adult onset muscular dystrophy with high serum creatine kinase and that mutation screening, particularly of the common mutation c.191dupA, should be an early step in the diagnostic algorithm of adult limb-girdle muscular

  9. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  10. Comparison of Peptide Array Substrate Phosphorylation of c-Raf and Mitogen Activated Protein Kinase Kinase Kinase 8

    NARCIS (Netherlands)

    Parikh, Kaushal; Diks, Sander H.; Tuynman, Jurriaan H. B.; Verhaar, Auke; Lowenberg, Mark; Hommes, Daan W.; Joore, Jos; Pandey, Akhilesh; Peppelenbosch, Maikel P.

    2009-01-01

    Kinases are pivotal regulators of cellular physiology. The human genome contains more than 500 putative kinases, which exert their action via the phosphorylation of specific substrates. The determinants of this specificity are still only partly understood and as a consequence it is difficult to pred

  11. Protein kinase CK2 structure-function relationship

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Pinna, L A

    1994-01-01

    Protein kinase CK2 subunits alpha and beta were expressed either separately or together in a bacterial expression system (pT7-7/BL21(DE3)) and purified to homogeneity. After mixing the subunits, a CK2 holoenzyme (alpha 2 beta 2) was spontaneously reconstituted, which displays identical features...... inactivated through urea, protease, and heat treatment. In contrast, the holoenzyme, either reconstituted or native, is much more stable when similar negative insults prevail. The beta subunit has at least three functions: (a) it is necessary for maximum activity of the enzyme under physiological salt...... conditions, (b) it protects the alpha subunit against denaturing agents or conditions, and (c) it alters the substrate specificity of the alpha subunit. By site-directed mutagenesis, certain functions of the beta subunit could be assigned to specific amino acids or domains. Twenty one mutants of the beta...

  12. How Do Protein Kinases Take a Selfie (Autophosphorylate)?

    Science.gov (United States)

    Beenstock, Jonah; Mooshayef, Navit; Engelberg, David

    2016-11-01

    Eukaryotic protein kinases (EPKs) control most biological processes and play central roles in many human diseases. To become catalytically active, EPKs undergo conversion from an inactive to an active conformation, an event that depends upon phosphorylation of their activation loop. Intriguingly, EPKs can use their own catalytic activity to achieve this critical phosphorylation. In other words, paradoxically, EPKs catalyze autophosphorylation when supposedly in their inactive state. This indicates the existence of another important conformation that specifically permits autophosphorylation at the activation loop, which in turn imposes adoption of the active conformation. This can be considered a prone-to-autophosphorylate conformation. Recent findings suggest that in prone-to-autophosphorylate conformations catalytic motifs are aligned allosterically, by dimerization or by regulators, and support autophosphorylation in cis or trans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. AMP-activated protein kinase: An emerging target for ginseng

    Directory of Open Access Journals (Sweden)

    Kyong Ju Jeong

    2014-04-01

    Full Text Available The adenosine monophosphate (AMP-activated protein kinase (AMPK is a key sensor of cellular energy. Once activated, it switches on catabolic pathways generating adenosine triphosphate (ATP, while switching off biosynthetic pathways consuming ATP. Pharmacological activation of AMPK by metformin holds a therapeutic potential to reverse metabolic abnormalities such as type 2 diabetes and nonalcoholic fatty liver disease. In addition, altered metabolism of tumor cells is widely recognized and AMPK is a potential target for cancer prevention and/or treatment. Panax ginseng is known to be useful for treatment and/or prevention of cancer and metabolic diseases including diabetes, hyperlipidemia, and obesity. In this review, we discuss the ginseng extracts and ginsenosides that activate AMPK, we clarify the various mechanisms by which they achieve this, and we discuss the evidence that shows that ginseng or ginsenosides might be useful in the treatment and/or prevention of metabolic diseases and cancer.

  14. OncoPPi-informed discovery of mitogen-activated protein kinase kinase 3 as a novel binding partner of c-Myc | Office of Cancer Genomics

    Science.gov (United States)

    Mitogen-activated protein kinase kinase 3 (MKK3) is a dual threonine/tyrosine protein kinase that regulates inflammation, proliferation and apoptosis through specific phosphorylation and activation of the p38 mitogen-activated protein kinase. However, the role of MKK3 beyond p38-signaling remains elusive. Recently, we reported a protein-protein interaction (PPI) network of cancer-associated genes, termed OncoPPi, as a resource for the scientific community to generate new biological models. Analysis of the OncoPPi connectivity identified MKK3 as one of the major hub proteins in the network.

  15. Subtype activation and interaction of protein kinase C and mitogen-activated protein kinase controlling receptor expression in cerebral arteries and microvessels after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Ansar, Saema; Edvinsson, Lars

    2008-01-01

    BACKGROUND AND PURPOSE: The pathogenesis of cerebral ischemia associated with subarachnoid hemorrhage (SAH) still remains elusive. The aim of this study was to examine the involvement of mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) subtypes in the pathophysiology of cerebral...... enhanced phosphorylation only at 48 hours after SAH. The pattern was identical in large cerebral arteries and in intracerebral microvessels. Treatment with either the PKC (RO-31-7549) or the raf (SB386023-b) inhibitor prevented the kinase activation. CONCLUSIONS: The results show that specific subtypes...... ischemia after SAH in cerebral arteries and microvessels and to examine temporal activation of the kinases. We hypothesize that treatment with a MAPK or PKC inhibitor will prevent the SAH-induced kinase activation in brain vessels. METHODS: SAH was induced by injecting 250 microL blood...

  16. Regulation of the MAPK pathway by raf kinase inhibitory protein.

    Science.gov (United States)

    Vandamme, Drieke; Herrero, Ana; Al-Mulla, Fahd; Kolch, Walter

    2014-01-01

    The Raf kinase inhibitor protein 1 (RKIP-1) was the first reported endogenous inhibitor of Raf-1-MEK-ERK/MAPK cascade, by interfering with the phosphorylation of MEK by Raf-1. However, RKIP's functions related to the MAPK signaling are far more complex. Newer data indicate that by modulating different protein-protein interactions, RKIP is involved in fine-tuning cell signaling, modulating ERK dynamics, and regulating cross talk between different pathways. Here, we describe the molecular mechanisms by which RKIP controls MAPK signaling at different levels and vice versa and its regulation via feedback phosphorylation. We also focus on several discrepancies and questions that remain, such as the RKIP binding regulation by Raf-1 N-region phosphorylation, the possible B-Raf inhibition, and the effects of RKIP-lipid binding. We also describe how RKIP's role as key signaling modulator of many cell fate decisions leads to the fact that fine control of RKIP activity and regulation is crucial to avoid pathological processes, such as metastasis, pulmonary arterial hypertension, and heart failure.

  17. Expression of DNA-dependent protein kinase in human granulocytes

    Institute of Scientific and Technical Information of China (English)

    Annahita SALLMYR; Anna MILLER; Aida GABDOULKHAKOVA; Valentina SAFRONOVA; Gunnel HENRIKSSON; Anders BREDBERG

    2004-01-01

    Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-joining (NHEJ) of DNA double-strand breaks. Promyelocytic HL-60 cells express a variant form of Ku resulting in enhanced radiation sensitivity. This raises the question if low efficiency of NHEJ, instrumental for the cellular repair of oxidative damage, is a normal characteristic of myeloid differentiation. Here we confirmed the complete lack of DNAPK in P MN protein extracts, and the expression of the truncated Ku86 variant form in HL-60. However, this degradation of DNA-PK was shown to be due to a DNA-PK-degrading protease in PMN and HL-60. In addition, by using a protease-resistant whole cell assay, both Ku86 and DNA-PKcs could be demonstrated in PMN, suggesting the previously reported absence in PMN of DNA-PK to be an artefact. The levels of Ku86 and DNA-PKcs were much reduced in PMN, as compared with that of the lymphocytes, whereas HL-60 displayed a markedly elevated DNA-PK concentration.In conclusion, our findings provide evidence of reduced, not depleted expression of DNA-PK during the mature stages of myeloid differentiation.

  18. Oscillatory change of SR-protein kinase activities during oocyte maturation meiosis in fish

    Institute of Scientific and Technical Information of China (English)

    杨仲安; 曹丹; 桂建芳

    2000-01-01

    The SR-protein kinase activity was analyzed and the cytological changes were observed during oocyte maturation in bisexual transparent color crucian carp ( Carassius auratus color variety). The results revealed that the SR-protein kinase activity was sensitive to the artificially induced spawning hormones, and the change of oscillatory activity was similar to that of the maturation-promoting factor (MPF) kinase that regulates meiotic cell cycle in fish.

  19. Homeodomain-interacting protein kinase (Hipk) phosphorylates the small SPOC family protein Spenito.

    Science.gov (United States)

    Dewald, D N; Steinmetz, E L; Walldorf, U

    2014-12-01

    The Drosophila homeodomain-interacting protein kinase (Hipk) is a versatile regulator involved in a variety of pathways, such as Notch and Wingless signalling, thereby acting in processes including the promotion of eye development or control of cell numbers in the nervous system. In vertebrates, extensive studies have related its homologue HIPK2 to important roles in the control of p53-mediated apoptosis and tumour suppression. Spenito (Nito) belongs to the group of small SPOC family proteins and has a role, amongst others, as a regulator of Wingless signalling downstream of Armadillo. In the present study, we show that both proteins have an enzyme-substrate relationship, adding a new interesting component to the broad range of Hipk interactions, and we map several phosphorylation sites of Nito. Furthermore, we were able to define a preliminary consensus motif for Hipk target sites, which will simplify the identification of new substrates of this kinase.

  20. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Alexandra Traister

    2016-06-01

    Full Text Available Using hearts from mice overexpressing integrin linked kinase (ILK behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD001053. The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes.

  1. The DAP kinase family of pro-apoptotic proteins: novel players in the apoptotic game.

    Science.gov (United States)

    Kögel, D; Prehn, J H; Scheidtmann, K H

    2001-04-01

    The DAP (Death Associated Protein) kinase family is a novel subfamily of pro-apoptotic serine/threonine kinases. All five DAP kinase family members identified to date are ubiquitously expressed in various tissues and are capable of inducing apoptosis. The sequence homology of the five kinases is largely restricted to the N-terminal kinase domain. In contrast, the adjacent C-terminal regions are very diverse and link individual family members to specific signal transduction pathways. There is increasing evidence that DAP kinase family members are involved in both extrinsic and intrinsic pathways of apoptosis and may play a role in tumor progression. This review will focus on structural composition and subcellular localization of DAP kinase family members and on signal transduction pathways leading to their activation. Potential mechanisms of DAP kinase family-mediated apoptosis will be discussed. BioEssays 23:352-358, 2001. Copyright 2001 John Wiley & Sons, Inc.

  2. Novel protein kinase signaling systems regulating lifespan identified by small molecule library screening using Drosophila.

    Directory of Open Access Journals (Sweden)

    Stephen R Spindler

    Full Text Available Protein kinase signaling cascades control most aspects of cellular function. The ATP binding domains of signaling protein kinases are the targets of most available inhibitors. These domains are highly conserved from mammals to flies. Herein we describe screening of a library of small molecule inhibitors of protein kinases for their ability to increase Drosophila lifespan. We developed an assay system which allowed screening using the small amounts of materials normally present in commercial chemical libraries. The studies identified 17 inhibitors, the majority of which targeted tyrosine kinases associated with the epidermal growth factor receptor (EGFR, platelet-derived growth factor (PDGF/vascular endothelial growth factor (VEGF receptors, G-protein coupled receptor (GPCR, Janus kinase (JAK/signal transducer and activator of transcription (STAT, the insulin and insulin-like growth factor (IGFI receptors. Comparison of the protein kinase signaling effects of the inhibitors in vitro defined a consensus intracellular signaling profile which included decreased signaling by p38MAPK (p38, c-Jun N-terminal kinase (JNK and protein kinase C (PKC. If confirmed, many of these kinases will be novel additions to the signaling cascades known to regulate metazoan longevity.

  3. Novel protein kinase signaling systems regulating lifespan identified by small molecule library screening using Drosophila.

    Science.gov (United States)

    Spindler, Stephen R; Li, Rui; Dhahbi, Joseph M; Yamakawa, Amy; Sauer, Frank

    2012-01-01

    Protein kinase signaling cascades control most aspects of cellular function. The ATP binding domains of signaling protein kinases are the targets of most available inhibitors. These domains are highly conserved from mammals to flies. Herein we describe screening of a library of small molecule inhibitors of protein kinases for their ability to increase Drosophila lifespan. We developed an assay system which allowed screening using the small amounts of materials normally present in commercial chemical libraries. The studies identified 17 inhibitors, the majority of which targeted tyrosine kinases associated with the epidermal growth factor receptor (EGFR), platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF) receptors, G-protein coupled receptor (GPCR), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), the insulin and insulin-like growth factor (IGFI) receptors. Comparison of the protein kinase signaling effects of the inhibitors in vitro defined a consensus intracellular signaling profile which included decreased signaling by p38MAPK (p38), c-Jun N-terminal kinase (JNK) and protein kinase C (PKC). If confirmed, many of these kinases will be novel additions to the signaling cascades known to regulate metazoan longevity.

  4. The role of DNA dependent protein kinase in synapsis of DNA ends

    NARCIS (Netherlands)

    E.P.W.C. Weterings (Eric); N.S. Verkaik (Nicole); H.T. Brüggenwirth (Hennie); J.H.J. Hoeijmakers (Jan); D.C. van Gent (Dik)

    2003-01-01

    textabstractDNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PK(CS)) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks

  5. Effect of Glucuronidation on the Potential of Kaempferol to Inhibit Serine/Threonine Protein Kinases

    NARCIS (Netherlands)

    Beekmann, Karsten; Haan, De Laura H.J.; Actis-Goretta, Lucas; Bladeren, Van Peter J.; Rietjens, Ivonne M.C.M.

    2016-01-01

    To study the effect of metabolic conjugation of flavonoids on the potential to inhibit protein kinase activity, the inhibitory effects of the dietary flavonol kaempferol and its major plasma conjugate kaempferol-3-O-glucuronide on protein kinases were studied. To this end, the inhibition of the p

  6. The role of DNA dependent protein kinase in synapsis of DNA ends

    NARCIS (Netherlands)

    E.P.W.C. Weterings (Eric); N.S. Verkaik (Nicole); H.T. Brüggenwirth (Hennie); D.C. van Gent (Dik); J.H.J. Hoeijmakers (Jan)

    2003-01-01

    textabstractDNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PK(CS)) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks

  7. Protein kinase A-dependent step(s) in hepatitis C virus entry and infectivity

    NARCIS (Netherlands)

    Farquhar, Michelle J.; Harris, Helen J.; Diskar, Mandy; Jones, Sarah; Mee, Christopher J.; Nielsen, Soren U.; Brimacombe, Claire L.; Molina, Sonia; Toms, Geoffrey L.; Maurel, Patrick; Howl, John; Herberg, Friedrich W.; van Ijzendoorn, Sven C. D.; Balfe, Peter; McKeating, Jane A.

    2008-01-01

    Viruses exploit signaling pathways to their advantage during multiple stages of their life cycle. We demonstrate a role for protein kinase A (PKA) in the hepatitis C virus (HCV) life cycle. The inhibition of PKA with H89, cyclic AMP (cAMP) antagonists, or the protein kinase inhibitor peptide reduced

  8. Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates.

    Science.gov (United States)

    García-Pardo, María Pilar; Roger-Sanchez, Concepción; Rodríguez-Arias, Marta; Miñarro, Jose; Aguilar, María Asunción

    2016-06-15

    Drug addiction shares brain mechanisms and molecular substrates with learning and memory processes, such as the stimulation of glutamate receptors and their downstream signalling pathways. In the present work we provide an up-to-date review of studies that have demonstrated the implication of the main memory-related calcium-dependent protein kinases in opiate and cocaine addiction. The effects of these drugs of abuse in different animal models of drug reward, dependence and addiction are altered by manipulation of the mitogen-activated protein kinase (MAPK) family, particularly extracellular signal regulated kinase (ERK), calcium/calmodulin-dependent kinase II (CaMKII), the protein kinase C (PKC) family (including PKMζ), cAMP-dependent protein kinase A (PKA), cGMP-dependent protein kinase G (PKG), the phosphatidylinositol 3-kinase (PI3K) pathway and its downstream target mammalian target of Rapamycin (mTOR), cyclin-dependent kinase 5 (Cdk5), heat-shock proteins (Hsp) and other enzymes and proteins. Research suggests that drugs of abuse induce dependence and addiction by modifying the signalling pathways that involve these memory-related protein kinases, and supports the idea that drug addiction is an excessive aberrant learning disorder in which the maladaptive memory of drug-associated cues maintains compulsive drug use and contributes to relapse. Moreover, the studies we review offer new pharmacological strategies to treat opiate and cocaine dependence based on the manipulation of these protein kinases. In particular, disruption of reconsolidation of drug-related memories may have a high therapeutic value in the treatment of drug addiction.

  9. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2003-01-01

    Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline...... and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction...... of the inhibitors reduced adrenaline-induced HSL activation in soleus muscle. Both phorbol-12-myristate-13-acetate (PMA), which activates PKC and, in turn, ERK, and caffeine, which increases intracellular Ca2+ without eliciting contraction, increased HSL activity. Activated ERK increased HSL activity in supernatant...

  10. Phosphoproteomic analysis of protein kinase C signaling in Saccharomyces cerevisiae reveals Slt2 mitogen-activated protein kinase (MAPK)-dependent phosphorylation of eisosome core components.

    Science.gov (United States)

    Mascaraque, Victoria; Hernáez, María Luisa; Jiménez-Sánchez, María; Hansen, Rasmus; Gil, Concha; Martín, Humberto; Cid, Víctor J; Molina, María

    2013-03-01

    The cell wall integrity (CWI) pathway of the model organism Saccharomyces cerevisiae has been thoroughly studied as a paradigm of the mitogen-activated protein kinase (MAPK) pathway. It consists of a classic MAPK module comprising the Bck1 MAPK kinase kinase, two redundant MAPK kinases (Mkk1 and Mkk2), and the Slt2 MAPK. This module is activated under a variety of stimuli related to cell wall homeostasis by Pkc1, the only member of the protein kinase C family in budding yeast. Quantitative phosphoproteomics based on stable isotope labeling of amino acids in cell culture is a powerful tool for globally studying protein phosphorylation. Here we report an analysis of the yeast phosphoproteome upon overexpression of a PKC1 hyperactive allele that specifically activates CWI MAPK signaling in the absence of external stimuli. We found 82 phosphopeptides originating from 43 proteins that showed enhanced phosphorylation in these conditions. The MAPK S/T-P target motif was significantly overrepresented in these phosphopeptides. Hyperphosphorylated proteins provide putative novel targets of the Pkc1-cell wall integrity pathway involved in diverse functions such as the control of gene expression, protein synthesis, cytoskeleton maintenance, DNA repair, and metabolism. Remarkably, five components of the plasma-membrane-associated protein complex known as eisosomes were found among the up-regulated proteins. We show here that Pkc1-induced phosphorylation of the eisosome core components Pil1 and Lsp1 was not exerted directly by Pkc1, but involved signaling through the Slt2 MAPK module.

  11. Haemophilus ducreyi LspA proteins are tyrosine phosphorylated by macrophage-encoded protein tyrosine kinases.

    Science.gov (United States)

    Deng, Kaiping; Mock, Jason R; Greenberg, Steven; van Oers, Nicolai S C; Hansen, Eric J

    2008-10-01

    The LspA proteins (LspA1 and LspA2) of Haemophilus ducreyi are necessary for this pathogen to inhibit the phagocytic activity of macrophage cell lines, an event that can be correlated with a reduction in the level of active Src family protein tyrosine kinases (PTKs) in these eukaryotic cells. During studies investigating this inhibitory mechanism, it was discovered that the LspA proteins themselves were tyrosine phosphorylated after wild-type H. ducreyi cells were incubated with macrophages. LspA proteins in cell-free concentrated H. ducreyi culture supernatant fluid could also be tyrosine phosphorylated by macrophages. This ability to tyrosine phosphorylate the LspA proteins was not limited to immune cell lineages but could be accomplished by both HeLa and COS-7 cells. Kinase inhibitor studies with macrophages demonstrated that the Src family PTKs were required for this tyrosine phosphorylation activity. In silico methods and site-directed mutagenesis were used to identify EPIYG and EPVYA motifs in LspA1 that contained tyrosines that were targets for phosphorylation. A total of four tyrosines could be phosphorylated in LspA1, with LspA2 containing eight predicted tyrosine phosphorylation motifs. Purified LspA1 fusion proteins containing either the EPIYG or EPVYA motifs were shown to be phosphorylated by purified Src PTK in vitro. Macrophage lysates could also tyrosine phosphorylate the LspA proteins and an LspA1 fusion protein via a mechanism that was dependent on the presence of both divalent cations and ATP. Several motifs known to interact with or otherwise affect eukaryotic kinases were identified in the LspA proteins.

  12. Control of oxygen free radical formation from mitochondrial complex I: roles for protein kinase A and pyruvate dehydrogenase kinase.

    Science.gov (United States)

    Raha, Sandeep; Myint, A Tomoko; Johnstone, Leslie; Robinson, Brian H

    2002-03-01

    Human NADH CoQ oxidoreductase is composed of a total of 43 subunits and has been demonstrated to be a major site for the production of superoxide by mitochondria. Incubation of rat heart mitochondria with ATP resulted in the phosphorylation of two mitochondrial membrane proteins, one with a M(r) of 6 kDa consistent with the NDUFA1 (MWFE), and one at 18kDa consistent with either NDUFS4 (AQDQ) or NDUFB7 (B18). Phosphorylation of both subunits was enhanced by cAMP derivatives and protein kinase A (PKA) and was inhibited by PKA inhibitors (PKAi). When mitochondrial membranes were incubated with pyruvate dehydrogenase kinase, phosphorylation of an 18kDa protein but not a 6kDa protein was observed. NADH cytochrome c reductase activity was decreased and superoxide production rates with NADH as substrate were increased. On the other hand, with protein kinase A-driven phosphorylation, NADH cytochrome c reductase was increased and superoxide production decreased. Overall there was a 4-fold variation in electron transport rates observable at the extremes of these phosphorylation events. This suggests that electron flow through complex I and the production of oxygen free radicals can be regulated by phosphorylation events. In light of these observations we discuss a potential model for the dual regulation of complex I and the production of oxygen free radicals by both PKA and PDH kinase.

  13. Crystal Structure of the Ca2+/Calmodulin-dependent Protein Kinase Kinase in Complex with the Inhibitor STO-609*

    Science.gov (United States)

    Kukimoto-Niino, Mutsuko; Yoshikawa, Seiko; Takagi, Tetsuo; Ohsawa, Noboru; Tomabechi, Yuri; Terada, Takaho; Shirouzu, Mikako; Suzuki, Atsushi; Lee, Suni; Yamauchi, Toshimasa; Okada-Iwabu, Miki; Iwabu, Masato; Kadowaki, Takashi; Minokoshi, Yasuhiko; Yokoyama, Shigeyuki

    2011-01-01

    Ca2+/calmodulin (CaM)-dependent protein kinase (CaMK) kinase (CaMKK) is a member of the CaMK cascade that mediates the response to intracellular Ca2+ elevation. CaMKK phosphorylates and activates CaMKI and CaMKIV, which directly activate transcription factors. In this study, we determined the 2.4 Å crystal structure of the catalytic kinase domain of the human CaMKKβ isoform complexed with its selective inhibitor, STO-609. The structure revealed that CaMKKβ lacks the αD helix and that the equivalent region displays a hydrophobic molecular surface, which may reflect its unique substrate recognition and autoinhibition. Although CaMKKβ lacks the activation loop phosphorylation site, the activation loop is folded in an active-state conformation, which is stabilized by a number of interactions between amino acid residues conserved among the CaMKK isoforms. An in vitro analysis of the kinase activity confirmed the intrinsic activity of the CaMKKβ kinase domain. Structure and sequence analyses of the STO-609-binding site revealed amino acid replacements that may affect the inhibitor binding. Indeed, mutagenesis demonstrated that the CaMKKβ residue Pro274, which replaces the conserved acidic residue of other protein kinases, is an important determinant for the selective inhibition by STO-609. Therefore, the present structure provides a molecular basis for clarifying the known biochemical properties of CaMKKβ and for designing novel inhibitors targeting CaMKKβ and the related protein kinases. PMID:21504895

  14. Spacial isolation of protein kinase C activation in thrombin stimulated human platelets.

    Science.gov (United States)

    Crouch, M F; Lapetina, E G

    1988-10-14

    Thrombin stimulation of human platelets is associated with turnover of inositol phospholipids, mobilization of intracellular Ca2+ stores, and activation of protein kinase C. However, within 5 minutes, the thrombin receptor desensitizes, but can be re-coupled to its effectors by stimulation of alpha 2-adrenergic receptors (Crouch and Lapetina, J. Biol. Chem. 263, 3363-3371, 1988). This effect of epinephrine was found to be inhibited by preincubation of platelets with phorbol ester, suggesting that protein kinase C was inhibitory. However, since thrombin also activated protein kinase C and epinephrine was active following thrombin stimulation of platelets, this implied that thrombin activation of protein kinase C may have been spacially isolated near the thrombin receptor and could not inactivate alpha 2-receptor activity. In the present paper, we have tested this possibility, and we present evidence which strongly favours the possibility that protein kinase C activation by receptors induces its local translocation to the cell membrane.

  15. Simple fluorescence-based detection of protein kinase A activity using a molecular beacon probe.

    Science.gov (United States)

    Ma, Changbei; Lv, Xiaoyuan; Wang, Kemin; Jin, Shunxin; Liu, Haisheng; Wu, Kefeng; Zeng, Weimin

    2017-06-08

    Protein kinase A was detected by quantifying the amount of ATP used after a protein kinase reaction. The ATP assay was performed using the T4 DNA ligase and a molecular beacon (MB). In the presence of ATP, DNA ligase catalyzed the ligation of short DNA. The ligation product then hybridized to MB, resulting in a fluorescence enhancement of the MB. This assay was capable of determining protein kinase A in the range of 12.5∼150 nM, with a detection limit of 1.25 nM. Furthermore, this assay could also be used to investigate the effect of genistein on protein kinase A. It was a universal, non-radioisotopic, and homogeneous method for assaying protein kinase A.

  16. Control of signaling in a MAP-kinase pathway by an RNA-binding protein.

    Directory of Open Access Journals (Sweden)

    Susanne Prinz

    Full Text Available Signaling-protein mRNAs tend to have long untranslated regions (UTRs containing binding sites for RNA-binding proteins regulating gene expression. Here we show that a PUF-family RNA-binding protein, Mpt5, represses the yeast MAP-kinase pathway controlling differentiation to the filamentous form. Mpt5 represses the protein levels of two pathway components, the Ste7 MAP-kinase kinase and the Tec1 transcriptional activator, and negatively regulates the kinase activity of the Kss1 MAP kinase. Moreover, Mpt5 specifically inhibits the output of the pathway in the absence of stimuli, and thereby prevents inappropriate cell differentiation. The results provide an example of what may be a genome-scale level of regulation at the interface of signaling networks and protein-RNA binding networks.

  17. pkaPS: prediction of protein kinase A phosphorylation sites with the simplified kinase-substrate binding model

    Directory of Open Access Journals (Sweden)

    Schneider Georg

    2007-01-01

    Full Text Available Abstract Background Protein kinase A (cAMP-dependent kinase, PKA is a serine/threonine kinase, for which ca. 150 substrate proteins are known. Based on a refinement of the recognition motif using the available experimental data, we wished to apply the simplified substrate protein binding model for accurate prediction of PKA phosphorylation sites, an approach that was previously successful for the prediction of lipid posttranslational modifications and of the PTS1 peroxisomal translocation signal. Results Approximately 20 sequence positions flanking the phosphorylated residue on both sides have been found to be restricted in their sequence variability (region -18...+23 with the site at position 0. The conserved physical pattern can be rationalized in terms of a qualitative binding model with the catalytic cleft of the protein kinase A. Positions -6...+4 surrounding the phosphorylation site are influenced by direct interaction with the kinase in a varying degree. This sequence stretch is embedded in an intrinsically disordered region composed preferentially of hydrophilic residues with flexible backbone and small side chain. This knowledge has been incorporated into a simplified analytical model of productive binding of substrate proteins with PKA. Conclusion The scoring function of the pkaPS predictor can confidently discriminate PKA phosphorylation sites from serines/threonines with non-permissive sequence environments (sensitivity of ~96% at a specificity of ~94%. The tool "pkaPS" has been applied on the whole human proteome. Among new predicted PKA targets, there are entirely uncharacterized protein groups as well as apparently well-known families such as those of the ribosomal proteins L21e, L22 and L6. Availability The supplementary data as well as the prediction tool as WWW server are available at http://mendel.imp.univie.ac.at/sat/pkaPS. Reviewers Erik van Nimwegen (Biozentrum, University of Basel, Switzerland, Sandor Pongor (International

  18. Rapid Identification of Protein Kinase Phosphorylation Site Motifs Using Combinatorial Peptide Libraries.

    Science.gov (United States)

    Miller, Chad J; Turk, Benjamin E

    2016-01-01

    Eukaryotic protein kinases phosphorylate substrates at serine, threonine, and tyrosine residues that fall within the context of short sequence motifs. Knowing the phosphorylation site motif for a protein kinase facilitates designing substrates for kinase assays and mapping phosphorylation sites in protein substrates. Here, we describe an arrayed peptide library protocol for rapidly determining kinase phosphorylation consensus sequences. This method uses a set of peptide mixtures in which each of the 20 amino acid residues is systematically substituted at nine positions surrounding a central site of phosphorylation. Peptide mixtures are arrayed in multiwell plates and analyzed by radiolabel assay with the kinase of interest. The preferred sequence is determined from the relative rate of phosphorylation of each peptide in the array. Consensus peptides based on these sequences typically serve as efficient and specific kinase substrates for high-throughput screening or incorporation into biosensors.

  19. p21WAF1/CIP1 interacts with protein kinase CK2

    DEFF Research Database (Denmark)

    Götz, C; Wagner, P; Issinger, O G

    1996-01-01

    and inhibits DNA replication. Here, we show that p21WAF1/CIP1 binds to the regulatory beta-subunit of protein kinase CK2 but not to the catalytic alpha-subunit. Binding of p21WAF1/CIP1 down regulates the kinase activity of CK2 with respect to the phosphorylation of the beta-subunit of CK2, casein and the C......p21WAF1/CIP1 which belongs to a class of regulatory proteins that interact with cyclin dependent kinases is a potent inhibitor of these kinases. The inhibition of the cyclin dependent kinases induces an arrest of cells in the G phase of the cell cycle. In addition p21WAF1/CIP1 associates with PCNA......-terminus of p53. This study demonstrates a new binding partner for the regulatory beta-subunit of protein kinase CK2 which regulates the activity of the holoenzyme....

