WorldWideScience

Sample records for dystrophy fld mutation

  1. The fatty liver dystrophy (fld) mutation: Developmentally related alterations in hepatic triglyceride metabolism and protein expression

    Energy Technology Data Exchange (ETDEWEB)

    Reue, K.; Rehnmark, S.; Cohen, R.D.; Leete, T.H.; Doolittle, M.H. [West Los Angeles VA Medical Center, CA (United States). Lipid Research Lab.]|[Univ. of California, Los Angeles, CA (United States). Dept. of Medicine; Giometti, C.S.; Mishler, K. [Argonne National Lab., IL (United States); Slavin, B.G. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-07-01

    Fatty liver dystrophy (fld) is an autosomal recessive mutation in mice characterized by hypertriglyceridemia and development of a fatty liver in the early neonatal period. Also associated with the fld phenotype is a tissue-specific deficiency in the expression of lipoprotein lipase and hepatic lipase, as well as elevations in hepatic apolipoprotein A-IV and apolipoprotein C-II mRNA levels. Although these lipid abnormalities resolve at the age of weaning, adult mutant mice exhibit a peripheral neuropathy associated with abnormal myelin formation. The fatty liver in fld/fld neonates is characterized by the accumulation of large triglyceride droplets within the parenchymal cells, and these droplets persist within isolated hepatocytes maintained in culture for several days. To identify the metabolic defect that leads to lipid accumulation, the authors investigated several aspects of cellular triglyceride metabolism. The mutant mice exhibited normal activity of acid triacylglycerol lipase, an enzyme thought to be responsible for hydrolysis of dietary triglycerides in the liver. Metabolic labeling studies performed with oleic acid revealed that free fatty acids accumulate in the liver of 3 day old fld/fld mice, but not in adults. This accumulation in liver was mirrored by elevated free fatty acid levels in plasma of fld/fld neonates, with levels highest in very young mice and returning to normal by the age of one month. Quantitation of fatty acid oxidation in cells isolated from fld/fld neonates revealed that oxidation rate is reduced 60% in hepatocytes and 40% in fibroblasts; hepatocytes from adult fld/fld mice exhibited an oxidation rate similar to those from wild-type mice.

  2. Limb girdle muscular dystrophy due to mutations in POMT2

    DEFF Research Database (Denmark)

    Østergaard, Sofie Thurø; Johnson, Katherine; Stojkovic, Tanya

    2018-01-01

    BACKGROUND: Mutations in the gene coding for protein O-mannosyl-transferase 2 (POMT2) are known to cause severe congenital muscular dystrophy, and recently, mutations in POMT2 have also been linked to a milder limb-girdle muscular dystrophy (LGMD) phenotype, named LGMD type 2N (LGMD2N). Only four...

  3. Neurocognitive Profiles in Duchenne Muscular Dystrophy and Gene Mutation Site

    Science.gov (United States)

    D’Angelo, Maria Grazia; Lorusso, Maria Luisa; Civati, Federica; Comi, Giacomo Pietro; Magri, Francesca; Del Bo, Roberto; Guglieri, Michela; Molteni, Massimo; Turconi, Anna Carla; Bresolin, Nereo

    2011-01-01

    The presence of nonprogressive cognitive impairment is recognized as a common feature in a substantial proportion of patients with Duchenne muscular dystrophy. To investigate the possible role of mutations along the dystrophin gene affecting different brain dystrophin isoforms and specific cognitive profiles, 42 school-age children affected with Duchenne muscular dystrophy, subdivided according to sites of mutations along the dystrophin gene, underwent a battery of tests tapping a wide range of intellectual, linguistic, and neuropsychologic functions. Full-scale intelligence quotient was approximately 1 S.D. below the population average in the whole group of dystrophic children. Patients with Duchenne muscular dystrophy and mutations located in the distal portion of the dystrophin gene (involving the 140-kDa brain protein isoform, called Dp140) were generally more severely affected and expressed different patterns of strengths and impairments, compared with patients with Duchenne muscular dystrophy and mutations located in the proximal portion of the dystrophin gene (not involving Dp140). Patients with Duchenne muscular dystrophy and distal mutations demonstrated specific impairments in visuospatial functions and visual memory (which seemed intact in proximally mutated patients) and greater impairment in syntactic processing. PMID:22000308

  4. An experimental study of BIGH3 gene mutations in the patients with corneal dystrophies

    International Nuclear Information System (INIS)

    Jin Tao; Zou Liuhe; Yang Ling

    2004-01-01

    Objective: To evaluate BIGH3 gene mutations in Chinese patents with corneal dystrophies. Methods: 2ml peripheral venous blood was collected from 15 patients with granular corneal dystrophies and 5 normal subjects. Leucocytes DNA was extracted with standard method. With two pairs of oligonucleotide primers, exon 4 and exon 12 of the BIGH3 gene were amplified using the polymerase chain reaction. Amplified DNA fragments were purified and sequenced directly. Results: Mutations in BIGH3 gene were detected in all the patients with corneal dystrophies. BIGH3 gene mutations were not found in normal subjects. 12 patients with Avellino corneal dystrophy had the missense mutation R124H in the BIGH3 gene. 3 patients with granular corneal dystrophy had the missense mutation R555W in the BIGH3 gene. Conclusion: R124H and R555W mutations in BIGH3 gene were also found in the Chinese patients with Avellino and granular corneal dystrophies. In China, Avellino corneal dystrophy associated with the R124H mutation is the most common form in the corneal dystrophies resulted by BIGH3 gene mutions. Condon 124 and 555 are also the hot spots for the mutations in the BIGH3 gene in the Chinese patients with corneal dystrophies. Molecular genetic analysis may be repuired for proper diagnosis and subclassification of corneal dystrophies. (authors)

  5. Clinical and molecular characterization of limb-girdle muscular dystrophy due to LAMA2 mutations

    DEFF Research Database (Denmark)

    Gavassini, Bruno F; Carboni, Nicola; Nielsen, Jørgen E

    2011-01-01

    In this study we describe the clinical and molecular characteristics of limb-girdle muscular dystrophy (LGMD) due to LAMA2 mutations.......In this study we describe the clinical and molecular characteristics of limb-girdle muscular dystrophy (LGMD) due to LAMA2 mutations....

  6. Lamin A/C mutations with lipodystrophy, cardiac abnormalities, and muscular dystrophy

    NARCIS (Netherlands)

    van der Kooi, A. J.; Bonne, G.; Eymard, B.; Duboc, D.; Talim, B.; van der Valk, M.; Reiss, P.; Richard, P.; Demay, L.; Merlini, L.; Schwartz, K.; Busch, H. F. M.; de Visser, M.

    2002-01-01

    Mutations in the lamin A/C gene are found in Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy with cardiac conduction disturbances, dilated cardiomyopathy with conduction system disease, and familial partial lipodystrophy. Cases with lamin A/C mutations presenting with lipodystrophy

  7. A De novo Mutation in Dystrophin Causing Muscular Dystrophy in a Female Patient

    Directory of Open Access Journals (Sweden)

    Hao Yu

    2017-01-01

    Conclusions: We identified two novel de novo mutations of DMD gene in two Chinese pedigrees, one of which caused a female patient with muscular dystrophy. The mutational analysis is important for DMD patients and carriers in the absence of a family history. The NGS can help detect the mutations in MLPA-negative patients.

  8. Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene

    DEFF Research Database (Denmark)

    Xu, H; Wu, X R; Wewer, U M

    1994-01-01

    The classic murine muscular dystrophy strain, dy, was first described almost 40 years ago. We have identified the molecular basis of an allele of dy, called dy2J, by detecting a mutation in the laminin alpha 2 chain gene--the first identified mutation in laminin-2. The G to A mutation in a splice...

  9. Next Generation Sequencing approach to molecular diagnosis of Duchenne muscular dystrophy; identification of a novel mutation.

    Science.gov (United States)

    Ebrahimzadeh-Vesal, Reza; Teymoori, Atieh; Azimi-Nezhad, Mohsen; Hosseini, Forough Sadat

    2018-02-20

    Duchenne Muscular Dystrophy (DMD; MIM 310200) is one of the most common and severe type of hereditary muscular dystrophies. The disease is caused by mutations in the dystrophin gene. The dystrophin gene is associated with X-linked recessive Duchenne and Becker muscular dystrophy. This disease occurs almost exclusively in males. The clinical symptoms of muscle weakness usually begin at childhood. The main symptoms of this disorder are gradually muscular weakness. The affected patients have inability to standing up and walking. Death is usually due to respiratory infection or cardiomyopathy. In this article, we have reported the discovery of a new nonsense mutation that creates abnormal stop codon in the dystrophin gene. This mutation was detected using Next Generation Sequencing (NGS) technique. The subject was a 17-year-old male with muscular dystrophy that who was suspected of having DMD. He was referred to Hakim medical genetics center of Neyshabur, IRAN. Copyright © 2017. Published by Elsevier B.V.

  10. Mild and severe muscular dystrophy caused by a single {gamma}-sarcoglycan mutation

    Energy Technology Data Exchange (ETDEWEB)

    McNally, E.M.; Boennemann, C.G.; Lidov, H.G.W. [Brigham and Women`s Hospital, Boston, MA (United States)] [and others

    1996-11-01

    Autosomal recessive muscular dystrophy is genetically heterogeneous. One form of this disorder, limb-girdle muscular dystrophy type 2C (LGMD 2C), is prevalent in northern Africa and has been shown to be associated with a single mutation in the gene encoding the dystrophin-associated protein {gamma}-sarcoglycan. The previous mutation analysis of {gamma}-sarcoglycan required the availability of muscle biopsies. To establish a mutation assay for genomic DNA, the intron-exon structure of the {gamma}-sarcoglycan gene was determined, and primers were designed to amplify each of the exons encoding {gamma}-sarcoglycan. We studied a group of Brazilian muscular dystrophy patients for mutations in the {gamma}-sarcoglycan gene. These patients were selected on the basis of autosomal inheritance and/or the presence of normal dystrophin and/or deficiency of {alpha}-sarcoglycan immunostaining. Four of 19 patients surveyed had a single, homozygous mutation in the {gamma}-sarcoglycan gene. The mutation identified in these patients, all of African-Brazilian descent, is identical to that seen in the North African population, suggesting that even patients of remote African descent may carry this mutation. The phenotype in these patients varied considerably. Of four families with an identical mutation, three have a severe Duchenne-like muscular dystrophy. However, one family has much milder symptoms, suggesting that other loci may be present that modify the severity of the clinical course resulting from {gamma}-sarcoglycan gene mutations. 19 refs., 5 figs., 3 tabs.

  11. A novel mutation in the ELOVL4 gene causes autosomal dominant Stargardt-like macular dystrophy.

    NARCIS (Netherlands)

    Maugeri, A.; Meire, F.; Hoyng, C.B.; Vink, C.W.; Regemorter, N. van; Karan, G.; Yang, Z.; Cremers, F.P.M.; Zhang, K.

    2004-01-01

    PURPOSE: To conduct clinical and genetic studies in a European family with autosomal dominant Stargardt-like macular dystrophy (adSTGD-like MD) and to investigate the functional consequences of a novel ELOVL4 mutation. METHODS: Ophthalmic examination and mutation screening by direct sequencing of

  12. Becker muscular dystrophy with widespread muscle hypertrophy and a non-sense mutation of exon 2

    DEFF Research Database (Denmark)

    Witting, Nanna; Duno, M; Vissing, J

    2013-01-01

    Becker muscular dystrophy features progressive proximal weakness, wasting and often focal hypertrophy. We present a patient with pain and cramps from adolescence. Widespread muscle hypertrophy, preserved muscle strength and a 10-20-fold raised CPK were noted. Muscle biopsy was dystrophic......, and Western blot showed a 95% reduction of dystrophin levels. Genetic analyses revealed a non-sense mutation in exon 2 of the dystrophin gene. This mutation is predicted to result in a Duchenne phenotype, but resulted in a mild Becker muscular dystrophy with widespread muscle hypertrophy. We suggest...

  13. Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing

    DEFF Research Database (Denmark)

    Weisschuh, Nicole; Mayer, Anja K; Strom, Tim M

    2016-01-01

    Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing...

  14. Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity

    NARCIS (Netherlands)

    Saksens, N.T.; Krebs, M.P.; Schoenmaker, F.E.; Hicks, W.; Yu, M.; Shi, L.; Rowe, L.; Collin, G.B.; Charette, J.R.; Letteboer, S.J.; Neveling, K.; Moorsel, T.W. van; Abu-Ltaif, S.; Baere, E. De; Walraedt, S.; Banfi, S.; Simonelli, F.; Cremers, F.P.; Boon, C.J.; Roepman, R.; Leroy, B.P.; Peachey, N.S.; Hoyng, C.B.; Nishina, P.M.; Hollander, A.I. den

    2016-01-01

    Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here we report the identification of heterozygous missense mutations in the CTNNA1 gene (encoding alpha-catenin 1) in three families with butterfly-shaped pigment

  15. Screening of Duchenne muscular dystrophy (DMD mutations and investigating its mutational mechanism in Chinese patients.

    Directory of Open Access Journals (Sweden)

    Chen Chen

    Full Text Available Duchenne muscular dystrophy (DMD is a common X-linked recessive disease of muscle degeneration and death. In order to provide accurate and reliable genetic counseling and prenatal diagnosis, we screened DMD mutations in a cohort of 119 Chinese patients using multiplex ligation-dependent probe amplification (MLPA and denaturing high performance liquid chromatography (DHPLC followed by Sanger sequencing. In these unrelated DMD patients, we identified 11 patients with DMD small mutations (9.2% and 81 patients with DMD deletions/duplications (del/dup (68.1%, of which 64 (79.0% were deletions, 16 (19.8% were duplications, and one (1.2% was both deletion and duplication. Furthermore, we analyzed the frequency of DMD breakpoint in the 64 deletion cases by calculating exon-deletion events of certain exon interval that revealed a novel mutation hotspot boundary. To explore why DMD rearrangement breakpoints were predisposed to specific regions (hotspot, we precisely characterized junction sequences of breakpoints at the nucleotide level in 21 patients with exon deleted/duplicated in DMD with a high-resolution SNP microarray assay. There were no exactly recurrent breakpoints and there was also no significant difference between single-exon del/dup and multiple-exon del/dup cases. The data from the current study provided a comprehensive strategy to detect DMD mutations for clinical practice, and identified two deletion hotspots at exon 43-55 and exon 10-23 by calculating exon-deletion events of certain exon interval. Furthermore, this is the first study to characterize DMD breakpoint at the nucleotide level in a Chinese population. Our observations provide better understanding of the mechanism for DMD gene rearrangements.

  16. Becker muscular dystrophy with widespread muscle hypertrophy and a non-sense mutation of exon 2.

    Science.gov (United States)

    Witting, N; Duno, M; Vissing, J

    2013-01-01

    Becker muscular dystrophy features progressive proximal weakness, wasting and often focal hypertrophy. We present a patient with pain and cramps from adolescence. Widespread muscle hypertrophy, preserved muscle strength and a 10-20-fold raised CPK were noted. Muscle biopsy was dystrophic, and Western blot showed a 95% reduction of dystrophin levels. Genetic analyses revealed a non-sense mutation in exon 2 of the dystrophin gene. This mutation is predicted to result in a Duchenne phenotype, but resulted in a mild Becker muscular dystrophy with widespread muscle hypertrophy. We suggest that this unusual phenotype is caused by translation re-initiation downstream from the mutation site. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Clinical study of DMD gene point mutation causing Becker muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Ji-qing CAO

    2015-07-01

    Full Text Available Background  DMD gene point mutation, mainly nonsense mutation, always cause the most severe Duchenne muscular dystrophy (DMD. However, we also observed some cases of Becker muscular dystrophy (BMD carrying DMD point mutation. This paper aims to explore the mechanism of DMD point mutation causing BMD, in order to enhance the understanding of mutation types of BMD.  Methods  Sequence analysis was performed in 11 cases of BMD confirmed by typical clinical manifestations and muscle biopsy. The exon of DMD gene was detected non-deletion or duplication by multiplex ligation-dependent probe amplification (MLPA.  Results  Eleven patients carried 10 mutation types without mutational hotspot. Six patients carried nonsense mutations [c.5002G>T, p.(Glu1668X; c.1615C > T, p.(Arg539X; c.7105G > T, p.(Glu2369X; c.5287C > T, p.(Arg1763X; c.9284T > G, p.(Leu3095X]. One patient carried missense mutation [c.5234G > A, p.(Arg1745His]. Two patients carried frameshift mutations (c.10231dupT, c.10491delC. Two patients carried splicing site mutations (c.4518 + 3A > T, c.649 + 2T > C.  Conclusions  DMD gene point mutation may result in BMD with mild clinical symptoms. When clinical manifestations suggest the possibility of BMD and MLPA reveals non?deletion or duplication mutation of DMD gene, BMD should be considered. Study on the mechanism of DMD point mutation causing BMD is very important for gene therapy of DMD. DOI: 10.3969/j.issn.1672-6731.2015.06.005

  18. [Novel CHST6 compound heterozygous mutations cause macular corneal dystrophy in a Chinese family].

    Science.gov (United States)

    Qi, Yan-hua; Dang, Xiu-hong; Su, Hong; Zhou, Nan; Liang, Ting; Wang, Zheng; Huang, Shang-zhi

    2010-02-01

    The aim of this study was to identify mutations of CHST6 gene in a Chinese family with macular corneal dystrophy (MCD) and to investigate the histopathological changes of MCD. Corneal button of the proband was obtained from penetrating keratoplasty for the treatment of severe corneal dystrophy. The sections and ultrathin sections of this specimen were examined under light microscope and transmission electron microscope (TEM). Genomic DNA was extracted from leukocytes in peripheral blood from the family members. The coding region of CHST6 was amplified by polymerase chain reaction (PCR). The PCR products were analyzed by direct sequencing and restriction enzyme digestion. Histochemical study revealed positive results of colloidal iron stain. TEM revealed enlargement of smooth endoplasmic reticulum and the presence of intracytoplasmic vacuoles. Two mutations, Q298X Y358H, were identified in exon 3 of CHST6. Three patients were compound heterozygotes of these two mutations. The C892T transversion occurred at codon 298 turned the codon of glutamine to a stop codon; the T1072C transversion occurred at codon 358 caused a missense mutation, tyrosine to histidine. All six unaffected family members were heterozygotes. These two mutations were not detected in any of the 100 control subjects. The novel compound heterozygous mutation results in loss of CHST6 function and causes the occurrence of MCD. This is the first report of this gene mutation.

  19. A Novel Mutation in DMD (c.10797+5G>A) Causes Becker Muscular Dystrophy Associated with Intellectual Disability.

    Science.gov (United States)

    Banihani, Rudaina; Baskin, Berivan; Halliday, William; Kobayashi, Jeff; Kawamura, Anne; McAdam, Laura; Ray, Peter N; Yoon, Grace

    2016-04-01

    Severe intellectual disability has been reported in a subgroup of patients with Duchenne muscular dystrophy but is not typically associated with Becker muscular dystrophy. The authors report a 13-year-old boy, with severe intellectual disability (Wechsler Intelligence Scales for Children-IV, Full Scale IQ A mutation in DMD. Dystrophinopathy may be associated with predominantly cognitive impairment and neurobehavioral disorder, and should be considered in the differential diagnosis of unexplained cognitive or psychiatric disturbance in males.

  20. Intellectual Ability in the Duchenne Muscular Dystrophy and Dystrophin Gene Mutation Location

    Directory of Open Access Journals (Sweden)

    Rasic Milic V.

    2014-12-01

    Full Text Available Duchenne muscular dystrophy (DMD is the most common form of muscular dystrophy during childhood. Mutations in dystrophin (DMD gene are also recognized as a cause of cognitive impairment. We aimed to determine the association between intelligence level and mutation location in DMD genes in Serbian patients with DMD. Forty-one male patients with DMD, aged 3 to 16 years, were recruited at the Clinic for Neurology and Psychiatry for Children and Youth in Belgrade, Serbia. All patients had defined DMD gene deletions or duplications [multiplex ligation- dependent probe amplification (MLPA, polymerase chain reaction (PCR] and cognitive status assessment (Wechsler Intelligence Scale for Children, Brunet-Lezine scale, Vineland-Doll scale. In 37 patients with an estimated full scale intelligence quotient (FSIQ, six (16.22% had borderline intelligence (70mutations when boundaries were set at exons 30 and 45. However, FSIQ was statistically significantly associated with mutation location when we assumed their functional consequence on dystrophin isoforms and when mutations in the 5’-untranslated region (5’UTR of Dp140 (exons 45-50 were assigned to affect only Dp427 and Dp260. Mutations affecting Dp140 and Dp71/Dp40 have been associated with more frequent and more severe cognitive impairment. Finally, the same classification of mutations explained the greater proportion of FSIQ variability associated with cumulative loss of dystrophin isoforms. In conclusion, cumulative loss of dystrophin isoforms increases the risk of intellectual impairment in DMD and characterizing the genotype can define necessity of early cognitive interventions in DMD patients.

  1. Mutational spectrum of Duchenne muscular dystrophy in Spain: Study of 284 cases.

    Science.gov (United States)

    Vieitez, I; Gallano, P; González-Quereda, L; Borrego, S; Marcos, I; Millán, J M; Jairo, T; Prior, C; Molano, J; Trujillo-Tiebas, M J; Gallego-Merlo, J; García-Barcina, M; Fenollar, M; Navarro, C

    Duchenne muscular dystrophy (DMD) is a severe X-linked recessive neuromuscular disease that affects one in 3500 live-born males. The total absence of dystrophin observed in DMD patients is generally caused by mutations that disrupt the reading frame of the DMD gene, and about 80% of cases harbour deletions or duplications of one or more exons. We reviewed 284 cases of males with a genetic diagnosis of DMD between 2007 and 2014. These patients were selected from 8 Spanish reference hospitals representing most areas of Spain. Multiplex PCR, MLPA, and sequencing were performed to identify mutations. Most of these DMD patients present large deletions (46.1%) or large duplications (19.7%) in the dystrophin gene. The remaining 34.2% correspond to point mutations, and half of these correspond to nonsense mutations. In this study we identified 23 new mutations in DMD: 7 large deletions and 16 point mutations. The algorithm for genetic diagnosis applied by the participating centres is the most appropriate for genotyping patients with DMD. The genetic specificity of different therapies currently being developed emphasises the importance of identifying the mutation appearing in each patient; 38.7% of the cases in this series are eligible to participate in current clinical trials. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing.

    Directory of Open Access Journals (Sweden)

    Nicole Weisschuh

    Full Text Available Retinal dystrophies (RD constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes.

  3. Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations.

    LENUS (Irish Health Repository)

    Geranmayeh, Fatemeh

    2010-04-01

    Merosin deficient congenital muscular dystrophy 1A (MDC1A) results from mutations in the LAMA2 gene. We report 51 patients with MDC1A and examine the relationship between degree of merosin expression, genotype and clinical features. Thirty-three patients had absence of merosin and 13 showed some residual merosin. Compared to the residual merosin group, patients with absent merosin had an earlier presentation (<7days) (P=0.0073), were more likely to lack independent ambulation (P=0.0215), or require enteral feeding (P=0.0099) and ventilatory support (P=0.0354). We identified 33 novel LAMA2 mutations; these were distributed throughout the gene in patients with absent merosin, with minor clusters in exon 27, 14, 25 and 26 (55% of mutations). Patients with residual merosin often carried at least one splice site mutation and less frequently frameshift mutations. This large study identified novel LAMA2 mutations and highlights the role of immunohistochemical studies for merosin status in predicting clinical severity of MDC1A.

  4. Reliability of kinetic visual field testing in children with mutation-proven retinal dystrophies: Implications for therapeutic clinical trials.

    Science.gov (United States)

    Dedania, Vaidehi S; Liu, Jerry Y; Schlegel, Dana; Andrews, Chris A; Branham, Kari; Khan, Naheed W; Musch, David C; Heckenlively, John R; Jayasundera, K Thiran

    2018-01-01

    Kinetic visual field testing is used to monitor disease course in retinal dystrophy clinical care and treatment response in treatment trials, which are increasingly recruiting children. This study investigates Goldmann visual field (GVF) changes in young children with mutation-proven retinal dystrophies as they age and with progression of the retinal degeneration. Retrospective review of children ≤ 17 years old with a mutation-proven retinal dystrophy. Objective clinical disease activity was assessed by a retinal degeneration specialist masked to GVF results. Digital quantification of GVF area was performed. Twenty-nine children (58 eyes), ages 5-16, were identified. GVF area increased with age despite progression in 20 children and clinical stability in nine children. Mean ± standard error increase in GVF area/year was 333 ± 130 mm 2 (I4e, p = 0.012), 720 ± 155 mm 2 (III4e, p children with mutation-proven retinal dystrophies, there is a significant increase in GVF area with age, particularly those children with retinal dystrophies can be an unreliable measure of response to treatment and on which to base appropriate counseling about visual impairment.

  5. A new mutation of the fukutin gene causing late-onset limb girdle muscular dystrophy

    DEFF Research Database (Denmark)

    Riisager, Maria; Duno, M; Hansen, Flemming Juul

    2013-01-01

    to aberrations of FKTN is rare, with only eight reported cases of limb girdle phenotype (LGMD2M). We describe the mildest affected patient outside Japan with genetically confirmed LGMD2M and onset of symptoms at age 14. She was brought to medical attention at age 12, not because of muscle weakness, but due...... to episodes of tachycardia caused by Wolff-Parkinson-White syndrome. On examination, she had rigid spine syndrome, a typical limb girdle dystrophy pattern of muscle weakness, cardiomyopathy, and serum CK levels >2000 IU/L (normal G; p.Y306C mutation in the FKTN gene was found. The case confirms FKTN mutations...... as a cause of LGMD2M without mental retardation and expands the phenotypic spectrum for LGMD2M to include cardiomyopathy and rigid spine syndrome in the mildest affected non-Japanese patient reported so far....

  6. Spectrum of ABCA4 (ABCR) gene mutations in Spanish patients with autosomal recessive macular dystrophies.

    Science.gov (United States)

    Paloma, E; Martínez-Mir, A; Vilageliu, L; Gonzàlez-Duarte, R; Balcells, S

    2001-06-01

    The ABCA4 gene has been involved in several forms of inherited macular dystrophy. In order to further characterize the complex genotype-phenotype relationships involving this gene, we have performed a mutation analysis of ABCA4 in 14 Spanish patients comprising eight STGD (Stargardt), four FFM (fundus flavimaculatus), and two CRD (Cone-rod dystrophy) patients. SSCP (single-strand conformation polymorphism) analysis and DNA sequencing of the coding and 5' upstream regions of this gene allowed the identification of 16 putatively pathogenic alterations, nine of which are novel. Most of these were missense changes, and no patient was found to carry two null alleles. Overall, the new data agree with a working model relating the different pathogenic phenotypes to the severity of the mutations. When considering the information presented here together with that of previous reports, a picture of the geographic distribution of three particular mutations emerges. The R212C change has been found in French, Italian, Dutch, German, and Spanish but not in British patients. In the Spanish collection, R212C was found in a CRD patient, indicating that it may be a rather severe change. In contrast, c.2588G>C, a very common mild allele in the Dutch population, is rarely found in Southern Europe. Interestingly, the c.2588G>C mutation has been found in a double mutant allele together with the missense R1055W. Finally, the newly described L1940P was found in two unrelated Spanish patients, and may be a moderate to severe allele. Copyright 2001 Wiley-Liss, Inc.

  7. Exome sequencing identifies a novel SMCHD1 mutation in facioscapulohumeral muscular dystrophy 2.

    Science.gov (United States)

    Mitsuhashi, Satomi; Boyden, Steven E; Estrella, Elicia A; Jones, Takako I; Rahimov, Fedik; Yu, Timothy W; Darras, Basil T; Amato, Anthony A; Folkerth, Rebecca D; Jones, Peter L; Kunkel, Louis M; Kang, Peter B

    2013-12-01

    FSHD2 is a rare form of facioscapulohumeral muscular dystrophy (FSHD) characterized by the absence of a contraction in the D4Z4 macrosatellite repeat region on chromosome 4q35 that is the hallmark of FSHD1. However, hypomethylation of this region is common to both subtypes. Recently, mutations in SMCHD1 combined with a permissive 4q35 allele were reported to cause FSHD2. We identified a novel p.Lys275del SMCHD1 mutation in a family affected with FSHD2 using whole-exome sequencing and linkage analysis. This mutation alters a highly conserved amino acid in the ATPase domain of SMCHD1. Subject III-11 is a male who developed asymmetrical muscle weakness characteristic of FSHD at 13 years. Physical examination revealed marked bilateral atrophy at biceps brachii, bilateral scapular winging, some asymmetrical weakness at tibialis anterior and peroneal muscles, and mild lower facial weakness. Biopsy of biceps brachii in subject II-5, the father of III-11, demonstrated lobulated fibers and dystrophic changes. Endomysial and perivascular inflammation was found, which has been reported in FSHD1 but not FSHD2. Given the previous report of SMCHD1 mutations in FSHD2 and the clinical presentations consistent with the FSHD phenotype, we conclude that the SMCHD1 mutation is the likely cause of the disease in this family. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. DGGE based whole-gene mutation scanning of the dystrophlin gene in Duchenne and Becker muscular dystrophy patients

    NARCIS (Netherlands)

    Hofstra, RMW; Mulder, IM; Vossen, R; de Koning-Gans, PAM; Kraak, M; Ginjaar, IB; van der Hout, AH; Bakker, E; Buys, CHCM; van Essen, AJ; den Dunnen, JT

    2004-01-01

    Duchenne and Becker muscular dystrophy (DMD and BMD) are caused by mutations in the dystrophin gene. Large rearrangements in the gene are found in about two,thirds of DMD patients, with similar to60% carrying deletions and 5-10% carrying duplications. Most of the remaining 30-35% of patients are

  9. Novel LMNA Mutation in a Taiwanese Family with Autosomal Dominant Emery-Dreifuss Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Wen-Chen Liang

    2007-01-01

    Full Text Available Emery-Dreifuss muscular dystrophy (EDMD is characterized by early-onset contractures, slowly progressive weakness, and muscle wasting in humeroperoneal muscles, and adult-onset cardiomyopathy with conduction block. We analyzed blood samples from an EDMD family, including a mother and two daughters, and found a novel mutation in codon 520 in exon 9 of the lamin A/C (LMNA gene, resulting in a substitution of tryptophan (W by glycine (G in all three patients. The mother died after a stroke-like episode at the age of 43. The elder sister received pacemaker implantation, which improved symptoms of exercise intolerance and dizziness. These cases illustrate the necessity of correct diagnosis, evaluation, and follow-up of cardiac problems due to the wide clinical spectrum and high prevalence of cardiac conduction block in patients with autosomal dominant EDMD. [J Formos Med Assoc 2007;106(2 Suppl:S27-S31

  10. Eosinophilic myositis as first manifestation in a patient with type 2 myotonic dystrophy CCTG expansion mutation and rheumatoid arthritis.

    Science.gov (United States)

    Meyer, Alain; Lannes, Béatrice; Carapito, Raphaël; Bahram, Seiamak; Echaniz-Laguna, Andoni; Geny, Bernard; Sibilia, Jean; Gottenberg, Jacques Eric

    2015-02-01

    Eosinophilic myositis is characterized by eosinophilic infiltration of skeletal muscles. In the absence of an identifiable causative factor or source (including parasitic infection, intake of drugs or L-tryptophan, certain systemic disorders as well as malignant diseases), the diagnosis of idiopathic eosinophilic myositis is usually retained. However, some muscular dystrophies have been recently identified in this subset of eosinophilic myositis. Here, we report a patient with an 8 kb CCTG expansion in intron 1 of the CNBP gene, a mutation characteristic of myotonic dystrophy type 2 (DM2), whose first manifestation was "idiopathic" eosinophilic myositis. This report suggests that in "idiopathic" eosinophilic myositis, clinicians should consider muscular dystrophies, including DM2. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Retinitis Pigmentosa with EYS Mutations Is the Most Prevalent Inherited Retinal Dystrophy in Japanese Populations

    Directory of Open Access Journals (Sweden)

    Yuuki Arai

    2015-01-01

    Full Text Available The aim of this study was to gain information about disease prevalence and to identify the responsible genes for inherited retinal dystrophies (IRD in Japanese populations. Clinical and molecular evaluations were performed on 349 patients with IRD. For segregation analyses, 63 of their family members were employed. Bioinformatics data from 1,208 Japanese individuals were used as controls. Molecular diagnosis was obtained by direct sequencing in a stepwise fashion utilizing one or two panels of 15 and 27 genes for retinitis pigmentosa patients. If a specific clinical diagnosis was suspected, direct sequencing of disease-specific genes, that is, ABCA4 for Stargardt disease, was conducted. Limited availability of intrafamily information and decreasing family size hampered identifying inherited patterns. Differential disease profiles with lower prevalence of Stargardt disease from European and North American populations were obtained. We found 205 sequence variants in 159 of 349 probands with an identification rate of 45.6%. This study found 43 novel sequence variants. In silico analysis suggests that 20 of 25 novel missense variants are pathogenic. EYS mutations had the highest prevalence at 23.5%. c.4957_4958insA and c.8868C>A were the two major EYS mutations identified in this cohort. EYS mutations are the most prevalent among Japanese patients with IRD.

  12. Retinitis Pigmentosa with EYS Mutations Is the Most Prevalent Inherited Retinal Dystrophy in Japanese Populations.

    Science.gov (United States)

    Arai, Yuuki; Maeda, Akiko; Hirami, Yasuhiko; Ishigami, Chie; Kosugi, Shinji; Mandai, Michiko; Kurimoto, Yasuo; Takahashi, Masayo

    2015-01-01

    The aim of this study was to gain information about disease prevalence and to identify the responsible genes for inherited retinal dystrophies (IRD) in Japanese populations. Clinical and molecular evaluations were performed on 349 patients with IRD. For segregation analyses, 63 of their family members were employed. Bioinformatics data from 1,208 Japanese individuals were used as controls. Molecular diagnosis was obtained by direct sequencing in a stepwise fashion utilizing one or two panels of 15 and 27 genes for retinitis pigmentosa patients. If a specific clinical diagnosis was suspected, direct sequencing of disease-specific genes, that is, ABCA4 for Stargardt disease, was conducted. Limited availability of intrafamily information and decreasing family size hampered identifying inherited patterns. Differential disease profiles with lower prevalence of Stargardt disease from European and North American populations were obtained. We found 205 sequence variants in 159 of 349 probands with an identification rate of 45.6%. This study found 43 novel sequence variants. In silico analysis suggests that 20 of 25 novel missense variants are pathogenic. EYS mutations had the highest prevalence at 23.5%. c.4957_4958insA and c.8868C>A were the two major EYS mutations identified in this cohort. EYS mutations are the most prevalent among Japanese patients with IRD.

  13. RNA interference gene therapy in dominant retinitis pigmentosa and cone-rod dystrophy mouse models caused by GCAP1 mutations

    Directory of Open Access Journals (Sweden)

    Li eJiang

    2014-04-01

    Full Text Available RNA interference (RNAi knockdown is an efficacious therapeutic strategy for silencing genes causative for dominant retinal dystrophies. To test this, we used self-complementary (sc AAV2/8 vector to develop an RNAi-based therapy in two dominant retinal degeneration mouse models. The allele-specific model expresses transgenic bovine GCAP1(Y99C establishing a rapid RP-like phenotype, whereas the nonallele-specific model expresses mouse GCAP1(L151F producing a slowly progressing cone/rod dystrophy (CORD. The late onset GCAP1(L151F-CORD mimics the dystrophy observed in human GCAP1-CORD patients. Subretinal injection of scAAV2/8 carrying shRNA expression cassettes specific for bovine or mouse GCAP1 showed strong expression at one week post-injection. In both allele-specific (GCAP1(Y99C-RP and nonallele-specific (GCAP1(L151F-CORD models of dominant retinal dystrophy, RNAi-mediated gene silencing enhanced photoreceptor survival, delayed onset of degeneration and improved visual function. Such results provide a proof of concept toward effective RNAi-based gene therapy mediated by scAAV2/8 for dominant retinal disease based on GCAP1 mutation. Further, nonallele-specific RNAi knockdown of GCAP1 may prove generally applicable toward the rescue of any human GCAP1-based dominant cone-rod dystrophy.

  14. UBIAD1 mutation alters a mitochondrial prenyltransferase to cause Schnyder corneal dystrophy.

    Directory of Open Access Journals (Sweden)

    Michael L Nickerson

    2010-05-01

    Full Text Available Mutations in a novel gene, UBIAD1, were recently found to cause the autosomal dominant eye disease Schnyder corneal dystrophy (SCD. SCD is characterized by an abnormal deposition of cholesterol and phospholipids in the cornea resulting in progressive corneal opacification and visual loss. We characterized lesions in the UBIAD1 gene in new SCD families and examined protein homology, localization, and structure.We characterized five novel mutations in the UBIAD1 gene in ten SCD families, including a first SCD family of Native American ethnicity. Examination of protein homology revealed that SCD altered amino acids which were highly conserved across species. Cell lines were established from patients including keratocytes obtained after corneal transplant surgery and lymphoblastoid cell lines from Epstein-Barr virus immortalized peripheral blood mononuclear cells. These were used to determine the subcellular localization of mutant and wild type protein, and to examine cholesterol metabolite ratios. Immunohistochemistry using antibodies specific for UBIAD1 protein in keratocytes revealed that both wild type and N102S protein were localized sub-cellularly to mitochondria. Analysis of cholesterol metabolites in patient cell line extracts showed no significant alteration in the presence of mutant protein indicating a potentially novel function of the UBIAD1 protein in cholesterol biochemistry. Molecular modeling was used to develop a model of human UBIAD1 protein in a membrane and revealed potentially critical roles for amino acids mutated in SCD. Potential primary and secondary substrate binding sites were identified and docking simulations indicated likely substrates including prenyl and phenolic molecules.Accumulating evidence from the SCD familial mutation spectrum, protein homology across species, and molecular modeling suggest that protein function is likely down-regulated by SCD mutations. Mitochondrial UBIAD1 protein appears to have a highly

  15. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    Science.gov (United States)

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  16. A splice site mutation in laminin-α2 results in a severe muscular dystrophy and growth abnormalities in zebrafish.

    Directory of Open Access Journals (Sweden)

    Vandana A Gupta

    Full Text Available Congenital muscular dystrophy (CMD is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2. Laminin-α2 is an extracellular matrix protein that interacts with the dystrophin-dystroglycan (DGC complex in membranes providing stability to muscle fibers. In an N-ethyl-N-nitrosourea mutagenesis screen to develop zebrafish models of neuromuscular diseases, we identified a mutant fish that exhibits severe muscular dystrophy early in development. Genetic mapping identified a splice site mutation in the lama2 gene. This splice site is highly conserved in humans and this mutation results in mis-splicing of RNA and a loss of protein function. Homozygous lama2 mutant zebrafish, designated lama2(cl501/cl501, exhibited reduced motor function and progressive degeneration of skeletal muscles and died at 8-15 days post fertilization. The skeletal muscles exhibited damaged myosepta and detachment of myofibers in the affected fish. Laminin-α2 deficiency also resulted in growth defects in the brain and eye of the mutant fish. This laminin-α2 deficient mutant fish represents a novel disease model to develop therapies for modulating splicing defects in congenital muscular dystrophies and to restore the muscle function in human patients with CMD.

  17. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy.

    Science.gov (United States)

    Maugeri, A; Klevering, B J; Rohrschneider, K; Blankenagel, A; Brunner, H G; Deutman, A F; Hoyng, C B; Cremers, F P

    2000-10-01

    The photoreceptor cell-specific ATP-binding cassette transporter gene (ABCA4; previously denoted "ABCR") is mutated, in most patients, with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients from Germany and The Netherlands with isolated CRD. Single-strand conformation-polymorphism analysis and sequencing revealed 19 ABCA4 mutations in 13 (65%) of 20 patients. In six patients, mutations were identified in both ABCA4 alleles; in seven patients, mutations were detected in one allele. One complex ABCA4 allele (L541P;A1038V) was found exclusively in German patients with CRD; one patient carried this complex allele homozygously, and five others were compound heterozygous. These findings suggest that mutations in the ABCA4 gene are the major cause of AR CRD. A primary role of the ABCA4 gene in STGD1/FFM and AR CRD, together with the gene's involvement in an as-yet-unknown proportion of cases with AR RP, strengthens the idea that mutations in the ABCA4 gene could be the most frequent cause of inherited retinal dystrophy in humans.

  18. A case report: Becker muscular dystrophy presenting with epilepsy and dysgnosia induced by duplication mutation of Dystrophin gene.

    Science.gov (United States)

    Miao, Jing; Feng, Jia-Chun; Zhu, Dan; Yu, Xue-Fan

    2016-12-12

    Becker muscular dystrophy (BMD), a genetic disorder of X-linked recessive inheritance, typically presents with gradually progressive muscle weakness. The condition is caused by mutations of Dystrophin gene located at Xp21.2. Epilepsy is an infrequent manifestation of BMD, while cases of BMD with dysgnosia are extremely rare. We describe a 9-year-old boy with BMD, who presented with epilepsy and dysgnosia. Serum creatine kinase level was markedly elevated (3665 U/L). Wechsler intelligence tests showed a low intelligence quotient (IQ = 65). Electromyogram showed slight myogenic changes and skeletal muscle biopsy revealed muscular dystrophy. Immunohistochemical staining showed partial positivity of sarcolemma for dystrophin-N. Multiplex ligation-dependent probe amplification revealed a duplication mutation in exons 37-44 in the Dystrophin gene. The present case report helps to better understand the clinical and genetic features of BMD.

  19. Identification of a Novel Homozygous Nonsense Mutation Confirms the Implication of GNAT1 in Rod-Cone Dystrophy.

    Directory of Open Access Journals (Sweden)

    Cécile Méjécase

    Full Text Available GNAT1, encoding the transducin subunit Gα, is an important element of the phototransduction cascade. Mutations in this gene have been associated with autosomal dominant and autosomal recessive congenital stationary night blindness. Recently, a homozygous truncating GNAT1 mutation was identified in a patient with late-onset rod-cone dystrophy. After exclusion of mutations in genes underlying progressive inherited retinal disorders, by targeted next generation sequencing, a 32 year-old male sporadic case with severe rod-cone dystrophy and his unaffected parents were investigated by whole exome sequencing. This led to the identification of a homozygous nonsense variant, c.963C>A p.(Cys321* in GNAT1, which was confirmed by Sanger sequencing. The mother was heterozygous for this variant whereas the variant was absent in the father. c.963C>A p.(Cys321* is predicted to produce a shorter protein that lacks critical sites for the phototransduction cascade. Our work confirms that the phenotype and the mode of inheritance associated with GNAT1 variants can vary from autosomal dominant, autosomal recessive congenital stationary night blindness to autosomal recessive rod-cone dystrophy.

  20. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants.

    Science.gov (United States)

    Haghshenas, Maryam; Akbari, Mohammad Taghi; Karizi, Shohreh Zare; Deilamani, Faravareh Khordadpoor; Nafissi, Shahriar; Salehi, Zivar

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50-79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.

  1. Mutations in the ABCA4 (ABCR) Gene Are the Major Cause of Autosomal Recessive Cone-Rod Dystrophy

    OpenAIRE

    Maugeri, Alessandra; Klevering, B. Jeroen; Rohrschneider, Klaus; Blankenagel, Anita; Brunner, Han G.; Deutman, August F.; Hoyng, Carel B.; Cremers, Frans P. M.

    2000-01-01

    The photoreceptor cell–specific ATP-binding cassette transporter gene (ABCA4; previously denoted “ABCR”) is mutated in most patients with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients with isolated CRD, all fro...

  2. Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa.

    NARCIS (Netherlands)

    Klevering, B.J.; Ijzer, S.; Rohrschneider, K.; Zonneveld-Vrieling, M.N.; Allikmets, R.; Born, L.I. van den; Maugeri, A.; Hoyng, C.B.; Cremers, F.P.M.

    2004-01-01

    Mutations in the ABCA4 gene have been associated with autosomal recessive Stargardt disease (STGD1), cone-rod dystrophy (CRD), and retinitis pigmentosa (RP). We employed a recently developed genotyping microarray, the ABCR400-chip, to search for known ABCA4 mutations in patients with isolated or

  3. Life-long course and molecular characterization of the original Dutch family with epidermolysis bullosa simplex with muscular dystrophy due to a homozygous novel plectin point mutation

    NARCIS (Netherlands)

    Koss-Harnes, D; Hoyheim, B; Jonkman, MF; De Groot, WP; De Weerdt, CJ; Nikolic, B; Wiche, G; Gedde-Dahl, T

    Plectin is one of the largest and most versatile cytolinker proteins known. Cloned and sequenced in 1991, it was later shown to have nonsense mutations in recessive epidermolysis bullosa with muscular dystrophy. A dominant mutation in the gene was found to cause epidermolysis bullosa simplex Ogna

  4. Patients with Duchenne muscular dystrophy are significantly shorter than those with Becker muscular dystrophy, with the higher incidence of short stature in Dp71 mutated subgroup.

    Science.gov (United States)

    Matsumoto, Masaaki; Awano, Hiroyuki; Lee, Tomoko; Takeshima, Yasuhiro; Matsuo, Masafumi; Iijima, Kazumoto

    2017-11-01

    Duchenne and Becker muscular dystrophy (DMD/BMD) are caused by mutations in the dystrophin gene and are characterized by severe and mild progressive muscle wasting, respectively. Short stature has been reported as a feature of DMD in the Western hemisphere, but not yet confirmed in Orientals. Height of young BMD has not been fully characterized. Here, height of ambulant and steroid naive Japanese 179 DMD and 42 BMD patients between 4 and 10 years of age was retrospectively examined using height standard deviation score (SDS). The mean height SDS of DMD was -1.08 SD that was significantly smaller than normal (p < 0.001), indicating short stature of Japanese DMD. Furthermore, the mean height SDS of BMD was -0.27 SD, suggesting shorter stature than normal. Remarkably, the mean height SDS of DMD was significantly smaller than that of BMD (p < 0.0001). In DMD higher incidence of short stature (height SDS < -2.5 SD) was observed in Dp71 subgroup having mutations in dystrophin exons 63-79 than others having mutations in exons 1-62 (27.8% vs. 7.5%, p = 0.017). These suggested that height is influenced by dystrophin in not only DMD but also BMD and that dystrophin Dp71 has a role in height regulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ehlers-Danlos syndrome with lethal cardiac valvular dystrophy in males carrying a novel splice mutation in FLNA.

    Science.gov (United States)

    Ritelli, Marco; Morlino, Silvia; Giacopuzzi, Edoardo; Carini, Giulia; Cinquina, Valeria; Chiarelli, Nicola; Majore, Silvia; Colombi, Marina; Castori, Marco

    2017-01-01

    Filamin A is an X-linked, ubiquitous actin-binding protein whose mutations are associated to multiple disorders with limited genotype-phenotype correlations. While gain-of-function mutations cause various bone dysplasias, loss-of-function variants are the most common cause of periventricular nodular heterotopias with variable soft connective tissue involvement, as well as X-linked cardiac valvular dystrophy (XCVD). The term "Ehlers-Danlos syndrome (EDS) with periventricular heterotopias" has been used in females with neurological, cardiovascular, integument and joint manifestations, but this nosology is still a matter of debate. We report the clinical and molecular update of an Italian family with an X-linked recessive soft connective tissue disorder and which was described, in 1975, as the first example of EDS type V of the Berlin nosology. The cutaneous phenotype of the index patient was close to classical EDS and all males died for a lethal cardiac valvular dystrophy. Whole exome sequencing identified the novel c.1829-1G>C splice variation in FLNA in two affected cousins. The nucleotide change was predicted to abolish the canonical splice acceptor site of exon 13 and to activate a cryptic acceptor site 15 bp downstream, leading to in frame deletion of five amino acid residues (p.Phe611_Gly615del). The predicted in frame deletion clusters with all the mutations previously identified in XCVD and falls within the N-terminus rod 1 domain of filamin A. Our findings expand the male-specific phenotype of FLNA mutations that now includes classical-like EDS with lethal cardiac valvular dystrophy, and offer further insights for the genotype-phenotype correlations within this spectrum. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Application of various FLD modelling approaches

    Science.gov (United States)

    Banabic, D.; Aretz, H.; Paraianu, L.; Jurco, P.

    2005-07-01

    This paper focuses on a comparison between different modelling approaches to predict the forming limit diagram (FLD) for sheet metal forming under a linear strain path using the recently introduced orthotropic yield criterion BBC2003 (Banabic D et al 2005 Int. J. Plasticity 21 493-512). The FLD models considered here are a finite element based approach, the well known Marciniak-Kuczynski model, the modified maximum force criterion according to Hora et al (1996 Proc. Numisheet'96 Conf. (Dearborn/Michigan) pp 252-6), Swift's diffuse (Swift H W 1952 J. Mech. Phys. Solids 1 1-18) and Hill's classical localized necking approach (Hill R 1952 J. Mech. Phys. Solids 1 19-30). The FLD of an AA5182-O aluminium sheet alloy has been determined experimentally in order to quantify the predictive capabilities of the models mentioned above.

  7. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene.

    Science.gov (United States)

    Gonçalves, Ana; Oliveira, Jorge; Coelho, Teresa; Taipa, Ricardo; Melo-Pires, Manuel; Sousa, Mário; Santos, Rosário

    2017-10-03

    A broad mutational spectrum in the dystrophin ( DMD ) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD , adding to the diversity of mutational events that give rise to D/BMD.

  8. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene

    Science.gov (United States)

    Gonçalves, Ana; Coelho, Teresa; Melo-Pires, Manuel; Sousa, Mário

    2017-01-01

    A broad mutational spectrum in the dystrophin (DMD) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion between exons 51 and 52, with no similarity with the DMD gene. This corresponded to the partial exonization of a long interspersed nuclear element (LINE-1), disrupting the open reading frame. Further characterization identified a complete LINE-1 (~6 kb with typical hallmarks) deeply inserted in intron 51. Haplotyping and segregation analysis demonstrated that the mutation had a de novo origin. Besides underscoring the importance of mRNA studies in genetically unsolved cases, this is the first report of a disease-causing fully intronic LINE-1 element in DMD, adding to the diversity of mutational events that give rise to D/BMD. PMID:28972564

  9. Visual function in patients with cone-rod dystrophy (CRD) associated with mutations in the ABCA4(ABCR) gene.

    Science.gov (United States)

    Birch, D G; Peters, A Y; Locke, K L; Spencer, R; Megarity, C F; Travis, G H

    2001-12-01

    Mutations in the ABCA4(ABCR) gene cause autosomal recessive Stargardt disease (STGD). ABCR mutations were identified in patients with cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) by direct sequencing of all 50 exons in 40 patients. Of 10 patients with RP, one contained two ABCR mutations suggesting a compound heterozygote. This patient had a characteristic fundus appearance with attenuated vessels, pale disks and bone-spicule pigmentation. Rod electroretinograms (ERGs) were non-detectable, cone ERGs were greatly reduced in amplitude and delayed in implicit time, and visual fields were constricted to 10 degrees diameter. Eleven of 30 (37%) patients with CRD had mutations in ABCR. In general, these patients showed reduced but detectable rod ERG responses, reduced and delayed cone responses, and poor visual acuity. Rod photoresponses to high intensity flashes were of reduced maximum amplitude but showed normal values for the gain of phototransduction. Most CRD patients with mutations in ABCR showed delayed recovery of sensitivity (dark adaptation) following exposure to bright light. Pupils were also significantly smaller in these patients compared to controls at 30 min following light exposure, consistent with a persistent 'equivalent light' background due to the accumulation of a tentatively identified 'noisy' photoproduct. Copyright 2001 Academic Press.

  10. Different mosaicism frequencies for proximal and distal Duchenne muscular dystrophy (DMD) mutations indicate difference in etiology and recurrence risk

    Energy Technology Data Exchange (ETDEWEB)

    Passos-Bueno, M.R.; Takata, R.I.; Rapaport, D.; Bakker, E.; Kneppers, A.L.J.; Dunnen, J.T. den; Ommen, J.B. van

    1992-11-01

    In about 65% of the cases of Duchenne muscular dystrophy (DMD) a partial gene deletion or duplication in the dystrophin gene can be detected. These mutations are clustered at two hot spots: 30% at the hot spot in the proximal part of the gene and about 70% at a more distal hot spot. Unexpectedly the authors observed a higher frequency of proximal gene rearrangements among proved germ line' mosaic cases. Of the 24 mosaic cases they are aware of, 19 (79%) have a proximal mutation, while only 5 (21%) have a distal mutation. This finding indicates that the mutations at the two hot spots in the dystrophin gene differ in origin. Independent support for the different mosaicism frequency was found by comparing the mutation spectra observed in isolated cases of DMD and familial cases (ratio 1:1). The authors conclude from these data that proximal deletions most likely occur early in embryonic development, causing them to have a higher chance of becoming familial, while distal deletions occur later and have a higher chance of causing only isolated cases. Finally, the findings have important consequences for the calculation of recurrence-risk estimates according to the site of the deletion: a [open quote]proximal[close quote] new mutant has an increased recurrence risk of approximately 30%, and a [open quote]distal[close quote] new mutant has a decreased recurrence risk of approximately 4%. 28 refs., 2 figs., 2 tabs.

  11. Genetic diagnosis of Duchenne and Becker muscular dystrophy using next-generation sequencing technology: comprehensive mutational search in a single platform.

    Science.gov (United States)

    Lim, Byung Chan; Lee, Seungbok; Shin, Jong-Yeon; Kim, Jong-Il; Hwang, Hee; Kim, Ki Joong; Hwang, Yong Seung; Seo, Jeong-Sun; Chae, Jong Hee

    2011-11-01

    Duchenne muscular dystrophy or Becker muscular dystrophy might be a suitable candidate disease for application of next-generation sequencing in the genetic diagnosis because the complex mutational spectrum and the large size of the dystrophin gene require two or more analytical methods and have a high cost. The authors tested whether large deletions/duplications or small mutations, such as point mutations or short insertions/deletions of the dystrophin gene, could be predicted accurately in a single platform using next-generation sequencing technology. A custom solution-based target enrichment kit was designed to capture whole genomic regions of the dystrophin gene and other muscular-dystrophy-related genes. A multiplexing strategy, wherein four differently bar-coded samples were captured and sequenced together in a single lane of the Illumina Genome Analyser, was applied. The study subjects were 25 16 with deficient dystrophin expression without a large deletion/duplication and 9 with a known large deletion/duplication. Nearly 100% of the exonic region of the dystrophin gene was covered by at least eight reads with a mean read depth of 107. Pathogenic small mutations were identified in 15 of the 16 patients without a large deletion/duplication. Using these 16 patients as the standard, the authors' method accurately predicted the deleted or duplicated exons in the 9 patients with known mutations. Inclusion of non-coding regions and paired-end sequence analysis enabled accurate identification by increasing the read depth and providing information about the breakpoint junction. The current method has an advantage for the genetic diagnosis of Duchenne muscular dystrophy and Becker muscular dystrophy wherein a comprehensive mutational search may be feasible using a single platform.

  12. Mutation spectrum analysis of Duchenne/Becker muscular dystrophy in 68 families in Kuwait: The era of personalized medicine.

    Directory of Open Access Journals (Sweden)

    Fawziah Mohammed

    Full Text Available Duchenne and Becker muscular dystrophies (DMD/BMD are X-linked recessive neuromuscular disorders characterized by progressive irreversible muscle weakness and atrophy that affect both skeletal and cardiac muscles. DMD/BMD is caused by mutations in the Dystrophin gene on the X chromosome, leading to the absence of the essential muscle protein Dystrophin in DMD. In BMD, Dystrophin is partially functioning with a shorter protein product. Recent advances in molecular therapies for DMD require precise genetic diagnoses because most therapeutic strategies are mutation-specific. Hence, early diagnosis is crucial to allow appropriate planning for patient care and treatment. In this study, data from DMD/BMD patients who attended the Kuwait Medical Genetic Center during the last 20 years was retrieved from a Kuwait neuromuscular registry and analyzed. We combined multiplex PCR and multiplex ligation-dependent probe amplification (MLPA with Sanger sequencing to detect Dystrophin gene mutations. A total of 35 different large rearrangements, 2 deletion-insertions (Indels and 4 substitution mutations were identified in the 68 unrelated families. The deletion and duplication rates were 66.2% and 4.4%, respectively. The analyzed data from our registry revealed that 11 (16% of the DMD families will benefit from newly introduced therapies (Ataluren and exon 51 skipping. At the time of submitting this paper, two cases have already enrolled in Ataluren (Tranlsarna™ therapy, and one case has been enrolled in exon 51 skipping therapy.