  20. Ca2+/Calmodulin-Dependent Protein Kinase Kinases (CaMKKs Effects on AMP-Activated Protein Kinase (AMPK Regulation of Chicken Sperm Functions.

    Directory of Open Access Journals (Sweden)

    Thi Mong Diep Nguyen

    Full Text Available Sperm require high levels of energy to ensure motility and acrosome reaction (AR accomplishment. The AMP-activated protein kinase (AMPK has been demonstrated to be strongly involved in the control of these properties. We address here the question of the potential role of calcium mobilization on AMPK activation and function in chicken sperm through the Ca(2+/calmodulin-dependent protein kinase kinases (CaMKKs mediated pathway. The presence of CaMKKs and their substrates CaMKI and CaMKIV was evaluated by western-blotting and indirect immunofluorescence. Sperm were incubated in presence or absence of extracellular Ca(2+, or of CaMKKs inhibitor (STO-609. Phosphorylations of AMPK, CaMKI, and CaMKIV, as well as sperm functions were evaluated. We demonstrate the presence of both CaMKKs (α and β, CaMKI and CaMKIV in chicken sperm. CaMKKα and CaMKI were localized in the acrosome, the midpiece, and at much lower fluorescence in the flagellum, whereas CaMKKβ was mostly localized in the flagellum and much less in the midpiece and the acrosome. CaMKIV was only present in the flagellum. The presence of extracellular calcium induced an increase in kinases phosphorylation and sperm activity. STO-609 reduced AMPK phosphorylation in the presence of extracellular Ca(2+ but not in its absence. STO-609 did not affect CaMKIV phosphorylation but decreased CaMKI phosphorylation and this inhibition was quicker in the presence of extracellular Ca(2+ than in its absence. STO-609 efficiently inhibited sperm motility and AR, both in the presence and absence of extracellular Ca(2+. Our results show for the first time the presence of CaMKKs (α and β and one of its substrate, CaMKI in different subcellular compartments in germ cells, as well as the changes in the AMPK regulation pathway, sperm motility and AR related to Ca(2+ entry in sperm through the Ca(2+/CaM/CaMKKs/CaMKI pathway. The Ca(2+/CaMKKs/AMPK pathway is activated only under conditions of extracellular Ca(2

  1. [Effects of phosphatidylinositol-3 kinase/protein kinase b/bone morphogenetic protein-15 pathway on the follicular development in the mammalian ovary].

    Science.gov (United States)

    Wu, Yan-qing; Chen, Li-yun; Zhang, Zheng-hong; wang, Zheng-chao

    2013-04-01

    In mammals, ovarian follicle is made of an oocyte with its surrounding granulosa cells and theca cells. Follicular growth and development is a highly coordinated programmable process, which guarantees the normal oocyte maturation and makes it having the fertilizing capacity. The paracrine and autocrine between oocytes and granulosa cells are essential for the follicular development to provide a suitable microenvironment. Phosphatidylinositol-3 kinase /protein kinase B is one of these important regulatory signaling pathways during this developmental process, and bone morphogenetic protein-15 an oocyte-specific secreted signal molecule, which regulates the follicular development by paracrine in the mammalian ovary. The present article overviewed the role of phosphatidylinositol-3 kinase / protein kinase B signaling during the follicular development based on our previous investigation about protein kinase B /forkhead transcription factor forkhead family of transcription factors -3a, and then focused on the regulatory effects of bone morphogenetic protein-15, as a downstream signal molecule of phosphatidylinositol-3 kinase / forkhead family of transcription factors -3a pathway, on ovarian follicular development, which helped to further understand the molecular mechanism regulating the follicular development and to treat ovarian diseases like infertility.

  2. ATM kinase: Much more than a DNA damage responsive protein.

    Science.gov (United States)

    Guleria, Ayushi; Chandna, Sudhir

    2016-03-01

    ATM, mutation of which causes Ataxia telangiectasia, has emerged as a cardinal multifunctional protein kinase during past two decades as evidenced by various studies from around the globe. Further to its well established and predominant role in DNA damage response, ATM has also been understood to help in maintaining overall functional integrity of cells; since its mutation, inactivation or deficiency results in a variety of pathological manifestations besides DNA damage. These include oxidative stress, metabolic syndrome, mitochondrial dysfunction as well as neurodegeneration. Recently, high throughput screening using proteomics, metabolomics and transcriptomic studies revealed several proteins which might be acting as substrates of ATM. Studies that can help in identifying effective regulatory controls within the ATM-mediated pathways/mechanisms can help in developing better therapeutics. In fact, more in-depth understanding of ATM-dependent cellular signals could also help in the treatment of variety of other disease conditions since these pathways seem to control many critical cellular functions. In this review, we have attempted to put together a detailed yet lucid picture of the present-day understanding of ATM's role in various pathophysiological conditions involving DNA damage and beyond.

  3. Raf-1 kinase inhibitory protein expression in thyroid carcinomas.

    Science.gov (United States)

    Kim, Hyun-Soo; Kim, Gou Young; Lim, Sung-Jig; Kim, Youn Wha

    2010-12-01

    Raf-1 kinase inhibitory protein (RKIP) has been implicated in several fundamental signal transduction pathways that control cellular growth, differentiation, apoptosis and migration. RKIP is reduced in a variety of human carcinomas, but RKIP expression in thyroid carcinomas has not been analyzed at the protein level. In this study, we examined the immunohistochemical expression of RKIP in various subtypes of thyroid carcinoma. Immunostaining for RKIP was performed on 104 cases of primary thyroid carcinoma (40 papillary, 29 follicular, 11 medullary, 11 poorly differentiated, and 13 anaplastic carcinomas) and 26 cases of nodal metastatic tumor (17 papillary, 4 medullary, and 5 anaplastic carcinomas). Normal thyroid tissue and all cases of follicular, papillary, and medullary carcinomas showed uniform, strong cytoplasmic immunoreactivity for RKIP. With the exception of one case, poorly differentiated carcinomas also revealed strong RKIP expression. In contrast, RKIP expression was completely absent in all anaplastic carcinomas. The transition zone from the differentiated carcinoma component (strong RKIP expression) to the anaplastic carcinoma component (no RKIP expression) demonstrated a completely opposite pattern of RKIP immunoreactivity. This reduction of RKIP expression in anaplastic carcinoma was statistically significant (P carcinomas showed uniform, strong cytoplasmic RKIP immunoreactivity, in contrast, in metastatic anaplastic carcinomas, RKIP expression was completely absent. RKIP expression is significantly reduced in anaplastic thyroid carcinoma as compared to other subtypes of thyroid carcinoma. Further studies are necessary to elucidate the precise mechanism of RKIP action in anaplastic thyroid carcinoma.

  4. Fluorescent biosensors for high throughput screening of protein kinase inhibitors.

    Science.gov (United States)

    Prével, Camille; Pellerano, Morgan; Van, Thi Nhu Ngoc; Morris, May C

    2014-02-01

    High throughput screening assays aim to identify small molecules that interfere with protein function, activity, or conformation, which can serve as effective tools for chemical biology studies of targets involved in physiological processes or pathways of interest or disease models, as well as templates for development of therapeutics in medicinal chemistry. Fluorescent biosensors constitute attractive and powerful tools for drug discovery programs, from high throughput screening assays, to postscreen characterization of hits, optimization of lead compounds, and preclinical evaluation of candidate drugs. They provide a means of screening for inhibitors that selectively target enzymatic activity, conformation, and/or function in vitro. Moreover, fluorescent biosensors constitute useful tools for cell- and image-based, multiplex and multiparametric, high-content screening. Application of fluorescence-based sensors to screen large and complex libraries of compounds in vitro, in cell-based formats or whole organisms requires several levels of optimization to establish robust and reproducible assays. In this review, we describe the different fluorescent biosensor technologies which have been applied to high throughput screens, and discuss the prerequisite criteria underlying their successful application. Special emphasis is placed on protein kinase biosensors, since these enzymes constitute one of the most important classes of therapeutic targets in drug discovery.

  5. ProNormz--an integrated approach for human proteins and protein kinases normalization.

    Science.gov (United States)

    Subramani, Suresh; Raja, Kalpana; Natarajan, Jeyakumar

    2014-02-01

    The task of recognizing and normalizing protein name mentions in biomedical literature is a challenging task and important for text mining applications such as protein-protein interactions, pathway reconstruction and many more. In this paper, we present ProNormz, an integrated approach for human proteins (HPs) tagging and normalization. In Homo sapiens, a greater number of biological processes are regulated by a large human gene family called protein kinases by post translational phosphorylation. Recognition and normalization of human protein kinases (HPKs) is considered to be important for the extraction of the underlying information on its regulatory mechanism from biomedical literature. ProNormz distinguishes HPKs from other HPs besides tagging and normalization. To our knowledge, ProNormz is the first normalization system available to distinguish HPKs from other HPs in addition to gene normalization task. ProNormz incorporates a specialized synonyms dictionary for human proteins and protein kinases, a set of 15 string matching rules and a disambiguation module to achieve the normalization. Experimental results on benchmark BioCreative II training and test datasets show that our integrated approach achieve a fairly good performance and outperforms more sophisticated semantic similarity and disambiguation systems presented in BioCreative II GN task. As a freely available web tool, ProNormz is useful to developers as extensible gene normalization implementation, to researchers as a standard for comparing their innovative techniques, and to biologists for normalization and categorization of HPs and HPKs mentions in biomedical literature. URL: http://www.biominingbu.org/pronormz. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Multiple implications of 3-phosphoinositide-dependent protein kinase 1 in human cancer

    Institute of Scientific and Technical Information of China (English)

    Keum-Jin; Yang; Jongsun; Park

    2010-01-01

    3-phosphoinositide-dependent protein kinase-1(PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases,including protein kinase B,p70 ribosomal S6 kinase,serum and glucocorticoid-inducible kinase,and protein kinase C.PDK1 activates members of the AGC family of protein kinases by phosphorylating serine/threonine residues in the activation loop.Here,we review the regulatory mechanisms of PDK1 and its roles in cancer.PDK1 is activated by autophosphorylation in the activation loop and other serine residues,as well as by phosphorylation of Tyr-9 and Tyr-373/376.Src appears to recognize PDK1 following tyrosine phosphorylation.The role of heat shock protein 90 in regulating PDK1 stability and PDK1-Src complex formation are also discussed.Furthermore,we summarize the subcellular distribution of PDK1.Finally,an important role for PDK1 in cancer chemotherapy is proposed.In conclusion,a better understanding of its molecular regulatory mechanisms in various signaling pathways will help to explain how PDK1 acts as an oncogenic kinase in various cancers,and will contribute to the development of novel cancer chemotherapies.

  7. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

    Science.gov (United States)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie

    2016-11-01

    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp ( Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  8. Myotonic dystrophy.

    Science.gov (United States)

    Thornton, Charles A

    2014-08-01

    Myotonic dystrophy (dystrophia myotonica, DM) is one of the most common lethal monogenic disorders in populations of European descent. DM type 1 was first described over a century ago. More recently, a second form of the disease, DM type 2 was recognized, which results from repeat expansion in a different gene. Both disorders have autosomal dominant inheritance and multisystem features, including myotonic myopathy, cataract, and cardiac conduction disease. This article reviews the clinical presentation and pathophysiology of DM and discusses current management and future potential for developing targeted therapies.

  9. Protein kinase C-associated kinase (PKK) mediates Bcl10-independent NF-kappa B activation induced by phorbol ester.

    Science.gov (United States)

    Muto, Akihiro; Ruland, Jürgen; McAllister-Lucas, Linda M; Lucas, Peter C; Yamaoka, Shoji; Chen, Felicia F; Lin, Amy; Mak, Tak W; Núñez, Gabriel; Inohara, Naohiro

    2002-08-30

    Protein kinase C-associated kinase (PKK) is a recently described kinase of unknown function that was identified on the basis of its specific interaction with PKC beta. PKK contains N-terminal kinase and C-terminal ankyrin repeats domains linked to an intermediate region. Here we report that the kinase domain of PKK is highly homologous to that of two mediators of nuclear factor-kappa B (NF-kappa B) activation, RICK and RIP, but these related kinases have different C-terminal domains for binding to upstream factors. We find that expression of PKK, like RICK and RIP, induces NF-kappa B activation. Mutational analysis revealed that the kinase domain of PKK is essential for NF-kappa B activation, whereas replacement of serine residues in the putative activation loop did not affect the ability of PKK to activate NF-kappa B. A catalytic inactive PKK mutant inhibited NF-kappa B activation induced by phorbol ester and Ca(2+)-ionophore, but it did not block that mediated by tumor necrosis factor alpha, interleukin-1 beta, or Nod1. Inhibition of NF-kappa B activation by dominant negative PKK was reverted by co-expression of PKC beta I, suggesting a functional association between PKK and PKC beta I. PKK-mediated NF-kappa B activation required IKK alpha and IKK beta but not IKK gamma, the regulatory subunit of the IKK complex. Moreover, NF-kappa B activation induced by PKK was not inhibited by dominant negative Bimp1 and proceeded in the absence of Bcl10, two components of a recently described PKC signaling pathway. These results suggest that PKK is a member of the RICK/RIP family of kinases, which is involved in a PKC-activated NF-kappa B signaling pathway that is independent of Bcl10 and IKK gamma.

  10. LASIK surgery of granular corneal dystrophy type 2 patients leads to accumulation and differential proteolytic processing of transforming growth factor beta-induced protein (TGFBIp)

    DEFF Research Database (Denmark)

    Poulsen, Ebbe Toftgaard; Nielsen, Nadia Sukusu; Jensen, Morten Mørk;

    2016-01-01

    at position 124 in mature TGFBIp leads to granular corneal dystrophy type 2 (GCD2). Homozygous GCD2 cases develop massive protein accumulation early in life whereas heterozygous GCD2 cases become affected much later and generally with a much less severe outcome. However, if heterozygous GCD2 patients undergo...... laser-assisted in situ keratomileusis (LASIK) surgery protein accumulation is accelerated and they develop massive protein accumulations a few years after surgery. Here, we present the protein profile of aggregate-containing corneal tissue from GCD2 patients with a history of LASIK surgery using LC......-MS/MS. Label-free quantification of corneal extracellular matrix proteins showed accumulation of TGFBIp. This was supported by 2DE and immunoblotting against TGFBIp that revealed the accumulation of full-length TGFBIp. In addition, a high molecular weight TGFBIp complex was more apparent in GCD2 patients after...

  11. Proteomics reveals drastic increase of extracellular matrix proteins collagen and dermatopontin in the aged mdx diaphragm model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Carberry, Steven; Zweyer, Margit; Swandulla, Dieter; Ohlendieck, Kay

    2012-08-01

    Duchenne muscular dystrophy is a lethal genetic disease of childhood caused by primary abnormalities in the gene coding for the membrane cytoskeletal protein dystrophin. The mdx mouse is an established animal model of various aspects of X-linked muscular dystrophy and is widely used for studying fundamental mechanisms of dystrophinopathy and testing novel therapeutic approaches to treat one of the most frequent gender-specific diseases in humans. In order to determine global changes in the muscle proteome with the progressive deterioration of mdx tissue with age, we have characterized diaphragm muscle from mdx mice at three ages (8-weeks, 12-months and 22-months) using mass spectrometry-based proteomics. Altered expression levels in diaphragm of 8-week vs. 22-month mice were shown to occur in 11 muscle-associated proteins. Aging in the mdx diaphragm seems to be associated with a drastic increase in the extracellular matrix proteins, collagen and dermatopontin, the molecular chaperone αB-crystallin, and the intermediate filament protein vimentin, suggesting increased accumulation of connective tissue, an enhanced cellular stress response and compensatory stabilization of the weakened membrane cytoskeleton. These proteomic findings establish the aged mdx diaphragm as an excellent model system for studying secondary effects of dystrophin deficiency in skeletal muscle tissue.

  12. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    DEFF Research Database (Denmark)

    Biondi, R M; Engel, M; Sauane, M

    1996-01-01

    that in vitro protein kinase CK2 catalyzed phosphorylation of human NDPK A inhibits its enzymatic activity by inhibiting the first step of its ping-pong mechanism of catalysis: its autophosphorylation. Upon in vivo 32P labeling of HeLa cells, we observed that both human NDPKs, A and B, were autophosphorylated...

  13. Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats

    OpenAIRE

    CRISTIANA S.B. SALVATIERRA; REIS,SÍLVIA R.L.; ANA F.M. PESSOA; LETÍCIA M.I. DE SOUZA; Luiz F. Stoppiglia; Veloso, Roberto V; REIS,MARISE A.B.; Everardo M Carneiro; Boschero, Antonio C.; Edson M. Colodel; ARANTES,VANESSA C.; Latorraca, Márcia Q.

    2015-01-01

    The phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways mediate β cell growth, proliferation, survival and death. We investigated whether protein restriction during pregnancy alters islet morphometry or the expression and phosphorylation of several proteins involved in the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. As controls, adult pregnant and non-pregnant rats were fed a normal-protein diet (17%). Pregnant and non-pregnant rats in ...

  14. Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats

    OpenAIRE

    CRISTIANA S.B. SALVATIERRA; REIS,SÍLVIA R.L.; ANA F.M. PESSOA; LETÍCIA M.I. DE SOUZA; Luiz F. Stoppiglia; Veloso, Roberto V; REIS,MARISE A.B.; Everardo M Carneiro; Boschero, Antonio C.; Edson M. Colodel; ARANTES,VANESSA C.; Latorraca, Márcia Q.

    2015-01-01

    The phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways mediate β cell growth, proliferation, survival and death. We investigated whether protein restriction during pregnancy alters islet morphometry or the expression and phosphorylation of several proteins involved in the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. As controls, adult pregnant and non-pregnant rats were fed a normal-protein diet (17%). Pregnant and non-pregnant rat...

  15. Mixed - Lineage Protein kinases (MLKs) in inflammation, metabolism, and other disease states.

    Science.gov (United States)

    Craige, Siobhan M; Reif, Michaella M; Kant, Shashi

    2016-09-01

    Mixed lineage kinases, or MLKs, are members of the MAP kinase kinase kinase (MAP3K) family, which were originally identified among the activators of the major stress-dependent mitogen activated protein kinases (MAPKs), JNK and p38. During stress, the activation of JNK and p38 kinases targets several essential downstream substrates that react in a specific manner to the unique stressor and thus determine the fate of the cell in response to a particular challenge. Recently, the MLK family was identified as a specific modulator of JNK and p38 signaling in metabolic syndrome. Moreover, the MLK family of kinases appears to be involved in a very wide spectrum of disorders. This review discusses the newly identified functions of MLKs in multiple diseases including metabolic disorders, inflammation, cancer, and neurological diseases.

  16. Protein kinase C-dependent activation of P44/42 mitogen-activated protein kinase and heat shock protein 70 in signal transduction during hepatocyte ischemic preconditioning

    Institute of Scientific and Technical Information of China (English)

    Yi Gao; Yu-Qiang Shan; Ming-Xin Pan; Yu Wang; Li-Jun Tang; Hao Li; Zhi Zhang

    2004-01-01

    AIM: To investigate the significance of protein kinase C (PKC), P44/42 mitogen-activated protein kinase (MAPKs) and heat shock protein (HSP)70 signal transduction during hepatocyte ischemic preconditioning.METHODS: In this study we used an in vitro ischemic preconditioning (IP) model for hepatocytes and an in vivo model for rat liver to investigate the significance of protein kinase C (PKC), P44/42 mitogen-activated protein kinase (P44/42 MAPKs) and heat shock protein 70 (HSP70) signal transduction in IP. Through a normal liver cell hypoxic preconditioning (HP) model in which cultured normal liver cells were subjected to 3 cycles of 5 min of incubation under hypoxic conditions followed by 5 min of reoxygenation and subsequently exposed to hypoxia and reoxygenation for 6 h and 9 h respectively. PKC inhibitor, activator and MEK inhibitor were utilized to analyze the phosphorylation of PKC, the expression of P44/42 MAPKs and HSP70.Viability and cellular ultrastructure were also observed. By using rat liver as an in vivo model of liver preconditioning (3 cycles of 10-min occlusion and 10-min reperfusion),in vivo phosphorylation of PKC and P44/42MAPKs, HSP70 expression were further analyzed. AST/ALT concentration,cellular structure and ultrastruture were also observed.All the data were statistically analyzed.RESULTS: Similar results were obtained in both in vivo and in vitro IP models. Compared with the control without IP (or HP), the phosphorylation of PKC and P44/42 MAPKs and the expression of HSP70 were obviously increased in IP (or HP) treated model in which cytoprotection could be found. The effects of preconditioning were mimicked by stimulating PKC with 4β phorobol-12-myristate13-acetate (PMA). Conversely, inhibiting PKC with chelerythrine abolished the protection given by preconditioning. PD98059,inhibitor of MEK (the upstream kinase of P44/42MAPKs),also reverted the cytoprotection exerted by preconditioning.CONCLUSION: The results demonstrate that

  17. Cyclic nucleotide-dependent protein kinases and some major substrates in the rat cerebellum after neonatal X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dolphin, A.C.; Detre, J.A.; Schlichter, D.J.; Nairn, A.C.; Yeh, H.H.; Woodward, D.J.; Greengard, P.

    1983-02-01

    The levels of cAMP-dependent protein kinase (type I), or cGMP-dependent protein kinase, or protein I, and of a 23,000 MW substrate for the cGMP-dependent protein kinase were measured in cerebella from normal rats and in the cerebella from rats in which a selective loss of interneurons in the cerebellar cortex had been produced by X-irradiation. A decrease was observed in the concentrations of cAMP-dependent protein kinase and of protein I, whereas an increase was observed in the concentrations of cGMP-dependent protein kinase and of the 23,000 MW substrate. The data, taken together with the results of other studies, support the interpretation that cAMP-dependent protein kinase and protein I are distributed throughout the cerebellum, but that cGMP-dependent protein kinase and the 23,000 MW substrate are highly concentrated in Purkinje cells.

  18. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs).

    Science.gov (United States)

    Barrows, Douglas; He, John Z; Parsons, Ramon

    2016-09-16

    Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gβγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer.

  19. Myofibrillar disruption and RNA-binding protein aggregation in a mouse model of limb-girdle muscular dystrophy 1D.

    Science.gov (United States)

    Bengoechea, Rocio; Pittman, Sara K; Tuck, Elizabeth P; True, Heather L; Weihl, Conrad C

    2015-12-01

    Limb-girdle muscular dystrophy type 1D (LGMD1D) is caused by dominantly inherited missense mutations in DNAJB6, an Hsp40 co-chaperone. LGMD1D muscle has rimmed vacuoles and inclusion bodies containing DNAJB6, Z-disc proteins and TDP-43. DNAJB6 is expressed as two isoforms; DNAJB6a and DNAJB6b. Both isoforms contain LGMD1D mutant residues and are expressed in human muscle. To identify which mutant isoform confers disease pathogenesis and generate a mouse model of LGMD1D, we evaluated DNAJB6 expression and localization in skeletal muscle as well as generating DNAJB6 isoform specific expressing transgenic mice. DNAJB6a localized to myonuclei while DNAJB6b was sarcoplasmic. LGMD1D mutations in DNAJB6a or DNAJB6b did not alter this localization in mouse muscle. Transgenic mice expressing the LGMD1D mutant, F93L, in DNAJB6b under a muscle-specific promoter became weak, had early lethality and developed muscle pathology consistent with myopathy after 2 months; whereas mice expressing the same F93L mutation in DNAJB6a or overexpressing DNAJB6a or DNAJB6b wild-type transgenes remained unaffected after 1 year. DNAJB6b localized to the Z-disc and DNAJB6b-F93L expressing mouse muscle had myofibrillar disorganization and desmin inclusions. Consistent with DNAJB6 dysfunction, keratin 8/18, a DNAJB6 client also accumulated in DNAJB6b-F93L expressing mouse muscle. The RNA-binding proteins hnRNPA1 and hnRNPA2/B1 accumulated and co-localized with DNAJB6 at sarcoplasmic stress granules suggesting that these proteins maybe novel DNAJB6b clients. Similarly, hnRNPA1 and hnRNPA2/B1 formed sarcoplasmic aggregates in patients with LGMD1D. Our data support that LGMD1D mutations in DNAJB6 disrupt its sarcoplasmic function suggesting a role for DNAJB6b in Z-disc organization and stress granule kinetics.

  20. Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling

    Directory of Open Access Journals (Sweden)

    Catríona M. Dowling

    2015-07-01

    Full Text Available The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.

  1. Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling

    Energy Technology Data Exchange (ETDEWEB)

    Dowling, Catríona M., E-mail: Catriona.Dowling@ul.ie; Kiely, Patrick A., E-mail: Catriona.Dowling@ul.ie [Department of Life Sciences, Materials and Surface Science Institute and Stokes Institute, University of Limerick, Limerick 78666 (Ireland); Health Research Institute (HRI), University of Limerick, Limerick 78666 (Ireland)

    2015-07-15

    The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.

  2. Cancer-associated mutations are preferentially distributed in protein kinase functional sites.

    Science.gov (United States)

    Izarzugaza, Jose M G; Redfern, Oliver C; Orengo, Christine A; Valencia, Alfonso

    2009-12-01

    Protein kinases are a superfamily involved in many crucial cellular processes, including signal transmission and regulation of cell cycle. As a consequence of this role, kinases have been reported to be associated with many types of cancer and are considered as potential therapeutic targets. We analyzed the distribution of pathogenic somatic point mutations (drivers) in the protein kinase superfamily with respect to their location in the protein, such as in structural, evolutionary, and functionally relevant regions. We find these driver mutations are more clearly associated with key protein features than other somatic mutations (passengers) that have not been directly linked to tumor progression. This observation fits well with the expected implication of the alterations in protein kinase function in cancer pathogenicity. To explain the relevance of the detected association of cancer driver mutations at the molecular level in the human kinome, we compare these with genetically inherited mutations (SNPs). We find that the subset of nonsynonymous SNPs that are associated to disease, but sufficiently mild to the point of being widespread in the population, tend to avoid those key protein regions, where they could be more detrimental for protein function. This tendency contrasts with the one detected for cancer associated-driver-mutations, which seems to be more directly implicated in the alteration of protein function. The detailed analysis of protein kinase groups and a number of relevant examples, confirm the relation between cancer associated-driver-mutations and key regions for protein kinase structure and function.

  3. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2013-07-01

    Full Text Available Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  4. Amygdala kindling alters protein kinase C activity in dentate gyrus.

    Science.gov (United States)

    Chen, S J; Desai, M A; Klann, E; Winder, D G; Sweatt, J D; Conn, P J

    1992-11-01

    Kindling is a use-dependent form of synaptic plasticity and a widely used model of epilepsy. Although kindling has been widely studied, the molecular mechanisms underlying induction of this phenomenon are not well understood. We determined the effect of amygdala kindling on protein kinase C (PKC) activity in various regions of rat brain. Kindling stimulation markedly elevated basal (Ca(2+)-independent) and Ca(2+)-stimulated phosphorylation of an endogenous PKC substrate (which we have termed P17) in homogenates of dentate gyrus, assayed 2 h after kindling stimulation. The increase in P17 phosphorylation appeared to be due at least in part to persistent PKC activation, as basal PKC activity assayed in vitro using an exogenous peptide substrate was increased in kindled dentate gyrus 2 h after the last kindling stimulation. A similar increase in basal PKC activity was observed in dentate gyrus 2 h after the first kindling stimulation. These results document a kindling-associated persistent PKC activation and suggest that the increased activity of PKC could play a role in the induction of the kindling effect.

  5. Mitogen-activated protein kinase pathways in osteoblasts.

    Science.gov (United States)

    Greenblatt, Matthew B; Shim, Jae-Hyuck; Glimcher, Laurie H

    2013-01-01

    Mitogen-activated protein kinases (MAPKs) are ancient signal transducers well characterized as mediators of inflammation and neoplastic transformation. Recent work has expanded our understanding of their developmental functions, particularly in the regulation of bone mass via control of osteoblast differentiation. Here, we review the functions of MAPK pathways in osteoblasts, including a consideration of MAPK substrates. In particular, MAPKs function to regulate the key transcriptional mediators of osteoblast differentiation, with ERK and p38 MAPKs phosphorylating RUNX2, the master regulator of osteoblast differentiation. ERK also activates RSK2, which in turn phosphorylates ATF4, a transcriptional regulator of late-stage osteoblast synthetic functions. The MAP3Ks and MAP2Ks upstream of MAPKs have also been investigated, and significant differences have been found in the wiring of MAPK pathways in osteoblasts relative to other tissues. Thus, the investigation of MAPKs in osteoblasts has both revealed critical mechanisms for the maintenance of bone mass and added to our understanding of how the individual components of MAPK pathways function in concert in a complex in vivo system.

  6. Mechanisms for redox-regulation of protein kinase C

    Directory of Open Access Journals (Sweden)

    Susan F. Steinberg

    2015-06-01

    Full Text Available Protein kinase C (PKC is comprised of a family of signal-regulated enzymes that play pleiotropic roles in the control of many physiological and pathological responses. PKC isoforms are traditionally viewed as allosterically-activated enzymes that are recruited to membranes by growth factor receptor-generated lipid cofactors. An inherent assumption of this conventional model of PKC isoform activation is that PKCs act exclusively at membrane-delimited substrates and that PKC catalytic activity is an inherent property of each enzyme that is not altered by the activation process. This traditional model of PKC activation does not adequately explain the many well-documented actions of PKC enzymes in mitochondrial, nuclear, and cardiac sarcomeric (non-sarcolemmal subcellular compartments. Recent studies address this dilemma by identifying stimulus-specific differences in the mechanisms for PKC isoform activation during growth factor activation versus oxidative stress. This review discusses a number of noncanonical redox-triggered mechanisms that can alter the catalytic properties and subcellular compartmentation patterns of PKC enzymes. While some redox-activated mechanisms act at structural determinants that are common to all PKCs, the redox-dependent mechanism for PKCδ activation requires Src-dependent tyrosine phosphorylation of a unique phosphorylation motif on this enzyme and is isoform specific. Since oxidative stress contributes to pathogenesis of a wide range of clinical disorders, these stimulus specific differences in the controls and consequences of PKC activation have important implications for the design and evaluation of PKC-targeted therapeutics.

  7. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis.

    Science.gov (United States)

    Takiar, Vinita; Nishio, Saori; Seo-Mayer, Patricia; King, J Darwin; Li, Hui; Zhang, Li; Karihaloo, Anil; Hallows, Kenneth R; Somlo, Stefan; Caplan, Michael J

    2011-02-08

    Renal cyst development and expansion in autosomal dominant polycystic kidney disease (ADPKD) involves both fluid secretion and abnormal proliferation of cyst-lining epithelial cells. The chloride channel of the cystic fibrosis transmembrane conductance regulator (CFTR) participates in secretion of cyst fluid, and the mammalian target of rapamycin (mTOR) pathway may drive proliferation of cyst epithelial cells. CFTR and mTOR are both negatively regulated by AMP-activated protein kinase (AMPK). Metformin, a drug in wide clinical use, is a pharmacological activator of AMPK. We find that metformin stimulates AMPK, resulting in inhibition of both CFTR and the mTOR pathways. Metformin induces significant arrest of cystic growth in both in vitro and ex vivo models of renal cystogenesis. In addition, metformin administration produces a significant decrease in the cystic index in two mouse models of ADPKD. Our results suggest a possible role for AMPK activation in slowing renal cystogenesis as well as the potential for therapeutic application of metformin in the context of ADPKD.

  8. Death associated protein kinases: molecular structure and brain injury.

    Science.gov (United States)

    Nair, Syam; Hagberg, Henrik; Krishnamurthy, Rajanikant; Thornton, Claire; Mallard, Carina

    2013-07-04

    Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk) family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  9. Activation of G-proteins by receptor-stimulated nucleoside diphosphate kinase in Dictyostelium.

    Science.gov (United States)

    Bominaar, A A; Molijn, A C; Pestel, M; Veron, M; Van Haastert, P J

    1993-01-01

    Recently, interest in the enzyme nucleoside diphosphate kinase (EC2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase activity on cellular processes might be the result of altered transmembrane signal transduction via guanine nucleotide-binding proteins (G-proteins). In the cellular slime mould Dictyostelium discoideum, extracellular cAMP induces an increase of phospholipase C activity via a surface cAMP receptor and G-proteins. In this paper it is demonstrated that part of the cellular NDP kinase is associated with the membrane and stimulated by cell surface cAMP receptors. The GTP produced by the action of NDP kinase is capable of activating G-proteins as monitored by altered G-protein-receptor interaction and the activation of the effector enzyme phospholipase C. Furthermore, specific monoclonal antibodies inhibit the effect of NDP kinase on G-protein activation. These results suggest that receptor-stimulated NDP kinase contributes to the mediation of hormone action by producing GTP for the activation of GTP-binding proteins. Images PMID:8389692

  10. Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols.

    Science.gov (United States)

    Ganong, B R; Loomis, C R; Hannun, Y A; Bell, R M

    1986-01-01

    The specificity of protein kinase C activation by sn-1,2-diacylglycerols and analogues was investigated by using a Triton X-100 mixed micellar assay [Hannun, Y. A., Loomis, C. R. & Bell, R. M. (1985) J. Biol. Chem. 260, 10039-10043]. Analogues containing acyl or alkyl chains eight carbons in length were synthesized because sn-1,2-dioctanoylglycerol is an effective cell-permeant activator of protein kinase C. These analogues were tested as activators and antagonists of rat brain protein kinase C to determine the exact structural features important for activity. The analogues established that activation of protein kinase C by diacylglycerols is highly specific. Several analogues established that both carbonyl moieties of the oxygen esters are required for maximal activity and that the 3-hydroxyl moiety is also required. None of the analogues were antagonists. These data, combined with previous investigations, permitted formulation of a model of protein kinase C activation. A three-point attachment of sn-1,2-diacylglycerol to the surface-bound protein kinase C-phosphatidylserine-Ca2+ complex is envisioned to cause activation. Direct ligation of diacylglycerol to Ca2+ is proposed to be an essential step in the mechanism of activation of protein kinase C. Images PMID:3456578

  11. Redox regulation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Yingying Han

    Full Text Available Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death.The aim of this study is to determine if AMP-activated protein kinase (AMPK, a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC.Bovine aortic endothelial cells (BAEC were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation.In BAEC, Berberine caused a dose- and time-dependent increase in the phosphorylation of AMPK at Thr172 and acetyl CoA carboxylase (ACC at Ser79, a well characterized downstream target of AMPK. Concomitantly, Berberine increased peroxynitrite, a potent oxidant formed by simultaneous generation of superoxide and nitric oxide. Pre-incubation of BAEC with anti-oxidants markedly attenuated Berberine-enhanced phosphorylation of both AMPK and ACC. Consistently, adenoviral expression of superoxide dismutase and pretreatment of L-N(G-Nitroarginine methyl ester (L-NAME; a non-selective NOS inhibitor blunted Berberine-induced phosphorylation of AMPK. Furthermore, mitochondria-targeted tempol (mito-tempol pretreatment or expression of uncoupling protein attenuated AMPK activation caused by Berberine. Depletion of mitochondria abolished the effects of Berberine on AMPK in EC. Finally, Berberine significantly increased the phosphorylation of LKB1 at Ser307 and gene silencing of LKB1 attenuated Berberine-enhanced AMPK Thr172 phosphorylation in BAEC.Our results suggest that mitochondria-derived superoxide anions and peroxynitrite are required for Berberine-induced AMPK activation in endothelial cells.

  12. Duchenne muscular dystrophy - a molecular service

    African Journals Online (AJOL)

    Duchenne muscular dystrophy using molecular technology was instituted at the ..... utilising non-fat dry milk for analysis of proteins and nucleic acids transferred ... acid to high specific activity in vitro by nick translation with DNA polymerase.

  13. Brain MRI Findings in Congenital Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-03-01

    Full Text Available Brain magnetic resonance imaging (MRI findings in 13 patients with congenital muscular dystrophy (MDCIC and Fukutin-related protein (FKRP gene mutations were retrospectively reviewed in a study at Hammersmith Hospital, London, UK, and European centers.

  14. Mutations in MFSD8, encoding a lysosomal membrane protein, are associated with nonsyndromic autosomal recessive macular dystrophy

    NARCIS (Netherlands)

    Roosing, S.; Born, L.I. van den; Sangermano, R.; Banfi, S.; Koenekoop, R.K.; Zonneveld-Vrieling, M.N.; Klaver, C.C.; Lith-Verhoeven, J.J. van; Cremers, F.P.M.; Hollander, A.I. den; Hoyng, C.B.

    2015-01-01

    PURPOSE: This study aimed to identify the genetic defects in 2 families with autosomal recessive macular dystrophy with central cone involvement. DESIGN: Case series. PARTICIPANTS: Two families and a cohort of 244 individuals with various inherited maculopathies and cone disorders. METHODS:

  15. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simarro, Maria [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Gimenez-Cassina, Alfredo [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Kedersha, Nancy [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A. [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Rhee, Kirsten [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Tisdale, Sarah; Danial, Nika [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Benarafa, Charaf [Theodor Kocher Institute, University of Bern, 3012 Bern (Switzerland); Orduna, Anonio [Unidad de Investigacion, Hospital Clinico Universitario de Valladolid, 47005 Valladolid (Spain); Anderson, Paul, E-mail: panderson@rics.bwh.harvard.edu [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  16. Porcine models of muscular dystrophy

    Science.gov (United States)

    Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein, dystrophin. This disease is modeled by a variety of animal models including several fish models, mice, rats, and dogs. While these models have contributed substantially t...

  17. Contribution of Ca2+ calmodulin-dependent protein kinase II and mitogen-activated protein kinase kinase to neural activity-induced neurite outgrowth and survival of cerebellar granule cells.

    Science.gov (United States)

    Borodinsky, Laura N; Coso, Omar A; Fiszman, Mónica L

    2002-03-01

    In this report we describe our studies on intracellular signals that mediate neurite outgrowth and long-term survival of cerebellar granule cells. The effect of voltage-gated calcium channel activation on neurite complexity was evaluated in cultured cerebellar granule cells grown for 48 h at low density; the parameter measured was the fractal dimension of the cell. We explored the contribution of two intracellular pathways, Ca2+ calmodulin-dependent protein kinase II and mitogen-activated protein kinase kinase (MEK1), to the effects of high [K+ ]e under serum-free conditions. We found that 25 mm KCl (25K) induced an increase in calcium influx through L subtype channels. In neurones grown for 24-48 h under low-density conditions, the activation of these channels induced neurite outgrowth through the activation of Ca2+ calmodulin-dependent protein kinase II. This also produced an increase in long-term neuronal survival with a partial contribution from the MEK1 pathway. We also found that the addition of 25K increased the levels of the phosphorylated forms of Ca2+ calmodulin-dependent protein kinase II and of the extracellular signal-regulated kinases 1 and 2. Neuronal survival under resting conditions is supported by the MEK1 pathway. We conclude that intracellular calcium oscillations can triggered different biological effects depending on the stage of maturation of the neuronal phenotype. Ca2+ calmodulin-dependent protein kinase II activation determines the growth of neurites and the development of neuronal complexity.

  18. Radiolabeled Small Molecule Protein Kinase Inhibitors for Imaging with PET or SPECT

    Directory of Open Access Journals (Sweden)

    Justin W. Hicks

    2010-11-01

    Full Text Available Imaging protein kinase expression with radiolabeled small molecule inhibitors has been actively pursued to monitor the clinical potential of targeted therapeutics and treatments as well as to determine kinase receptor density changes related to disease progression. The goal of the present review is to provide an overview of the breadth of radiolabeled small molecules that have been synthesized to target intracellular protein kinases, not only for imaging in oncology, but also for other areas of interest, particularly the central nervous system.  Considerable radiotracer development has focused on imaging receptor tyrosine kinases of growth factors, protein kinases A, B and C, and glycogen synthase kinase–3β. Design considerations, structural attributes and relevant biological results are summarized.

  19. A kinase-anchoring proteins and adenylyl cyclase in cardiovascular physiology and pathology.

    Science.gov (United States)

    Efendiev, Riad; Dessauer, Carmen W

    2011-10-01

    3'-5'-Cyclic adenosine monophosphate (cAMP), generated by adenylyl cyclase (AC), serves as a second messenger in signaling pathways regulating many aspects of cardiac physiology, including contraction rate and action potential duration, and in the pathophysiology of hypertrophy and heart failure. A kinase-anchoring proteins localize the effect of cAMP in space and time by organizing receptors, AC, protein kinase A, and other components of the cAMP cascade into multiprotein complexes. In this review, we discuss how the interaction of A kinase-anchoring proteins with distinct AC isoforms affects cardiovascular physiology.

  20. Phosphorylation of acidic ribosomal proteins from rabbit reticulocytes by a ribosome-associated casein kinase

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate polyacryl......Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate...

  1. Exploring the function of protein kinases in schistosomes: perspectives from the laboratory and from comparative genomics

    Directory of Open Access Journals (Sweden)

    Anthony John Walker

    2014-07-01

    Full Text Available Eukaryotic protein kinases are well conserved through evolution. The genome of Schistosoma mansoni, which causes intestinal schistosomiasis, encodes over 250 putative protein kinases with all of the main eukaryotic groups represented. However, unraveling functional roles for these kinases is a considerable endeavour, particularly as protein kinases regulate multiple and sometimes overlapping cell and tissue functions in organisms. In this article, elucidating protein kinase signal transduction and function in schistosomes is considered from the perspective of the state-of-the-art methodologies used and comparative organismal biology, with a focus on current advances and future directions. Using the free-living nematode Caenorhabditis elegans as a comparator we predict roles for various schistosome protein kinases in processes vital for host invasion and successful parasitism such as sensory behaviour, growth and development. It is anticipated that the characterization of schistosome protein kinases in the context of parasite function will catalyze cutting edge research into host-parasite interactions and will reveal new targets for developing drug interventions against human schistosomiasis.

  2. Mitogen-activated protein kinases regulate susceptibility to ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Tamás Dolinay

    Full Text Available BACKGROUND: Mechanical ventilation causes ventilator-induced lung injury in animals and humans. Mitogen-activated protein kinases have been implicated in ventilator-induced lung injury though their functional significance remains incomplete. We characterize the role of p38 mitogen-activated protein kinase/mitogen activated protein kinase kinase-3 and c-Jun-NH(2-terminal kinase-1 in ventilator-induced lung injury and investigate novel independent mechanisms contributing to lung injury during mechanical ventilation. METHODOLOGY AND PRINCIPLE FINDINGS: C57/BL6 wild-type mice and mice genetically deleted for mitogen-activated protein kinase kinase-3 (mkk-3(-/- or c-Jun-NH(2-terminal kinase-1 (jnk1(-/- were ventilated, and lung injury parameters were assessed. We demonstrate that mkk3(-/- or jnk1(-/- mice displayed significantly reduced inflammatory lung injury and apoptosis relative to wild-type mice. Since jnk1(-/- mice were highly resistant to ventilator-induced lung injury, we performed comprehensive gene expression profiling of ventilated wild-type or jnk1(-/- mice to identify novel candidate genes which may play critical roles in the pathogenesis of ventilator-induced lung injury. Microarray analysis revealed many novel genes differentially expressed by ventilation including matrix metalloproteinase-8 (MMP8 and GADD45alpha. Functional characterization of MMP8 revealed that mmp8(-/- mice were sensitized to ventilator-induced lung injury with increased lung vascular permeability. CONCLUSIONS: We demonstrate that mitogen-activated protein kinase pathways mediate inflammatory lung injury during ventilator-induced lung injury. C-Jun-NH(2-terminal kinase was also involved in alveolo-capillary leakage and edema formation, whereas MMP8 inhibited alveolo-capillary protein leakage.

  3. The Sensitivity of Memory Consolidation and Reconsolidation to Inhibitors of Protein Synthesis and Kinases: Computational Analysis

    Science.gov (United States)

    Zhang, Yili; Smolen, Paul; Baxter, Douglas A.; Byrne, John H.

    2010-01-01

    Memory consolidation and reconsolidation require kinase activation and protein synthesis. Blocking either process during or shortly after training or recall disrupts memory stabilization, which suggests the existence of a critical time window during which these processes are necessary. Using a computational model of kinase synthesis and…

  4. Resorufin: a lead for a new protein kinase CK2 inhibitor

    DEFF Research Database (Denmark)

    Sandholt, Iben Skjøth; Olsen, Birgitte Brinkmann; Guerra, Barbara

    2009-01-01

    Screening a natural compound library led to the identification of resorufin as a highly selective and potent inhibitor of protein kinase CK2. Out of 52 kinases tested, only CK2 was inhibited, in contrast to emodin, a structurally related, known CK2 inhibitor that, in addition to CK2, inhibited te...

  5. Structure of protein kinase CK2: dimerization of the human beta-subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Mietens, U; Issinger, O G

    1996-01-01

    Protein kinase CK2 has been shown to be elevated in all so far investigated solid tumors and its catalytic subunit has been shown to serve as an oncogene product. CK2 is a heterotetrameric serine-threonine kinase composed of two catalytic (alpha and/or alpha') and two regulatory beta...

  6. Ability of CK2beta to selectively regulate cellular protein kinases

    DEFF Research Database (Denmark)

    Olsen, Birgitte; Guerra, Barbara

    2008-01-01

    The Wee1 protein kinase plays a prominent role in keeping cyclin dependent kinase 1 (CDK1) inactive during the G2 phase of the cell cycle. At the onset of mitosis, Wee1 is ubiquitinated by the E3 ubiquitin ligase SCF(beta-TrCP) and subsequently degraded by the proteasome machinery. Previously, it...

  7. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    Science.gov (United States)

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  8. Discovery and characterization of non-ATP site inhibitors of the mitogen activated protein (MAP) kinases.

    Science.gov (United States)

    Comess, Kenneth M; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R; Gum, Rebecca J; Borhani, David W; Argiriadi, Maria; Groebe, Duncan R; Jia, Yong; Clampit, Jill E; Haasch, Deanna L; Smith, Harriet T; Wang, Sanyi; Song, Danying; Coen, Michael L; Cloutier, Timothy E; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H; Stoll, Vincent; Ng, Teresa I; Banach, David; Marcotte, Doug; Burns, David J; Calderwood, David J; Hajduk, Philip J

    2011-03-18

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38α (involved in the formation of TNFα and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional (1)H/(13)C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38α both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in similar fashion to Jnk-1 si

  9. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J. (Abbott)

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  10. Tv-RIO1 – an atypical protein kinase from the parasitic nematode Trichostrongylus vitrinus

    Directory of Open Access Journals (Sweden)

    Sternberg Paul W

    2008-09-01

    Full Text Available Abstract Background Protein kinases are key enzymes that regulate a wide range of cellular processes, including cell-cycle progression, transcription, DNA replication and metabolic functions. These enzymes catalyse the transfer of phosphates to serine, threonine and tyrosine residues, thus playing functional roles in reversible protein phosphorylation. There are two main groups, namely eukaryotic protein kinases (ePKs and atypical protein kinases (aPKs; RIO kinases belong to the latter group. While there is some information about RIO kinases and their roles in animals, nothing is known about them in parasites. This is the first study to characterise a RIO1 kinase from any parasite. Results A full-length cDNA (Tv-rio-1 encoding a RIO1 protein kinase (Tv-RIO1 was isolated from the economically important parasitic nematode Trichostrongylus vitrinus (Order Strongylida. The uninterrupted open reading frame (ORF of 1476 nucleotides encoded a protein of 491 amino acids, containing the characteristic RIO1 motif LVHADLSEYNTL. Tv-rio-1 was transcribed at the highest level in the third-stage larva (L3, and a higher level in adult females than in males. Comparison with homologues from other organisms showed that protein Tv-RIO1 had significant homology to related proteins from a range of metazoans and plants. Amino acid sequence identity was most pronounced in the ATP-binding motif, active site and metal binding loop. Phylogenetic analyses of selected amino acid sequence data revealed Tv-RIO1 to be most closely related to the proteins in the species of Caenorhabditis. A structural model of Tv-RIO1 was constructed and compared with the published crystal structure of RIO1 of Archaeoglobus fulgidus (Af-Rio1. Conclusion This study provides the first insights into the RIO1 protein kinases of nematodes, and a foundation for further investigations into the biochemical and functional roles of this molecule in biological processes in parasitic nematodes.

  11. Tv-RIO1 - an atypical protein kinase from the parasitic nematode Trichostrongylus vitrinus.

    Science.gov (United States)

    Hu, Min; Laronde-Leblanc, Nicole; Sternberg, Paul W; Gasser, Robin B

    2008-09-22

    Protein kinases are key enzymes that regulate a wide range of cellular processes, including cell-cycle progression, transcription, DNA replication and metabolic functions. These enzymes catalyse the transfer of phosphates to serine, threonine and tyrosine residues, thus playing functional roles in reversible protein phosphorylation. There are two main groups, namely eukaryotic protein kinases (ePKs) and atypical protein kinases (aPKs); RIO kinases belong to the latter group. While there is some information about RIO kinases and their roles in animals, nothing is known about them in parasites. This is the first study to characterise a RIO1 kinase from any parasite. A full-length cDNA (Tv-rio-1) encoding a RIO1 protein kinase (Tv-RIO1) was isolated from the economically important parasitic nematode Trichostrongylus vitrinus (Order Strongylida). The uninterrupted open reading frame (ORF) of 1476 nucleotides encoded a protein of 491 amino acids, containing the characteristic RIO1 motif LVHADLSEYNTL. Tv-rio-1 was transcribed at the highest level in the third-stage larva (L3), and a higher level in adult females than in males. Comparison with homologues from other organisms showed that protein Tv-RIO1 had significant homology to related proteins from a range of metazoans and plants. Amino acid sequence identity was most pronounced in the ATP-binding motif, active site and metal binding loop. Phylogenetic analyses of selected amino acid sequence data revealed Tv-RIO1 to be most closely related to the proteins in the species of Caenorhabditis. A structural model of Tv-RIO1 was constructed and compared with the published crystal structure of RIO1 of Archaeoglobus fulgidus (Af-Rio1). This study provides the first insights into the RIO1 protein kinases of nematodes, and a foundation for further investigations into the biochemical and functional roles of this molecule in biological processes in parasitic nematodes.

  12. Distinct expression patterns of ICK/MAK/MOK protein kinases in the intestine implicate functional diversity.

    Directory of Open Access Journals (Sweden)

    Tufeng Chen

    Full Text Available ICK/MRK (intestinal cell kinase/MAK-related kinase, MAK (male germ cell-associated kinase, and MOK (MAPK/MAK/MRK-overlapping kinase are closely related serine/threonine protein kinases in the protein kinome. The biological functions and regulatory mechanisms of the ICK/MAK/MOK family are still largely elusive. Despite significant similarities in their catalytic domains, they diverge markedly in the sequence and structural organization of their C-terminal non-catalytic domains, raising the question as to whether they have distinct, overlapping, or redundant biological functions. In order to gain insights into their biological activities and lay a fundamental groundwork for functional studies, we investigated the spatio-temporal distribution patterns and the expression dynamics of ICK/MAK/MOK protein kinases in the intestine. We found that ICK/MAK/MOK proteins display divergent expression patterns along the duodenum-to-colon axis and during postnatal murine development. Furthermore, they are differentially partitioned between intestinal epithelium and mesenchyme. A significant increase in the protein level of ICK, but not MAK, was induced in human primary colon cancer specimens. ICK protein level was up-regulated whereas MOK protein level was down-regulated in mouse intestinal adenomas as compared with their adjacent normal intestinal mucosa. These data suggest distinct roles for ICK/MAK/MOK protein kinases in the regulation of intestinal neoplasia. Taken together, our findings demonstrate that the expressions of ICK/MAK/MOK proteins in the intestinal tract can be differentially and dynamically regulated, implicating a significant functional diversity within this group of protein kinases.

  13. Protein kinase C and extracellular signal-regulated kinase regulate movement, attachment, pairing and egg release in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Margarida Ressurreição

    2014-06-01

    Full Text Available Protein kinases C (PKCs and extracellular signal-regulated kinases (ERKs are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using 'smart' antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance.

  14. Protein kinase C-associated kinase is not required for the development of peripheral B lymphocyte populations.

    Science.gov (United States)

    Moran, Stewart T; Cariappa, Annaiah; Liu, Haoyuan; Boboila, Cristian; Shi, Hai Ning; Holland, Pamela M; Peschon, Jacques J; Pillai, Shiv

    2006-04-01

    Protein kinase C-associated kinase (PKK; DIK/RIP4) is an ankyrin-repeat containing serine/threonine receptor-interacting protein (RIP)-family kinase that can activate NFkappaB, and is required for keratinocyte development. In earlier studies, the expression of a catalytically inactive mutant of PKK in the B cell lineage resulted in a marked decrease in peripheral B cells in the spleen and a severe reduction of B-1 B cells. Here we explore the consequences of a null mutation in PKK with respect to the generation of peripheral B cell lineages and the activation of NFkappaB. We show that PKK is not required for the production of B cells in the bone marrow or for the development and maintenance of all mature B lymphocyte populations. We also show that PKK is not required for the activation of NFkappaB downstream of the BCR, CD40, or TLR-4 in B cells. Taken together, these data demonstrate that the loss of this RIP-family kinase does not compromise B lymphocyte development and maintenance, but leaves open the possibility that PKK may have a redundant role in these processes.

  15. Enzyme kinetics and distinct modulation of the protein kinase N family of kinases by lipid activators and small molecule inhibitors

    Science.gov (United States)

    Falk, Matthew D.; Liu, Wei; Bolaños, Ben; Unsal-Kacmaz, Keziban; Klippel, Anke; Grant, Stephan; Brooun, Alexei; Timofeevski, Sergei

    2014-01-01

    The PKN (protein kinase N) family of Ser/Thr protein kinases regulates a diverse set of cellular functions, such as cell migration and cytoskeletal organization. Inhibition of tumour PKN activity has been explored as an oncology therapeutic approach, with a PKN3-targeted RNAi (RNA interference)-derived therapeutic agent in Phase I clinical trials. To better understand this important family of kinases, we performed detailed enzymatic characterization, determining the kinetic mechanism and lipid sensitivity of each PKN isoform using full-length enzymes and synthetic peptide substrate. Steady-state kinetic analysis revealed that PKN1–3 follows a sequential ordered Bi–Bi kinetic mechanism, where peptide substrate binding is preceded by ATP binding. This kinetic mechanism was confirmed by additional kinetic studies for product inhibition and affinity of small molecule inhibitors. The known lipid effector, arachidonic acid, increased the catalytic efficiency of each isoform, mainly through an increase in kcat for PKN1 and PKN2, and a decrease in peptide KM for PKN3. In addition, a number of PKN inhibitors with various degrees of isoform selectivity, including potent (Ki<10 nM) and selective PKN3 inhibitors, were identified by testing commercial libraries of small molecule kinase inhibitors. This study provides a kinetic framework and useful chemical probes for understanding PKN biology and the discovery of isoform-selective PKN-targeted inhibitors. PMID:27919031

  16. Phosphorylation of the regulatory beta-subunit of protein kinase CK2 by checkpoint kinase Chk1: identification of the in vitro CK2beta phosphorylation site

    DEFF Research Database (Denmark)

    Kristensen, Lars P; Larsen, Martin Røssel; Højrup, Peter;

    2004-01-01

    The regulatory beta-subunit of protein kinase CK2 mediates the formation of the CK2 tetrameric form and it has functions independent of CK2 catalytic subunit through interaction with several intracellular proteins. Recently, we have shown that CK2beta associates with the human checkpoint kinase Chk...... by the modification of Thr213 but it does require the presence of an active Chk1 kinase....

  17. Protein Kinase N2 Regulates AMP-Kinase Signaling and Insulin Responsiveness of Glucose Metabolism in Skeletal Muscle.

    Science.gov (United States)

    Ruby, Maxwell A; Riedl, Isabelle; Massart, Julie; Åhlin, Marcus; Zierath, Juleen R

    2017-07-18

    Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. As skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. While Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases. We investigated the impact of PKN2 on insulin signaling and glucose metabolism in primary human skeletal muscle cells in vitro and mouse tibialis anterior muscle in vivo. PKN2 knockdown in vitro decreased insulin-stimulated glucose uptake, incorporation into glycogen, and oxidation. PKN2 siRNA increased 5' adenosine monophosphate-activated protein kinase (AMPK) signaling, while stimulating fatty acid oxidation and incorporation into triglycerides, and decreasing protein synthesis. At the transcriptional level, PKN2 knockdown increased expression of PGC1α and SREBP1c and their target genes. In mature skeletal muscle, in vivo PKN2 knockdown decreased glucose uptake and increased AMPK phosphorylation. Thus, PKN2 alters key signaling pathways and transcriptional networks to regulate glucose and lipid metabolism. Identification of PKN2 as a novel regulator of insulin and AMPK signaling may provide an avenue for manipulation of skeletal muscle metabolism. Copyright © 2017, American Journal of Physiology-Endocrinology and Metabolism.

  18. A tumor suppressor C53 protein antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    Science.gov (United States)

    Jiang, Hai; Wu, Jianchun; He, Chen; Yang, Wending; Li, Honglin

    2009-01-01

    Cyclin dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint (1). More recently, Wang et al (2007) found that C53/LZAP may function as a tumor suppressor via inhibiting NF-κB signaling (2). We report here identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdk1 activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexrepsssion. Intriguingly, we found that C53 interacts with checkpoint kinase 1 (Chk1) and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell cycle progression and DNA damage response. PMID:19223857

  19. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle F Goody

    Full Text Available Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction

  20. Association of protein kinase FA/GSK-3alpha (a proline-directed kinase and a regulator of protooncogenes) with human cervical carcinoma dedifferentiation/progression.

    Science.gov (United States)

    Yang, S D; Yu, J S; Lee, T T; Ni, M H; Yang, C C; Ho, Y S; Tsen, T Z

    1995-10-01

    Computer analysis of protein phosphorylation-sites sequence revealed that most transcriptional factors and viral oncoproteins are prime targets for regulation of proline-directed protein phosphorylation, suggesting an association of proline-directed protein kinase (PDPK) family with neoplastic transformation and tumorigenesis. In this report, an immunoprecipitate activity assay of protein kinase FA/glycogen synthase kinase-3alpha (kinase FA/GSK-3alpha) (a particular member of PDPK family) has been optimized for human cervical tissue and used to demonstrate for the first time significantly increased (P < 0.001) activity in poorly differentiated cervical carcinoma (82.8 +/- 6.6 U/mg of protein), moderately differentiated carcinoma (36.2 +/- 3.4 U/mg of protein), and well-differentiated carcinoma (18.3 +/- 2.4 U/mg of protein) from 36 human cervical carcinoma samples when compared to 12 normal controls (4.9 +/- 0.6 U/mg of protein). Immunoblotting analysis further revealed that increased activity of kinase FA/GSK-3alpha in cervical carcinoma is due to overexpression of protein synthesis of the kinase. Taken together, the results provide initial evidence that overexpression of protein synthesis and cellular activity of kinase FA/GSK-3alpha may be involved in human cervical carcinoma dedifferentiation/progression, supporting an association of proline-directed protein kinase with neoplastic transformation and tumorigenesis. Since protein kinase FA/GSK-3alpha may function as a possible regulator of transcription factors/proto-oncogenes, the results further suggest that kinase FA/GSK-3alpha may play a potential role in human cervical carcinogenesis, especially in its dedifferentiation and progression.

  1. Evolutionary history of the vertebrate mitogen activated protein kinases family.

    Directory of Open Access Journals (Sweden)

    Meng Li

    Full Text Available BACKGROUND: The mitogen activated protein kinases (MAPK family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear. METHODOLOGY/PRINCIPAL FINDINGS: The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gene expression level of both MAPK genes. CONCLUSIONS/SIGNIFICANCE: These results provide valuable insight into the evolutionary history of the vertebrate MAPK family.

  2. Expanding the Kinome World: A New Protein Kinase Family Widely Conserved in Bacteria.

    Science.gov (United States)

    Nguyen, Hien-Anh; El Khoury, Takla; Guiral, Sébastien; Laaberki, Maria-Halima; Candusso, Marie-Pierre; Galisson, Frédéric; Foucher, Anne-Emmanuelle; Kesraoui, Salsabil; Ballut, Lionel; Vallet, Sylvain; Orelle, Cédric; Zucchini, Laure; Martin, Juliette; Page, Adeline; Attieh, Jihad; Aghajari, Nushin; Grangeasse, Christophe; Jault, Jean-Michel

    2017-10-13

    Fine tuning of signaling pathways is essential for cells to cope with sudden environmental variations. This delicate balance is maintained in particular by protein kinases that control the activity of target proteins by reversible phosphorylation. In addition to homologous eukaryotic enzymes, bacteria have evolved some specific Ser/Thr/Tyr protein kinases without any structural resemblance to their eukaryotic counterparts. Here, we show that a previously identified family of ATPases, broadly conserved among bacteria, is in fact a new family of protein kinases with a Ser/Thr/Tyr kinase activity. A prototypic member of this family, YdiB from Bacillus subtilis, is able to autophosphorylate and to phosphorylate a surrogate substrate, the myelin basic protein. Two crystal structures of YdiB were solved (1.8 and 2.0Å) that display a unique ATP-binding fold unrelated to known protein kinases, although a conserved HxD motif is reminiscent of that found in Hanks-type protein kinases. The effect of mutations of conserved residues further highlights the unique nature of this new protein kinase family that we name ubiquitous bacterial kinase. We investigated the cellular role of YdiB and showed that a ∆ydiB mutant was more sensitive to paraquat treatment than the wild type, with ~13% of cells with an aberrant morphology. In addition, YdiE, which is known to participate with both YdiC and YdiB in an essential chemical modification of some specific tRNAs, is phosphorylated in vitro by YdiB. These results expand the boundaries of the bacterial kinome and support the involvement of YdiB in protein translation and resistance to oxidative stress in B. subtilis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Activation of protein kinase C inhibits synthesis and release of decidual prolactin

    Energy Technology Data Exchange (ETDEWEB)

    Harman, I.; Costello, A.; Ganong, B.; Bell, R.M.; Handwerger, S.