  13. Phenotypic spectrum of autosomal recessive cone-rod dystrophies caused by mutations in the ABCA4 (ABCR) gene.

    Science.gov (United States)

    Klevering, B Jeroen; Blankenagel, Anita; Maugeri, Alessandra; Cremers, Frans P M; Hoyng, Carel B; Rohrschneider, Klaus

    2002-06-01

    To describe the phenotype of 12 patients with autosomal recessive or isolated cone-rod types of progressive retinal degeneration (CRD) caused by mutations in the ABCA4 gene. The charts of patients who had originally received a diagnosis of isolated or autosomal recessive CRD were reviewed after molecular analysis revealed mutations in the ABCA4 gene. In two of the patients both the photopic and scotopic electroretinogram were nonrecordable. In the remainder, the photopic cone b-wave amplitudes appeared to be more seriously affected than the scotopic rod b-wave amplitudes. Although the clinical presentation was heterogeneous, all patients experienced visual loss early in life, impaired color vision, and a central scotoma. Fundoscopy revealed evidence of early-onset maculopathy, sometimes accompanied by involvement of the retinal periphery in the later stages of the disease. Mutations in the ABCA4 gene are the pathologic cause of the CRD-like dystrophy in these patients, and the resultant clinical pictures are complex and heterogeneous. Given this wide clinical spectrum of CRD-like phenotypes associated with ABCA4 mutations, detailed clinical subclassifications are difficult and may not be very useful.

  14. MLPA based detection of mutations in the dystrophin gene of 180 Polish families with Duchenne/Becker muscular dystrophy.

    Science.gov (United States)

    Zimowski, Janusz G; Massalska, Diana; Holding, Mariola; Jadczak, Sylwia; Fidziańska, Elżbieta; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Kamińska, Anna; Zaremba, Jacek

    2014-01-01

    Duchenne/Becker muscular dystrophy (DMD/BMD) is a recessive, X-linked disorder caused by a mutation in the dystrophin gene. Deletions account for approximately 60-65% of mutations, duplications for 5-10%. The remaining cases are mainly point mutations. According to Monaco theory clinical form of the disease depends on maintaining or disrupting the reading frame. The purpose of the study was to determine frequency and location of deletions and duplications in the dystrophin gene, to determine the compliance between maintaining/disrupting the reading frame and clinical form of the disease and to check the effectiveness of MLPA (multiplex ligation-dependent probe amplification) in the detection of these mutations in hemizygous patients and heterozygous female carriers. The material is composed of combined results of molecular diagnosis carried out in years 2009-2012 in 180 unrelated patients referred with the diagnosis of DMD/BMD tested by use of MLPA. We identified 110 deletions, 22 duplication (in one patient two different duplications were detected) and 2 point mutations. Deletions involved mainly exons 45-54 and 3-21, whereas most duplications involved exons 3-18. The compliance with Monaco theory was 95% for deletions and 76% for duplications. Most of mutations in the dystrophin gene were localized in the hot spots - different for deletions and duplications. MLPA enabled their quick identification, exact localization and determination whether or not they maintained or disrupted the reading frame. MLPA was also effective in detection of deletions and duplications in female carriers. Copyright © 2014 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. The identification of point mutations in Duchenne muscular dystrophy patients by using reverse-transcription PCR and the protein truncation test

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, R.J.; Bobrow, M.; Roberts, R.G. [St. Thomas`s Hospitals, London (United Kingdom)

    1995-08-01

    The protein truncation test (PTT) is a mutation-detection method that monitors the integrity of the open reading frame (ORF). More than 60% of cases of Duchenne muscular dystrophy (DMD) result from gross frameshifting deletions in the dystrophin gene that are detectable by multiplex PCR system. It has become apparent that virtually all of the remaining DMD mutations also disrupt the translational reading frame, making the PTT a logical next step toward a comprehensive strategy for the identification of all DMD mutations. We report here a pilot study involving 22 patients and describe the mutations characterized. These constitute 12 point mutations or small insertions/deletions and 4 gross rearrangements. We also have a remaining five patients in whom there does not appear to be mutation in the ORF. We believe that reverse-transcription-PCR/PTT is an efficient method by which to screen for small mutations in DMD patients with no deletion. 29 refs., 2 figs., 3 tabs.

  16. Identification of de novo mutations of Duchénnè/Becker muscular dystrophies in southern Spain.

    Science.gov (United States)

    Garcia, Susana; de Haro, Tomás; Zafra-Ceres, Mercedes; Poyatos, Antonio; Gomez-Capilla, Jose A; Gomez-Llorente, Carolina

    2014-01-01

    Duchénnè/Becker muscular dystrophies (DMD/BMD) are X-linked diseases, which are caused by a de novo gene mutation in one-third of affected males. The study objectives were to determine the incidence of DMD/BMD in Andalusia (Spain) and to establish the percentage of affected males in whom a de novo gene mutation was responsible. Multiplex ligation-dependent probe amplification (MLPA) technology was applied to determine the incidence of DMD/BMD in 84 males with suspicion of the disease and 106 female relatives. Dystrophin gene exon deletion (89.5%) or duplication (10.5%) was detected in 38 of the 84 males by MLPA technology; de novo mutations account for 4 (16.7%) of the 24 mother-son pairs studied. MLPA technology is adequate for the molecular diagnosis of DMD/BMD and establishes whether the mother carries the molecular alteration responsible for the disease, a highly relevant issue for genetic counseling.

  17. Mutations in LOXHD1, a Recessive-Deafness Locus, Cause Dominant Late-Onset Fuchs Corneal Dystrophy

    Science.gov (United States)

    Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D.

    2012-01-01

    Fuchs corneal dystrophy (FCD) is a genetic disorder of the corneal endothelium and is the most common cause of corneal transplantation in the United States. Previously, we mapped a late-onset FCD locus, FCD2, on chromosome 18q. Here, we present next-generation sequencing of all coding exons in the FCD2 critical interval in a multigenerational pedigree in which FCD segregates as an autosomal-dominant trait. We identified a missense change in LOXHD1, a gene causing progressive hearing loss in humans, as the sole variant capable of explaining the phenotype in this pedigree. We observed LOXHD1 mRNA in cultured human corneal endothelial cells, whereas antibody staining of both human and mouse corneas showed staining in the corneal epithelium and endothelium. Corneal sections of the original proband were stained for LOXHD1 and demonstrated a distinct increase in antibody punctate staining in the endothelium and Descemet membrane; punctate staining was absent from both normal corneas and FCD corneas negative for causal LOXHD1 mutations. Subsequent interrogation of a cohort of >200 sporadic affected individuals identified another 15 heterozygous missense mutations that were absent from >800 control chromosomes. Furthermore, in silico analyses predicted that these mutations reside on the surface of the protein and are likely to affect the protein's interface and protein-protein interactions. Finally, expression of the familial LOXHD1 mutant allele as well as two sporadic mutations in cells revealed prominent cytoplasmic aggregates reminiscent of the corneal phenotype. All together, our data implicate rare alleles in LOXHD1 in the pathogenesis of FCD and highlight how different mutations in the same locus can potentially produce diverse phenotypes. PMID:22341973

  18. Detection of the mutation may guide treatment of heart and muscle in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Finsterer J

    2016-03-01

    Full Text Available Josef Finsterer,1 Sinda Zarrouk-Mahjoub21Krankenanstalt Rudolfstiftung, Vienna, Austria; 2Genomics Platform, Pasteur Institute of Tunis, Tunis, Tunisia We read with great interest the article, by Kono et al, about a 32-year-old male with Duchenne muscular dystrophy (DMD, who was admitted for dilated cardiomyopathy manifesting as heart failure, left bundle branch block, Mobitz-II block, bradycardia, and arterial hypotension. He profited from implantation of a cardiac resynchronization therapy-D system with a defibrillator and beta-blocker treatment. View original article by Kono et al.  

  19. B3GALNT2 mutations associated with non-syndromic autosomal recessive intellectual disability reveal a lack of genotype-phenotype associations in the muscular dystrophy-dystroglycanopathies.

    Science.gov (United States)

    Maroofian, Reza; Riemersma, Moniek; Jae, Lucas T; Zhianabed, Narges; Willemsen, Marjolein H; Wissink-Lindhout, Willemijn M; Willemsen, Michèl A; de Brouwer, Arjan P M; Mehrjardi, Mohammad Yahya Vahidi; Ashrafi, Mahmoud Reza; Kusters, Benno; Kleefstra, Tjitske; Jamshidi, Yalda; Nasseri, Mojila; Pfundt, Rolph; Brummelkamp, Thijn R; Abbaszadegan, Mohammad Reza; Lefeber, Dirk J; van Bokhoven, Hans

    2017-12-22

    The phenotypic severity of congenital muscular dystrophy-dystroglycanopathy (MDDG) syndromes associated with aberrant glycosylation of α-dystroglycan ranges from the severe Walker-Warburg syndrome or muscle-eye-brain disease to mild, late-onset, isolated limb-girdle muscular dystrophy without neural involvement. However, muscular dystrophy is invariably found across the spectrum of MDDG patients. Using linkage mapping and whole-exome sequencing in two families with an unexplained neurodevelopmental disorder, we have identified homozygous and compound heterozygous mutations in B3GALNT2. The first family comprises two brothers of Dutch non-consanguineous parents presenting with mild ID and behavioral problems. Immunohistochemical analysis of muscle biopsy revealed no significant aberrations, in line with the absence of a muscular phenotype in the affected siblings. The second family includes five affected individuals from an Iranian consanguineous kindred with mild-to-moderate intellectual disability (ID) and epilepsy without any notable neuroimaging, muscle, or eye abnormalities. Complementation assays of the compound heterozygous mutations identified in the two brothers had a comparable effect on the O-glycosylation of α-dystroglycan as previously reported mutations that are associated with severe muscular phenotypes. In conclusion, we show that mutations in B3GALNT2 can give rise to a novel MDDG syndrome presentation, characterized by ID associated variably with seizure, but without any apparent muscular involvement. Importantly, B3GALNT2 activity does not fully correlate with the severity of the phenotype as assessed by the complementation assay.

  20. Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects.

    Science.gov (United States)

    Nikopoulos, Konstantinos; Farinelli, Pietro; Giangreco, Basilio; Tsika, Chrysanthi; Royer-Bertrand, Beryl; Mbefo, Martial K; Bedoni, Nicola; Kjellström, Ulrika; El Zaoui, Ikram; Di Gioia, Silvio Alessandro; Balzano, Sara; Cisarova, Katarina; Messina, Andrea; Decembrini, Sarah; Plainis, Sotiris; Blazaki, Styliani V; Khan, Muhammad Imran; Micheal, Shazia; Boldt, Karsten; Ueffing, Marius; Moulin, Alexandre P; Cremers, Frans P M; Roepman, Ronald; Arsenijevic, Yvan; Tsilimbaris, Miltiadis K; Andréasson, Sten; Rivolta, Carlo

    2016-09-01

    Cone-rod degeneration (CRD) belongs to the disease spectrum of retinal degenerations, a group of hereditary disorders characterized by an extreme clinical and genetic heterogeneity. It mainly differentiates from other retinal dystrophies, and in particular from the more frequent disease retinitis pigmentosa, because cone photoreceptors degenerate at a higher rate than rod photoreceptors, causing severe deficiency of central vision. After exome analysis of a cohort of individuals with CRD, we identified biallelic mutations in the orphan gene CEP78 in three subjects from two families: one from Greece and another from Sweden. The Greek subject, from the island of Crete, was homozygous for the c.499+1G>T (IVS3+1G>T) mutation in intron 3. The Swedish subjects, two siblings, were compound heterozygotes for the nearby mutation c.499+5G>A (IVS3+5G>A) and for the frameshift-causing variant c.633delC (p.Trp212Glyfs(∗)18). In addition to CRD, these three individuals had hearing loss or hearing deficit. Immunostaining highlighted the presence of CEP78 in the inner segments of retinal photoreceptors, predominantly of cones, and at the base of the primary cilium of fibroblasts. Interaction studies also showed that CEP78 binds to FAM161A, another ciliary protein associated with retinal degeneration. Finally, analysis of skin fibroblasts derived from affected individuals revealed abnormal ciliary morphology, as compared to that of control cells. Altogether, our data strongly suggest that mutations in CEP78 cause a previously undescribed clinical entity of a ciliary nature characterized by blindness and deafness but clearly distinct from Usher syndrome, a condition for which visual impairment is due to retinitis pigmentosa. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Richard S Finkel

    Full Text Available Approximately 13% of boys with Duchenne muscular dystrophy (DMD have a nonsense mutation in the dystrophin gene, resulting in a premature stop codon in the corresponding mRNA and failure to generate a functional protein. Ataluren (PTC124 enables ribosomal readthrough of premature stop codons, leading to production of full-length, functional proteins.This Phase 2a open-label, sequential dose-ranging trial recruited 38 boys with nonsense mutation DMD. The first cohort (n = 6 received ataluren three times per day at morning, midday, and evening doses of 4, 4, and 8 mg/kg; the second cohort (n = 20 was dosed at 10, 10, 20 mg/kg; and the third cohort (n = 12 was dosed at 20, 20, 40 mg/kg. Treatment duration was 28 days. Change in full-length dystrophin expression, as assessed by immunostaining in pre- and post-treatment muscle biopsy specimens, was the primary endpoint.Twenty three of 38 (61% subjects demonstrated increases in post-treatment dystrophin expression in a quantitative analysis assessing the ratio of dystrophin/spectrin. A qualitative analysis also showed positive changes in dystrophin expression. Expression was not associated with nonsense mutation type or exon location. Ataluren trough plasma concentrations active in the mdx mouse model were consistently achieved at the mid- and high- dose levels in participants. Ataluren was generally well tolerated.Ataluren showed activity and safety in this short-term study, supporting evaluation of ataluren 10, 10, 20 mg/kg and 20, 20, 40 mg/kg in a Phase 2b, double-blind, long-term study in nonsense mutation DMD.ClinicalTrials.gov NCT00264888.

  2. Clinical and mutational characteristics of Duchenne muscular dystrophy patients based on a comprehensive database in South China.

    Science.gov (United States)

    Wang, Dan-Ni; Wang, Zhi-Qiang; Yan, Lei; He, Jin; Lin, Min-Ting; Chen, Wan-Jin; Wang, Ning

    2017-08-01

    The development of clinical trials for Duchenne muscular dystrophy (DMD) in China faces many challenges due to limited information about epidemiological data, natural history and clinical management. To provide these detailed data, we developed a comprehensive database based on registered DMD patients from South China and analysed their clinical and mutational characteristics. The database included DMD registrants confirmed by clinical presentation, family history, genetic detection, prognostic outcome, and/or muscle biopsy. Clinical data were collected by a registry form. Mutations of dystrophin were detected by multiplex ligation-dependent probe amplification (MLPA) and Sanger sequencing. Currently, 132 DMD patients from 128 families in South China have been registered, and 91.7% of them were below 10 years old. In mutational detection, large deletions were the most frequent type (57.8%), followed by small deletion/insertion mutations (14.1%), nonsense mutations (13.3%), large duplications (10.9%), and splice site mutations (3.1%). Clinical analysis revealed that most patients reported initial symptoms between 1 and 3 years of age, but the diagnostic age was more frequently between 6 and 8 years. 81.4% of patients were ambulatory. Baseline cardiac assessments at diagnosis were conducted in 39.4% and 29.5% of patients by echocardiograms and electrocardiograms, respectively. Only 22.7% of registrants performed baseline respiratory assessments. A small numbers of patients (20.5%) were treated with glucocorticoids. 13.3% of patients were eligible for stop codon read-through therapy, and 48.4% of patients would potentially benefit from exon skipping. The top five exon skips applicable to the largest group of registrants were skipping of exons 51 (14.8% of total mutations), 53 (12.5%), 45 (7.0%), 55 (4.7%), and 44 (3.9%). In conclusion, our database provided information on the natural history, diagnosis and management status of DMD in South China, as well as potential

  3. A novel FKRP-related muscular dystrophy founder mutation in South ...

    African Journals Online (AJOL)

    porphyria variegata, familial hypercholesterolaemia, Gaucher's dis- ease and autosomal recessive polycystic kidney disease.[7-11]. FKRP founder mutations have been described in a number of populations around the world, for example the c.826C>A. (p.Leu276Ile) FKRP mutation in 20 LGMD German patients[12].

  4. Precise Correction of Disease Mutations in Induced Pluripotent Stem Cells Derived From Patients With Limb Girdle Muscular Dystrophy.

    Science.gov (United States)

    Turan, Soeren; Farruggio, Alfonso P; Srifa, Waracharee; Day, John W; Calos, Michele P

    2016-04-01

    Limb girdle muscular dystrophies types 2B (LGMD2B) and 2D (LGMD2D) are degenerative muscle diseases caused by mutations in the dysferlin and alpha-sarcoglycan genes, respectively. Using patient-derived induced pluripotent stem cells (iPSC), we corrected the dysferlin nonsense mutation c.5713C>T; p.R1905X and the most common alpha-sarcoglycan mutation, missense c.229C>T; p.R77C, by single-stranded oligonucleotide-mediated gene editing, using the CRISPR/Cas9 gene-editing system to enhance the frequency of homology-directed repair. We demonstrated seamless, allele-specific correction at efficiencies of 0.7-1.5%. As an alternative, we also carried out precise gene addition strategies for correction of the LGMD2B iPSC by integration of wild-type dysferlin cDNA into the H11 safe harbor locus on chromosome 22, using dual integrase cassette exchange (DICE) or TALEN-assisted homologous recombination for insertion precise (THRIP). These methods employed TALENs and homologous recombination, and DICE also utilized site-specific recombinases. With DICE and THRIP, we obtained targeting efficiencies after selection of ~20%. We purified iPSC corrected by all methods and verified rescue of appropriate levels of dysferlin and alpha-sarcoglycan protein expression and correct localization, as shown by immunoblot and immunocytochemistry. In summary, we demonstrate for the first time precise correction of LGMD iPSC and validation of expression, opening the possibility of cell therapy utilizing these corrected iPSC.

  5. CEP250 mutations associated with mild cone-rod dystrophy and sensorineural hearing loss in a Japanese family.

    Science.gov (United States)

    Kubota, Daiki; Gocho, Kiyoko; Kikuchi, Sachiko; Akeo, Keiichiro; Miura, Masahiro; Yamaki, Kunihiko; Takahashi, Hiroshi; Kameya, Shuhei

    2018-05-02

    CEP250 encodes the C-Nap1 protein which belongs to the CEP family of proteins. C-Nap1 has been reported to be expressed in the photoreceptor cilia and is known to interact with other ciliary proteins. Mutations of CEP250 cause atypical Usher syndrome which is characterized by early-onset sensorineural hearing loss (SNHL) and a relatively mild retinitis pigmentosa. This study tested the hypothesis that the mild cone-rod dystrophy (CRD) and SNHL in a non-consanguineous Japanese family was caused by CEP250 mutations. Detailed ophthalmic and auditory examinations were performed on the proband and her family members. Whole exome sequencing (WES) was used on the DNA obtained from the proband. Electrophysiological analysis revealed a mild CRD in two family members. Adaptive optics (AO) imaging showed reduced cone density around the fovea. Auditory examinations showed a slight SNHL in both patients. WES of the proband identified compound heterozygous variants c.361C>T, p.R121*, and c.562C>T, p.R188* in CEP250. The variants were found to co-segregate with the disease in five members of the family. The variants of CEP250 are both null variants and according to American College of Medical Genetics and Genomics (ACMG) standards and guideline, these variants are classified into the very strong category (PVS1). The criteria for both alleles will be pathogenic. Our data indicate that mutations of CEP250 can cause mild CRD and SNHL in Japanese patients. Because the ophthalmological phenotypes were very mild, high-resolution retinal imaging analysis, such as AO, will be helpful in diagnosing CEP250-associated disease.

  6. Non-deletion mutations in Egyptian patients with Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Rabah M. Shawky

    2014-07-01

    Conclusion: The relative higher frequency of duplication mutations in Egyptian patients with DMD may indicate that MLPA and not PCR should be preferred for molecular testing of Egyptian patients with DMD.

  7. Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa.

    Science.gov (United States)

    Klevering, B Jeroen; Yzer, Suzanne; Rohrschneider, Klaus; Zonneveld, Marijke; Allikmets, Rando; van den Born, L Ingeborgh; Maugeri, Alessandra; Hoyng, Carel B; Cremers, Frans P M

    2004-12-01

    Mutations in the ABCA4 gene have been associated with autosomal recessive Stargardt disease (STGD1), cone-rod dystrophy (CRD), and retinitis pigmentosa (RP). We employed a recently developed genotyping microarray, the ABCR400-chip, to search for known ABCA4 mutations in patients with isolated or autosomal recessive CRD (54 cases) or RP (90 cases). We performed detailed ophthalmologic examinations and identified at least one ABCA4 mutation in 18 patients (33%) with CRD and in five patients (5.6%) with RP. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequencing revealed four novel missense mutations (R24C, E161K, P597S, G618E) and a novel 1-bp deletion (5888delG). Ophthalmoscopic abnormalities in CRD patients ranged from minor granular pigmentary changes in the posterior pole to widespread atrophy. In 12 patients with recordable electroretinogram (ERG) tracings, a cone-rod pattern was detected. Three patients demonstrated progression from a retinal dystrophy resembling STGD1 to a more widespread degeneration, and were subsequently diagnosed as CRD. In addition to a variable degree of atrophy, all RP patients displayed ophthalmologic characteristics of classic RP. When detectable, ERG recordings in these patients demonstrated rod-cone patterns of photoreceptor degeneration. In conclusion, in this study, we show that the ABCA4 mutation chip is an efficient first screening tool for arCRD.

  8. Low incidence of limb-girdle muscular dystrophy type 2C revealed by a mutation study in Japanese patients clinically diagnosed with DMD

    Directory of Open Access Journals (Sweden)

    Maruyama Koichi

    2010-03-01

    Full Text Available Abstract Background Limb-girdle muscular dystrophy type 2C (LGMD2C is an autosomal recessive muscle dystrophy that resembles Duchenne muscular dystrophy (DMD. Although DMD is known to affect one in every 3500 males regardless of race, a widespread founder mutation causing LGMD2C has been described in North Africa. However, the incidence of LGMD2C in Japanese has been unknown because the genetic background remains uncharacterized in many patients clinically diagnosed with DMD. Methods We enrolled 324 patients referred to the Kobe University Hospital with suspected DMD. Mutations in the dystrophin or the SGCG genes were analyzed using not only genomic DNA but also cDNA. Results In 322 of the 324 patients, responsible mutations in the dystrophin were successfully revealed, confirming DMD diagnosis. The remaining two patients had normal dystrophin expression but absence of γ-sarcoglycan in skeletal muscle. Mutation analysis of the SGCG gene revealed homozygous deletion of exon 6 in one patient, while the other had a novel single nucleotide insertion in exon 7 in one allele and deletion of exon 6 in the other allele. These mutations created a stop codon that led to a γ-sarcoglycan deficiency, and we therefore diagnosed these two patients as having LGMD2C. Thus, the relative incidence of LGMD2C among Japanese DMD-like patients can be calculated as 1 in 161 patients suspected to have DMD (2 of 324 patients = 0.6%. Taking into consideration the DMD incidence for the overall population (1/3,500 males, the incidence of LGMD2C can be estimated as 1 per 560,000 or 1.8 per million. Conclusions To the best of our knowledge, this is the first study to demonstrate a low incidence of LGMD2C in the Japanese population.

  9. Becker muscular dystrophy due to an intronic splicing mutation inducing a dual dystrophin transcript.

    Science.gov (United States)

    Todeschini, Alice; Gualandi, Francesca; Trabanelli, Cecilia; Armaroli, Annarita; Ravani, Anna; Fanin, Marina; Rota, Silvia; Bello, Luca; Ferlini, Alessandra; Pegoraro, Elena; Padovani, Alessandro; Filosto, Massimiliano

    2016-10-01

    We describe a 29-year-old patient who complained of left thigh muscle weakness since he was 23 and of moderate proximal weakness of both lower limbs with difficulty in climbing stairs and running since he was 27. Mild weakness of iliopsoas and quadriceps muscles and muscle atrophy of both the distal forearm and thigh were observed upon clinical examination. He harboured a novel c.1150-3C>G substitution in the DMD gene, affecting the intron 10 acceptor splice site and causing exon 11 skipping and an out-of-frame transcript. However, protein of normal molecular weight but in reduced amounts was observed on Western Blot analysis. Reverse transcription analysis on muscle RNA showed production, via alternative splicing, of a transcript missing exon 11 as well as a low abundant full-length transcript which is enough to avoid the severe Duchenne phenotype. Our study showed that a reduced amount of full length dystrophin leads to a mild form of Becker muscular dystrophy. These results confirm earlier findings that low amounts of dystrophin can be associated with a milder phenotype, which is promising for therapies aiming at dystrophin restoration. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A novel FKRP-related muscular dystrophy founder mutation in South African Afrikaner patients with a phenotype suggestive of a dystrophinopathy

    Directory of Open Access Journals (Sweden)

    M M Mudau

    2017-01-01

    Full Text Available Background. Fukutin-related protein (FKRP muscular dystrophy is an autosomal recessive disorder caused by mutations in the FKRP gene. The condition is often misdiagnosed as a dystrophinopathy. A previously unreported mutation, c.1100T>C in exon 4 of FKRP, had been identified in homozygous form in two white South African (SA Afrikaner patients clinically diagnosed with a dystrophinopathy. Objectives. To investigate whether the c.1100T>C mutation and the common European FKRP mutation c.826C>A are present in other patients of Afrikaner origin with suspected dystrophinopathy, and whether a founder haplotype exists. Methods. The c.1100T>C mutation was initially tested for using an amplification refractory mutation system technique in 45 white SA Afrikaner patients who had tested negative using multiplex ligation probe amplification screening for exonic deletions/duplications in the dystrophin gene. Sequencing analysis was used to confirm the c.1100T>C mutation and screen for the c.826C>A mutation. Two cohorts (each numbering 100 of Afrikaans and other white controls were screened for the c.1100T>C and c.826C>A mutations, respectively. Results. Of the 45 patients, 8 patients (17.8% were homozygous for c.1100T>C, 2 (4.4% were compound heterozygotes for c.1100T>C and c.826C>A, and 1 (2.2% was heterozygous for c.1100T>C with a second unidentified mutation. The c.1100T>C mutation was found in 1/100 controls, but no heterozygotes for the c.826C>A mutation were identified. Linked marker analysis for c.1100T>C showed a common haplotype, suggesting a probable founder mutation in the SA Afrikaner population. Conclusion. FKRP mutations may be relatively common in Afrikaners, and screening should be considered in patients who have a suggestive phenotype and test negative for a dystrophinopathy. This test will be useful for offering diagnostic, carrier and prenatal testing for affected individuals and their families. As FKRP muscular dystrophy is autosomal

  11. A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping.

    Directory of Open Access Journals (Sweden)

    Gemma L Walmsley

    2010-01-01

    Full Text Available Duchenne muscular dystrophy (DMD, which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deletions in the dystrophin gene that disrupt the reading frame resulting in unstable truncated products. For these patients, restoration of the reading frame via antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach. The major DMD deletion "hot spot" is found between exons 45 and 53, and skipping exon 51 in particular is predicted to ameliorate the dystrophic phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used animal model of DMD, although its mild phenotype limits its suitability in clinical trials. The Golden Retriever muscular dystrophy (GRMD model has a severe phenotype, but due to its large size, is expensive to use. Both these models have mutations in regions of the dystrophin gene distant from the commonly mutated DMD "hot spot".Here we describe the severe phenotype, histopathological findings, and molecular analysis of Cavalier King Charles Spaniels with dystrophin-deficient muscular dystrophy (CKCS-MD. The dogs harbour a missense mutation in the 5' donor splice site of exon 50 that results in deletion of exon 50 in mRNA transcripts and a predicted premature truncation of the translated protein. Antisense oligonucleotide-mediated skipping of exon 51 in cultured myoblasts from an affected dog restored the reading frame and protein expression.Given the small size of the breed, the amiable temperament and the nature of the mutation, we propose that CKCS-MD is a valuable new model for clinical trials of antisense oligonucleotide-induced exon skipping and other therapeutic approaches for DMD.

  12. A New Mouse Model of Limb-Girdle Muscular Dystrophy Type 2I Homozygous for the Common L276I Mutation Mimicking the Mild Phenotype in Humans

    DEFF Research Database (Denmark)

    Krag, Thomas O; Vissing, John

    2015-01-01

    Limb-girdle muscular dystrophy type 2I (LGMD2I) is caused by mutations in the Fukutin-related protein (FKRP) gene, leading to inadequate glycosylation of α-dystroglycan, an important protein linking the extracellular matrix to the cytoskeleton. We created a mouse model of the common FKRP L276I...... mutation and a hemizygous FKRP L276I knockout model. We studied histopathology and protein expression in the models at different ages and found that homozygous FKRP L276I mice developed a mild progressive myopathy with increased muscle regeneration and fibrosis starting from 1 year of age. This was likely...... in maintaining proper glycosylation of α-dystroglycan. The mild progression in the homozygous FKRP L276I model resembles that in patients with LGMD2I who are homozygous for the L276I mutation. This animal model could, therefore, be relevant for understanding the pathophysiology of and developing a treatment...

  13. Early-progressive dilated cardiomyopathy in a family with Becker muscular dystrophy related to a novel frameshift mutation in the dystrophin gene exon 27.

    Science.gov (United States)

    Tsuda, Takeshi; Fitzgerald, Kristi; Scavena, Mena; Gidding, Samuel; Cox, Mary O; Marks, Harold; Flanigan, Kevin M; Moore, Steven A

    2015-03-01

    We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11 years; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAinsGG), in which seven base pairs are deleted and two are inserted. Although this predicts an amino-acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both the siblings developed progressive HF secondary to early-onset DCM. In addition, their 7-year-old nephew with delayed gross motor development, mild proximal muscle weakness and markedly elevated serum creatine kinase level (>13 000 IU l(-1)) at 16 months was recently demonstrated to have the familial DMD mutation. Here, we report a novel genotype of BMD with early-onset DCM and progressive lethal HF during early adolescence.

  14. Identification of the PLA2G6 c.1579G>A Missense Mutation in Papillon Dog Neuroaxonal Dystrophy Using Whole Exome Sequencing Analysis.

    Directory of Open Access Journals (Sweden)

    Masaya Tsuboi

    Full Text Available Whole exome sequencing (WES has become a common tool for identifying genetic causes of human inherited disorders, and it has also recently been applied to canine genome research. We conducted WES analysis of neuroaxonal dystrophy (NAD, a neurodegenerative disease that sporadically occurs worldwide in Papillon dogs. The disease is considered an autosomal recessive monogenic disease, which is histopathologically characterized by severe axonal swelling, known as "spheroids," throughout the nervous system. By sequencing all eleven DNA samples from one NAD-affected Papillon dog and her parents, two unrelated NAD-affected Papillon dogs, and six unaffected control Papillon dogs, we identified 10 candidate mutations. Among them, three candidates were determined to be "deleterious" by in silico pathogenesis evaluation. By subsequent massive screening by TaqMan genotyping analysis, only the PLA2G6 c.1579G>A mutation had an association with the presence or absence of the disease, suggesting that it may be a causal mutation of canine NAD. As a human homologue of this gene is a causative gene for infantile neuroaxonal dystrophy, this canine phenotype may serve as a good animal model for human disease. The results of this study also indicate that WES analysis is a powerful tool for exploring canine hereditary diseases, especially in rare monogenic hereditary diseases.

  15. Novel mutations in DNAJB6 gene cause a very severe early-onset limb-girdle muscular dystrophy 1D disease.

    Science.gov (United States)

    Palmio, Johanna; Jonson, Per Harald; Evilä, Anni; Auranen, Mari; Straub, Volker; Bushby, Kate; Sarkozy, Anna; Kiuru-Enari, Sari; Sandell, Satu; Pihko, Helena; Hackman, Peter; Udd, Bjarne

    2015-11-01

    DNAJB6 is the causative gene for limb-girdle muscular dystrophy 1D (LGMD1D). Four different coding missense mutations, p.F89I, p.F93I, p.F93L, and p.P96R, have been reported in families from Europe, North America and Asia. The previously known mutations cause mainly adult-onset proximal muscle weakness with moderate progression and without respiratory involvement. A Finnish family and a British patient have been studied extensively due to a severe muscular dystrophy. The patients had childhood-onset LGMD, loss of ambulation in early adulthood and respiratory involvement; one patient died of respiratory failure aged 32. Two novel mutations, c.271T > A (p.F91I) and c.271T > C (p.F91L), in DNAJB6 were identified by whole exome sequencing as a cause of this severe form of LGMD1D. The results were confirmed by Sanger sequencing. The anti-aggregation effect of the mutant DNAJB6 was investigated in a filter-trap based system using transient transfection of mammalian cell lines and polyQ-huntingtin as a model for an aggregation-prone protein. Both novel mutant proteins show a significant loss of ability to prevent aggregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. siRNA-mediated Allele-specific Silencing of a COL6A3 Mutation in a Cellular Model of Dominant Ullrich Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Véronique Bolduc

    2014-01-01

    Full Text Available Congenital muscular dystrophy type Ullrich (UCMD is a severe disorder of early childhood onset for which currently there is no effective treatment. UCMD commonly is caused by dominant-negative mutations in the genes coding for collagen type VI, a major microfibrillar component of the extracellular matrix surrounding the muscle fibers. To explore RNA interference (RNAi as a potential therapy for UCMD, we designed a series of small interfering RNA (siRNA oligos that specifically target the most common mutations resulting in skipping of exon 16 in the COL6A3 gene and tested them in UCMD-derived dermal fibroblasts. Transcript analysis by semiquantitative and quantitative reverse transcriptase PCR showed that two of these siRNAs were the most allele-specific, i.e., they efficiently knocked down the expression from the mutant allele, without affecting the normal allele. In HEK293T cells, these siRNAs selectively suppressed protein expression from a reporter construct carrying the mutation, with no or minimal suppression of the wild-type (WT construct, suggesting that collagen VI protein levels are as also reduced in an allele-specific manner. Furthermore, we found that treating UCMD fibroblasts with these siRNAs considerably improved the quantity and quality of the collagen VI matrix, as assessed by confocal microscopy. Our current study establishes RNAi as a promising molecular approach for treating dominant COL6-related dystrophies.

  17. Consecutive analysis of mutation spectrum in the dystrophin gene of 507 Korean boys with Duchenne/Becker muscular dystrophy in a single center.

    Science.gov (United States)

    Cho, Anna; Seong, Moon-Woo; Lim, Byung Chan; Lee, Hwa Jeen; Byeon, Jung Hye; Kim, Seung Soo; Kim, Soo Yeon; Choi, Sun Ah; Wong, Ai-Lynn; Lee, Jeongho; Kim, Jon Soo; Ryu, Hye Won; Lee, Jin Sook; Kim, Hunmin; Hwang, Hee; Choi, Ji Eun; Kim, Ki Joong; Hwang, Young Seung; Hong, Ki Ho; Park, Seungman; Cho, Sung Im; Lee, Seung Jun; Park, Hyunwoong; Seo, Soo Hyun; Park, Sung Sup; Chae, Jong Hee

    2017-05-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are allelic X-linked recessive muscle diseases caused by mutations in the large and complex dystrophin gene. We analyzed the dystrophin gene in 507 Korean DMD/BMD patients by multiple ligation-dependent probe amplification and direct sequencing. Overall, 117 different deletions, 48 duplications, and 90 pathogenic sequence variations, including 30 novel variations, were identified. Deletions and duplications accounted for 65.4% and 13.3% of Korean dystrophinopathy, respectively, suggesting that the incidence of large rearrangements in dystrophin is similar among different ethnic groups. We also detected sequence variations in >100 probands. The small variations were dispersed across the whole gene, and 12.3% were nonsense mutations. Precise genetic characterization in patients with DMD/BMD is timely and important for implementing nationwide registration systems and future molecular therapeutic trials in Korea and globally. Muscle Nerve 55: 727-734, 2017. © 2016 Wiley Periodicals, Inc.

  18. Rhabdomyolysis featuring muscular dystrophies.

    Science.gov (United States)

    Lahoria, Rajat; Milone, Margherita

    2016-02-15

    Rhabdomyolysis is a potentially life threatening condition of various etiology. The association between rhabdomyolysis and muscular dystrophies is under-recognized in clinical practice. To identify muscular dystrophies presenting with rhabdomyolysis at onset or as predominant feature. We retrospectively reviewed clinical and laboratory data of patients with a genetically confirmed muscular dystrophy in whom rhabdomyolysis was the presenting or main clinical manifestation. Thirteen unrelated patients (males=6; females=7) were identified. Median age at time of rhabdomyolysis was 18 years (range, 2-47) and median duration between the first episode of rhabdomyolysis and molecular diagnosis was 2 years. Fukutin-related protein (FKRP) muscular dystrophy (n=6) was the most common diagnosis, followed by anoctaminopathy-5 (n=3), calpainopathy-3 (n=2) and dystrophinopathy (n=2). Four patients experienced recurrent rhabdomyolysis. Eight patients were asymptomatic and 3 reported myalgia and exercise intolerance prior to the rhabdomyolysis. Exercise (n=6) and fever (n=4) were common triggers; rhabdomyolysis was unprovoked in 3 patients. Twelve patients required hospitalization. Baseline CK levels were elevated in all patients (median 1200 IU/L; range, 600-3600). Muscular dystrophies can present with rhabdomyolysis; FKRP mutations are particularly frequent in causing such complication. A persistently elevated CK level in patients with rhabdomyolysis warrants consideration for underlying muscular dystrophy. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects

    NARCIS (Netherlands)

    Nikopoulos, K.; Farinelli, P.; Giangreco, B.; Tsika, C.; Royer-Bertrand, B.; Mbefo, M.K.; Bedoni, N.; Kjellstrom, U.; El Zaoui, I.; Di Gioia, S.A.; Balzano, S.; Cisarova, K.; Messina, A.; Decembrini, S.; Plainis, S.; Blazaki, S.V.; Khan, M.I.; Micheal, S.; Boldt, K.; Ueffing, M.; Moulin, A.P.; Cremers, F.P.; Roepman, R.; Arsenijevic, Y.; Tsilimbaris, M.K.; Andreasson, S.; Rivolta, C.

    2016-01-01

    Cone-rod degeneration (CRD) belongs to the disease spectrum of retinal degenerations, a group of hereditary disorders characterized by an extreme clinical and genetic heterogeneity. It mainly differentiates from other retinal dystrophies, and in particular from the more frequent disease retinitis

  20. Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy.

    Science.gov (United States)

    McCourt, Jackie L; Talsness, Dana M; Lindsay, Angus; Arpke, Robert W; Chatterton, Paul D; Nelson, D'anna M; Chamberlain, Christopher M; Olthoff, John T; Belanto, Joseph J; McCourt, Preston M; Kyba, Michael; Lowe, Dawn A; Ervasti, James M

    2018-02-01

    Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Emerging strategies for cell and gene therapy of the muscular dystrophies

    OpenAIRE

    Muir, Lindsey A.; Chamberlain, Jeffrey S.

    2009-01-01

    The muscular dystrophies are a heterogeneous group of over 40 disorders that are characterised by muscle weakness and wasting. The most common are Duchenne muscular dystrophy and Becker muscular dystrophy, which result from mutations within the gene encoding dystrophin; myotonic dystrophy type 1, which results from an expanded trinucleotide repeat in the myotonic dystrophy protein kinase gene; and facioscapulohumeral dystrophy, which is associated with contractions in the subtelomeric region ...

  2. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement

    Science.gov (United States)

    Schmidts, Miriam; Arts, Heleen H; Bongers, Ernie M H F; Yap, Zhimin; Oud, Machteld M; Antony, Dinu; Duijkers, Lonneke; Emes, Richard D; Stalker, Jim; Yntema, Jan-Bart L; Plagnol, Vincent; Hoischen, Alexander; Gilissen, Christian; Forsythe, Elisabeth; Lausch, Ekkehart; Veltman, Joris A; Roeleveld, Nel; Superti-Furga, Andrea; Kutkowska-Kazmierczak, Anna; Kamsteeg, Erik-Jan; Elçioğlu, Nursel; van Maarle, Merel C; Graul-Neumann, Luitgard M; Devriendt, Koenraad; Smithson, Sarah F; Wellesley, Diana; Verbeek, Nienke E; Hennekam, Raoul C M; Kayserili, Hulya; Scambler, Peter J; Beales, Philip L; Knoers, Nine VAM; Roepman, Ronald; Mitchison, Hannah M

    2013-01-01

    Background Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis. Aims and methods To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing. Results and conclusions We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype–phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes. PMID:23456818

  3. Association of a homozygous nonsense mutation in the ABCA4 (ABCR) gene with cone-rod dystrophy phenotype in an Italian family.

    Science.gov (United States)

    Simonelli, Francesca; Testa, Francesco; Zernant, Jana; Nesti, Anna; Rossi, Settimio; Rinaldi, Ernesto; Allikmets, Rando

    2004-01-01

    Genetic variation in the ABCA4 (ABCR) gene has been associated with several distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), retinitis pigmentosa (RP) and age-related macular degeneration. The current model of genotype/phenotype association suggests that patients harboring deleterious mutations in both ABCR alleles would develop RP-like retinal pathology. Here we describe ABCA4-associated phenotypes, including a proband with a homozygous nonsense mutation in a family from Southern Italy. The proband had been originally diagnosed with STGD. Ophthalmologic examination included kinetic perimetry, electrophysiological studies and fluorescein angiography. DNA of the affected individual and family members was analyzed for variants in all 50 exons of the ABCA4 gene by screening on the ABCR400 microarray. A homozygous nonsense mutation 2971G>T (G991X) was detected in a patient initially diagnosed with STGD based on funduscopic evidence, including bull's eye depigmentation of the fovea and flecks at the posterior pole extending to the mid-peripheral retina. Since this novel nucleotide substitution results in a truncated, nonfunctional, ABCA4 protein, the patient was examined in-depth for the severity of the disease phenotype. Indeed, subsequent electrophysiological studies determined severely reduced cone amplitude as compared to the rod amplitude, suggesting the diagnosis of CRD. ABCR400 microarray is an efficient tool for determining causal genetic variation, including new mutations. A homozygous protein-truncating mutation in ABCA4 can cause a phenotype ranging from STGD to CRD as diagnosed at an early stage of the disease. Only a combination of comprehensive genotype/phenotype correlation studies will determine the proper diagnosis and prognosis of ABCA4-associated pathology. Copyright 2004 S. Karger AG, Basel

  4. Translational read-through as an alternative approach for ocular gene therapy of retinal dystrophies caused by in-frame nonsense mutations.

    Science.gov (United States)

    Nagel-Wolfrum, Kerstin; Möller, Fabian; Penner, Inessa; Wolfrum, Uwe

    2014-09-01

    The eye has become an excellent target for gene therapy, and gene augmentation therapy of inherited retinal disorders has made major progress in recent years. Nevertheless, a recent study indicated that gene augmentation intervention might not stop the progression of retinal degeneration in patients. In addition, for many genes, viral-mediated gene augmentation is currently not feasible due to gene size and limited packaging capacity of viral vectors as well as expression of various heterogeneous isoforms of the target gene. Thus, alternative gene-based strategies to stop or delay the retinal degeneration are necessary. This review focuses on an alternative pharmacologic treatment strategy based on the usage of translational read-through inducing drugs (TRIDs) such as PTC124, aminoglycoside antibiotics, and designer aminoglycosides for overreading in-frame nonsense mutations. This strategy has emerged as an option for up to 30-50% of all cases of recessive hereditary retinal dystrophies. In-frame nonsense mutations are single-nucleotide alterations within the gene coding sequence resulting in a premature stop codon. Consequently, translation of such mutated genes leads to the synthesis of truncated proteins, which are unable to fulfill their physiologic functions. In this context, application of TRIDs facilitates the recoding of the premature termination codon into a sense codon, thus restoring syntheses of full-length proteins. So far, clinical trials for non-ocular diseases have been initiated for diverse TRIDs. Although the clinical outcome is not analyzed in detail, an excellent safety profile, namely for PTC124, was clearly demonstrated. Moreover, recent data demonstrated sustained read-through efficacies of nonsense mutations causing retinal degeneration, as manifested in the human Usher syndrome. In addition, a strong retinal biocompatibility for PTC124 and designer aminoglycosides has been demonstrated. In conclusion, recent progress emphasizes the

  5. Myotonic Muscular Dystrophy

    Science.gov (United States)

    ... Marie-Tooth Disease (CMT) Congenital Muscular Dystrophy (CMD) Duchenne Muscular Dystrophy (DMD) Emery-Dreifuss Muscular Dystrophy Endocrine Myopathies Metabolic Diseases of Muscle Mitochondrial Myopathies (MM) Myotonic Dystrophy (DM) Spinal-Bulbar ...

  6. Mutation analysis in Duchenne and Becker muscular dystrophy patients from Bulgaria shows a peculiar distribution of breakpoints by intron

    Energy Technology Data Exchange (ETDEWEB)

    Todorova, A.; Bronzova, J.; Kremensky, I. [Univ. Hospital of Obstetrics and Gynecology, Sofia (Bulgaria)] [and others

    1996-10-02

    For the first time in Bulgaria, a deletion/duplication screening was performed on a group of 84 unrelated Duchenne/Becker muscular dystrophy patients, and the breakpoint distribution in the dystrophin gene was analyzed. Intragenic deletions were detected in 67.8% of patients, and intragenic duplications in 2.4%. A peculiar distribution of deletion breakpoints was found. Only 13.2% of the deletion breakpoints fell in the {open_quotes}classical{close_quotes} hot spot in intron 44, whereas the majority (> 54%) were located within the segment encompassing introns 45-51, which includes intron 50, the richest in breakpoints (16%) in the Bulgarian sample. Comparison with data from Greece and Turkey points at the probable existence of a deletion hot spot within intron 50, which might be a characteristic of populations of the Balkan region. 17 refs., 2 figs.

  7. Muscular Dystrophy

    Science.gov (United States)

    ... Surveillance Tracking and Research Network , known as MD STAR net . Learn more about CDC’s other muscular dystrophy ... for Disease Control and Prevention Email Recommend Tweet YouTube Instagram Listen Watch RSS ABOUT About CDC Jobs ...

  8. Muscular dystrophy

    Science.gov (United States)

    ... are no known cures for the various muscular dystrophies. The goal of treatment is to control symptoms. Physical therapy may help maintain muscle strength and function. Leg braces and a wheelchair ...

  9. Central areolar choroidal dystrophy with associated dominant drusen

    Directory of Open Access Journals (Sweden)

    Julie Rodman

    2013-04-01

    Conclusion: Central areolar choroidal dystrophy normally presents without drusen. However, in patients manifesting a specific mutation, central areolar choridal dystrophy may present in conjunction with drusen. It appears that the Arg142Trp mutation is one of the factors predisposing to drusen formation.

  10. Phenotypic spectrum of autosomal recessive cone-rod dystrophies caused by mutations in the ABCA4 (ABCR) gene.

    NARCIS (Netherlands)

    Klevering, B.J.; Blankenagel, A.; Maugeri, A.; Cremers, F.P.M.; Hoyng, C.B.; Rohrschneider, K.

    2002-01-01

    PURPOSE: To describe the phenotype of 12 patients with autosomal recessive or isolated cone-rod types of progressive retinal degeneration (CRD) caused by mutations in the ABCA4 gene. METHODS: The charts of patients who had originally received a diagnosis of isolated or autosomal recessive CRD were

  11. A novel point mutation (G[sup [minus]1] to T) in a 5[prime] splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker Muscular Dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko; Takeshima, Yasuhiro; Narita, Naoko; Wada, Hiroko; Yokoyama, Mitsuhiro; Nakamura, Hajime; Matsuo, Masafumi (Kobe Univ. School of Medicine (Japan))

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.

  12. Muscular Dystrophy

    Science.gov (United States)

    ... sets of muscles and cause different degrees of muscle weakness. Duchenne muscular dystrophy is the most common and the most severe ... can walk independently. Prednisone If a child has Duchenne muscular ... to help slow the rate of muscle deterioration. By doing so, the child may be ...

  13. Detailed functional and structural phenotype of Bietti crystalline dystrophy associated with mutations in CYP4V2 complicated by choroidal neovascularization.

    Science.gov (United States)

    Fuerst, Nicole M; Serrano, Leona; Han, Grace; Morgan, Jessica I W; Maguire, Albert M; Leroy, Bart P; Kim, Benjamin J; Aleman, Tomas S

    2016-12-01

    To describe in detail the phenotype of a patient with Bietti crystalline dystrophy (BCD) complicated by choroidal neovascularization (CNV) and the response to intravitreal Bevacizumab (Avastin ® ; Genentech/Roche). A 34-year-old woman with BCD and mutations in CYP4V2 (c.802-8_806del13/p.H331P:c992A>C) underwent a complete ophthalmic examination, full-field flash electroretinography (ERG), kinetic and two-color dark-adapted perimetry, and dark-adaptometry. Imaging was performed with spectral domain optical coherence tomography (SD-OCT), near infrared (NIR) and short wavelength (SW) fundus autofluorescence (FAF), and fluorescein angiography (FA). Best-corrected visual acuity (BCVA) was 20/20 and 20/60 for the right and left eye, respectively. There were corneal paralimbal crystal-like deposits. Kinetic fields were normal in the peripheral extent. Retinal crystals were most obvious on NIR-reflectance and corresponded with hyperreflectivities within the RPE on SD-OCT. There was parafoveal/perifoveal hypofluorescence on SW-FAF and NIR-FAF. Rod > cone sensitivity loss surrounded fixation and extended to ~10° of eccentricity corresponding to regions of photoreceptor outer segment-retinal pigmented epithelium (RPE) interdigitation abnormalities. The outer nuclear layer was normal in thickness. Recovery of sensitivity following a ~76% rhodopsin bleach was normal. ERGs were normal. A subretinal hemorrhage in the left eye co-localized with elevation of the RPE on SD-OCT and leakage on FA, suggestive of CNV. Three monthly intravitreal injections of Bevacizumab led to restoration of BCVA to baseline (20/25). crystals in BCD were predominantly located within the RPE. Photoreceptor outer segment and apical RPE abnormalities underlie the relatively extensive retinal dysfunction observed in relatively early-stage BCD. Intravitreal Bevacizumab was effective in treating CNV in this setting.

  14. A recognizable systemic connective tissue disorder with polyvalvular heart dystrophy and dysmorphism associated with TAB2 mutations.

    Science.gov (United States)

    Ritelli, M; Morlino, S; Giacopuzzi, E; Bernardini, L; Torres, B; Santoro, G; Ravasio, V; Chiarelli, N; D'Angelantonio, D; Novelli, A; Grammatico, P; Colombi, M; Castori, M

    2018-01-01

    Deletions encompassing TAK1-binding protein 2 (TAB2) associated with isolated and syndromic congenital heart defects. Rare missense variants are found in patients with a similar phenotype as well as in a single individual with frontometaphyseal dysplasia. We describe a family and an additional sporadic patient with polyvalvular heart disease, generalized joint hypermobility and related musculoskeletal complications, soft, velvety and hyperextensible skin, short limbs, hearing impairment, and facial dysmorphism. In the first family, whole-exome sequencing (WES) disclosed the novel TAB2 c.1398dup (p.Thr467Tyrfs*6) variant that eliminates the C-terminal zinc finger domain essential for activation of TAK1 (TGFβ-activated kinase 1)-dependent signaling pathways. The sporadic case carryed a ~2 Mb de novo deletion including 28 genes also comprising TAB2. This study reveal an association between TAB2 mutations and a phenotype resembling Ehlers-Danlos syndrome with severe polyvalvular heart disease and subtle facial dysmorphism. Our findings support the existence of a wider spectrum of clinical phenotypes associated with TAB2 perturbations and emphasize the role of TAK1 signaling network in human development. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. B3GALNT2 mutations associated with non-syndromic autosomal recessive intellectual disability reveal a lack of genotype-phenotype associations in the muscular dystrophy-dystroglycanopathies

    NARCIS (Netherlands)

    Maroofian, R.; Riemersma, M.; Jae, L.T.; Zhianabed, N.; Willemsen, M.H.; Wissink-Lindhout, W.M.; Willemsen, M.A.A.P.; Brouwer, A.P.M. de; Mehrjardi, M.Y.V.; Ashrafi, M.R.; Kusters, B.; Kleefstra, T.; Jamshidi, Y.; Nasseri, M.; Pfundt, R.; Brummelkamp, T.R.; Abbaszadegan, M.R.; Lefeber, D.J.; Bokhoven, H. van

    2017-01-01

    BACKGROUND: The phenotypic severity of congenital muscular dystrophy-dystroglycanopathy (MDDG) syndromes associated with aberrant glycosylation of alpha-dystroglycan ranges from the severe Walker-Warburg syndrome or muscle-eye-brain disease to mild, late-onset, isolated limb-girdle muscular

  16. Clinical aspects, molecular pathomechanisms and management of myotonic dystrophies

    OpenAIRE

    Meola, G.

    2013-01-01

    Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) was described more than 100 years ago and is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) was identified only 18 years ago and is caused by a (CCTG)n expansion in ZNF9/CNBP....

  17. Cone rod dystrophies

    Science.gov (United States)

    Hamel, Christian P

    2007-01-01

    Cone rod dystrophies (CRDs) (prevalence 1/40,000) are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP), also called the rod cone dystrophies (RCDs) resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7). Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far). The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs), CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs), and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs). It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is always advised. Currently

  18. Cone rod dystrophies

    Directory of Open Access Journals (Sweden)

    Hamel Christian P

    2007-02-01

    Full Text Available Abstract Cone rod dystrophies (CRDs (prevalence 1/40,000 are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP, also called the rod cone dystrophies (RCDs resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7. Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far. The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs, CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs, and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs. It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is

  19. Cardiomyopathy in becker muscular dystrophy: Overview.

    Science.gov (United States)

    Ho, Rady; Nguyen, My-Le; Mather, Paul

    2016-06-26

    Becker muscular dystrophy (BMD) is an X-linked recessive disorder involving mutations of the dystrophin gene. Cardiac involvement in BMD has been described and cardiomyopathy represents the number one cause of death in these patients. In this paper, the pathophysiology, clinical evaluations and management of cardiomyopathy in patients with BMD will be discussed.

  20. A Drosophila model for Duchenne muscular dystrophy

    NARCIS (Netherlands)

    Plas, Mariska Cathelijne van der

    2008-01-01

    Duchenne Muscular Dystrophy (DMD) is a severe X-linked disease characterized by progressive muscle wasting and sometimes mild mental retardation. The disease is caused by mutations in the dystrophin gene. DMD is correlated with the absence of Dp427, which is located along the sarcolemma in skeletal

  1. Genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies.

    Science.gov (United States)

    Hightower, Rylie M; Alexander, Matthew S

    2018-01-01

    Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes, including age of loss of ambulation, steroid responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. This review highlights recent findings on genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. Muscle Nerve 57: 6-15, 2018. © 2017 Wiley Periodicals, Inc.

  2. Mitochondrial disorders in progressive muscular dystrophies

    Directory of Open Access Journals (Sweden)

    D. A. Kharlamov

    2014-01-01

    Full Text Available The literature review gives data on the role of mitochondrial disorders in the pathogenesis of different progressive muscular dystrophies. It describes changes in Duchenne, limb-girdle, facial scapulohumeral (Landuzi—Degerina muscular dystrophies. The review is based on both clinical and experimental animal studies. Along with the implication of mitochondria in the pathogenesis of the diseases, it describes muscular dystrophy treatment options compensating for energy disorders and overcoming oxidative stress and mitochondrial dysfunction. Mitochondrial studies in different muscle diseases hand physicians treatment modalities that fail to lead to recovery, but compensate for disorders caused by mutations in the genetic apparatus. 

  3. Genetics and emerging treatments for Duchenne and Becker muscular dystrophy.

    Science.gov (United States)

    Wein, Nicolas; Alfano, Lindsay; Flanigan, Kevin M

    2015-06-01

    Mutations in the DMD gene result in Duchenne or Becker muscular dystrophy due to absent or altered expression of the dystrophin protein. The more severe Duchenne muscular dystrophy typically presents around ages 2 to 5 with gait disturbance, and historically has led to the loss of ambulation by age 12. It is important for the practicing pediatrician, however, to be aware of other presenting signs, such as delayed motor or cognitive milestones, or elevated serum transaminases. Becker muscular dystrophy is milder, often presenting after age 5, with ambulation frequently preserved past 20 years and sometimes into late decades. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Genetics Home Reference: Fukuyama congenital muscular dystrophy

    Science.gov (United States)

    ... with mental retardation Muscular dystrophy, congenital, Fukuyama type Muscular dystrophy, congenital, with central nervous system involvement Polymicrogyria with muscular dystrophy Related Information How ...

  5. ERG and OCT findings of a patient with a clinical diagnosis of occult macular dystrophy in a patient of Ashkenazi Jewish descent associated with a novel mutation in the gene encoding RP1L1.

    Science.gov (United States)

    Saffra, Norman; Seidman, Carly Jane; Rakhamimov, Aleksandr; Tsang, Stephen H

    2017-05-04

    A 57-year-old man with a past medical history of diabetes presented for consultation with a several year history of slowly progressive vision loss in both eyes, which continued to deteriorate over 7 years of follow-up. Multimodal imaging was performed and was significant for the following: on spectral domain optical coherence tomography, a gap lesion was present in the ellipsoid layer, beneath the umbo, as well as subtle macular changes on auto fluorescence imaging. Multifocal electroretinography was performed and was abnormal, and a clinical diagnosis of occult macular dystrophy was made. The patient was subsequently evaluated with genetic testing that revealed a novel p.P73S:c 217C>T nonsense mutation within the retinitis pigmentosa 1-like-1 (RP1L1) gene. The clinical significance of the identified variation will require further investigation. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway

    International Nuclear Information System (INIS)

    Favreau, Catherine; Delbarre, Erwan; Courvalin, Jean-Claude; Buendia, Brigitte

    2008-01-01

    Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation of proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process

  7. Cardiac abnormalities in a follow-up study on carriers of Duchenne and Becker muscular dystrophy

    NARCIS (Netherlands)

    van Westrum, S. M. Schade; Hoogerwaard, E. M.; Dekker, L.; Standaar, T. S.; Bakker, E.; Ippel, P. F.; Oosterwijk, J. C.; Majoor-Krakauer, D. F.; van Essen, A. J.; Leschot, N. J.; Wilde, A. A. M.; de Haan, R. J.; de Visser, M.; van der Kooi, A. J.

    Objectives: Cardiac involvement has been reported in carriers of dystrophin mutations giving rise to Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). The progress of these abnormalities during long-term follow-up is unknown. We describe the long-term follow-up of dilated

  8. Cardiac abnormalities in a follow-up study on carriers of Duchenne and Becker muscular dystrophy

    NARCIS (Netherlands)

    Schade van Westrum, S. M.; Hoogerwaard, E. M.; Dekker, L.; Standaar, T. S.; Bakker, E.; Ippel, P. F.; Oosterwijk, J. C.; Majoor-Krakauer, D. F.; van Essen, A. J.; Leschot, N. J.; Wilde, A. A. M.; de Haan, R. J.; de Visser, M.; van der Kooi, A. J.

    2011-01-01

    Objectives: Cardiac involvement has been reported in carriers of dystrophin mutations giving rise to Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). The progress of these abnormalities during long-term follow-up is unknown. We describe the long-term follow-up of dilated

  9. Evaluation of Limb-Girdle Muscular Dystrophy

    Science.gov (United States)

    2014-03-06

    Becker Muscular Dystrophy; Limb-Girdle Muscular Dystrophy, Type 2A (Calpain-3 Deficiency); Limb-Girdle Muscular Dystrophy, Type 2B (Miyoshi Myopathy, Dysferlin Deficiency); Limb-Girdle Muscular Dystrophy, Type 2I (FKRP-deficiency)

  10. Limb-Girdle Muscular Dystrophy (LGMD)

    Science.gov (United States)

    ... Marie-Tooth Disease (CMT) Congenital Muscular Dystrophy (CMD) Duchenne Muscular Dystrophy (DMD) Emery-Dreifuss Muscular Dystrophy Endocrine Myopathies Metabolic Diseases of Muscle Mitochondrial Myopathies (MM) Myotonic Dystrophy (DM) Spinal-Bulbar ...

  11. Merosin/laminin-2 and muscular dystrophy

    DEFF Research Database (Denmark)

    Wewer, U M; Engvall, E

    1996-01-01

    structural organization of domains, some of which have been assigned biological activities, including self-assembly and interactions with other proteins. The particular importance of laminins for the formation and stability of cell adhesion complexes is highlighted in severe inherited diseases of muscle...... and skin. Merosin is the collective name for laminins that share a common subunit, the laminin alpha 2 chain. Merosin-deficient congenital muscular dystrophy (CMD) is caused by mutations in the laminin alpha 2 chain gene. The skin disease Herlitz junctional epidermolysis bullosa is caused by mutations...

  12. Muscular Dystrophy (MD)

    Science.gov (United States)

    ... patients may need assisted ventilation to treat respiratory muscle weakness and a pacemaker for cardiac abnormalities. View Full Treatment Information Definition The muscular dystrophies (MD) are a group of more than 30 ...

  13. Facioscapulohumeral muscular dystrophy

    Science.gov (United States)

    ... There is no known cure for facioscapulohumeral muscular dystrophy. Treatments are given to control symptoms and improve quality of life. Activity is encouraged. Inactivity such as bedrest can make the muscle disease worse. Physical therapy may help maintain muscle ...

  14. Preimplantation genetic diagnosis associated to Duchenne muscular dystrophy.

    Science.gov (United States)

    Bianco, Bianca; Christofolini, Denise Maria; Conceição, Gabriel Seixas; Barbosa, Caio Parente

    2017-01-01

    Duchenne muscular dystrophy is the most common muscle disease found in male children. Currently, there is no effective therapy available for Duchenne muscular dystrophy patients. Therefore, it is essential to make a prenatal diagnosis and provide genetic counseling to reduce the birth of such boys. We report a case of preimplantation genetic diagnosis associated with Duchenne muscular dystrophy. The couple E.P.R., 38-year-old, symptomatic patient heterozygous for a 2 to 47 exon deletion mutation in DMD gene and G.T.S., 39-year-old, sought genetic counseling about preimplantation genetic diagnosis process. They have had a 6-year-old son who died due to Duchenne muscular dystrophy complications. The couple underwent four cycles of intracytoplasmic sperm injection (ICSI) and eight embryos biopsies were analyzed by polymerase chain reaction (PCR) for specific mutation analysis, followed by microarray-based comparative genomic hybridisation (array CGH) for aneuploidy analysis. Preimplantation genetic diagnosis revealed that two embryos had inherited the maternal DMD gene mutation, one embryo had a chromosomal alteration and five embryos were normal. One blastocyst was transferred and resulted in successful pregnancy. The other embryos remain vitrified. We concluded that embryo analysis using associated techniques of PCR and array CGH seems to be safe for embryo selection in cases of X-linked disorders, such as Duchenne muscular dystrophy.

  15. The Molecular Basis for TGFBIp-Related Corneal Dystrophies

    DEFF Research Database (Denmark)

    Stenvang, Marcel Renè; Andreasen, Maria; Otzen, Daniel

    2014-01-01

    molecule. Some mutations decrease TGFBIp stability, others increase it, and there is as yet no simple link between phenotype and stability. The mutations also affect surface electrostatics, proteolytic cleavage susceptibility, oligomerization propensities and interactions with other macromolecules. We......Several forms of the familial protein aggregation disease corneal dystrophy (CD) have been linked to mutations in transforming growth factor β-induced protein (TGFBIp). More than 30 point mutations in TGFBIp lead to CD, but the mutations induce many different aggregates in the cornea, ranging from...

  16. Glucocorticoid Steroid and Alendronate Treatment Alleviates Dystrophic Phenotype with Enhanced Functional Glycosylation of α-Dystroglycan in Mouse Model of Limb-Girdle Muscular Dystrophy with FKRPP448L Mutation.

    Science.gov (United States)

    Wu, Bo; Shah, Sapana N; Lu, Peijuan; Richardson, Stephanie M; Bollinger, Lauren E; Blaeser, Anthony; Madden, Kyle L; Sun, Yubo; Luckie, Taylor M; Cox, Michael D; Sparks, Susan; Harper, Amy D; Lu, Qi Long

    2016-06-01

    Fukutin-related protein-muscular dystrophy is characterized by defects in glycosylation of α-dystroglycan with variable clinical phenotypes, most commonly as limb-girdle muscular dystrophy 2I. There is no effective therapy available. Glucocorticoid steroids have become the standard treatment for Duchenne and other muscular dystrophies with serious adverse effects, including excessive weight gain, immune suppression, and bone loss. Bisphosphonates have been used to treat Duchenne muscular dystrophy for prevention of osteoporosis. Herein, we evaluated prednisolone and alendronate for their therapeutic potential in the FKRPP448L-mutant mouse representing moderate limb-girdle muscular dystrophy 2I. Mice were treated with prednisolone, alendronate, and both in combination for up to 6 months. Prednisolone improved muscle pathology with significant reduction in muscle degeneration, but had no effect on serum creatine kinase levels and muscle strength. Alendronate treatment did not ameliorate muscle degeneration, but demonstrated a limited enhancement on muscle function test. Combined treatment of prednisolone and alendronate provided best improvement in muscle pathology with normalized fiber size distribution and significantly reduced serum creatine kinase levels, but had limited effect on muscle force generation. The use of alendronate significantly mitigated the bone loss. Prednisolone alone and in combination with alendronate enhance functionally glycosylated α-dystroglycan. These results, for the first time, demonstrate the efficacy and feasibility of this alliance treatment of the two drugs for fukutin-related protein-muscular dystrophy. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Learning about Duchenne Muscular Dystrophy

    Science.gov (United States)

    ... protein. Often these boys are classified as having Becker muscular dystrophy. Genetic testing (looking at the body's genetic instructions) ... National Library of Medicine Web site Duchenne and Becker muscular dystrophy [ghr.nlm.nih.gov] From Genetics Home Reference ...

  18. Clinical characterisation of Becker muscular dystrophy patients predicts favourable outcome in exon-skipping therapy

    NARCIS (Netherlands)

    van den Bergen, J. C.; Schade van Westrum, S. M.; Dekker, L.; van der Kooi, A. J.; de Visser, M.; Wokke, B. H. A.; Straathof, C. S.; Hulsker, M. A.; Aartsma-Rus, A.; Verschuuren, J. J.; Ginjaar, H. B.

    2014-01-01

    Objective Duchenne and Becker muscular dystrophy (DMD/BMD) are both caused by mutations in the DMD gene. Out-of-frame mutations in DMD lead to absence of the dystrophin protein, while in-frame BMD mutations cause production of internally deleted dystrophin. Clinically, patients with DMD loose

  19. Disabilities caused by unstable mutations in Costa Rica

    OpenAIRE

    Morales Montero, Fernando; Cuenca Berger, Patricia; Castro Volio, Isabel

    2004-01-01

    Myotonic dystrophy and fragile X syndrome are two genetically determined relatively common disabilities. Both are examples of a new type of mutation mechanism called unstable or dynamic mutations, triple repeats expansions or DNA amplification. Fragile X syndrome is recognized as the main cause of hereditary mental retardation and myotonic dystrophy is considered the most common muscular dystrophy of adults. This is a prospective non randomized study of clinically affected people,...

  20. Exome analysis identified a novel mutation in the RBP4 gene in a consanguineous pedigree with retinal dystrophy and developmental abnormalities.

    Directory of Open Access Journals (Sweden)

    Catherine Cukras

    Full Text Available Retinitis Pigmentosa (RP is a common form of retinal degeneration characterized by photoreceptor degeneration and retinal pigment epithelium (RPE atrophy causing loss of visual field and acuities. Exome sequencing identified a novel homozygous splice site variant (c.111+1G>A in the gene encoding retinol binding protein 4 (RBP4. This change segregated with early onset, progressive, and severe autosomal recessive retinitis pigmentosa (arRP in an eight member consanguineous pedigree of European ancestry. Additionally, one patient exhibited developmental abnormalities including patent ductus arteriosus and chorioretinal and iris colobomas. The second patient developed acne from young age and extending into the 5(th decade. Both patients had undetectable levels of RBP4 in the serum suggesting that this mutation led to either mRNA or protein instability resulting in a null phenotype. In addition, the patients exhibited severe vitamin A deficiency, and diminished serum retinol levels. Circulating transthyretin levels were normal. This study identifies the RBP4 splice site change as the cause of RP in this pedigree. The presence of developmental abnormalities and severe acne in patients with retinal degeneration may indicate the involvement of genes that regulate vitamin A absorption, transport and metabolism.

  1. Exome analysis identified a novel mutation in the RBP4 gene in a consanguineous pedigree with retinal dystrophy and developmental abnormalities.

    Science.gov (United States)

    Cukras, Catherine; Gaasterland, Terry; Lee, Pauline; Gudiseva, Harini V; Chavali, Venkata R M; Pullakhandam, Raghu; Maranhao, Bruno; Edsall, Lee; Soares, Sandra; Reddy, G Bhanuprakash; Sieving, Paul A; Ayyagari, Radha

    2012-01-01

    Retinitis Pigmentosa (RP) is a common form of retinal degeneration characterized by photoreceptor degeneration and retinal pigment epithelium (RPE) atrophy causing loss of visual field and acuities. Exome sequencing identified a novel homozygous splice site variant (c.111+1G>A) in the gene encoding retinol binding protein 4 (RBP4). This change segregated with early onset, progressive, and severe autosomal recessive retinitis pigmentosa (arRP) in an eight member consanguineous pedigree of European ancestry. Additionally, one patient exhibited developmental abnormalities including patent ductus arteriosus and chorioretinal and iris colobomas. The second patient developed acne from young age and extending into the 5(th) decade. Both patients had undetectable levels of RBP4 in the serum suggesting that this mutation led to either mRNA or protein instability resulting in a null phenotype. In addition, the patients exhibited severe vitamin A deficiency, and diminished serum retinol levels. Circulating transthyretin levels were normal. This study identifies the RBP4 splice site change as the cause of RP in this pedigree. The presence of developmental abnormalities and severe acne in patients with retinal degeneration may indicate the involvement of genes that regulate vitamin A absorption, transport and metabolism.

  2. Duchenne muscular dystrophy: High-resolution melting curve ...

    African Journals Online (AJOL)

    Duchenne muscular dystrophy: High-resolution melting curve analysis as an affordable diagnostic mutation scanning tool in a South African cohort. ... Genetic screening for D/BMD in South Africa currently includes multiple ligase-dependent probe amplification (MLPA) for exonic deletions and duplications and linkage ...

  3. Antisense mediated exon skipping therapy for duchenne muscular dystrophy (DMD)

    DEFF Research Database (Denmark)

    Brolin, Camilla; Shiraishi, Takehiko

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most...

  4. Occult Macular Dystrophy

    Directory of Open Access Journals (Sweden)

    Işıl Sayman Muslubaş

    2016-04-01

    Full Text Available Occult macular dystrophy is an inherited macular dystrophy characterized by a progressive decline of bilateral visual acuity with normal fundus appearance, fluorescein angiogram and full-field electroretinogram. This case report presents a 20-year-old female patient with bilateral progressive decline of visual acuity for six years. Her visual acuity was 3-4/10 in both eyes. Anterior segment and fundus examination, fluorescein angiogram and full-field electroretinogram were normal. She could read all Ishihara pseudoisochromatic plates. Fundus autofluorescence imaging was normal. There was a mild central hyporeflectance on fundus infrared reflectance imaging in both eyes. Reduced foveal thickness and alterations of the photoreceptor inner and outer segment junction were observed by optical coherence tomography in both eyes. Central scotoma was also found by microperimetry and reduced central response was revealed by multifocal electroretinogram in both eyes. These findings are consistent with the clinical characteristics of occult macular dystrophy

  5. Measurement of the Diffractive Longitudinal Structure Function F_L^D at HERA

    CERN Document Server

    Aaron, F.D.

    2011-12-22

    First measurements are presented of the diffractive cross section $\\sigma_{ep \\rightarrow eXY}$ at centre-of-mass energies $\\sqrt{s}$ of 225 and 252 GeV, together with a precise new measurement at $\\sqrt{s}$ of 319 GeV, using data taken with the H1 detector in the years 2006 and 2007. Together with previous H1 data at $\\sqrt{s}$ of 301 GeV, the measurements are used to extract the diffractive longitudinal structure function F_L^D in the range of photon virtualities 4.0 <= Q^2 <= 44.0 GeV^2 and fractional proton longitudinal momentum loss 5 10^{-4} <= x_{IP} <= 3 10^{-3}. The measured F_L^D is compared with leading twist predictions based on diffractive parton densities extracted in NLO QCD fits to previous measurements of diffractive Deep-Inelastic Scattering and with a model which additionally includes a higher twist contribution derived from a colour dipole approach. The ratio of the diffractive cross section induced by longitudinally polarised photons to that for transversely polarised photons ...

  6. Development and validation of an HPLC-FLD method for milbemectin quantification in dog plasma.

    Science.gov (United States)

    Xu, Qianqian; Xiang, Wensheng; Li, Jichang; Liu, Yong; Yu, Xiaolei; Zhang, Yaoteng; Qu, Mingli

    2010-07-15

    Milbemectin is a widely used veterinary antiparasitic agent. A high-performance liquid chromatography with fluorescent detection (HPLC-FLD) method is described for the determination of milbemectin in dog plasma. The derivative procedure included mixing 1-methylimizole [MI, MI-ACN (1:1, v/v), 100 microL], trifluoroacetic anhydride [TFAA, TFAA-ACN (1:2, v/v), 150 microL] with a subsequent incubation for 3s at the room temperature to obtain a fluorescent derivative, which is reproducible in different blood samples and the derivatives proved to be stable for at least 80 h at room temperature. HPLC method was developed on C18 column with FLD detection at an excitation wavelength of 365 nm and emission wavelength of 475 nm, with the mobile phase consisting of methanol and water in the ratio of 98:2 (v/v). The assay lower limit of quantification was 1 ng/mL. The calibration curve was linear over concentration range of 1-200 ng/mL. The intra- and inter-day accuracy was >94% and precision expressed as % coefficient of variation was <5%. This method is specific, simple, accurate, precise and easily adaptable to measure milbemycin in blood of other animals. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  7. Collagen VI glycine mutations : Perturbed assembly and a spectrum of clinical severity

    NARCIS (Netherlands)

    Pace, Rishika A.; Peat, Rachel A.; Baker, Naomi L.; Zamurs, Laura; Moergelin, Matthias; Irving, Melita; Adams, Naomi E.; Bateman, John F.; Mowat, David; Smith, Nicholas J. C.; Lamont, Phillipa J.; Moore, Steven A.; Mathews, Katherine D.; North, Kathryn N.; Lamande, Shireen R.

    Objective: The collagen VI muscular dystrophies, Bethlem myopathy and Ullrich congenital muscular dystrophy, form a continuum of clinical phenotypes. Glycine mutations in the triple helix have been identified in both Bethlem and Ullrich congenital muscular dystrophy, but it is not known why they

  8. Meaning of Muscular Dystrophy

    Science.gov (United States)

    ... is very similar to Duchenne, except kids with Becker MD may not have problems until much later, when they're teenagers or adults. It takes a long time for their muscles to become weak. How Does a Kid Get Muscular Dystrophy? MD is not contagious (say: con-TAY-juss), ...

  9. Muscle-Eye-Brain Disease; a Rare Form of Syndromic Congenital Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Gosal Gurinder S

    2011-03-01

    Full Text Available Congenital muscular dystrophy (CMD is a heterogeneous group of disorders characterized by muscular hypotonia since birth and the histologic features of muscular dystrophy. Syndromic congenital muscular dystrophies are clinically similar autosomal recessive disorders characterized by congenital muscular dystrophy, lissencephaly, and eye anomalies. We present a case of a rare form of syndromic congenital muscular dystrophy in an eight year old girl, born of first- degree consanguinity. She had: global developmental delay; a seizure disorder; hypotonia; progressive muscle contractures including bilateral symmetrical flexion contractures of hips, knees, equinus contracture and thoracolumbar scoliosis; diminished deep tendon reflexes: bilateral premature cataract; pseudophakia; and nystagmus. The patient was also highly myopic. Based on clinical features, muscle biopsy and MRI of the brain, a diagnosis of muscle- eye- brain disease was made. Identification of these patients may help to prevent this crippling disorder in the future siblings of probands by utilizing genetic counselling and mutation analysis.

  10. LGMD2I presenting with a characteristic Duchenne or Becker muscular dystrophy phenotype

    DEFF Research Database (Denmark)

    Schwartz, Marianne; Hertz, Jens Michael; Sveen, Marie Louise

    2005-01-01

    LGMD type 2I, caused by mutations in the fukutin-related protein, is a common form of LGMD. The phenotype resembles Duchenne/Becker muscular dystrophy. A point mutation, L276I has been found in all patients with LGMD2I studied so far. The authors screened for this mutation in 102 sporadic cases...... of Duchenne/Becker mutation-negative patients and found 13 patients with LGMD2I....

  11. Morphologic imaging in muscular dystrophies and inflammatory myopathies

    International Nuclear Information System (INIS)

    Degardin, Adrian; Lacour, Arnaud; Vermersch, Patrick; Morillon, David; Cotten, Anne; Stojkovic, Tanya

    2010-01-01

    To determine if magnetic resonance imaging (MR imaging) is useful in the diagnostic workup of muscular dystrophies and idiopathic inflammatory myopathies for describing the topography of muscle involvement. MR imaging was performed in 31 patients: 8 with dystrophic myotony types 1 (n = 4) or 2 (n = 4); 11 with limb-girdle muscular dystrophy, including dysferlinopathy, calpainopathy, sarcoglycanopathy, and dystrophy associated with fukutin-related protein mutation; 3 with Becker muscular dystrophy; and 9 with idiopathic inflammatory myopathies, including polymyositis, dermatomyositis, and sporadic inclusion body myositis. Analysis of T1 images enabled us to describe the most affected muscles and the muscles usually spared for each muscular disease. In particular, examination of pelvis, thigh, and leg muscles demonstrated significant differences between the muscular diseases. On STIR images, hyperintensities were present in 62% of our patients with muscular dystrophies. A specific pattern of muscular involvement was established for each muscular disease. Hyperintensities observed on STIR images precede fatty degeneration and are not specific for inflammatory myopathies. (orig.)

  12. Morphologic imaging in muscular dystrophies and inflammatory myopathies

    Energy Technology Data Exchange (ETDEWEB)

    Degardin, Adrian; Lacour, Arnaud; Vermersch, Patrick [CHU de Lille, Clinique neurologique, Lille (France); Morillon, David; Cotten, Anne [CHRU de Lille, Service de Radiologie Osteoarticulaire, Hopital Roger Salengro, Lille (France); Stojkovic, Tanya [G-H Pitie-Salpetriere, Institut de Myologie, Paris (France)

    2010-12-15

    To determine if magnetic resonance imaging (MR imaging) is useful in the diagnostic workup of muscular dystrophies and idiopathic inflammatory myopathies for describing the topography of muscle involvement. MR imaging was performed in 31 patients: 8 with dystrophic myotony types 1 (n = 4) or 2 (n = 4); 11 with limb-girdle muscular dystrophy, including dysferlinopathy, calpainopathy, sarcoglycanopathy, and dystrophy associated with fukutin-related protein mutation; 3 with Becker muscular dystrophy; and 9 with idiopathic inflammatory myopathies, including polymyositis, dermatomyositis, and sporadic inclusion body myositis. Analysis of T1 images enabled us to describe the most affected muscles and the muscles usually spared for each muscular disease. In particular, examination of pelvis, thigh, and leg muscles demonstrated significant differences between the muscular diseases. On STIR images, hyperintensities were present in 62% of our patients with muscular dystrophies. A specific pattern of muscular involvement was established for each muscular disease. Hyperintensities observed on STIR images precede fatty degeneration and are not specific for inflammatory myopathies. (orig.)

  13. CRB2 acts as a modifying factor of CRB1-related retinal dystrophies in mice

    NARCIS (Netherlands)

    Pellissier, L.P.; Lundvig, D.M.S.; Tanimoto, N.; Klooster, J.; Vos, R.M.; Richard, F.; Sothilingam, V.; Garrido, M. Garcia; Bivic, A. le; Seeliger, M.W.; Wijnholds, J.

    2014-01-01

    Mutations in the CRB1 gene lead to retinal dystrophies ranging from Leber congenital amaurosis (LCA) to early-onset retinitis pigmentosa (RP), due to developmental defects or loss of adhesion between photoreceptors and Muller glia cells, respectively. Whereas over 150 mutations have been found, no

  14. CRB2 acts as a modifying factor of CRB1-related retinal dystrophies in mice

    NARCIS (Netherlands)

    Pellissier, Lucie P; Lundvig, Ditte M S; Tanimoto, Naoyuki; Klooster, J.; Vos, Rogier M; Richard, Fabrice; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Le Bivic, André; Seeliger, Mathias W; Wijnholds, J.

    2014-01-01

    Mutations in the CRB1 gene lead to retinal dystrophies ranging from Leber congenital amaurosis (LCA) to early-onset retinitis pigmentosa (RP), due to developmental defects or loss of adhesion between photoreceptors and Müller glia cells, respectively. Whereas over 150 mutations have been found, no

  15. Orocaecal transit time in Duchenne muscular dystrophy.

    OpenAIRE

    Korman, S H; Bar-Oz, B; Granot, E; Meyer, S

    1991-01-01

    Smooth muscle degeneration may occur in Duchenne muscular dystrophy. We measured fasting orocaecal transit time in patients with advanced Duchenne muscular dystrophy and other muscular dystrophies and in healthy controls. No significant differences were found. In contrast to reports of gastric hypomotility in Duchenne muscular dystrophy, we found no evidence of impaired small intestinal motility.

  16. Duchenne and Becker Muscular Dystrophy: Contribution of a Molecular and Immunohistochemical Analysis in Diagnosis in Morocco

    Directory of Open Access Journals (Sweden)

    Hanane Bellayou

    2009-01-01

    Full Text Available Duchenne muscular dystrophy (DMD and Becker muscular dystrophy (BMD are X-linked recessive disorders caused by mutations of the DMD gene located at Xp21. In DMD patients, dystrophin is virtually absent; whereas BMD patients have 10% to 40% of the normal amount. Deletions in the dystrophin gene represent 65% of mutations in DMD/BMD patients. To explain the contribution of immunohistochemical and genetic analysis in the diagnosis of these dystrophies, we present 10 cases of DMD/BMD with particular features. We have analyzed the patients with immunohistochemical staining and PCR multiplex to screen for exons deletions. Determination of the quantity and distribution of dystrophin by immunohistochemical staining can confirm the presence of dystrophinopathy and allows differentiation between DMD and BMD, but dystrophin staining is not always conclusive in BMD. Therefore, only identification involved mutation by genetic analysis can establish a correct diagnosis.

  17. Genetics Home Reference: Duchenne and Becker muscular dystrophy

    Science.gov (United States)

    ... Conditions Duchenne and Becker muscular dystrophy Duchenne and Becker muscular dystrophy Printable PDF Open All Close All Enable Javascript ... dystrophy occur almost exclusively in males. Duchenne and Becker muscular dystrophies have similar signs and symptoms and are caused ...

  18. HPTLC-FLD-SERS as a facile and reliable screening tool: Exemplarily shown with tyramine in cheese

    Directory of Open Access Journals (Sweden)

    Liao Wang

    2018-04-01

    Full Text Available The serious cytotoxicity of tyramine attracted marked attention as it induced necrosis of human intestinal cells. This paper presented a novel and facile high performance thin-layer chromatography (HPTLC method tailored for screening tyramine in cheese. Separation was performed on glass backed silica gel plates, using methanol/ethyl acetate/ammonia (6/4/1 v/v/v as the mobile phase. Special efforts were focused on optimizing conditions (substrate preparation, laser wavelength, salt types and concentrations of surface enhanced Raman spectroscopy (SERS measurements directly on plates after derivatization, which enabled molecule-specific identification of targeted bands. In parallel, fluorescent densitometry (FLD scanning at 380FLD-SERS provided a new horizon in fast and reliable screening of sophisticated samples like food and herb drugs, striking an excellent balance between specificity, sensitivity and simplicity. Keywords: FLD, HPTLC, SERS, Screening, Tyramine

  19. Emerging genetic therapies to treat Duchenne muscular dystrophy

    Science.gov (United States)

    Nelson, Stanley F.; Crosbie, Rachelle H.; Miceli, M. Carrie; Spencer, Melissa J.

    2010-01-01

    Purpose of review Duchenne muscular dystrophy is a progressive muscle degenerative disease caused by dystrophin mutations. The purpose of this review is to highlight two emerging therapies designed to repair the primary genetic defect, called `exon skipping' and `nonsense codon suppression'. Recent findings A drug, PTC124, was identified that suppresses nonsense codon translation termination. PTC124 can lead to restoration of some dystrophin expression in human Duchenne muscular dystrophy muscles with mutations resulting in premature stops. Two drugs developed for exon skipping, PRO051 and AVI-4658, result in the exclusion of exon 51 from mature mRNA. They can restore the translational reading frame to dystrophin transcripts from patients with a particular subset of dystrophin gene deletions and lead to some restoration of dystrophin expression in affected boys' muscle in vivo. Both approaches have concluded phase I trials with no serious adverse events. Summary These novel therapies that act to correct the primary genetic defect of dystrophin deficiency are among the first generation of therapies tailored to correct specific mutations in humans. Thus, they represent paradigm forming approaches to personalized medicine with the potential to lead to life changing treatment for those affected by Duchenne muscular dystrophy. PMID:19745732

  20. Quantitative determination of quinolones residues in milk by HPLC-FLD

    Directory of Open Access Journals (Sweden)

    Marilena Gili

    2012-10-01

    Full Text Available Veterinary drugs have become an integral part of the livestock production and play an important role in maintenance of animal welfare. The use of veterinary medicines may be cause of the presence of drug residues in animal food products if appropriate withdrawal periods are not respected or if contaminated feeds are used. This work presents the development of an HPLC-FLD method for the quantitative de-tection of eight quinolones – norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, difloxacin, oxolinic acid, nalidixic acid, flumequine– in bovine milk. After deproteination and extraction with a metaphos-phoric acid 1% w/v / methanol / acetonitrile (60/20/20 v/v/v solution, the sample is partially evaporated and cleaned up on a reversed phase SPE cartridge.The extract is analyzed using an high performance liquid chromatograph with fluorescence detector. Mean recovery ranged between 65% - 88%. All the an-alytes can be identified and quantified in the concentration range 15 - 60 μg/Kg for danofloxacin and 25 - 150 μg/Kg for the other quinolones.

  1. Aufbau eines "Fracture-Liaison"-Dienstes (FLD in der Steiermark: Erste Erfahrungen

    Directory of Open Access Journals (Sweden)

    Sampl E

    2011-01-01

    Full Text Available Die Osteoporose und die damit assoziierten Frakturen stellen ein globales Gesundheitsproblem dar. Trotz zahlreicher präventiver Möglichkeiten, die uns heute zur Verfügung stehen, sind weiterhin große Defizite in der Diagnostik und Therapie der Osteoporose vorhanden. Die meisten Patienten werden nach einer Fragilitätsfraktur nicht weiter osteologisch abgeklärt. Im Oktober 2009 begann in der Steiermark die Implementierung des „Fracture-Liaison“- Dienstes (FLD an 4 unfallchirurgischen Abteilungen. Ziel dieses Projekts ist es, möglichst alle Patienten ab dem 50. Lebensjahr, welche aufgrund einer „Low-trauma“-Fraktur stationär behandelt werden, zu erfassen, weitere diagnostische und therapeutische Schritte einzuleiten und somit auch das Risiko für Folgefrakturen zu reduzieren. In den ersten 6 Monaten wurden 404 Patienten erfasst. Nur 15 % hatten zum Zeitpunkt der Fraktur eine osteoprotektive Therapie, obwohl 52 % bereits zumindest eine prävalente osteoporotische Fraktur aufwiesen. Lediglich 59 Patienten (15 % hatten einen normalen 25- Hydroxyvitamin-D-Serumspiegel von 30 ng/mL, wobei 37 Patienten (62 % davon vorsubstituiert waren. Diese ersten Auswertungen zeigen die eklatante Unterversorgung in diesem Patientenkollektiv, welche in Kombination mit der pandemisch vorliegenden Vitamin-D-Defizienz die hohe Dringlichkeit eines interdisziplinären Managements über die chirurgische Versorgung hinaus unterstreicht.

  2. Rapid assessment of mycotoxins in wine by on-line SPE-UHPLC-FLD

    Directory of Open Access Journals (Sweden)

    Nistor Alina-Mihaela

    2017-01-01

    Full Text Available According to the latest statistics, grapes are one of the largest fruit crops worldwide. In this regard, it is important to consider all factors influencing quality of grapes and wine. In the last years, scientist focused on the study of mycotoxins that can influence the quality of wine. It is considered that toxins produced by moulds, causing significant economic losses, affect approximately one quarter of the world grape production. If the selective sorting of infected grapes is not done adequately, wine will present a major risk to consumers, mycotoxins being considered by the “International Agency for Cancer Research” a carcinogenic compound. The main mycotoxins monitored in this study come from Aspergillus sp., and are represented by aflatoxins B1, B2, G1, G2 and ochratoxin A. This study purpose is to develop a faster method for the analysis of mycotoxins, in order to increase rapidity and efficiency for the evaluation of the degree of infestation in wine. The purposed method is using an on-line large volume injection coupled to pre-concentration of sample (SPE which is directly transfer to the ultra-high-pressure liquid chromatography (UHPLC column for separation and the detection by means of the fluorescence detector (FLD. As the maximum tolerated level for mycotoxins in wines is 2 ppm, this method is able to detect under this limits of quantification with RSD below 2%.

  3. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    Science.gov (United States)

    Momma, Kazunari; Noguchi, Satoru; Malicdan, May Christine V; Hayashi, Yukiko K; Minami, Narihiro; Kamakura, Keiko; Nonaka, Ikuya; Nishino, Ichizo

    2012-01-01

    Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  4. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    Directory of Open Access Journals (Sweden)

    Kazunari Momma

    Full Text Available Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  5. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how?

    Directory of Open Access Journals (Sweden)

    Ana Cotta

    2014-09-01

    Full Text Available Limb girdle muscular dystrophies are heterogeneous autosomal hereditary neuromuscular disorders. They produce dystrophic changes on muscle biopsy and they are associated with mutations in several genes involved in muscular structure and function. Detailed clinical, laboratorial, imaging, diagnostic flowchart, photographs, tables, and illustrated diagrams are presented for the differential diagnosis of common autosomal recessive limb girdle muscular dystrophy subtypes diagnosed nowadays at one reference center in Brazil. Preoperative image studies guide muscle biopsy site selection. Muscle involvement image pattern differs depending on the limb girdle muscular dystrophy subtype. Muscle involvement is conspicuous at the posterior thigh in calpainopathy and fukutin-related proteinopathy; anterior thigh in sarcoglycanopathy; whole thigh in dysferlinopathy, and telethoninopathy. The precise differential diagnosis of limb girdle muscular dystrophies is important for genetic counseling, prognostic orientation, cardiac and respiratory management. Besides that, it may probably, in the future, provide specific genetic therapies for each subtype.

  6. The muscular dystrophies associated with central nervous system lesions: a brief review from a standpoint of the localization and function of causative genes.

    Science.gov (United States)

    Yamamoto, Tomoko; Hiroi, Atsuko; Osawa, Makiko; Shibata, Noriyuki

    2014-01-01

    The muscular dystrophies have been traditionally classified based mainly on clinical manifestation and mode of inheritance. Owing to the discoveries of causative genes, new terminologies derived from each gene, such as dystrophinopathy, α-dystroglycanopathy, sarcoglycanopathy and fukutinopathy, have also become common. Mutations of each gene may cause several clinical phenotypes. Some muscular dystrophies accompany central nervous system (CNS) lesions, especially in the congenital muscular dystrophies. Cobblestone lissencephaly (type II lissencephaly) is a well-known CNS malformation observed in severe forms of α-dystroglycanopathy. Moreover, CNS involvement has been reported in other muscular dystrophies, such as Duchenne muscular dystrophy. In this review, genes related to the muscular dystrophies associated with CNS lesions are briefly described along with the molecular characteristics of each gene and the pathomechanism of the CNS lesions. Understanding of both the clinicopathological characteristics of these CNS lesions and their molecular mechanisms is important for the diagnosis, care of patients, and development of new therapeutic strategies.

  7. Muscular Dystrophy: Hope Through Research

    Science.gov (United States)

    ... of muscular dystrophy appeared in 1830, when Sir Charles Bell wrote an essay about an illness that ... linked disorder to their sons but their daughters will be carriers of that disorder. Carrier females occasionally ...

  8. Computerized tomography in myotonic dystrophy

    International Nuclear Information System (INIS)

    Gellerich, I.; Mueller, D.; Koch, R.D.

    1986-01-01

    Besides clinical symptoms, progress and electromyography computerized tomography improves the diagnostics of myotonic dystrophy. Even small changes in muscular structure are detectable and especially the musculus soleus exhibits early and pronounced alterations. By means of density distribution pattern an improved characterization of the disease is possible. Additional information is obtained by cerebral computerized tomography. Atrophy of brain tissue is to be expected in all patients with myotonic dystrophy. (author)

  9. Translational Research for Muscular Dystrophy

    Science.gov (United States)

    2012-05-01

    muscle dystrophy with abnormal waddling gait at 4 weeks of age. At 10 weeks of age, double mutants exhibit skeletal muscle degeneration, necrosis... dystrophy (MCMD). Homozygous dyW mice are passive, small, and emaciated, and demonstrate partial hindleg weakness and clasping. Their muscles contain...was statistically significant for both single- treatment groups. Figure 4. Effect of GW and AICAR on body mass, muscle mass, and behavioral

  10. Duchenne muscular dystrophy carriers

    International Nuclear Information System (INIS)

    Matsumura, K.; Nakano, I.

    1989-01-01

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.)

  11. Limb girdle muscular dystrophies

    DEFF Research Database (Denmark)

    Vissing, John

    2016-01-01

    PURPOSE OF REVIEW: The aim of the study was to describe the clinical spectrum of limb girdle muscular dystrophies (LGMDs), the pitfalls of the current classification system for LGMDs, and emerging therapies for these conditions. RECENT FINDINGS: Close to half of all LGMD subtypes have been...... or are registered in other classification systems for muscle disease. On the contrary, diseases that fulfill classical criteria for LGMD have found no place in the LGMD classification system. These shortcomings call for revision/creation of a new classification system for LGMD. The rapidly expanding gene sequencing...... capabilities have helped to speed up new LGMD discoveries, and unveiled pheno-/genotype relations. Parallel to this progress in identifying new LGMD subtypes, emerging therapies for LGMDs are under way, but no disease-specific treatment is yet available for nonexperimental use. SUMMARY: The field of LGMD...

  12. Estimating Chlorophyll Fluorescence Parameters Using the Joint Fraunhofer Line Depth and Laser-Induced Saturation Pulse (FLD-LISP Method in Different Plant Species

    Directory of Open Access Journals (Sweden)

    Parinaz Rahimzadeh-Bajgiran

    2017-06-01

    Full Text Available A comprehensive evaluation of the recently developed Fraunhofer line depth (FLD and laser-induced saturation pulse (FLD-LISP method was conducted to measure chlorophyll fluorescence (ChlF parameters of the quantum yield of photosystem II (ΦPSII, non-photochemical quenching (NPQ, and the photosystem II-based electron transport rate (ETR in three plant species including paprika (C3 plant, maize (C4 plant, and pachira (C3 plant. First, the relationships between photosynthetic photon flux density (PPFD and ChlF parameters retrieved using FLD-LISP and the pulse amplitude-modulated (PAM methods were analyzed for all three species. Then the relationships between ChlF parameters measured using FLD-LISP and PAM were evaluated for the plants in different growth stages of leaves from mature to aging conditions. The relationships of ChlF parameters/PPFD were similar in both FLD-LISP and PAM methods in all plant species. ΦPSII showed a linear relationship with PPFD in all three species whereas NPQ was found to be linearly related to PPFD in paprika and maize, but not for pachira. The ETR/PPFD relationship was nonlinear with increasing values observed for PPFDs lower than about 800 μmol m−2 s−1 for paprika, lower than about 1200 μmol m−2 s−1 for maize, and lower than about 800 μmol m−2 s−1 for pachira. The ΦPSII, NPQ, and ETR of both the FLD-LISP and PAM methods were very well correlated (R2 = 0.89, RMSE = 0.05, (R2 = 0.86, RMSE = 0.44, and (R2 = 0.88, RMSE = 24.69, respectively, for all plants. Therefore, the FLD-LISP method can be recommended as a robust technique for the estimation of ChlF parameters.

  13. Natural history of Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Qing KE

    2015-05-01

    Full Text Available Duchenne muscular dystrophy (DMD is X-linked recessive hereditary disease. DMD gene mutations result in dystrophin deficiency, which causes not only muscle movement disorders but also scoliosis, cognitive dysfunction, urinary tract diseases, respiratory diseases and heart diseases. Most patients die in early adult for respiratory and circulatory failure. Early multidisciplinary therapies will significantly delay disease progression and improve patients' quality of life. However, DMD diagnosis and treatment exist significantly time delay now. In this study, we review the natural history of DMD, including motor, cognitive, respiratory and heart function, for improving DMD early recognition, diagnosis and treatment, so as to benefit DMD patients. DOI: 10.3969/j.issn.1672-6731.2015.05.004

  14. Evaluation of point mutations in dystrophin gene in Iranian ...

    Indian Academy of Sciences (India)

    5Department of Biology, Science and Research Branch, Islamic Azad ... Dystrophin protein is found ... Duchenne and Becker muscular dystrophy; neuromuscular disorder; point mutation. ..... modern diagnostic techniques to a large cohort.

  15. Dystrophin quantification and clinical correlations in Becker muscular dystrophy: implications for clinical trials.

    Science.gov (United States)

    Anthony, Karen; Cirak, Sebahattin; Torelli, Silvia; Tasca, Giorgio; Feng, Lucy; Arechavala-Gomeza, Virginia; Armaroli, Annarita; Guglieri, Michela; Straathof, Chiara S; Verschuuren, Jan J; Aartsma-Rus, Annemieke; Helderman-van den Enden, Paula; Bushby, Katherine; Straub, Volker; Sewry, Caroline; Ferlini, Alessandra; Ricci, Enzo; Morgan, Jennifer E; Muntoni, Francesco

    2011-12-01

    Duchenne muscular dystrophy is caused by mutations in the DMD gene that disrupt the open reading frame and prevent the full translation of its protein product, dystrophin. Restoration of the open reading frame and dystrophin production can be achieved by exon skipping using antisense oligonucleotides targeted to splicing elements. This approach aims to transform the Duchenne muscular dystrophy phenotype to that of the milder disorder, Becker muscular dystrophy, typically caused by in-frame dystrophin deletions that allow the production of an internally deleted but partially functional dystrophin. There is ongoing debate regarding the functional properties of the different internally deleted dystrophins produced by exon skipping for different mutations; more insight would be valuable to improve and better predict the outcome of exon skipping clinical trials. To this end, we have characterized the clinical phenotype of 17 patients with Becker muscular dystrophy harbouring in-frame deletions relevant to on-going or planned exon skipping clinical trials for Duchenne muscular dystrophy and correlated it to the levels of dystrophin, and dystrophin-associated protein expression. The cohort of 17 patients, selected exclusively on the basis of their genotype, included 4 asymptomatic, 12 mild and 1 severe patient. All patients had dystrophin levels of >40% of control and significantly higher dystrophin (P = 0.013), β-dystroglycan (P = 0.025) and neuronal nitric oxide synthase (P = 0.034) expression was observed in asymptomatic individuals versus symptomatic patients with Becker muscular dystrophy. Furthermore, grouping the patients by deletion, patients with Becker muscular dystrophy with deletions with an end-point of exon 51 (the skipping of which could rescue the largest group of Duchenne muscular dystrophy deletions) showed significantly higher dystrophin levels (P = 0.034) than those with deletions ending with exon 53. This is the first quantitative study on both

  16. Genetics Home Reference: cone-rod dystrophy

    Science.gov (United States)

    ... common cause of autosomal recessive cone-rod dystrophy , accounting for 30 to 60 percent of cases. At ... dystrophy play essential roles in the structure and function of specialized light receptor cells (photoreceptors) in the ...

  17. Respiratory function in facioscapulohumeral muscular dystrophy 1

    NARCIS (Netherlands)

    Wohlgemuth, M.; Horlings, G.C.; Kooi, E.L. van der; Gilhuis, H.J.; Hendriks, J.C.M.; Maarel, S.M. van der; Engelen, B.G.M. van; Heijdra, Y.F.; Padberg, G.W.A.M.

    2017-01-01

    To test the hypothesis that wheelchair dependency and (kypho-)scoliosis are risk factors for developing respiratory insufficiency in facioscapulohumeral muscular dystrophy, we examined 81 patients with facioscapulohumeral muscular dystrophy 1 of varying degrees of severity ranging from ambulatory

  18. What Are the Types of Muscular Dystrophy?

    Science.gov (United States)

    ... muscular dystrophy? There are more than 30 forms of muscular dystrophy (MD), with information on the primary types included in the table below. 1 Duchenne (DMD) What It Is Common Symptoms How It ...

  19. Efficient and fast functional screening of microdystrophin constructs in vivo and in vitro for therapy of duchenne muscular dystrophy

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Larochelle, Nancy; Orlopp, Kristian

    2009-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked, lethal genetic disorder affecting the skeletal muscle compartment, and is caused by mutation(s) in the dystrophin gene. Gene delivery of microdystrophin constructs using adeno-associated virus (AAV) and antisense-mediated exon skipping restoring...

  20. [From gene to disease: from the ABCA4 gene to Stargardt disease, cone-rod dystrophy and retinitis pigmentosa

    NARCIS (Netherlands)

    Cremers, F.P.M.; Maugeri, A.; Klevering, B.J.; Hoefsloot, L.H.; Hoyng, C.B.

    2002-01-01

    Autosomal recessive Stargardt disease is caused by mutations in the ABCA4 gene. Mutations in ABCA4 are also found in two-thirds of cases with autosomal recessive cone-rod dystrophy, and a small fraction of patients with autosomal recessive retinitis pigmentosa. Patients with autosomal recessive

  1. An Overview of Recent Therapeutics Advances for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Mah, Jean K

    2018-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. Mutations of the DMD gene destabilize the dystrophin associated glycoprotein complex in the sarcolemma. Ongoing mechanical stress leads to unregulated influx of calcium ions into the sarcoplasm, with activation of proteases, release of proinflammatory cytokines, and mitochondrial dysfunction. Cumulative damage and reparative failure leads to progressive muscle necrosis, fibrosis, and fatty replacement. Although there is presently no cure for DMD, scientific advances have led to many potential disease-modifying treatments, including dystrophin replacement therapies, upregulation of compensatory proteins, anti-inflammatory agents, and other cellular targets. Recently approved therapies include ataluren for stop codon read-through and eteplirsen for exon 51 skipping of eligible individuals. The purpose of this chapter is to summarize the clinical features of DMD, to describe current outcome measures used in clinical studies, and to highlight new emerging therapies for affected individuals.

  2. Autonomic Dysfunction in Muscular Dystrophy: A Theoretical Framework for Muscle Reflex Involvement

    Directory of Open Access Journals (Sweden)

    Scott Alan Smith

    2014-02-01

    Full Text Available Muscular dystrophies are a heterogeneous group of genetically inherited disorders whose most prominent clinical feature is progressive degeneration of skeletal muscle. In several forms of the disease, the function of cardiac muscle is likewise affected. The primary defect in this group of diseases is caused by mutations in myocyte proteins important to cellular structure and/or performance. That being stated, a growing body of evidence suggests that the development of autonomic dysfunction may secondarily contribute to the generation of skeletal and cardio-myopathy in muscular dystrophy. Indeed, abnormalities in the regulation of both sympathetic and parasympathetic nerve activity have been reported in a number of muscular dystrophy variants. However, the mechanisms mediating this autonomic dysfunction remain relatively unknown. An autonomic reflex originating in skeletal muscle, the exercise pressor reflex, is known to contribute significantly to the control of sympathetic and parasympathetic activity when stimulated. Given the skeletal myopathy that develops with muscular dystrophy, it is logical to suggest that the function of this reflex might also be abnormal with the pathogenesis of disease. As such, it may contribute to or exacerbate the autonomic dysfunction that manifests. This possibility along with a basic description of exercise pressor reflex function in health and disease are reviewed. A better understanding of the mechanisms that possibly underlie autonomic dysfunction in muscular dystrophy may not only facilitate further research but could also lead to the identification of new therapeutic targets for the treatment of muscular dystrophy.

  3. Muscular dystrophy in a dog resembling human becker muscular dystrophy.

    Science.gov (United States)

    Baroncelli, A B; Abellonio, F; Pagano, T B; Esposito, I; Peirone, B; Papparella, S; Paciello, O

    2014-05-01

    A 3-year-old, male Labrador retriever dog was presented with clinical signs of progressive exercise intolerance, bilateral elbow extension, rigidity of the forelimbs, hindlimb flexion and kyphosis. Microscopical examination of muscle tissue showed marked variability in myofibre size, replacement of muscle with mature adipose tissue and degeneration/regeneration of muscle fibres, consistent with muscular dystrophy. Immunohistochemical examination for dystrophin showed markedly reduced labelling with monoclonal antibodies specific for the rod domain and the carboxy-terminal of dystrophin, while expression of β-sarcoglycan, γ-sarcoglycan and β-dystroglycan was normal. Immunoblotting revealed a truncated dystrophin protein of approximately 135 kDa. These findings supported a diagnosis of congenital canine muscular dystrophy resembling Becker muscular dystrophy in man. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Diagnosis of becker muscular dystrophy: Results of Re-analysis of DNA samples

    NARCIS (Netherlands)

    Straathof, Chiara S. M.; van Heusden, Dave; Ippel, Pieternella F.; Post, Jan G.; Voermans, Nicol C.; de Visser, Marianne; Brusse, Esther; van den Bergen, Janneke C.; van der Kooi, Anneke J.; Verschuuren, Jan J. G. M.; Ginjaar, Hendrika B.

    2016-01-01

    The phenotype of Becker muscular dystrophy (BMD) is highly variable, and the disease may be underdiagnosed. We searched for new mutations in the DMD gene in a cohort of previously undiagnosed patients who had been referred in the period 1985-1995. All requests for DNA analysis of the DMD gene in

  5. New insights into mitral valve dystrophy : A Filamin-A genotype-phenotype and outcome study

    NARCIS (Netherlands)

    Le Tourneau, Thierry; Le Scouarnec, Solena; Cueff, Caroline; Bernstein, Daniel; Aalberts, Jan J J; Lecointe, Simon; Mérot, Jean; Bernstein, Jonathan A; Oomen, Toon; Dina, Christian; Karakachoff, Matilde; Desal, Hubert; Al Habash, Ousama; Delling, Francesca N; Capoulade, Romain; Suurmeijer, Albert J H; Milan, David; Norris, Russell A; Markwald, Roger; Aikawa, Elena; Slaugenhaupt, Susan A; Jeunemaitre, Xavier; Hagège, Albert; Roussel, Jean-Christian; Trochu, Jean-Noël; Levine, Robert A; Kyndt, Florence; Probst, Vincent; Le Marec, Hervé; Schott, Jean-Jacques

    2018-01-01

    Aims: Filamin-A (FLNA) was identified as the first gene of non-syndromic mitral valve dystrophy (FLNA-MVD). We aimed to assess the phenotype of FLNA-MVD and its impact on prognosis. Methods and results: We investigated the disease in 246 subjects (72 mutated) from four FLNA-MVD families harbouring

  6. The influence of low dystrophin levels on disease pathology in mouse models for Duchenne Muscular Dystrophy

    NARCIS (Netherlands)

    Putten, Maaike van

    2013-01-01

    Duchenne muscular dystrophy (DMD) is the most prevalent neuromuscular disorder, caused by mutations in the DMD gene that prevent synthesis of dystrophin. Fibers that lack dystrophin are sensitive to exercise-induced damage, resulting in progressive muscle wasting, loss of ambulation and premature

  7. Evaluation of Narrative Abilities in Patients Suffering from Duchenne Muscular Dystrophy

    Science.gov (United States)

    Marini, A.; Lorusso, M. L.; D'Angelo, M. G.; Civati, F.; Turconi, A. C.; Fabbro, F.; Bresolin, N.

    2007-01-01

    The present work investigated cognitive, linguistic and narrative abilities in a group of children suffering from Duchenne Muscular Dystrophy, an allelic X-linked recessive disorder caused by mutations in the gene encoding dystrophin. The patients showed mildly reduced IQ with lower Verbal than Performance Intelligence Quotient and were mildly…

  8. Investigation of Poor Academic Achievement in Children with Duchenne Muscular Dystrophy

    Science.gov (United States)

    Hinton, V. J.; De Vivo, D. C.; Fee, R.; Goldstein, E.; Stern, Y.

    2004-01-01

    Duchenne Muscular Dystrophy (DMD) is a neurogenetic developmental disorder that presents with progressive muscular weakness. It is caused by a mutation in a gene that results in the absence of specific products that normally localize to muscle cells and the central nervous system (CNS). The majority of affected individuals have IQs within the…

  9. Prenatal molecular diagnosis of inherited neuromuscular diseases: Duchenne/Becker muscular dystrophy, myotonic dystrophy type 1 and spinal muscular atrophy.

    Science.gov (United States)

    Esposito, Gabriella; Ruggiero, Raffaella; Savarese, Maria; Savarese, Giovanni; Tremolaterra, Maria Roberta; Salvatore, Francesco; Carsana, Antonella

    2013-12-01

    Neuromuscular disease is a broad term that encompasses many diseases that either directly, via an intrinsic muscle disorder, or indirectly, via a nerve disorder, impairs muscle function. Here we report the experience of our group in the counselling and molecular prenatal diagnosis of three inherited neuromuscular diseases, i.e., Duchenne/Becker muscular dystrophy (DMD/BMD), myotonic dystrophy type 1 (DM1), spinal muscular atrophy (SMA). We performed a total of 83 DMD/BMD, 15 DM1 and 54 SMA prenatal diagnoses using a combination of technologies for either direct or linkage diagnosis. We identified 16, 5 and 10 affected foetuses, respectively. The improvement of analytical procedures in recent years has increased the mutation detection rate and reduced the analytical time. Due to the complexity of the experimental procedures and the high, specific professional expertise required for both laboratory activities and the related counselling, these types of analyses should be preferentially performed in reference molecular diagnostic centres.

  10. CT findings of muscular dystrophy

    International Nuclear Information System (INIS)

    Saitoh, Hiroshi

    1991-01-01

    CT scans of muscles in patients with limb girdle type (LG), myotonic type (MYD) and Duchenne type (DMD) dystrophies were obtained at five different body levels: the neck, L3 vertebral body, pelvic girdle, thigh and lower leg. CT numbers, cross sectional areas (CSA) and %CSA of muscle or fat were evaluated in each muscle. The characteristic CT patterns for each type of muscular dystrophy were obtained. Compared with DMD, the gracilis and soleus were more severely damaged in LG and the biceps femoris remained relatively preserved among the hamstrings. In addition, the multifidus of the neck and sternocleidomastoid also were more severely damaged in MYD. This study suggests that CT scan will be useful in the differential diagnosis of these types of muscular dystrophy as well as in planning appropriate rehabilitation and detecting damaged muscles. (author)

  11. Serum Creatinine Level: A Supplemental Index to Distinguish Duchenne Muscular Dystrophy from Becker Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Huili Zhang

    2015-01-01

    Full Text Available Background. To improve assessment of dystrophinopathy, the aim of this study was to identify whether serum creatinine (Crn level reflects disease severity. Methods. Biochemical, Vignos score, and genetic data were collected on 212 boys with dystrophinopathy. Results. Serum Crn level had a strong inverse correlation with Vignos score by simple correlation (r=-0.793 and partial correlation analysis after adjustment for age, height, and weight (r=-0.791; both P<0.01. Serum Crn level was significantly higher in patients with in-frame than out-of-frame mutations (Z=-4.716, P<0.01 and in Becker muscular dystrophy (BMD patients than Duchenne muscular dystrophy (DMD patients at ages 4, 5, 7, and 9 yr (all P<0.0125. After adjusting for age, height, and weight, BMD patients still had a significantly higher serum Crn level than DMD patients (β=7.140, t=6.277, P<0.01. Conclusions. Serum Crn level reflected disease severity and may serve as a supplemental index to distinguish DMD from BMD in clinical practice.