    1986-08-01

    Activation of calcium-activated, phospholipid-dependent protein kinase C by diacylglycerol and phorbol esters has been shown to mediate release of hormones in many systems. To determine whether protein kinase C activation is also involved in the regulation of prolactin release from human decidual, the authors have examined the effects of various acylglycerols and phorbol esters on the synthesis and release of prolactin from cultured human decidual cells. sn-1,2-Dioctanolyglycerol (diC8), which is known to stimulate protein kinase C in other systems, inhibited prolactin release in a dose-dependent manner with maximal inhibition of 53.1% at 100 M. Diolein (100 M), which also stimulates protein kinase C activity in some systems, inhibited prolactin release by 21.3%. Phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-didecanoate, and 4US -phorbol 12,13-dibutyrate, which activate protein kinase C in other systems, also inhibited the release of prolactin, which the protein kinase C inactivate 4 -phorbol-12,13-didecanoate was without effect. The inhibition of prolactin release was secondary to a decrease in prolactin synthesis. Although diC8 and PMA inhibited the synthesis and release of prolactin, these agents had no effect on the synthesis or release of trichloroacetic acid-precipitable (TVS)methionine-labeled decidual proteins and did not cause the release of the cytosolic enzymes lactic dehydrogenase and alkaline phosphatase. DiC8 and PMA stimulates the specific activity of protein kinase C in decidual tissue by 14.6 and 14.0-fold, respectively. The inhibition of the synthesis and release of prolactin by diC8 and phorbol esters strongly implicates protein kinase C in the regulation of the production and release of prolactin from the decidua.

  4. Molecular Modelling of Calcium Dependent Protein Kinase 4 (CDPK4) from Plasmodium falciparum

    CSIR Research Space (South Africa)

    Tsekoa, Tsepo L

    2012-07-01

    Full Text Available . Development of new drug targets is of vital importance in this regard. The recent availability of genomic information and the resultant observation that in many instances, protein kinases from parasitic protozoa are phylogenetically distant from those...

  5. Crystallographic characterization of a multidomain histidine protein kinase from an essential two-component regulatory system

    OpenAIRE

    ZHAO, Haiyan; Tang, Liang

    2009-01-01

    The multidomain cytoplasmic portion of the histidine protein kinase from an essential two-component signal transduction system has been crystallized and X-ray data have been collected to 2.8 Å resolution.

  6. Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons.

    Science.gov (United States)

    Strong, J A; Fox, A P; Tsien, R W; Kaczmarek, L K

    The modulation of voltage-activated calcium currents by protein kinases provides excitable cells with a mechanism for regulating their electrical behaviour. At the single channel level, modulation of calcium current has, to date, been characterized only in cardiac muscle, where beta-adrenergic agonists, acting through cyclic AMP-dependent protein kinase, enhance the calcium current by increasing channel availability and opening. We now report that enhancement of calcium current in the peptidergic bag cell neurons of Aplysia by protein kinase C occurs through a different mechanism, the recruitment of a previously covert class of calcium channel. Under control conditions, bag cell neurons contain only one class of voltage-activated calcium channel with a conductance of approximately 12 pS. After exposure to agents that activate protein kinase C, these neurons also express a second class of calcium channel with a different unitary conductance (approximately 24 pS) that is never seen in untreated cells.

  7. BDNF stimulation of protein synthesis in cortical neurons requires the MAP kinase-interacting kinase MNK1.

    Science.gov (United States)

    Genheden, Maja; Kenney, Justin W; Johnston, Harvey E; Manousopoulou, Antigoni; Garbis, Spiros D; Proud, Christopher G

    2015-01-21

    Although the MAP kinase-interacting kinases (MNKs) have been known for >15 years, their roles in the regulation of protein synthesis have remained obscure. Here, we explore the involvement of the MNKs in brain-derived neurotrophic factor (BDNF)-stimulated protein synthesis in cortical neurons from mice. Using a combination of pharmacological and genetic approaches, we show that BDNF-induced upregulation of protein synthesis requires MEK/ERK signaling and the downstream kinase, MNK1, which phosphorylates eukaryotic initiation factor (eIF) 4E. Translation initiation is mediated by the interaction of eIF4E with the m(7)GTP cap of mRNA and with eIF4G. The latter interaction is inhibited by the interactions of eIF4E with partner proteins, such as CYFIP1, which acts as a translational repressor. We find that BDNF induces the release of CYFIP1 from eIF4E, and that this depends on MNK1. Finally, using a novel combination of BONCAT and SILAC, we identify a subset of proteins whose synthesis is upregulated by BDNF signaling via MNK1 in neurons. Interestingly, this subset of MNK1-sensitive proteins is enriched for functions involved in neurotransmission and synaptic plasticity. Additionally, we find significant overlap between our subset of proteins whose synthesis is regulated by MNK1 and those encoded by known FMRP-binding mRNAs. Together, our data implicate MNK1 as a key component of BDNF-mediated translational regulation in neurons.

  8. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  9. Pkn9, a Ser/Thr protein kinase involved in the development of Myxococcus xanthus.

    Science.gov (United States)

    Hanlon, W A; Inouye, M; Inouye, S

    1997-02-01

    The Myxococcus xanthus gene, pkn9, encodes a protein that contains significant homology with eukaryotic Ser/Thr protein kinases. The pkn9 gene was singled out of a previously identified family of kinase genes by amplification techniques that displayed differences in kinase gene expression during selected periods of the M. xanthus life cycle. Pkn9 was constitutively expressed during vegetative growth and upregulated during the aggregation stage of early development. It consists of 589 amino acids, and its N-terminal 394 residues show 38% identity with both Pkn1 and Pkn2 of M. xanthus. This region also shows 29, 25 and 29% identify with myosin light-chain kinase, protein kinase C, and cAMP-dependent protein kinase, respectively. A 22-residue hydrophobic transmembrane domain separates the kinase domain from the 173-residue C-terminal domain that resides on the outside of the inner membrane. The C-terminal domain contains two sets of tandem repeats of 13 and 10 residues which have no known function. When expressed in Escherichia coli under the T7 promoter, Pkn9 was found to be phosphorylated on serine and threonine residues. Disruption of the pkn9 kinase catalytic subdomains I-III by the insertion of a kanamycin-resistance gene resulted in slightly delayed, smaller and more-crowded fruiting bodies, while spore formation was normal. Total deletion of the pkn9 gene caused severely reduced progression through development resulting in light loose mounds that become slightly more compact over time. Development progressed further at the centre than at the edge of the spot, and spore formation was significantly reduced. Two-dimensional gel analysis revealed that both the disruption and the deletion of pkn9 prevented the expression of five membrane proteins (KREP9-1-4). These results suggest that the loss of Pkn9 kinase activity caused altered fruiting-body formation, the absence of the KREP9 proteins in the membrane, and reduced spore production.

  10. Schistosoma mansoni c-AMP-dependent Protein Kinase (PKA): A Potential New Drug Target

    Science.gov (United States)

    2009-12-07

    chloroadenosine 3’,5’-monophosphate in breast cancer patients and xenograft bearing mice. Ann Oncol 7: 291-296. 129. Tortora G, Ciardiello F, Pepe S...cyclic-AMP-dependent protein kinases by using cyclic nucleotide analogs. Eur J Biochem 181: 19-31. 47. Yokozaki H, Tortora G, Pepe S, Maronde E...181: 19-31. 150 28. Ally S, Tortora G, Clair T, Grieco D, Merlo G, et al. (1988) Selective modulation of protein kinase isozymes by the site

  11. Fas-associated factor 1 interacts with protein kinase CK2 in vivo upon apoptosis induction

    DEFF Research Database (Denmark)

    Guerra, B; Boldyreff, B; Issinger, O G

    2001-01-01

    We show here that in several different cell lines protein kinase CK2 and Fas-associated factor 1 (FAF1) exist together in a complex which is stable to high monovalent salt concentration. The CK2/FAF1 complex formation is significantly increased after induction of apoptosis with various DNA damaging...... the view that protein kinase CK2 plays an important role in certain steps of apoptosis....

  12. Competing G protein-coupled receptor kinases balance G protein and β-arrestin signaling.

    Science.gov (United States)

    Heitzler, Domitille; Durand, Guillaume; Gallay, Nathalie; Rizk, Aurélien; Ahn, Seungkirl; Kim, Jihee; Violin, Jonathan D; Dupuy, Laurence; Gauthier, Christophe; Piketty, Vincent; Crépieux, Pascale; Poupon, Anne; Clément, Frédérique; Fages, François; Lefkowitz, Robert J; Reiter, Eric

    2012-06-26

    Seven-transmembrane receptors (7TMRs) are involved in nearly all aspects of chemical communications and represent major drug targets. 7TMRs transmit their signals not only via heterotrimeric G proteins but also through β-arrestins, whose recruitment to the activated receptor is regulated by G protein-coupled receptor kinases (GRKs). In this paper, we combined experimental approaches with computational modeling to decipher the molecular mechanisms as well as the hidden dynamics governing extracellular signal-regulated kinase (ERK) activation by the angiotensin II type 1A receptor (AT(1A)R) in human embryonic kidney (HEK)293 cells. We built an abstracted ordinary differential equations (ODE)-based model that captured the available knowledge and experimental data. We inferred the unknown parameters by simultaneously fitting experimental data generated in both control and perturbed conditions. We demonstrate that, in addition to its well-established function in the desensitization of G-protein activation, GRK2 exerts a strong negative effect on β-arrestin-dependent signaling through its competition with GRK5 and 6 for receptor phosphorylation. Importantly, we experimentally confirmed the validity of this novel GRK2-dependent mechanism in both primary vascular smooth muscle cells naturally expressing the AT(1A)R, and HEK293 cells expressing other 7TMRs.

  13. Hepatitis B virus x protein induces autophagy via activating death-associated protein kinase.

    Science.gov (United States)

    Zhang, H-T; Chen, G G; Hu, B-G; Zhang, Z-Y; Yun, J-P; He, M-L; Lai, P B S

    2014-01-01

    Hepatitis B virus x protein (HBX), a product of hepatitis B virus (HBV), is a multifunctional protein that regulates viral replication and various cellular functions. Recently, HBX has been shown to induce autophagy; however, the responsible mechanism is not fully known. In this study, we established stable HBX-expressing epithelial Chang cells as the platform to study how HBX induced autophagy. The results showed that the overexpression of HBX resulted in starvation-induced autophagy. HBX-induced autophagy was related to its ability to dephosphorylate/activate death-associated protein kinase (DAPK). The block of DAPK by its siRNA significantly counteracted HBX-mediated autophagy, confirming the positive role of DAPK in this process. HBX also induced Beclin 1, which functions at the downstream of the DAPK-mediated autophagy pathway. Although HBX could activate JNK, a kinase known to participate in autophagy in certain conditions, the change in JNK failed to influence HBX-induced autophagy. In conclusion, HBX induces autophagy via activating DAPK in a pathway related to Beclin 1, but not JNK. This new finding should help us to understand the role of autophagy in HBX-mediated pathogenesis and thus may provide targets for intervening HBX-related disorders.

  14. Reduced Activity of Mutant Calcium-Dependent Protein Kinase 1 Is Compensated in Plasmodium falciparum through the Action of Protein Kinase G

    Directory of Open Access Journals (Sweden)

    Abhisheka Bansal

    2016-12-01

    Full Text Available We used a sensitization approach that involves replacement of the gatekeeper residue in a protein kinase with one with a different side chain. The activity of the enzyme with a bulky gatekeeper residue, such as methionine, cannot be inhibited using bumped kinase inhibitors (BKIs. Here, we have used this approach to study Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1. The methionine gatekeeper substitution, T145M, although it led to a 47% reduction in transphosphorylation, was successfully introduced into the CDPK1 locus using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9. As methionine is a bulky residue, BKI 1294 had a 10-fold-greater effect in vitro on the wild-type enzyme than on the methionine mutant. However, in contrast to in vitro data with recombinant enzymes, BKI 1294 had a slightly greater inhibition of the growth of CDPK1 T145M parasites than the wild type. Moreover, the CDPK1 T145M parasites were more sensitive to the action of compound 2 (C2, a specific inhibitor of protein kinase G (PKG. These results suggest that a reduction in the activity of CDPK1 due to methionine substitution at the gatekeeper position is compensated through the direct action of PKG or of another kinase under the regulation of PKG. The transcript levels of CDPK5 and CDPK6 were significantly upregulated in the CDPK1 T145M parasites. The increase in CDPK6 or some other kinase may compensate for decrease in CDPK1 activity during invasion. This study suggests that targeting two kinases may be more effective in chemotherapy to treat malaria so as not to select for mutations in one of the enzymes.

  15. Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins.

    Science.gov (United States)

    Oh, Chang-Sik; Martin, Gregory B

    2011-04-22

    Programmed cell death (PCD) associated with immunity is triggered when a plant disease resistance (R) protein recognizes a corresponding pathogen virulence protein. In tomato, detection by the host Pto kinase of the Pseudomonas syringae proteins AvrPto or AvrPtoB causes localized PCD. Previously, we reported that both MAPKKKα (mitogen-activated protein kinase kinase kinase) and the tomato 14-3-3 protein 7 (TFT7) positively regulate Pto-mediated PCD in tomato and Nicotiana benthamiana. In addition, in contrast to MAPKKKα, TFT7 is required for PCD mediated by four other R proteins. Here we investigate why TFT7 is required for PCD induced by diverse R proteins in plants. We discovered that a MAPKK, SlMKK2, which acts downstream of SlMAPKKKα, also interacts with TFT7 in plant cells. Gene silencing experiments revealed that the orthologous genes of both SlMKK2 and TFT7 in N. benthamiana are required for PCD mediated by the same set of R proteins. SlMKK2 and its orthologs contain a 14-3-3 binding site in their N terminus, and Thr(33) in this site is required for interaction with TFT7 in vivo. Like the structurally similar human 14-3-3ε protein, TFT7 forms a homodimer in vivo. Because TFT7 interacts with both SlMAPKKKα and SlMKK2 and also forms a homodimer, we propose that TFT7 may coordinately recruit these client proteins for efficient signal transfer, leading to PCD induction.

  16. Deep evolutionary conservation of an intramolecular protein kinase activation mechanism.

    Directory of Open Access Journals (Sweden)

    Jingfen Han

    Full Text Available DYRK-family kinases employ an intramolecular mechanism to autophosphorylate a critical tyrosine residue in the activation loop. Once phosphorylated, DYRKs lose tyrosine kinase activity and function as serine/threonine kinases. DYRKs have been characterized in organisms from yeast to human; however, all entities belong to the Unikont supergroup, only one of five eukaryotic supergroups. To assess the evolutionary age and conservation of the DYRK intramolecular kinase-activation mechanism, we surveyed 21 genomes representing four of the five eukaryotic supergroups for the presence of DYRKs. We also analyzed the activation mechanism of the sole DYRK (class 2 DYRK present in Trypanosoma brucei (TbDYRK2, a member of the excavate supergroup and separated from Drosophila by ∼850 million years. Bioinformatics showed the DYRKs clustering into five known subfamilies, class 1, class 2, Yaks, HIPKs and Prp4s. Only class 2 DYRKs were present in all four supergroups. These diverse class 2 DYRKs also exhibited conservation of N-terminal NAPA regions located outside of the kinase domain, and were shown to have an essential role in activation loop autophosphorylation of Drosophila DmDYRK2. Class 2 TbDYRK2 required the activation loop tyrosine conserved in other DYRKs, the NAPA regions were critical for this autophosphorylation event, and the NAPA-regions of Trypanosoma and human DYRK2 complemented autophosphorylation by the kinase domain of DmDYRK2 in trans. Finally, sequential deletion analysis was used to further define the minimal region required for trans-complementation. Our analysis provides strong evidence that class 2 DYRKs were present in the primordial or root eukaryote, and suggest this subgroup may be the oldest, founding member of the DYRK family. The conservation of activation loop autophosphorylation demonstrates that kinase self-activation mechanisms are also primitive.

  17. W55a Encodes a Novel Protein Kinase That Is Involved in Multiple Stress Responses

    Institute of Scientific and Technical Information of China (English)

    Zhao-Shi Xu; Li Liu; Zhi-Yong Ni; Pei Liu; Ming Chen; Lian-Cheng Li; Yao-Feng Chen; You-Zhi Ma

    2009-01-01

    Protein kinases play crucial roles In response to external environment stress signals. A putative protein kinase, W55a, belonging to SNF1-related protein kinase 2 (SnRK2) subfamily, was isolated from a cDNA library of drought-treated wheat seedlings. The entire length of W55a was obtained using rapid amplification of 5' cDNA ends (5'-RACE) and reverse transcription-polymerase chain reaction(RT-PCR). It contains a 1029-bp open reading frame (ORF) encoding 342 amino acids. The deduced amino acid sequence of W55a had eleven conserved catalytic subdomains and one Ser/Thr protein kinase active-site that characterize Ser/Thr protein kinases. Phylogenetic analysis showed that W55a was 90.38% homologous with rice SAPK1, a member of the SnRK2 family. Using nullisomic-tetrasomic and ditelocentric lines of Chinese Spring, W55a was located on chromosome 2BS. Expression pattern analysis revealed that W55a was upregulated by drought and salt, exogenous abscisic acid, salicylic acid, ethylene and methyl jasmonata, but was not responsive to cold stress. In addition, W55a transcripts were abundant in leaves, but not in roots or stems, under environmental stresses. Transgenic Arabidopsis plants overexprassing W55a exhibited higher tolerance to drought. Based on these findings, W55a encodes a novel dehydration-responsive protein kinase that is involved in multiple stress signal transductions.

  18. Three-Dimentional Structures of Autophosphorylation Complexes in Crystals of Protein Kinases

    KAUST Repository

    Dumbrack, Roland

    2016-01-26

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Several autophosphorylation complexes have been identified in crystals of protein kinases, with a known serine, threonine, or tyrosine autophosphorylation site of one kinase monomer sitting in the active site of another monomer of the same protein in the crystal. We utilized a structural bioinformatics method to identify all such autophosphorylation complexes in X-ray crystallographic structures in the Protein Data Bank (PDB) by generating all unique kinase/kinase interfaces within and between asymmetric units of each crystal and measuring the distance between the hydroxyl oxygen of potential autophosphorylation sites and the oxygen atoms of the active site aspartic acid residue side chain. We have identified 15 unique autophosphorylation complexes in the PDB, of which 5 complexes have not previously been described in the relevant publications on the crystal structures (N-terminal juxtamembrane regions of CSF1R and EPHA2, activation loop tyrosines of LCK and IGF1R, and a serine in a nuclear localization signal region of CLK2. Mutation of residues in the autophosphorylation complex interface of LCK either severely impaired autophosphorylation or increased it. Taking the autophosphorylation complexes as a whole and comparing them with peptide-substrate/kinase complexes, we observe a number of important features among them. The novel and previously observed autophosphorylation sites are conserved in many kinases, indicating that by homology we can extend the relevance of these complexes to many other clinically relevant drug targets.

  19. [Duchenne muscular dystrophy pathophysiology].

    Science.gov (United States)

    Péréon, Y; Mercier, S; Magot, A

    2015-12-01

    Dystrophin is a large cytoskeletal protein located at the plasma membrane in both muscle and non-muscle tissues, which mediates interactions between the cytoskeleton, cell membrane, and extracellular matrix. Dystrophin is a key component of multiprotein complexes (dystrophin- associated glycoprotein complex, or DGC). It is also involved in many intracellular cascades affecting membrane proteins such as calcium channels, or various signalisation pathways. In Duchenne Muscular Dystrophy, both dystrophin and DGC proteins are missing. This induces excessive membrane fragility and permeability, dysregulation of calcium homeostasis, oxidative damage, which in turn favour muscle cell necrosis. The latter is initially followed by regeneration. With age, the regenerative capacity of the muscles appears to be exhausted and muscle fibres are gradually replaced by connective and adipose tissue. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. [A genetic systemic disease: clinical description of type 1 myotonic dystrophy in adults].

    Science.gov (United States)

    Kaminsky, P; Pruna, L

    2012-09-01

    Type 1 myotonic dystrophy is an autosomal dominant inherited disorder related to the expansion of a trinucleotide (CTG) repeat in the exon 15 in the 3'-untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. Mutant transcripts containing an expanded CUG repeat are retained in nuclear foci and cause numerous dysfunctions by interfering with biogenesis of other mRNAs. Prominent clinical features are progressive muscular weakness and myotonia, which affect skeletal muscles but also white muscles leading to digestive, urinary and obstetrical disorders. Functional prognosis correlates with motor handicap and vital prognosis is linked to cardiac rhythm disturbances and conduction defects due to progressive subendocardial fibrosis, and to complex respiratory dysfunctions, which associate restrictive lung disease, involvement of the central inspiratory pathway, and sleep apnea. Other clinical features are lens opacity, glucose intolerance, metabolic syndrome, several endocrine disorders (gonadal deficiency, hyperparathydoidism), or immunoglobulin deficiency due to immunoglobulin G hypercatabolism. Life expectancy is reduced in myotonic dystrophy, and death is mainly caused by respiratory complications, but also by cardiac arrhythmias. Moreover, an abnormal incidence of tumors has been reported. Therefore, myotonic dystrophy does not only concern neurologists but a multidisciplinary approach is necessary, including at least pneumologist, cardiologist, and physiotherapist. General internists should also be implicated, not only in the initial diagnosis step, but also in the diagnosis of complications and their treatments.

  1. Two cases of myotonic dystrophy manifesting various ophthalmic findings with genetic evaluation

    Directory of Open Access Journals (Sweden)

    Min Ji Kang

    2016-01-01

    Full Text Available We report two cases of myotonic dystrophy in one family; both diagnosed from genetic analysis following ophthalmic indications, but before the manifestation of systemic symptoms. A 39-year-old female visited our clinic for routine examination. Mild ptosis, sluggish pupillary response, and bilateral snowflake cataracts were found. Fundus examination revealed an increased cup-to-disc ratio (CDR in both eyes and a defect in the retinal nerve fiber layer in the right eye. Intraocular pressure was low, but within the normal range in both eyes. Because cataracts are characteristic of myotonic dystrophy, we suggested that her 14-year-old daughter, who did not have any systemic complaints, undergo ophthalmic examination. She also had mild ptosis and snowflake cataracts. Both patients underwent genetic evaluation and were diagnosed with myotonic dystrophy caused by unstable expansion of cytosine-thymine-guanine trinucleotide repeats in the dystrophia myotonica-protein kinase gene. Ophthalmologists can diagnose myotonic dystrophy based on clinical and genetic findings, before the manifestation of systemic abnormalities.

  2. Partial purification and characterization of a Ca(2+)-dependent protein kinase from pea nuclei

    Science.gov (United States)

    Li, H.; Dauwalder, M.; Roux, S. J.

    1991-01-01

    Almost all the Ca(2+)-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 x 10(-7) molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca(2+)-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca(2+)-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion.

  3. A tumor suppressor C53 protein antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    OpenAIRE

    Jiang, Hai; Wu, Jianchun; He, Chen; Yang, Wending; Li, Honglin

    2009-01-01

    Cyclin dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint (1). More recently, Wang et al (2007) found that C53/LZAP may function as a tumor suppressor via inhibiting NF-κB signaling (2). We report here identification of C53 protein as a novel...

  4. Analysis of protein phosphatase-1 and aurora protein kinase suppressors reveals new aspects of regulatory protein function in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Anuprita Ghosh

    Full Text Available Protein phosphatase-1 (PP1 controls many processes in eukaryotic cells. Modulation of mitosis by reversing phosphorylation of proteins phosphorylated by aurora protein kinase is a critical function for PP1. Overexpression of the sole PP1, Glc7, in budding yeast, Saccharomyces cerevisiae, is lethal. This work shows that lethality requires the function of Glc7 regulatory proteins Sds22, Reg2, and phosphorylated Glc8. This finding shows that Glc7 overexpression induced cell death requires a specific subset of the many Glc7-interacting proteins and therefore is likely caused by promiscuous dephosphorylation of a variety of substrates. Additionally, suppression can occur by reducing Glc7 protein levels by high-copy Fpr3 without use of its proline isomerase domain. This divulges a novel function of Fpr3. Most suppressors of GLC7 overexpression also suppress aurora protein kinase, ipl1, temperature-sensitive mutations. However, high-copy mutant SDS22 genes show reciprocal suppression of GLC7 overexpression induced cell death or ipl1 temperature sensitivity. Sds22 binds to many proteins besides Glc7. The N-terminal 25 residues of Sds22 are sufficient to bind, directly or indirectly, to seven proteins studied here including the spindle assembly checkpoint protein, Bub3. These data demonstrate that Sds22 organizes several proteins in addition to Glc7 to perform functions that counteract Ipl1 activity or lead to hyper Glc7 induced cell death. These data also emphasize that Sds22 targets Glc7 to nuclear locations distinct from Ipl1 substrates.

  5. The role of Protein Kinase Cη in T cell biology

    Directory of Open Access Journals (Sweden)

    Nicholas R.J. Gascoigne

    2012-06-01

    Full Text Available Protein kinase Cη (PKCη is a member of the novel PKC subfamily, which also includes δ, ε, and θ isoforms. Compared to the other novel PKCs, the function of PKCη in the immune system is largely unknown. Several studies have started to reveal the role of PKCη, particularly in T cells. PKCη is highly expressed in T cells, and is upregulated during thymocyte positive selection. Interestingly, like the θ isoform, PKCη is also recruited to the immunological synapse that is formed between a T cell and an antigen-presenting cell. However, unlike PKCθ, which becomes concentrated to the central region of the synapse, PKCη remains in a diffuse pattern over the whole area of the synapse, suggesting distinctive roles of these two isoforms in signal transduction. Although PKCη is dispensable for thymocyte development, further analysis of PKCη− or PKCθ−deficient and double knockout mice revealed the redundancy of these two isoforms in thymocyte development. In contrast, PKCη rather than PKCθ, plays an important role for T cell homeostatic proliferation, which requires recognition of self-antigen. Another piece of evidence demonstrating that PKCη and PKCθ have isoform specific as well as redundant roles come from the analysis of CD4 to CD8 T cell ratios in the periphery of these knockout mice. Deficiency in PKCη or PKCθ had opposing effects as PKCη knockout mice had a higher ratio of CD4 to CD8 T cells compared to that of wild-type mice, whereas PKCθ-deficient mice had a lower ratio. Biochemical studies showed that calcium flux and NFκB translocation is impaired in PKCη-deficient T cells upon TCR crosslinking stimulation, a character shared with PKCθ-deficient T cells. However, unlike the case with PKCθ, the mechanistic study of PKCη is at early stage and the signaling pathways involving PKCη, at least in T cells, are essentially unknown. In this review, we will cover the topics mentioned above as well as provide some

  6. Protein kinase A catalytic subunit isoform PRKACA; History, function and physiology.

    Science.gov (United States)

    Turnham, Rigney E; Scott, John D

    2016-02-15

    Our appreciation of the scope and influence of second messenger signaling has its origins in pioneering work on the cAMP-dependent protein kinase. Also called protein kinase A (PKA), this holoenzyme exists as a tetramer comprised of a regulatory (R) subunit dimer and two catalytic (C) subunits. Upon binding of two molecules of the second messenger cAMP to each R subunit, a conformational change in the PKA holoenzyme occurs to release the C subunits. These active kinases phosphorylate downstream targets to propagate cAMP responsive cell signaling events. This article focuses on the discovery, structure, cellular location and physiological effects of the catalytic subunit alpha of protein kinase A (encoded by the gene PRKACA). We also explore the potential role of this essential gene as a molecular mediator of certain disease states. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Increased activity of rat liver nucleolar protein kinase following triiodothyronine administration.

    Science.gov (United States)

    Fugassa, E; Gallo, G; Pertica, M; Voci, A; Orunesu, M

    1977-12-08

    Triiodothyronine (T3) administration to thyroidectomized rats induces a significant increase in the nucleolus-associated protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) activity. The general properties of the protein kinase solubilized from liver nucleoli have been investigated. Mg2+ (20 mM) is essential for the reaction and an appropriate concentration of NaCl (100 mM) is required to achieve maximal phosphorylation rates. The optimal pH for casein phosphorylation is 7.6. The kinase phosphorylates casein more efficiently than phosvitin and displays an almost undetectable activity towards histones and protamine. No significant stimulation of the kinase activity by cyclic AMP has been detected. The apparent Km values for casein and ATP are 1.5 mg/ml and 1.5-10(-5) M, respectively, and are not affected by the hormone administration.

  8. Protein Kinase Cϵ (PKCϵ) Promotes Synaptogenesis through Membrane Accumulation of the Postsynaptic Density Protein PSD-95*

    Science.gov (United States)

    Sen, Abhik; Hongpaisan, Jarin; Wang, Desheng; Nelson, Thomas J.; Alkon, Daniel L.