  12. [Specific features of Becker Muscular Dystrophy patients and female carriers of Duchenne Muscular Dystrophy].

    Science.gov (United States)

    Magot, A; Mercier, S; Péréon, Y

    2015-12-01

    Becker muscular dystrophy (BMD) was first described in 1955 and linked to the DMD gene in 1987. Compared to Duchenne muscular dystrophy (DMD), clinical onset of BMD usually occurs after the age of 12 and wheelchair is required after the age of 16. BMD is characterized by generalized weakness first affecting limb girdle muscles, hypertrophy of the calves and cardiomyopathy in males. Some patients have only mild symptoms such as cramps or elevated serum creatine kinases (SCK) throughout all their lives. SCK levels are usually elevated. Muscle biopsy (immunohistochemistry or immunoblotting) shows a dystrophic pattern with abnormal dystrophin staining. Diagnosis is confirmed by DMD gene sequencing. Deletions or duplications of one or several exons are identified in the majority of cases. A multidisciplinary approach is recommended for the care management of these patients with a particular attention to the cardiomyopathy, which is typically responsible for death but can be prevented by specific treatment. X-linked dilated cardiomyopathies linked to DMD gene are a phenotypic continuum of BMD. Some female carriers of DMD mutations exhibit clinical symptoms of variable severity, often milder and beginning later than in males. The cardiomyopathy is the most frequent feature that should be especially monitored in these patients. Genetic counselling should be systematically proposed. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Characteristics of Japanese Patients with Becker Muscular Dystrophy and Intermediate Muscular Dystrophy in a Japanese National Registry of Muscular Dystrophy (Remudy): Heterogeneity and Clinical Variation.

    Science.gov (United States)

    Mori-Yoshimura, Madoka; Mitsuhashi, Satomi; Nakamura, Harumasa; Komaki, Hirofumi; Goto, Kanako; Yonemoto, Naohiro; Takeuchi, Fumi; Hayashi, Yukiko K; Murata, Miho; Takahashi, Yuji; Nishino, Ichizo; Takeda, Shin'ichi; Kimura, En

    2018-01-01

    Obtaining an adequate number of patients to conduct a natural history study for rare diseases such as Becker muscular dystrophy (BMD) is difficult. The present study used data from Remudy, a national registry for neuromuscular diseases in Japan, to conduct a phenotypic analysis of BMD. We analyzed Remudy data of participants with dystrophinopathy. All participants who were aged 17 and older and were ambulant at age 13 were included in this study. Participants were divided into two groups: those with BMD who were ambulant at age 17, and those with intermediate muscular dystrophy (IMD) who lost ambulation by age 17. Frequent mutations were analyzed by age at ambulation, cardiopulmonary function, and genotype. For clinical comparisons, participants who were administered steroids were excluded. From July 2009 through September 2015, 192 participants had registered with Remudy. Mean participant age was 34.80±13.3 (range, 17-78) years, and 52.1% of participants were ambulant. Of the entire study population, 50.5% had cardiomyopathy and 35.9% had respiratory failure. Three participants required invasive ventilation and 30 required non-invasive ventilation. Nineteen of the 30 non-invasive ventilator users were part-time users. In total, 138 (71.9%) had BMD and 54 (28.1%) had IMD. The most frequent mutation was ex45_ex47del (36 participants). Among participants with frequent in-frame mutations, those with the ex45-49del mutation lost their ambulation earlier than those with the ex45_ex47del mutation. A total of 67 different exon deletions and duplications were identified in the study population. We clarified the clinical phenotypes of Japanese patients with BMD/IMD using data from Remudy. Our results suggest that not only IMD but also BMD are associated with risk of respiratory dysfunction.

  14. Functional changes in Becker muscular dystrophy: implications for clinical trials in dystrophinopathies.

    Science.gov (United States)

    Bello, Luca; Campadello, Paola; Barp, Andrea; Fanin, Marina; Semplicini, Claudio; Sorarù, Gianni; Caumo, Luca; Calore, Chiara; Angelini, Corrado; Pegoraro, Elena

    2016-09-01

    We performed a 1-year longitudinal study of Six Minute Walk Test (6MWT), North Star Ambulatory Assessment (NSAA), and timed function tests in Becker muscular dystrophy (BMD). Skeletal muscle dystrophin was quantified by immunoblot. We grouped deletions ending on exon 45 ("del 45-x", n = 28) or 51 ("del x-51", n = 10); isolated exon 48 deletion ("del 48", n = 10); and other mutations (n = 21). Only patients in the "del 45-x" or "other" groups became non-ambulatory (n = 5, log-rank p = n.s.) or unable to run (n = 22, p dystrophy.

  15. Exon Deletion Pattern in Duchene Muscular Dystrophy in North West of Iran

    OpenAIRE

    BARZEGAR, Mohammad; HABIBI, Parinaz; BONYADY, Mortaza; TOPCHIZADEH, Vahideh; SHIVA, Shadi

    2015-01-01

    How to Cite This Article: Barzegar M, Habibi P, Bonyady M, Topchizadeh V, Shiva Sh. Exon Deletion Pattern in Duchene Muscular Dystrophy in North West of Iran. Iran J Child Neurol. 2015 Winter; 9(1): 42-48.AbstractObjectiveDuchene and Becker Muscular Dystrophy (DMD/ BMD) are x-linked disorders that both are the result of heterogeneous mutations in the dystrophin gene. The frequency and distribution of dystrophin gene deletions in DMD/ BMD patients show different patterns among different popula...

  16. Advances in gene therapy for muscular dystrophies [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Hayder Abdul-Razak

    2016-08-01

    Full Text Available Duchenne muscular dystrophy (DMD is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments.

  17. Corticosteroid therapy for duchenne muscular dystrophy: improvement of psychomotor function.

    Science.gov (United States)

    Sato, Yuko; Yamauchi, Akemi; Urano, Mari; Kondo, Eri; Saito, Kayoko

    2014-01-01

    Of the numerous clinical trials for Duchenne muscular dystrophy, only the corticosteroid prednisolone has shown potential for temporal improvement in motor ability. In this study, the effects of prednisolone on intellectual ability are examined in 29 cases of Duchenne muscular dystrophy because little information has been reported. And also, motor functions and cardiac functions were evaluated. The treated group was administered prednisolone (0.75 mg/kg) orally on alternate days and the compared with the untreated control group. Gene mutations were investigated. The patients were examined for intelligence quotient adequate for age, brain natriuretic peptide, creatine kinase, and manual muscle testing before treatment and after the period 6 months to 2 years. Intelligence quotient scores of the treated increased to 6.5 ± 11.9 (mean ± standard deviation) were compared with the controls 2.1 ± 4.9 (P = 0.009). Intelligence quotient scores of the patients with nonsense point mutations improved significantly (21.0 ± 7.9) more than those with deletion or duplication (1.9 ± 9.0; P = 0.015). Motor function, such as time to stand up, of those treated improved significantly and brain natriuretic peptide level was reduced to a normal level after treatment in 15 patients (73%). Our results demonstrate the effectiveness of prednisolone in improving intellectual impairment as well as in preserving motor function and brain natriuretic peptide levels. We presume that prednisolone has a read-through effect on the stop codons in the central nervous systems of Duchenne muscular dystrophy because intelligence quotient of point mutation case was improved significantly. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Dysphagia in facioscapulohumeral muscular dystrophy.

    NARCIS (Netherlands)

    Wohlgemuth, M.; Swart, B.J.M. de; Kalf, J.G.; Joosten, F.B.M.; Vliet, A.M. van der; Padberg, G.W.A.M.

    2006-01-01

    Dysphagia is not considered a symptom of facioscapulohumeral muscular dystrophy (FSHD). In this study, the authors found that dysphagia does occur in patients with advanced FSHD showing mild involvement of the jaw and lingual muscles. Dysphagia is seldom life threatening in these patients. The

  19. AMPUTATION AND REFLEX SYMPATHETIC DYSTROPHY

    NARCIS (Netherlands)

    GEERTZEN, JHB; EISMA, WH

    Reflex sympathetic dystrophy is a chronic pain syndrome characterized by chronic burning pain, restricted range of motion, oedema and vasolability. Patients are difficult to treat and the prognosis is very often poor. This report emphasizes that an amputation in case of a reflex sympathetic

  20. Glucocorticoids for Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-07-01

    Full Text Available Investigators at the Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, and other centers in the UK, conducted a prospective longitudinal study across 17 neuromuscular centers in the UK of 360 boys aged 3-15 years with Duchenne muscular dystrophy who were treated with daily or intermittent (10 days on/10 days off prednisolone for a mean duration of 4 years.

  1. Prednisone Therapy for Duchenne Dystrophy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-02-01

    Full Text Available The effects of prednisone on muscle function and the extent of steroid-related adverse effects were studied in 17 ambulant children with Duchenne muscular dystrophy (DMD at University Hospital, Groningen; Rehabilitation Centre, Utrecht; and Leiden University Medical Centre, the Netherlands.

  2. Faecal incontinence in myotonic dystrophy

    OpenAIRE

    Abercrombie, J; Rogers, J; Swash, M

    1998-01-01

    Two siblings with myotonic dystrophy presented for treatment of faecal incontinence. The pathophysiology of this functional disorder is described with the results of anorectal manometry, EMG, and biopsy of smooth and striated muscle of the anorectal sphincters. Both medical and surgical management of the incontinence was unsatisfactory in the long term. Involvement of gastrointestinal musculature is a characteristic feature the disease.



  3. Inherited myopathies and muscular dystrophies

    NARCIS (Netherlands)

    Cardamone, Michael; Darras, Basil T.; Ryan, Monique M.

    The inherited myopathies and muscular dystrophies are a diverse group of muscle diseases presenting with common complaints and physical signs: weakness, motor delay, and respiratory and bulbar dysfunction. The myopathies are caused by genetic defects in the contractile apparatus of muscle, and

  4. Altered cross-bridge properties in skeletal muscle dystrophies

    Directory of Open Access Journals (Sweden)

    Aziz eGuellich

    2014-10-01

    Full Text Available Force and motion generated by skeletal muscle ultimately depends on the cyclical interaction of actin with myosin. This mechanical process is regulated by intracellular Ca2+ through the thin filament-associated regulatory proteins i.e.; troponins and tropomyosin. Muscular dystrophies are a group of heterogeneous genetic affections characterized by progressive degeneration and weakness of the skeletal muscle as a consequence of loss of muscle tissue which directly reduces the number of potential myosin cross-bridges involved in force production. Mutations in genes responsible for skeletal muscle dystrophies have been shown to modify the function of contractile proteins and cross-bridge interactions. Altered gene expression or RNA splicing or post-translational modifications of contractile proteins such as those related to oxidative stress, may affect cross-bridge function by modifying key proteins of the excitation-contraction coupling. Micro-architectural change in myofilament is another mechanism of altered cross-bridge performance. In this review, we provide an overview about changes in cross-bridge performance in skeletal muscle dystrophies and discuss their ultimate impacts on striated muscle function.

  5. Genetic diagnosis of Duchenne and Becker muscular dystrophy using multiplex ligation-dependent probe amplification in Rwandan patients.

    Science.gov (United States)

    Uwineza, Annette; Hitayezu, Janvier; Murorunkwere, Seraphine; Ndinkabandi, Janvier; Kalala Malu, Celestin Kaputu; Caberg, Jean Hubert; Dideberg, Vinciane; Bours, Vincent; Mutesa, Leon

    2014-04-01

    Duchenne and Becker muscular dystrophies are the most common clinical forms of muscular dystrophies. They are genetically X-linked diseases caused by a mutation in the dystrophin (DMD) gene. A genetic diagnosis was carried out in six Rwandan patients presenting a phenotype of Duchenne and Becker muscular dystrophies and six asymptomatic female carrier relatives using multiplex ligation-dependent probe amplification (MLPA). Our results revealed deletion of the exons 48-51 in one patient, an inherited deletion of the exons 8-21 in two brothers and a de novo deletion of the exons 46-50 in the fourth patient. No copy number variation was found in two patients. Only one female carrier presented exon deletion in the DMD gene. This is the first cohort of genetic analysis in Rwandan patients affected by Duchenne and Becker muscular dystrophies. This report confirmed that MLPA assay can be easily implemented in low-income countries.

  6. The ABCA4 2588G>C Stargardt mutation: single origin and increasing frequency from South-West to North-East Europe.

    NARCIS (Netherlands)

    Maugeri, A.; Flothmann, K.; Hemmrich, N.; Ingvast, S.; Jorge, P.; Paloma, E.; Patel, R.; Rozet, J.M.; Tammur, J.; Testa, F.; Balcells, S.; Bird, A.C.; Brunner, H.G.; Hoyng, C.B.; Metspalu, A.; Simonelli, F.; Allikmets, R.; Bhattacharya, S.S.; Urso, M. D'; Gonzalez-Duarte, R.; Kaplan, J.; Meerman, G.J. te; Santos, R.L.; Schwartz, M.; Camp, G. van; Wadelius, C.; Weber, B.; Cremers, F.P.M.

    2002-01-01

    Inherited retinal dystrophies represent the most important cause of vision impairment in adolescence, affecting approximately 1 out of 3000 individuals. Mutations of the photoreceptor-specific gene ABCA4 (ABCR) are a common cause of retinal dystrophy. A number of mutations have been repeatedly

  7. The ABCA4 2588G > C Stargardt mutation : Single origin and increasing frequency from South-West to North-East Europe

    NARCIS (Netherlands)

    Maugeri, A; Flothmann, K; Hemmrich, N; Ingvast, S; Jorge, P; Paloma, E; Patel, R; Rozet, JM; Tammur, J; Testa, F; Balcells, S; Bird, AC; Brunner, HG; Hoyng, CB; Metspalu, A; Simonelli, F; Allikmets, R; Bhattacharya, SS; D'Urso, M; Gonzalez-Duarte, R; Kaplan, J; Meerman, GJT; Santoss, R; Schwartz, M; Van Camp, G; Wadelius, C; Weber, BHF; Cremers, FPM

    Inherited retinal dystrophies represent the most important cause of vision impairment in adolescence, affecting approximately 1 out of 3000 individuals. Mutations of the photoreceptor-specific gene ABCA4 (ABCR) are a common cause of retinal dystrophy. A number of mutations have been repeatedly

  8. Functional muscle ischemia in Duchenne and Becker muscular dystrophy

    OpenAIRE

    Thomas, Gail D.

    2013-01-01

    Duchenne and Becker muscular dystrophy (DMD/BMD) comprise a spectrum of devastating X-linked muscle wasting disease for which there is no treatment. DMD/BMD is caused by mutations in the gene encoding dystrophin, a cytoskeletal protein that stabilizes the muscle membrane and also targets other proteins to the sarcolemma. Among these is the muscle-specific isoform of neuronal nitric oxide synthase (nNOSµ) which binds spectrin-like repeats within dystrophin’s rod domain and the adaptor pro...

  9. Prevalence and Characteristics of Chinese Patients With Duchenne and Becker Muscular Dystrophy

    Science.gov (United States)

    Lo, Ivan F. M.; Cherk, Sharon W. W.; Cheng, Wai Wai; Fung, Eva L. W.; Yeung, Wai Lan; Ngan, Mary; Lee, Wing Cheong; Kwong, Ling; Wong, Suet Na; Ma, Che Kwan; Tai, Shuk Mui; Ng, Grace S. F.; Wu, Shun Ping; Wong, Virginia C. N.

    2015-01-01

    The aim of this collaborative study on Duchenne muscular dystrophy and Becker muscular dystrophy is to determine the prevalence and to develop data on such patients as a prelude to the development of registry in Hong Kong. Information on clinical and molecular findings, and patient care, was systematically collected in 2011 and 2012 from all Pediatric Neurology Units in Hong Kong. Ninety patients with dystrophinopathy were identified, and 83% has Duchenne muscular dystrophy. The overall prevalence of dystrophinopathy in Hong Kong in 2010 is 1.03 per 10 000 males aged 0 to 24 years. Among the Duchenne group, we observed a higher percentage (40.6%) of point mutations with a lower percentage (45.3%) of exon deletions in our patients when compared with overseas studies. Although we observed similar percentage of Duchenne group received scoliosis surgery, ventilation support, and cardiac treatment when compared with other countries, the percentage (25%) of steroid use is lower. PMID:28503591

  10. Sparks, signals and shock absorbers: how dystrophin loss causes muscular dystrophy.

    Science.gov (United States)

    Batchelor, Clare L; Winder, Steve J

    2006-04-01

    The dystrophin-glycoprotein complex (DGC) can be considered as a specialized adhesion complex, linking the extracellular matrix to the actin cytoskeleton, primarily in muscle cells. Mutations in several components of the DGC lead to its partial or total loss, resulting in various forms of muscular dystrophy. These typically manifest as progressive wasting diseases with loss of muscle integrity. Debate is ongoing about the precise function of the DGC: initially a strictly mechanical role was proposed but it has been suggested that there is aberrant calcium handling in muscular dystrophy and, more recently, changes in MAP kinase and GTPase signalling have been implicated in the aetiology of the disease. Here, we discuss new and interesting developments in these aspects of DGC function and attempt to rationalize the mechanical, calcium and signalling hypotheses to provide a unifying hypothesis of the underlying process of muscular dystrophy.

  11. Co-incidence of Turner syndrome and Duchenne muscular dystrophy - an important problem for the clinician.

    Science.gov (United States)

    Kaczorowska, Ewa; Zimowski, Janusz; Cichoń-Kotek, Monika; Mrozińska, Agnieszka; Purzycka, Joanna; Wierzba, Jolanta; Limon, Janusz; Lipska-Ziętkiewicz, Beata S

    Turner syndrome is a relatively common chromosomal disorder which affects about one in 2000 live born females. Duchenne muscular dystrophy is an X-linked recessive disorder affecting 1:3600 live born males. Considering the above, the coexistence of these two diseases may occur only anecdotally. Here, we report a 4 ½ year-old female with classical 45,X Turner syndrome who also had Duchenne muscular dystrophy caused by a point mutation in the dystrophin gene (c.9055delG). The patient showed the typical phenotype of Turner syndrome including distinctive dysmorphic features (short neck, low posterior hairline, wide position of nipples), aortic coarctation and feet lymphedema. Besides, she presented with an unusually early beginning of muscular dystrophy symptoms with infantile-onset motor developmental delay, intellectual disability and early calf muscular hypertrophy. The coexistence of an X-linked recessive disorder should be considered in women affected by Turner syndrome presenting with additional atypical clinical features.

  12. Infrastructure for Clinical Trials in Duchenne Dystrophy

    Science.gov (United States)

    2010-09-13

    A Zimmerman, T Duong, J Florence and the CINRG Investigators. Pulmonary Function Characteristics of Boys with Duchenne and Becker Muscular Dystrophy ...designated CINRG site staff 1. Has the participant been clinically diagnosed with Limb-Girdle or Becker muscular dystrophy ? LGMD BMD 2. Was...Number: W81XWH-09-1-0592 TITLE: CINRG: Infrastructure for Clinical Trials in Duchenne Dystrophy PRINCIPAL INVESTIGATOR: Avital Cnaan, PhD

  13. HPTLC-FLD-SERS as a facile and reliable screening tool: Exemplarily shown with tyramine in cheese.

    Science.gov (United States)

    Wang, Liao; Xu, Xue-Ming; Chen, Yi-Sheng; Ren, Jie; Liu, Yun-Tao

    2018-04-01

    The serious cytotoxicity of tyramine attracted marked attention as it induced necrosis of human intestinal cells. This paper presented a novel and facile high performance thin-layer chromatography (HPTLC) method tailored for screening tyramine in cheese. Separation was performed on glass backed silica gel plates, using methanol/ethyl acetate/ammonia (6/4/1 v/v/v) as the mobile phase. Special efforts were focused on optimizing conditions (substrate preparation, laser wavelength, salt types and concentrations) of surface enhanced Raman spectroscopy (SERS) measurements directly on plates after derivatization, which enabled molecule-specific identification of targeted bands. In parallel, fluorescent densitometry (FLD) scanning at 380SERS provided a new horizon in fast and reliable screening of sophisticated samples like food and herb drugs, striking an excellent balance between specificity, sensitivity and simplicity. Copyright © 2017. Published by Elsevier B.V.

  14. Dysferlin, annexin A1, and mitsugumin 53 are upregulated in muscular dystrophy and localize to longitudinal tubules of the T-system with stretch.

    Science.gov (United States)

    Waddell, Leigh B; Lemckert, Frances A; Zheng, Xi F; Tran, Jenny; Evesson, Frances J; Hawkes, Joanne M; Lek, Angela; Street, Neil E; Lin, Peihui; Clarke, Nigel F; Landstrom, Andrew P; Ackerman, Michael J; Weisleder, Noah; Ma, Jianjie; North, Kathryn N; Cooper, Sandra T

    2011-04-01

    Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealing: caveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.

  15. [Encopresis revealing myotonic dystrophy in 2 children].

    Science.gov (United States)

    Avez-Couturier, J; Michaud, L; Cuisset, J-M; Lamblin, M-D; Dolhem, P; Turck, D; Vallée, L; Gottrand, F

    2009-05-01

    Gastrointestinal symptoms are very frequent in myotonic dystrophy but largely unrecognized. They can be the revealing factors of the disease. We report 2 cases of 10 and 17-year-old children with persistent encopresis starting at the age of 3 and 5 years in spite of laxative treatment. Neurological examination and anorectal manometry provided the diagnosis of myotonic dystrophy. Procainamide treatment was introduced and the digestive symptoms improved. Any child with encopresis should have complete evaluation to rule out the diagnosis of myotonic dystrophy and physicians should look for upper and/or lower gastrointestinal symptoms in every patient with myotonic dystrophy.

  16. Bortezomib partially improves laminin α2 chain-deficient muscular dystrophy.

    Science.gov (United States)

    Körner, Zandra; Fontes-Oliveira, Cibely C; Holmberg, Johan; Carmignac, Virginie; Durbeej, Madeleine

    2014-05-01

    Congenital muscular dystrophy, caused by mutations in LAMA2 (the gene encoding laminin α2 chain), is a severe and incapacitating disease for which no therapy is yet available. We have recently demonstrated that proteasome activity is increased in laminin α2 chain-deficient muscle and that treatment with the nonpharmaceutical proteasome inhibitor MG-132 reduces muscle pathology in laminin α2 chain-deficient dy(3K)/dy(3K) mice. Here, we explore the use of the selective and therapeutic proteasome inhibitor bortezomib (currently used for treatment of relapsed multiple myeloma and mantle cell lymphoma) in dy(3K)/dy(3K) mice and in congenital muscular dystrophy type 1A muscle cells. Outcome measures included quantitative muscle morphology, gene and miRNA expression analyses, proteasome activity, motor activity, and survival. Bortezomib improved several histological hallmarks of disease, partially normalized miRNA expression (miR-1 and miR-133a), and enhanced body weight, locomotion, and survival of dy(3K)/dy(3K) mice. In addition, bortezomib reduced proteasome activity in congenital muscular dystrophy type 1A myoblasts and myotubes. These findings provide evidence that the proteasome inhibitor bortezomib partially reduces laminin α2 chain-deficient muscular dystrophy. Investigation of the clinical efficacy of bortezomib administration in congenital muscular dystrophy type 1A clinical trials may be warranted. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. A novel FLNC frameshift and an OBSCN variant in a family with distal muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Daniela; Palmio, Johanna; EvilaÈ, Anni; Galli, Lucia; Barone, Virginia; Caldwell, Tracy A.; Policke, Rachel A.; Aldkheil, Esraa; Berndsen, Christopher E.; Wright, Nathan T.; Malfatti, Edoardo; Brochier, Guy; Pierantozzi, Enrico; Jordanova, Albena; Guergueltcheva, Velina; Romero, Norma Beatriz; Hackman, Peter; Eymard, Bruno; Udd, Bjarne; Sorrentino, Vincenzo (Antwerp); (U. Sofia); (Siena); (Tampere); (J Madison); (Helsinki)

    2017-10-26

    A novel FLNC c.5161delG (p.Gly1722ValfsTer61) mutation was identified in two members of a French family affected by distal myopathy and in one healthy relative. This FLNC c.5161delG mutation is one nucleotide away from a previously reported FLNC mutation (c.5160delC) that was identified in patients and in asymptomatic carriers of three Bulgarian families with distal muscular dystrophy, indicating a low penetrance of the FLNC frameshift mutations. Given these similarities, we believe that the two FLNC mutations alone can be causative of distal myopathy without full penetrance. Moreover, comparative analysis of the clinical manifestations indicates that patients of the French family show an earlier onset and a complete segregation of the disease. As a possible explanation of this, the two French patients also carry a OBSCN c.13330C>T (p.Arg4444Trp) mutation. The p.Arg4444Trp variant is localized within the OBSCN Ig59 domain that, together with Ig58, binds to the ZIg9/ZIg10 domains of titin at Z-disks. Structural and functional studies indicate that this OBSCN p.Arg4444Trp mutation decreases titin binding by ~15-fold. On this line, we suggest that the combination of the OBSCN p.Arg4444Trp variant and of the FLNC c.5161delG mutation, can cooperatively affect myofibril stability and increase the penetrance of muscular dystrophy in the French family.

  18. More deletions in the 5{prime} region than in the central region of the dystrophin gene were identified among Filipino Duchenne and Becker muscular dystrophy patients

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-06

    This report describes mutations in the dystrophin gene and the frequency of these mutations in Filipino pedigrees with Duchenne and Becker muscular dystrophy (DMD/BMD). The findings suggest the presence of genetic variability among DMD/BMD patients in different populations. 13 refs., 1 tab.

  19. Muscle MRI and functional outcome measures in Becker muscular dystrophy.

    Science.gov (United States)

    Barp, Andrea; Bello, Luca; Caumo, Luca; Campadello, Paola; Semplicini, Claudio; Lazzarotto, Annalisa; Sorarù, Gianni; Calore, Chiara; Rampado, Alessandro; Motta, Raffaella; Stramare, Roberto; Pegoraro, Elena

    2017-11-22

    Becker muscular dystrophy (BMD) is a neuromuscular disorder allelic to Duchenne muscular dystrophy (DMD), caused by in-frame mutations in the dystrophin gene, and characterized by a clinical progression that is both milder and more heterogeneous than DMD. Muscle magnetic resonance imaging (MRI) has been proposed as biomarker of disease progression in dystrophinopathies. Correlation with clinically meaningful outcome measures such as North Star Ambulatory Assessment (NSAA) and 6 minute walk test (6MWT) is paramount for biomarker qualification. In this study, 51 molecularly confirmed BMD patients (aged 7-69 years) underwent muscle MRI and were evaluated with functional measures (NSAA and 6MWT) at the time of the MRI, and subsequently after one year. We confirmed a pattern of fatty substitution involving mainly the hip extensors and most thigh muscles. Severity of muscle fatty substitution was significantly correlated with specific DMD mutations: in particular, patients with an isolated deletion of exon 48, or deletions bordering exon 51, showed milder involvement. Fat infiltration scores correlated with baseline functional measures, and predicted changes after 1 year. We conclude that in BMD, skeletal muscle MRI not only strongly correlates with motor function, but also helps in predicting functional deterioration within a 12-month time frame.

  20. Meretoja’s Syndrome: Lattice Corneal Dystrophy, Gelsolin Type

    Directory of Open Access Journals (Sweden)

    I. Casal

    2017-01-01

    Full Text Available Lattice corneal dystrophy gelsolin type was first described in 1969 by Jouko Meretoja, a Finnish ophthalmologist. It is caused by an autosomal dominant mutation in gelsolin gene resulting in unstable protein fragments and amyloid deposition in various organs. The age of onset is usually after the third decade of life and typical diagnostic triad includes progressive bilateral facial paralysis, loose skin, and lattice corneal dystrophy. We report a case of a 53-year-old female patient referred to our Department of Ophthalmology by severe dry eye and incomplete eyelid closure. She had severe bilateral facial paresis, significant orbicularis, and perioral sagging as well as hypoesthesia of extremities and was diagnosed with Meretoja’s syndrome at the age of 50, confirmed by the presence of gelsolin mutation. At our observation she had bilateral diminished tear film break-up time and Schirmer test, diffuse keratitis, corneal opacification, and neovascularization in the left eye. She was treated with preservative-free lubricants and topical cyclosporine, associated with nocturnal complete occlusion of both eyes, and underwent placement of lacrimal punctal plugs. Ocular symptoms are the first to appear and our role as ophthalmologists is essential for the diagnosis, treatment, and monitoring of ocular alterations in these patients.

  1. Drugs in development and dietary approach for Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Angelini C

    2015-08-01

    Full Text Available Corrado Angelini, Elisabetta Tasca Neuromuscular Laboratory, Fondazione San Camillo Hospital IRCCS, Venice, Italy Abstract: Therapeutic trials studying Duchenne muscular dystrophy (DMD in Europe and the USA have been done using a protocol that includes manual muscle testing and functional testing, and have shown the efficacy of steroid drugs in various doses and regimens. Further, drisapersen and eteplirsen (exon skipping drugs and ataluren (a drug to overcome stop codon mutations have achieved some clinical improvement. Cardioprotective drugs are efficacious in DMD, and eplerenone, an aldosterone inhibitor and diuretic, is now being used to treat the disease. The dietary approach should be used in wheelchair-bound DMD children in combination with respiratory assistance. The importance of some of the treatments proposed is that they might also be useful in other genetic disorders where stop codon mutations are present; moreover, it is possible that these new treatments will improve quality of life for many patients. Keywords: Duchenne muscular dystrophy, steroids, ataluren, drisapersen, eplerenone, eteplirsen

  2. Phenotype-Genotype Analysis of Chinese Patients with Early-Onset LMNA-Related Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Dandan Tan

    Full Text Available This study aimed to analyze the correlation between the phenotype and genotype of Chinese patients with early-onset lamin A (LMNA-related muscular dystrophy (MD. The clinical and myopathological data of 21 Chinese pediatric patients with early-onset LMNA-related MD were collected and analyzed. LMNA gene mutation analysis was performed by direct sequencing of genomic DNA. Sublocalization of wild-type and mutant proteins were observed by immunofluorescence using cultured fibroblasts and human embryonic kidney 293 (HEK 293 cell. Seven patients were diagnosed with Emery-Dreifuss muscular dystrophy (EDMD and 14 were diagnosed with LMNA-associated congenital muscular dystrophy (L-CMD. Four biopsy specimens from the L-CMD cases exhibited inflammatory changes. Abnormal nuclear morphology was observed with both transmission electron microscopy and lamin A/C staining. We identified 10 novel and nine known LMNA gene mutations in the 21 patients. Some mutations (c.91G>A, c.94_96delAAG, c.116A>G, c.745C>T, c.746G>A, and c.1580G>C were well correlated with EDMD or L-CMD. LMNA-related MD has a common symptom triad of muscle weakness, joint contractures, and cardiac involvement, but the severity of symptoms and disease progression differ greatly. Inflammatory change in biopsied muscle is a characteristic of early-stage L-CMD. Phenotype-genotype analysis determines that some mutations are well correlated with LMNA-related MD.

  3. Becker muscular dystrophy: an unusual presentation.

    OpenAIRE

    Thakker, P B; Sharma, A

    1993-01-01

    A 15 year old boy who presented with passing painless dark urine was found to have myoglobinuria. His creatine phosphokinase was raised, and a muscle biopsy specimen showed non-specific dystrophic changes. Subsequent DNA analysis led to the diagnosis of Becker muscular dystrophy. Myoglobinuria may be a presenting symptom of Becker muscular dystrophy.

  4. Serum Creatinine Distinguishes Duchenne Muscular Dystrophy from Becker Muscular Dystrophy in Patients Aged ≤3 Years: A Retrospective Study.

    Science.gov (United States)

    Wang, Liang; Chen, Menglong; He, Ruojie; Sun, Yiming; Yang, Juan; Xiao, Lulu; Cao, Jiqing; Zhang, Huili; Zhang, Cheng

    2017-01-01

    Here, we investigated correlations between serum creatinine (SCRN) levels and clinical phenotypes of dystrophinopathy in young patients. Sixty-eight patients with dystrophinopathy at the Neuromuscular Clinic, The First Affiliated Hospital, Sun Yat-sen University, were selected for this study. The diagnosis of dystrophinopathy was based on clinical manifestation, biochemical changes, and molecular analysis. Some patients underwent muscle biopsies; SCRN levels were tested when patients were ≤3 years old, and reading frame changes were analyzed. Each patient was followed up, and motor function and clinical phenotype were assessed when the same patients were ≥4 years old. Our findings indicated that in young patients, lower SCRN levels were associated with increased disease severity ( p  Becker muscular dystrophy (BMD) ( p  dystrophy (DMD) ( p  < 0.01) and were significantly higher in patients carrying in-frame mutations than in patients carrying out-of-frame mutations ( p  < 0.001). SCRN level cutoff values for identifying mild BMD [18 µmol/L; area under the curve (AUC): 0.947; p  < 0.001] and DMD (17 µmol/L; AUC: 0.837; p  < 0.001) were established. These results suggest that SCRN might be a valuable biomarker for distinguishing DMD from BMD in patients aged ≤3 years and could assist in the selection of appropriate treatment strategies.

  5. Molecular and phenotypic analysis of a family with autosomal recessive cone-rod dystrophy and Stargardt disease.

    NARCIS (Netherlands)

    Ijzer, Suzanne; Born, L.I. van den; Zonneveld, M.N.; Lopez, I.; Ayyagari, R.; Teye-Botchway, L.; Mota-Vieira, L.; Cremers, F.P.M.; Koenekoop, R.K.

    2007-01-01

    PURPOSE: To identify the causative gene mutations in three siblings with severe progressive autosomal recessive cone-rod dystrophy (arCRD) and their fifth paternal cousin with Stargardt disease (STGD1) and to specify the phenotypes. METHODS: We evaluated eight sibs of one family, three family

  6. A peculiar autosomal dominant macular dystrophy caused by an asparagine deletion at codon 169 in the peripherin/RDS gene

    NARCIS (Netherlands)

    van Lith-Verhoeven, Janneke J. C.; van den Helm, Bellinda; Deutman, August F.; Bergen, Arthur A. B.; Cremers, Frans P. M.; Hoyng, Carel B.; de Jong, Paulus T. V. M.

    2003-01-01

    Objective: To describe the clinical and genetic findings in a family with a peculiar autosomal dominant macular dystrophy with peripheral deposits. Methods: All family members underwent an ophthalmic examination, and their genomic DNA was screened for mutations in the human retinal degeneration slow

  7. Prevalence of generalized retinal dystrophy in Denmark

    DEFF Research Database (Denmark)

    Bertelsen, Mette; Jensen, Hanne; Bregnhøj, Jesper F

    2014-01-01

    of this study was to examine the prevalence and diagnostic spectrum of generalized retinal dystrophy in the Danish population. METHODS: A population-based cross-sectional study with data from the Danish Retinitis Pigmentosa Registry that comprises all patients in Denmark with generalized retinal......PURPOSE: Generalized retinal dystrophy is a frequent cause of visual impairment and blindness in younger individuals and a subject of new clinical intervention trials. Nonetheless, there are few nation-wide population-based epidemiological data of generalized retinal dystrophy. The purpose...... and chorioretinal dystrophies from the 19th century to the present. Among 3076 registered cases, the primary diagnosis of generalized retinal dystrophy was assessed by chart review, including fundus photographs and electroretinograms. Demographic data on the Danish population were retrieved from Statistics Denmark...

  8. Generalized Choriocapillaris Dystrophy, a Distinct Phenotype in the Spectrum of ABCA4-Associated Retinopathies

    DEFF Research Database (Denmark)

    Bertelsen, Mette; Zernant, Jana; Larsen, Michael

    2014-01-01

    PURPOSE: We describe a particular form of autosomal recessive generalized choriocapillaris dystrophy phenotype associated with ABCA4 mutations. METHODS: A cohort of 30 patients with identified ABCA4 mutations and a distinct phenotype was studied. A retrospective review of history, fundus photogra......PURPOSE: We describe a particular form of autosomal recessive generalized choriocapillaris dystrophy phenotype associated with ABCA4 mutations. METHODS: A cohort of 30 patients with identified ABCA4 mutations and a distinct phenotype was studied. A retrospective review of history, fundus...... photographs, electroretinography, visual field testing, dark adaptometry, and optical coherence tomography was performed. Genetic analyses were performed by ABCA4 microarray analysis, high resolution melting, and/or next generation sequencing of all protein-coding sequences of the ABCA4 gene. RESULTS...

  9. Expression of the Murine Duchenne Muscular Dystrophy Gene in Muscle and Brain

    Science.gov (United States)

    Chamberlain, Jeffrey S.; Pearlman, Joel A.; Muzny, Donna M.; Gibbs, Richard A.; Ranier, Joel E.; Reeves, Alice A.; Caskey, C. Thomas

    1988-03-01

    Complementary DNA clones were isolated that represent the 5' terminal 2.5 kilobases of the murine Duchenne muscular dystrophy (Dmd) messenger RNA (mRNA). Mouse Dmd mRNA was detectable in skeletal and cardiac muscle and at a level approximately 90 percent lower in brain. Dmd mRNA is also present, but at much lower than normal levels, in both the muscle and brain of three different strains of dystrophic mdx mice. The identification of Dmd mRNA in brain raises the possibility of a relation between human Duchenne muscular dystrophy (DMD) gene expression and the mental retardation found in some DMD males. These results also provide evidence that the mdx mutations are allelic variants of mouse Dmd gene mutations.

  10. Relatively low proportion of dystrophin gene deletions in Israeili Duchenne and Becker muscular dystrophy patients

    Energy Technology Data Exchange (ETDEWEB)

    Shomrat, R.; Gluck, E.; Legum, C.; Shiloh, Y. [Tel Aviv Univ. (Israel)

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these exons 44-45, and the remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. 43 refs., 1 fig., 1 tab.

  11. Comparison of Three Sample Preparation Procedures for the Quantification of L-Arginine, Asymmetric Dimethylarginine, and Symmetric Dimethylarginine in Human Plasma Using HPLC-FLD

    Science.gov (United States)

    Schou-Pedersen, Anne Marie Voigt

    2018-01-01

    Increased asymmetric dimethylarginine (ADMA) in human plasma has been associated with reduced generation of nitric oxide, leading to atherosclerotic diseases. ADMA may therefore be an important biomarker for cardiovascular disease. In the present study, three sample preparation techniques were compared regarding the quantification of L-arginine and ADMA in human plasma: (A) protein precipitation (PP) based on aqueous trichloroacetic acid (TCA), (B) PP using a mixture of ammonia and acetonitrile, and (C) solid-phase extraction (SPE). The samples were analysed by using high-performance liquid chromatography with fluorescence detection (HPLC-FLD). The analytical performance of (A) was comparable with that of (C), demonstrating recoveries of >90%, coefficient of variations (CVs, %) of 0.994), precision (sample preparation of human plasma samples before HPLC-FLD in providing important information regarding elevated ADMA concentrations. PMID:29484214

  12. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    OpenAIRE

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Na?ra; Rau, Fr?d?rique; Jollet, Arnaud; Edom-Vovard, Fr?d?rique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois

    2017-01-01

    International audience; Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded rep...

  13. Influence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Andrea Farini

    2014-01-01

    Full Text Available Muscular dystrophies (MDs are a heterogeneous group of diseases, caused by mutations in different components of sarcolemma, extracellular matrix, or enzymes. Inflammation and innate or adaptive immune response activation are prominent features of MDs. Various therapies under development are directed toward rescuing the dystrophic muscle damage using gene transfer or cell therapy. Here we discussed current knowledge about involvement of immune system responses to experimental therapies in MDs.

  14. Phenotypic variability in Meesmann's dystrophy

    DEFF Research Database (Denmark)

    Ehlers, Niels; Hjortdal, Jesper; Nielsen, Kim

    2008-01-01

    symptoms often include blurred vision and ocular irritation. Typical cases may be entirely free of complaints. Intermittent pain episodes, such as occur in recurrent erosion syndrome, are not the rule. Genetic sequencing indicated a familial relationship with the originally described Meesmann family......'s dystrophy occurs worldwide. The largest family described is the original German one, now supplemented with a Danish branch. Despite the presence of an identical genetic defect, the clinical phenotype varies. This suggests that non-KRT12-related mechanisms are responsible for the variation....

  15. Improved Quantitation of Gluten in Wheat Starch for Celiac Disease Patients by Gel-Permeation High-Performance Liquid Chromatography with Fluorescence Detection (GP-HPLC-FLD).

    Science.gov (United States)

    Scherf, Katharina Anne; Wieser, Herbert; Koehler, Peter

    2016-10-12

    Purified wheat starch (WSt) is commonly used in gluten-free products for celiac disease (CD) patients. It is mostly well-tolerated, but doubts about its safety for CD patients persist. One reason may be that most ELISA kits primarily recognize the alcohol-soluble gliadin fraction of gluten, but insufficiently target the alcohol-insoluble glutenin fraction. To address this problem, a new sensitive method based on the sequential extraction of gliadins, glutenins, and gluten from WSt followed by gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD) was developed. It revealed that considerable amounts of glutenins were present in most WSt. The gluten contents quantitated by GP-HPLC-FLD as sum of gliadins and glutenins were higher than those by R5 ELISA (gluten as gliadin content multiplied by a factor of 2) in 19 out of 26 WSt. Despite its limited selectivity, GP-HPLC-FLD may be applied as confirmatory method to ELISA to quantitate gluten in WSt.

  16. Occurrence of toxigenic fungi and determination of mycotoxins by HPLC-FLD in functional foods and spices in China markets.

    Science.gov (United States)

    Kong, Weijun; Wei, Riwei; Logrieco, Antonio F; Wei, Jianhe; Wen, Jing; Xiao, Xiaohe; Yang, Meihua

    2014-03-01

    Twenty-four samples including 14 functional foods and 10 spices obtained from Chinese markets were examined for their mould profile. The mycotoxin contamination levels were also determined by an optimized HPLC-FLD method. 124 fungal isolates belonging to four different genera were recovered with Aspergillus and Penicillium as predominant fungi, with an incidence of 66.1% and 15.3%, respectively. In functional foods Aspergillus niger section (57.1%) was isolated more frequently, followed by Aspergillus flavi section (50.0%) and Aspergillus ochraceus section (21.4%), with the most contaminated samples being Coix seeds. Similar fungal presence and frequency were encountered in spice with A. niger section group (60.0%) and A. flavi section (40.0%) as main fungi. Cumin and Pricklyash peel samples showed the highest fungal contamination. Four functional foods and three spices were found to be positive at low levels for mycotoxins including aflatoxin B1 (up to 0.26μg/kg) and ochratoxin A (OTA) (5.0μg/kg). The more frequently detected mycotoxin was AFB1 (16.7%). Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Current and emerging treatment strategies for Duchenne muscular dystrophy

    Science.gov (United States)

    Mah, Jean K

    2016-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. It is caused by mutations of the DMD gene, leading to progressive muscle weakness, loss of independent ambulation by early teens, and premature death due to cardiorespiratory complications. The diagnosis can usually be made after careful review of the history and examination of affected boys presenting with developmental delay, proximal weakness, and elevated serum creatine kinase, plus confirmation by muscle biopsy or genetic testing. Precise characterization of the DMD mutation is important for genetic counseling and individualized treatment. Current standard of care includes the use of corticosteroids to prolong ambulation and to delay the onset of secondary complications. Early use of cardioprotective agents, noninvasive positive pressure ventilation, and other supportive strategies has improved the life expectancy and health-related quality of life for many young adults with DMD. New emerging treatment includes viral-mediated microdystrophin gene replacement, exon skipping to restore the reading frame, and nonsense suppression therapy to allow translation and production of a modified dystrophin protein. Other potential therapeutic targets involve upregulation of compensatory proteins, reduction of the inflammatory cascade, and enhancement of muscle regeneration. So far, data from DMD clinical trials have shown limited success in delaying disease progression; unforeseen obstacles included immune response against the generated mini-dystrophin, inconsistent evidence of dystrophin production in muscle biopsies, and failure to demonstrate a significant improvement in the primary outcome measure, as defined by the 6-minute walk test in some studies. The long-term safety and efficacy of emerging treatments will depend on the selection of appropriate clinical end points and sensitive biomarkers to detect meaningful changes in disease progression. Correction of the underlying

  18. Diagnosis of becker muscular dystrophy: Results of Re-analysis of DNA samples.

    Science.gov (United States)

    Straathof, Chiara S M; Van Heusden, Dave; Ippel, Pieternella F; Post, Jan G; Voermans, Nicol C; De Visser, Marianne; Brusse, Esther; Van Den Bergen, Janneke C; Van Der Kooi, Anneke J; Verschuuren, Jan J G M; Ginjaar, Hendrika B

    2016-01-01

    The phenotype of Becker muscular dystrophy (BMD) is highly variable, and the disease may be underdiagnosed. We searched for new mutations in the DMD gene in a cohort of previously undiagnosed patients who had been referred in the period 1985-1995. All requests for DNA analysis of the DMD gene in probands with suspected BMD were re-evaluated. If the phenotype was compatible with BMD, and no deletions or duplications were detected, DNA samples were screened for small mutations. In 79 of 185 referrals, no mutation was found. Analysis could be performed on 31 DNA samples. Seven different mutations, including 3 novel ones, were found. Long-term clinical follow-up is described. Refining DNA analysis in previously undiagnosed cases can identify mutations in the DMD gene and provide genetic diagnosis of BMD. A delayed diagnosis can still be valuable for the proband or the relatives of BMD patients. © 2015 Wiley Periodicals, Inc.

  19. Porcine Zygote Injection with Cas9/sgRNA Results in DMD-Modified Pig with Muscle Dystrophy

    Directory of Open Access Journals (Sweden)

    Hong-Hao Yu

    2016-10-01

    Full Text Available Dystrophinopathy, including Duchenne muscle dystrophy (DMD and Becker muscle dystrophy (BMD is an incurable X-linked hereditary muscle dystrophy caused by a mutation in the DMD gene in coding dystrophin. Advances in further understanding DMD/BMD for therapy are expected. Studies on mdx mice and dogs with muscle dystrophy provide limited insight into DMD disease mechanisms and therapeutic testing because of the different pathological manifestations. Miniature pigs share similar physiology and anatomy with humans and are thus an excellent animal model of human disease. Here, we successfully achieved precise DMD targeting in Chinese Diannan miniature pigs by co-injecting zygotes with Cas9 mRNA and sgRNA targeting DMD. Two piglets were obtained after embryo transfer, one of piglets was identified as DMD-modified individual via traditional cloning, sequencing and T7EN1 cleavage assay. An examination of targeting rates in the DMD-modified piglet revealed that sgRNA:Cas9-mediated on-target mosaic mutations were 70% and 60% of dystrophin alleles in skeletal and smooth muscle, respectively. Meanwhile, no detectable off-target mutations were found, highlighting the high specificity of genetic modification using CRISPR/Cas9. The DMD-modified piglet exhibited degenerative and disordered phenotypes in skeletal and cardiac muscle, and declining thickness of smooth muscle in the stomach and intestine. In conclusion, we successfully generated myopathy animal model by modifying the DMD via CRISPR/Cas9 system in a miniature pig.

  20. [Central Nervous Involvement in Patients with Fukuyama Congenital Muscular Dystrophy].

    Science.gov (United States)

    Ishigaki, Keiko

    2016-02-01

    Fukuyama congenital muscular dystrophy (FCMD), the second most common muscular dystrophy in the Japanese population, is an autosomal recessive disorder caused by mutations in the fukutin (FKTN) gene. The main features of FCMD are a combination of infantile-onset hypotonia, generalized muscle weakness, eye abnormalities and central nervous system involvement with mental retardation and seizures associated with cortical migration defects. The FKTN gene product is thought to be necessary for maintaining migrating neurons in an immature state during migration, and for supporting migration via α-dystroglycan in the central nervous system. Typical magnetic resonance imaging findings in FCMD patients are cobblestone lissencephaly and cerebellar cystic lesions. White matter abnormalities with hyperintensity on T(2)-weighted images are seen especially in younger patients and those with severe phenotypes. Most FCMD patients are mentally retarded and the level is moderate to severe, with IQs ranging from 30 to 50. In our recent study, 62% of patients developed seizures. Among them, 71% had only febrile seizures, 6% had afebrile seizures from the onset, and 22% developed afebrile seizures following febrile seizures. Most patients had seizures that were controllable with just 1 type of antiepileptic drug, but 18% had intractable seizures that must be treated with 3 medications.

  1. Understanding the impact of genetic testing for inherited retinal dystrophy.

    Science.gov (United States)

    Combs, Ryan; McAllister, Marion; Payne, Katherine; Lowndes, Jo; Devery, Sophie; Webster, Andrew R; Downes, Susan M; Moore, Anthony T; Ramsden, Simon; Black, Graeme; Hall, Georgina

    2013-11-01

    The capability of genetic technologies is expanding rapidly in the field of inherited eye disease. New genetic testing approaches will deliver a step change in the ability to diagnose and extend the possibility of targeted treatments. However, evidence is lacking about the benefits of genetic testing to support service planning. Here, we report qualitative data about retinal dystrophy families' experiences of genetic testing in United Kingdom. The data were part of a wider study examining genetic eye service provision. Twenty interviewees from families in which a causative mutation had been identified by a genetic eye clinic were recruited to the study. Fourteen interviewees had chosen to have a genetic test and five had not; one was uncertain. In-depth telephone interviews were conducted allowing a thorough exploration of interviewees' views and experiences of the benefits of genetic counselling and testing. Transcripts were analysed using thematic analysis. Both affected and unaffected interviewees expressed mainly positive views about genetic testing, highlighting benefits such as diagnostic confirmation, risk information, and better preparation for the future. Negative consequences included the burden of knowledge, moral dilemmas around reproduction, and potential impact on insurance. The offer of genetic testing was often taken up, but was felt unnecessary in some cases. Interviewees in the study reported many benefits, suggesting genetic testing should be available to this patient group. The benefits and risks identified will inform future evaluation of models of service delivery. This research was part of a wider study exploring experiences of families with retinal dystrophy.

  2. Vps35-deficiency impairs SLC4A11 trafficking and promotes corneal dystrophy.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available Vps35 (vacuolar protein sorting 35 is a major component of retromer that selectively promotes endosome-to-Golgi retrieval of transmembrane proteins. Dysfunction of retromer is a risk factor for the pathogenesis of Parkinson's disease (PD and Alzheimer's disease (AD. However, Vps35/retromer's function in the eye or the contribution of Vps35-deficiency to eye degenerative disorders remains to be explored. Here we provide evidence for a critical role of Vps35 in mouse corneal dystrophy. Vps35 is expressed in mouse and human cornea. Mouse cornea from Vps35 heterozygotes (Vps35+/- show features of dystrophy, such as loss of both endothelial and epithelial cell densities, disorganizations of endothelial, stroma, and epithelial cells, excrescences in the Descemet membrane, and corneal edema. Additionally, corneal epithelial cell proliferation was reduced in Vps35-deficient mice. Intriguingly, cell surface targeting of SLC4A11, a membrane transport protein (OH- /H+ /NH3 /H2O of corneal endothelium, whose mutations have been identified in patients with corneal dystrophy, was impaired in Vps35-deficient cells and cornea. Taken together, these results suggest that SLC4A11 appears to be a Vps35/retromer cargo, and Vps35-regulation of SLC4A11 trafficking may underlie Vps35/retromer regulation of corneal dystrophy.

  3. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy.

    Science.gov (United States)

    Parvatiyar, Michelle S; Marshall, Jamie L; Nguyen, Reginald T; Jordan, Maria C; Richardson, Vanitra A; Roos, Kenneth P; Crosbie-Watson, Rachelle H

    2015-12-23

    Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin-associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin-binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. SSPN-null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β-adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN-null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α-, δ-, and γ-subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdx(TG)) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. SSPN regulates sarcolemmal expression of laminin-binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  4. Zebrafish models flex their muscles to shed light on muscular dystrophies.

    Science.gov (United States)

    Berger, Joachim; Currie, Peter D

    2012-11-01

    Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.

  5. Muscular dystrophy in a family of Labrador Retrievers with no muscle dystrophin and a mild phenotype.

    Science.gov (United States)

    Vieira, Natassia M; Guo, Ling T; Estrela, Elicia; Kunkel, Louis M; Zatz, Mayana; Shelton, G Diane

    2015-05-01

    Animal models of dystrophin deficient muscular dystrophy, most notably canine X-linked muscular dystrophy, play an important role in developing new therapies for human Duchenne muscular dystrophy. Although the canine disease is a model of the human disease, the variable severity of clinical presentations in the canine may be problematic for pre-clinical trials, but also informative. Here we describe a family of Labrador Retrievers with three generations of male dogs having markedly increased serum creatine kinase activity, absence of membrane dystrophin, but with undetectable clinical signs of muscle weakness. Clinically normal young male Labrador Retriever puppies were evaluated prior to surgical neuter by screening laboratory blood work, including serum creatine kinase activity. Serum creatine kinase activities were markedly increased in the absence of clinical signs of muscle weakness. Evaluation of muscle biopsies confirmed a dystrophic phenotype with both degeneration and regeneration. Further evaluations by immunofluorescence and western blot analysis confirmed the absence of muscle dystrophin. Although dystrophin was not identified in the muscles, we did not find any detectable deletions or duplications in the dystrophin gene. Sequencing is now ongoing to search for point mutations. Our findings in this family of Labrador Retriever dogs lend support to the hypothesis that, in exceptional situations, muscle with no dystrophin may be functional. Unlocking the secrets that protect these dogs from a severe clinical myopathy is a great challenge which may have important implications for future treatment of human muscular dystrophies. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. SIRT1: A Novel Target for the Treatment of Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Atsushi Kuno

    2016-01-01

    Full Text Available Muscular dystrophies are inherited myogenic disorders accompanied by progressive skeletal muscle weakness and degeneration. Duchenne muscular dystrophy (DMD is the most common and severe form of muscular dystrophy and is caused by mutations in the gene that encodes the cytoskeletal protein dystrophin. The treatment for DMD is limited to glucocorticoids, which are associated with multiple side effects. Thus, the identification of novel therapeutic targets is urgently needed. SIRT1 is an NAD+-dependent histone/protein deacetylase that plays roles in diverse cellular processes, including stress resistance and cell survival. Studies have shown that SIRT1 activation provides beneficial effects in the dystrophin-deficient mdx mouse, a model of DMD. SIRT1 activation leads to the attenuation of oxidative stress and inflammation, a shift from the fast to slow myofiber phenotype, and the suppression of tissue fibrosis. Although further research is needed to clarify the molecular mechanisms underlying the protective role of SIRT1 in mdx mice, we propose SIRT1 as a novel therapeutic target for patients with muscular dystrophies.

  7. The prevalence of Usher syndrome and other retinal dystrophy-hearing impairment associations.

    Science.gov (United States)

    Rosenberg, T; Haim, M; Hauch, A M; Parving, A

    1997-05-01

    The study was undertaken to procure population-based prevalence data on the various types of Usher syndrome and other retinal dystrophy-hearing impairment associations. The medical files on 646 patients with a panretinal pigmentary dystrophy aged 20-49 years derived from the Danish Retinitis Pigmentosa (RP) register were scrutinised. The data were supplemented by a prior investigation on hearing ability in a part of the study population. After exclusion of patients with possibly extrinsic causes of hearing impairments, 118 patients, including 89 cases of Usher syndrome were allocated to one of five clinically defined groups. We calculated the following prevalence rates: Usher syndrome type I: 1.5/100,000, Usher syndrome type II: 2.2/100,000, and Usher syndrome type III: 0.1/100,000 corresponding to a 2:3 ratio between Usher syndrome type I and II. The overall prevalence rate of Usher syndrome was estimated to 5/100,000 in the Danish population, devoid of genetic isolates. The material comprised 11 cases with retinal dystrophy, hearing impairment, and additional syndromic features. Finally, 18 subjects with various retinal dystrophy-hearing impairment associations without syndromic features were identified, corresponding to a prevalence rate of 0.8/100,000. This group had a significant overrepresentation of X-linked RP, including two persons harboring a mutation in the retinitis pigmentosa GTP-ase regulator (RPGR) gene.

  8. Occurrence of two different intragenic deletions in two male relatives affected with Duchenne muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Mostacciuolo, M.L.; Miorin, M.; Vitiello, L.; Rampazzo, A.; Fanin, M.; Angelini, C.; Danieli, G.A. [Univ. of Padua (Italy)

    1994-03-01

    The occurrence of 2 different intragenic deletions (exons 10-44 and exon 45, respectively) is reported in 2 male relatives affected with Duchenne muscular dystrophy, both showing the same haplotype for DNA markers not included in the deleted segment. The 2 different deletions seem to have occurred independently in the same X chromosome. This finding, together with other reports, suggests possibly an increased predisposition to mutations within the DMD locus in some families. Therefore, when dealing with prenatal diagnosis, the investigation on fetal DNA cannot be restricted only to the region in which a mutation was previously identified in the family. 14 refs., 1 fig.

  9. An unusual variant of Becker muscular dystrophy

    NARCIS (Netherlands)

    de Visser, M.; Bakker, E.; Defesche, J. C.; Bolhuis, P. A.; van Ommen, G. J.

    1990-01-01

    We report on 5 brothers with slowly progressive limbgirdle weakness. Calf hypertrophy was absent. The levels of creatine kinase, electromyography, and findings from a muscle biopsy specimen were compatible with muscular dystrophy. The propositus's biopsy specimen also showed numerous rimmed

  10. Non-Coding RNAs in Muscle Dystrophies

    Directory of Open Access Journals (Sweden)

    Alessandra Ferlini

    2013-09-01

    Full Text Available ncRNAs are the most recently identified class of regulatory RNAs with vital functions in gene expression regulation and cell development. Among the variety of roles they play, their involvement in human diseases has opened new avenues of research towards the discovery and development of novel therapeutic approaches. Important data come from the field of hereditary muscle dystrophies, like Duchenne muscle dystrophy and Myotonic dystrophies, rare diseases affecting 1 in 7000–15,000 newborns and is characterized by severe to mild muscle weakness associated with cardiac involvement. Novel therapeutic approaches are now ongoing for these diseases, also based on splicing modulation. In this review we provide an overview about ncRNAs and their behavior in muscular dystrophy and explore their links with diagnosis, prognosis and treatments, highlighting the role of regulatory RNAs in these pathologies.

  11. Physical Therapy and Facioscapulohumeral Muscular Dystrophy (FSHD)

    Science.gov (United States)

    Physical Therapy & FSHD Facioscapulohumeral Muscular Dystrophy A Guide for Patients & Physical Therapists Authors: Wendy M. King, P.T., Assistant ... Shree Pandya, P.T., M.S., Assistant Professor, Neurology & Physical Medicine and Rehabilitation A publication of the FSH ...

  12. 3-Methylhistidine excretion in myotonic dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Griggs, R.C.; Moxley, R.T. III; Forbes, G.B.

    1980-12-01

    3-Methylhistidine (3-MH) excretion reflects the rate of muscle protein catabolism, since 3-MH occurs almost exclusively in muscle actin and myosin and is not reutilized or catabolized. We studied 3-MH excretion in 9 patients with myotonic dystrophy, 8 normals, and 10 disease controls with Duchenne dystrophy and other disorders. 3-MH excretion was expressed relative to muscle mass as determined by both urinary creatinine and total body potassium (/sup 40/K method). Absolute 3-MH excretion was decreased in myotonic dystrophy patients but was normal when related to muscle mass. The finding of normal 3-MH excretion in myotonic dystrophy suggests that the muscle wasting in this disorder results from impaired anabolic processes rather than accelerated muscle destruction.

  13. 3-Methylhistidine excretion in myotonic dystrophy

    International Nuclear Information System (INIS)

    Griggs, R.C.; Moxley, R.T. III; Forbes, G.B.

    1980-01-01

    3-Methylhistidine (3-MH) excretion reflects the rate of muscle protein catabolism, since 3-MH occurs almost exclusively in muscle actin and myosin and is not reutilized or catabolized. We studied 3-MH excretion in 9 patients with myotonic dystrophy, 8 normals, and 10 disease controls with Duchenne dystrophy and other disorders. 3-MH excretion was expressed relative to muscle mass as determined by both urinary creatinine and total body potassium ( 40 K method). Absolute 3-MH excretion was decreased in myotonic dystrophy patients but was normal when related to muscle mass. The finding of normal 3-MH excretion in myotonic dystrophy suggests that the muscle wasting in this disorder results from impaired anabolic processes rather than accelerated muscle destruction

  14. How Do People Cope with Muscular Dystrophy?

    Science.gov (United States)

    ... topic are answered in this section. How do people cope with muscular dystrophy (MD)? Although MD presents ... improve health and quality of life. Almost all people with any form of MD experience a worsening ...

  15. Prevalence and Characteristics of Chinese Patients With Duchenne and Becker Muscular Dystrophy: A Territory Wide Collaborative Study in Hong Kong.

    Science.gov (United States)

    Chan, Sophelia H S; Lo, Ivan F M; Cherk, Sharon W W; Cheng, Wai Wai; Fung, Eva L W; Yeung, Wai Lan; Ngan, Mary; Lee, Wing Cheong; Kwong, Ling; Wong, Suet Na; Ma, Che Kwan; Tai, Shuk Mui; Ng, Grace S F; Wu, Shun Ping; Wong, Virginia C N

    2015-01-01

    The aim of this collaborative study on Duchenne muscular dystrophy and Becker muscular dystrophy is to determine the prevalence and to develop data on such patients as a prelude to the development of registry in Hong Kong. Information on clinical and molecular findings, and patient care, was systematically collected in 2011 and 2012 from all Pediatric Neurology Units in Hong Kong. Ninety patients with dystrophinopathy were identified, and 83% has Duchenne muscular dystrophy. The overall prevalence of dystrophinopathy in Hong Kong in 2010 is 1.03 per 10 000 males aged 0 to 24 years. Among the Duchenne group, we observed a higher percentage (40.6%) of point mutations with a lower percentage (45.3%) of exon deletions in our patients when compared with overseas studies. Although we observed similar percentage of Duchenne group received scoliosis surgery, ventilation support, and cardiac treatment when compared with other countries, the percentage (25%) of steroid use is lower.

  16. Posterior amorphous corneal dystrophy: case report

    OpenAIRE

    Oliveira, Lauro Augusto de [UNIFESP; Vieira, Luiz Antônio [UNIFESP; Freitas, Denise de [UNIFESP; Sousa, Luciene Barbosa de [UNIFESP

    2006-01-01

    O objetivo deste trabalho é alertar o oftalmologista da possibilidade de se deparar com casos raros de distrofias corneanas. Neste caso correlacionamos os achados clínicos da distrofia amorfa posterior com refração, topografia e biomicroscopia ultra-sônica.The purpose of this paper is to warn the ophthalmologist about the possibility of facing rare cases of corneal dystrophies. Clinical findings of a case of posterior amorphous dystrophy were correlated with refraction, topography, and ultras...

  17. Sleep disturbances in myotonic dystrophy type 2

    OpenAIRE

    Shepard, Paul; Lam, Erek M.; St. Louis, Erik K.; Dominik, Jacob

    2012-01-01

    Sleep disorders in myotonic dystrophy type 1 (DM1) are common and include sleep disordered breathing (SDB), hypersomnia, and fatigue. Little is known regarding the occurrence of sleep disturbance in myotonic dystrophy type 2 (DM2). We hypothesized that DM2 patients may frequently harbor sleep disorders. We reviewed medical records of all genetically confirmed cases of DM2 seen at our sleep center between 1997 and 2010 for demographic, laboratory, overnight oximetry, and polysomnography (PSG) ...

  18. Duchenne muscular dystrophy: the management of scoliosis

    Science.gov (United States)

    Gardner, Adrian C.; Roper, Helen P.; Chikermane, Ashish A.; Tatman, Andrew J.

    2016-01-01

    This study summaries the current management of scoliosis in patients with Duchenne Muscular Dystrophy. A literature review of Medline was performed and the collected articles critically appraised. This literature is discussed to give an overview of the current management of scoliosis within Duchenne Muscular Dystrophy. Importantly, improvements in respiratory care, the use of steroids and improving surgical techniques have allowed patients to maintain quality of life and improved life expectancy in this patient group. PMID:27757431

  19. Muscle MRI findings in patients with limb girdle muscular dystrophy with calpain 3 deficiency (LGMD2A) and early contractures.

    Science.gov (United States)

    Mercuri, Eugenio; Bushby, Kate; Ricci, Enzo; Birchall, Daniel; Pane, Marika; Kinali, Maria; Allsop, Joanna; Nigro, Vincenzo; Sáenz, Amets; Nascimbeni, Annachiara; Fulizio, Luigi; Angelini, Corrado; Muntoni, Francesco

    2005-02-01

    Limb girdle muscular dystrophy 2A is a common variant secondary to mutations in the calpain 3 gene. A proportion of patients has early and severe contractures, which can cause diagnostic difficulties with other conditions. We report clinical and muscle magnetic resonance imaging findings in seven limb girdle muscular dystrophy 2A patients (four sporadic and three familial) who had prominent and early contractures. All patients showed a striking involvement of the posterior thigh muscles. The involvement of the other thigh muscles was variable and was related to clinical severity. Young patients with minimal functional motor impairment showed a predominant involvement of the adductors and semimembranosus muscles while patients with restricted ambulation had a more diffuse involvement of the posterolateral muscles of the thigh and of the vastus intermedius with relative sparing of the vastus lateralis, sartorius and gracilis. At calf level all patients showed involvement of the soleus muscle and of the medial head of the gastrocnemius with relative sparing of the lateral head. MRI findings were correlated to those found in two patients with the phenotype of limb girdle muscular dystrophy 2A without early contractures and the pattern observed was quite similar. However, the pattern observed in limb girdle muscular dystrophy 2A is different from that reported in other muscle diseases such as Emery-Dreifuss muscular dystrophy and Bethlem myopathy which have a significant clinical overlap with limb girdle muscular dystrophy 2A once early contractures are present. Our results suggest that muscle MRI may help in recognising patients with limb girdle muscular dystrophy 2A even when the clinical presentation overlaps with other conditions, and may therefore, be used as an additional investigation to target the appropriate biochemical and genetic tests.

  20. Radiographic features of Golden Retriever muscular dystrophy.

    Science.gov (United States)

    Brumitt, Jason W; Essman, Stephanie C; Kornegay, Joe N; Graham, John P; Weber, William J; Berry, Clifford R

    2006-01-01

    Golden Retriever muscular dystrophy is an inherited, degenerative myopathy due to the absence of dystrophin and is used as a model of Duchenne muscular dystrophy of young boys. This report describes the radiographic abnormalities of Golden Retriever muscular dystrophy in 26 dogs. The thoracic abnormalities included diaphragmatic asymmetry (18/26), diaphragmatic undulation (18/26), and gastro-esophageal hiatal hernia (6/26). Pelvic abnormalities included narrowing of the body of the ilia (14/19), ventral deviation and curvature of the tuber ischii (14/19), elongation of the obturator foramen with a decrease in opacity of the surrounding bone (12/19), and lateral flaring of the wings of the ilia (12/19). Abdominal abnormalities consisted of hepatomegaly (14/22) and poor serosal detail (12/22). The unique thoracic abnormalities were a consistent finding in affected Golden Retriever muscular dystrophy dogs. The diagnosis of muscular dystrophy should be included in the differential list if the combination of diaphragm undulation and asymmetry, and gastro-esophageal hiatal hernia are identified. These diaphragmatic abnormalities are related to hypertrophy and hyperplasia of the diaphragm. Additionally, the skeletal changes of pelvic tilt, elongation of the pelvis, widening of the obturator foramina and thinning of the ischiatic tables appear to be specific to Golden Retriever muscular dystrophy in dogs. These pelvic abnormalities are most likely secondary to bone remodeling associated with the progressive skeletal myopathy and subsequent contracture/fibrosis.

  1. Cardiac involvement in patients with limb-girdle muscular dystrophy type 2 and Becker muscular dystrophy

    DEFF Research Database (Denmark)

    Sveen, Marie-Louise; Thune, Jens Jakob; Køber, Lars

    2008-01-01

    OBJECTIVE: To investigate the extent of cardiac involvement in patients with 1 of the 12 groups of recessively inherited limb-girdle muscular dystrophy type 2 (LGMD2A-L) and Becker muscular dystrophy (BMD). DESIGN: Prospective screening. SETTING: Neuromuscular Clinic and Department of Cardiology...

  2. The heart in Becker muscular dystrophy, facioscapulohumeral dystrophy, and Bethlem myopathy

    NARCIS (Netherlands)

    de Visser, M.; de Voogt, W. G.; la Rivière, G. V.

    1992-01-01

    We report a study, assessing involvement of the heart in 33 familial cases of Becker muscular dystrophy (BMD), 31 familiar cases of facioscapulohumeral (FSH) dystrophy, and 27 familial cases of Bethlem myopathy. In the patients with BMD, correlations of myocardial involvement with age and extent of

  3. Emery-Dreifuss muscular dystrophy: the most recognizable laminopathy

    Directory of Open Access Journals (Sweden)

    Agnieszka Madej-Pilarczyk

    2016-03-01

    Full Text Available Emery-Dreifuss muscular dystrophy (EDMD, a rare inherited disease, is characterized clinically by humero-peroneal muscle atrophy and weakness, multijoint contractures, spine rigidity and cardiac insufficiency with conduction defects. There are at least six types of EDMD known so far, of which five have been associated with mutations in genes encoding nuclear proteins. The majority of the EDMD cases described so far are of the emerinopathy (EDMD1 kind, with a recessive X-linked mode of inheritance, or else laminopathy (EDMD2, with an autosomal dominant mode of inheritance. In the work described here, the authors have sought to describe the history by which EDMD came to be distinguished as a separate entity, as well as the clinical and genetic characteristics of the disease, the pathophysiology of lamin-related muscular diseases and, finally, therapeutic issues, prevention and ethical aspects.

  4. Clinical Manifestations and Overall Management Strategies for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Tsuda, Takeshi

    2018-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder that causes progressive weakness and wasting of skeletal muscular and myocardium in boys due to mutation of dystrophin. The structural integrity of each individual skeletal and cardiac myocyte is significantly compromised upon physical stress due to the absence of dystrophin. The progressive destruction of systemic musculature and myocardium causes affected patients to develop multiple organ disabilities, including loss of ambulation, physical immobility, neuromuscular scoliosis, joint contracture, restrictive lung disease, obstructive sleep apnea, and cardiomyopathy. There are some central nervous system-related medical problems, as dystrophin is also expressed in the neuronal tissues. Although principal management is to mainly delay the pathological process, an enhanced understanding of underlying pathological processes has significantly improved quality of life and longevity for DMD patients. Future research in novel molecular approach is warranted to answer unanswered questions.

  5. Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy

    Science.gov (United States)

    Martin, Elizabeth A.; Barresi, Rita; Byrne, Barry J.; Tsimerinov, Evgeny I.; Scott, Bryan L.; Walker, Ashley E.; Gurudevan, Swaminatha V.; Anene, Francine; Elashoff, Robert M.; Thomas, Gail D.; Victor, Ronald G.

    2013-01-01

    Becker muscular dystrophy (BMD) is a progressive X-linked muscle wasting disease for which there is no treatment. Like Duchenne muscular dystrophy (DMD), BMD is caused by mutations in the gene encoding dystrophin, a structural cytoskeletal protein that also targets other proteins to the muscle sarcolemma. Among these is neuronal nitric oxide synthase (nNOSμ), which requires certain spectrin-like repeats in dystrophin’s rod domain and the adaptor protein α-syntrophin to be targeted to the sarcolemma. When healthy skeletal muscle is subjected to exercise, sarcolemmal nNOSμ-derived nitric oxide (NO) attenuates local α-adrenergic vasoconstriction thereby optimizing perfusion of muscle. We found previously that this protective mechanism is defective—causing functional muscle ischemia—in dystrophin-deficient muscles of the mdx mouse (a model of DMD) and of children with DMD, in whom nNOSμ is mislocalized to the cytosol instead of the sarcolemma. Here, we report that this protective mechanism also is defective in men with BMD in whom the most common dystrophin mutations disrupt sarcolemmal targeting of nNOSμ. In these men, the vasoconstrictor response, measured as a decrease in muscle oxygenation, to reflex sympathetic activation is not appropriately attenuated during exercise of the dystrophic muscles. In a randomized placebo-controlled cross-over trial, we show that functional muscle ischemia is alleviated and normal blood flow regulation fully restored in the muscles of men with BMD by boosting NO-cGMP signaling with a single dose of the drug tadalafil, a phosphodiesterase (PDE5A) inhibitor. These results further support an essential role for sarcolemmal nNOSμ in the normal modulation of sympathetic vasoconstriction in exercising human skeletal muscle and implicate the NO-cGMP pathway as a putative new target for treating BMD. PMID:23197572

  6. Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy.

    Science.gov (United States)

    Martin, Elizabeth A; Barresi, Rita; Byrne, Barry J; Tsimerinov, Evgeny I; Scott, Bryan L; Walker, Ashley E; Gurudevan, Swaminatha V; Anene, Francine; Elashoff, Robert M; Thomas, Gail D; Victor, Ronald G

    2012-11-28

    Becker muscular dystrophy (BMD) is a progressive X-linked muscle wasting disease for which there is no treatment. Like Duchenne muscular dystrophy (DMD), BMD is caused by mutations in the gene encoding dystrophin, a structural cytoskeletal protein that also targets other proteins to the muscle sarcolemma. Among these is neuronal nitric oxide synthase (nNOSμ), which requires certain spectrin-like repeats in dystrophin's rod domain and the adaptor protein α-syntrophin to be targeted to the sarcolemma. When healthy skeletal muscle is subjected to exercise, sarcolemmal nNOSμ-derived NO attenuates local α-adrenergic vasoconstriction, thereby optimizing perfusion of muscle. We found previously that this protective mechanism is defective-causing functional muscle ischemia-in dystrophin-deficient muscles of the mdx mouse (a model of DMD) and of children with DMD, in whom nNOSμ is mislocalized to the cytosol instead of the sarcolemma. We report that this protective mechanism also is defective in men with BMD in whom the most common dystrophin mutations disrupt sarcolemmal targeting of nNOSμ. In these men, the vasoconstrictor response, measured as a decrease in muscle oxygenation, to reflex sympathetic activation is not appropriately attenuated during exercise of the dystrophic muscles. In a randomized placebo-controlled crossover trial, we show that functional muscle ischemia is alleviated and normal blood flow regulation is fully restored in the muscles of men with BMD by boosting NO-cGMP (guanosine 3',5'-monophosphate) signaling with a single dose of the drug tadalafil, a phosphodiesterase 5A inhibitor. These results further support an essential role for sarcolemmal nNOSμ in the normal modulation of sympathetic vasoconstriction in exercising human skeletal muscle and implicate the NO-cGMP pathway as a putative new target for treating BMD.

  7. Genetics Home Reference: autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions APECED Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy Printable PDF Open All Close All ... view the expand/collapse boxes. Description Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy ( APECED ) is an inherited condition that ...

  8. Duchenne muscular dystrophy diagnosed by dystrophin gene deletion test: A case report

    Directory of Open Access Journals (Sweden)

    Rathod Kishor G, Dawre Rahul M, Kamble Milind B,Tambe Saleem H

    2014-04-01

    Full Text Available Duchenne muscular dystrophy (DMD is an X-linked recessive disease affecting 1 in 3600—6000 live male births. A muscle biopsy is not necessary if a genetic diagnosis is secured first, particularly as some families might view the procedure as traumatic. DMD occurs as a result of mutations (mainly deletions in the dystrophin gene (DMD; locus Xp21.2. Mutations lead to an absence of or defect in the protein dystrophin, which results in progressive muscle degeneration leading to loss of independent ambulation. Ninety percent of out frame mutations result in DMD, while 90% of in-frame mutations result in BMD. Electron microscopy is not required to confirm DMD. Genetic testing is mandatory irrespective of biopsy results. But the muscle biopsy is not required if the diagnosis is secured first by genetic testing.

  9. Serum Creatinine Distinguishes Duchenne Muscular Dystrophy from Becker Muscular Dystrophy in Patients Aged ≤3 Years: A Retrospective Study

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2017-05-01

    Full Text Available Here, we investigated correlations between serum creatinine (SCRN levels and clinical phenotypes of dystrophinopathy in young patients. Sixty-eight patients with dystrophinopathy at the Neuromuscular Clinic, The First Affiliated Hospital, Sun Yat-sen University, were selected for this study. The diagnosis of dystrophinopathy was based on clinical manifestation, biochemical changes, and molecular analysis. Some patients underwent muscle biopsies; SCRN levels were tested when patients were ≤3 years old, and reading frame changes were analyzed. Each patient was followed up, and motor function and clinical phenotype were assessed when the same patients were ≥4 years old. Our findings indicated that in young patients, lower SCRN levels were associated with increased disease severity (p < 0.01 and that SCRN levels were the highest in patients exhibiting mild Becker muscular dystrophy (BMD (p < 0.001 and the lowest in patients with Duchenne muscular dystrophy (DMD (p < 0.01 and were significantly higher in patients carrying in-frame mutations than in patients carrying out-of-frame mutations (p < 0.001. SCRN level cutoff values for identifying mild BMD [18 µmol/L; area under the curve (AUC: 0.947; p < 0.001] and DMD (17 µmol/L; AUC: 0.837; p < 0.001 were established. These results suggest that SCRN might be a valuable biomarker for distinguishing DMD from BMD in patients aged ≤3 years and could assist in the selection of appropriate treatment strategies.

  10. Analysis of zearalenone and α-zearalenol in 100 foods and medicinal plants determined by HPLC-FLD and positive confirmation by LC-MS-MS.

    Science.gov (United States)

    Kong, Wei-Jun; Shen, Hong-Hong; Zhang, Xiao-Fei; Yang, Xiao-Li; Qiu, Feng; Ou-yang, Zhen; Yang, Mei-Hua

    2013-05-01

    Mycotoxins, which may contaminate many foods and medicinal plants, are poisonous to humans. A high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method was successfully developed for analysing the contamination levels of zearalenone (ZON) and its metabolite α-zearalenol (α-ZOL) in 100 widely consumed foods and medicinal plants in China. Samples were extracted with methanol-water (80:20, v/v), and cleaned up by using an immunoaffinity column. The limits of detection of this developed method for ZON and α-ZOL were 4 µg kg(-1) and 2.5 µg kg(-1) , respectively. Recoveries for the samples spiked with three levels (30, 60 and 300 µg kg(-1) for ZON and α-ZOL) ranged from 85.8% to 96.1% with relative standard deviation (RSD) of 2.6-7.1% for ZON, and from 89.9% to 98.7% with RSD of 1.9-9.2% for α-ZOL. Twelve (12%) of these tested samples were contaminated with ZON at levels ranging from 5.3 to 295.8 µg kg(-1). The most contaminated samples were Semen coicis, four of them in a concentration level exceeding 60 µg kg(-1) 'maximum level' (range 68.9-119.6 µg kg(-1)). Positive samples were further confirmed by liquid chromatography-tandem mass spectrometry. The results suggest that it is necessary to control ZON contamination in medicinal plants, especially Semen coicis. This is a successful study on the analysis of ZON and α-ZOL in medicinal plants in China by HPLC-FLD. Immunoaffinity clean-up and HPLC-FLD proved to have broad applicability in the field of simultaneously detecting ZON and α-ZOL in foods and medicinal plants and other complicated matrices. © 2012 Society of Chemical Industry.

  11. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Mei Li

    Full Text Available Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM. This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively.

  12. Deletion Analysis Of The Duchenne/Becker Muscular Dystrophy Gene Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Dastur R

    2003-01-01

    Full Text Available The diagnosis of Duchenne Muscular Dystrophy (DMD and Becker Muscular Dystrophy (BMD is mainly based on clinical profile, serum CPK values, muscle biopsy and immunostaining for dystrophin. Most recent and accurate method for diagnosing DMD/BMD is by detection of mutations in the DMD gene. This was done in 100 unrelated patients using 19 exons including the promoter region in two sets of multiplex polymerase chain reaction (PCR. These primers amplify most of the exons in the deletion prone ′hotspot′ regions allowing determination of deletion end point. Intragenic deletions were detected in 74 patients indicating that the use of PCR-based assays will allow deletion detection help in prenatal diagnosis for most of the DMD/BMD patients. The frequency of deletions observed in the present study was 74%.

  13. Importance of Skin Changes in the Differential Diagnosis of Congenital Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Uluç Yis

    2016-01-01

    Full Text Available Megaconial congenital muscular dystrophy (OMIM 602541 is characterized with early-onset hypotonia, muscle wasting, proximal weakness, cardiomyopathy, mildly elevated serum creatine kinase (CK levels, and mild-to-moderate intellectual disability. We report two siblings in a consanguineous family admitted for psychomotor delay. Physical examination revealed proximal muscle weakness, contractures in the knee of elder sibling, diffuse mild generalized muscle atrophy, and dry skin with ichthyosis together with multiple nummular eczema in both siblings. Serum CK values were elevated up to 500 U/L. For genetic work-up, we performed whole exome sequencing (WES after Nimblegen enrichment on the Illumina platform. The WES revealed a novel homozygous missense mutation in the Choline Kinase-Beta (CHKB gene c.1031G>A (p.R344Q in exon 9. Ichthyosis-like skin changes with intense pruritus and nummular eczema may lead to clinical diagnosis in cases with megaconial congenital muscular dystrophy.

  14. Abnormal sympathetic innervation of the heart in a patient with Emery-Dreifuss muscular dystrophy.

    Science.gov (United States)

    Fujiita, Takashi; Shimizu, Masami; Kaku, Bunji; Kanaya, Hounin; Horita, Yuki; Uno, Yoshihide; Yamazaki, Tsukasa; Ohka, Takio; Sakata, Kenji; Mabuchi, Hiroshi

    2005-07-01

    A 33-year-old man was admitted for general malaise and vomiting. An electrocardiogram showed a complete atrioventricular block and an echocardiogram showed right atrial dilatation and normal wall motion of left ventricle (LV). Gene analysis showed nonsense mutation in the STA gene, which codes for emerin, and Emery-Dreifuss muscular dystrophy was diagnosed. An endomyocardial biopsy of right ventricle showed mild hypertrophy of myocytes. Myocardial scintigraphic studies with Tc-99m methoxyisobutylisonitrile (MIBI) and I-123-betamethyl-p-iodophenylpentadecanoic acid (BMIPP) scintigrams showed no abnormalities. In contrast, I-123 metaiodobenzylguanidine (MIBG) scintigrams showed a diffuse and severe decrease in accumulation of MIBG in the heart. Six months later, his LV wall motion on echocardiograms developed diffuse hypokinesis. These results suggest that the abnormality on I-123 MIBG myocardial scintigrams may predict LV dysfunction in Emery-Dreifuss muscular dystrophy.

  15. Myocardial Contractile Dysfunction is Present Without Histopathology in a Mouse Model of Limb-Girdle Muscular Dystrophy-2F and is Prevented after Claudin-5 Virotherapy

    Directory of Open Access Journals (Sweden)

    Nima Milani-Nejad

    2016-12-01

    Full Text Available AbstractMutations in several members of the dystrophin glycoprotein complex lead to skeletal and cardiomyopathies. Cardiac care for these muscular dystrophies consists of management of symptoms with standard heart medications after detection of reduced whole heart function. Recent evidence from both Duchenne muscular dystrophy patients and animal models suggests that myocardial dysfunction is present before myocardial damage or deficiencies in whole heart function, and that treatment prior to heart failure symptoms may be beneficial. To determine whether this same early myocardial dysfunction is present in other muscular dystrophy cardiomyopathies, we conducted a physiological assessment of cardiac function at the tissue level in the δ-sarcoglycan null mouse model (Sgcd-/- of Limb-girdle muscular dystrophy type 2F. Baseline cardiac contractile force measurements using ex vivo intact linear muscle preparations, were severely depressed in these mice without the presence of histopathology. Virotherapy with claudin-5 prevents the onset of cardiomyopathy in another muscular dystrophy model. After virotherapy with claudin-5, the cardiac contractile force deficits in Sgcd-/- mice are no longer significant. These studies suggest that screening Limb-girdle muscular dystrophy patients using methods that detect earlier functional changes may provide a longer therapeutic window for cardiac care.

  16. Generation of muscular dystrophy model rats with a CRISPR/Cas system.

    Science.gov (United States)

    Nakamura, Katsuyuki; Fujii, Wataru; Tsuboi, Masaya; Tanihata, Jun; Teramoto, Naomi; Takeuchi, Shiho; Naito, Kunihiko; Yamanouchi, Keitaro; Nishihara, Masugi

    2014-07-09

    Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder caused by mutations in the Dmd gene encoding Dystrophin. DMD model animals, such as mdx mice and canine X-linked muscular dystrophy dogs, have been widely utilized in the development of a treatment for DMD. Here, we demonstrate the generation of Dmd-mutated rats using a clustered interspaced short palindromic repeats (CRISPR)/Cas system, an RNA-based genome engineering technique that is also adaptive to rats. We simultaneously targeted two exons in the rat Dmd gene, which resulted in the absence of Dystrophin expression in the F0 generation. Dmd-mutated rats exhibited a decline in muscle strength, and the emergence of degenerative/regenerative phenotypes in the skeletal muscle, heart, and diaphragm. These mutations were heritable by the next generation, and F1 male rats exhibited similar phenotypes in their skeletal muscles. These model rats should prove to be useful for developing therapeutic methods to treat DMD.

  17. Median nail dystrophy involving the thumb nail

    Directory of Open Access Journals (Sweden)

    Rahulkrishna Kota

    2016-01-01

    Full Text Available Median canaliform dystrophy of Heller is a rare entity characterized by a midline or a paramedian ridge or split and canal formation in nail plate of one or both the thumb nails. It is an acquired condition resulting from a temporary defect in the matrix that interferes with nail formation. Habitual picking of the nail base may be responsible for some cases. Histopathology classically shows parakeratosis, accumulation of melanin within and between the nail bed keratinocytes. Treatment of median nail dystrophy includes injectable triamcinalone acetonide, topical 0.1% tacrolimus, and tazarotene 0.05%, which is many a times challenging for a dermatologist. Psychiatric opinion should be taken when associated with the depressive, obsessive-compulsive, or impulse-control disorder. We report a case of 19-year-old male diagnosed as median nail dystrophy.

  18. Exome sequencing of index patients with retinal dystrophies as a tool for molecular diagnosis.

    Directory of Open Access Journals (Sweden)

    Marta Corton

    Full Text Available Retinal dystrophies (RD are a group of hereditary diseases that lead to debilitating visual impairment and are usually transmitted as a Mendelian trait. Pathogenic mutations can occur in any of the 100 or more disease genes identified so far, making molecular diagnosis a rather laborious process. In this work we explored the use of whole exome sequencing (WES as a tool for identification of RD mutations, with the aim of assessing its applicability in a diagnostic context.We ascertained 12 Spanish families with seemingly recessive RD. All of the index patients underwent mutational pre-screening by chip-based sequence hybridization and resulted to be negative for known RD mutations. With the exception of one pedigree, to simulate a standard diagnostic scenario we processed by WES only the DNA from the index patient of each family, followed by in silico data analysis. We successfully identified causative mutations in patients from 10 different families, which were later verified by Sanger sequencing and co-segregation analyses. Specifically, we detected pathogenic DNA variants (∼50% novel mutations in the genes RP1, USH2A, CNGB3, NMNAT1, CHM, and ABCA4, responsible for retinitis pigmentosa, Usher syndrome, achromatopsia, Leber congenital amaurosis, choroideremia, or recessive Stargardt/cone-rod dystrophy cases.Despite the absence of genetic information from other family members that could help excluding nonpathogenic DNA variants, we could detect causative mutations in a variety of genes known to represent a wide spectrum of clinical phenotypes in 83% of the patients analyzed. Considering the constant drop in costs for human exome sequencing and the relative simplicity of the analyses made, this technique could represent a valuable tool for molecular diagnostics or genetic research, even in cases for which no genotypes from family members are available.

  19. Clinical trial network for the promotion of clinical research for rare diseases in Japan: muscular dystrophy clinical trial network.

    Science.gov (United States)

    Shimizu, Reiko; Ogata, Katsuhisa; Tamaura, Akemi; Kimura, En; Ohata, Maki; Takeshita, Eri; Nakamura, Harumasa; Takeda, Shin'ichi; Komaki, Hirofumi

    2016-07-11

    Duchenne muscular dystrophy (DMD) is the most commonly inherited neuromuscular disease. Therapeutic agents for the treatment of rare disease, namely "orphan drugs", have recently drawn the attention of researchers and pharmaceutical companies. To ensure the successful conduction of clinical trials to evaluate novel treatments for patients with rare diseases, an appropriate infrastructure is needed. One of the effective solutions for the lack of infrastructure is to establish a network of rare diseases. To accomplish the conduction of clinical trials in Japan, the Muscular dystrophy clinical trial network (MDCTN) was established by the clinical research group for muscular dystrophy, including the National Center of Neurology and Psychiatry, as well as national and university hospitals, all which have a long-standing history of research cooperation. Thirty-one medical institutions (17 national hospital organizations, 10 university hospitals, 1 national center, 2 public hospitals, and 1 private hospital) belong to this network and collaborate to facilitate clinical trials. The Care and Treatment Site Registry (CTSR) calculates and reports the proportion of patients with neuromuscular diseases in the cooperating sites. In total, there are 5,589 patients with neuromuscular diseases in Japan and the proportion of patients with each disease is as follows: DMD, 29 %; myotonic dystrophy type 1, 23 %; limb girdle muscular dystrophy, 11 %; Becker muscular dystrophy, 10 %. We work jointly to share updated health care information and standardized evaluations of clinical outcomes as well. The collaboration with the patient registry (CTSR), allows the MDCTN to recruit DMD participants with specific mutations and conditions, in a remarkably short period of time. Counting with a network that operates at a national level is important to address the corresponding national issues. Thus, our network will be able to contribute with international research activity, which can lead to

  20. Glycomic analyses of mouse models of congenital muscular dystrophy.

    Science.gov (United States)

    Stalnaker, Stephanie H; Aoki, Kazuhiro; Lim, Jae-Min; Porterfield, Mindy; Liu, Mian; Satz, Jakob S; Buskirk, Sean; Xiong, Yufang; Zhang, Peng; Campbell, Kevin P; Hu, Huaiyu; Live, David; Tiemeyer, Michael; Wells, Lance

    2011-06-17

    Dystroglycanopathies are a subset of congenital muscular dystrophies wherein α-dystroglycan (α-DG) is hypoglycosylated. α-DG is an extensively O-glycosylated extracellular matrix-binding protein and a key component of the dystrophin-glycoprotein complex. Previous studies have shown α-DG to be post-translationally modified by both O-GalNAc- and O-mannose-initiated glycan structures. Mutations in defined or putative glycosyltransferase genes involved in O-mannosylation are associated with a loss of ligand-binding activity of α-DG and are causal for various forms of congenital muscular dystrophy. In this study, we sought to perform glycomic analysis on brain O-linked glycan structures released from proteins of three different knock-out mouse models associated with O-mannosylation (POMGnT1, LARGE (Myd), and DAG1(-/-)). Using mass spectrometry approaches, we were able to identify nine O-mannose-initiated and 25 O-GalNAc-initiated glycan structures in wild-type littermate control mouse brains. Through our analysis, we were able to confirm that POMGnT1 is essential for the extension of all observed O-mannose glycan structures with β1,2-linked GlcNAc. Loss of LARGE expression in the Myd mouse had no observable effect on the O-mannose-initiated glycan structures characterized here. Interestingly, we also determined that similar amounts of O-mannose-initiated glycan structures are present on brain proteins from α-DG-lacking mice (DAG1) compared with wild-type mice, indicating that there must be additional proteins that are O-mannosylated in the mammalian brain. Our findings illustrate that classical β1,2-elongation and β1,6-GlcNAc branching of O-mannose glycan structures are dependent upon the POMGnT1 enzyme and that O-mannosylation is not limited solely to α-DG in the brain.

  1. Recent Advancements in Gene Therapy for Hereditary Retinal Dystrophies

    Directory of Open Access Journals (Sweden)

    Ayşe Öner

    2017-12-01

    Full Text Available Hereditary retinal dystrophies (HRDs are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision, and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles, with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family, highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been proposed as potentially efficacious therapies. Because of its favorable anatomical and immunological characteristics, the eye has been at the forefront of translational gene therapy. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Dozens of promising proofs of concept have been obtained in animal models of HRDs and some of them have been relayed to the clinic. The results from the first clinical trials for a congenital form of blindness have generated great interest and have demonstrated the safety and efficacy of intraocular administrations of viral vectors in humans. This review summarizes the clinical development of retinal gene therapy.

  2. Genetic testing for retinal dystrophies and dysfunctions: benefits, dilemmas and solutions.

    Science.gov (United States)

    Koenekoop, Robert K; Lopez, Irma; den Hollander, Anneke I; Allikmets, Rando; Cremers, Frans P M

    2007-07-01

    Human retinal dystrophies have unparalleled genetic and clinical diversity and are currently linked to more than 185 genetic loci. Genotyping is a crucial exercise, as human gene-specific clinical trials to study photoreceptor rescue are on their way. Testing confirms the diagnosis at the molecular level and allows for a more precise prognosis of the possible future clinical evolution. As treatments are gene-specific and the 'window of opportunity' is time-sensitive; accurate, rapid and cost-effective genetic testing will play an ever-increasing crucial role. The gold standard is sequencing but is fraught with excessive costs, time, manpower issues and finding non-pathogenic variants. Therefore, no centre offers testing of all currently 132 known genes. Several new micro-array technologies have emerged recently, that offer rapid, cost-effective and accurate genotyping. The new disease chips from Asper Ophthalmics (for Stargardt dystrophy, Leber congenital amaurosis [LCA], Usher syndromes and retinitis pigmentosa) offer an excellent first pass opportunity. All known mutations are placed on the chip and in 4 h a patient's DNA is screened. Identification rates (identifying at least one disease-associated mutation) are currently approximately 70% (Stargardt), approximately 60-70% (LCA) and approximately 45% (Usher syndrome subtype 1). This may be combined with genotype-phenotype correlations that suggest the causal gene from the clinical appearance (e.g. preserved para-arteriolar retinal pigment epithelium suggests the involvement of the CRB1 gene in LCA). As approximately 50% of the retinal dystrophy genes still await discovery, these technologies will improve dramatically as additional novel mutations are added. Genetic testing will then become standard practice to complement the ophthalmic evaluation.

  3. Large deletions of the KCNV2 gene are common in patients with cone dystrophy with supernormal rod response

    DEFF Research Database (Denmark)

    Wissinger, Bernd; Schaich, Simone; Baumann, Britta

    2011-01-01

    KCNV2 gene and one also includes the adjacent VLDLR gene. Furthermore, we investigated N-terminal amino acid substitution mutations for its effect on interaction with Kv2.1 using yeast two-hybrid technology. We found that these mutations dramatically reduce or abolish this interaction suggesting a lack......Cone dystrophy with supernormal rod response (CDSRR) is considered to be a very rare autosomal recessive retinal disorder. CDSRR is associated with mutations in KCNV2, a gene that encodes a modulatory subunit (Kv8.2) of a voltage-gated potassium channel. In this study, we found that KCNV2 mutations...... are present in a substantial fraction (2.2-4.3%) of a sample of 367 independent patients with a variety of initial clinical diagnoses of cone malfunction, indicating that CDSRR is underdiagnosed and more common than previously thought. In total, we identified 20 different KCNV2 mutations; 15 of them are novel...

  4. Respiratory muscle training in Duchenne muscular dystrophy.

    OpenAIRE

    Rodillo, E; Noble-Jamieson, C M; Aber, V; Heckmatt, J Z; Muntoni, F; Dubowitz, V

    1989-01-01

    Twenty two boys with Duchenne muscular dystrophy were entered into a randomised double blind crossover trial to compare respiratory muscle training with a Triflow II inspirometer and 'placebo' training with a mini peak flow meter. Supine posture was associated with significantly impaired lung function, but respiratory muscle training showed no benefit.

  5. Duchenne muscular dystrophy models show their age

    OpenAIRE

    Chamberlain, Jeffrey S.

    2010-01-01

    The lack of appropriate animal models has hampered efforts to develop therapies for Duchenne muscular dystrophy (DMD). A new mouse model lacking both dystrophin and telomerase (Sacco et al., 2010) closely mimics the pathological progression of human DMD and shows that muscle stem cell activity is a key determinant of disease severity.

  6. What Are the Treatments for Muscular Dystrophy?

    Science.gov (United States)

    ... Child Neurology Society. (2005). Practice parameter: Corticosteroid treatment of Duchenne dystrophy. Neurology, 64 , 13-20. Retrieved June 22, 2012, ... Statement. (2004). Respiratory care of the patient with Duchenne muscular ... American Journal of Respiratory and Critical Care Medicine, 170, 456-465. ...

  7. Visuospatial Attention Disturbance in Duchenne Muscular Dystrophy

    Science.gov (United States)

    De Moura, Maria Clara Drummond Soares; do Valle, Luiz Eduardo Ribeiro; Resende, Maria Bernadete Dutra; Pinto, Katia Osternack

    2010-01-01

    Aim: The cognitive deficits present in the Duchenne muscular dystrophy (DMD) are not yet well characterized. Attention, considered to be the brain mechanism responsible for the selection of sensory stimuli, could be disturbed in DMD, contributing, at least partially, to the observed global cognitive deficit. The aim of this study was to…

  8. Brain Function in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    J. Gordon Millichap

    2002-02-01

    Full Text Available The role of dystrophin disorders in the CNS function of boys with Duchenne muscular dystrophy (DMD and the dystrophin-deficient mdx mouse, an animal model of DMD, is reviewed at the University of New South Wales, University of Sydney, Australia.

  9. Duchenne muscular dystrophy - a molecular service

    African Journals Online (AJOL)

    In 1987 a carrier detection and prenatal diagnostic service for. Duchenne muscular dystrophy using molecular technology was instituted at the Department of Human Genetics, Uni- versity of Cape Town, to serve affe.cted families in southern. Africa. DNA samples from 100 affected male subjects and. 350 of their relatives ...

  10. Aberrant Myokine Signaling in Congenital Myotonic Dystrophy

    Directory of Open Access Journals (Sweden)

    Masayuki Nakamori

    2017-10-01

    Full Text Available Summary: Myotonic dystrophy types 1 (DM1 and 2 (DM2 are dominantly inherited neuromuscular disorders caused by a toxic gain of function of expanded CUG and CCUG repeats, respectively. Although both disorders are clinically similar, congenital myotonic dystrophy (CDM, a severe DM form, is found only in DM1. CDM is also characterized by muscle fiber immaturity not observed in adult DM, suggesting specific pathological mechanisms. Here, we revealed upregulation of the interleukin-6 (IL-6 myokine signaling pathway in CDM muscles. We also found a correlation between muscle immaturity and not only IL-6 expression but also expanded CTG repeat length and CpG methylation status upstream of the repeats. Aberrant CpG methylation was associated with transcriptional dysregulation at the repeat locus, increasing the toxic RNA burden that upregulates IL-6. Because the IL-6 pathway is involved in myocyte maturation and muscle atrophy, our results indicate that enhanced RNA toxicity contributes to severe CDM phenotypes through aberrant IL-6 signaling. : Congenital myotonic dystrophy (CDM manifests characteristic genetic (very large CTG repeat expansions, epigenetic (CpG hypermethylation upstream of the repeat, and phenotypic (muscle immaturity features not seen in adult DM. Nakamori et al. find phenotype-genotype and epigenotype correlation in CDM muscle and reveal involvement of the IL-6 myokine signaling pathway in the disease process. Keywords: CTCF, ER stress, IL-6, muscular dystrophy, NF-κB, trinucleotide, cytokine, splicing

  11. Hereditary muscular dystrophies and the heart

    NARCIS (Netherlands)

    Hermans, M. C. E.; Pinto, Y. M.; Merkies, I. S. J.; de Die-Smulders, C. E. M.; Crijns, H. J. G. M.; Faber, C. G.

    2010-01-01

    Cardiac disease is a common clinical manifestation of neuromuscular disorders, particularly of muscular dystrophies. Heart muscle cells as well as specialized conducting myocardial fibres may be affected by the dystrophic process. The incidence and nature of cardiac involvement vary with different

  12. Calpain 3 is important for muscle regeneration: Evidence from patients with limb girdle muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Hauerslev Simon

    2012-03-01

    Full Text Available Abstract Background Limb girdle muscular dystrophy (LGMD type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration. Methods We studied muscle regeneration in 22 patients with LGMD2A with calpain 3 deficiency, in five patients with LGMD2I, with a secondary reduction in calpain 3, and in five patients with Becker muscular dystrophy (BMD with normal calpain 3 levels. Regeneration was assessed by using the developmental markers neonatal myosin heavy chain (nMHC, vimentin, MyoD and myogenin and counting internally nucleated fibers. Results We found that the recent regeneration as determined by the number of nMHC/vimentin-positive fibers was greatly diminished in severely affected LGMD2A patients compared to similarly affected patients with LGMD2I and BMD. Whorled fibers, a sign of aberrant regeneration, was highly elevated in patients with a complete lack of calpain 3 compared to patients with residual calpain 3. Regeneration is not affected by location of the mutation in the CAPN3 gene. Conclusions Our findings suggest that calpain 3 is needed for the regenerative process probably during sarcomere remodeling as the complete lack of functional calpain 3 leads to the most severe phenotypes.

  13. What Can DuchenneConnect Teach Us About Treating Duchenne Muscular Dystrophy?

    Science.gov (United States)

    Wang, Richard T; Nelson, Stanley F

    2015-01-01

    Purpose of Review This review aims to describe the benefits and limitations of using the DuchenneConnect patient registry to provide information particularly in regard to active treatment choices in Duchenne muscular dystrophy and their impact on disease progression. Recent findings Clinical trials and natural history studies are difficult for rare diseases like Duchenne muscular dystrophy. Using an online patient self-report survey model, DuchenneConnect provides relevant data that are difficult to gather in other ways. Validation of the overall dataset is supported by comparable mutational spectrum relative to other cohorts and demonstrated beneficial effect of corticosteroid use in prolonging ambulation. These types of analyses are provocative and allow multivariate analyses across the breadth of patient and physician medication and supplement practices. Because the data is self-reported and online, the barrier to participation is low and great potential exists for novel directions of further research in a highly participatory forum. Summary Patient registries for Duchenne and Becker muscular dystrophy are powerful tools for monitoring patient outcomes, comparing treatments options, and relating information between patients, researchers and clinicians. DuchenneConnect is an online patient self-report registry for individuals with DBMD that facilitates aggregation of treatment modalities, outcomes and genotype data and has played a vital role in furthering DBMD research, particularly in the US, in a highly participatory and low cost manner. PMID:26356412

  14. What can Duchenne Connect teach us about treating Duchenne muscular dystrophy?

    Science.gov (United States)

    Wang, Richard T; Nelson, Stanley F

    2015-10-01

    This review aims to describe the benefits and limitations of using the Duchenne Connect patient registry to provide information particularly in regard to active treatment choices in Duchenne muscular dystrophy and their impact on disease progression. Clinical trials and natural history studies are difficult for rare diseases like Duchenne muscular dystrophy. Using an online patient self-report survey model, Duchenne Connect provides relevant data that are difficult to gather in other ways. Validation of the overall dataset is supported by comparable mutational spectrum relative to other cohorts and demonstrated beneficial effect of corticosteroid use in prolonging ambulation. These types of analyses are provocative and allow multivariate analyses across the breadth of patient and physician medication and supplement practices. Because the data are self-reported and online, the barrier to participation is low and great potential exists for novel directions of further research in a highly participatory forum. Patient registries for Duchenne and Becker muscular dystrophy (DBMD) are powerful tools for monitoring patient outcomes, comparing treatment options, and relating information between patients, researchers, and clinicians. Duchenne Connect is an online patient self-report registry for individuals with DBMD that facilitates aggregation of treatment modalities, outcomes, and genotype data and has played a vital role in furthering DBMD research, particularly in the USA, in a highly participatory and low-cost manner.

  15. Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice

    DEFF Research Database (Denmark)

    Guo, L T; Zhang, X U; Kuang, W

    2003-01-01

    2, lacking domain VI. Interestingly, all mutants lack laminin alpha2 in peripheral nerve. We have demonstrated previously, that overexpression of the human laminin alpha2 in skeletal muscle in dy(2J)/dy(2J) and dy(W)/dy(W) mice under the control of a striated muscle-specific creatine kinase promoter......Deficiency of laminin alpha2 is the cause of one of the most severe muscular dystrophies in humans and other species. It is not yet clear how particular mutations in the laminin alpha2 chain gene affect protein expression, and how abnormal levels or structure of the protein affect disease. Animal...

  16. Progressive dysphagia in limb-girdle muscular dystrophy type 2B.

    LENUS (Irish Health Repository)

    Walsh, Richard

    2012-02-01

    Dysphagia has not been reported in genetically confirmed limb-girdle muscular dystrophy type 2B (LGMD2B). A 40-year-old woman reported exercise-induced calf pain at age 34, followed by progressive lower and upper limb weakness. At age 38, progressive dysphagia for solids, and subsequently liquids, ensued. Endoscopic and videofluoroscopic-radiological findings indicated a myopathic swallowing disorder. Molecular genetic analysis confirmed two dysferlin gene mutations consistent with a compound heterozygote state. Progressive dysphagia should be considered as part of the expanding dysferlinopathy phenotype.

  17. Molecular Genetic Analysis of Fetal Tissues from a Family Affected by Myotonic Dystrophy

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Z.; Falk, Martin; Falková, I.; Feit, J.; Fajkusová, L.; Zítková, J.; Valášková, I.

    2012-01-01

    Roč. 75, č. 6 (2012), s. 730-736 ISSN 1210-7859 R&D Projects: GA AV ČR(CZ) IAA500040802; GA ČR GBP302/12/G157; GA ČR(CZ) GAP302/10/1022; GA MŠk(CZ) LD12039; GA MŠk(CZ) EE2.3.30.0030 Grant - others:IBCT(XE) MP1002 Nano-IBCT Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : myotonic dystrophy * DMPK mutation * fetal tissue Subject RIV: BO - Biophysics Impact factor: 0.366, year: 2012

  18. Brain natriuretic peptide is not predictive of dilated cardiomyopathy in Becker and Duchenne muscular dystrophy patients and carriers.

    Science.gov (United States)

    Schade van Westrum, Steven; Dekker, Lukas; de Haan, Rob; Endert, Erik; Ginjaar, Ieke; de Visser, Marianne; van der Kooi, Anneke

    2013-07-16

    Cardiomyopathy is reported in Duchenne and Becker muscle dystrophy patients and female carriers. Brain Natriuretic peptide (BNP) is a hormone produced mainly by ventricular cardiomyocytes and its production is up regulated in reaction to increased wall stretching. N-terminal-proBNP (NT-proBNP) has been shown to be a robust laboratory parameter to diagnose and monitor cardiac failure, and it may be helpful to screen for asymptomatic left ventricular dysfunction. Therefore we tested whether NT-proBNP can distinguish patients with Duchenne or Becker muscular dystrophy patients and carriers of a dystrophin mutation with a dilated cardiomyopathy from those without. In a cohort of Duchenne and Becker muscle dystrophy patients (n = 143) and carriers (n = 219) NT-proBNP was measured, and echocardiography was performed to diagnose dilated cardiomyopathy (DCM). In total sixty-one patients (17%) fulfilled the criteria for DCM, whereas 283 patients (78%) had an elevated NT-pro BNP. The sensitivity of NT-proBNP for DCM in patients or carriers was 85%, the specificity 23%, area under the ROC-curve = 0.56. In the specified subgroups there was also no association. Measurement of NT-pro BNP in patients suffering from Duchenne or Becker muscular dystrophy and carriers does not distinguish between those with and without dilated cardiomyopathy.

  19. A Study of CAP-1002 in Ambulatory and Non-Ambulatory Patients With Duchenne Muscular Dystrophy

    Science.gov (United States)

    2018-04-17

    Muscular Dystrophies; Muscular Dystrophy, Duchenne; Muscular Disorders, Atrophic; Muscular Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  20. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy

    Science.gov (United States)

    Rodrigues, Merryl; Echigoya, Yusuke; Fukada, So-ichiro; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models. PMID:27854202

  1. Growth and psychomotor development of patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Sarrazin, Elisabeth; von der Hagen, Maja; Schara, Ulrike; von Au, Katja; Kaindl, Angela M

    2014-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common hereditary degenerative neuromuscular diseases and caused by mutations in the dystrophin gene. The objective of the retrospective study was to describe growth and psychomotor development of patients with DMD and to detect a possible genotype-phenotype correlation. Data from 263 patients with DMD (mean age 7.1 years) treated at the Departments of Pediatric Neurology in three German University Hospitals was assessed with respect to body measurements (length, weight, body mass index BMI, head circumference OFC), motor and cognitive development as well as genotype (site of mutation). Anthropometric measures and developmental data were compared to those of a reference population and deviations were analyzed for their frequency in the cohort as well as in relation to the genotypes. Corticosteroid therapy was implemented in 29 from 263 patients. Overall 30% of the patients exhibit a short statue (length development at 2-5 years of age, and this is even more prevalent when steroid therapy is applied (45% of patients with steroid therapy). The BMI shows a rightwards shift (68% > 50th centile) and the OFC a leftwards shift (65% development is delayed in a third of the patients (mean age at walking 18.3 months, 30% > 18 months, 8% > 24 months). Almost half of the patients show cognitive impairment (26% learning disability, 17% intellectual disability). Although there is no strict genotype-phenotype correlation, particularly mutations in the distal part of the dystrophin gene are frequently associated with short stature and a high rate of microcephaly as well as cognitive impairment. Copyright © 2013 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  2. Comparison of Three Sample Preparation Procedures for the Quantification of L-Arginine, Asymmetric Dimethylarginine, and Symmetric Dimethylarginine in Human Plasma Using HPLC-FLD

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie Voigt; Lykkesfeldt, Jens

    2018-01-01

    Increased asymmetric dimethylarginine (ADMA) in human plasma has been associated with reduced generation of nitric oxide, leading to atherosclerotic diseases. ADMA may therefore be an important biomarker for cardiovascular disease. In the present study, three sample preparation techniques were co...... sample preparation of human plasma samples before HPLC-FLD in providing important information regarding elevated ADMA concentrations.......Increased asymmetric dimethylarginine (ADMA) in human plasma has been associated with reduced generation of nitric oxide, leading to atherosclerotic diseases. ADMA may therefore be an important biomarker for cardiovascular disease. In the present study, three sample preparation techniques were...... compared regarding the quantification of L-arginine and ADMA in human plasma: (A) protein precipitation (PP) based on aqueous trichloroacetic acid (TCA), (B) PP using a mixture of ammonia and acetonitrile, and (C) solid-phase extraction (SPE). The samples were analysed by using high-performance liquid...

  3. Development of a rapid, simple and sensitive HPLC-FLD method for determination of rhodamine B in chili-containing products.

    Science.gov (United States)

    Qi, Ping; Lin, Zhihao; Li, Jiaxu; Wang, ChengLong; Meng, WeiWei; Hong, Hong; Zhang, Xuewu

    2014-12-01

    In this work, a simple, rapid and sensitive analytical method for the determination of rhodamine B in chili-containing foodstuffs is described. The dye is extracted from samples with methanol and analysed without further cleanup procedure by high-performance liquid chromatography (HPLC) coupled to fluorescence detection (FLD). The influence of matrix fluorescent compounds (capsaicin and dihydrocapsaicin) on the analysis was overcome by the optimisation of mobile-phase composition. The limit of determination (LOD) and limit of quantification (LOQ) were 3.7 and 10 μg/kg, respectively. Validation data show a good repeatability and within-lab reproducibility with relative standard deviations rhodamine B in foodstuffs. This method is suitable for the routine analysis of rhodamine B due to its sensitivity, simplicity, reasonable time and cost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Serial prenatal and postnatal MRI of dystroglycanopathy in a patient with familial B3GALNT2 mutation

    International Nuclear Information System (INIS)

    Ho, Mai-Lan; Glenn, Orit A.; Sherr, Eliott H.; Strober, Jonathan B.

    2017-01-01

    The dystroglycanopathies are a heterogeneous group of conditions, with mutations in B3GALNT2 described in association with congenital muscular dystrophy. The serial prenatal MRI findings in this disorder have not been well described. We present sequential prenatal and postnatal MRI findings in a boy with compound heterozygous mutations in B3GALNT2, as well as the MRI findings of his two siblings with similar mutations. These findings provide new insight into the molecular pathogenesis and neurodevelopment of congenital muscular dystrophy. (orig.)