    2016-01-01

    Protein kinase Cϵ (PKCϵ) promotes synaptic maturation and synaptogenesis via activation of synaptic growth factors such as BDNF, NGF, and IGF. However, many of the detailed mechanisms by which PKCϵ induces synaptogenesis are not fully understood. Accumulation of PSD-95 to the postsynaptic density (PSD) is known to lead to synaptic maturation and strengthening of excitatory synapses. Here we investigated the relationship between PKCϵ and PSD-95. We show that the PKCϵ activators dicyclopropanated linoleic acid methyl ester and bryostatin 1 induce phosphorylation of PSD-95 at the serine 295 residue, increase the levels of PSD-95, and enhance its membrane localization. Elimination of the serine 295 residue in PSD-95 abolished PKCϵ-induced membrane accumulation. Knockdown of either PKCϵ or JNK1 prevented PKCϵ activator-mediated membrane accumulation of PSD-95. PKCϵ directly phosphorylated PSD-95 and JNK1 in vitro. Inhibiting PKCϵ, JNK, or calcium/calmodulin-dependent kinase II activity prevented the effects of PKCϵ activators on PSD-95 phosphorylation. Increase in membrane accumulation of PKCϵ and phosphorylated PSD-95 (p-PSD-95S295) coincided with an increased number of synapses and increased amplitudes of excitatory post-synaptic potentials (EPSPs) in adult rat hippocampal slices. Knockdown of PKCϵ also reduced the synthesis of PSD-95 and the presynaptic protein synaptophysin by 30 and 44%, respectively. Prolonged activation of PKCϵ increased synapse number by 2-fold, increased presynaptic vesicle density, and greatly increased PSD-95 clustering. These results indicate that PKCϵ promotes synaptogenesis by activating PSD-95 phosphorylation directly through JNK1 and calcium/calmodulin-dependent kinase II and also by inducing expression of PSD-95 and synaptophysin. PMID:27330081

  9. The Raine syndrome protein FAM20C is a Golgi kinase that phosphorylates bio-mineralization proteins.

    Directory of Open Access Journals (Sweden)

    Hiroyuki O Ishikawa

    Full Text Available Raine syndrome is caused by mutations in FAM20C, which had been reported to encode a secreted component of bone and teeth. We found that FAM20C encodes a Golgi-localized protein kinase, distantly related to the Golgi-localized kinase Four-jointed. Drosophila also encode a Golgi-localized protein kinase closely related to FAM20C. We show that FAM20C can phosphorylate secreted phosphoproteins, including both Casein and members of the SIBLING protein family, which modulate biomineralization, and we find that FAM20C phosphorylates a biologically active peptide at amino acids essential for inhibition of biomineralization. We also identify autophosphorylation of FAM20C, and characterize parameters of FAM20C's kinase activity, including its Km, pH and cation dependence, and substrate specificity. The biochemical properties of FAM20C match those of an enzymatic activity known as Golgi casein kinase. Introduction of point mutations identified in Raine syndrome patients into recombinant FAM20C impairs its normal localization and kinase activity. Our results identify FAM20C as a kinase for secreted phosphoproteins and establish a biochemical basis for Raine syndrome.

  10. Inhibition of protein kinase C phosphorylation of hepatitis B virus capsids inhibits virion formation and causes intracellular capsid accumulation.

    Science.gov (United States)

    Wittkop, Linda; Schwarz, Alexandra; Cassany, Aurelia; Grün-Bernhard, Stefanie; Delaleau, Mildred; Rabe, Birgit; Cazenave, Christian; Gerlich, Wolfram; Glebe, Dieter; Kann, Michael

    2010-07-01

    Capsids of hepatitis B virus and other hepadnaviruses contain a cellular protein kinase, which phosphorylates the capsid protein. Some phosphorylation sites are shown to be essential for distinct steps of viral replication as pregenome packaging or plus strand DNA synthesis. Although different protein kinases have been reported to phosphorylate the capsid protein, varying experimental approaches do not allow direct comparison. Furthermore, the activity of a specific protein kinase has not yet been correlated to steps in the hepadnaviral life cycle. In this study we show that capsids from various sources encapsidate active protein kinase Calpha, irrespective of hepatitis B virus genotype and host cell. Treatment of a virion expressing cell line with a pseudosubstrate inhibitor showed that inhibition of protein kinase C phosphorylation did not affect genome maturation but resulted in capsid accumulation and inhibited virion release to the medium. Our results imply that different protein kinases have distinct functions within the hepadnaviral life cycle.

  11. Laminin-111 protein therapy reduces muscle pathology and improves viability of a mouse model of merosin-deficient congenital muscular dystrophy.

    Science.gov (United States)

    Rooney, Jachinta E; Knapp, Jolie R; Hodges, Bradley L; Wuebbles, Ryan D; Burkin, Dean J

    2012-04-01

    Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a lethal muscle-wasting disease that is caused by mutations in the LAMA2 gene, resulting in the loss of laminin-α2 protein. MDC1A patients exhibit severe muscle weakness from birth, are confined to a wheelchair, require ventilator assistance, and have reduced life expectancy. There are currently no effective treatments or cures for MDC1A. Laminin-α2 is required for the formation of heterotrimeric laminin-211 (ie, α2, β1, and γ1) and laminin-221 (ie, α2, β2, and γ1), which are major constituents of skeletal muscle basal lamina. Laminin-111 (ie, α1, β1, and γ1) is the predominant laminin isoform in embryonic skeletal muscle and supports normal skeletal muscle development in laminin-α2-deficient muscle but is absent from adult skeletal muscle. In this study, we determined whether treatment with Engelbreth-Holm-Swarm-derived mouse laminin-111 protein could rescue MDC1A in the dy(W-/-) mouse model. We demonstrate that laminin-111 protein systemically delivered to the muscles of laminin-α2-deficient mice prevents muscle pathology, improves muscle strength, and dramatically increases life expectancy. Laminin-111 also prevented apoptosis in laminin-α2-deficient mouse muscle and primary human MDC1A myogenic cells, which indicates a conserved mechanism of action and cross-reactivity between species. Our results demonstrate that laminin-111 can serve as an effective protein substitution therapy for the treatment of muscular dystrophy in the dy(W-/-) mouse model and establish the potential for its use in the treatment of MDC1A.

  12. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules

    Science.gov (United States)

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-01-01

    Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tissue developments, cell–cell communications, cell polarity control, and cellular signal transductions. Despite extensive studies over the past two decades, the functions of the signature guanylate kinase domain (GK) of MAGUKs are poorly understood. Here we show that the GK domain of DLG1/SAP97 binds to asymmetric cell division regulatory protein LGN in a phosphorylation-dependent manner. The structure of the DLG1 SH3-GK tandem in complex with a phospho-LGN peptide reveals that the GMP-binding site of GK has evolved into a specific pSer/pThr-binding pocket. Residues both N- and C-terminal to the pSer are also critical for the specific binding of the phospho-LGN peptide to GK. We further demonstrate that the previously reported GK domain-mediated interactions of DLGs with other targets, such as GKAP/DLGAP1/SAPAP1 and SPAR, are also phosphorylation dependent. Finally, we provide evidence that other MAGUK GKs also function as phospho-peptide-binding modules. The discovery of the phosphorylation-dependent MAGUK GK/target interactions indicates that MAGUK scaffold-mediated signalling complex organizations are dynamically regulated. PMID:22117215

  13. Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2015-01-01

    Full Text Available A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1 are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT and cyclic adenosine monophosphate (cAMP-dependent protein kinase A (PKA have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT. AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  14. PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C.

    Directory of Open Access Journals (Sweden)

    Ines Teichert

    2014-09-01

    Full Text Available Mitogen-activated protein kinase (MAPK pathways are crucial signaling instruments in eukaryotes. Most ascomycetes possess three MAPK modules that are involved in key developmental processes like sexual propagation or pathogenesis. However, the regulation of these modules by adapters or scaffolds is largely unknown. Here, we studied the function of the cell wall integrity (CWI MAPK module in the model fungus Sordaria macrospora. Using a forward genetic approach, we found that sterile mutant pro30 has a mutated mik1 gene that encodes the MAPK kinase kinase (MAPKKK of the proposed CWI pathway. We generated single deletion mutants lacking MAPKKK MIK1, MAPK kinase (MAPKK MEK1, or MAPK MAK1 and found them all to be sterile, cell fusion-deficient and highly impaired in vegetative growth and cell wall stress response. By searching for MEK1 interaction partners via tandem affinity purification and mass spectrometry, we identified previously characterized developmental protein PRO40 as a MEK1 interaction partner. Although fungal PRO40 homologs have been implicated in diverse developmental processes, their molecular function is currently unknown. Extensive affinity purification, mass spectrometry, and yeast two-hybrid experiments showed that PRO40 is able to bind MIK1, MEK1, and the upstream activator protein kinase C (PKC1. We further found that the PRO40 N-terminal disordered region and the central region encompassing a WW interaction domain are sufficient to govern interaction with MEK1. Most importantly, time- and stress-dependent phosphorylation studies showed that PRO40 is required for MAK1 activity. The sum of our results implies that PRO40 is a scaffold protein for the CWI pathway, linking the MAPK module to the upstream activator PKC1. Our data provide important insights into the mechanistic role of a protein that has been implicated in sexual and asexual development, cell fusion, symbiosis, and pathogenicity in different fungal systems.

  15. Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Hideya Mizuno

    Full Text Available Duchenne muscular dystrophy (DMD is a lethal X-linked disorder caused by mutations in the dystrophin gene, which encodes a cytoskeletal protein, dystrophin. Creatine kinase (CK is generally used as a blood-based biomarker for muscular disease including DMD, but it is not always reliable since it is easily affected by stress to the body, such as exercise. Therefore, more reliable biomarkers of muscular dystrophy have long been desired. MicroRNAs (miRNAs are small, ∼22 nucleotide, noncoding RNAs which play important roles in the regulation of gene expression at the post-transcriptional level. Recently, it has been reported that miRNAs exist in blood. In this study, we hypothesized that the expression levels of specific serum circulating miRNAs may be useful to monitor the pathological progression of muscular diseases, and therefore explored the possibility of these miRNAs as new biomarkers for muscular diseases. To confirm this hypothesis, we quantified the expression levels of miRNAs in serum of the dystrophin-deficient muscular dystrophy mouse model, mdx, and the canine X-linked muscular dystrophy in Japan dog model (CXMD(J, by real-time PCR. We found that the serum levels of several muscle-specific miRNAs (miR-1, miR-133a and miR-206 are increased in both mdx and CXMD(J. Interestingly, unlike CK levels, expression levels of these miRNAs in mdx serum are little influenced by exercise using treadmill. These results suggest that serum miRNAs are useful and reliable biomarkers for muscular dystrophy.

  16. Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy.

    Science.gov (United States)

    Mizuno, Hideya; Nakamura, Akinori; Aoki, Yoshitsugu; Ito, Naoki; Kishi, Soichiro; Yamamoto, Kazuhiro; Sekiguchi, Masayuki; Takeda, Shin'ichi; Hashido, Kazuo

    2011-03-30

    Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder caused by mutations in the dystrophin gene, which encodes a cytoskeletal protein, dystrophin. Creatine kinase (CK) is generally used as a blood-based biomarker for muscular disease including DMD, but it is not always reliable since it is easily affected by stress to the body, such as exercise. Therefore, more reliable biomarkers of muscular dystrophy have long been desired. MicroRNAs (miRNAs) are small, ∼22 nucleotide, noncoding RNAs which play important roles in the regulation of gene expression at the post-transcriptional level. Recently, it has been reported that miRNAs exist in blood. In this study, we hypothesized that the expression levels of specific serum circulating miRNAs may be useful to monitor the pathological progression of muscular diseases, and therefore explored the possibility of these miRNAs as new biomarkers for muscular diseases. To confirm this hypothesis, we quantified the expression levels of miRNAs in serum of the dystrophin-deficient muscular dystrophy mouse model, mdx, and the canine X-linked muscular dystrophy in Japan dog model (CXMD(J)), by real-time PCR. We found that the serum levels of several muscle-specific miRNAs (miR-1, miR-133a and miR-206) are increased in both mdx and CXMD(J). Interestingly, unlike CK levels, expression levels of these miRNAs in mdx serum are little influenced by exercise using treadmill. These results suggest that serum miRNAs are useful and reliable biomarkers for muscular dystrophy.

  17. WNK1: analysis of protein kinase structure, downstream targets, and potential roles in hypertension

    Institute of Scientific and Technical Information of China (English)

    Bing-e XU; Byung-Hoon LEE; Xiaoshan MIN; Lisa LENERTZ; Charles J HEISE; Steve STIPPEC; Elizabeth J GOLDSMITH; Melanie H. COBB

    2005-01-01

    The WNK kinases are a recently discovered family of serine-threonine kinases that have been shown to play an essential role in the regulation of electrolyte homeostasis. Intronic deletions in the WNK1 gene result in its overexpression and lead to pseudohypoaldosteronism type Ⅱ, a disease with salt-sensitive hypertension and hyperkalemia. This review focuses on the recent evidence elucidating the structure of the kinase domain of WNK1 and functions of these kinases in normal and disease physiology. Their functions have implications for understanding the biochemical mechanism that could lead to the retention or insertion of proteins in the plasma membrane. The WNK kinases may be able to influence ion homeostasis through its effects on synaptotagmin function.

  18. Distinct genetic regions modify specific muscle groups in muscular dystrophy

    OpenAIRE

    2010-01-01

    Phenotypic expression in the muscular dystrophies is variable, even with the identical mutation, providing strong evidence that genetic modifiers influence outcome. To identify genetic modifier loci, we used quantitative trait locus mapping in two differentially affected mouse strains with muscular dystrophy. Using the Sgcg model of limb girdle muscular dystrophy that lacks the dystrophin-associated protein γ-sarcoglycan, we evaluated chromosomal regions that segregated with two distinct quan...

  19. Redundant role of protein kinase C delta and epsilon during mouse embryonic development.

    Directory of Open Access Journals (Sweden)

    Sergio Carracedo

    Full Text Available Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.

  20. Redundant role of protein kinase C delta and epsilon during mouse embryonic development.

    Science.gov (United States)

    Carracedo, Sergio; Sacher, Frank; Brandes, Gudrun; Braun, Ursula; Leitges, Michael

    2014-01-01

    Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.

  1. Structural Insight into the Interactions between Death-Associated Protein Kinase 1 and Natural Flavonoids.

    Science.gov (United States)

    Yokoyama, Takeshi; Kosaka, Yuto; Mizuguchi, Mineyuki

    2015-09-24

    Death-associated protein kinase 1 (DAPK1) is a 160 kDa serine/threonine protein kinase that belongs to the Ca(2+)/calmodulin-dependent protein kinase subfamily. DAPK1 is a possible target for the treatment of acute ischemic stroke and endometrial adenocarcinomas. In the present study, we investigated the binding characteristics of 17 natural flavonoids to DAPK1 using a 1-anilinonaphthalene-8-sulfonic acid competitive binding assay and revealed that morin was the strongest binder among the selected compounds. The crystallographic analysis of DAPK1 and 7 selected flavonoid complexes revealed the structure-binding affinity relationship in atomic-level detail. It was suggested that the high affinity of morin could be accounted for by the ionic interaction between 2'-OH and K42 and that such an interaction would not take place with either cyclin-dependent protein kinases or PIM kinases because of their broader entrance regions. Thus, morin would be a more selective inhibitor of DAPK1 than either of these other types of kinases. In addition, we found that the binding of kaempferol to DAPK1 was associated with a chloride ion. The present study provides a better understanding of the molecular properties of the ATP site of DAPK1 and may be useful for the design of specific DAPK1 inhibitors.

  2. Wasting mechanisms in muscular dystrophy.

    Science.gov (United States)

    Shin, Jonghyun; Tajrishi, Marjan M; Ogura, Yuji; Kumar, Ashok

    2013-10-01

    Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.

  3. A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor protein

    Science.gov (United States)

    Ratner, N.; Bloom, G. S.; Brady, S. T.

    1998-01-01

    Proteins that interact with both cytoskeletal and membrane components are candidates to modulate membrane trafficking. The tumor suppressor proteins neurofibromin (NF1) and adenomatous polyposis coli (APC) both bind to microtubules and interact with membrane-associated proteins. The effects of recombinant NF1 and APC fragments on vesicle motility were evaluated by measuring fast axonal transport along microtubules in axoplasm from squid giant axons. APC4 (amino acids 1034-2844) reduced only anterograde movements, whereas APC2 (aa 1034-2130) or APC3 (aa 2130-2844) reduced both anterograde and retrograde transport. NF1 had no effect on organelle movement in either direction. Because APC contains multiple cyclin-dependent kinase (CDK) consensus phosphorylation motifs, the kinase inhibitor olomoucine was examined. At concentrations in which olomoucine is specific for cyclin-dependent kinases (5 microM), it reduced only anterograde transport, whereas anterograde and retrograde movement were both affected at concentrations at which other kinases are inhibited as well (50 microM). Both anterograde and retrograde transport also were inhibited by histone H1 and KSPXK peptides, substrates for proline-directed kinases, including CDKs. Our data suggest that CDK-like axonal kinases modulate fast anterograde transport and that other axonal kinases may be involved in modulating retrograde transport. The specific effect of APC4 on anterograde transport suggests a model in which the binding of APC to microtubules may limit the activity of axonal CDK kinase or kinases in restricted domains, thereby affecting organelle transport.

  4. Protein kinase Cmu plays an essential role in hypertonicity-induced heat shock protein 70 expression.

    Science.gov (United States)

    Lim, Yun Sook; Lee, Jae Seon; Huang, Tai Qin; Seo, Jeong Sun

    2008-12-31

    Heat shock protein 70 (HSP70), which evidences important functions as a molecular chaperone and anti-apoptotic molecule, is substantially induced in cells exposed to a variety of stresses, including hypertonic stress, heavy metals, heat shock, and oxidative stress, and prevents cellular damage under these conditions. However, the molecular mechanism underlying the induction of HSP70 in response to hypertonicity has been characterized to a far lesser extent. In this study, we have investigated the cellular signaling pathway of HSP70 induction under hypertonic conditions. Initially, we applied a variety of kinase inhibitors to NIH3T3 cells that had been exposed to hypertonicity. The induction of HSP70 was suppressed specifically by treatment with protein kinase C (PKC) inhibitors (Gö6976 and GF109203X). As hypertonicity dramatically increased the phosphorylation of PKCmu, we then evaluated the role of PKCmu in hypertonicity-induced HSP70 expression and cell viability. The depletion of PKCmu with siRNA or the inhibition of PKCmu activity with inhibitors resulted in a reduction in HSP70 induction and cell viability. Tonicity-responsive enhancer binding protein (TonEBP), a transcription factor for hypertonicity-induced HSP70 expression, was translocated rapidly into the nucleus and was modified gradually in the nucleus under hypertonic conditions. When we administered treatment with PKC inhibitors, the mobility shift of TonEBP was affected in the nucleus. However, PKCmu evidenced no subcellular co-localization with TonEBP during hypertonic exposure. From our results, we have concluded that PKCmu performs a critical function in hypertonicity-induced HSP70 induction, and finally cellular protection, via the indirect regulation of TonEBP modification.

  5. AP-2-Associated Protein Kinase 1 and Cyclin G-Associated Kinase Regulate Hepatitis C Virus Entry and Are Potential Drug Targets

    OpenAIRE

    Neveu, Gregory; Ziv-Av, Amotz; Barouch-Bentov, Rina; Berkerman, Elena; Mulholland, Jon; Einav, Shirit

    2015-01-01

    Hepatitis C virus (HCV) enters its target cell via clathrin-mediated endocytosis. AP-2-associated protein kinase 1 (AAK1) and cyclin G-associated kinase (GAK) are host kinases that regulate clathrin adaptor protein (AP)-mediated trafficking in the endocytic and secretory pathways. We previously reported that AAK1 and GAK regulate HCV assembly by stimulating binding of the μ subunit of AP-2, AP2M1, to HCV core protein. We also discovered that AAK1 and GAK inhibitors, including the approved ant...

  6. Computational Simulations to Predict Creatine Kinase-Associated Factors: Protein-Protein Interaction Studies of Brain and Muscle Types of Creatine Kinases

    Directory of Open Access Journals (Sweden)

    Wei-Jiang Hu

    2011-01-01

    Full Text Available Creatine kinase (CK; EC 2.7.3.2 is related to several skin diseases such as psoriasis and dermatomyositis. CK is important in skin energy homeostasis because it catalyzes the reversible transfer of a phosphoryl group from MgATP to creatine. In this study, we predicted CK binding proteins via the use of bioinformatic tools such as protein-protein interaction (PPI mappings and suggest the putative hub proteins for CK interactions. We obtained 123 proteins for brain type CK and 85 proteins for muscle type CK in the interaction networks. Among them, several hub proteins such as NFKB1, FHL2, MYOC, and ASB9 were predicted. Determination of the binding factors of CK can further promote our understanding of the roles of CK in physiological conditions.

  7. A calmodulin-dependent protein kinase from lower eukaryote Physarum polycephalum.

    Science.gov (United States)

    Nakamura, Akio; Hanyuda, Yuki; Okagaki, Tuyoshi; Takagi, Takashi; Kohama, Kazuhiro

    2005-03-25

    A full-length cDNA coding a calmodulin (CaM)-dependent protein kinase gene was cloned from Physarum plasmodia poly(A)-RNA by polymerase chain reaction with the oligonucleotide primers that were designed after the amino acid sequence of highly conserved regions of myosin light-chain kinase. Sequence analysis of the cDNA revealed that this Physarum kinase was a 42,519-Da protein with an ATP-binding domain, Ser/Thr kinase active site signature, and CaM-binding domain. Expression of the cDNA in Escherichia coli demonstrated that the Physarum kinase in the presence of Ca2+ and CaM phosphorylated the recombinant phosphorylatable light chain (PLc) of Physarum myosin II. The peptide analysis after proteolysis of the phosphorylated PLc indicated that Ser 18 was phosphorylated. The site was confirmed by the failure of phosphorylation of PLc, the Ser 18 of which was replaced by Ala. The physiological role of the kinase will be discussed with special reference to the 55-kDa kinase, which had been previously purified from Physarum plasmodia for phosphorylated PLc.

  8. Malaria protein kinase CK2 (PfCK2 shows novel mechanisms of regulation.

    Directory of Open Access Journals (Sweden)

    Michele Graciotti

    Full Text Available Casein kinase 2 (protein kinase CK2 is a conserved eukaryotic serine/theronine kinase with multiple substrates and roles in the regulation of cellular processes such as cellular stress, cell proliferation and apoptosis. Here we report a detailed analysis of the Plasmodium falciparum CK2, PfCK2, demonstrating that this kinase, like the mammalian orthologue, is a dual specificity kinase able to phosphorylate at both serine and tyrosine. However, unlike the human orthologue that is auto-phosphorylated on tyrosine within the activation loop, PfCK2 shows no activation loop auto-phosphorylation but rather is auto-phosphorylated at threonine 63 within subdomain I. Phosphorylation at this site in PfCK2 is shown here to regulate the intrinsic kinase activity of PfCK2. Furthermore, we generate an homology model of PfCK2 in complex with the known selective protein kinase CK2 inhibitor, quinalizarin, and in so doing identify key co-ordinating residues in the ATP binding pocket that could aid in designing selective inhibitors to PfCK2.

  9. Protein Kinase Inhibitors CK59 and CID755673 Alter Primary Human NK Cell Effector Functions

    Science.gov (United States)

    Scheiter, Maxi; Bulitta, Björn; van Ham, Marco; Klawonn, Frank; König, Sebastian; Jänsch, Lothar

    2013-01-01

    Natural killer (NK) cells are part of the innate immune response and play a crucial role in the defense against tumors and virus-infected cells. Their effector functions include the specific killing of target cells, as well as the modulation of other immune cells by cytokine release. Kinases constitute a relevant part in signaling, are prime targets in drug research and the protein kinase inhibitor Dasatinib is already used for immune-modulatory therapies. In this study, we tested the effects of the kinase inhibitors CK59 and CID755673. These inhibitors are directed against calmodulin kinase II (CaMKII; CK59) and PKD family kinases (CID755673) that were previously suggested as novel components of NK activation pathways. Here, we use a multi-parameter, FACS-based assay to validate the influence of CK59 and CID755673 on the effector functions of primary NK cells. Treatment with CK59 and CID755673 indeed resulted in a significant dose-dependent reduction of NK cell degranulation markers and cytokine release in freshly isolated Peripheral blood mononuclear cell populations from healthy blood donors. These results underline the importance of CaMKII for NK cell signaling and suggest protein kinase D2 as a novel signaling component in NK cell activation. Notably, kinase inhibition studies on pure NK cell populations indicate significant donor variations. PMID:23508354

  10. Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase.

    Science.gov (United States)

    Gallo, Eduardo F; Iadecola, Costantino

    2011-05-11

    Nitric oxide (NO) synthesized by neuronal NO synthase (nNOS) has long been implicated in brain plasticity. However, it is unclear how this short-lived mediator contributes to the long-term molecular changes underlying neuroplasticity, which typically require activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathway and gene expression. To address this issue, we used a neuroplasticity model based on treatment of neuronal cultures with bicuculline and a model of experience-dependent plasticity in the barrel cortex. In neuronal cultures, NOS inhibition attenuated the bicuculline-induced activation of ERK and the expression of c-Fos, Egr-1, Arc, and brain-derived neurotrophic factor (BDNF), proteins essential for neuroplasticity. Furthermore, inhibition of the NO target soluble guanylyl cyclase or of the cGMP effector kinase protein kinase G (PKG) reduced both ERK activation and plasticity-related protein expression. NOS inhibition did not affect phosphorylation of cAMP response element-binding protein (CREB), a well-established ERK nuclear target, but it attenuated the nuclear accumulation of the CREB coactivator TORC1 and suppressed the activation of Elk-1, another transcription factor target of ERK. Consistent with these in vitro observations, induction of c-Fos, Egr-1, and BDNF was attenuated in the D1 cortical barrel of nNOS(-/-) mice subjected to single whisker experience. These results establish nNOS-derived NO as a key factor in the expression of proteins involved in neuroplasticity, an effect mediated through cGMP, PKG, and ERK signaling. These actions of NO do not depend on CREB phosphorylation but may involve TORC1 and Elk-1. Our data unveil a previously unrecognized link between neuronal NO and the molecular machinery responsible for the sustained synaptic changes underlying neuroplasticity.

  11. Emerging roles of protein kinase CK2 in abscisic acid (ABA signaling

    Directory of Open Access Journals (Sweden)

    Belmiro eVilela

    2015-11-01

    Full Text Available The phytohormone abscisic acid (ABA regulates many aspects of plant growth and development as well as responses to multiple stresses. Post-translational modifications such as phosphorylation or ubiquitination have pivotal roles in the regulation of ABA signaling. In addition to the positive regulator sucrose non-fermenting-1 related protein kinase 2 (SnRK2, the relevance of the role of other protein kinases, such as CK2, has been recently highlighted. We have recently established that CK2 phosphorylates the maize ortholog of open stomata 1 OST1, ZmOST1, suggesting a role of CK2 phosphorylation in the control of ZmOST1 protein degradation (Vilela et al., 2015. CK2 is a pleiotropic enzyme involved in multiple developmental and stress-responsive pathways. This review summarizes recent advances that taken together suggest a prominent role of protein kinase CK2 in ABA signaling and related processes.

  12. Promotion and inhibition of cardiac hypertrophy by A-kinase anchor proteins.

    Science.gov (United States)

    Blant, Alexandra; Czubryt, Michael P

    2012-09-01

    Originally identified as mediators of cyclic adenosine monophosphate (cAMP) and protein kinase A signaling, A-kinase anchor proteins (AKAPs) are now recognized as a diverse family of molecular scaffolds capable of interacting with many other proteins. Members of the AKAP family within the heart can take on either pro- or anti-hypertrophic roles by interacting with a myriad of protein kinases and phosphatases in the process. AKAPs often form the core of large signaling complexes (or signalosomes) that allow multiple pathways to converge and functionally intertwine. Approximately 30% of AKAPs discovered to date are expressed in the heart, but the functions of many of these remain to be discovered. This review focuses on AKAPs that have been demonstrated to play roles in mediating cardiac hypertrophy.

  13. Analysis on sliding helices and strands in protein structural comparisons: A case study with protein kinases

    Indian Academy of Sciences (India)

    V S Gowri; K Anamika; S Gore; N Srinivasan

    2007-08-01

    Protein structural alignments are generally considered as ‘golden standard’ for the alignment at the level of amino acid residues. In this study we have compared the quality of pairwise and multiple structural alignments of about 5900 homologous proteins from 718 families of known 3-D structures. We observe shifts in the alignment of regular secondary structural elements (helices and strands) between pairwise and multiple structural alignments. The differences between pairwise and multiple structural alignments within helical and -strand regions often correspond to 4 and 2 residue positions respectively. Such shifts correspond approximately to “one turn” of these regular secondary structures. We have performed manual analysis explicitly on the family of protein kinases. We note shifts of one or two turns in helix-helix alignments obtained using pairwise and multiple structural alignments. Investigations on the quality of the equivalent helix-helix, strand-strand pairs in terms of their residue side-chain accessibilities have been made. Our results indicate that the quality of the pairwise alignments is comparable to that of the multiple structural alignments and, in fact, is often better. We propose that pairwise alignment of protein structures should also be used in formulation of methods for structure prediction and evolutionary analysis.

  14. SRC protein tyrosine kinase, c-Jun N-terminal kinase (JNK), and NF-kappaBp65 signaling in commercial and wild-type turkey leukocytes

    Science.gov (United States)

    Studies comparing signaling in wild-type turkey (WT) leukocytes and commercial turkey (CT) leukocytes found that the activity of protein tyrosine kinases (PTK) and MAP kinases, ERK 1/2 and p38, were significantly higher in WT leukocytes compared to CT lines upon exposure to both SE and OPSE on days...

  15. wKinMut-2: Identification and Interpretation of Pathogenic Variants in Human Protein Kinases

    DEFF Research Database (Denmark)

    Vazquez, Miguel; Pons, Tirso; Brunak, Søren;

    2016-01-01

    is often scattered across different sources, which makes the integrative analysis complex and laborious. wKinMut-2 constitutes a solution to facilitate the interpretation of the consequences of human protein kinase variation. Nine methods predict their pathogenicity, including a kinase-specific random...... forest approach. To understand the biological mechanisms causative of human diseases and cancer, information from pertinent reference knowledgebases and the literature is automatically mined, digested and homogenized. Variants are visualized in their structural contexts and residues affecting catalytic...

  16. wKinMut-2: Identification and Interpretation of Pathogenic Variants in Human Protein Kinases

    DEFF Research Database (Denmark)

    Vazquez, Miguel; Pons, Tirso; Brunak, Søren

    2016-01-01

    is often scattered across different sources, which makes the integrative analysis complex and laborious. wKinMut-2 constitutes a solution to facilitate the interpretation of the consequences of human protein kinase variation. Nine methods predict their pathogenicity, including a kinase-specific random...... forest approach. To understand the biological mechanisms causative of human diseases and cancer, information from pertinent reference knowledgebases and the literature is automatically mined, digested and homogenized. Variants are visualized in their structural contexts and residues affecting catalytic...

  17. High-throughput kinase assays with protein substrates using fluorescent polymer superquenching

    OpenAIRE

    Weatherford Wendy; Stankewicz Casey; Rininsland Frauke; McBranch Duncan

    2005-01-01

    Abstract Background High-throughput screening is used by the pharmaceutical industry for identifying lead compounds that interact with targets of pharmacological interest. Because of the key role that aberrant regulation of protein phosphorylation plays in diseases such as cancer, diabetes and hypertension, kinases have become one of the main drug targets. With the exception of antibody-based assays, methods to screen for specific kinase activity are generally restricted to the use of small s...