  5. Serial prenatal and postnatal MRI of dystroglycanopathy in a patient with familial B3GALNT2 mutation

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Mai-Lan [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Glenn, Orit A. [University of California, Department of Radiology, San Francisco, CA (United States); Sherr, Eliott H. [University of California, Department of Neurology, San Francisco, CA (United States); University of California, Department of Pediatrics, San Francisco, CA (United States); Strober, Jonathan B. [University of California, Department of Neurology, San Francisco, CA (United States)

    2017-06-15

    The dystroglycanopathies are a heterogeneous group of conditions, with mutations in B3GALNT2 described in association with congenital muscular dystrophy. The serial prenatal MRI findings in this disorder have not been well described. We present sequential prenatal and postnatal MRI findings in a boy with compound heterozygous mutations in B3GALNT2, as well as the MRI findings of his two siblings with similar mutations. These findings provide new insight into the molecular pathogenesis and neurodevelopment of congenital muscular dystrophy. (orig.)

  6. The golden retriever model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Kornegay, Joe N

    2017-05-19

    Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in the DMD gene and loss of the protein dystrophin. The absence of dystrophin leads to myofiber membrane fragility and necrosis, with eventual muscle atrophy and contractures. Affected boys typically die in their second or third decade due to either respiratory failure or cardiomyopathy. Despite extensive attempts to develop definitive therapies for DMD, the standard of care remains prednisone, which has only palliative benefits. Animal models, mainly the mdx mouse and golden retriever muscular dystrophy (GRMD) dog, have played a key role in studies of DMD pathogenesis and treatment development. Because the GRMD clinical syndrome is more severe than in mice, better aligning with the progressive course of DMD, canine studies may translate better to humans. The original founder dog for all GRMD colonies worldwide was identified in the early 1980s before the discovery of the DMD gene and dystrophin. Accordingly, analogies to DMD were initially drawn based on similar clinical features, ranging from the X-linked pattern of inheritance to overlapping histopathologic lesions. Confirmation of genetic homology between DMD and GRMD came with identification of the underlying GRMD mutation, a single nucleotide change that leads to exon skipping and an out-of-frame DMD transcript. GRMD colonies have subsequently been established to conduct pathogenetic and preclinical treatment studies. Simultaneous with the onset of GRMD treatment trials, phenotypic biomarkers were developed, allowing definitive characterization of treatment effect. Importantly, GRMD studies have not always substantiated findings from mdx mice and have sometimes identified serious treatment side effects. While the GRMD model may be more clinically relevant than the mdx mouse, usage has been limited by practical considerations related to expense and the number of dogs available. This further complicates ongoing broader concerns about

  7. A novel approach of periodate oxidation coupled with HPLC-FLD for the quantitative determination of 3-chloro-1,2-propanediol in water and vegetable oil.

    Science.gov (United States)

    Hu, Zhixiong; Cheng, Peng; Guo, Mingli; Zhang, Weinong; Qi, Yutang

    2013-07-10

    A novel approach of periodate oxidation coupled with high-performance liquid chromatography (HPLC)-fluorescence detection (FLD) for the quantitative determination of 3-chloro-1,2-propanediol (3-MCPD) has been established. The essence of this approach lies in the production of chloroacetaldehyde by the oxidization cleavage of 3-MCPD with sodium periodate and the HPLC analysis of chloroacetaldehyde monitored by an FLD detector after fluorescence derivatization with adenine. The experimental parameters relating to the efficiency of the derivative reaction such as concentration of adenine, chloroacetaldehyde reaction temperature, and time were studied. Under the optimized conditions, the proposed method can provide high sensitivity, good linearity (r(2) = 0.999), and repeatability (percent relative standard deviations between 2.57% and 3.44%), the limits of detection and quantification were 0.36 and 1.20 ng/mL, respectively, and the recoveries obtained for water samples were in the range 93.39-97.39%. This method has been successfully applied to the analysis of real water samples. Also this method has been successfully used for the analysis of vegetable oil samples after pretreatment with liquid-liquid extraction; the recoveries obtained by a spiking experiment with soybean oil ranged from 96.27% to 102.42%. In comparison with gas chromatography or gas chromatography-mass spectrometry, the proposed method can provide the advantages of simple instrumental requirement, easy operation, low cost, and high efficiency, thus making this approach another good choice for the sensitive determination of 3-MCPD.

  8. Optimization of ultra-performance liquid chromatography (UPLC) with fluorescence detector (FLD) method for the quantitative determination of selected neurotransmitters in rat brain.

    Science.gov (United States)

    Stragierowicz, Joanna; Daragó, Adam; Brzeźnicki, Sławomir; Kilanowicz, Anna

    2017-07-26

    Glutamate (Glu) and γ-aminobutyric acid (GABA) are the main neurotransmitters in the central nervous system for excitatory and inhibitory processes, respectively. Monitoring these neurotransmitters is an essential tool in establishing pathological functions, among others in terms of occupational exposure to toxic substances. We present modification of the HPLC (high-performance liquid chromatography) to the UPLC (ultra-performance liquid chromatography) method for the simultaneous determination of glutamate and γ-aminobutyric acid in a single injection. The isocratic separation of these neurotransmitter derivatives was performed on Waters Acquity BEH (ethylene bridged hybrid) C18 column with particle size of 1.7 μm at 35°C using a mobile phase consisting of 0.1 M acetate buffer (pH 6.0) and methanol (60:40, v/v) at a flow rate of 0.3 ml/min. The analytes were detected with the fluorescence detector (FLD) using derivatization with o-phthaldialdehyde (OPA), resulting in excitation at 340 nm and emission at 455 nm. Several validation parameters including linearity (0.999), accuracy (101.1%), intra-day precision (1.52-1.84%), inter-day precision (2.47-3.12%), limit of detection (5-30 ng/ml) and quantification (100 ng/ml) were examined. The developed method was also used for the determination of these neurotransmitters in homogenates of selected rat brain structures. The presented UPLC-FLD is characterized by shorter separation time (3.5 min), which is an adaptation of the similar HPLC methods and is an alternative for more expensive references techniques such as liquid chromatography coupled with tandem mass-spectrometry (LC-MS/MS) methods. Med Pr 2017;68(5):583-591. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  9. CINRG: Infrastructure for Clinical Trials in Duchenne Dystrophy

    Science.gov (United States)

    2013-09-01

    monitoring visit to monitor this study, the PITT0908 clinical trial, a study on facioscapulohumeral muscular dystrophy (FSHD), and PITT0112 Becker natural...height findings manuscript are currently in working stage and circulating among co-authors for editing. 2.3.6 Becker Muscular Dystrophy – A Natural...participants with Becker muscular dystrophy . The study period is 36 months per patient. This project is primarily funded by the National Institutes of

  10. Cognitive and Neurobehavioral Profile in Boys With Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Banihani, Rudaina; Smile, Sharon; Yoon, Grace; Dupuis, Annie; Mosleh, Maureen; Snider, Andrea; McAdam, Laura

    2015-10-01

    Duchenne muscular dystrophy is a progressive neuromuscular condition that has a high rate of cognitive and learning disabilities as well as neurobehavioral disorders, some of which have been associated with disruption of dystrophin isoforms. Retrospective cohort of 59 boys investigated the cognitive and neurobehavioral profile of boys with Duchenne muscular dystrophy. Full-scale IQ of Duchenne muscular dystrophy. © The Author(s) 2015.

  11. Molecular mechanisms of muscle atrophy in myotonic dystrophies

    OpenAIRE

    Timchenko, Lubov

    2013-01-01

    Myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2) are multisystemic diseases that primarily affect skeletal muscle, causing myotonia, muscle atrophy, and muscle weakness. DM1 and DM2 pathologies are caused by expansion of CTG and CCTG repeats in non-coding regions of the genes encoding myotonic dystrophy protein kinase (DMPK) and Zinc finger protein 9 (ZNF9) respectively. These expansions cause DM pathologies through accumulation of mutant RNAs that alter RNA metabolism in p...

  12. CT finding and cerebrospinal fluid proteins in muscular dystrophy patients

    International Nuclear Information System (INIS)

    Hirase, Tsutomu; Ide, Masami; Araki, Shukuro; Okamoto, Hiroshi; Kawasaki, Shoichiro; Imamura, Shigehiro.

    1983-01-01

    We analyzed the microcomponents of protein fractions in the cerebrospinal fluid of patients with various types of muscular dystrophy. The degenerative pattern is characterized by an increase in the prealbumin and a decrease in the γ-globulin fraction is shown in the Duchenne and congenital muscular dystrophy. The increase in CSF IgG, γ-globulin fraction is shown in the myotonic dystrophy. In addition to the abnormality of IQ, EEG, and brain CT, abnormal CSF proteins obviously suggest the presence of CNS involvement in muscular dystrophy. (author)

  13. CT finding and cerebrospinal fluid proteins in muscular dystrophy patients

    Energy Technology Data Exchange (ETDEWEB)

    Hirase, Tsutomu; Ide, Masami; Araki, Shukuro; Okamoto, Hiroshi (Kumamoto Univ. (Japan). School of Medicine); Kawasaki, Shoichiro; Imamura, Shigehiro

    1983-06-01

    We analyzed the microcomponents of protein fractions in the cerebrospinal fluid of patients with various types of muscular dystrophy. The degenerative pattern is characterized by an increase in the prealbumin and a decrease in the ..gamma..-globulin fraction is shown in the Duchenne and congenital muscular dystrophy. The increase in CSF IgG, ..gamma..-globulin fraction is shown in the myotonic dystrophy. In addition to the abnormality of IQ, EEG, and brain CT, abnormal CSF proteins obviously suggest the presence of CNS involvement in muscular dystrophy.

  14. Clinical characterisation of Becker muscular dystrophy patients predicts favourable outcome in exon-skipping therapy.

    Science.gov (United States)

    van den Bergen, J C; Schade van Westrum, S M; Dekker, L; van der Kooi, A J; de Visser, M; Wokke, B H A; Straathof, C S; Hulsker, M A; Aartsma-Rus, A; Verschuuren, J J; Ginjaar, H B

    2014-01-01

    Duchenne and Becker muscular dystrophy (DMD/BMD) are both caused by mutations in the DMD gene. Out-of-frame mutations in DMD lead to absence of the dystrophin protein, while in-frame BMD mutations cause production of internally deleted dystrophin. Clinically, patients with DMD loose ambulance around the age of 12, need ventilatory support at their late teens and die in their third or fourth decade due to pulmonary or cardiac failure. BMD has a more variable disease course. The disease course of patients with BMD with specific mutations could be very informative to predict the outcome of the exon-skipping therapy, aiming to restore the reading-frame in patients with DMD. Patients with BMD with a mutation equalling a DMD mutation after successful exon skipping were selected from the Dutch Dystrophinopathy Database. Information about disease course was gathered through a standardised questionnaire. Cardiac data were collected from medical correspondence and a previous study on cardiac function in BMD. Forty-eight patients were included, representing 11 different mutations. Median age of patients was 43 years (range 6-67). Nine patients were wheelchair users (26-56 years). Dilated cardiomyopathy was present in 7/36 patients. Only one patient used ventilatory support. Three patients had died at the age of 45, 50 and 76 years, respectively. This study provides mutation specific data on the course of disease in patients with BMD. It shows that the disease course of patients with BMD, with a mutation equalling a 'skipped' DMD mutation is relatively mild. This finding strongly supports the potential benefit of exon skipping in patients with DMD.

  15. [Human myopathy and animal muscular dystrophy].

    Science.gov (United States)

    Schapira, G; Dreyfus, J C; Schapira, F

    1977-08-01

    Two hereditary muscular dystrophies similar to human progressive muscular dystrophy (P.M.D. Duchenne type) have been isolated in animals, one in mouse, the other in chicken. The decrease in the activity of glycogenolytic enzymes is similar to that observed in denervated muscle. Isozymic fetal types for several muscular enzymes have been observed as well in chicken as in man, but this fetal type may also be found in neurogenic atrophy. The release in circulation of muscle enzymes seems more specific. But the origin of the genetic lesion is still unknown. We describe here the three different theories about this problem: i.e. neurogenic, vascular, or myogenic. This last theory implies a trouble of membrane permeability.

  16. Late occurrence of granular dystrophy in bilateral keratoconus: Penetrating keratoplasty and long-term follow-up

    Directory of Open Access Journals (Sweden)

    Varsha M Rathi

    2011-01-01

    Full Text Available We report a rare case of keratoconus with granular dystrophy with a follow-up of two decades, documenting the sequential presentation of two diseases confirmed by histology and genetic studies. A 13-year-old boy was diagnosed in 1988 with keratoconus in both eyes (BE based on slit-lamp biomicroscopy findings of corneal ectasia in BE accompanied by Fleischer′s ring, Vogt′s striae, a small, old, healed hydrops. The left eye (LE had central corneal thinning and scar in the central area involving the mid and posterior stroma secondary to healed hydrops. Penetrating keratoplasty (PKP was advised. The boy was lost to follow-up till 1991 and presented with white, dot-like opacities in the central cornea in the RE only, suggestive of granular corneal dystrophy. Similar findings of white, dot-like opacities were noted in the LE in 1995 and the patient subsequently underwent PKP in BE. Histopathology of corneal buttons confirmed the presence of patchy, crystal-like orange deposits, which stained bright red with Masson′s trichrome. Mutational analysis of the TGFBI gene in patient′s DNA revealed a heterozygous mutation corresponding to a change in Arg555Trp in the keratoepithelin protein. Granular dystrophy recurred after 8 years in the RE.

  17. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    Science.gov (United States)

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F.

    2017-01-01

    ABSTRACT Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. PMID:28188264

  18. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    Directory of Open Access Journals (Sweden)

    Ludovic Arandel

    2017-04-01

    Full Text Available Myotonic dystrophy type 1 (DM1 and type 2 (DM2 are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations.

  19. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds.

    Science.gov (United States)

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F; Furling, Denis

    2017-04-01

    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. © 2017. Published by The Company of Biologists Ltd.

  20. Defective myoblasts identified in Duchenne muscular dystrophy.

    OpenAIRE

    Blau, H M; Webster, C; Pavlath, G K

    1983-01-01

    A defect in the proliferative capacity of satellite cells, mononucleated precursors of mature muscle fibers, was found in clonal analyses of cells cultured from Duchenne muscular dystrophy (DMD) patients. The total yield of myoblasts per gram of muscle biopsy was decreased to 5% of normal. Of the DMD myoblast clones obtained, a large proportion contained a morphological class of flat distended cells that had an increased generation time and ceased to proliferate beyond 100-1,000 cells but cou...

  1. Urological manifestations of Duchenne muscular dystrophy.

    Science.gov (United States)

    Askeland, Eric J; Arlen, Angela M; Erickson, Bradley A; Mathews, Katherine D; Cooper, Christopher S

    2013-10-01

    Duchenne muscular dystrophy is a dystrophinopathy affecting males that is associated with multiple organ system complications. To our knowledge urological complications of Duchenne muscular dystrophy have been described only anecdotally to date. We reviewed the medical charts of 135 patients with Duchenne or Duchenne-Becker muscular dystrophy for demographics and disease progression, urological diagnoses, intervention and followup. Of 135 patients 67 (50%) had at least 1 documented urological diagnosis and 38 (28%) had multiple manifestations. Lower urinary tract symptoms were the most common urological diagnosis (32% of patients). Survival analysis revealed a median age at onset of lower urinary tract symptoms of 23 years (95% CI 17.7-23.9). Intervention was required in 12 patients (9%), most commonly due to nephrolithiasis. Urological morbidity increased with Duchenne muscular dystrophy progression when stratified by clinical progression. Lower urinary tract symptoms were more common in nonambulatory patients (40.7% vs 19%, p = 0.007), those with a diagnosis of scoliosis (44% vs 19.7%, p = 0.003) and/or scoliosis spine surgery (60% vs 22%, p <0.001), and those on invasive respiratory support (53% vs 29%, p = 0.046). Likewise, nephrolithiasis was more common in nonambulatory patients (10% vs 0%, p = 0.017), those with scoliosis (12% vs 0%, p = 0.004) and/or scoliosis spine surgery (20% vs 1%, p <0.001), and those on invasive respiratory support (29% vs 3%, p <0.001). Only 28% of patients with a urological manifestation were referred to urology. As these patients transition into adolescence and adulthood, the increased prevalence of urological manifestations warrants increased awareness and referral to urologists. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Corneal elastosis within lattice dystrophy lesions.

    Science.gov (United States)

    Pe'er, J; Fine, B S; Dixon, A; Rothberg, D S

    1988-01-01

    Corneal buttons of two patients with lattice corneal dystrophy were studied by light and electron microscopy. They showed elastotic degeneration within the amyloid deposits. The amyloid deposits displayed characteristic staining; the elastotic material (elastin) within the deposits stained positive with Verhoeff-van Gieson and Movat pentachrome stains and showed autofluorescence. The characteristic ultrastructural findings of amyloid and elastotic material were also demonstrated. The possibility of the associations of these two materials in the cornea is discussed. Images PMID:3258531

  3. Disability and Survival in Duchenne Muscular Dystrophy

    OpenAIRE

    Kohler, M; Clarenbach, C F; Bahler, C; Brack, T; Russi, E W; Bloch, K E

    2009-01-01

    BACKGROUND: Duchenne muscular dystrophy (DMD) leads to progressive impairment of muscle function, respiratory failure and premature death. Longitudinal data on the course of physical disability and respiratory function are sparse. OBJECTIVES: To prospectively assess physical impairment and disability, respiratory function and survival in DMD patients over several years in order to describe the course of the disease with current care. METHODS: In 43 patients with DMD, aged 5-35 years, yearly a...

  4. CONGENITAL MYOTONIC DYSTROPHY – CASE REPORT

    Directory of Open Access Journals (Sweden)

    David Neubauer

    2001-07-01

    Full Text Available Background. Myotonic dystrophy is inherited as an autosomal dominant trait. It is characterized by myotonia, myopathy of voluntary and involuntary muscles, frontal baldness in men, cardiac conduction abnormalities, catharacts, intellectual deterioration and endocrinopathy. Men with this disorder have often gonadal atrophy and infertility. On the other hand women are generally fertile. During pregnancy their myopathy worsens, often causing severe obstetrical complications. Their children may develop congenital form of the disease with signs of myopathy in utero and have great difficulties in maintaining life functions after birth, together with other characteristical signs of this form: bilateral facial weakness, severe hypotonia, feeding difficulties, talipes equinovarus and mental retardation. The authors present a female newborn with such congenital form of myotonic dystrophy.Conclusions. The authors have emphasized the importance of medical history, regular updating of all the cases of neuromuscular diseases in the region and clinical characteristics for the recognition of congenital form of myotonic dystrophy because of possible prenatal diagnostics and better antenatal and postantal care.

  5. Management of myocardial damage in muscular dystrophy

    International Nuclear Information System (INIS)

    Tamura, Takuhisa

    2011-01-01

    Heart failure (HF) is a fatal complication in many muscular dystrophy cases and has become the most common cause of death in Duchenne muscular dystrophy (DMD) since 2001. HF deaths in DMD occur in young patients and increase, along with respiratory failure, in older patients. Managing HF, therefore, is the most important component of DMD treatment. Management of HF is necessary in DMD patients of all ages because myocardial damage progresses regardless of age and disability. Electrocardiography, echocardiography, myocardial single-photon emission computed tomography (SPECT), and natriuretic peptides are used for the diagnosis of myocardial damage and chronic HF. Tissue Doppler echocardiography is in particularly useful for early detection of minute myocardial damage and dysfunction in DMD. The first-line drugs for chronic HF are angiotensin-converting enzyme inhibitors, and the prognosis of DMD patients has been improved using these drugs and beta-blockers. Diuretics are added in the presence of pulmonary congestion. Digoxin is most effective at a blood level of 0.5-0.8 ng/mL because of its pharmacokinetics in DMD. Surgical treatment may be necessary in cases of intractable HF. Cardiac resynchronization therapy (biventricular pacing), a treatment with an artificial pacemaker, is indicated for cases that meet specific criteria, including HF with ventricular dyssynchrony. Applications of partial left ventriculectomy (Batista procedure) and left ventricular assist devices in muscular dystrophy are likely in the near future. (author)

  6. Screening of Dystrophin Gene Deletions in Egyptian Patients with DMD/BMD Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Laila K. Effat

    2000-01-01

    Full Text Available Duchenne muscular dystrophy (DMD and Becker muscular dystrophy (BMD are allelic disorders caused by mutations within the dystrophin gene. Our study has identified 100 Egyptian families collected from the Human Genetics Clinic, National Research Center, Cairo. All cases were subjected to complete clinical evaluation pedigree analysis, electromyography studies, estimation of serum creatine phosphokinase enzyme (CPK levels and DNA analysis. Multiplex PCR using 18 pairs of specific primers were used for screening of deletion mutations within the dystrophin gene. A frequency of 55% among the families. Sixty per cent of detected deletions involved multiple exons spanning the major or the minor hot spot of the dystrophin gene. The remainder 40% which mainly involved exon 45. Comparing these findings with frequencies of other countries it was found that our figures fall within the reported range of 40%– for deletions. The distribution of deletions in our study and other different studies was variable and specific ethnic differences do not apparently account for specific deletions. In addition this study concluded that employment of the 18 exon analysis is a cost effective and a highly accurate (97% to launch a nationwide program.

  7. Correlation and role of nitric oxide (NO) and BCL-2 in duchenne muscular dystrophy (DMD) patients

    International Nuclear Information System (INIS)

    Moawed, F.S.M.

    2009-01-01

    Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disease caused by a genetic mutation that leads to the complete absence of the cytoskeletal protein dystrophin in muscle fibers. Although the mechanisms underlying muscle degeneration are still uncertain, oxidative-damage and regenerating aging have been proposed to play a key role. The aim of the present study was to test for these two theories, and to evaluate the possible ameliorative effect of He;Ne laser on them. Subjects and Methods: twenty-two duchenne muscular dystrophy boys (7-15 years old ) with proven dystrophin gene mutation, together with twenty-two normal males, who served as controls, were enrolled for this study. Initial blood samples were taken for the determinations of creatine kinase (CK), markers of replicative aging; in terms of plasma and lymphocyte Bcl-2 protein and apoptosis percentage in circulating mononuclear cells, along with those of oxidative stress in terms of lipid peroxidation (as plasma malondialdehyde MDA), catalase activity, cholesterol, triacylglycerol and nitric oxide. Whole blood samples were then irradiated with 2.5 j/cm 2 by He-Ne laser at wave length 632.8 nm and power output 10 MW.

  8. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.; Kunkel, L.M. (Harvard Medical School, Boston, MA (United States)); Arahata, Kiichi; Arikawa, Eri; Nonaka, Ikuya (National Inst. of Neuroscience, Tokyo (Japan))

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative to Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.

  9. Limb-girdle muscular dystrophy type 2A in Brazilian children

    Directory of Open Access Journals (Sweden)

    Marco Antônio Veloso de Albuquerque

    2015-12-01

    Full Text Available ABSTRACT Calpainopathy is an autosomal recessive limb girdle muscular dystrophy (LGMD2A caused by mutations in CAPN3 gene. Objective To present clinical and histological findings in six children with a molecular diagnosis of LGMD2A and additionally the MRI findings in two of them. Method We retrospectively assessed medical records of 6 patients with mutation on CAPN3 gene. Results All patients were female (three to 12 years. The mean of age of disease onset was 9 years. All of them showed progressive weakness with predominance in lower limbs. Other findings were scapular winging, joint contractures and calf hypertrophy. One female had a more severe phenotype than her dizygotic twin sister that was confirmed by muscle MRI. Muscle biopsies showed a dystrophic pattern in all patients. Conclusion In this cohort of children with LGMD2A, the clinical aspects were similar to adults with the same disorder.

  10. Genetic analysis of an Indian family with members affected with Waardenburg syndrome and Duchenne muscular dystrophy.

    Science.gov (United States)

    Kapoor, Saketh; Bindu, Parayil Sankaran; Taly, Arun B; Sinha, Sanjib; Gayathri, Narayanappa; Rani, S Vasantha; Chandak, Giriraj Ratan; Kumar, Arun

    2012-01-01

    Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.

  11. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.

    Science.gov (United States)

    Sabharwal, Rasna; Chapleau, Mark W

    2014-04-01

    New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of

  12. Muscular Dystrophies at Different Ages: Metabolic and Endocrine Alterations

    Directory of Open Access Journals (Sweden)

    Oriana del Rocío Cruz Guzmán

    2012-01-01

    Full Text Available Common metabolic and endocrine alterations exist across a wide range of muscular dystrophies. Skeletal muscle plays an important role in glucose metabolism and is a major participant in different signaling pathways. Therefore, its damage may lead to different metabolic disruptions. Two of the most important metabolic alterations in muscular dystrophies may be insulin resistance and obesity. However, only insulin resistance has been demonstrated in myotonic dystrophy. In addition, endocrine disturbances such as hypogonadism, low levels of testosterone, and growth hormone have been reported. This eventually will result in consequences such as growth failure and delayed puberty in the case of childhood dystrophies. Other consequences may be reduced male fertility, reduced spermatogenesis, and oligospermia, both in childhood as well as in adult muscular dystrophies. These facts all suggest that there is a need for better comprehension of metabolic and endocrine implications for muscular dystrophies with the purpose of developing improved clinical treatments and/or improvements in the quality of life of patients with dystrophy. Therefore, the aim of this paper is to describe the current knowledge about of metabolic and endocrine alterations in diverse types of dystrophinopathies, which will be divided into two groups: childhood and adult dystrophies which have different age of onset.

  13. Upper limb function in adults with Duchenne muscular dystrophy

    NARCIS (Netherlands)

    B. Bartels (Bart); R.F. Pangalila (Robert); M.P. Bergen (Michael); N.A.M. Cobben (Nicolle); H.J. Stam (Henk); M.E. Roebroeck (Marij)

    2011-01-01

    textabstractTo determine upper limb function and associated factors in adults with Duchenne muscular dystrophy. Design: Cross-sectional study. Subjects: A sample of 70 men with Duchenne muscular dystrophy (age range 20-43 years). Methods: General motor function and, in particular, upper limb distal

  14. Dysphagia is present but mild in myotonic dystrophy type 2

    NARCIS (Netherlands)

    R. Ensink; Bert de Swart; J. van Vliet; A. Tieleman; Baziel van Engelen; S. Knuijt

    2009-01-01

    The phenotype of myotonic dystrophy type 2 (DM2) shows similarities as well as differences to that of myotonic dystrophy type 1 (DM1). Dysphagia, a predominant feature in DM1, has not yet been examined in DM2. In a recent nationwide questionnaire survey of gastrointestinal symptoms in DM2, 12 out of

  15. Further delineation of spondylometaphyseal dysplasia with cone-rod dystrophy

    NARCIS (Netherlands)

    Sousa, Sérgio B.; Russell-Eggitt, Isabelle; Hall, Christine; Hall, Bryan D.; Hennekam, Raoul C. M.

    2008-01-01

    There are several entities that combine a skeletal dysplasia with a retinal dystrophy. Recently, another possibly autosomal recessive entity was added to this group characterized by a specific spondylometaphyseal dysplasia and a cone-rod dystrophy, without other significant impairments. The entity

  16. [Ocular findings in patients with Steinert myotonic dystrophy].

    Science.gov (United States)

    Markowska, Elzbieta; Zalewska, Renata; Mariak, Zofia; Wojnar, Małgorzata

    2006-01-01

    The authors present one of many myotonic dystrophies: Steinert myotonic dystrophy (Steinert disease), which is a disease occuring seldom, and causing a lot of problems during the diagnostic and treatment process. Genetic factors, results of the histopathology tests, main clinical symptoms, particularly ophtalmic manifestation are described in this article.

  17. Resistance training in patients with limb-girdle and becker muscular dystrophies

    DEFF Research Database (Denmark)

    Sveen, Marie-Louise; Andersen, Søren P; Ingelsrud, Lina H

    2013-01-01

    In this study we investigated the effect of strength training in patients with limb-girdle muscular dystrophy (LGMD) and Becker muscular dystrophy (BMD).......In this study we investigated the effect of strength training in patients with limb-girdle muscular dystrophy (LGMD) and Becker muscular dystrophy (BMD)....

  18. Granular corneal dystrophy Groenouw type I (GrI) and Reis-Bücklers' corneal dystrophy (R-B). One entity?

    Science.gov (United States)

    Møller, H U

    1989-12-01

    This paper maintains that Reis-Bücklers' corneal dystrophy and granular corneal dystrophy Groenouw type I are one and the same disease. Included are some of the technically best photographs of Reis-Bücklers' dystrophy found in the literature, and these are compared with photographs from patients with granular corneal dystrophy examined by the author. It is argued that most of the histological and ultrastructural findings on Reis Bücklers' dystrophy described in the literature are either congruent with what is found in granular corneal dystrophy or unspecific.

  19. A comparison of swallowing dysfunction in Becker muscular dystrophy and Duchenne muscular dystrophy.

    Science.gov (United States)

    Yamada, Yuka; Kawakami, Michiyuki; Wada, Ayako; Otsuka, Tomoyoshi; Muraoka, Kaori; Liu, Meigen

    2018-06-01

    Swallowing dysfunction has been reported in Duchenne muscular dystrophy (DMD), but has not been studied in Becker muscular dystrophy (BMD). The aims of this study were to report the characteristics of swallowing dysfunction in BMD compared with DMD. The study participants were 18 patients with BMD and 18 patients with DMD. All the patients were examined using videofluorography during swallowing of 5 mL of fluid. The penetration-aspiration scale (P-A scale) and the videofluorographic dysphagia scale (VDS) were used to evaluate dysphagia. Swinyard functional ability stage was not significantly different between the BMD and DMD groups. Rate of aspiration, P-A scale score, and total VDS score did not differ across groups, but the VDS item score for laryngeal elevation was lower in the BMD group than in the DMD group (median scores 4.5 and 9, respectively; p Becker muscular dystrophy (BMD) was not well known. Eighteen patients with BMD and 18 patients with Duchenne muscular dystrophy were examined with videofluorography. Patients with BMD have swallowing problems similar to those observed in patients with DMD.

  20. Signs and symptoms of Duchenne muscular dystrophy and Becker muscular dystrophy among carriers in the Netherlands : a cohort study

    NARCIS (Netherlands)

    Hoogerwaard, EM; Bakker, E; Ippel, PF; Oosterwijk, JC; Majoor-Krakauer, DF; Leschot, NJ; Van Essen, AJ; Brunner, HG; van der Wouw, PA; Wilde, AAM; de Visser, Marianne

    1999-01-01

    Background Carriers of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) may show muscle weakness or dilated cardiomyopathy. Studies focusing on skeletal-muscle involvement were done before DNA analysis was possible. We undertook a cross-sectional study in a population of

  1. Signs and symptoms of Duchenne muscular dystrophy and Becker muscular dystrophy among carriers in The Netherlands: a cohort study

    NARCIS (Netherlands)

    Hoogerwaard, E. M.; Bakker, E.; Ippel, P. F.; Oosterwijk, J. C.; Majoor-Krakauer, D. F.; Leschot, N. J.; van Essen, A. J.; Brunner, H. G.; van der Wouw, P. A.; Wilde, A. A.; de Visser, M.

    1999-01-01

    BACKGROUND: Carriers of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) may show muscle weakness or dilated cardiomyopathy. Studies focusing on skeletal-muscle involvement were done before DNA analysis was possible. We undertook a cross-sectional study in a population of

  2. Psychiatric disorders appear equally in patients with myotonic dystrophy, facioscapulohumeral dystrophy, and hereditary motor and sensory neuropathy type I.

    NARCIS (Netherlands)

    Kalkman, J.S.; Schillings, M.L.; Zwarts, M.J.; Engelen, B.G.M. van; Bleijenberg, G.

    2007-01-01

    OBJECTIVES: To study the presence of psychiatric comorbidity assessed by the use of a structured clinical interview and self-reported questionnaires in a large sample of patients with adult-onset myotonic dystrophy (DM), facioscapulohumeral muscular dystrophy (FSHD), and hereditary motor and sensory

  3. Highly sensitive determination of lipopeptide using HPLC-FLD%高效液相色谱-荧光检测法测定脂肽

    Institute of Scientific and Technical Information of China (English)

    徐磊; 赵劲毅; 李国桥; 刘金峰; 刚洪泽; 牟伯中; 杨世忠

    2017-01-01

    脂肽(表面活性素)在酸性水溶液中水解出的亮氨酸与丹磺酰氯反应而被标记,再用高效液相色谱—荧光检测法对标记后的亮氨酸进行检测.结果表明,在60℃反应30 min条件下,亮氨酸能被丹磺酰氯很好地标记.被标记后的亮氨酸色谱积分面积或峰高与亮氨酸及表面活性素的含量具有良好的线性关系,线性相关系数大于0.99.亮氨酸和表面活性素检出限分别为1.4 μmol/L和2.2μmol/L.表面活性素的平均回收率为94.6%.方法可应用于微量脂肽的定量测定.%The quantitative determination of lipopeptide with high sensitivity is important for the application of lipopeptide.An HPLC-FLD method was developed to quantify trace lipopeptide.Lipopeptide (surfactin) was hydrolyzed in an acid solution to release leucine,then the leucine was reacted with dansyl chloride.The dansylated leucine was detected by HPLC-FLD for a quantitative determination.The results showed that the leucine could be labeled well with dansyl chloride at 60℃ for 30 min.The relationship of integration area of dansylated leucine with surfactin or with leucine showed good linearity with the linear correlation coefficients above 0.99.The limits of detection for leucine and surfactin were 1.4 μmol/L and 2.2 μ,mol/L,respectively.The surfactin average recovery was 94.6%.This new approach can be applied in quantitative determination of trace lipopeptide.

  4. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    Science.gov (United States)

    Janghra, Narinder; Morgan, Jennifer E; Sewry, Caroline A; Wilson, Francis X; Davies, Kay E; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify

  5. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    Directory of Open Access Journals (Sweden)

    Narinder Janghra

    Full Text Available Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these

  6. Congenital muscular dystrophies--problems of classification.

    Science.gov (United States)

    Lenard, H G

    1991-04-01

    The classification of congenital muscular dystrophies (CMD), based on perceived clinical and morphological similarities or differences, is controversial. CMD without cerebral involvement has sometimes been divided into a mild and a severe form. This distinction is, however, arbitrary and not uncontested. Whether Ullrich's disease, formerly called atonic-sclerotic dystrophy, is a disease entity and if so, whether it is a primary muscle disorder, is uncertain. CMD without cerebral involvement is inherited in an autosomal recessive fashion in the great majority of cases. CMDs with cerebral involvement are usually classified into at least three forms: the Fukuyama type of CMD, occurring almost exclusively in Japanese patients; CMD with hypomyelination, sometimes also called the occidental type of cerebromuscular dystrophy; and Walker-Warburg syndrome. Muscle-eye-brain disease, described in a number of Finnish patients, may or may not belong in this last category. In CMD with cerebral involvement inheritance is also autosomal recessive. It is possible that single sporadic cases are phenocopies due to infectious or other exogenous causes. Reports of clinical and morphological findings from an increasing number of patients show a high degree of variability within and, on the other hand, certain similarities between the forms of CMD with cerebral involvement. In addition, neuroradiological changes are also found with increasing frequency in CMD patients without clinical neuropsychological abnormalities. It is not unreasonable to speculate that molecular genetic techniques will reveal in the near future a variable defect in one gene locus or defects in a few gene loci as the cause of the various clinical forms of CMDs.

  7. A neonate with congenital myotonic dystrophy

    International Nuclear Information System (INIS)

    Itani, Yasufumi; Anbo, Kazutoshi; Kashiwagi, Sigeru; Yokoya, Susumu; Kato, Kazuo

    1984-01-01

    A boy's neonate with congenital myotonic dystrophy who had difficulty in breathing immediately after birth was reported. A long-term management for artificial breathing was required because of a marked decrease of muscular tone, equinus and the difficulty in sucking milk. Myogenic pattern was seen on EMG and atrophied type I fibers and increased number of type 2 C fibers suggesting the prolongation of differentiation of muscle fibers were seen by muscle biopsy. Cranial CT revealed a marked atrophy of the cerebral cortex and low density area in the white matter, although the latter disappeared 4 months later. (Namekawa, K.)

  8. [Complete atrioventricular block in Duchenne muscular dystrophy].

    Science.gov (United States)

    Kuru, Satoshi; Tanahashi, Tamotsu; Matsumoto, Shinjirou; Kitamura, Tetsuya; Konagaya, Masaaki

    2012-01-01

    We report a case of complete atrioventricular (AV) block in a 40-year-old patient with Duchenne muscular dystrophy (DMD). While he was bed-ridden and required mechanical ventilation, his cardiac involvement was mild. He had the deletion of exon 45-52 in the dystrophin gene. He underwent transient complete AV block and came to require pacemaker implantation due to recurrence of complete AV block ten days after the first attack. Electrophysiological study revealed mild prolonged AH and HV interval. Although DMD patients with AV block have been rarely reported so far, attention should be paid to AV block for patients who prolonged their lives.

  9. Sesamin and sesamolin as unexpected contaminants in various cold-pressed plant oils: NP-HPLC/FLD/DAD and RP-UPLC-ESI/MS(n) study.

    Science.gov (United States)

    Górnaś, Paweł; Siger, Aleksander; Pugajeva, Iveta; Segliņa, Dalija

    2014-04-01

    Thirteen cold-pressed oils (Japanese quince seed, black caraway, flaxseed, rapeseed, hemp, peanut, sunflower, pumpkin, hazelnut, poppy, walnut, almond and sesame oil) manufactured by the same company over a 2-year period (2011-12) were assessed for lipophilic compounds. The presence of sesamin and sesamolin, two characteristic lignans of sesame oil, were detected in all tested plant oils. Both lignans were identified by NP-HPLC/FLD/DAD and confirmed by a RP-UPLC-ESI/MS(n) method. The lowest amount of sesamin and sesamolin was found for Japanese quince seed oil (0.10 and 0.27 mg/100 g), and the highest, excluding sesame oil, for almond oil (36.21 and 105.42 mg/100 g, respectively). The highly significant correlation between sesamolin and sesamin concentrations was found in all samples tested (r = 0.9999; p products manufactured by the same company can contribute to a lesser regard for the quality of the final product. Moreover, less attention paid to the quality of final product can be related to the health risks of consumers especially sensitive to allergens. Therefore, proper cleaning of processing equipment is needed to prevent cross-contact of cold-pressed oils.

  10. Survey of Canadian Myotonic Dystrophy Patients' Access to Computer Technology.

    Science.gov (United States)

    Climans, Seth A; Piechowicz, Christine; Koopman, Wilma J; Venance, Shannon L

    2017-09-01

    Myotonic dystrophy type 1 is an autosomal dominant condition affecting distal hand strength, energy, and cognition. Increasingly, patients and families are seeking information online. An online neuromuscular patient portal under development can help patients access resources and interact with each other regardless of location. It is unknown how individuals living with myotonic dystrophy interact with technology and whether barriers to access exist. We aimed to characterize technology use among participants with myotonic dystrophy and to determine whether there is interest in a patient portal. Surveys were mailed to 156 participants with myotonic dystrophy type 1 registered with the Canadian Neuromuscular Disease Registry. Seventy-five participants (60% female) responded; almost half were younger than 46 years. Most (84%) used the internet; almost half of the responders (47%) used social media. The complexity and cost of technology were commonly cited reasons not to use technology. The majority of responders (76%) were interested in a myotonic dystrophy patient portal. Patients in a Canada-wide registry of myotonic dystrophy have access to and use technology such as computers and mobile phones. These patients expressed interest in a portal that would provide them with an opportunity to network with others with myotonic dystrophy and to access information about the disease.

  11. Sensitivity and Frequencies of Dystrophin Gene Mutations in Thai DMD/BMD Patients As Detected by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    Thanyachai Sura

    2008-01-01

    Full Text Available Background: Duchenne muscular dystrophy (DMD, a lethal X-linked disease affecting 1 in 3500 male births, and its more benign variant, Becker muscular dystrophy (BMD, are caused by mutations in the dystrophin gene. Because of its large size, analysing the whole gene is impractical. Methods have been developed to detect the commonest mutations i.e. the deletions of the exons. Although these tests are highly specific, their sensitivity is inherently limited by the prevalence of deletions, which differs among different populations.

  12. Congenital muscle dystrophy and diet consistency affect mouse skull shape differently.

    Science.gov (United States)

    Spassov, Alexander; Toro-Ibacache, Viviana; Krautwald, Mirjam; Brinkmeier, Heinrich; Kupczik, Kornelius

    2017-11-01

    The bones of the mammalian skull respond plastically to changes in masticatory function. However, the extent to which muscle function affects the growth and development of the skull, whose regions have different maturity patterns, remains unclear. Using muscle dissection and 3D landmark-based geometric morphometrics we investigated the effect of changes in muscle function established either before or after weaning, on skull shape and muscle mass in adult mice. We compared temporalis and masseter mass and skull shape in mice with a congenital muscle dystrophy (mdx) and wild type (wt) mice fed on either a hard or a soft diet. We found that dystrophy and diet have distinct effects on the morphology of the skull and the masticatory muscles. Mdx mice show a flattened neurocranium with a more dorsally displaced foramen magnum and an anteriorly placed mandibular condyle compared with wt mice. Compared with hard diet mice, soft diet mice had lower masseter mass and a face with more gracile features as well as labially inclined incisors, suggesting reduced bite strength. Thus, while the early-maturing neurocranium and the posterior portion of the mandible are affected by the congenital dystrophy, the late-maturing face including the anterior part of the mandible responds to dietary differences irrespective of the mdx mutation. Our study confirms a hierarchical, tripartite organisation of the skull (comprising neurocranium, face and mandible) with a modular division based on development and function. Moreover, we provide further experimental evidence that masticatory loading is one of the main environmental stimuli that generate craniofacial variation. © 2017 Anatomical Society.

  13. Sildenafil reduces respiratory muscle weakness and fibrosis in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Percival, Justin M; Whitehead, Nicholas P; Adams, Marvin E; Adamo, Candace M; Beavo, Joseph A; Froehner, Stanley C

    2012-09-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy caused by mutations in the dystrophin gene. Loss of dystrophin initiates a progressive decline in skeletal muscle integrity and contractile capacity which weakens respiratory muscles including the diaphragm, culminating in respiratory failure, the leading cause of morbidity and mortality in DMD patients. At present, corticosteroid treatment is the primary pharmacological intervention in DMD, but has limited efficacy and adverse side effects. Thus, there is an urgent need for new safe, cost-effective, and rapidly implementable treatments that slow disease progression. One promising new approach is the amplification of nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signalling pathways with phosphodiesterase 5 (PDE5) inhibitors. PDE5 inhibitors serve to amplify NO signalling that is attenuated in many neuromuscular diseases including DMD. We report here that a 14-week treatment of the mdx mouse model of DMD with the PDE5 inhibitor sildenafil (Viagra(®), Revatio(®)) significantly reduced mdx diaphragm muscle weakness without impacting fatigue resistance. In addition to enhancing respiratory muscle contractility, sildenafil also promoted normal extracellular matrix organization. PDE5 inhibition slowed the establishment of mdx diaphragm fibrosis and reduced matrix metalloproteinase-13 (MMP-13) expression. Sildenafil also normalized the expression of the pro-fibrotic (and pro-inflammatory) cytokine tumour necrosis factor α (TNFα). Sildenafil-treated mdx diaphragms accumulated significantly less Evans Blue tracer dye than untreated controls, which is also indicative of improved diaphragm muscle health. We conclude that sildenafil-mediated PDE5 inhibition significantly reduces diaphragm respiratory muscle dysfunction and pathology in the mdx mouse model of Duchenne muscular dystrophy. This study provides new insights into the therapeutic utility of targeting defects in NO

  14. MR imaging of fukuyama congenital muscular dystrophy; a case report

    International Nuclear Information System (INIS)

    Yoo, Jeong Hyun; Kim, Yoo Kyung; Koo, Hae Soo; Park, Ki Deuk

    2000-01-01

    Fukuyama congenital muscular dystrophy is a genetic disease and common in Japan. The typical clinical features are hypotonia with an early infantile onset and severe developmental delay. The diagnosis is based on pathologic evidence of muscular dystrophy revealed by biopsy or an increased serum creatine kinase levels. Involvement of the brain is characterized by abnormal cerebral cortical dysplasia, cerebellar dysplasia, and white matter changes. We encountered a case of Fukuyama congenital muscular dystrophy in which brain MRI findings were typical, and present this case together with a review of the literature

  15. Spectrum of small mutations in the dystrophin coding region

    Energy Technology Data Exchange (ETDEWEB)

    Prior, T.W.; Bartolo, C.; Pearl, D.K. [Ohio State Univ., Columbus, OH (United States)] [and others

    1995-07-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5` and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened {approximately} 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3` of exon 55. The extent of protein truncation caused by the 3` mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications. 71 refs., 2 figs., 2 tabs.

  16. Sleep disturbances in myotonic dystrophy type 2.

    Science.gov (United States)

    Shepard, Paul; Lam, Erek M; St Louis, Erik K; Dominik, Jacob

    2012-01-01

    Sleep disorders in myotonic dystrophy type 1 (DM1) are common and include sleep-disordered breathing, hypersomnia, and fatigue. Little is known regarding the occurrence of sleep disturbance in myotonic dystrophy type 2 (DM2). We hypothesized that DM2 patients may frequently harbor sleep disorders. We reviewed medical records of all genetically confirmed cases of DM2 seen at our sleep center between 1997 and 2010 for demographic, laboratory, overnight oximetry, and polysomnography (PSG) data. Eight patients (5 women, 3 men) with DM2 were identified. Excessive daytime sleepiness was seen in 6 patients (75%), insomnia in 5 (62.5%), and excessive fatigue in 4 (50%). Obstructive sleep apnea was diagnosed in 3 of 5 patients (60%) studied with PSG. Respiratory muscle weakness was present in all 6 patients (100%) who received pulmonary function testing. Four of 8 (50%) met criteria for diagnosis of restless legs syndrome. The clinical spectrum of DM2 may include a wide range of sleep disturbances. Although respiratory muscle weakness was frequent, sustained sleep-related hypoxia suggestive of hypoventilation was not seen in our patients. Further prospective studies are needed to examine the frequency and scope of sleep disturbances in DM2. Copyright © 2012 S. Karger AG, Basel.

  17. Muscle MRI findings in facioscapulohumeral muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Gerevini, Simonetta; Caliendo, Giandomenico; Falini, Andrea [IRCCS San Raffaele Scientific Institute, Neuroradiology Unit, Head and Neck Department, Milan (Italy); Scarlato, Marina; Previtali, Stefano Carlo [IRCCS San Raffaele Scientific Institute, Department of Neurology, INSPE and Division of Neuroscience, Milan (Italy); Maggi, Lorenzo; Pasanisi, Barbara; Morandi, Lucia [Fondazione IRCCS Istituto Neurologico ' ' Carlo Besta' ' , Neuromuscular Diseases and Neuroimmunology Unit, Milan (Italy); Cava, Mariangela [IRCCS San Raffaele Scientific Institute, Department of Radiology and Center for Experimental Imaging, Milan (Italy)

    2016-03-15

    Facioscapulohumeral muscular dystrophy (FSHD) is characterized by extremely variable degrees of facial, scapular and lower limb muscle involvement. Clinical and genetic determination can be difficult, as molecular analysis is not always definitive, and other similar muscle disorders may have overlapping clinical manifestations. Whole-body muscle MRI examination for fat infiltration, atrophy and oedema was performed to identify specific patterns of muscle involvement in FSHD patients (30 subjects), and compared to a group of control patients (23) affected by other myopathies (NFSHD). In FSHD patients, we detected a specific pattern of muscle fatty replacement and atrophy, particularly in upper girdle muscles. The most frequently affected muscles, including paucisymptomatic and severely affected FSHD patients, were trapezius, teres major and serratus anterior. Moreover, asymmetric muscle involvement was significantly higher in FSHD as compared to NFSHD patients. In conclusion, muscle MRI is very sensitive for identifying a specific pattern of involvement in FSHD patients and in detecting selective muscle involvement of non-clinically testable muscles. Muscle MRI constitutes a reliable tool for differentiating FSHD from other muscular dystrophies to direct diagnostic molecular analysis, as well as to investigate FSHD natural history and follow-up of the disease. (orig.)

  18. Myotonic Dystrophy Type 1 Management and Therapeutics.

    Science.gov (United States)

    Smith, Cheryl A; Gutmann, Laurie

    2016-12-01

    Myotonic dystrophy (DM1) is the most common form of adult muscular dystrophy. It is a multisystem disorder with a complex pathophysiology. Although inheritance is autosomal dominant, disease variability is attributed to anticipation, a maternal expansion bias, variable penetrance, somatic mosaicism, and a multitude of aberrant pre-mRNA splicing events. Patient presentations range from asymptomatic or mild late onset adult to severe congenital forms. Multiple organ systems may be affected. Patients may experience early cataracts, myotonia, muscle weakness/atrophy, fatigue, excessive daytime sleepiness, central/obstructive apnea, respiratory failure, cardiac arrhythmia, insulin resistance, dysphagia, GI dysmotility, cognitive impairment, Cluster C personality traits, and/or mood disorders. At present, there is no curative or disease-modifying treatment, although clinical treatment trials have become more promising. Management focuses on genetic counseling, preserving function and independence, preventing cardiopulmonary complications, and symptomatic treatment (e.g., pain, myotonia, hypersomnolence, etc.). Currently, there is an increasing international consensus on monitoring and treatment options for these patients which necessitates a multidisciplinary team to provide comprehensive, coordinated clinical care.

  19. Na+-H+ exchanger and proton channel in heart failure associated with Becker and Duchenne muscular dystrophies.

    Science.gov (United States)

    Bkaily, Ghassan; Jacques, Danielle

    2017-10-01

    Cardiomyopathy is found in patients with Duchenne (DMD) and Becker (BMD) muscular dystrophies, which are linked muscle diseases caused by mutations in the dystrophin gene. Dystrophin defects are not limited to DMD but are also present in mild BMD. The hereditary cardiomyopathic hamster of the UM-X7.1 strain is a particular experimental model of heart failure (HF) leading to early death in muscular dystrophy (dystrophin deficiency and sarcoglycan mutation) and heart disease (δ-sarcoglycan deficiency and dystrophin mutation) in human DMD. Using this model, our previous work showed a defect in intracellular sodium homeostasis before the appearance of any apparent biochemical and histological defects. This was attributed to the continual presence of the fetal slow sodium channel, which was also found to be active in human DMD. Due to muscular intracellular acidosis, the intracellular sodium overload in DMD and BMD was also due to sodium influx through the sodium-hydrogen exchanger NHE-1. Lifetime treatment with an NHE-1 inhibitor prevented intracellular Na + overload and early death due to HF. Our previous work also showed that another proton transporter, the voltage-gated proton channel (Hv1), exists in many cell types including heart cells and skeletal muscle fibers. The Hv1 could be indirectly implicated in the beneficial effect of blocking NHE-1.

  20. Unravelling the Complexity of Inherited Retinal Dystrophies Molecular Testing: Added Value of Targeted Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Isabella Bernardis

    2016-01-01

    Full Text Available To assess the clinical utility of targeted Next-Generation Sequencing (NGS for the diagnosis of Inherited Retinal Dystrophies (IRDs, a total of 109 subjects were enrolled in the study, including 88 IRD affected probands and 21 healthy relatives. Clinical diagnoses included Retinitis Pigmentosa (RP, Leber Congenital Amaurosis (LCA, Stargardt Disease (STGD, Best Macular Dystrophy (BMD, Usher Syndrome (USH, and other IRDs with undefined clinical diagnosis. Participants underwent a complete ophthalmologic examination followed by genetic counseling. A custom AmpliSeq™ panel of 72 IRD-related genes was designed for the analysis and tested using Ion semiconductor Next-Generation Sequencing (NGS. Potential disease-causing mutations were identified in 59.1% of probands, comprising mutations in 16 genes. The highest diagnostic yields were achieved for BMD, LCA, USH, and STGD patients, whereas RP confirmed its high genetic heterogeneity. Causative mutations were identified in 17.6% of probands with undefined diagnosis. Revision of the initial diagnosis was performed for 9.6% of genetically diagnosed patients. This study demonstrates that NGS represents a comprehensive cost-effective approach for IRDs molecular diagnosis. The identification of the genetic alterations underlying the phenotype enabled the clinicians to achieve a more accurate diagnosis. The results emphasize the importance of molecular diagnosis coupled with clinic information to unravel the extensive phenotypic heterogeneity of these diseases.

  1. A gene for late-onset fundus flavimaculatus with macular dystrophy maps to chromosome 1p13

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, S.; Rozet, J.M.; Bonneau, D.; Souied, E.; Camuzat, A.; Munnich, A.; Kaplan, J. [Hopital des Enfants Malades, Paris (France); Dufier, J.L. [Hopital Laeennec, Paris (France); Amalric, P. [Consultation d`Ophtalmologie, Albi (France); Weissenbach, J. [Genethon, Evry (France)

    1995-02-01

    Fundus flavimaculatus with macular dystrophy is an autosomal recessive disease responsible for a progressive loss of visual acuity in adulthood, with pigmentary changes of the macula, perimacular flecks, and atrophy of the retinal pigmentary epithelium. Since this condition shares several clinical features with Stargardt disease, which has been mapped to chromosome 1p21-p13, we tested the disease for linkage to chromosome 1p. We report the mapping of the disease locus to chromosome 1p13-p21, in the genetic interval defined by loci D1S435 and D1S415, in four multiplex families (maximum lod score 4.79 at recombination fraction 0 for probe AFM217xb2 at locus D1S435). Thus, despite differences in the age at onset, clinical course, and severity, fundus flavimaculatus with macular dystrophy and Stargardt disease are probably allelic disorders. This result supports the view that allelic mutations produce a continuum of macular dystrophies, with onset in early childhood to late adulthood. 16 refs., 3 figs., 1 tab.

  2. Amelioration of Muscle and Nerve Pathology in LAMA2 Muscular Dystrophy by AAV9-Mini-Agrin

    Directory of Open Access Journals (Sweden)

    Chunping Qiao

    2018-06-01

    Full Text Available LAMA2-related muscular dystrophy (LAMA2 MD is the most common and fatal form of early-onset congenital muscular dystrophies. Due to the large size of the laminin α2 cDNA and heterotrimeric structure of the protein, it is challenging to develop a gene-replacement therapy. Our group has developed a novel adeno-associated viral (AAV vector carrying the mini-agrin, which is a non-homologous functional substitute for the mutated laminin α2. A significant therapeutic effect in skeletal muscle was observed in our previous study using AAV serotype 1 (AAV1. In this investigation, we examined AAV9 vector, which has more widespread transduction than AAV1, to determine if the therapeutic effects could be further improved. As expected, AAV9-mini-agrin treatment offered enhanced therapeutic effects over the previously used AAV1-mini-agrin in extending mouse lifespan and improvement of muscle pathology. Additionally, overexpression of mini-agrin in peripheral nerves of dyw/dyw mice partially amended nerve pathology as evidenced by improved motor function and sensorimotor processing, partial restoration of myelination, partial restoration of basement membrane via EM examination, as well as decreased regeneration of Schwann cells. In conclusion, our studies indicate that overexpression of mini-agrin into dyw/dyw mice offers profound therapeutic effects in both skeletal muscle and nervous system. Keywords: LAMA2, mini-agrin, muscular dystrophy, CMD, AAV, gene therapy

  3. Dystromirs as serum biomarkers for monitoring the disease severity in Duchenne muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Irina T Zaharieva

    Full Text Available Duchenne muscular Dystrophy (DMD is an inherited disease caused by mutations in the dystrophin gene that disrupt the open reading frame, while in frame mutations result in Becker muscular dystrophy (BMD. Ullrich congenital muscular dystrophy (UCMD is due to mutations affecting collagen VI genes. Specific muscle miRNAs (dystromirs are potential non-invasive biomarkers for monitoring the outcome of therapeutic interventions and disease progression. We quantified miR-1, miR-133a,b, miR-206 and miR-31 in serum from patients with DMD, BMD, UCMD and healthy controls. MiR-1, miR-133a,b and miR-206 were upregulated in DMD, but unchanged in UCMD compared to controls. Milder DMD patients had higher levels of dystromirs than more severely affected patients. Patients with low forced vital capacity (FVC values, indicating respiratory muscle weakness, had low levels of serum miR-1 and miR-133b. There was no significant difference in the level of the dystromirs in BMD compared to controls. We also assessed the effect of dystrophin restoration on the expression of the five dystromirs in serum of DMD patients treated systemically for 12 weeks with antisense oligomer eteplirsen that induces skipping of exon 51 in the dystrophin gene. The dystromirs were also analysed in muscle biopsies of DMD patients included in a single dose intramuscular eteplirsen clinical trial. Our analysis detected a trend towards normalization of these miRNA between the pre- and post-treatment samples of the systemic trial, which however failed to reach statistical significance. This could possibly be due to the small number of patients and the short duration of these clinical trials. Although longer term studies are needed to clarify the relationship between dystrophin restoration following therapeutic intervention and the level of circulating miRNAs, our results indicate that miR-1 and miR-133 can be considered as exploratory biomarkers for monitoring the progression of muscle weakness

  4. Serum creatinine level: a supplemental index to distinguish Duchenne muscular dystrophy from Becker muscular dystrophy.