  18. Targeting latent TGFβ release in muscular dystrophy.

    Science.gov (United States)

    Ceco, Ermelinda; Bogdanovich, Sasha; Gardner, Brandon; Miller, Tamari; DeJesus, Adam; Earley, Judy U; Hadhazy, Michele; Smith, Lucas R; Barton, Elisabeth R; Molkentin, Jeffery D; McNally, Elizabeth M

    2014-10-22

    Latent transforming growth factor-β (TGFβ) binding proteins (LTBPs) bind to inactive TGFβ in the extracellular matrix. In mice, muscular dystrophy symptoms are intensified by a genetic polymorphism that changes the hinge region of LTBP, leading to increased proteolytic susceptibility and TGFβ release. We have found that the hinge region of human LTBP4 was also readily proteolysed and that proteolysis could be blocked by an antibody to the hinge region. Transgenic mice were generated to carry a bacterial artificial chromosome encoding the human LTBP4 gene. These transgenic mice displayed larger myofibers, increased damage after muscle injury, and enhanced TGFβ signaling. In the mdx mouse model of Duchenne muscular dystrophy, the human LTBP4 transgene exacerbated muscular dystrophy symptoms and resulted in weaker muscles with an increased inflammatory infiltrate and greater LTBP4 cleavage in vivo. Blocking LTBP4 cleavage may be a therapeutic strategy to reduce TGFβ release and activity and decrease inflammation and muscle damage in muscular dystrophy.

  19. Two putative protein kinase CK2 phosphorylation sites are important for Myf-5 activity

    DEFF Research Database (Denmark)

    Winter, B; Kautzner, I; Issinger, O G;

    1997-01-01

    Myf-5, a member of a family of muscle-specific transcription factors, is important for myogenic cell determination and differentiation. Here, we report that Myf-5 protein constitutes a substrate for phosphorylation in vitro by protein kinase CK2. We identified two potential phosphorylation sites ...

  20. Expression, purification and crystallization of the catalytic subunit of protein kinase CK2 from Zea mays

    DEFF Research Database (Denmark)

    Guerra, B; Niefind, K; Pinna, L A

    1998-01-01

    The catalytic (alpha) subunit of protein kinase CK2 (CK2alpha) was originally cloned and overexpressed in the Escherichia coli strain pT7-7/BL21(DE3). The protein has been purified to homogeneity and crystallized. The crystals belong to the monoclinic space group C2, they have unit-cell parameter...

  1. G protein-coupled receptor kinase 2 positively regulates epithelial cell migration

    NARCIS (Netherlands)

    Penela, Petronila; Ribas, Catalina; Aymerich, Ivette; Eijkelkamp, Niels; Barreiro, Olga; Heijnen, Cobi J.; Kavelaars, Annemieke; Sanchez-Madrid, Francisco; Mayor, Federico

    2008-01-01

    Cell migration requires integration of signals arising from both the extracellular matrix and messengers acting through G protein-coupled receptors (GPCRs). We find that increased levels of G protein-coupled receptor kinase 2 (GRK2), a key player in GPCR regulation, poteniate migration of epithelial

  2. Regulation of ADAM12 cell-surface expression by protein kinase C epsilon

    DEFF Research Database (Denmark)

    Sundberg, Christina; Thodeti, Charles Kumar; Kveiborg, Marie;

    2004-01-01

    as a constitutively active protein. However, little is known about the regulation of ADAM12 cell-surface translocation. Here, we used human RD rhabdomyosarcoma cells, which express ADAM12 at the cell surface, in a temporal pattern. We report that protein kinase C (PKC) epsilon induces ADAM12 translocation to the cell...

  3. Expression patterns of protein kinase D 3 during mouse development

    Directory of Open Access Journals (Sweden)

    Lutz Sylke

    2008-04-01

    Full Text Available Abstract Background The PKD family of serine/threonine kinases comprises a single member in Drosophila (dPKD, two isoforms in C. elegans (DKF-1 and 2 and three members, PKD1, PKD2 and PKD3 in mammals. PKD1 and PKD2 have been the focus of most studies up to date, which implicate these enzymes in very diverse cellular functions, including Golgi organization and plasma membrane directed transport, immune responses, apoptosis and cell proliferation. Concerning PKD3, a role in the formation of vesicular transport carriers at the trans-Golgi network (TGN and in basal glucose transport has been inferred from in vitro studies. So far, however, the physiological functions of the kinase during development remain unknown. Results We have examined the expression pattern of PKD3 during the development of mouse embryos by immunohistochemistry. Using a PKD3 specific antibody we demonstrate that the kinase is differentially expressed during organogenesis. In the developing heart a strong PKD3 expression is constantly detected from E10 to E16.5. From E12.5 on PKD3 is increasingly expressed in neuronal as well as in the supporting connective tissue and in skeletal muscles. Conclusion The data presented support an important role for PKD3 during development of these tissues.

  4. Identification of nuclear protein targets for six leukemogenic tyrosine kinases governed by post-translational regulation.

    Directory of Open Access Journals (Sweden)

    Andrew Pierce

    Full Text Available Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases.

  5. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice.

    Science.gov (United States)

    Duan, Penggen; Rao, Yuchun; Zeng, Dali; Yang, Yaolong; Xu, Ran; Zhang, Baolan; Dong, Guojun; Qian, Qian; Li, Yunhai

    2014-02-01

    Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  6. Molecular dynamics reveal a novel kinase-substrate interface that regulates protein translation.

    Science.gov (United States)

    Liu, Ming S; Wang, Die; Morimoto, Hiroyuki; Yim, Howard C H; Irving, Aaron T; Williams, Bryan R G; Sadler, Anthony J

    2014-12-01

    A key control point in gene expression is the initiation of protein translation, with a universal stress response being constituted by inhibitory phosphorylation of the eukaryotic initiation factor 2α (eIF2α). In humans, four kinases sense diverse physiological stresses to regulate eIF2α to control cell differentiation, adaptation, and survival. Here we develop a computational molecular model of eIF2α and one of its kinases, the protein kinase R, to simulate the dynamics of their interaction. Predictions generated by coarse-grained dynamics simulations suggest a novel mode of action. Experimentation substantiates these predictions, identifying a previously unrecognized interface in the protein complex, which is constituted by dynamic residues in both eIF2α and its kinases that are crucial to regulate protein translation. These findings call for a reinterpretation of the current mechanism of action of the eIF2α kinases and demonstrate the value of conducting computational analysis to evaluate protein function. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  7. The Catalytic Subunit of DNA-Dependent Protein Kinase Coordinates with Polo-Like Kinase 1 to Facilitate Mitotic Entry.

    Science.gov (United States)

    Lee, Kyung-Jong; Shang, Zeng-Fu; Lin, Yu-Fen; Sun, Jingxin; Morotomi-Yano, Keiko; Saha, Debabrata; Chen, Benjamin P C

    2015-04-01

    DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is the key regulator of the non-homologous end joining pathway of DNA double-strand break repair. We have previously reported that DNA-PKcs is required for maintaining chromosomal stability and mitosis progression. Our further investigations reveal that deficiency in DNA-PKcs activity caused a delay in mitotic entry due to dysregulation of cyclin-dependent kinase 1 (Cdk1), the key driving force for cell cycle progression through G2/M transition. Timely activation of Cdk1 requires polo-like kinase 1 (Plk1), which affects modulators of Cdk1. We found that DNA-PKcs physically interacts with Plk1 and could facilitate Plk1 activation both in vitro and in vivo. Further, DNA-PKcs-deficient cells are highly sensitive to Plk1 inhibitor BI2536, suggesting that the coordination between DNA-PKcs and Plk1 is not only crucial to ensure normal cell cycle progression through G2/M phases but also required for cellular resistance to mitotic stress. On the basis of the current study, it is predictable that combined inhibition of DNA-PKcs and Plk1 can be employed in cancer therapy strategy for synthetic lethality.

  8. The Catalytic Subunit of DNA-Dependent Protein Kinase Coordinates with Polo-Like Kinase 1 to Facilitate Mitotic Entry

    Directory of Open Access Journals (Sweden)

    Kyung-Jong Lee

    2015-04-01

    Full Text Available DNA-dependent protein kinase catalytic subunit (DNA-PKcs is the key regulator of the non-homologous end joining pathway of DNA double-strand break repair. We have previously reported that DNA-PKcs is required for maintaining chromosomal stability and mitosis progression. Our further investigations reveal that deficiency in DNA-PKcs activity caused a delay in mitotic entry due to dysregulation of cyclin-dependent kinase 1 (Cdk1, the key driving force for cell cycle progression through G2/M transition. Timely activation of Cdk1 requires polo-like kinase 1 (Plk1, which affects modulators of Cdk1. We found that DNA-PKcs physically interacts with Plk1 and could facilitate Plk1 activation both in vitro and in vivo. Further, DNA-PKcs–deficient cells are highly sensitive to Plk1 inhibitor BI2536, suggesting that the coordination between DNA-PKcs and Plk1 is not only crucial to ensure normal cell cycle progression through G2/M phases but also required for cellular resistance to mitotic stress. On the basis of the current study, it is predictable that combined inhibition of DNA-PKcs and Plk1 can be employed in cancer therapy strategy for synthetic lethality.

  9. Genetics Home Reference: myotonic dystrophy

    Science.gov (United States)

    ... Me Understand Genetics Home Health Conditions myotonic dystrophy myotonic dystrophy Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Myotonic dystrophy is part of a group of inherited disorders ...

  10. Modified AutoDock for accurate docking of protein kinase inhibitors.

    Science.gov (United States)

    Buzko, Oleksandr V; Bishop, Anthony C; Shokat, Kevan M

    2002-02-01

    Protein kinases are an important class of enzymes controlling virtually all cellular signaling pathways. Consequently, selective inhibitors of protein kinases have attracted significant interest as potential new drugs for many diseases. Computational methods, including molecular docking, have increasingly been used in the inhibitor design process [1]. We have considered several docking packages in order to strengthen our kinase inhibitor work with computational capabilities. In our experience, AutoDock offered a reasonable combination of accuracy and speed, as opposed to methods that specialize either in fast database searches or detailed and computationally intensive calculations. However, AutoDock did not perform well in cases where extensive hydrophobic contacts were involved, such as docking of SB203580 to its target protein kinase p38. Another shortcoming was a hydrogen bonding energy function, which underestimated the attraction component and, thus, did not allow for sufficiently accurate modeling of the key hydrogen bonds in the kinase-inhibitor complexes. We have modified the parameter set used to model hydrogen bonds, which increased the accuracy of AutoDock and appeared to be generally applicable to many kinase-inhibitor pairs without customization. Binding to largely hydrophobic sites, such as the active site of p38, was significantly improved by introducing a correction factor selectively affecting only carbon and hydrogen energy grids, thus, providing an effective, although approximate, treatment of solvation.

  11. MR imaging of fukuyama congenital muscular dystrophy; a case report

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jeong Hyun; Kim, Yoo Kyung; Koo, Hae Soo; Park, Ki Deuk [Ewha Womans Univ. College of Medicine, Seoul (Korea, Republic of)

    2000-11-01

    Fukuyama congenital muscular dystrophy is a genetic disease and common in Japan. The typical clinical features are hypotonia with an early infantile onset and severe developmental delay. The diagnosis is based on pathologic evidence of muscular dystrophy revealed by biopsy or an increased serum creatine kinase levels. Involvement of the brain is characterized by abnormal cerebral cortical dysplasia, cerebellar dysplasia, and white matter changes. We encountered a case of Fukuyama congenital muscular dystrophy in which brain MRI findings were typical, and present this case together with a review of the literature.

  12. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis.

    Science.gov (United States)

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A; De Wever, Veerle; Morrice, Nick A; Meek, Katheryn; Lees-Miller, Susan P

    2014-06-25

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs' role in mitosis may be mechanistically distinct from its well-established role in NHEJ.

  13. Role of crosstalk between phosphatidylinositol 3-kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase pathways in artery-vein specification.

    Science.gov (United States)

    Hong, Charles C; Kume, Tsutomu; Peterson, Randall T

    2008-09-12

    Functional and structural differences between arteries and veins lie at the core of the circulatory system, both in health and disease. Therefore, understanding how artery and vein cell identities are established is a fundamental biological challenge with significant clinical implications. Molecular genetic studies in zebrafish and other vertebrates in the past decade have begun to reveal in detail the complex network of molecular pathways that specify artery and vein cell fates during embryonic development. Recently, a chemical genetic approach has revealed evidence that artery-vein specification is governed by cross talk between phosphoinositide 3-kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling in artery-vein specification. We discuss recent findings on the signaling pathways involved in artery-vein specification during zebrafish development and compare and contrast these results to those from mammalian systems. It is anticipated that the complementary approaches of genetics and chemical biology, involving a variety of model organisms and systems, will lead to a better understanding of artery-vein specification and possibly to novel therapeutic approaches to treat vascular diseases.

  14. The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea.

    Science.gov (United States)

    Yang, Qianqian; Yan, Leiyan; Gu, Qin; Ma, Zhonghua

    2012-10-01

    The high-osmolarity glycerol signal pathway plays an important role in the response of fungi to various environmental stresses. In this study, we characterized a mitogen-activated protein kinase kinase kinase gene BcOS4 in Botrytis cinerea, which is homologous to Saccharomyces cerevisiae SSK2/SSK22. The BcOS4 deletion mutant was significantly impaired in vegetative growth and conidial formation. The mutant exhibited increased sensitivity to the osmotic, oxidative stresses and to the fungicides iprodione and fludioxonil. Western blot analysis showed that BcSak1, a putative downstream component of BcOs4, was not phosphorylated in the mutant. In addition, the BcOS4 mutant was unable to infect leaves of rapeseed and cucumber, and grape fruits, although it can cause disease on apple fruits. All the defects were restored by genetic complementation of the BcOS4 deletion mutant with the wild-type BcOS4 gene. The data of this study indicate that BcOS4 is involved in vegetative differentiation, virulence, adaption to hyperosmotic and oxidative stresses, and to fungicides in B. cinerea.

  15. Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway

    Directory of Open Access Journals (Sweden)

    Maddahi Aida

    2012-12-01

    Full Text Available Abstract Background Subarachnoid hemorrhage (SAH is associated with high morbidity and mortality. It is suggested that the associated inflammation is mediated through activation of the mitogen-activated protein kinase (MAPK pathway which plays a crucial role in the pathogenesis of delayed cerebral ischemia after SAH. The aim of this study was first to investigate the timecourse of altered expression of proinflammatory cytokines and matrix metalloproteinase in the cerebral arteries walls following SAH. Secondly, we investigated whether administration of a specific mitogen-activated protein kinase kinase (MEK1/2 inhibitor, U0126, given at 6 h after SAH prevents activation of the MEK/extracellular signal-regulated kinase 1/2 pathway and the upregulation of cerebrovascular inflammatory mediators and improves neurological function. Methods SAH was induced in rats by injection of 250 μl of autologous blood into basal cisterns. U0126 was given intracisternally using two treatment regimens: (A treatments at 6, 12, 24 and 36 h after SAH and experiments terminated at 48 h after SAH, or (B treatments at 6, 12, and 24 h after SAH and terminated at 72 h after SAH. Cerebral arteries were harvested and interleukin (IL-6, IL-1β, tumor necrosis factor α (TNFα, matrix metalloproteinase (MMP-9 and phosphorylated ERK1/2 (pERK1/2 levels investigated by immunohistochemistry. Early activation of pERK1/2 was measured by western blot. Functional neurological outcome after SAH was also analyzed. Results Expression levels of IL-1β, IL-6, MMP-9 and pERK1/2 proteins were elevated over time with an early increase at around 6 h and a late peak at 48 to 72 h post-SAH in cerebral arteries. Enhanced expression of TNFα in cerebral arteries started at 24 h and increased until 96 h. In addition, SAH induced sensorimotor and spontaneous behavior deficits in the animals. Treatment with U0126 starting at 6 h after SAH prevented activation of MEK-ERK1/2 signaling. Further, U0126

  16. Regulation of mitogen-activated protein kinase pathways by the plasma membrane Na+/H+ exchanger, NHE1

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Darborg, Barbara Vasek; Rentsch, Maria Louise;

    2006-01-01

    The mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK, play a major role in the regulation of pivotal cellular processes such as cell death/survival balance, cell cycle progression, and cell migration. MAP...

  17. Prevention of oculopharyngeal muscular dystrophy-associated aggregation of nuclear polyA-binding protein with a single-domain intracellular antibody.

    Science.gov (United States)

    Verheesen, Peter; de Kluijver, Anna; van Koningsbruggen, Silvana; de Brij, Marjolein; de Haard, Hans J; van Ommen, Gert-Jan B; van der Maarel, Silvère M; Verrips, C Theo

    2006-01-01

    Oculopharyngeal muscular dystrophy (OPMD) belongs to the group of protein aggregation disorders and is caused by extensions of the N-terminal polyalanine stretch of the nuclear polyA-binding protein 1 (PABPN1). The presence of PABPN1-containing intranuclear aggregates in skeletal muscle is unique for OPMD and is also observed in transgenic mouse and cell models for OPMD. These models consistently support a direct role for the protein aggregation in OPMD pathogenesis. We have isolated and characterized a diverse panel of single-domain antibody reagents (VHH), recognizing different epitopes in PABPN1. The antibody reagents specifically detect endogenous PABPN1 in cell lysates on western blot and label PABPN1 in cultured cells and muscle sections. When expressed intracellularly as intrabodies in a cellular model for OPMD, aggregation of PABPN1 was prevented in a dose-dependent manner. More importantly yet, these intrabodies could also reduce the presence of already existing aggregates. Given the domain specificity of VHH-mediated aggregation interference, this approach at least allows the definition of the nucleation kernel in aggregation-prone proteins, thus facilitating etiological insight into this and other protein aggregation disorders, and ultimately, it may well provide useful therapeutic agents.

  18. Investigation of the flexibility of protein kinases implicated in the pathology of Alzheimer's disease.

    Science.gov (United States)

    Mazanetz, Michael P; Laughton, Charles A; Fischer, Peter M

    2014-06-30

    The pathological characteristics of Alzheimer's Disease (AD) have been linked to the activity of three particular kinases--Glycogen Synthase Kinase 3β (GSK3β), Cyclin-Dependent Kinase 5 (CDK5) and Extracellular-signal Regulated Kinase 2 (ERK2). As a consequence, the design of selective, potent and drug-like inhibitors of these kinases is of particular interest. Structure-based design methods are well-established in the development of kinase inhibitors. However, progress in this field is limited by the difficulty in obtaining X-ray crystal structures suitable for drug design and by the inability of this method to resolve highly flexible regions of the protein that are crucial for ligand binding. To address this issue, we have undertaken a study of human protein kinases CDK5/p25, CDK5, ERK2 and GSK3β using both conventional molecular dynamics (MD) and the new Active Site Pressurisation (ASP) methodology, to look for kinase-specific patterns of flexibility that could be leveraged for the design of selective inhibitors. ASP was used to examine the intrinsic flexibility of the ATP-binding pocket for CDK5/p25, CDK5 and GSK3β where it is shown to be capable of inducing significant conformational changes when compared with X-ray crystal structures. The results from these experiments were used to quantify the dynamics of each protein, which supported the observations made from the conventional MD simulations. Additional information was also derived from the ASP simulations, including the shape of the ATP-binding site and the rigidity of the ATP-binding pocket. These observations may be exploited in the design of selective inhibitors of GSK3β, CDK5 and ERK2.

  19. Phosphorylation of acidic ribosomal proteins by ribosome-associated protein kinases of ``Saccharomyces cerevisiae`` and ``Schizosaccharomyces pombe``

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowicz, T.; Cytrynska, M.; Kowalczyk, W.; Gasior, E. [Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland)

    1993-12-31

    Two proteins of 13 kDa and 38 kDa, the components of 60S ribosomal subunits, were identified as phosphorylation substrates for protein tightly associated with ``S. cerevisiae`` and ``Schizosaccharomyces pombe`` ribosomes. An enzyme with properties of multifunctional casein kinase II was detected in ribosome preparations from both yeast species. In S. cerevisiae another protein kinase with high substrate specificity toward those proteins was also identified. By using isoelectric focusing, the protein band of 13 kDa from ``S. cerevisiae`` and ``S. pombe`` was resolved respectively into three and four major forms of different charge. The same protein forms were phosphorylated in the in vivo {sup 32}P-labelling experiments. (author). 33 refs, 6 figs.

  20. SOCS proteins in regulation of receptor tyrosine kinase signaling

    DEFF Research Database (Denmark)

    Kazi, Julhash U.; Kabir, Nuzhat N.; Flores Morales, Amilcar;

    2014-01-01

    . The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar...

  1. Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats

    Directory of Open Access Journals (Sweden)

    CRISTIANA S.B. SALVATIERRA

    2015-06-01

    Full Text Available The phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways mediate β cell growth, proliferation, survival and death. We investigated whether protein restriction during pregnancy alters islet morphometry or the expression and phosphorylation of several proteins involved in the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. As controls, adult pregnant and non-pregnant rats were fed a normal-protein diet (17%. Pregnant and non-pregnant rats in the experimental groups were fed a low-protein diet (6% for 15 days. Low protein diet during pregnancy increased serum prolactin level, reduced serum corticosterone concentration and the expression of both protein kinase B/AKT1 (AKT1 and p70 ribosomal protein S6 kinase (p70S6K, as well as the islets area, but did not alter the insulin content of pancreatic islets. Pregnancy increased the expression of the Src homology/collagen (SHC protein and the extracellular signal-regulated kinases 1/2 (ERK1/2 independent of diet. ERK1/2 phosphorylation (pERK1/2 was similar in islets from pregnant and non-pregnant rats fed a low-protein diet, and was higher in islets from pregnant rats than in islets from non-pregnant rats fed a normal-protein diet. Thus, a short-term, low-protein diet during pregnancy was sufficient to reduce the levels of proteins in the phosphatidylinositol 3-kinase pathway and affect islet morphometry.

  2. Phospholipase D1 modulates protein kinase C-epsilon in retinal pigment epithelium cells during inflammatory response.

    Science.gov (United States)

    Tenconi, Paula E; Giusto, Norma M; Salvador, Gabriela A; Mateos, Melina V

    2016-12-01

    Inflammation is a key factor in the pathogenesis of several retinal diseases. In view of the essential role of the retinal pigment epithelium in visual function, elucidating the molecular mechanisms elicited by inflammation in this tissue could provide new insights for the treatment of retinal diseases. The aim of the present work was to study protein kinase C signaling and its modulation by phospholipases D in ARPE-19 cells exposed to lipopolysaccharide. This bacterial endotoxin induced protein kinase C-α/βII phosphorylation and protein kinase-ε translocation to the plasma membrane in ARPE-19 cells. Pre-incubation with selective phospholipase D inhibitors demonstrated that protein kinase C-α phosphorylation depends on phospholipase D1 and 2 while protein kinase C-ε activation depends only on phospholipase D1. The inhibition of α and β protein kinase C isoforms with Go 6976 did not modify the reduced mitochondrial function induced by lipopolysaccharide. On the contrary, the inhibition of protein kinase C-α, β and ε with Ro 31-8220 potentiated the decrease in mitochondrial function. Moreover, inhibition of protein kinase C-ε reduced Bcl-2 expression and Akt activation and increased Caspase-3 cleavage in cells treated or not with lipopolysaccharide. Our results demonstrate that through protein kinase C-ε regulation, phospholipase D1 protects retinal pigment epithelium cells from lipopolysaccharide-induced damage.

  3. Reverse relationship between malignancy and cyclic AMP-dependent protein kinase activity in Yoshida rat ascites hepatomas.

    Science.gov (United States)

    Miyamoto, K; Nakamura, S; Nomura, M; Yamamoto, H; Sanae, F; Hidaka, H

    1993-08-31

    Rat ascites hepatoma (AH) cells (10(6) cells/head) inoculated intraperitoneally into rats had host-killing ability (malignancy) in the order AH66F > AH44 > AH13 > AH7974 > AH109A > AH66 > AH130. The life span of the rats after inoculation closely correlated with the activity of cyclic AMP-dependent protein kinase (protein kinase A) in the tumor cells but not the activity of Ca2+/phospholipid-dependent protein kinase (protein kinase C). N-[2-[N-[3-(4-chlorophenyl)-1-methyl-2-propenyl]amino]ethyl]-5- isoquinoline-sulfonamide (H-87), a potent, selective inhibitor of protein kinase A, inhibited in vitro growth of these hepatoma cells with a similar potency and, intraperitoneally injected, prolonged the lives of rats bearing less malignant AH66 cells (with high protein kinase A activity) but did not affect the life span of rats bearing highly malignant AH66F cells (with low protein kinase A activity). On the other hand N-(2-methylpiperazyl)-5-isoquinolinesulfonamide (H-7), an inhibitor of protein kinase C, inhibited AH66F cells more than AH66 cells, but did not influence the life span of rats bearing either hepatoma. From these results it is deduced that protein kinase A may be important in the regulation of malignancy and in vivo proliferation of AH cells.

  4. Kinase-specific prediction of protein phosphorylation sites

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Blom, Nikolaj

    2009-01-01

    -substrate specificity. Here, we briefly describe the available resources for predicting kinase-specific phosphorylation from sequence properties. We address the strengths and weaknesses of these resources, which are based on methods ranging from simple consensus patterns to more advanced machine-learning algorithms....... Furthermore, a protocol for the use of the artificial neural network based predictors, NetPhos and NetPhosK, is provided. Finally, we point to possible developments with the intention of providing the community with improved and additional phosphorylation predictors for large-scale modeling of cellular...... signaling networks....

  5. Repulsive axon guidance by Draxin is mediated by protein Kinase B (Akt), glycogen synthase kinase-3β (GSK-3β) and microtubule-associated protein 1B.

    Science.gov (United States)

    Meli, Rajeshwari; Weisová, Petronela; Propst, Friedrich

    2015-01-01

    Draxin is an important axon guidance cue necessary for the formation of forebrain commissures including the corpus callosum, but the molecular details of draxin signaling are unknown. To unravel how draxin signals are propagated we used murine cortical neurons and genetic and pharmacological approaches. We found that draxin-induced growth cone collapse critically depends on draxin receptors (deleted in colorectal cancer, DCC), inhibition of protein kinase B/Akt, activation of GSK-3β (glycogen synthase kinase-3β) and the presence of microtubule-associated protein MAP1B. This study, for the first time elucidates molecular events in draxin repulsion, links draxin and DCC to MAP1B and identifies a novel MAP1B-depenent GSK-3β pathway essential for chemo-repulsive axon guidance cue signaling.

  6. Structural propensities of kinase family proteins from a Potts model of residue co-variation.

    Science.gov (United States)

    Haldane, Allan; Flynn, William F; He, Peng; Vijayan, R S K; Levy, Ronald M

    2016-08-01

    Understanding the conformational propensities of proteins is key to solving many problems in structural biology and biophysics. The co-variation of pairs of mutations contained in multiple sequence alignments of protein families can be used to build a Potts Hamiltonian model of the sequence patterns which accurately predicts structural contacts. This observation paves the way to develop deeper connections between evolutionary fitness landscapes of entire protein families and the corresponding free energy landscapes which determine the conformational propensities of individual proteins. Using statistical energies determined from the Potts model and an alignment of 2896 PDB structures, we predict the propensity for particular kinase family proteins to assume a "DFG-out" conformation implicated in the susceptibility of some kinases to type-II inhibitors, and validate the predictions by comparison with the observed structural propensities of the corresponding proteins and experimental binding affinity data. We decompose the statistical energies to investigate which interactions contribute the most to the conformational preference for particular sequences and the corresponding proteins. We find that interactions involving the activation loop and the C-helix and HRD motif are primarily responsible for stabilizing the DFG-in state. This work illustrates how structural free energy landscapes and fitness landscapes of proteins can be used in an integrated way, and in the context of kinase family proteins, can potentially impact therapeutic design strategies. © 2016 The Protein Society.

  7. RhoA/phosphatidylinositol 3-kinase/protein kinase B/mitogen-activated protein kinase signaling after growth arrest-specific protein 6/mer receptor tyrosine kinase engagement promotes epithelial cell growth and wound repair via upregulation of hepatocyte growth factor in macrophages.

    Science.gov (United States)

    Lee, Ye-Ji; Park, Hyun-Jung; Woo, So-Youn; Park, Eun-Mi; Kang, Jihee Lee

    2014-09-01

    Growth arrest-specific protein 6 (Gas6)/Mer receptor tyrosine kinase (Mer) signaling modulates cytokine secretion and helps to regulate the immune response and apoptotic cell clearance. Signaling pathways that activate an epithelial growth program in macrophages are still poorly defined. We report that Gas6/Mer/RhoA signaling can induce the production of epithelial growth factor hepatic growth factor (HGF) in macrophages, which ultimately promotes epithelial cell proliferation and wound repair. The RhoA/protein kinase B (Akt)/mitogen-activated protein (MAP) kinases, including p38 MAP kinase, extracellular signal-regulated protein kinase, and Jun NH2-terminal kinase axis in RAW 264.7 cells, was identified as Gas6/Mer downstream signaling pathway for the upregulation of HGF mRNA and protein. Conditioned medium from RAW 264.7 cells that had been exposed to Gas6 or apoptotic cells enhanced epithelial cell proliferation of the epithelial cell line LA-4 and wound closure. Cotreatment with an HGF receptor-blocking antibody or c-Met antagonist downregulated this enhancement. Inhibition of Mer with small interfering RNA (siRNA) or the RhoA/Rho kinase pathway by RhoA siRNA or Rho kinase pharmacologic inhibitor suppressed Gas6-induced HGF mRNA and protein expression in macrophages and blocked epithelial cell proliferation and wound closure induced by the conditioned medium. Our data provide evidence that macrophages can be reprogrammed by Gas6 to promote epithelial proliferation and wound repair via HGF, which is induced by the Mer/RhoA/Akt/MAP kinase pathway. Thus, defects in Gas6/Mer/RhoA signaling in macrophages may delay tissue repair after injury to the alveolar epithelium.

  8. Fluorous-assisted metal chelate affinity extraction technique for analysis of protein kinase activity.

    Science.gov (United States)

    Hayama, Tadashi; Kiyokawa, Ena; Yoshida, Hideyuki; Imakyure, Osamu; Yamaguchi, Masatoshi; Nohta, Hitoshi

    2016-08-15

    We have developed a fluorous affinity-based extraction method for measurement of protein kinase activity. In this method, a fluorescent peptide substrate was phosphorylated by a protein kinase, and the obtained phosphopeptide was selectively captured with Fe(III)-immobilized perfluoroalkyliminodiacetic acid reagent via a metal chelate affinity technique. Next, the captured phosphopeptide was selectively extracted into a fluorous solvent mixture, tetradecafluorohexane and 1H,1H,2H,2H-tridecafluoro-1-n-octanol (3:1, v/v), using the specificity of fluorous affinity (fluorophilicity). In contrast, the remained substrate peptide in the aqueous (non-fluorous) phase was easily measured fluorimetrically. Finally, the enzyme activity could be assayed by measuring the decrease in fluorescence. The feasibility of this method was demonstrated by applying the method for measurement of the activity of cAMP-dependent protein kinase (PKA) using its substrate peptide (kemptide) pre-labeled with carboxytetramethylrhodamine (TAMRA).