    Science.gov (United States)

    Zhang, Huili; Zhu, Yuling; Sun, Yiming; Liang, Yingyin; Li, Yaqin; Zhang, Yu; Deng, Langhui; Wen, Xingxuan; Zhang, Cheng

    2015-01-01

    To improve assessment of dystrophinopathy, the aim of this study was to identify whether serum creatinine (Crn) level reflects disease severity. Biochemical, Vignos score, and genetic data were collected on 212 boys with dystrophinopathy. Serum Crn level had a strong inverse correlation with Vignos score by simple correlation (r = -0.793) and partial correlation analysis after adjustment for age, height, and weight (r = -0.791; both P Becker muscular dystrophy (BMD) patients than Duchenne muscular dystrophy (DMD) patients at ages 4, 5, 7, and 9 yr (all P < 0.0125). After adjusting for age, height, and weight, BMD patients still had a significantly higher serum Crn level than DMD patients (β = 7.140,  t = 6.277,  P < 0.01). Serum Crn level reflected disease severity and may serve as a supplemental index to distinguish DMD from BMD in clinical practice.

  5. Guidelines for the Perianesthesia Care of the Duchenne Muscular Dystrophy/Becker Muscular Dystrophy Patient.

    Science.gov (United States)

    Alliod, Barbara A; Ash, Rebecca A

    2016-12-01

    More patients suffering with Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are presenting to perianesthesia settings for emergent and nonemergent treatment and care. A group of collaborative health care providers at Rush University Medical Center in Chicago developed a multidisciplinary DMD/BMD Task Force to study this disorder and create a set of guidelines to aid those engaging in the planning, execution of care, and recovery of this unique population in the perianesthesia setting. Attention to detail, well-executed preplanning, meticulous awareness of the patient, and prearranged implementation and intervention has proven to offset potential problems and complications and is the key to a successful perianesthesia period. Copyright © 2016 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  6. Prevalence and Genetic Profile of Duchene and Becker Muscular Dystrophy in Puerto Rico.

    Science.gov (United States)

    Ramos, Edwardo; Conde, José G; Berrios, Rafael Arias; Pardo, Sherly; Gómez, Omar; Mas Rodríguez, Manuel F

    2016-05-27

    Duchenne and Becker Muscular Dystrophy (DMD and BMD, respectively), are common forms of inherited muscle disease. Information regarding the epidemiology of these conditions, including genotype, is still sparse. To establish the prevalence and genetic profile of DMD and BMD in Puerto Rico. We collected data from medical records in all Muscular Dystrophy Association (MDA) clinics in Puerto Rico in order to estimate the prevalence of DMD and BMD and to describe the genotypic profile of these patients. Patients selected for data analysis matched "definite", "probable" and "possible" case definitions as established by MD STARnet. A total of 141 patients matched the inclusion criteria, with 64.5% and 35.5% being categorized into DMD and BMD, respectively. DMD and BMD prevalence in Puerto Rico was estimated at 5.18 and 2.84 per 100,000 males, respectively. Deletion was the most common form of mutation (66.7%) in the dystrophin gene, with exons in segment 45 to 47 being the most frequently affected. This is the first report of the prevalence and genetic profile characteristics of DMD and BMD in Puerto Rico. Prevalence of DMD was similar to that reported worldwide, while prevalence of BMD was higher. Genetic profile was consistent with that reported in the literature.

  7. Studying the role of dystrophin-associated proteins in influencing Becker muscular dystrophy disease severity.

    Science.gov (United States)

    van den Bergen, J C; Wokke, B H A; Hulsker, M A; Verschuuren, J J G M; Aartsma-Rus, A M

    2015-03-01

    Becker muscular dystrophy is characterized by a variable disease course. Many factors have been implicated to contribute to this diversity, among which the expression of several components of the dystrophin associated glycoprotein complex. Together with dystrophin, most of these proteins anchor the muscle fiber cytoskeleton to the extracellular matrix, thus protecting the muscle from contraction induced injury, while nNOS is primarily involved in inducing vasodilation during muscle contraction, enabling adequate muscle oxygenation. In the current study, we investigated the role of three components of the dystrophin associated glycoprotein complex (beta-dystroglycan, gamma-sarcoglycan and nNOS) and the dystrophin homologue utrophin on disease severity in Becker patients. Strength measurements, data about disease course and fresh muscle biopsies of the anterior tibial muscle were obtained from 24 Becker patients aged 19 to 66. The designation of Becker muscular dystrophy in this study was based on the mutation and not on the clinical severity. Contrary to previous studies, we were unable to find a relationship between expression of nNOS, beta-dystroglycan and gamma-sarcoglycan at the sarcolemma and disease severity, as measured by muscle strength in five muscle groups and age at reaching several disease milestones. Unexpectedly, we found an inverse correlation between utrophin expression at the sarcolemma and age at reaching disease milestones. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Novel compounds for the treatment of Duchenne muscular dystrophy: emerging therapeutic agents

    Directory of Open Access Journals (Sweden)

    Steve D Wilton

    2011-03-01

    Full Text Available Steve D Wilton, Sue FletcherCentre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley, Perth, WA, AustraliaAbstract: The identification of dystrophin and the causative role of mutations in this gene in Duchenne and Becker muscular dystrophies (D/BMD was expected to lead to timely development of effective therapies. Despite over 20 years of research, corticosteroids remain the only available pharmacological treatment for DMD, although significant benefits and extended life have resulted from advances in the clinical care and management of DMD individuals. Effective treatment of DMD will require dystrophin restitution in skeletal, cardiac, and smooth muscles and nonmuscle tissues; however, modulation of muscle loss and regeneration has the potential to play an important role in altering the natural history of DMD, particularly in combination with other treatments. Emerging biological, molecular, and small molecule therapeutics are showing promise in ameliorating this devastating disease, and it is anticipated that regulatory environments will need to display some flexibility in order to accommodate the new treatment paradigms.Keywords: Duchenne muscular dystrophy, molecular therapeutics, small molecules

  9. The Classification, Natural History and Treatment of the Limb Girdle Muscular Dystrophies.

    Science.gov (United States)

    Murphy, Alexander Peter; Straub, Volker

    2015-07-22

    Over sixty years ago John Walton and Frederick Nattrass defined limb girdle muscular dystrophy (LGMD) as a separate entity from the X-linked dystrophinopathies such as Duchenne and Becker muscular dystrophies. LGMD is a highly heterogeneous group of very rare neuromuscular disorders whose common factor is their autosomal inheritance. Sixty years later, with the development of increasingly advanced molecular genetic investigations, a more precise classification and understanding of the pathogenesis is possible.To date, over 30 distinct subtypes of LGMD have been identified, most of them inherited in an autosomal recessive fashion. There are significant differences in the frequency of subtypes of LGMD between different ethnic populations, providing evidence of founder mutations. Clinically there is phenotypic heterogeneity between subtypes of LGMD with varying severity and age of onset of symptoms. The first natural history studies into subtypes of LGMD are in process, but large scale longitudinal data have been lacking due to the rare nature of these diseases. Following natural history data collection, the next challenge is to develop more effective, disease specific treatments. Current management is focussed on symptomatic and supportive treatments. Advances in the application of new omics technologies and the generation of large-scale biomedical data will help to better understand disease mechanisms in LGMD and should ultimately help to accelerate the development of novel and more effective therapeutic approaches.

  10. Contribution of oxidative stress to pathology in diaphragm and limb muscles with Duchenne muscular dystrophy.

    Science.gov (United States)

    Kim, Jong-Hee; Kwak, Hyo-Bum; Thompson, LaDora V; Lawler, John M

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease that makes walking and breathing difficult. DMD is caused by an X-linked (Xp21) mutation in the dystrophin gene. Dystrophin is a scaffolding protein located in the sarcolemmal cytoskeleton, important in maintaining structural integrity and regulating muscle cell (muscle fiber) growth and repair. Dystrophin deficiency in mouse models (e.g., mdx mouse) destabilizes the interface between muscle fibers and the extracellular matrix, resulting in profound damage, inflammation, and weakness in diaphragm and limb muscles. While the link between dystrophin deficiency with inflammation and pathology is multi-factorial, elevated oxidative stress has been proposed as a central mediator. Unfortunately, the use of non-specific antioxidant scavengers in mouse and human studies has led to inconsistent results, obscuring our understanding of the importance of redox signaling in pathology of muscular dystrophy. However, recent studies with more mechanistic approaches in mdx mice suggest that NAD(P)H oxidase and nuclear factor-kappaB are important in amplifying dystrophin-deficient muscle pathology. Therefore, more targeted antioxidant therapeutics may ameliorate damage and weakness in human population, thus promoting better muscle function and quality of life. This review will focus upon the pathobiology of dystrophin deficiency in diaphragm and limb muscle primarily in mouse models, with a rationale for development of targeted therapeutic antioxidants in DMD patients.

  11. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Larcher, Thibaut; Lafoux, Aude; Tesson, Laurent; Remy, Séverine; Thepenier, Virginie; François, Virginie; Le Guiner, Caroline; Goubin, Helicia; Dutilleul, Maéva; Guigand, Lydie; Toumaniantz, Gilles; De Cian, Anne; Boix, Charlotte; Renaud, Jean-Baptiste; Cherel, Yan; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio; Huchet, Corinne

    2014-01-01

    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  12. Diaphragm remodeling and compensatory respiratory mechanics in a canine model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Mead, A F; Petrov, M; Malik, A S; Mitchell, M A; Childers, M K; Bogan, J R; Seidner, G; Kornegay, J N; Stedman, H H

    2014-04-01

    Ventilatory insufficiency remains the leading cause of death and late stage morbidity in Duchenne muscular dystrophy (DMD). To address critical gaps in our knowledge of the pathobiology of respiratory functional decline, we used an integrative approach to study respiratory mechanics in a translational model of DMD. In studies of individual dogs with the Golden Retriever muscular dystrophy (GRMD) mutation, we found evidence of rapidly progressive loss of ventilatory capacity in association with dramatic morphometric remodeling of the diaphragm. Within the first year of life, the mechanics of breathing at rest, and especially during pharmacological stimulation of respiratory control pathways in the carotid bodies, shift such that the primary role of the diaphragm becomes the passive elastic storage of energy transferred from abdominal wall muscles, thereby permitting the expiratory musculature to share in the generation of inspiratory pressure and flow. In the diaphragm, this physiological shift is associated with the loss of sarcomeres in series (∼ 60%) and an increase in muscle stiffness (∼ 900%) compared with those of the nondystrophic diaphragm, as studied during perfusion ex vivo. In addition to providing much needed endpoint measures for assessing the efficacy of therapeutics, we expect these findings to be a starting point for a more precise understanding of respiratory failure in DMD.

  13. Duchenne muscular dystrophy in a female with compound heterozygous contiguous exon deletions.

    Science.gov (United States)

    Takeshita, Eri; Minami, Narihiro; Minami, Kumiko; Suzuki, Mikiya; Awashima, Takeya; Ishiyama, Akihiko; Komaki, Hirofumi; Nishino, Ichizo; Sasaki, Masayuki

    2017-06-01

    Females with Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) mutations rarely exhibit clinical symptoms from childhood, although potential mechanisms for symptoms associated with DMD and BMD in females have been reported. We report the case of a female DMD patient with a clinical course indistinguishable from that of a male DMD patient, and who possessed compound heterozygous contiguous exon deletions in the dystrophin gene. She exhibited Gowers' sign, calf muscle hypertrophy, and a high serum creatine kinase level at 2 years. Her muscle pathology showed most of the fibers were negative for dystrophin immunohistochemical staining. She lost ambulation at 11 years. Multiplex ligation-dependent probe amplification analysis of this gene detected one copy of exons 48-53; she was found to be a BMD carrier with an in-frame deletion. Messenger RNA from her muscle demonstrated out-of-frame deletions of exons 48-50 and 51-53 occurring on separate alleles. Genomic DNA from her lymphocytes demonstrated the accurate deletion region on each allele. To our knowledge, this is the first report on a female patient possessing compound heterozygous contiguous exon deletions in the dystrophin gene, leading to DMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Pneumothoraces in collagen VI-related dystrophy: a case series and recommendations for management

    Directory of Open Access Journals (Sweden)

    Kristin L. Fraser

    2017-06-01

    Full Text Available Collagen VI-related dystrophy (collagen VI-RD is a rare neuromuscular condition caused by mutations in the COL6A1, COL6A2 or COL6A3 genes. The phenotypic spectrum includes early-onset Ullrich congenital muscular dystrophy, adult-onset Bethlem myopathy and an intermediate phenotype. The disorder is characterised by distal hyperlaxity and progressive muscle weakness, joint contractures and respiratory insufficiency. Respiratory insufficiency is attributed to chest wall contractures, scoliosis, impaired diaphragmatic function and intercostal muscle weakness. To date, intrinsic parenchymal lung disease has not been implicated in the inevitable respiratory decline of these patients. This series focuses on pneumothorax, an important but previously under-recognised disease manifestation of collagen VI-RD. We describe two distinct clinical presentations within collagen VI-RD patients with pneumothorax. The first cohort consists of neonates and children with a single pneumothorax in the setting of large intrathoracic pressure changes. The second group is made up of adult patients with recurrent pneumothoraces, associated with chest computed tomography scan evidence of parenchymal lung disease. We describe treatment challenges in this unique population with respect to expectant observation, tube thoracostomy and open pleurodesis. Based on this experience, we offer recommendations for early identification of lung disease in collagen VI-RD and definitive intervention.

  15. Efficacy and Safety Profile of Tricyclo-DNA Antisense Oligonucleotides in Duchenne Muscular Dystrophy Mouse Model

    Directory of Open Access Journals (Sweden)

    Karima Relizani

    2017-09-01

    Full Text Available Antisense oligonucleotides (AONs hold promise for therapeutic splice-switching correction in many genetic diseases. However, despite advances in AON chemistry and design, systemic use of AONs is limited due to poor tissue uptake and sufficient therapeutic efficacy is still difficult to achieve. A novel class of AONs made of tricyclo-DNA (tcDNA is considered very promising for the treatment of Duchenne muscular dystrophy (DMD, a neuromuscular disease typically caused by frameshifting deletions or nonsense mutations in the gene-encoding dystrophin and characterized by progressive muscle weakness, cardiomyopathy, and respiratory failure in addition to cognitive impairment. Herein, we report the efficacy and toxicology profile of a 13-mer tcDNA in mdx mice. We show that systemic delivery of 13-mer tcDNA allows restoration of dystrophin in skeletal muscles and to a lower extent in the brain, leading to muscle function improvement and correction of behavioral features linked to the emotional/cognitive deficiency. More importantly, tcDNA treatment was generally limited to minimal glomerular changes and few cell necroses in proximal tubules, with only slight variation in serum and urinary kidney toxicity biomarker levels. These results demonstrate an encouraging safety profile for tcDNA, albeit typical of phosphorothiate AONs, and confirm its therapeutic potential for the systemic treatment of DMD patients. Keywords: antisense oligonucleotides, Duchenne muscular dystrophy, preclinical, splice switching, tcDNA-AONs

  16. TRIM32 ubiquitin E3 ligase, one enzyme for several pathologies: From muscular dystrophy to tumours.

    Science.gov (United States)

    Lazzari, Elisa; Meroni, Germana

    2016-10-01

    TRIM32 is a member of the TRIpartite Motif family characterised by the presence of an N-terminal three-domain-module that includes a RING domain, which confers E3 ubiquitin ligase activity, one or two B-box domains and a Coiled-Coil region that mediates oligomerisation. Several TRIM32 substrates were identified including muscular proteins and proteins involved in cell cycle regulation and cell motility. As ubiquitination is a versatile post-translational modification that can affect target turnover, sub-cellular localisation or activity, it is likely that diverse substrates may be differentially affected by TRIM32-mediated ubiquitination, reflecting its multi-faceted roles in muscle physiology, cancer and immunity. With particular relevance for muscle physiology, mutations in TRIM32 are associated with autosomal recessive Limb-Girdle Muscular Dystrophy 2H, a muscle-wasting disease with variable clinical spectrum ranging from almost asymptomatic to wheelchair-bound patients. In this review, we will focus on the ability of TRIM32 to mark specific substrates for proteasomal degradation discussing how the TRIM32-proteasome axis may (i) be important for muscle homeostasis and for the pathogenesis of muscular dystrophy; and (ii) define either an oncogenic or tumour suppressive role for TRIM32 in the context of different types of cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Progressive muscular dystrophy: Duchenne type. Controversies of the kinesitherapy treatment

    Directory of Open Access Journals (Sweden)

    Ana Valéria de Araujo Leitão

    Full Text Available The authors carried out a study of children with progressive muscular dystrophy of Duchenne type (DMD, giving special attention to physiatrical follow-up, having in mind that the practice of exercises has been debated very much in the specialized literature. The goal of this study is to try to settle the limits for the utilization of kinesitherapy which should be applied only in specific situations, such as: after skeletal muscular trauma or when the respiratory system is at risk. In this situation the physiatrical procedure would be to restrict physical activity, with early use of wheelchairs and the exclusion of the use of orthoses for orthostatism. DMD, at present, has been considered a result of duplication (60%, deletion (5 to 6% or point mutations at gen Xp21 (Zatz, 1994, that codifies a protein called Dystrophin ( Hoffman et al., 1987. Dystrophin is a cytoskeletal sarcolemmic protein that constitutes about .002% of the total protein of the muscle, present in skeletal fibers concentrated in muscle tendinous joints, which supplies mechanical reinforcement to the surface of the membrane during stretching and shortening physical activity. This protein is absent in DMD cases, wherefore, the sarcolemma undergoes a segmentary necrosis losing its contractile property during eccentric and concentric physical activity. The importance of physiatrical follow-up for DMD patients is to avoid deformities and tendon shortening, to ameliorate the patient's quality of life, to provide respiratory assistance and general couseling to members of the patient's family. The objective of this study is to try to clarify the risks and possibilities of kinesitherapy applied to DMD cases.

  18. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin

    Science.gov (United States)

    Marshall, Jamie L.; Oh, Jennifer; Chou, Eric; Lee, Joy A.; Holmberg, Johan; Burkin, Dean J.; Crosbie-Watson, Rachelle H.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in loss of the dystrophin–glycoprotein complex, a laminin receptor that connects the myofiber to its surrounding extracellular matrix. Utrophin, a dystrophin ortholog that is normally localized to the neuromuscular junction, is naturally upregulated in DMD muscle, which partially compensates for the loss of dystrophin. Transgenic overexpression of utrophin causes broad sarcolemma localization of utrophin, restoration of laminin binding and amelioration of disease in the mdx mouse model of DMD. We previously demonstrated that overexpression of sarcospan, a dystrophin- and utrophin-binding protein, ameliorates mdx muscular dystrophy. Sarcospan boosts levels of utrophin to therapeutic levels at the sarcolemma, where attachment to laminin is restored. However, understanding the compensatory mechanism is complicated by concomitant upregulation of α7β1 integrin, which also binds laminin. Similar to the effects of utrophin, transgenic overexpression of α7 integrin prevents DMD disease in mice and is accompanied by increased abundance of utrophin around the extra-synaptic sarcolemma. In order to investigate the mechanisms underlying sarcospan ‘rescue’ of muscular dystrophy, we created double-knockout mice to test the contributions of utrophin or α7 integrin. We show that sarcospan-mediated amelioration of muscular dystrophy in DMD mice is dependent on the presence of both utrophin and α7β1 integrin, even when they are individually expressed at therapeutic levels. Furthermore, we found that association of sarcospan into laminin-binding complexes is dependent on utrophin and α7β1 integrin. PMID:25504048

  19. Functions of fukutin, a gene responsible for Fukuyama type congenital muscular dystrophy, in neuromuscular system and other somatic organs.

    Science.gov (United States)

    Yamamoto, Tomoko; Shibata, Noriyuki; Saito, Yoshiaki; Osawa, Makiko; Kobayashi, Makio

    2010-06-01

    Fukuyama type congenital muscular dystrophy (FCMD) is an autosomal recessive disease, exhibiting muscular dystrophy, and central nervous system (CNS) and ocular malformations. It is included in alpha-dystroglycanopathy, a group of muscular dystrophy showing reduced glycosylation of alpha-dystroglycan. alpha-Dystroglycan is one of the components of dystrophin-glycoprotein complex linking extracellular and intracellular proteins. The sugar chains of alpha-dystroglycan are receptors for extracellular matrix proteins such as laminin. Fukutin, a gene responsible for FCMD, is presumably related to the glycosylation of alpha-dystroglycan like other causative genes of alpha-dystroglycanopathy. The CNS lesion of FCMD is characterized by cobblestone lissencephaly, associated with decreased glycosylation of alpha-dystroglycan in the glia limitans where the basement membrane is formed. Astrocytes whose endfeet form the glia limitans seem to be greatly involved in the genesis of the CNS lesion. Fukutin is probably necessary for astrocytic function. Other components of the CNS may also need fukutin, such as migration and synaptic function in neurons. However, roles of fukutin in oligodendroglia, microglia, leptomeninges and capillaries are unknown at present. Fukutin is expressed in various somatic organs as well, and appears to work differently between epithelial cells and astrocytes. In the molecular level, since the dystrophin-glycoprotein complex is linked to cell signaling pathways involving c-src and c-jun, fukutin may be able to affect cell proliferation/survival. Fukutin was localized in the nucleus on cancer cell lines. With the consideration that mutations of fukutin give rise to wide spectrum of the clinical phenotype, more unknown functions of fukutin besides the glycosylation of alpha-dystroglycan can be suggested. Trials for novel treatments including gene therapy are in progress in muscular dystrophies. Toward effective therapies with minimal side effects, precise

  20. Generation of GZKHQi001-A and GZWWTi001-A, two induced pluripotent stem cell lines derived from peripheral blood mononuclear cells of Duchenne muscular dystrophy patients

    Directory of Open Access Journals (Sweden)

    Xie Yuhuan

    2018-04-01

    Full Text Available Duchenne muscular dystrophy (DMD is an X-linked disease caused by mutations in the DMD gene, which spans ~2.4 Mb of genomic sequence at locus Xp21. This mutation results in the loss of the protein dystrophin. DMD patients die in their second or third decade due to either respiratory failure or cardiomyopathy, as the absence of dystrophin leads to myofiber membrane fragility and necrosis, eventually resulting in muscle atrophy and contractures. Currently, there is no effective treatment for DMD, therefore induced pluripotent stem cells from DMD patients would be a powerful tool for studying disease mechanisms.

  1. Dystrophin analysis in carriers of Duchenne and Becker muscular dystrophy

    NARCIS (Netherlands)

    Hoogerwaard, Edo M.; Ginjaar, Ieke B.; Bakker, Egbert; de Visser, Marianne

    2005-01-01

    Associations between clinical phenotype (muscle weakness, dilated cardiomyopathy) and dystrophin abnormalities in muscle tissue among definite carriers of Duchenne (DMD) and Becker muscular dystrophy (BMD) were investigated. No associations between dystrophin abnormalities and clinical variables in

  2. A new chart for weight control in Duchenne muscular dystrophy.

    OpenAIRE

    Griffiths, R D; Edwards, R H

    1988-01-01

    Weight control is desirable in the muscle wasting conditions. A new chart is presented to allow the prediction of an ideal weight, free of excess fat, specifically for boys with Duchenne muscular dystrophy.

  3. Nonmuscular involvement in merosin-negative congenital muscular dystrophy.

    NARCIS (Netherlands)

    Gilhuis, H.J.; Donkelaar, H.J. ten; Tanke, R.B.; Vingerhoets, D.M.; Zwarts, M.J.; Verrips, A.; Gabreëls, F.J.M.

    2002-01-01

    The spectrum of nonmuscular involvement in six children with merosin-negative congenital muscular dystrophy is described. In all children, biochemical, neuroradiologic, cardiac, and neurophysiologic studies were performed. Cerebral structures that were myelinated at gestation, including internal

  4. How Physicians Support Mothers of Children with Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Fujino, Haruo; Saito, Toshio; Matsumura, Tsuyoshi; Shibata, Saki; Iwata, Yuko; Fujimura, Harutoshi; Shinno, Susumu; Imura, Osamu

    2015-09-01

    Communicating about Duchenne muscular dystrophy and its prognosis can be difficult for affected children and their family. We focused on how physicians provide support to the mothers of children with Duchenne muscular dystrophy who have difficulty communicating about the condition with their child. The eligible participants were certified child neurologists of the Japanese Society of Child Neurology. Participants responded to questionnaires consisting of free descriptions of a vignette of a child with Duchenne muscular dystrophy and a mother. We analyzed 263 responses of the participants. We found 4 themes on advising mothers, involving encouraging communication, family autonomy, supporting family, and considering the child's concerns. These results provide a better understanding of the communication between physicians and family members who need help sharing information with a child with Duchenne muscular dystrophy. These findings will assist clinical practitioners in supporting families and the affected children throughout the course of their illness. © The Author(s) 2015.

  5. Clinical and molecular genetic analysis of best vitelliform macular dystrophy.

    NARCIS (Netherlands)

    Boon, C.J.F.; Theelen, T.; Hoefsloot, L.H.; Schooneveld, M.J. van; Keunen, J.E.E.; Cremers, F.P.M.; Klevering, B.J.; Hoyng, C.B.

    2009-01-01

    PURPOSE: To describe the phenotype of Best vitelliform macular dystrophy (BVMD) and to evaluate genotype-phenotype and histopathologic correlations. METHODS: Retrospective analysis of patients with BVMD who underwent an extensive ophthalmic examination, including best-corrected Snellen visual

  6. CLINICAL AND MOLECULAR GENETIC ANALYSIS OF BEST VITELLIFORM MACULAR DYSTROPHY

    NARCIS (Netherlands)

    Boon, Camiel J. F.; Theelen, Thomas; Hoefsloot, Elisabeth H.; van Schooneveld, Mary J.; Keunen, Jan E. E.; Cremers, Frans P. M.; Klevering, B. Jeroen; Hoyng, Carel B.

    2009-01-01

    Purpose: To describe the phenotype of Best vitelliform macular dystrophy (BVMD) and to evaluate genotype-phenotype and histopathologic correlations. Methods: Retrospective analysis of patients with BVMD who underwent an extensive ophthalmic examination, including best-corrected Snellen visual

  7. Predictive factors for masticatory performance in Duchenne muscular dystrophy

    NARCIS (Netherlands)

    Bruggen, H.W. van; Engel-Hoek, L. van den; Steenks, M.H.; Bronkhorst, E.M.; Creugers, N.H.; Groot, I.J.M. de; Kalaykova, S.

    2014-01-01

    Patients with Duchenne muscular dystrophy (DMD) report masticatory and swallowing problems. Such problems may cause complications such as choking, and feeling of food sticking in the throat. We investigated whether masticatory performance in DMD is objectively impaired, and explored predictive

  8. Strength training and albuterol in facioscapulohumeral muscular dystrophy

    NARCIS (Netherlands)

    van der Kooi, EL; Vogels, OJM; van Asseldonk, RJGP; Lindeman, E; Hendriks, JCM; Wohlgemuth, M; van der Maarel, SM; Padberg, GW

    2004-01-01

    Background: In animals and healthy volunteers beta2-adrenergic agonists increase muscle strength and mass, in particular when combined with strength training. In patients with facioscapulohumeral muscular dystrophy (FSHD) albuterol may exert anabolic effects. The authors evaluated the effect of

  9. Macular pattern dystrophy and homonymous hemianopia in MELAS syndrome.

    Science.gov (United States)

    Kamal-Salah, Radua; Baquero-Aranda, Isabel; Grana-Pérez, María Del Mar; García-Campos, Jose Manuel

    2015-03-12

    We report an unusual association of a pattern dystrophy of the retinal pigment epithelium and homonymous hemianopia in a woman diagnosed with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes syndrome. 2015 BMJ Publishing Group Ltd.

  10. [Central aleolar choroidal dystrophy in sibilings coexisting with alopecia].

    Science.gov (United States)

    Brydak-Godowska, Joanna; Dróbecka-Brydak, Ewa; Paćkowska, Maria; Kecik, Dariusz

    2007-01-01

    Central areolar choroidal dystrophy is localized in macular region and is characterized by atrophy of pigment epithelium, photoreceptors and choriocapillaris. This paper presents the history of two sibilings at the age of 23 and 30, with central aleolar choroidal dystrophy coexisting with alopecia. The results of erg, eog and fluorescein angiography are presented. The results of therapy for glaucoma associated with the Sturge-Weber syndrome are often disappointing.

  11. Pulmonary Endpoints in Duchenne Muscular Dystrophy. A Workshop Summary.

    Science.gov (United States)

    Finder, Jonathan; Mayer, Oscar Henry; Sheehan, Daniel; Sawnani, Hemant; Abresch, R Ted; Benditt, Joshua; Birnkrant, David J; Duong, Tina; Henricson, Erik; Kinnett, Kathi; McDonald, Craig M; Connolly, Anne M

    2017-08-15

    Development of novel therapeutics for treatment of Duchenne muscular dystrophy (DMD) has led to clinical trials that include pulmonary endpoints that allow assessment of respiratory muscle status, especially in nonambulatory subjects. Parent Project Muscular Dystrophy (PPMD) convened a workshop in Bethesda, Maryland, on April 14 and 15, 2016, to summarize published respiratory data in DMD and give guidance to clinical researchers assessing the effect of interventions on pulmonary outcomes in DMD.

  12. Prevalence and correlates of apathy in myotonic dystrophy type 1

    OpenAIRE

    Gallais, Benjamin; Montreuil, Mich?le; Gargiulo, Marcela; Eymard, Bruno; Gagnon, Cynthia; Laberge, Luc

    2015-01-01

    Background Apathy in DM1 has long been acknowledged in clinical practice. However, a major drawback is that the concept has been only sparsely explored in previous specific studies. This study aimed to determine the prevalence of apathy in myotonic dystrophy (DM1), to compare it with facioscapulohumeral dystrophy (FSHD) patients and normal healthy controls, and explore its relationship to psychopathological features and cognitive function. Methods Levels of apathy in 38 DM1 patients with adul...

  13. Concurrence of myotonic dystrophy and epilepsy: a case report

    OpenAIRE

    Worku, Dawit Kibru

    2014-01-01

    Introduction Myotonic dystrophy is a clinically and genetically heterogeneous multisystem disorder with a prevalence of 1 in 8000 in the general population. Case presentation A 25-year-old Ethiopian man presented with symptoms of myotonia, muscle wasting, gait problems, frontal baldness, and family history characterizing the hereditary disorder myotonic dystrophy. He had been on treatment for idiopathic generalized epilepsy for over 15 years. A needle electromyography showed insertional class...

  14. Congenital hereditary endothelial dystrophy with progressive sensorineural deafness (Harboyan syndrome

    Directory of Open Access Journals (Sweden)

    Abramowicz Marc

    2008-10-01

    Full Text Available Abstract Harboyan syndrome is a degenerative corneal disorder defined as congenital hereditary endothelial dystrophy (CHED accompanied by progressive, postlingual sensorineural hearing loss. To date, 24 cases from 11 families of various origin (Asian Indian, South American Indian, Sephardi Jewish, Brazilian Portuguese, Dutch, Gypsy, Moroccan, Dominican have been reported. More than 50% of the reported cases have been associated with parental consanguinity. The ocular manifestations in Harboyan syndrome include diffuse bilateral corneal edema occurring with severe corneal clouding, blurred vision, visual loss and nystagmus. They are apparent at birth or within the neonatal period and are indistinguishable from those characteristic of the autosomal recessive CHED (CHED2. Hearing deficit in Harboyan is slowly progressive and typically found in patients 10–25 years old. There are no reported cases with prelinglual deafness, however, a significant hearing loss in children as young as 4 years old has been detected by audiometry, suggesting that hearing may be affected earlier, even at birth. Harboyan syndrome is caused by mutations in the SLC4A11 gene located at the CHED2 locus on chromosome 20p13-p12, indicating that CHED2 and Harboyan syndrome are allelic disorders. A total of 62 different SLC4A11 mutations have been reported in 98 families (92 CHED2 and 6 Harboyan. All reported cases have been consistent with autosomal recessive transmission. Diagnosis is based on clinical criteria, detailed ophthalmological assessment and audiometry. A molecular confirmation of the clinical diagnosis is feasible. A variety of genetic, metabolic, developmental and acquired diseases presenting with clouding of the cornea should be considered in the differential diagnosis (Peters anomaly, sclerocornea, limbal dermoids, congenital glaucoma. Audiometry must be performed to differentiate Harboyan syndrome from CHED2. Autosomal recessive types of CHED (CHED2 and

  15. Reflex sympathetic dystrophy syndrome: MR imaging study

    International Nuclear Information System (INIS)

    Masciocchi, C.; Fascetti, E.; Bonanni, G.; Calvisi, V.; Buoni, C.; Passariello, R.

    1987-01-01

    Reflex sympathetic dystrophy syndrome (RSDS) is characterized by pain, swelling, and limitation of motion. The etiology and pathophysiology mechanism have not yet been identified. We considered eight patients with clinical signs of RSDS, in five cases located at the knee joint and in three cases in the hip. In all cases conventional radiography and radionuclide bone scanning were performed before MR imaging. Conventional radiography was negative in three cases while scintigraphy demonstrated the lesion in all patients. MR imaging showed an area of low intensity signal on T1-weighted scans and an increased signal intensity on T2-weighted images. This area is located at the bone marrow and its regular and homogeneous. This specific finding on MR images is due to reflect edema by hyperemia of the bone marrow. The MR imaging diagnosis was confirmed on clinical and radiological follow-up. MR imaging can have a role in the differential diagnosis when other studies are nondiagnostic or nonspecific for RSDS

  16. Fibroblast cultures in duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Ionasescu, V.; Lara-Braud, C.; Zellweger, H.; Ionasescu, R.; Burmeister, L.

    1977-01-01

    Primary skin fibroblast cultures were grown from forearm pinch skin biopsies obtained from 24 patients with Duchenne muscular dystrophy (DMD) and ten normal controls matched for sex and age. The first subcultures were grown for 7 days and incubated with L-( 3 H)-proline for 24 hours. Intracellular collagen incoption was significantly decreased (2.2 X) and extracellular collagen incorporation significantly increased (1.8 X) in fibroblast cultures from patients with DMD by both collagenase assay and polyacrylamide gel electrophoresis. The synthesis of noncollagen proteins showed low values from the DMD fibroblast cultures. The alterations in synthesis and secretion of collagen and noncollagen proteins were characteristic only for the log phase of DMD fibroblasts. (author)

  17. Intramuscular degeneration process in Duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Hasegawa, Takeshi; Matsumra, Kiichiro; Hashimoto, Takahiro; Ikehira, Hiroo; Fukuda, Hiroshi; Tateno, Yukio.

    1992-01-01

    Intramuscular degeneration process of Duchenne dystrophy skeletal muscles was investigated by longitudinal skeletal muscle imaging with high-field-strength NMR-CT of 1.5 Tesla. Thigh muscles in 10 cases ranging in age from 4 to 19 years were examined by T 1 -weighted longitudinal images (TR=215∼505 ms, TE=19∼20 ms). The following results were obtained. Skeletal muscle degeneration was depicted as high signal intensity area reflecting its high fat contents. These high signal intensity areas had a longitudinally streaky appearance in parallel direction with myofibers. These findings were more prominent toward myotendon junction than muscle bellies. Skeletal muscle degeneration progressed rapidly between 7 to 10 years of age, and reached a plateau after that. (author)

  18. Molecular Analysis-Based Genetic Characterization of a Cohort of Patients with Duchenne and Becker Muscular Dystrophy in Eastern China.

    Science.gov (United States)

    Zhao, Hui-Hui; Sun, Xue-Ping; Shi, Ming-Chao; Yi, Yong-Xiang; Cheng, Hong; Wang, Xing-Xia; Xu, Qing-Cheng; Ma, Hong-Ming; Wu, Hao-Quan; Jin, Qing-Wen; Niu, Qi

    2018-04-05

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are common X-linked recessive neuromuscular disorders caused by mutations in dystrophin gene. Multiplex polymerase chain reaction (multiplex PCR) and multiplex ligation-dependent probe amplification (MLPA) are the most common methods for detecting dystrophin gene mutations. This study aimed to contrast the two methods and discern the genetic characterization of patients with DMD/BMD in Eastern China. We collected 121 probands, 64 mothers of probands, and 15 fetuses in our study. The dystrophin gene was detected by multiplex PCR primarily in 28 probands, and MLPA was used in multiplex PCR-negative cases subsequently. The dystrophin gene of the remaining 93 probands and 62 female potential carriers was tested by MLPA directly. In fetuses, multiplex PCR and MLPA were performed on 4 fetuses and 10 fetuses, respectively. In addition, sequencing was also performed in 4 probands with negative MLPA. We found that 61.98% of the subjects had genetic mutations including deletions (50.41%) and duplications (11.57%). There were 43.75% of mothers as carriers of the mutation. In 15 fetuses, 2 out of 7 male fetuses were found to be unhealthy and 2 out of 8 female fetuses were found to be carriers. Exons 3-26 and 45-52 have the maximum frequency in mutation regions. In the frequency of exons individually, exon 47 and exon 50 were the most common in deleted regions and exons 5, 6, and 7 were found most frequently in duplicated regions. MLPA has better productivity and sensitivity than multiplex PCR. Prenatal diagnosis should be applied in DMD high-risk fetuses to reduce the disease incidence. Furthermore, it is the responsibility of physicians to inform female carriers the importance of prenatal diagnosis.

  19. Dystroglycan and muscular dystrophies related to the dystrophin-glycoprotein complex.

    Science.gov (United States)

    Sciandra, Francesca; Bozzi, Manuela; Bianchi, Marzia; Pavoni, Ernesto; Giardina, Bruno; Brancaccio, Andrea

    2003-01-01

    Dystroglycan (DG) is an adhesion molecule composed of two subunits, alpha and beta, that are produced by the post-translational cleavage of a single precursor molecule. DG is a pivotal component of the dystrophin-glycoprotein complex (DGC), which connects the extracellular matrix to the cytoskeleton in skeletal muscle and many other tissues. Some muscular dystrophies are caused by mutations of DGC components, such as dystrophin, sarcoglycan or laminin-2, or also of DGC-associated molecules, such as caveolin-3. DG-null mice died during early embriogenesis and no neuromuscular diseases directly associated to genetic abnormalities of DG were identified so far. However, DG plays a crucial role for muscle integrity since its targeting at the sarcolemma is often perturbed in DGC-related neuromuscular disorders.

  20. Restoration of half the normal dystrophin sequence in a double-deletion Duchenne muscular dystrophy family

    Energy Technology Data Exchange (ETDEWEB)

    Hoop, R.C.; Schwartz, L.S.; Hoffman, E.P. [Univ. of Pittsburgh School of Medicine, Pittsburgh, PA (United States); Russo, L.S. [Univ. of Florida, Jacksonville, FL (United States); Riconda, D.L. [Orlando Regional Medical Center, Orlando, FL (United States)

    1994-02-01

    Two male cousins with Duchenne muscular dystrophy were found to have different maternal dystrophin gene haplotypes and different deletion mutations. One propositus showed two noncontiguous deletions-one in the 5{prime}, proximal deletional hotspot region, and the other in the 3{prime}, more distal deletional hotspot region. The second propositus showed only the 5{prime} deletion. Using multiple fluorescent exon dosage and fluorescent multiplex CA repeat linkage analyses, the authors show that the mother of each propositus carries both deletions on the same grandmaternal X chromosome. This paradox is explained by a single recombinational event between the 2 deleted regions of one of the carrier`s dystrophin genes, giving rise to a son with a partially {open_quotes}repaired{close_quotes} gene retaining only the 5{prime} deletion. 20 refs., 4 figs.

  1. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management

    Science.gov (United States)

    Birnkrant, David J; Bushby, Katharine; Bann, Carla M; Alman, Benjamin A; Apkon, Susan D; Blackwell, Angela; Case, Laura E; Cripe, Linda; Hadjiyannakis, Stasia; Olson, Aaron K; Sheehan, Daniel W; Bolen, Julie; Weber, David R; Ward, Leanne M

    2018-01-01

    A coordinated, multidisciplinary approach to care is essential for optimum management of the primary manifestations and secondary complications of Duchenne muscular dystrophy (DMD). Contemporary care has been shaped by the availability of more sensitive diagnostic techniques and the earlier use of therapeutic interventions, which have the potential to improve patients’ duration and quality of life. In part 2 of this update of the DMD care considerations, we present the latest recommendations for respiratory, cardiac, bone health and osteoporosis, and orthopaedic and surgical management for boys and men with DMD. Additionally, we provide guidance on cardiac management for female carriers of a disease-causing mutation. The new care considerations acknowledge the effects of long-term glucocorticoid use on the natural history of DMD, and the need for care guidance across the lifespan as patients live longer. The management of DMD looks set to change substantially as new genetic and molecular therapies become available. PMID:29395990

  2. Phenotypic and pathologic evaluation of the myd mouse. A candidate model for facioscapulohumeral dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, K.D.; Rapisarda, D.; Bailey, H.L. [Univ. of Iowa College of Medicine, Iowa City, IA (United States)] [and others

    1995-07-01

    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant disease of unknown pathogenesis which is characterized by weakness of the face and shoulder girdle. It is associated with a sensorineural hearing loss which may be subclinical. FSHD has been mapped to the distalmost portion of 4q35, although the gene has not yet been identified. Distal 4q has homology with a region of mouse chromosome 8 to which a mouse mutant, myodystrophy (myd), has been mapped. Muscle from homozygotes for the myd mutation appears dystrophic, showing degenerating and regenerating fibers, inflammatory infiltrates, central nuclei, and variation in fiber size. Brainstem auditory evoked potentials reveal a sensorineural hearing loss in myd homozygotes. Based on the homologous genetic map locations, and the phenotypic syndrome of dystrophic muscle with sensorineural hearing loss, we suggest that myd represents an animal model for the human disease FSHD. 28 refs., 4 figs.

  3. Progress on gene therapy, cell therapy, and pharmacological strategies toward the treatment of oculopharyngeal muscular dystrophy.

    Science.gov (United States)

    Harish, Pradeep; Malerba, Alberto; Dickson, George; Bachtarzi, Houria

    2015-05-01

    Oculopharyngeal muscular dystrophy (OPMD) is a muscle-specific, late-onset degenerative disorder whereby muscles of the eyes (causing ptosis), throat (leading to dysphagia), and limbs (causing proximal limb weakness) are mostly affected. The disease is characterized by a mutation in the poly(A)-binding protein nuclear-1 (PABPN1) gene, resulting in a short GCG expansion in the polyalanine tract of PABPN1 protein. Accumulation of filamentous intranuclear inclusions in affected skeletal muscle cells constitutes the pathological hallmark of OPMD. This review highlights the current translational research advances in the treatment of OPMD. In vitro and in vivo disease models are described. Conventional and experimental therapeutic approaches are discussed with emphasis on novel molecular therapies including the use of intrabodies, gene therapy, and myoblast transfer therapy.

  4. Targeted Exon Skipping to Address “Leaky” Mutations in the Dystrophin Gene

    Directory of Open Access Journals (Sweden)

    Sue Fletcher

    2012-01-01

    Full Text Available Protein-truncating mutations in the dystrophin gene lead to the progressive muscle wasting disorder Duchenne muscular dystrophy, whereas in-frame deletions typically manifest as the milder allelic condition, Becker muscular dystrophy. Antisense oligomer-induced exon skipping can modify dystrophin gene expression so that a disease-associated dystrophin pre-mRNA is processed into a Becker muscular dystrophy-like mature transcript. Despite genomic deletions that may encompass hundreds of kilobases of the gene, some dystrophin mutations appear “leaky”, and low levels of high molecular weight, and presumably semi-functional, dystrophin are produced. A likely causative mechanism is endogenous exon skipping, and Duchenne individuals with higher baseline levels of dystrophin may respond more efficiently to the administration of splice-switching antisense oligomers. We optimized excision of exons 8 and 9 in normal human myoblasts, and evaluated several oligomers in cells from eight Duchenne muscular dystrophy patients with deletions in a known “leaky” region of the dystrophin gene. Inter-patient variation in response to antisense oligomer induced skipping in vitro appeared minimal. We describe oligomers targeting exon 8, that unequivocally increase dystrophin above baseline in vitro, and propose that patients with leaky mutations are ideally suited for participation in antisense oligomer mediated splice-switching clinical studies.

  5. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk.

    Science.gov (United States)

    Vollrath, D; Feng, W; Duncan, J L; Yasumura, D; D'Cruz, P M; Chappelow, A; Matthes, M T; Kay, M A; LaVail, M M

    2001-10-23

    The Royal College of Surgeons (RCS) rat is a widely studied animal model of retinal degeneration in which the inability of the retinal pigment epithelium (RPE) to phagocytize shed photoreceptor outer segments leads to a progressive loss of rod and cone photoreceptors. We recently used positional cloning to demonstrate that the gene Mertk likely corresponds to the retinal dystrophy (rdy) locus of the RCS rat. In the present study, we sought to determine whether gene transfer of Mertk to a RCS rat retina would result in correction of the RPE phagocytosis defect and preservation of photoreceptors. We used subretinal injection of a recombinant replication-deficient adenovirus encoding rat Mertk to deliver the gene to the eyes of young RCS rats. Electrophysiological assessment of animals 30 days after injection revealed an increased sensitivity of treated eyes to low-intensity light. Histologic and ultrastructural assessment demonstrated substantial sparing of photoreceptors, preservation of outer segment structure, and correction of the RPE phagocytosis defect in areas surrounding the injection site. Our results provide definitive evidence that mutation of Mertk underlies the RCS retinal dystrophy phenotype, and that the phenotype can be corrected by treatment of juvenile animals. To our knowledge, this is the first demonstration of complementation of both a functional cellular defect (phagocytosis) and a photoreceptor degeneration by gene transfer to the RPE. These results, together with the recent discovery of MERTK mutations in individuals with retinitis pigmentosa, emphasize the importance of the RCS rat as a model for gene therapy of diseases that arise from RPE dysfunction.

  6. Creatine kinase response to high-intensity aerobic exercise in adult-onset muscular dystrophy

    DEFF Research Database (Denmark)

    Andersen, Søren P; Sveen, Marie-Louise; Hansen, Regitze S

    2013-01-01

    We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies.......We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies....

  7. Confirmation of linkage of Best`s macular dystrophy to 11q13, and evidence for genetic heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Mansergh, F.C.; Kenna, P.F.; Farrar, G.J. [Trinity College, Dublin (United Kingdom)] [and others

    1994-09-01

    Best`s macular dystrophy, also known as vitelliform macular degeneration, is an autosomal dominant, early onset form of macular degeneration. The disease is characterized by a roughly circular deposit of lipofuscin beneath the pigment epithelium of the retinal macula. Linkage studies were performed in two families, one Irish and one German, segregating typical Best`s macular dystrophy. In the Irish family (BTMD1), linkage analysis mapped the disease causing gene to chromosome 11q13, in a 10 cM region between the microsatellite markers PYGM and D11S871. Both markers showed different recombinants with the disease phenotype. This is a region that has previously shown linkage in families affected with Best`s macular dystrophy. Lod scores of 9.63, 9.12, 6.92, and 6.83 at zero recombination, were obtained with markers D11S1344, D11S1361, D11S1357 and D11S903, respectively. This data places the disease locus definitvely within the region between PYGM and D11S871. Linkage has been significantly excluded in this region in the German family (FamE), thereby providing evidence for genetic heterogeneity in this disease. The retinal specific gene, rod outer membrane protein 1 (ROM1), which maps to this region, has been screened for mutations in family BTMD1 by SSCPE analysis and by direct sequencing. Some of the promoter region, the three exons, and both introns have been sequenced; however, no mutations were found. It is likely that a gene other than ROM1 within this region may be responsible for causing the disease phenotype.

  8. Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene.

    Science.gov (United States)

    Fishman, G A; Stone, E M; Grover, S; Derlacki, D J; Haines, H L; Hockey, R R

    1999-04-01

    To report the spectrum of ophthalmic findings in patients with Stargardt dystrophy or fundus flavimaculatus who have a specific sequence variation in the ABCR gene. Twenty-nine patients with Stargardt dystrophy or fundus flavimaculatus from different pedigrees were identified with possible disease-causing sequence variations in the ABCR gene from a group of 66 patients who were screened for sequence variations in this gene. Patients underwent a routine ocular examination, including slitlamp biomicroscopy and a dilated fundus examination. Fluorescein angiography was performed on 22 patients, and electroretinographic measurements were obtained on 24 of 29 patients. Kinetic visual fields were measured with a Goldmann perimeter in 26 patients. Single-strand conformation polymorphism analysis and DNA sequencing were used to identify variations in coding sequences of the ABCR gene. Three clinical phenotypes were observed among these 29 patients. In phenotype I, 9 of 12 patients had a sequence change in exon 42 of the ABCR gene in which the amino acid glutamic acid was substituted for glycine (Gly1961Glu). In only 4 of these 9 patients was a second possible disease-causing mutation found on the other ABCR allele. In addition to an atrophic-appearing macular lesion, phenotype I was characterized by localized perifoveal yellowish white flecks, the absence of a dark choroid, and normal electroretinographic amplitudes. Phenotype II consisted of 10 patients who showed a dark choroid and more diffuse yellowish white flecks in the fundus. None exhibited the Gly1961Glu change. Phenotype III consisted of 7 patients who showed extensive atrophic-appearing changes of the retinal pigment epithelium. Electroretinographic cone and rod amplitudes were reduced. One patient showed the Gly1961Glu change. A wide variation in clinical phenotype can occur in patients with sequence changes in the ABCR gene. In individual patients, a certain phenotype seems to be associated with the presence of

  9. Duchenne Muscular Dystrophy and Becker Muscular Dystrophy Confirmed by Multiplex Ligation-Dependent Probe Amplification: Genotype-Phenotype Correlation in a Large Cohort.

    Science.gov (United States)

    Vengalil, Seena; Preethish-Kumar, Veeramani; Polavarapu, Kiran; Mahadevappa, Manjunath; Sekar, Deepha; Purushottam, Meera; Thomas, Priya Treesa; Nashi, Saraswathi; Nalini, Atchayaram

    2017-01-01

    Studies of cases of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) confirmed by multiplex ligation-dependent probe amplification (MLPA) have determined the clinical characteristics, genotype, and relations between the reading frame and phenotype for different countries. This is the first such study from India. A retrospective genotype-phenotype analysis of 317 MLPA-confirmed patients with DMD or BMD who visited the neuromuscular clinic of a quaternary referral center in southern India. The 317 patients comprised 279 cases of DMD (88%), 32 of BMD (10.1%), and 6 of intermediate phenotype (1.9%). Deletions accounted for 91.8% of cases, with duplications causing the remaining 8.2%. There were 254 cases of DMD (91%) with deletions and 25 (9%) due to duplications, and 31 cases (96.8%) of BMD with deletions and 1 (3.2%) due to duplication. All six cases of intermediate type were due to deletions. The most-common mutation was a single-exon deletion. Deletions of six or fewer exons constituted 68.8% of cases. The deletion of exon 50 was the most common. The reading-frame rule held in 90% of DMD and 94% of BMD cases. A tendency toward a lower IQ and earlier wheelchair dependence was observed with distal exon deletions, though a significant correlation was not found. The reading-frame rule held in 90% to 94% of children, which is consistent with reports from other parts of the world. However, testing by MLPA is a limitation, and advanced sequencing methods including analysis of the structure of mutant dystrophin is needed for more-accurate assessments of the genotype-phenotype correlation.

  10. Probable high prevalence of limb-girdle muscular dystrophy type 2D in Taiwan.

    Science.gov (United States)

    Liang, Wen-Chen; Chou, Po-Ching; Hung, Chia-Cheng; Su, Yi-Ning; Kan, Tsu-Min; Chen, Wan-Zi; Hayashi, Yukiko K; Nishino, Ichizo; Jong, Yuh-Jyh

    2016-03-15

    Limb-girdle muscular dystrophy type 2D (LGMD2D), an autosomal-recessive inherited LGMD, is caused by the mutations in SGCA. SGCA encodes alpha-sarcoglycan (SG) that forms a heterotetramer with other SGs in the sarcolemma, and comprises part of the dystrophin-glycoprotein complex. The frequency of LGMD2D is variable among different ethnic backgrounds, and so far only a few patients have been reported in Asia. We identified five patients with a novel homozygous mutation of c.101G>T (p.Arg34Leu) in SGCA from a big aboriginal family ethnically consisting of two tribes in Taiwan. Patient 3 is the maternal uncle of patients 1 and 2. All their parents, heterozygous for c.101G>T, denied consanguineous marriages although they were from the same tribe. The heterozygous parents of patients 4 and 5 were from two different tribes, originally residing in different geographic regions in Taiwan. Haplotype analysis showed that all five patients shared the same mutation-associated haplotype, indicating the probability of a founder effect and consanguinity. The results suggest that the carrier rate of c.101G>T in SGCA may be high in Taiwan, especially in the aboriginal population regardless of the tribes. It is important to investigate the prevalence of LGMD2D in Taiwan for early diagnosis and treatment. Copyright © 2016. Published by Elsevier B.V.

  11. Development of Multiexon Skipping Antisense Oligonucleotide Therapy for Duchenne Muscular Dystrophy

    Science.gov (United States)

    Yokota, Toshifumi; Wood, Matthew J. A.

    2013-01-01

    Duchenne muscular dystrophy (DMD) is an incurable, X-linked progressive muscle degenerative disorder that results from the absence of dystrophin protein and leads to premature death in affected individuals due to respiratory and/or cardiac failure typically by age of 30. Very recently the exciting prospect of an effective oligonucleotide therapy has emerged which restores dystrophin protein expression to affected tissues in DMD patients with highly promising data from a series of clinical trials. This therapeutic approach is highly mutation specific and thus is personalised. Therefore DMD has emerged as a model genetic disorder for understanding and overcoming of the challenges of developing personalised genetic medicines. One of the greatest weaknesses of the current oligonucleotide approach is that it is a mutation-specific therapy. To address this limitation, we have recently demonstrated that exons 45–55 skipping therapy has the potential to treat clusters of mutations that cause DMD, which could significantly reduce the number of compounds that would need to be developed in order to successfully treat all DMD patients. Here we discuss and review the latest preclinical work in this area as well as a variety of accompanying issues, including efficacy and potential toxicity of antisense oligonucleotides, prior to human clinical trials. PMID:23984357

  12. Melanocytes from patients affected by Ullrich congenital muscular dystrophy and Bethlem myopathy have dysfunctional mitochondria that can be rescued with cyclophilin inhibitors

    Directory of Open Access Journals (Sweden)

    Alessandra eZulian

    2014-11-01

    Full Text Available Ullrich congenital muscular dystrophy and Bethlem myopathy are caused by mutations in collagen VI genes, which encode an extracellular matrix protein; yet mitochondria play a major role in disease pathogenesis through a short circuit caused by inappropriate opening of the permeability transition pore, a high conductance channel which causes a shortage in ATP production. We find that melanocytes do not produce collagen VI yet they bind it at the cell surface, suggesting that this protein may play a trophic role and that its absence may cause lesions similar to those seen in skeletal muscle. We show that mitochondria in melanocytes of Ullrich congenital muscular dystrophy and Bethlem myooathy patients display increased size, reduced matrix density and disrupted cristae, findings that suggest a functional impairment. In keeping with this hypothesis, mitochondria (i underwent anomalous depolarization after inhibition of the F-ATP synthase with oligomycin, and (ii displayed decreased respiratory reserve capacity. The non-immunosuppressive cyclophilin inhibitor NIM811 prevented mitochondrial depolarization in response to oligomycin in melanocytes from both Ullrich congenital muscular dystrophy and Bethlem myopathy patients, and partially restored the respiratory reserve of melanocytes from one Bethlem myopathy patient. These results match our recent findings on melanocytes from patients affected by Duchenne muscular dystrophy (Pellegrini et al., 2013 Melanocytes--a novel tool to study mitochondrial dysfunction in Duchenne muscular dystrophy. J Cell Physiol 228, 1323-1331, and suggest that skin biopsies may represent a minimally invasive tool to investigate mitochondrial dysfunction and to evaluate drug efficacy in collagen VI-related myopathies and possibly in other muscle wasting conditions like aging sarcopenia.