  9. Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases

    Directory of Open Access Journals (Sweden)

    Juan A. González-Vera

    2015-11-01

    Full Text Available Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes.

  10. Role of Atypical Protein Kinases in Maintenance of Long-Term Memory and Synaptic Plasticity.

    Science.gov (United States)

    Borodinova, A A; Zuzina, A B; Balaban, P M

    2017-03-01

    Investigation of biochemical mechanisms underlying the long-term storage of information in nervous system is one of main problems of modern neurobiology. As a molecular basis of long-term memory, long-term changes in kinase activities, increase in the level and changes in the subunit composition of receptors in synaptic membranes, local activity of prion-like proteins, and epigenetic modifications of chromatin have been proposed. Perhaps a combination of all or of some of these factors underlies the storage of long-term memory in the brain. Many recent studies have shown an exclusively important role of atypical protein kinases (PKCζ, PKMζ, and PKCι/λ) in processes of learning, consolidation and maintenance of memory. The present review is devoted to consideration of mechanisms of transcriptional and translational control of atypical protein kinases and their roles in induction and maintenance of long-term synaptic plasticity and memory in vertebrates and invertebrates.

  11. Protein kinase CK2 and its role in cellular proliferation, development and pathology

    DEFF Research Database (Denmark)

    Guerra, B; Issinger, O G

    1999-01-01

    Protein kinase CK2 is a pleiotropic, ubiquitous and constitutively active protein kinase that can use both ATP and GTP as phosphoryl donors with specificity for serine/threonine residues in the vicinity of acidic amino acids. Recent results show that the enzyme is involved in transcription...... conserved throughout evolution. Furthermore the existence of different CK2beta-related proteins together with the observation of deregulated CK2beta levels in tumor cells and the reported association of CK2beta protein with key proteins in signal transduction, e.g. A-Raf, Mos, pg90rsk etc. are suggestive...... for an additional physiological role of CK2beta protein beside being the regulatory compound in the tetrameric holoenzyme....

  12. 4-hydroxy-2, 3-nonenal activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Kazuhiro Kikuta; Atsushi Masamune; Masahiro Satoh; Noriaki Suzuki; Tooru Shimosegawa

    2004-01-01

    AIM: Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis,where oxidative stress is thought to play a key role. 4-hydroxy2,3-nonenal (HNE) is generated endogenously during the process of lipid peroxidation, and has been accepted as a mediator of oxidative stress. The aim of this study was to clarify the effects of HNE on the activation of signal transduction pathways and cellular functions in PSCs.METHODS: PSCs were isolated from the pancreas of male Wistar rats after perfusion with collagenase P, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. PSCs were treated with physiologically relevant and non-cytotoxic concentrations (up to 5 μmol/L)of HNE. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay.Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. Cell proliferation was assessed by measuring the incorporation of 5-bromo-2'-deoxyuridine. Production of type Ⅰ collagen and monocyte chemoattractant protein-1was determined by enzyme-linked immunosorbent assay.The effect of HNE on the transformation of freshly isolated PSCs in culture was also assessed.RESULTS: HNE activated activator protein-1, but not nuclear factor κB. In addition, HNE activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. HNE increased type Ⅰ collagen production through the activation of p38 MAP kinase and c-Jun N-terminal kinase. HNE did not alter the proliferation,or monocyte chemoattractant protein-1 production. HNE did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype.CONCLUSION: Specific activation of these signal transduction pathways and altered cell functions such as collagen production by HNE may play a role in the pathogenesis of pancreatic

  13. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-08-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  14. Involvement of mitogen-activated protein kinase pathways in N-methyl-D-aspartate-induced excitotoxicity

    Institute of Scientific and Technical Information of China (English)

    Xiaorong Yang; Ping Sun; Huaping Qin; Rui Wang; Ye Wang; Ruihong Shi; Xin Zhao; Ce Zhang

    2011-01-01

    Previous studies have shown that mitogen-activated protein kinase (MAPK) signaling pathways are involved in N-methyl-D-aspartate (NMDA)-mediated excitotoxicity. However, a systematic observation or analysis of the role of these various MAPK pathways in excitotoxicity processes does not exist. The present study further evaluated the role and contribution of three MAPK pathways extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK in an NMDA-mediated excitotoxicity model using MAPK-specific inhibitor. Results demonstrated that c-Jun N-terminal kinase inhibitor SP600125 and/or p38 MAPK inhibitor SB203580 inhibited NMDA-induced reduction in cell viability, as well as reduced NMDA-induced lactate dehydrogenase leakage and reactive oxygen species production. However, PD98059, an inhibitor of extracellular signal-regulated kinase, did not influence this model. Results demonstrated an involvement of c-Jun N-terminal kinase and p38 MAPK, but not extracellular signal-regulated kinase, in NMDA-mediated excitotoxicity in cortical neurons.

  15. Influence of berberine on protein tyrosine kinase of erythrocyte insulin receptors from type 2 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Xianglei Deng; Xinrong Li; Chenggong Tian

    2005-01-01

    Objective: Bererine has been used to treat type 2 diabetes mellitus in Chinese traditional medicine because of its hypoglycemic effect. In this report, we compared the intrinsic tyrosine kinase activities of erythrocyte insulin receptors from type 2 diabetes mellitus with or without stimulation by berberine in vitro. Methods: Preparations containing insulin receptors were obtained from soluble human erythrocytes, and the insulin receptors were partially purified by affinity chromatography. The tyrosine kinase activity was measured by the exogenous substrate phosphorylation. Results: Both the membrane tyrosine kinase activity and the purified receptor tyrosine kinase activity from diabetics decreased significantly compared with those of normal individuals (reduced by 67.4 % and 47.2 %, respectively).After incubation with berberine, there is a statistical difference in the activity of membrane tyrosine kinase for diabetic patients (a 150% increase). Bererine had no effect on the tyrosine kinase activity of purified insulin receptors. Conclusion: We concluded from these results that berberine was able to improve the insulin sensitivity by increasing the protein tyrosine kinase activity of membrane-bound insulin receptors from type 2 diabetes mellitus.

  16. Comprehensive Characterization of AMP-Activated Protein Kinase Catalytic Domain by Top-Down Mass Spectrometry

    Science.gov (United States)

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2016-02-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ). C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ had noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems.

  17. Treponema denticola activates mitogen-activated protein kinase signal pathways through Toll-like receptor 2.

    Science.gov (United States)

    Ruby, John; Rehani, Kunal; Martin, Michael

    2007-12-01

    Treponema denticola, a spirochete indigenous to the oral cavity, is associated with host inflammatory responses to anaerobic polymicrobial infections of the root canal, periodontium, and alveolar bone. However, the cellular mechanisms responsible for the recognition of T. denticola by the innate immune system and the underlying cell signaling pathways that regulate the inflammatory response to T. denticola are currently unresolved. In this study, we demonstrate that T. denticola induces innate immune responses via the utilization of Toll-like receptor 2 (TLR2) but not TLR4. Assessment of TLR2/1 and TLR2/6 heterodimers revealed that T. denticola predominantly utilizes TLR2/6 for the induction of cellular responses. Analysis of the mitogen-activated protein kinase (MAPK) signaling pathway in T. denticola-stimulated monocytes identified a prolonged up-regulation of the MAPK extracellular signal-related kinase 1/2 (ERK1/2) and p38, while no discernible increase in phospho-c-Jun N-terminal kinase 1/2 (JNK1/2) levels was observed. With the aid of pharmacological inhibitors selectively targeting ERK1/2 via the mitogen-activated protein kinase/extracellular signal-related kinase 1/2 kinase and p38, we further demonstrate that ERK1/2 and p38 play a major role in T. denticola-mediated pro- and anti-inflammatory cytokine production.

  18. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7.

    Science.gov (United States)

    Taylor, Kathryn M; Hiscox, Stephen; Nicholson, Robert I; Hogstrand, Christer; Kille, Peter

    2012-02-07

    The transition element zinc, which has recently been identified as an intracellular second messenger, has been implicated in various signaling pathways, including those leading to cell proliferation. Zinc channels of the ZIP (ZRT1- and IRT1-like protein) family [also known as solute carrier family 39A (SLC39A)] transiently increase the cytosolic free zinc (Zn(2+)) concentration in response to extracellular signals. We show that phosphorylation of evolutionarily conserved residues in endoplasmic reticulum zinc channel ZIP7 is associated with the gated release of Zn(2+) from intracellular stores, leading to activation of tyrosine kinases and the phosphorylation of AKT and extracellular signal-regulated kinases 1 and 2. Through pharmacological manipulation, proximity ligation assay, and mutagenesis, we identified protein kinase CK2 as the kinase responsible for ZIP7 activation. Together, the present results show that transition element channels in eukaryotes can be activated posttranslationally by phosphorylation, as part of a cell signaling cascade. Our study links the regulated release of zinc from intracellular stores to phosphorylation of kinases involved in proliferative responses and cell migration, suggesting a functional role for ZIP7 and zinc signals in these events. The connection with proliferation and migration, as well as the activation of ZIP7 by CK2, a kinase that is antiapoptotic and promotes cell division, suggests that ZIP7 may provide a target for anticancer drug development.

  19. Protein Kinase C-Related Kinase (PKN/PRK). Potential Key-Role for PKN1 in Protection of Hypoxic Neurons

    OpenAIRE

    Thauerer, Bettina; Zur Nedden, Stephanie; Baier-Bitterlich, Gabriele

    2014-01-01

    Serine/threonine protein kinase C-related kinase (PKN/PRK) is a family of three isoenzymes (PKN1, PKN2, PKN3), which are widely distributed in eukaryotic organisms and share the same overall domain structure. The Nterminal region encompasses a conserved repeated domain, termed HR1a-c as well as a HR2/C2 domain. The serine/threonine kinase domain is found in the C-terminal region of the protein and shows high sequence homology to other members of the PKC superfamily. In neurons, PKN1 is the mo...

  20. Identification of aurora kinase B and Wee1-like protein kinase as downstream targets of (V600E)B-RAF in melanoma.

    Science.gov (United States)

    Sharma, Arati; Madhunapantula, SubbaRao V; Gowda, Raghavendra; Berg, Arthur; Neves, Rogerio I; Robertson, Gavin P

    2013-04-01

    BRAF is the most mutated gene in melanoma, with approximately 50% of patients containing V600E mutant protein. (V600E)B-RAF can be targeted using pharmacological agents, but resistance develops in patients by activating other proteins in the signaling pathway. Identifying downstream members in this signaling cascade is important to design strategies to avoid the development of resistance. Unfortunately, downstream proteins remain to be identified and therapeutic potential requires validation. A kinase screen was undertaken to identify downstream targets in the (V600E)B-RAF signaling cascade. Involvement of aurora kinase B (AURKB) and Wee1-like protein kinase (WEE1) as downstream proteins in the (V600E)B-RAF pathway was validated in xenografted tumors, and mechanisms of action were characterized in size- and time-matched tumors. Levels of only AURKB and WEE1 decreased in melanoma cells, when (V600E)B-RAF, mitogen-activated protein kinase 1/2, or extracellular signal-regulated kinase 1/2 protein levels were reduced using siRNA compared with other identified kinases. AURKB and WEE1 were expressed in tumors of patients with melanoma at higher levels than observed in normal human melanocytes. Targeting these proteins reduced tumor development by approximately 70%, similar to that observed when inhibiting (V600E)B-RAF. Furthermore, protein or activity levels of AURKB and WEE1 decreased in melanoma cells when pharmacological agents targeting upstream (V600E)B-RAF or mitogen-activated protein kinase were used to inhibit the (V600E)B-RAF pathway. Thus, AURKB and WEE1 are targets and biomarkers of therapeutic efficacy, lying downstream of (V600E)B-RAF in melanomas.

  1. Hippocampal activation of c-Jun N-terminal kinase,protein kinase B,and p38 mitogen-activated protein kinase in a chronic stress rat model of depression

    Institute of Scientific and Technical Information of China (English)

    Wei Dai; Weidong Li; Jun Lu; Yingge A; Ya Tu

    2010-01-01

    Recent studies have shown that vaned stress stimuli activate c-Jun N-terminal kinase(JNK),protein kinase B(Akt),and p38 mitogen-activated protein kinase(p38)signal transduction pathway,and also regulate various apoptotic cascades.JNK and p38 promote apoptosis,but Akt protects against apoptosis,in hippocampal neurons.However,changes in the transduction pathway in different regions of brain tissues in a chronic stress rat model of depression remain poorly understood.Results from this study showed that JNK phosphorylation levels were significantly greater in the stress group hippocampus compared with the control group(P 0.05).These results suggested that the JNK signal pathway is activated by JNK phosphorylation and participates in pathophysiological changes in rat models of depression.

  2. Mitogen activated protein kinase kinase kinase 3 (MAP3K3/MEKK3) overexpression is an early event in esophageal tumorigenesis and is a predictor of poor disease prognosis

    OpenAIRE

    2014-01-01

    Background Mitogen-activated protein kinase kinase kinase3 (MAP3K3/MEKK3) was identified to be differentially expressed in esophageal squamous cell carcinoma (ESCC) using cDNA microarrays by our laboratory. Here in we determined the clinical significance of MEKK3 in ESCC. Methods Immunohistochemical analysis of MEKK3 expression was carried out in archived tissue sections from 93 ESCCs, 47 histologically normal and 61 dysplastic esophageal tissues and correlated with clinicopathological parame...

  3. GTP plus water mimic ATP in the active site of protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Pütter, M; Guerra, B

    1999-01-01

    The structures of the catalytic subunit of protein kinase CK2 from Zea mays complexed with Mg2+ and with analogs of ATP or GTP were determined to 2.2 A resolution. Unlike most other protein kinases, CK2 from various sources shows 'dual-cosubstrate specificity', that is, the ability to efficiently...... use either ATP or GTP as a cosubstrate. The structures of these complexes demonstrate that water molecules are critical to switch the active site of CK2 from an ATP- to a GTP-compatible state. An understanding of the structural basis of dual-cosubstrate specificity may help in the design of drugs...

  4. Progress in protein kinase B%蛋白激酶B的研究进展

    Institute of Scientific and Technical Information of China (English)

    王华祖; 龚兴国

    2003-01-01

    Protein kinase B (Akt) is a Ser/Thr kinase, which in mammals comprise three highly ho-mologous members known as PKBα/Aktl, PKBβ/Akt2 and PKBγ/Akt3. PKB is activated by hormones,growth factor and extra cellular matrix. The activation occurs downstream of PI3K. PKB phosphorylates and regulates the function of many cellular protein involved in processes that include survival, apoptosis, proliferation,glycogen metabolism and cancer progression. Although many mechanisms remains to be fully characterized, the research of PKB is thought to have a useful profect.

  5. AMP-activated protein kinase downregulates Kv7.1 cell surface expression

    DEFF Research Database (Denmark)

    Andersen, Martin N; Krzystanek, Katarzyna; Jespersen, Thomas;

    2012-01-01

    in response to polarization of the epithelial Madin-Darby canine kidney (MDCK) cell line and that this was mediated by activation of protein kinase C (PKC). In this study, the pathway downstream of PKC, which leads to internalization of Kv7.1 upon cell polarization, is elucidated. We show by confocal...... microscopy that Kv7.1 is endocytosed upon initiation of the polarization process and sent for degradation by the lysosomal pathway. The internalization could be mimicked by pharmacological activation of the AMP-activated protein kinase (AMPK) using three different AMPK activators. We demonstrate...

  6. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete

    2013-01-01

    DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed...... replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling....... knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation...

  7. Sphingosine induces phospholipase D and mitogen activated protein kinase in vascular smooth muscle cells.

    Science.gov (United States)

    Taher, M M; Abd-Elfattah, A S; Sholley, M M

    1998-12-01

    The enzymes phospholipase D and diacylglycerol kinase generate phosphatidic acid which is considered to be a mitogen. Here we report that sphingosine produced a significant amount of phosphatidic acid in vascular smooth muscle cells from the rat aorta. The diacylglycerol kinase inhibitor R59 949 partially depressed sphingosine induced phosphatidic acid formation, suggesting that activation of phospholipase C and diacylglycerol kinase can not account for the bulk of phosphatidic acid produced and that additional pathways such as phospholipase D may contribute to this. Further, we have shown that phosphatidylethanol was produced by sphingosine when vascular smooth muscle cells were stimulated in the presence of ethanol. Finally, as previously shown for other cell types, sphingosine stimulated mitogen-activated protein kinase in vascular smooth muscle cells.

  8. High-throughput kinase assays with protein substrates using fluorescent polymer superquenching

    Directory of Open Access Journals (Sweden)

    Weatherford Wendy

    2005-05-01

    Full Text Available Abstract Background High-throughput screening is used by the pharmaceutical industry for identifying lead compounds that interact with targets of pharmacological interest. Because of the key role that aberrant regulation of protein phosphorylation plays in diseases such as cancer, diabetes and hypertension, kinases have become one of the main drug targets. With the exception of antibody-based assays, methods to screen for specific kinase activity are generally restricted to the use of small synthetic peptides as substrates. However, the use of natural protein substrates has the advantage that potential inhibitors can be detected that affect enzyme activity by binding to a site other than the catalytic site. We have previously reported a non-radioactive and non-antibody-based fluorescence quench assay for detection of phosphorylation or dephosphorylation using synthetic peptide substrates. The aim of this work is to develop an assay for detection of phosphorylation of chemically unmodified proteins based on this polymer superquenching platform. Results Using a modified QTL Lightspeed™ assay, phosphorylation of native protein was quantified by the interaction of the phosphorylated proteins with metal-ion coordinating groups co-located with fluorescent polymer deposited onto microspheres. The binding of phospho-protein inhibits a dye-labeled "tracer" peptide from associating to the phosphate-binding sites present on the fluorescent microspheres. The resulting inhibition of quench generates a "turn on" assay, in which the signal correlates with the phosphorylation of the substrate. The assay was tested on three different proteins: Myelin Basic Protein (MBP, Histone H1 and Phosphorylated heat- and acid-stable protein (PHAS-1. Phosphorylation of the proteins was detected by Protein Kinase Cα (PKCα and by the Interleukin -1 Receptor-associated Kinase 4 (IRAK4. Enzyme inhibition yielded IC50 values that were comparable to those obtained using

  9. Calcium and the damage pathways in muscular dystrophy.

    Science.gov (United States)

    Allen, David G; Gervasio, Othon L; Yeung, Ella W; Whitehead, Nicholas P

    2010-02-01

    Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by the absence of the cytoskeletal protein dystrophin. Experiments on the mdx mouse, a model of DMD, have shown that mdx muscles are particularly susceptible to stretch-induced damage. In this review, we discuss evidence showing that a series of stretched contractions of mdx muscle fibres causes a prolonged increase in resting intracellular calcium concentration ([Ca2+]i). The rise in [Ca2+]i is caused by Ca2+ entry through a class of stretch-activated channels (SACNSC) for which one candidate gene is TRPC1. We review the evidence for activation of SACNSC in muscle by reactive oxygen species (ROS) and suggest that stretch-induced ROS production is part of the pathway that triggers increased channel activity. When the TRPC1 gene was transfected into C2 myoblasts, expression occurred throughout the cell. Only when the TRPC1 gene was coexpressed with caveolin-3 did the TRPC1 protein express in the membrane. When TRPC1 was expressed in the membrane, it could be activated by ROS to produce Ca2+ entry and this entry was inhibited by PP2, an inhibitor of src kinase. These results suggest that stretched contractions activate ROS production, which activates src kinase. Activity of this kinase causes opening of SACNSC and allows Ca2+ entry. This pathway appears to be a significant cause of muscle damage in DMD.

  10. AMP-activated protein kinase phosphorylates EMCV, TMEV and SafV leader proteins at different sites.

    Science.gov (United States)

    Basta, Holly A; Palmenberg, Ann C

    2014-08-01

    Cardioviruses of the Encephalomyocarditis virus (EMCV) and Theilovirus species encode small, amino-terminal proteins called Leaders (L). Phosphorylation of the EMCV L (LE) at two distinct sites by CK2 and Syk kinases is important for virus-induced Nup phosphorylation and nucleocytoplasmic trafficking inhibition. Despite similar biological activities, the LE phosphorylation sites are not conserved in the Theiloviruses, Saffold virus (LS, SafV) or Theiler׳s murine encephalitis virus (LT, TMEV) sequences even though these proteins also become phosphorylated in cells and cell-free extracts. Site prediction algorithms, combined with panels of site-specific protein mutations now identify analogous, but not homologous phosphorylation sites in the Ser/Thr and Theilo protein domains of LT and LS, respectively. In both cases, recombinant AMP-activated kinase (AMPK) was reactive with the proteins at these sites, and also with LE, modifying the same residue recognized by CK2. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Mutations in C8orf37, encoding a ciliary protein, are associated with autosomal-recessive retinal dystrophies with early macular involvement.

    NARCIS (Netherlands)

    Estrada-Cuzcano, A.; Neveling, K.; Kohl, S.; Banin, E.; Rotenstreich, Y.; Sharon, D.; Falik-Zaccai, T.C.; Hipp, S.; Roepman, R.; Wissinger, B.; Letteboer, S.J.F.; Mans, D.A.; Blokland, E.A.W.; Kwint, M.P.; Gijsen, S.J.; Huet, R.A.C. van; Collin, R.W.J.; Scheffer, H.; Veltman, J.A.; Zrenner, E.; Hollander, A.I. den; Klevering, B.J.; Cremers, F.P.M.

    2012-01-01

    Cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) are clinically and genetically overlapping heterogeneous retinal dystrophies. By using homozygosity mapping in an individual with autosomal-recessive (ar) RP from a consanguineous family, we identified three sizeable homozygous regions, together

  12. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2

    KAUST Repository

    Kovács, Krisztián A.

    2015-11-01

    CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. © 2015 Elsevier Inc.

  13. Mutational analysis of the coding regions of the genes encoding protein kinase B-alpha and -beta, phosphoinositide-dependent protein kinase-1, phosphatase targeting to glycogen, protein phosphatase inhibitor-1, and glycogenin

    DEFF Research Database (Denmark)

    Hansen, L; Fjordvang, H; Rasmussen, S K

    1999-01-01

    be caused by genetic variability in the genes encoding proteins shown by biochemical evidence to be involved in insulin-stimulated glycogen synthesis in skeletal muscle. In 70 insulin-resistant Danish NIDDM patients, mutational analysis by reverse transcription-polymerase chain reaction-single strand...... conformation polymorphism-heteroduplex analysis was performed on genomic DNA or skeletal muscle-derived cDNAs encoding glycogenin, protein phosphatase inhibitor-1, phophatase targeting to glycogen, protein kinase B-alpha and -beta, and the phosphoinositide-dependent protein kinase-1. Although a number...

  14. Cloning and Sequencing of Protein Kinase cDNA from Harbor Seal (Phoca vitulina Lymphocytes

    Directory of Open Access Journals (Sweden)

    Jennifer C. C. Neale

    2004-01-01

    Full Text Available Protein kinases (PKs play critical roles in signal transduction and activation of lymphocytes. The identification of PK genes provides a tool for understanding mechanisms of immunotoxic xenobiotics. As part of a larger study investigating persistent organic pollutants in the harbor seal and their possible immunomodulatory actions, we sequenced harbor seal cDNA fragments encoding PKs. The procedure, using degenerate primers based on conserved motifs of human protein tyrosine kinases (PTKs, successfully amplified nine phocid PK gene fragments with high homology to human and rodent orthologs. We identified eight PTKs and one dual (serine/threonine and tyrosine kinase. Among these were several PKs important in early signaling events through the B- and T-cell receptors (FYN, LYN, ITK and SYK and a MAP kinase involved in downstream signal transduction. V-FGR, RET and DDR2 were also expressed. Sequential activation of protein kinases ultimately induces gene transcription leading to the proliferation and differentiation of lymphocytes critical to adaptive immunity. PKs are potential targets of bioactive xenobiotics, including persistent organic pollutants of the marine environment; characterization of these molecules in the harbor seal provides a foundation for further research illuminating mechanisms of action of contaminants speculated to contribute to large-scale die-offs of marine mammals via immunosuppression.

  15. Regulation of NADPH oxidase 5 by protein kinase C isoforms.

    Directory of Open Access Journals (Sweden)

    Feng Chen

    Full Text Available NADPH oxidase5 (Nox5 is a novel Nox isoform which has recently been recognized as having important roles in the pathogenesis of coronary artery disease, acute myocardial infarction, fetal ventricular septal defect and cancer. The activity of Nox5 and production of reactive oxygen species is regulated by intracellular calcium levels and phosphorylation. However, the kinases that phosphorylate Nox5 remain poorly understood. Previous studies have shown that the phosphorylation of Nox5 is PKC dependent, but this contention was based on the use of pharmacological inhibitors and the isoforms of PKC involved remain unknown. Thus, the major goals of this study were to determine whether PKC can directly regulate Nox5 phosphorylation and activity, to identify which isoforms are involved in the process, and to understand the functional significance of this pathway in disease. We found that a relatively specific PKCα inhibitor, Ro-32-0432, dose-dependently inhibited PMA-induced superoxide production from Nox5. PMA-stimulated Nox5 activity was significantly reduced in cells with genetic silencing of PKCα and PKCε, enhanced by loss of PKCδ and the silencing of PKCθ expression was without effect. A constitutively active form of PKCα robustly increased basal and PMA-stimulated Nox5 activity and promoted the phosphorylation of Nox5 on Ser490, Thr494, and Ser498. In contrast, constitutively active PKCε potently inhibited both basal and PMA-dependent Nox5 activity. Co-IP and in vitro kinase assay experiments demonstrated that PKCα directly binds to Nox5 and modifies Nox5 phosphorylation and activity. Exposure of endothelial cells to high glucose significantly increased PKCα activation, and enhanced Nox5 derived superoxide in a manner that was in prevented by a PKCα inhibitor, Go 6976. In summary, our study reveals that PKCα is the primary isoform mediating the activation of Nox5 and this maybe of significance in our understanding of the vascular

  16. Short-term regulation of NHE3 by EGF and protein kinase C but not protein kinase A involves vesicle trafficking in epithelial cells and fibroblasts.

    Science.gov (United States)

    Donowitz, M; Janecki, A; Akhter, S; Cavet, M E; Sanchez, F; Lamprecht, G; Zizak, M; Kwon, W L; Khurana, S; Yun, C H; Tse, C M

    2000-01-01

    NHE3 is an intestinal epithelial isoform Na+/H+ exchanger that is present in the brush border of small intestinal, colonic, and gallbladder Na(+)-absorbing epithelial cells. NHE3 is acutely up- and downregulated in response to some G protein-linked receptors, tyrosine kinase receptors, and protein kinases when studied in intact ileum, when stably expressed in PS120 fibroblasts, and in the few studies reported in the human colon cancer cell line Caco-2. In most cases this is due to changes in Vmax of NHE3, although in response to cAMP and squalamine there are also changes in the K'(H+)i of the exchanger. The mechanism of the Vmax regulation as shown by cell surface biotinylation and confocal microscopy in Caco-2 cells and biotinylation in PS120 cells involves changes in the amount of NHE3 on the plasma membrane. In addition, in some cases there are also changes in turnover number of the exchanger. In some cases, the change in amount of NHE3 in the plasma membrane is associated with a change in the amount of plasma membrane. A combination of biochemical studies and transport/inhibitor studies in intact ileum and Caco-2 cells demonstrated that the increase in brush border Na+/H+ exchange caused by acute exposure to EGF was mediated by PI 3-kinase. PI 3-kinase was also involved in FGF stimulation of NHE3 expressed in fibroblasts. Thus, NHE3 is another example of a transport protein that is acutely regulated in part by changing the amount of the transporter on the plasma membrane by a process that appears to involve vesicle trafficking and also to involve changes in turnover number.

  17. Cloning and expression of catalytic domain of Abl protein tyrosine kinase gene in E. coli

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Protein tyrosine kinases (PTKs) regulate cell proliferation, differentiation and are involved in signal transduction. Uncontrolled signaling from receptor tyrosine kinases to intracellular tyrosine kinases can lead to inflamma tory responses and diseases such as cancer and atherosclerosis. Thus, inhibitors that block the activity of tyrosine kinases or the signaling pathways of PTKs activation could be assumed as the potential candidate for drug development. On this assumption, we cloned and expressed the Abl PTK gene in E. coli, and purified the PTK, which was used to screen the PTK inhibitors from the extracts of Chinese herbs. The catalytic domain sequence of PTK gene was amplified by PCR us ing the cDNA of abl from Abelson murine leukemia virus as template. The amplified fragment was then cloned into the GST-tagged expression vector pGEX2T. The recombinant plasmid was transformed into host cell E. coli DH5α and was induced to express PTK protein. The expression of the protein was detected using SDS-PAGE. The result showed that a specific protein was induced to express after 12 min induction, and reached peak level about 40% of the host total pro tein after 4 h induction. The molecular weight of the fusion protein was about 58 kD. The purified GST-PTK fusion pro tein presented higher activity for tyrosine phosphorylation.

  18. An unusual protein kinase phosphorylates the chemotactic receptor of Dictystelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Meier, K.; Klein, C. (St. Louis Univ. School of Medicine, MO (USA))

    1988-04-01

    The authors report the cAMP-dependent phosphorylation of the chemotactic receptor of Dictyostelium discoideum in partially purified plasma membranes. The protein kinase responsible for receptor phosphorylation is associated with this fraction and preferentially phosphorylates the ligand-occupied form of the receptor. 8-Azido({sup 32}P)cAMP labeling of the cell surface has shown that the cAMP receptor exists in two forms. A 45-kDa protein is predominant on unstimulated cells. cAMP stimulation results in an increased receptor phosphorylation such that the receptor migrates on NaDodSO{sub 4}/PAGE as a 47-kDa protein. Phosphorylation of the chemotactic receptor is not detected in membrane preparations unless cAMP is added to the incubation mixture. Only under those conditions is the phosphorylated 47-kDa form observed. The requirement for cAMP reflects the fact that the kinase involved preferentially uses the ligand-occupied receptor as a substrate. In vitro phosphorylation of the receptor does not involve tyrosine residues. The enzyme does not appear to be a cAMP- or cGMP-dependent protein kinase nor is it sensitive to guanine nucleotides, Ca{sup 2+}/calmodulin, Ca{sup 2+}/phospholipid, or EGTA. Similarities with the {beta}-adrenergic receptor protein kinase are discussed.

  19. Investigation of the Flexibility of Protein Kinases Implicated in the Pathology of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Michael P. Mazanetz

    2014-06-01

    Full Text Available The pathological characteristics of Alzheimer’s Disease (AD have been linked to the activity of three particular kinases—Glycogen Synthase Kinase 3β (GSK3β, Cyclin-Dependent Kinase 5 (CDK5 and Extracellular-signal Regulated Kinase 2 (ERK2. As a consequence, the design of selective, potent and drug-like inhibitors of these kinases is of particular interest. Structure-based design methods are well-established in the development of kinase inhibitors. However, progress in this field is limited by the difficulty in obtaining X-ray crystal structures suitable for drug design and by the inability of this method to resolve highly flexible regions of the protein that are crucial for ligand binding. To address this issue, we have undertaken a study of human protein kinases CDK5/p25, CDK5, ERK2 and GSK3β using both conventional molecular dynamics (MD and the new Active Site Pressurisation (ASP methodology, to look for kinase-specific patterns of flexibility that could be leveraged for the design of selective inhibitors. ASP was used to examine the intrinsic flexibility of the ATP-binding pocket for CDK5/p25, CDK5 and GSK3β where it is shown to be capable of inducing significant conformational changes when compared with X-ray crystal structures. The results from these experiments were used to quantify the dynamics of each protein, which supported the observations made from the conventional MD simulations. Additional information was also derived from the ASP simulations, including the shape of the ATP-binding site and the rigidity of the ATP-binding pocket. These observations may be exploited in the design of selective inhibitors of GSK3β, CDK5 and ERK2.

  20. Involvement of the mitogen-activated protein (MAP kinase signalling pathway in host cell invasion by Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Robert-Gangneux F.

    2000-06-01

    Full Text Available Little is known about signalling in Toxoplasma gondii, but it is likely that protein kinases might play a key role in the parasite proliferation, differentiation and probably invasion. We previously characterized Mitogen-Activated Protein (MAP kinases in T. gondii lysates. In this study, cultured cells were tested for their susceptibility to Toxoplasma gondii infection after tachyzoite pretreatment with drugs interfering with AMP kinase activation pathways. Protein kinases inhibitors, i.e. genistein, R031-8220 and PD098059, reduced tachyzoite infectivity by 38 ± 4.5 %, 85.5 ± 9 % and 56 ± 10 %, respectively. Conversely, protein kinases activators, i.e. bombesin and PMA, markedly increased infectivity (by 202 ± 37 % and 258 ± 14 %, respectively. These results suggest that signalling pathways involving PKC and AAAP kinases play a role in host cell invasion by Toxoplasma.

  1. Trophoblast cell fusion and differentiation are mediated by both the protein kinase C and a pathways.

    Directory of Open Access Journals (Sweden)

    Waka Omata

    Full Text Available The syncytiotrophoblast of the human placenta is an epithelial barrier that interacts with maternal blood and is a key for the transfer of nutrients and other solutes to the developing fetus. The syncytiotrophoblast is a true syncytium and fusion of progenitor cytotrophoblasts is the cardinal event leading to the formation of this layer. BeWo cells are often used as a surrogate for cytotrophoblasts, since they can be induced to fuse, and then express certain differentiation markers associated with trophoblast syncytialization. Dysferlin, a syncytiotrophoblast membrane repair protein, is up-regulated in BeWo cells induced to fuse by treatment with forskolin; this fusion is thought to occur through cAMP/protein kinase A-dependent mechanisms. We hypothesized that dysferlin may also be up-regulated in response to fusion through other pathways. Here, we show that BeWo cells can also be induced to fuse by treatment with an activator of protein kinase C, and that this fusion is accompanied by increased expression of dysferlin. Moreover, a dramatic synergistic increase in dysferlin expression is observed when both the protein kinase A and protein kinase C pathways are activated in BeWo cells. This synergy in fusion is also accompanied by dramatic increases in mRNA for the placental fusion proteins syncytin 1, syncytin 2, as well as dysferlin. Dysferlin, however, was shown to be dispensable for stimulus-induced BeWo cell syncytialization, since dysferlin knockdown lines fused to the same extent as control cells. The classical trophoblast differentiation marker human chorionic gonadotropin was also monitored and changes in the expression closely parallel that of dysferlin in all of the experimental conditions employed. Thus different biochemical markers of trophoblast fusion behave in concert supporting the hypothesis that activation of both protein kinase C and A pathways lead to trophoblastic differentiation.

  2. Pim Kinase Interacts with Nonstructural 5A Protein and Regulates Hepatitis C Virus Entry

    OpenAIRE

    Park, Chorong; Min, Saehong; Park, Eun-Mee; Lim, Yun-Sook; Kang, Sangmin; Suzuki, Tetsuro; Shin, Eui-Cheol; Hwang, Soon B.

    2015-01-01

    The life cycle of hepatitis C virus (HCV) is highly dependent on host cellular proteins for virus propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assay using the HCV nonstructural 5A (NS5A) protein as a probe. Of ∼9,000 human cellular proteins immobilized in a microarray, approximately 90 cellular proteins were identified as NS5A interactors. Of these candidates, Pim1, a member of serine/threonine kinase family composed of th...

  3. LmxMPK4, an essential mitogen-activated protein kinase of Leishmania mexicana is phosphorylated and activated by the STE7-like protein kinase LmxMKK5

    DEFF Research Database (Denmark)

    John von Freyend, Simona; Rosenqvist, Heidi; Fink, Annette

    2010-01-01

    The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identifie...... for new therapeutic drugs against leishmaniasis....

  4. Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stress.

    Science.gov (United States)

    Ebrahimian, Talin; Li, Melissa Wei; Lemarié, Catherine A; Simeone, Stefania M C; Pagano, Patrick J; Gaestel, Matthias; Paradis, Pierre; Wassmann, Sven; Schiffrin, Ernesto L

    2011-02-01

    Vascular oxidative stress and inflammation play an important role in angiotensin II-induced hypertension, and mitogen-activated protein kinases participate in these processes. We questioned whether mitogen-activated protein kinase-activated protein kinase 2 (MK2), a downstream target of p38 mitogen-activated protein kinase, is involved in angiotensin II-induced vascular responses. In vivo experiments were performed in wild-type and Mk2 knockout mice infused intravenously with angiotensin II. Angiotensin II induced a 30 mm Hg increase in mean blood pressure in wild-type that was delayed in Mk2 knockout mice. Angiotensin II increased superoxide production and vascular cell adhesion molecule-1 in blood vessels of wild-type but not in Mk2 knockout mice. Mk2 knockdown by small interfering RNA in mouse mesenteric vascular smooth muscle cells caused a 42% reduction in MK2 protein and blunted the angiotensin II-induced 40% increase of MK2 expression. Mk2 knockdown blunted angiotensin II-induced doubling of intracellular adhesion molecule-1 expression, 2.4-fold increase of nuclear p65, and 1.4-fold increase in Ets-1. Mk2 knockdown abrogated the angiotensin II-induced 4.7-fold and 1.3-fold increase of monocyte chemoattractant protein-1 mRNA and protein. Angiotensin II enhanced reactive oxygen species levels (by 29%) and nicotinamide adenine dinucleotide phosphate oxidase activity (by 48%), both abolished by Mk2 knockdown. Reduction of MK2 blocked angiotensin II-induced p47phox translocation to the membrane, associated with a 53% enhanced catalase expression. Angiotensin II-induced increase of MK2 was prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor Nox2ds-tat. Mk2 small interfering RNA prevented the angiotensin II-induced 30% increase of proliferation. In conclusion, MK2 plays a critical role in angiotensin II signaling, leading to hypertension, oxidative stress via activation of p47phox and inhibition of antioxidants, and vascular inflammation

  5. A case of myotonic dystrophy with electrolyte imbalance.

    Science.gov (United States)

    Ko, Weon-Jin; Kim, Kwang-Yeol; Kim, So-Mi; Hong, Seung-Jae; Lee, Sang-Hoon; Song, Ran; Yang, Hyung-In; Lee, Yeon-Ah

    2013-07-01

    Type 1 myotonic dystrophy (DM1) is an autosomal-dominant inherited disorder with a multisystem involvement, caused by an abnormal expansion of the CTG sequence of the dystrophic myotonia protein kinase (DMPK) gene. DM1 is a variable multisystem disorder with muscular and nonmuscular abnormalities. Increasingly, endocrine abnormalities, such as gonadal, pancreatic, and adrenal dysfunction are being reported. But, Electrolytes imbalance is a very rare condition in patients with DM1 yet. Herein we present a 42-yr-old Korean male of DM1 with abnormally elevated serum sodium and potassium. The patient had minimum volume of maximally concentrated urine without water loss. It was only cured by normal saline hydration. The cause of hypernatremia was considered by primary hypodipsia. Hyperkalemic conditions such as renal failure, pseudohyperkalemia, cortisol deficiency and hyperkalemic periodic paralysis were excluded. Further endocrine evaluation suggested selective hyperreninemic hypoaldosteronism as a cause of hyperkalemia.

  6. Activation of protein kinase C inhibits potassium currents in cultured endothelial cells.

    Science.gov (United States)

    Zhang, H; Weir, B; Daniel, E E

    1995-04-01

    The effect of protein kinase C on potassium channels in cultured endothelial cells was investigated by using whole-cell patch-clamp techniques. Activation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-dibutyrate (PDBu), but not phorbol 12-monomyristate (PMM), an inactive analogue of phorbol esters, depressed an outward calcium-dependent potassium current. The inhibitory actions of PMA and PDBu could be reversed by the kinase inhibitor H-7. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum calcium pump, and LP-805, a novel vasodilator which also releases endothelium-derived relaxing factors, activated the outward calcium-dependent potassium conductance. PMA and PDBu, but not PMM, reduced the outward conductance induced by cyclopiazonic acid and LP-805. These effects of PMA and PDBu on potassium currents may be mediated either by phosphorylation of ion channels, or by decreasing intracellular calcium concentration.

  7. CDPK1, a calcium-dependent protein kinase, regulates transcriptional activator RSG in response to gibberellins.

    Science.gov (United States)

    Nakata, Masaru; Yuasa, Takashi; Takahashi, Yohsuke; Ishida, Sarahmi

    2009-05-01

    The homeostasis of gibberellins (GAs) is maintained by negative-feedback regulation in plant cells. REPRESSION OF SHOOT GROWTH (RSG) is a transcriptional activator with a basic Leu zipper domain suggested to contribute GA feedback regulation by the transcriptional regulation of genes encoding GA biosynthetic enzymes. The 14-3-3 signaling proteins negatively regulate RSG by sequestering it in the cytoplasm in response to GAs. The phosphorylation on Ser-114 of RSG is essential for 14-3-3 binding of RSG; however, the kinase that catalyzes the reaction is unknown. Recently a Ca(2+)-dependent protein kinase (CDPK) was identified as an RSG kinase that promotes 14-3-3 binding of RSG by phosphorylation of the Ser-114 of RSG. Our results suggest that CDPK decodes the Ca(2+) signal produced by GAs and regulates the intracellular localization of RSG in plant cells.

  8. Role of the mixed-lineage protein kinase pathway in the metabolic stress response to obesity.

    Science.gov (United States)

    Kant, Shashi; Barrett, Tamera; Vertii, Anastassiia; Noh, Yun Hee; Jung, Dae Young; Kim, Jason K; Davis, Roger J

    2013-08-29

    Saturated free fatty acid (FFA) is implicated in the metabolic response to obesity. In vitro studies indicate that FFA signaling may be mediated by the mixed-lineage protein kinase (MLK) pathway that activates cJun NH2-terminal kinase (JNK). Here, we examined the role of the MLK pathway in vivo using a mouse model of diet-induced obesity. The ubiquitously expressed MLK2 and MLK3 protein kinases have partially redundant functions. We therefore compared wild-type and compound mutant mice that lack expression of MLK2 and MLK3. MLK deficiency protected mice against high-fat-diet-induced insulin resistance and obesity. Reduced JNK activation and increased energy expenditure contribute to the metabolic effects of MLK deficiency. These data confirm that the MLK pathway plays a critical role in the metabolic response to obesity.

  9. Role of the Mixed-Lineage Protein Kinase Pathway in the Metabolic Stress Response to Obesity

    Directory of Open Access Journals (Sweden)

    Shashi Kant

    2013-08-01

    Full Text Available Saturated free fatty acid (FFA is implicated in the metabolic response to obesity. In vitro studies indicate that FFA signaling may be mediated by the mixed-lineage protein kinase (MLK pathway that activates cJun NH2-terminal kinase (JNK. Here, we examined the role of the MLK pathway in vivo using a mouse model of diet-induced obesity. The ubiquitously expressed MLK2 and MLK3 protein kinases have partially redundant functions. We therefore compared wild-type and compound mutant mice that lack expression of MLK2 and MLK3. MLK deficiency protected mice against high-fat-diet-induced insulin resistance and obesity. Reduced JNK activation and increased energy expenditure contribute to the metabolic effects of MLK deficiency. These data confirm that the MLK pathway plays a critical role in the metabolic response to obesity.

  10. Recent advances in protein kinase inhibition: current molecular scaffolds used for inhibitor synthesis.

    Science.gov (United States)

    Stover, D R; Lydon, N B; Nunes, J J

    1999-07-01

    Early efforts to discover and develop protein kinase inhibitors have focused largely on a small group of oncology targets such as the EGFR and PKC enzymes. More recently, hundreds of protein kinases have been identified at the genetic level, many of which are now being assigned functions in a variety of signaling pathways. Additionally, mutagenesis and X-ray crystallographic studies have further defined common structural features associated with binding of the ATP cofactor within a conserved ATP binding cleft. These studies have also demonstrated significant differences in the ATP binding cleft between individual kinases, providing a molecular basis for understanding and exploiting inhibitor specificity. The current review will focus on recent developments in the field of ATP site-directed inhibitors with particular emphasis on the major scaffolds being derivatized to take advantage of variable regions of the active site.

  11. Activation of brain B-Raf protein kinase by Rap1B small GTP-binding protein.

    Science.gov (United States)

    Ohtsuka, T; Shimizu, K; Yamamori, B; Kuroda, S; Takai, Y

    1996-01-19

    Rap1 small GTP-binding protein has the same amino acid sequence at its effector domain as that of Ras. Rap1 has been shown to antagonize the Ras functions, such as the Ras-induced transformation of NIH 3T3 cells and the Ras-induced activation of the c-Raf-1 protein kinase-dependent mitogen-activated protein (MAP) kinase cascade in Rat-1 cells, whereas we have shown that Rap1 as well as Ras stimulates DNA synthesis in Swiss 3T3 cells. We have established a cell-free assay system in which Ras activates bovine brain B-Raf protein kinase. Here we have used this assay system and examined the effect of Rap1 on the B-Raf activity to phosphorylate recombinant MAP kinase kinase (MEK). Recombinant Rap1B stimulated the activity of B-Raf, which was partially purified from bovine brain and immunoprecipitated by an anti-B-Raf antibody. The GTP-bound form was active, but the GDP-bound form was inactive. The fully post-translationally lipid-modified form was active, but the unmodified form was nearly inactive. The maximum B-Raf activity stimulated by Rap1B was nearly the same as that stimulated by Ki-Ras. Rap1B enhanced the Ki-Ras-stimulated B-Raf activity in an additive manner. These results indicate that not only Ras but also Rap1 is involved in the activation of the B-Raf-dependent MAP kinase cascade.

  12. Nerve growth factor activates calcium-insensitive protein kinase C-epsilon in PC-12 rat pheochromocytoma cells.

    OpenAIRE

    Ohmichi, M; Zhu, G.; Saltiel, A R

    1993-01-01

    Protein kinase C (PKC) family members were examined in PC-12 rat pheochromocytoma cells to evaluate their role in the action of nerve growth factor (NGF). Immunoblot analysis of whole cell lysates using antibodies against various PKC isoforms revealed that PC-12 cells contained PKC-alpha, -delta, -epsilon and zeta. Assay of the protein kinase activity in these different anti-PKC immunoprecipitates demonstrated that NGF stimulated the kinase activity of PKC-epsilon, but not PKC-alpha, -delta a...

  13. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity

    KAUST Repository

    Al-Tawashi, Azza

    2012-02-28

    Mutation of the coiled-coil and C2 domain-containing 1A (CC2D1A) gene, which encodes a C2 domain and DM14 domain-containing protein, has been linked to severe autosomal recessive nonsyndromic mental retardation. Using a mouse model that produces a truncated form of CC2D1A that lacks the C2 domain and three of the four DM14 domains, we show that CC2D1A is important for neuronal differentiation and brain development. CC2D1A mutant neurons are hypersensitive to stress and have a reduced capacitytoformdendritesandsynapsesinculture. Atthebiochemical level,CC2D1Atransduces signals to the cyclic adenosine 3?,5?-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit to the nucleus is also defective in CC2D1A mutant cells. Consistently, phosphorylation of the PKA target cAMP-responsive element-binding protein, at serine 133, is nearly abolished in CC2D1A mutant cells. The defects in cAMP/PKA signaling were observed in fibroblast, macrophage, and neuronal primary cells derived from the CC2D1A KO mice. CC2D1A associates with the cAMP-PKA complex following forskolin treatment and accumulates in vesicles or on the plasma membrane in wild-type cells, suggesting that CC2D1A may recruit the PKA complex to the membrane to facilitate signal transduction. Together, our data show that CC2D1A is an important regulator of the cAMP/PKA signaling pathway, which may be the underlying cause for impaired mental function in nonsyndromic mental retardation patients with CC2D1A mutation. 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. [Dystroglycan linkage and muscular dystrophy].

    Science.gov (United States)

    Shimizu, Teruo

    2002-11-01

    Dystroglycan is a key complex between basal lamina laminin, extracellularly and membrano-cytoskeleton, intracellularly. The damage of this linkage is turned out to cause muscular dystrophies. Dystroglycan knockout is lethal. Dystroglycan-associated intracellular proteins such as dystrophin, dystrobrevin, sarcoglycans, plectin and caveolin-3 are responsible for causing severe (Duchenne type) and moderate forms (Becker, LGMDs). Laminin, dystroglycan-binding extracellular protein, is deficient in the most severe form of congenital muscular dystrophy with normal intelligence and eye. Recently, a remarkable progress is made in most severe forms of congenital muscular dystrophy with anomalies of brain and eye such as Fukuyama type (Japan) and muscle-eye-brain disease (Finland). The gene product for Fukuyama type, fukutin, belongs to a family of glycosylation enzymes in bacteria and yeast. Since alpha-dystroglycan contains 14-15 o-glycans, ser/thr-mannose 2-1 GlcNAc 4-1 Gal 3-2 Sial in the middle third mucin-domain and the sial-o-glycan is essential for laminin-binding, and since alpha-dystroglycan is defective in Fukuyama type sarcolemma with anti both sugar moiety- and peptide-antidodies, defective fukutin causes incomplete o-glycosylation of alpha-dystroglycan. In '02, it is clarified that a glycosylation enzyme, POMGnT1 which modifies GlcNAc onto ser/thr-mannose, is defective in 6 MEB patients. The loss of the enzyme activity is turned out to lose alpha-dystroglycan from sarcolemma of MEB. These data strongly suggests that o-glycosylation defect of alpha-dystroglycan causes the most severe congenital muscular dystrophy such as Fukuyama type, MEB and Walker Warburg syndrome.

  15. Impaired activation of mitogen-activated protein kinases after hemorrhagic shock.

    Science.gov (United States)

    Khadaroo, Rachel G; Lu, Ziyue; Powers, Kinga A; Papia, Giuseppe; Kapus, Andras; Rotstein, Ori D

    2002-08-01

    Patients sustaining major trauma are at risk of developing organ dysfunction. We have previously shown that resuscitated hemorrhagic shock primes for increased lung injury in response to lippolysaccharide (LPS), in part by preventing upregulation of the counterinflammatory cytokine IL-10. Because the mitogen-activated protein kinase (MAPK) family is known to participate in LPS signaling, we hypothesized that altered upstream signaling through these kinases might contribute to impaired LPS-simulated IL-10 release after shock and resuscitation. Rats were bled to a mean arterial pressure of 40 mm Hg and maintained for 1 hour, then resuscitated. Alveolar macrophages were retrieved at the end of resuscitation and exposed to LPS (0.5 microg/mL). Western blotting for p38, extracellular-regulated protein kinase, and c-Jun NH2-terminal kinase was performed on whole cell lysates. In some studies, the alveolar macrophages were preincubated with the p38 inhibitor or the extracellular-regulated protein kinase inhibitor before LPS stimulation. IL-10 levels were measured by enzyme-linked immunosorbent assay. LPS caused an early activation in all members of the MAPK family, whereas antecedent shock both delayed and attenuated the LPS induction. To discern whether this reduction in LPS-stimulated MAPK activation after shock might contribute to reduced IL-10, specific inhibitors were used. Inhibition of p38 MAPK completely inhibited LPS-induced IL-10 production, whereas blockade of extracellular-regulated protein kinase pathway had no effect. Shock resuscitation impairs LPS-induced activation of the members of the MAPK family. For the critical counterinflammatory cytokine IL-10, inhibition of p38 activation appears to contribute to the reduced levels of this cytokine in response to LPS. This study provides in vitro evidence for altered signaling through p38 MAPK, as a mechanism leading to failed upregulation of a counterinflammatory cytokine, and thus the propagation of an

  16. KSR1 is a functional protein kinase capable of serine autophosphorylation and direct phosphorylation of MEK1

    Energy Technology Data Exchange (ETDEWEB)

    Goettel, Jeremy A. [Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Liang, Dongchun [Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Hilliard, Valda C.; Edelblum, Karen L.; Broadus, Matthew R. [Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Gould, Kathleen L. [Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Hanks, Steven K. [Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Polk, D. Brent, E-mail: dbpolk@chla.usc.edu [Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)

    2011-02-15

    The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway is a highly conserved signaling pathway that regulates diverse cellular processes including differentiation, proliferation, and survival. Kinase suppressor of Ras-1 (KSR1) binds each of the three ERK cascade components to facilitate pathway activation. Even though KSR1 contains a C-terminal kinase domain, evidence supporting the catalytic function of KSR1 remains controversial. In this study, we produced recombinant wild-type or kinase-inactive (D683A/D700A) KSR1 proteins in Escherichia coli to test the hypothesis that KSR1 is a functional protein kinase. Recombinant wild-type KSR1, but not recombinant kinase-inactive KSR1, underwent autophosphorylation on serine residue(s), phosphorylated myelin basic protein (MBP) as a generic substrate, and phosphorylated recombinant kinase-inactive MAPK/ERK kinase-1 (MEK1). Furthermore, FLAG immunoprecipitates from KSR1{sup -/-} colon epithelial cells stably expressing FLAG-tagged wild-type KSR1 (+KSR1), but not vector (+vector) or FLAG-tagged kinase-inactive KSR1 (+D683A/D700A), were able to phosphorylate kinase-inactive MEK1. Since TNF activates the ERK pathway in colon epithelial cells, we tested the biological effects of KSR1 in the survival response downstream of TNF. We found that +vector and +D683A/D700A cells underwent apoptosis when treated with TNF, whereas +KSR1 cells were resistant. However, +KSR1 cells were sensitized to TNF-induced cell loss in the absence of MEK kinase activity. These data provide clear evidence that KSR1 is a functional protein kinase, MEK1 is an in vitro substrate of KSR1, and the catalytic activities of both proteins are required for eliciting cell survival responses downstream of TNF.

  17. Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein.

    Science.gov (United States)

    Mariano, Andrea C; Andrade, Maxuel O; Santos, Anésia A; Carolino, Sonia M B; Oliveira, Marli L; Baracat-Pereira, Maria Cristina; Brommonshenkel, Sergio H; Fontes, Elizabeth P B

    2004-01-05

    Despite extensive studies in plant virus-host interactions, the molecular mechanisms of geminivirus movement and interactions with host components remain largely unknown. A tomato kinase protein and its soybean homolog were found to interact specifically with the nuclear shuttle protein (NSP) of Tomato golden mosaic virus (TGMV) and Tomato crinkle leaf yellows virus (TCrLYV) through yeast two-hybrid screening and in vitro protein binding assays. These proteins, designated LeNIK (Lycopersicon esculentum NSP-Interacting Kinase) and GmNIK (Glycine max NIK), belong to the LRR-RLK (leucine rich-repeat receptor-like kinase) family that is involved in plant developmental processes and/or resistance response. As such, NIK is structurally organized into characteristic domains, including a serine/threonine kinase domain with a nucleotide binding site at the C-terminal region, an internal transmembrane segment and leucine-rich repeats (LRR) at the N-terminal portion. The potential significance of the NSP-NIK interaction is discussed.

  18. Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4.

    Science.gov (United States)

    Bullard, Steven A; Seo, Seongjin; Schilling, Birgit; Dyle, Michael C; Dierdorff, Jason M; Ebert, Scott M; DeLau, Austin D; Gibson, Bradford W; Adams, Christopher M

    2016-08-19

    Skeletal muscle atrophy is a serious and highly prevalent condition that remains poorly understood at the molecular level. Previous work found that skeletal muscle atrophy involves an increase in skeletal muscle Gadd45a expression, which is necessary and sufficient for skeletal muscle fiber atrophy. However, the direct mechanism by which Gadd45a promotes skeletal muscle atrophy was unknown. To address this question, we biochemically isolated skeletal muscle proteins that associate with Gadd45a as it induces atrophy in mouse skeletal muscle fibers in vivo We found that Gadd45a interacts with multiple proteins in skeletal muscle fibers, including, most prominently, MEKK4, a mitogen-activated protein kinase kinase kinase that was not previously known to play a role in skeletal muscle atrophy. Furthermore, we found that, by forming a complex with MEKK4 in skeletal muscle fibers, Gadd45a increases MEKK4 protein kinase activity, which is both sufficient to induce skeletal muscle fiber atrophy and required for Gadd45a-mediated skeletal muscle fiber atrophy. Together, these results identify a direct biochemical mechanism by which Gadd45a induces skeletal muscle atrophy and provide new insight into the way that skeletal muscle atrophy occurs at the molecular level. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases

    Directory of Open Access Journals (Sweden)

    Suzuki Harukazu

    2006-02-01

    Full Text Available Abstract Background Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse http://phosphoreg.imb.uq.edu.au that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. Results The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. Conclusion Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered.

  20. Structural analysis of ARC-type inhibitor (ARC-1034) binding to protein kinase A catalytic subunit and rational design of bisubstrate analogue inhibitors of basophilic protein kinases.

    Science.gov (United States)

    Lavogina, Darja; Lust, Marje; Viil, Indrek; König, Norbert; Raidaru, Gerda; Rogozina, Jevgenia; Enkvist, Erki; Uri, Asko; Bossemeyer, Dirk

    2009-01-22

    The crystal structure of a complex of the catalytic subunit (type alpha) of cAMP-dependent protein kinase (PKA C alpha) with ARC-type inhibitor (ARC-1034), the presumed lead scaffold of previously reported adenosine-oligo-arginine conjugate-based (ARC-type) inhibitors, was solved. Structural elements important for interaction with the kinase were established with specifically modified derivatives of the lead compound. On the basis of this knowledge, a new generation of inhibitors, conjugates of adenosine-4'-dehydroxymethyl-4'-carboxylic acid moiety and oligo(D-arginine), was developed with inhibitory constants well into the subnanomolar range. The structural determinants of selectivity of the new compounds were established in assays with ROCK-II and PKBgamma.

  1. Selectivity analysis of protein kinase CK2 inhibitors DMAT, TBB and resorufin in cisplatin-induced stress responses

    DEFF Research Database (Denmark)

    Fritz, Gerhard; Issinger, Olaf-Georg; Olsen, Birgitte Brinkmann

    2009-01-01

    Targeting protein kinases as a therapeutic approach to treat various diseases, especially cancer is currently a fast growing business. Although many inhibitors are available, exhibiting remarkable potency, the major challenge is their selectivity. Here we show that the protein kinase CK2 inhibito...

  2. DMPD: Protein kinase C epsilon: a new target to control inflammation andimmune-mediated disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14643884 Protein kinase C epsilon: a new target to control inflammation andimmune-mediated disorder...g) (.html) (.csml) Show Protein kinase C epsilon: a new target to control inflammation andimmune-mediated disorder...l inflammation andimmune-mediated disorders. Authors Aksoy E, Goldman M, Willems F. Publication Int J Bioche

  3. Gravin orchestrates protein kinase A and β2-adrenergic receptor signaling critical for synaptic plasticity and memory

    NARCIS (Netherlands)

    Havekes, Robbert; Canton, David A; Park, Alan J; Huang, Ted; Nie, Ting; Day, Jonathan P; Guercio, Leonardo A; Grimes, Quinn; Luczak, Vincent; Gelman, Irwin H; Baillie, George S; Scott, John D; Abel, Ted

    2012-01-01

    A kinase-anchoring proteins (AKAPs) organize compartmentalized pools of protein kinase A (PKA) to enable localized signaling events within neurons. However, it is unclear which of the many expressed AKAPs in neurons target PKA to signaling complexes important for long-lasting forms of synaptic plast

  4. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:... potentialregulators of macrophage inflammatory activities. PubmedID 12472665 Title Macrophage-stimulatin

  5. Differential distribution of protein kinase C (PKCαβ and PKCγ) isoenzyme immunoreactivity in the chick brain

    NARCIS (Netherlands)

    Zee, Eddy A. van der; Bolhuis, Johan J.; Solomonia, Revaz O.; Horn, Gabriel; Luiten, Paul G.M.

    1995-01-01

    Protein kinase C (PKC) is involved in neural plasticity. The phosphorylation of the myristoylated alanine-rich protein kinase C substrate (MARCKS) in the left intermediate and medial hyperstriatum ventrale (IMHV) of the chick brain has been shown previously to correlate significantly with the streng

  6. Molecular mechanism of regulation of the atypical protein kinase C by N-terminal domains and an allosteric small compound

    DEFF Research Database (Denmark)

    Zhang, Hua; Neimanis, Sonja; Lopez-Garcia, Laura A;

    2014-01-01

    Protein kinases play important regulatory roles in cells and organisms. Therefore, they are subject to specific and tight mechanisms of regulation that ultimately converge on the catalytic domain and allow the kinases to be activated or inhibited only upon the appropriate stimuli. AGC protein kin...

  7. Structure of the gene encoding the murine protein kinase CK2 beta subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Issinger, O G

    1995-01-01

    The mouse protein kinase CK2 beta subunit gene (Csnk2b) is composed of seven exons contained within 7874 bp. The exon and intron lengths extend from 76 to 321 and 111 to 1272 bp, respectively. The lengths of the murine coding exons correspond exactly to the lengths of the exons in the human CK2...