  13. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1.

    Directory of Open Access Journals (Sweden)

    Sandra J Feeney

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

  14. Protein and genetic diagnosis of limb girdle muscular dystrophy type 2A: The yield and the pitfalls.

    Science.gov (United States)

    Fanin, Marina; Angelini, Corrado

    2015-08-01

    Limb girdle muscular dystrophy type 2A (LGMD2A) is the most frequent form of LGMD worldwide. Comprehensive clinical assessment and laboratory testing is essential for diagnosis of LGMD2A. Muscle immunoblot analysis of calpain-3 is the most useful tool to direct genetic testing, as detection of calpain-3 deficiency has high diagnostic value. However, calpain-3 immunoblot testing lacks sensitivity in about 30% of cases due to gene mutations that inactivate the enzyme. The best diagnostic strategy should be determined on a case-by-case basis, depending on which tissues are available, and which molecular and/or genetic methods are adopted. In this work we survey the current knowledge, advantages, limitations, and pitfalls of protein testing and mutation detection in LGMD2A and provide an update of genetic epidemiology. © 2015 Wiley Periodicals, Inc.

  15. The ultrasound-guided nerve blocks of abdominal wall contributed to anesthetic management of cholecystectomy in a patient with Becker muscular dystrophy without using muscle relaxants.

    Science.gov (United States)

    Iwata, Masato; Kuzumoto, Naoya; Akasaki, Yuka; Morioka, Masayo; Nakayama, Kana; Matsuzawa, Nobuyoshi; Kimoto, Katsuhiro; Shimomura, Toshiyuki

    2017-01-01

    Becker muscular dystrophy (BMD) is a progressive neuromuscular disorder caused by mutations in the dystrophin gene. The sensitivity to non-depolarizing muscle relaxant in a patient with muscle dystrophy is reportedly higher than that in normal individuals, and the duration of the effect is known to be prolonged. In this report, we present the case of a 58-year-old man with BMD who underwent laparoscopic cholecystectomy for symptomatic cholelithiasis under total intravenous anesthesia without the use of muscle-relaxant drugs and supplemented with regional anesthesia. Anesthesia was induced and maintained with propofol, remifentanil, and fentanyl; ultrasound-guided bilateral rectus sheath block (RSB) and right-sided subcostal transversus abdominis plane block (TAP) were performed. The procedure required conversion to open surgery because of hard conglutination; intraoperative and postoperative periods were uneventful. Adequate analgesia was maintained after extubation because of the effect of RSB and TAP.

  16. Prevalence of cardiomyopathy in duchenne and becker's muscular dystrophy

    International Nuclear Information System (INIS)

    Sultan, A.; Fayaz, M.

    2008-01-01

    Cardiac assessment was not done routinely in Duchenne (DMD) and Becker muscular dystrophy (BMD) patients in Northern region of England while evidence was gathering on progressive cardiomyopathy in these patients. We wanted to find out the prevalence, progression and clinical features of cardiac involvement in Duchenne and Becker muscular dystrophy. Methods: It is a retrospective review of clinical, electrocardiographic and echocardiographic assessments. The notes of 52 Duchenne and Becker muscular dystrophy patients were reviewed out of which 32 had DMD, 6 had Intermediate muscular dystrophy (IMD) and 14 had BMD. Prevalence of preclinical and clinically evident cardiac involvement was 88.4% in DMD and BMD patients. Sixty nine% of patients had clinically evident cardiac involvement but only four patients had cardiac symptoms in the form of palpitations, out of which two were due to respiratory dysfunction and others was due to cardiac failure. Clinical examination of the rest of all of the patients was unremarkable. Electrocardiogram was abnormal in 88.4% of patients. Conduction defects were found in 19.4% of patients. Echocardiogram was abnormal in 80.7% of patients but all were poor echo subjects including those who had normal echocardiogram. Though most patients were asymptomatic, a high percentage had evidence of preclinical and clinically evident cardiac involvement. So in all patients with Xp21 linked muscular dystrophy a routine baseline cardiac assessment should be done at the age of 10 years and reviewed after intervals of one to two years. (author)

  17. Allele-specific Gene Silencing of Mutant mRNA Restores Cellular Function in Ullrich Congenital Muscular Dystrophy Fibroblasts

    Directory of Open Access Journals (Sweden)

    Satoru Noguchi

    2014-01-01

    Full Text Available Ullrich congenital muscular dystrophy (UCMD is an inherited muscle disorder characterized clinically by muscle weakness, distal joint hyperlaxity, and proximal joint contractures. Sporadic and recessive mutations in the three collagen VI genes, COL6A1, COL6A2, and COL6A3, are reported to be causative. In the sporadic forms, a heterozygous point mutation causing glycine substitution in the triple helical domain has been identified in higher rate. In this study, we examined the efficacy of siRNAs, which target point mutation site, on specific knockdown toward transcripts from mutant allele and evaluated consequent cellular phenotype of UCMD fibroblasts. We evaluated the effect of siRNAs targeted to silence-specific COL6A1 alleles in UCMD fibroblasts, where simultaneous expression of both wild-type and mutant collagen VI resulted in defective collagen localization. Addition of mutant-specific siRNAs allowed normal extracellular localization of collagen VI surrounding fibroblasts, suggesting selective inhibition of mutant collagen VI. Targeting the single-nucleotide COL6A1 c.850G>A (p.G284R mutation responsible a sporadic autosomal dominant form of UCMD can potently and selectively block expression of mutant collagen VI. These results suggest that allele-specific knockdown of the mutant mRNA can potentially be considered as a therapeutic procedure in UCMD due to COL6A1 point mutations.

  18. Interplay between DMD point mutations and splicing signals in Dystrophinopathy phenotypes.

    Directory of Open Access Journals (Sweden)

    Jonàs Juan-Mateu

    Full Text Available DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements.

  19. Retinal pigment epithelial dystrophy in Briard dogs.

    Science.gov (United States)

    Lightfoot, R M; Cabral, L; Gooch, L; Bedford, P G; Boulton, M E

    1996-01-01

    The eyes of normal Briard dogs, Briards affected with inherited retinal pigment epithelial dystrophy (RPED) and a range of normal crossbred and beagle dogs were examined and the histopathology of RPED in the Briard was compared with the histopathological features of ageing in the normal canine retina. RPED was characterised by the accumulation of auto-fluorescent lipofuscin-like inclusions in the retinal pigment epithelium (RPE), which initially involved only non-pigmented RPE cells overlying the tapetum but subsequently spread to all pigmented RPE cells. Secondary neuro-retinal degeneration was characterised by a gradual loss of the outer nuclear layer and the subsequent atrophy and degeneration of the inner retina. The loss of primary photoreceptors in the peripheral retina was accompanied by the migration of photoreceptor nuclei and appeared to resemble severe changes due to ageing. Intra-vitreal radiolabelled leucine was used to examine the rate of turnover of the outer segments of the rods in some Briards, but no significant variations were found. The activity of acid phosphatase in RPE was assayed in vitro and showed comparable regional variations in Briard and crossbred dogs. The results suggest that RPED in the Briard is unlikely to be due either to an increased rate of turnover of rod outer segments (and thus an increased phagocytic load) or to a primary insufficiency of lysosomal enzyme.

  20. Bone mineral density in reflex sympathetic dystrophy

    International Nuclear Information System (INIS)

    Saghaphi, M.; Azarian, A.

    2002-01-01

    Objectives: Reflex Sympathetic Dystrophy (RSD) is a complex of symptoms that produce pain burning sensation, swelling, tenderness, autonomic and physical dysfunction in joint areas, particularly distal of a limb. Osteopenia or osteoporosis is an important finding that is produced gradually in involved limb. Three phase bone can scan help to diagnosis of RSD. The disease may be bilateral but is mostly unilateral. As it is believed that bone densitometry will show osteopenia more accurate than plain comparative radiographs of the involved limbs, we investigated in patients with RSD. Methods: During last three years, 8 patients with RSD were admitted. Bone mineral density was measured for 5 patients by DEXA method. The patients were 3 males and 2 females with age range of 20 to 48 years (mean 32 years). The involved areas were ankle and foot in 4, and wrist and hand in one patient. Results: Mean Bone Mineral Content (BMC) of 4 involved lower limbs were 475 +-73 grams comparing with 516+-72 grams of uninvolved limbs (p t h patient was not significant. conclusion: comparative bone mineral density in patients with RSD of the lower limbs contributes to more accurate diagnosis than plain radiographs

  1. Optimizing Bone Health in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Jason L. Buckner

    2015-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA, as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA.

  2. Limb-girdle muscular dystrophy in Brazilian children: clinical, histological and molecular characterization

    Directory of Open Access Journals (Sweden)

    Marco A. Veloso Albuquerque

    2014-06-01

    Full Text Available Limb-girdle muscular dystrophies (LGMD are a heterogeneous group of genetic muscular dystrophies, involving 16 autosomal recessive subtypes and eight autosomal dominant subtypes. Autosomal recessive dystrophy is far more common than autosomal dominant dystrophy, particularly in children. The clinical course in this group is characterized by progressive proximal weakness, initially in pelvic and after in shoulder-girdle musculature, varying from very mild to severe degree. Significant overlap of clinical phenotypes, with genetic and clinical heterogeneity, constitutes the rule for this group of diseases. Muscle biopsies are useful for histopathologic and immunolabeling studies, and DNA analysis is the gold standard to establish the specific form of muscular dystrophy. Objectives: The aim of this study was to characterize the clinical, histological and molecular aspects in children with LGMD who attend a big public neuromuscular centre in our country to determine the frequency of different forms. Method: Thirty seven patients were classified as LGMD and included in this analysis. The study period extended from 2009-2012. The female to male ratio was 3:1. The age of onset ranged from two to 13 years, mean 7,5 years. Onset in the first decade was seen in 90%. Results: The initial clinical signs included: frequent falls (22 cases, difficulty in climbing stairs (13 cases, walk on tip toes (2 cases, difficulty in rising from the floor (2 cases and difficulty on walking (1 case. The serum CK levels were high in all cases. Among the 37 patients, 15 (40,5% were classified as sarcoglycanopathies (LGMD2C-F, five (13,5% as dysferlinopathy (LGMD2B, five (13,5% as calpainopathy (LGMD2A. Mutations in LMNA gene (LGMD1B, FKRP gene (LGMDI and caveolin gene (LGMD 1C were identified in two (5,5%, two (5,5% and one patient (2,5%, respectively. In seven of 37 cases (19% it was impossible to determine specific diagnosis. Calf hypertrophy, scapular winging and scoliosis

  3. [Posterior polymorphous dystrophy, case report and literature review].

    Science.gov (United States)

    Mendoza-Adam, G; Hernandez-Camarena, J C; Valdez-García, J E

    2015-09-01

    Posterior Polymorphous Dystrophy (DPP) is a rare posterior corneal dystrophy that is genetically transmitted as autosomal dominant. Corneal structures affected in this dystrophy are Descemet membrane and the endothelium. A case is presented on a 47 years old woman with no relevant history, with typical findings of DPP (vesicular and band lesions at the endothelium and posterior Descemet). To our knowledge there are no reported cases of DPP in Latin-American patients in the literature. The clinical manifestations in our patient were found to be very similar to the cases reported in other populations. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  4. Bilateral nanophthalmos and pigmentary retinal dystrophy--an unusual syndrome.

    Science.gov (United States)

    Proença, Helena; Castanheira-Dinis, A; Monteiro-Grillo, M

    2006-09-01

    To report the clinical picture of the rare association of nanophthalmos and pigmentary retinal dystrophy and its cataract surgery outcome. We report a case of a 60-year-old female who presented with bilateral slowly progressive visual loss. The patient presented with bilateral light perception visual acuity, exotropia, brunescent cataract hindering fundus examination and hypodontia. Ultrasonography revealed bilateral nanophthalmos. A visual-evoked potential was also performed preoperatively. Cataract surgery with +40D IOL implantation was uneventful. Postoperative fundus examination revealed pigmentary retinal dystrophy, confirmed by electrophysiologic tests. Glycosaminoglycan urinary excretion was normal. Congenital bilateral nanophthalmos may rarely be associated with pigmentary retinal dystrophy. We suggest thorough preoperative evaluation in nanophthalmic eyes for the exclusion of significant features concerning visual prognosis.

  5. Further Aspects of Ochratoxin A-Cation Interactions: Complex Formation with Zinc Ions and a Novel Analytical Application of Ochratoxin A-Magnesium Interaction in the HPLC-FLD System

    Directory of Open Access Journals (Sweden)

    Miklós Poór

    2014-04-01

    Full Text Available Ochratoxin A (OTA is a mycotoxin produced by different Aspergillus and Penicillium species. Since its mechanism of action is not fully understood yet, it is important to gain further insight into different interactions of OTA at the molecular level. OTA is found worldwide in many foods and drinks. Moreover, it can also be detected in human and animal tissues and body fluids, as well. Therefore, the development of highly sensitive quantitative methods for the determination of OTA is of utmost importance. OTA most likely forms complexes with divalent cations, both in cells and body fluids. In the present study, the OTA-zinc interaction was investigated and compared to OTA-magnesium complex formation using fluorescence spectroscopy and molecular modeling. Our results show that zinc(II ion forms a two-fold higher stable complex with OTA than magnesium(II ion. In addition, based on the enhanced fluorescence emission of OTA in its magnesium-bound form, a novel RP-HPLC-fluorescence detector (FLD method was also established. Our results highlight that the application of magnesium chloride in alkaline eluents results in an approximately two-fold increase in sensitivity using the HPLC-FLD technique.

  6. Crystalline Subtype of Pre-Descemetic Corneal Dystrophy

    Directory of Open Access Journals (Sweden)

    Rosa Dolz-Marco

    2014-01-01

    Full Text Available Purpose: To report corneal findings in a familial case of the crystalline subtype of pre- Descemetic corneal dystrophy. Case Report: A 19-year-old girl and her 44-year-old mother were found to have asymptomatic, bilateral, punctiform and multi-colored crystalline opacities across the whole posterior layer of the corneas. Endothelial specular microscopy revealed the presence of white round flecks located at different levels anterior to the endothelium. No systemic abnormalities or medications could be related to account for these findings. Conclusion: To the best of our knowledge, this is the third familial report of this rare corneal disorder. Differential diagnosis may include Schnyder corneal dystrophy, cystinosis, Bietti΄s dystrophy and monoclonal gammopathy.

  7. Crystalline Subtype of Pre-Descemetic Corneal Dystrophy

    Science.gov (United States)

    Dolz-Marco, Rosa; Gallego-Pinazo, Roberto; Pinazo-Durán, María Dolores; Díaz-Llopis, Manuel

    2014-01-01

    Purpose To report corneal findings in a familial case of the crystalline subtype of pre-Descemetic corneal dystrophy. Case Report A 19-year-old girl and her 44-year-old mother were found to have asymptomatic, bilateral, punctiform and multi-colored crystalline opacities across the whole posterior layer of the corneas. Endothelial specular microscopy revealed the presence of white round flecks located at different levels anterior to the endothelium. No systemic abnormalities or medications could be related to account for these findings. Conclusion To the best of our knowledge, this is the third familial report of this rare corneal disorder. Differential diagnosis may include Schnyder corneal dystrophy, cystinosis, Bietti´s dystrophy and monoclonal gammopathy. PMID:25279130

  8. Generation of induced pluripotent stem cells from a Becker muscular dystrophy patient carrying a deletion of exons 45-55 of the dystrophin gene (CCMi002BMD-A-9 ∆45-55

    Directory of Open Access Journals (Sweden)

    Aoife Gowran

    2018-04-01

    Full Text Available Becker muscular dystrophy (BMD is a dystrophinopathy caused by mutations in the dystrophin gene on chromosome Xp21. BMD mutations result in truncated semi-functional dystrophin isoforms. Consequently, less severe clinical symptoms become apparent later in life compared to Duchenne muscular dystrophy. Dermal fibroblasts from a BMD patient were electroporated with episomal plasmids containing reprogramming factors to create the induced pluripotent stem cell line: CCMi002BMD-A-9 that showed pluripotent markers, were karyotypically normal and capable of trilineage differentiation. MLPA analyses performed on DNA extracted from CCMi002BMD-A-9 showed an in-frame deletion of exons 45 to 55 (CCMi002BMD-A-9 Δ45-55.

  9. Generation of induced pluripotent stem cells from a Becker muscular dystrophy patient carrying a deletion of exons 45-55 of the dystrophin gene (CCMi002BMD-A-9 ∆45-55).

    Science.gov (United States)

    Gowran, Aoife; Spaltro, Gabriella; Casalnuovo, Federica; Vigorelli, Vera; Spinelli, Pietro; Castiglioni, Elisa; Rovina, Davide; Paganini, Stefania; Di Segni, Marina; Gervasini, Cristina; Nigro, Patrizia; Pompilio, Giulio

    2018-04-01

    Becker muscular dystrophy (BMD) is a dystrophinopathy caused by mutations in the dystrophin gene on chromosome Xp21. BMD mutations result in truncated semi-functional dystrophin isoforms. Consequently, less severe clinical symptoms become apparent later in life compared to Duchenne muscular dystrophy. Dermal fibroblasts from a BMD patient were electroporated with episomal plasmids containing reprogramming factors to create the induced pluripotent stem cell line: CCMi002BMD-A-9 that showed pluripotent markers, were karyotypically normal and capable of trilineage differentiation. MLPA analyses performed on DNA extracted from CCMi002BMD-A-9 showed an in-frame deletion of exons 45 to 55 (CCMi002BMD-A-9 Δ45-55). Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. [DIAGNOSTIC VARIATIONS OF X-LINKED MUSCULAR DYSTROPHY WITH CONTRACTURES].

    Science.gov (United States)

    Kvirkvelia, N; Shakarishvili, R; Gugutsidze, D; Khizanishvili, N

    2015-01-01

    Case report with review describes X-linked muscular dystrophy with contractures in 28 years old man and his cousin. The disease revealed itself in an early stage (age 5-10), the process was progressing with apparent tendons retraction and contraction, limited movement in the areas of the neck and back of spine, atrophy of shoulder and pelvic yard and back muscles. Intellect was intact. Cardyomyopathy was exhibited. CK was normal. EMG showed classic myopathic features. Muscle biopsy showed different caliber groups of muscle fibers, growth of endo-perimesial connective tissue. Clinical manifestations together with electrophysiological and histological data suggest consistency with Rotthauwe-Mortier-Bayer X-linked muscular dystrophy.

  11. Muscle regeneration and inflammation in patients with facioscapulohumeral muscular dystrophy

    DEFF Research Database (Denmark)

    Hauerslev, S; Ørngreen, M C; Hertz, J M

    2013-01-01

    The aim of this study was to investigate whether inflammation and regeneration are prominent in mildly affected muscles of patients with facioscapulohumeral muscular dystrophy type 1A (FSHD1A). Inflammation in muscle has been suggested by MRI studies in patients with FSHD1A.......The aim of this study was to investigate whether inflammation and regeneration are prominent in mildly affected muscles of patients with facioscapulohumeral muscular dystrophy type 1A (FSHD1A). Inflammation in muscle has been suggested by MRI studies in patients with FSHD1A....

  12. Genetic and Early Clinical Manifestations of Females Heterozygous for Duchenne/Becker Muscular Dystrophy.

    Science.gov (United States)

    Papa, Riccardo; Madia, Francesca; Bartolomeo, Domenico; Trucco, Federica; Pedemonte, Marina; Traverso, Monica; Broda, Paolo; Bruno, Claudio; Zara, Federico; Minetti, Carlo; Fiorillo, Chiara

    2016-02-01

    Female carriers of Duchenne muscular dystrophy (DMD), although usually asymptomatic, develop muscle weakness up to 17% of the time, and a third present cardiac abnormalities or cognitive impairment. Clinical features of DMD carriers during childhood are poorly known. We describe a cohort of pediatric DMD carriers, providing clinical, genetic, and histopathologic features, with a mean follow-up of 7 years. Fifteen females with a DMD mutation (age range 5 to 18 years) were included. Seven patients (46%) presented with clinically evident symptoms and signs such as limb girdle weakness, abnormal gait, and exercise intolerance. The other eight patients (53%) were evaluated because of an incidental finding of elevated level of creatine kinase. Creatine kinase level was elevated in all, ranging from 392 to 13,000 U/L. Calf hypertrophy was observed in eight patients (53%). No patient developed respiratory or cardiac involvement. The most frequent complication was scoliosis (46%). Four patients (29%) also presented minor learning disabilities or behavioral problems. We performed electromyography in half of patients, showing myopathic pattern in four (53%). Muscle biopsy revealed a mosaic reduction of dystrophin in nine available cases. DMD gene mutations were mostly deletions (71%), resulting in loss of reading frame in five patients (36%). The three patients who experienced the most severe disease course were affected either by a nonsense or frameshift mutation. Our analysis suggests that DMD gene mutations may be suspected in a female child with persistently elevated levels of creatine kinase. Evidence of scoliosis, calf hypertrophy, or myopathic pattern at electromyography may also be helpful, and muscle biopsy is always indicative. DMD carriers should be followed for subtle orthopedic and psychiatric complications during childhood. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Phenotypic diversity in autosomal-dominant cone-rod dystrophy elucidated by adaptive optics retinal imaging.

    Science.gov (United States)

    Song, Hongxin; Rossi, Ethan A; Stone, Edwin; Latchney, Lisa; Williams, David; Dubra, Alfredo; Chung, Mina

    2018-01-01

    Several genes causing autosomal-dominant cone-rod dystrophy (AD-CRD) have been identified. However, the mechanisms by which genetic mutations lead to cellular loss in human disease remain poorly understood. Here we combine genotyping with high-resolution adaptive optics retinal imaging to elucidate the retinal phenotype at a cellular level in patients with AD-CRD harbouring a defect in the GUCA1A gene. Nine affected members of a four-generation AD-CRD pedigree and three unaffected first-degree relatives underwent clinical examinations including visual acuity, fundus examination, Goldmann perimetry, spectral domain optical coherence tomography and electroretinography. Genome-wide scan followed by bidirectional sequencing was performed on all affected participants. High-resolution imaging using a custom adaptive optics scanning light ophthalmoscope (AOSLO) was performed for selected participants. Clinical evaluations showed a range of disease severity from normal fundus appearance in teenaged patients to pronounced macular atrophy in older patients. Molecular genetic testing showed a mutation in in GUCA1A segregating with disease. AOSLO imaging revealed that of the two teenage patients with mild disease, one had severe disruption of the photoreceptor mosaic while the other had a normal cone mosaic. AOSLO imaging demonstrated variability in the pattern of cone and rod cell loss between two teenage cousins with early AD-CRD, who had similar clinical features and had the identical disease-causing mutation in GUCA1A . This finding suggests that a mutation in GUCA1A does not lead to the same degree of AD-CRD in all patients. Modifying factors may mitigate or augment disease severity, leading to different retinal cellular phenotypes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron

    Science.gov (United States)

    Morgan, Neil V; Westaway, Shawn K; Morton, Jenny E V; Gregory, Allison; Gissen, Paul; Sonek, Scott; Cangul, Hakan; Coryell, Jason; Canham, Natalie; Nardocci, Nardo; Zorzi, Giovanna; Pasha, Shanaz; Rodriguez, Diana; Desguerre, Isabelle; Mubaidin, Amar; Bertini, Enrico; Trembath, Richard C; Simonati, Alessandro; Schanen, Carolyn; Johnson, Colin A; Levinson, Barbara; Woods, C Geoffrey; Wilmot, Beth; Kramer, Patricia; Gitschier, Jane; Maher, Eamonn R; Hayflick, Susan J

    2007-01-01

    Neurodegenerative disorders with high brain iron include Parkinson disease, Alzheimer disease and several childhood genetic disorders categorized as neuroaxonal dystrophies. We mapped a locus for infantile neuroaxonal dystrophy (INAD) and neurodegeneration with brain iron accumulation (NBIA) to chromosome 22q12-q13 and identified mutations in PLA2G6, encoding a calcium-independent group VI phospholipase A2, in NBIA, INAD and the related Karak syndrome. This discovery implicates phospholipases in the pathogenesis of neurodegenerative disorders with iron dyshomeostasis. PMID:16783378

  15. Outcome of ABCA4 disease-associated alleles in autosomal recessive retinal dystrophies: retrospective analysis in 420 Spanish families.

    Science.gov (United States)

    Riveiro-Alvarez, Rosa; Lopez-Martinez, Miguel-Angel; Zernant, Jana; Aguirre-Lamban, Jana; Cantalapiedra, Diego; Avila-Fernandez, Almudena; Gimenez, Ascension; Lopez-Molina, Maria-Isabel; Garcia-Sandoval, Blanca; Blanco-Kelly, Fiona; Corton, Marta; Tatu, Sorina; Fernandez-San Jose, Patricia; Trujillo-Tiebas, Maria-Jose; Ramos, Carmen; Allikmets, Rando; Ayuso, Carmen

    2013-11-01

    To provide a comprehensive overview of all detected mutations in the ABCA4 gene in Spanish families with autosomal recessive retinal disorders, including Stargardt's disease (arSTGD), cone-rod dystrophy (arCRD), and retinitis pigmentosa (arRP), and to assess genotype-phenotype correlation and disease progression in 10 years by considering the type of variants and age at onset. Case series. A total of 420 unrelated Spanish families: 259 arSTGD, 86 arCRD, and 75 arRP. Spanish families were analyzed through a combination of ABCR400 genotyping microarray, denaturing high-performance liquid chromatography, and high-resolution melting scanning. Direct sequencing was used as a confirmation technique for the identified variants. Screening by multiple ligation probe analysis was used to detect possible large deletions or insertions in the ABCA4 gene. Selected families were analyzed further by next generation sequencing. DNA sequence variants, mutation detection rates, haplotypes, age at onset, central or peripheral vision loss, and night blindness. Overall, we detected 70.5% and 36.6% of all expected ABCA4 mutations in arSTGD and arCRD patient cohorts, respectively. In the fraction of the cohort where the ABCA4 gene was sequenced completely, the detection rates reached 73.6% for arSTGD and 66.7% for arCRD. However, the frequency of possibly pathogenic ABCA4 alleles in arRP families was only slightly higher than that in the general population. Moreover, in some families, mutations in other known arRP genes segregated with the disease phenotype. An increasing understanding of causal ABCA4 alleles in arSTGD and arCRD facilitates disease diagnosis and prognosis and also is paramount in selecting patients for emerging clinical trials of therapeutic interventions. Because ABCA4-associated diseases are evolving retinal dystrophies, assessment of age at onset, accurate clinical diagnosis, and genetic testing are crucial. We suggest that ABCA4 mutations may be associated with a

  16. MRI-based quantification of Duchenne muscular dystrophy in a canine model

    Science.gov (United States)

    Wang, Jiahui; Fan, Zheng; Kornegay, Joe N.; Styner, Martin A.

    2011-03-01

    Duchenne muscular dystrophy (DMD) is a progressive and fatal X-linked disease caused by mutations in the DMD gene. Magnetic resonance imaging (MRI) has shown potential to provide non-invasive and objective biomarkers for monitoring disease progression and therapeutic effect in DMD. In this paper, we propose a semi-automated scheme to quantify MRI features of golden retriever muscular dystrophy (GRMD), a canine model of DMD. Our method was applied to a natural history data set and a hydrodynamic limb perfusion data set. The scheme is composed of three modules: pre-processing, muscle segmentation, and feature analysis. The pre-processing module includes: calculation of T2 maps, spatial registration of T2 weighted (T2WI) images, T2 weighted fat suppressed (T2FS) images, and T2 maps, and intensity calibration of T2WI and T2FS images. We then manually segment six pelvic limb muscles. For each of the segmented muscles, we finally automatically measure volume and intensity statistics of the T2FS images and T2 maps. For the natural history study, our results showed that four of six muscles in affected dogs had smaller volumes and all had higher mean intensities in T2 maps as compared to normal dogs. For the perfusion study, the muscle volumes and mean intensities in T2FS were increased in the post-perfusion MRI scans as compared to pre-perfusion MRI scans, as predicted. We conclude that our scheme successfully performs quantitative analysis of muscle MRI features of GRMD.

  17. Histopathologic Evolution of Cardiomyopathy in a Canine Model of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Lygia M.M. Malvestio

    2015-07-01

    Full Text Available Duchenne muscular dystrophy (DMD is a recessive X-linked disorder characterized for mutation in dystrophin gene and manifested by progressive degeneration and necrosis of skeletal and cardiac muscle with replacement leading to generalized muscular weakness and atrophy. The dog Golden Retriever Muscular Dystrophy (GRMD is the best experimental model for DMD, with genotypic and phenotypic manifestations closely of human disease. Similar to patients with DMD, heart failure is a major cause of death in GRMD animals. The objective of this study was to evaluate the pathological progression of myocardial lesions from GRMD dogs in different ages in order to clarify the pathogenesis of Duchenne´s cardiomyopathy. Fragments of left and right ventricle and interventricular septum, from 18 GRMD dogs between 6 to 51 months were collected, fixed, dehydrated, clarified, and finally embedded in paraffin. Five micrometer thick serial sections were obtained and stained with Hematoxylin-Eosin (HE, Picrosirius red, and Von Kossa. Histological analyses were performed at the light microscopy. Myocardial lesions were observed in all GRMD dogs and the sequence of cardiac lesion classified according to according to the age included: abnormal calcium accumulation, myofibrillar necrosis, proliferation of granulation tissue, endomysial and perimysial fibrosis, and finally myocardial fatty infiltration. Interestingly, several Anitschkow cells, the hallmark of rheumatic carditis, were detected in inflammatory infiltrate present at granulation tissue. Our results demonstrate the sequence of cardiac lesions that determine the cardiomyopathy in Golden Retriever dogs affected by DMD and exhibit, for the first time, the Anitschkow cells in the histological findings of this cardiomyopathy. These results are relevant for to clarify the pathogenesis of cardiomyopathy in dogs and humans affected by DMD.

  18. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation.

    Science.gov (United States)

    Ryu, Dongryeol; Zhang, Hongbo; Ropelle, Eduardo R; Sorrentino, Vincenzo; Mázala, Davi A G; Mouchiroud, Laurent; Marshall, Philip L; Campbell, Matthew D; Ali, Amir Safi; Knowels, Gary M; Bellemin, Stéphanie; Iyer, Shama R; Wang, Xu; Gariani, Karim; Sauve, Anthony A; Cantó, Carles; Conley, Kevin E; Walter, Ludivine; Lovering, Richard M; Chin, Eva R; Jasmin, Bernard J; Marcinek, David J; Menzies, Keir J; Auwerx, Johan

    2016-10-19

    Neuromuscular diseases are often caused by inherited mutations that lead to progressive skeletal muscle weakness and degeneration. In diverse populations of normal healthy mice, we observed correlations between the abundance of mRNA transcripts related to mitochondrial biogenesis, the dystrophin-sarcoglycan complex, and nicotinamide adenine dinucleotide (NAD + ) synthesis, consistent with a potential role for the essential cofactor NAD + in protecting muscle from metabolic and structural degeneration. Furthermore, the skeletal muscle transcriptomes of patients with Duchene's muscular dystrophy (DMD) and other muscle diseases were enriched for various poly[adenosine 5'-diphosphate (ADP)-ribose] polymerases (PARPs) and for nicotinamide N-methyltransferase (NNMT), enzymes that are major consumers of NAD + and are involved in pleiotropic events, including inflammation. In the mdx mouse model of DMD, we observed significant reductions in muscle NAD + levels, concurrent increases in PARP activity, and reduced expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD + biosynthesis. Replenishing NAD + stores with dietary nicotinamide riboside supplementation improved muscle function and heart pathology in mdx and mdx/Utr -/- mice and reversed pathology in Caenorhabditis elegans models of DMD. The effects of NAD + repletion in mdx mice relied on the improvement in mitochondrial function and structural protein expression (α-dystrobrevin and δ-sarcoglycan) and on the reductions in general poly(ADP)-ribosylation, inflammation, and fibrosis. In combination, these studies suggest that the replenishment of NAD + may benefit patients with muscular dystrophies or other neuromuscular degenerative conditions characterized by the PARP/NNMT gene expression signatures. Copyright © 2016, American Association for the Advancement of Science.

  19. Late-onset Stargardt-like macular dystrophy maps to chromosome 1p13

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, J.; Gerber, S.; Rozet, J.M. [Hopital des Enfants Malades, Paris (France)] [and others

    1994-09-01

    Stargardt`s disease (MIM 248200), originally described in 1909, is an autosomal recessive condition of childhood, characterized by a sudden and bilateral loss of central vision. Typically, it has an early onset (7 to 12 years), a rapidly progressive course and a poor final outcome. The central area of the retina (macula) displays pigmentary changes in a ring form with depigmentation and atrophy of the retinal pigmentary epithelium (RPE). Perimacular yellowish spots, termed fundus flavimaculatus, are observed in a high percentage of patients. We have recently reported the genetic mapping of Stargardt`s disease to chromosome 1p13. On the other hand, considering that fundus flavimaculatus (MIM 230100) is another form of fleck fundus disease, with a Stargardt-like retinal aspect but with a late-onset and a more progressive course, we decided to test the hypothesis of allelism between typical Stargardt`s disease and late-onset autosomal recessive fundus flavimaculatus. Significant pairwise lod scores were obtained in each of four multiplex families (11 affected individuals, 12 relatives) with four markers of the 1p13 region (Z = 4.79, 4.64, 3.07, 3.16 at loci D1S435, D1S424, D1S236, and D1S415, respectively at {theta} = 0). Multipoint analysis showed that the best estimate for location of the disease gene is between D1S424 and D1S236 (maximum lod score of 5.20) as also observed in Stargardt`s disease. Our results are consistent with the location of the gene responsible of the late-onset Stargardt-like macular dystrophy in the 1p13 region and raise the hypothesis of either allelic mutational events or contiguous genes in this chromosomal region. The question of possible relationship with some age-related macular dystrophies in now open to debate.

  20. Gene expression profiling in limb-girdle muscular dystrophy 2A.

    Directory of Open Access Journals (Sweden)

    Amets Sáenz

    Full Text Available Limb-girdle muscular dystrophy type 2A (LGMD2A is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3. Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens, cell adhesion (fibronectin, muscle development (myosins and melusin and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB is upregulated in LGMD2A muscle samples, it could be hypothesized that beta-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1. Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies.

  1. Dystrophin Expressing Chimeric (DEC) Human Cells Provide a Potential Therapy for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Siemionow, Maria; Cwykiel, Joanna; Heydemann, Ahlke; Garcia, Jesus; Marchese, Enza; Siemionow, Krzysztof; Szilagyi, Erzsebet

    2018-06-01

    Duchenne Muscular Dystrophy (DMD) is a progressive and lethal disease caused by mutations of the dystrophin gene. Currently no cure exists. Stem cell therapies targeting DMD are challenged by limited engraftment and rejection despite the use of immunosuppression. There is an urgent need to introduce new stem cell-based therapies that exhibit low allogenic profiles and improved cell engraftment. In this proof-of-concept study, we develop and test a new human stem cell-based approach to increase engraftment, limit rejection, and restore dystrophin expression in the mdx/scid mouse model of DMD. We introduce two Dystrophin Expressing Chimeric (DEC) cell lines created by ex vivo fusion of human myoblasts (MB) derived from two normal donors (MB N1 /MB N2 ), and normal and DMD donors (MB N /MB DMD ). The efficacy of fusion was confirmed by flow cytometry and confocal microscopy based on donor cell fluorescent labeling (PKH26/PKH67). In vitro, DEC displayed phenotype and genotype of donor parent cells, expressed dystrophin, and maintained proliferation and myogenic differentiation. In vivo, local delivery of both DEC lines (0.5 × 10 6 ) restored dystrophin expression (17.27%±8.05-MB N1 /MB N2 and 23.79%±3.82-MB N /MB DMD ) which correlated with significant improvement of muscle force, contraction and tolerance to fatigue at 90 days after DEC transplant to the gastrocnemius muscles (GM) of dystrophin-deficient mdx/scid mice. This study establishes DEC as a potential therapy for DMD and other types of muscular dystrophies.

  2. Hsp72 preserves muscle function and slows progression of severe muscular dystrophy.

    Science.gov (United States)

    Gehrig, Stefan M; van der Poel, Chris; Sayer, Timothy A; Schertzer, Jonathan D; Henstridge, Darren C; Church, Jarrod E; Lamon, Severine; Russell, Aaron P; Davies, Kay E; Febbraio, Mark A; Lynch, Gordon S

    2012-04-04

    Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca(2+), which activates inflammatory and muscle degenerative pathways. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca(2+)) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.

  3. Protein-Anchoring Therapy of Biglycan for Mdx Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Ito, Mikako; Ehara, Yuka; Li, Jin; Inada, Kosuke; Ohno, Kinji

    2017-05-01

    Duchenne muscular dystrophy (DMD) is a devastating muscle disease caused by loss-of-function mutations in DMD encoding dystrophin. No rational therapy is currently available. Utrophin is a paralog of dystrophin and is highly expressed at the neuromuscular junction. In mdx mice, utrophin is naturally upregulated throughout the muscle fibers, which mitigates muscular dystrophy. Protein-anchoring therapy was previously reported, in which a recombinant extracellular matrix (ECM) protein is delivered to and anchored to a specific target using its proprietary binding domains. Being prompted by a report that intramuscular and intraperitoneal injection of an ECM protein, biglycan, upregulates expression of utrophin and ameliorates muscle pathology in mdx mice, protein-anchoring therapy was applied to mdx mice. Recombinant adeno-associated virus serotype 8 (rAAV8) carrying hBGN encoding human biglycan was intravenously injected into 5-week-old mdx mice. The rAAV8-hBGN treatment improved motor deficits and decreased plasma creatine kinase activities. In muscle sections of treated mice, the number of central myonuclei and the distribution of myofiber sizes were improved. The treated mice increased gene expressions of utrophin and β1-syntrophin, as well as protein expressions of biglycan, utrophin, γ-sarcoglycan, dystrobrevin, and α1-syntrophin. The expression of hBGN in the skeletal muscle of the treated mice was 1.34-fold higher than that of the native mouse Bgn (mBgn). The low transduction efficiency and improved motor functions suggest that biglycan expressed in a small number of muscle fibers was likely to have been secreted and anchored to the cell surface throughout the whole muscular fibers. It is proposed that the protein-anchoring strategy can be applied not only to deficiency of an ECM protein as previously reported, but also to augmentation of a naturally induced ECM protein.

  4. Simultaneous Presence of Macular Corneal Dystrophy and Retinitis Pigmentosa in Three Members of a Family

    Directory of Open Access Journals (Sweden)

    Farhad Nejat

    2018-03-01

    Full Text Available Macular corneal dystrophy (MCD is an autosomal recessive hereditary disease. In most cases, various mutations in carbohydrate sulfotransferase 6 (CHST6 gene are the main cause of MCD. These mutations lead to a defect in keratan sulfate synthesis. Retinitis pigmentosa (RP is another eye disorder with nyctalopia as its common symptom. It has been shown that more than 65 genes have been implicated in different forms of RP. Herein, we report on a 9-member family with 2 girls and 5 boys. Both parents, one of the girls and one of the boys had normal eye vision and another boy had keratoconus. Other children (1 girl and 2 boys suffered from both MCD and RP. Corneal transplantation and medical supplements were used for MCD and RP during the follow-up period, respectively. Based on the family tree, it seems that the inheritance of both diseases is autosomal recessive. Based on our search of databases, there is no report on the simultaneous presence of MCD and RP. To the best of our knowledge, the present article is the first case report on this topic. Molecular genetic investigation is needed to clarify the mechanism of concurrent MCD and RP.

  5. Professional activity of Emery-Dreifuss muscular dystrophy patients in Poland

    Directory of Open Access Journals (Sweden)

    Agnieszka Madej-Pilarczyk

    2014-04-01

    Full Text Available Objectives: Emery-Dreifuss muscular dystrophy (EDMD is a very rare genetic disorder affecting skeletal and heart muscles. The aim of this study was to identify factors which might influence the ability to work in EDMD patients in Poland. Material and Methods: The study included 24 patients suffering from either of the two EDMD forms: 17 with emerinopathy (EDMD1; EDMD caused by mutations in the emerin gene and 7 with laminopathy (EDMD2; EDMD caused by the lamin A/C gene mutations. After clinical evaluation of EDMD course, study participants were questioned about their education, current and former employment, and disability certificates and pensions. Results: 54% of the study participants were employed, and 90% of them had job position corresponding to their education. Undertaking work did not correlate with the level of physical performance or disease complication, but it revealed statistically significant correlation with a higher level of education (p = 0.015. Only 23% of professionally active patients were employed in a sheltered workplace. Disability certificate was granted to all EDMD2 and to 90% of EDMD1 patients. All EDMD2 and 50% of EDMD1 patients received a disability pension, which reflects more severe course of EDMD2. Conclusions: Higher level of education increased the chance of employment, even if significant disability was present. Therefore, I hypothesize that advice on education and jobcounseling should be applied as early as possible after the diagnosis of EDMD.

  6. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    Energy Technology Data Exchange (ETDEWEB)

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R. [Ohio State Univ., Columbus, OH (United States); Moxley, R.T. [Univ. of Rochester Medical Center, NY (United States)

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  7. Computed tomography in Duchenne type muscular dystrophy

    International Nuclear Information System (INIS)

    Kawai, Mitsuru; Kunimoto, Masanari; Motoyoshi, Yasufumi; Kuwata, Takashi; Nakano, Imaharu

    1985-01-01

    The computed tomography (CT) scan was performed on 91 Duchenne type muscular dystrophy (DMD) patients on the following four levels; (1) at the level of L3 vertebra, (2) 2-3cm above the symphysis pubica, (3) midposition of the thigh, (4) largest-diameter section of the lower leg. The CT of muscles common to most of the DMD patients were as follows: 1. Muscle atrophy: Muscle atrophy was shown as a reduction in the cross-sectional area of the muscles. Very mild muscle atrophy could be detected either by the clearly identified muscle border or by scattered low-density areas of so-called ''moth-eaten'' appearance within muscles. 2. Fat infiltration: The decrease in radio-density of muscles was interpreted as infiltration of fatty tissue. This type of density change was further classified into diffuse, streaked, cobblestone and salt-and-pepper patterns according to the spacial distribution of low-density areas. 3. Selectivity pattern: As the chronological sequence of DMD muscle degeneration is usually different among individual muscles, it may be seen, in some stages, that some of the synergistic muscles are still only slightly involved, while the others are quite severely atrophied with evident fat infiltration. In certain stages of the disease, most of the patients show relative preservation of particular muscles although they assumed a rounded shape. The most resistent muscle was musculus gracilis, followed by the musculus sartorius, musculus semitendinosus (and/or musculus semimembranosus) in that order. According to the severity of the CT changes, 86 of the 91 patients were classed into five stages from A1 to A5. Morphological stages (A1-A5) were well correlated to the functional disability stages by Ueda with a correlation factor of r=0.88. (J.P.N.)

  8. Respiratory muscle decline in Duchenne muscular dystrophy.

    Science.gov (United States)

    Khirani, Sonia; Ramirez, Adriana; Aubertin, Guillaume; Boulé, Michèle; Chemouny, Chrystelle; Forin, Véronique; Fauroux, Brigitte

    2014-05-01

    Duchenne muscular dystrophy (DMD) causes progressive respiratory muscle weakness. The aim of the study was to analyze the trend of a large number of respiratory parameters to gain further information on the course of the disease. Retrospective study. 48 boys with DMD, age range between 6 and 19 year old, who were followed in our multidisciplinary neuromuscular clinic between 2001 and 2011. Lung function, blood gases, respiratory mechanics, and muscle strength were measured during routine follow-up over a 10-year period. Only data from patients with at least two measurements were retained. The data of 28 patients were considered for analysis. Four parameters showed an important decline with age. Gastric pressure during cough (Pgas cough) was below normal in all patients with a mean decline of 5.7 ± 3.8 cmH2 O/year. Sniff nasal inspiratory pressure (SNIP) tended to increase first followed by a rapid decline (mean decrease 4.8 ± 4.9 cmH2 O; 5.2 ± 4.4% predicted/year). Absolute forced vital capacity (FVC) values peaked around the age of 13-14 years and remained mainly over 1 L but predicted values showed a mean 4.1 ± 4.4% decline/year. Diaphragmatic tension-time index (TTdi) increased above normal values after the age of 14 years with a mean increase of 0.04 ± 0.04 point/year. This study confirms the previous findings that FVC and SNIP are among the most important parameters to monitor the evolution of DMD. Expiratory muscle strength, assessed by Pgas cough, and the endurance index, TTdi, which are reported for the first time in a large cohort, appeared to be informative too, even though measured through an invasive method. © 2013 Wiley Periodicals, Inc.

  9. Granular Corneal Dystrophy Manifesting after Radial Keratotomy

    Directory of Open Access Journals (Sweden)

    Sepehr Feizi

    2008-12-01

    Full Text Available

    PURPOSE: To report manifestation of granular corneal dystrophy after radial keratotomy (RK. CASE REPORT: A 32-year-old man presented with white radial lines in both corneas. He had undergone uncomplicated RK in both eyes 8 years ago. Preoperative refraction had been OD: -3.5 -0.75@180 and OS: -3.0 -0.5@175. Uncorrected visual acuity was OD: 8/10 and OS: 7/10; best corrected visual acuity was 9/10 in both eyes with OD: -0.5 -0.5@60 and OS: -0.75 -0.5@80. Slit lamp examination revealed discrete well-demarcated whitish lesions with clear intervening stroma in the central anterior cornea consistent with granular dystrophy. Similar opacities were present within the RK incisions. CONCLUSION: Granular dystrophy deposits may appear within RK incisions besides other previously reported locations.

  1. Cardiac Complications of Fukuyama-Type Congenital Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-07-01

    Full Text Available The course of left ventricular function was evaluated using M-mode and Doppler echocardiography in 34 patients with Fukuyama-type congenital muscular dystrophy (FCMD, in a study at the Tokyo Women’s Medical University, Tokyo, Japan.

  2. Phonological Awareness Skills in Young Boys with Duchenne Muscular Dystrophy

    Science.gov (United States)

    Waring, Phoebe; Woodyatt, Gail

    2011-01-01

    Substantial research has detailed the reading deficits experienced by children with Duchenne muscular dystrophy (DMD). Although phonological awareness (PA) is vital in reading development, little is known about PA in the DMD population. This pilot study describes the PA abilities of a group of five young children with DMD, comparing the results…

  3. Poor Facial Affect Recognition among Boys with Duchenne Muscular Dystrophy

    Science.gov (United States)

    Hinton, V. J.; Fee, R. J.; De Vivo, D. C.; Goldstein, E.

    2007-01-01

    Children with Duchenne or Becker muscular dystrophy (MD) have delayed language and poor social skills and some meet criteria for Pervasive Developmental Disorder, yet they are identified by molecular, rather than behavioral, characteristics. To determine whether comprehension of facial affect is compromised in boys with MD, children were given a…

  4. Computed tomographic findings in manifesting carriers of Duchenne muscular dystrophy

    NARCIS (Netherlands)

    de Visser, M.; Verbeeten, B.

    1985-01-01

    Clinical and computed tomographic (CT) findings in 3 manifesting carriers of Duchenne muscular dystrophy are reported. CT proved to be an important adjunct to the clinical examination: in all our 3 cases a decrease in density was found in various non-paretic muscles

  5. Occupational Potential in a Population with Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Schkade, Janette K.; And Others

    1987-01-01

    Twenty-five males with Duchenne muscular dystrophy were tested to assess their potential for occupational activity. Tests measured possible sensory deficits, strength, endurance, and fatigue in response to sustained fine motor activity. Results indicate that, within limitations, persons with this diagnosis can engage in activity leading to skill…

  6. The Assessment of Intelligence in Boys with Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Mearig, Judith S.

    1979-01-01

    Challenges assumptions and research procedures leading to the position that below-average intellectual potential is an integral part of Duchenne muscular dystrophy. A study of 58 boys (ages 5 to 18) from urban, suburban, and rural settings indicated IQ range of 59 to 131 and no evidence of significant verbal deficit (reported in earlier studies).…

  7. Reflex sympathetic dystrophy/complex regional pain syndrome, type 1

    African Journals Online (AJOL)

    Enrique

    with MRI every 3 months and the bone marrow oedema disappeared after 6 months. Introduction ... SA JOURNAL OF RADIOLOGY • August 2004. Reflex sympathetic dystrophy/complex regional pain syndrome, type 1 ... may be either trauma of external origin or iatrogenic, post surgery. In some patients particularly children ...

  8. Swallow Characteristics in Patients with Oculopharyngeal Muscular Dystrophy

    Science.gov (United States)

    Palmer, Phyllis M.; Neel, Amy T.; Sprouls, Gwyneth; Morrison, Leslie

    2010-01-01

    Purpose: This prospective investigation evaluates oral weakness and its impact on swallow function, weight, and quality of life in patients with oculopharyngeal muscular dystrophy (OPMD). Method: Intraoral pressure, swallow pressure, and endurance were measured using an Iowa Oral Performance Instrument in participants with OPMD and matched…

  9. Dasatinib as a treatment for Duchenne muscular dystrophy.

    Science.gov (United States)

    Lipscomb, Leanne; Piggott, Robert W; Emmerson, Tracy; Winder, Steve J

    2016-01-15

    Identification of a systemically acting and universal small molecule therapy for Duchenne muscular dystrophy would be an enormous advance for this condition. Based on evidence gained from studies on mouse genetic models, we have identified tyrosine phosphorylation and degradation of β-dystroglycan as a key event in the aetiology of Duchenne muscular dystrophy. Thus, preventing tyrosine phosphorylation and degradation of β-dystroglycan presents itself as a potential therapeutic strategy. Using the dystrophic sapje zebrafish, we have investigated the use of tyrosine kinase and other inhibitors to treat the dystrophic symptoms in this model of Duchenne muscular dystrophy. Dasatinib, a potent and specific Src tyrosine kinase inhibitor, was found to decrease the levels of β-dystroglycan phosphorylation on tyrosine and to increase the relative levels of non-phosphorylated β-dystroglycan in sapje zebrafish. Furthermore, dasatinib treatment resulted in the improved physical appearance of the sapje zebrafish musculature and increased swimming ability as measured by both duration and distance of swimming of dasatinib-treated fish compared with control animals. These data suggest great promise for pharmacological agents that prevent the phosphorylation of β-dystroglycan on tyrosine and subsequent steps in the degradation pathway as therapeutic targets for the treatment of Duchenne muscular dystrophy. © The Author 2015. Published by Oxford University Press.

  10. Stem cell transplantation for treating Duchenne muscular dystrophy

    Science.gov (United States)

    Yang, Xiaofeng

    2012-01-01

    OBJECTIVE: To identify global research trends in stem cell transplantation for treating Duchenne muscular dystrophy using a bibliometric analysis of Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of studies on stem cell transplantation for treating Duchenne muscular dystrophy from 2002 to 2011 retrieved from Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed published articles on stem cell transplantation for treating Duchenne muscular dystrophy indexed in Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items; and (c) publication between 2002 and 2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) corrected papers. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to subject areas; (3) distribution according to journals; (4) distribution according to country; (5) distribution according to institution; (6) distribution according to institution in China; (7) distribution according to institution that cooperated with Chinese institutions; (8) top-cited articles from 2002 to 2006; (9) top-cited articles from 2007 to 2011. RESULTS: A total of 318 publications on stem cell transplantation for treating Duchenne muscular dystrophy were retrieved from Web of Science from 2002 to 2011, of which almost half derived from American authors and institutes. The number of publications has gradually increased over the past 10 years. Most papers appeared in journals with a focus on gene and molecular research, such as Molecular Therapy, Neuromuscular Disorders, and PLoS One. The 10 most-cited papers from 2002 to 2006 were mostly about different kinds of stem cell transplantation for muscle regeneration, while the 10 most-cited papers from 2007 to 2011 were mostly about new techniques of stem cell transplantation

  11. [Atypical reaction to anesthesia in Duchenne/Becker muscular dystrophy].

    Science.gov (United States)

    Silva, Helga Cristina Almeida da; Hiray, Marcia; Vainzof, Mariz; Schmidt, Beny; Oliveira, Acary Souza Bulle; Amaral, José Luiz Gomes do

    2017-05-31

    Duchenne/Becker muscular dystrophy affects skeletal muscles and leads to progressive muscle weakness and risk of atypical anesthetic reactions following exposure to succinylcholine or halogenated agents. The aim of this report is to describe the investigation and diagnosis of a patient with Becker muscular dystrophy and review the care required in anesthesia. Male patient, 14 years old, referred for hyperCKemia (chronic increase of serum creatine kinase levels - CK), with CK values of 7,779-29,040IU.L -1 (normal 174IU.L -1 ). He presented with a discrete delay in motor milestones acquisition (sitting at 9 months, walking at 18 months). He had a history of liver transplantation. In the neurological examination, the patient showed difficulty in walking on one's heels, myopathic sign (hands supported on the thighs to stand), high arched palate, calf hypertrophy, winged scapulae, global muscle hypotonia and arreflexia. Spirometry showed mild restrictive respiratory insufficiency (forced vital capacity: 77% of predicted). The in vitro muscle contracture test in response to halothane and caffeine was normal. Muscular dystrophy analysis by Western blot showed reduced dystrophin (20% of normal) for both antibodies (C and N-terminal), allowing the diagnosis of Becker muscular dystrophy. On preanesthetic assessment, the history of delayed motor development, as well as clinical and/or laboratory signs of myopathy, should encourage neurological evaluation, aiming at diagnosing subclinical myopathies and planning the necessary care to prevent anesthetic complications. Duchenne/Becker muscular dystrophy, although it does not increase susceptibility to MH, may lead to atypical fatal reactions in anesthesia. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  12. Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene.

    NARCIS (Netherlands)

    Muchir, A.; Engelen, B.G.M. van; Lammens, M.M.Y.; Mislow, J.M.; McNally, E.; Schwartz, K.; Bonne, G.

    2003-01-01

    Mutations in the LMNA gene encoding nuclear lamins A and C are responsible for seven inherited disorders affecting specific tissues. We have analyzed skin fibroblasts from a patient with type 1B limb-girdle muscular dystrophy and from her deceased newborn grandchild carrying, respectively, a

  13. Somatic mosaicism of a point mutation in the dystrophin gene in a patient presenting with an asymmetrical muscle weakness and contractures

    NARCIS (Netherlands)

    Helderman-van den Enden, A. T. J. M.; Ginjaar, H. B.; Kneppers, A. L. J.; Bakker, E.; Breuning, M. H.; de Visser, M.

    2003-01-01

    We describe a patient with somatic mosaicism of a point mutation in the dystrophin gene causing benign muscular dystrophy with an unusual asymmetrical distribution of muscle weakness and contractures. To our knowledge this is the first patient with asymmetrical weakness and contractures in an

  14. Evaluation of 2’-Deoxy-2’-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Silvana M G Jirka

    2015-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs that induce skipping of specific exons during pre-mRNA splicing. Different chemical modifications have been developed to improve AON properties. The 2’-deoxy-2’-fluoro (2F RNA modification is attractive for exon skipping due to its ability to recruit ILF2/3 proteins to the 2F/pre-mRNA duplex, which resulted in enhanced exon skipping in spinal muscular atrophy models. In this study, we examined the effect of two different 2’-substituted AONs (2’-F phosphorothioate (2FPS and 2’-O-Me phosphorothioate (2OMePS on exon skipping in DMD cell and animal models. In human cell cultures, 2FPS AONs showed higher exon skipping levels than their isosequential 2OMePS counterparts. Interestingly, in the mdx mouse model, 2FPS was less efficient than 2OMePS and suggested safety issues as evidenced by increased spleen size and weight loss. Our results do not support a clinical application for 2FPS AON.

  15. Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H

    Science.gov (United States)

    Kudryashova, Elena; Kramerova, Irina; Spencer, Melissa J.

    2012-01-01

    Mutations in the E3 ubiquitin ligase tripartite motif-containing 32 (TRIM32) are responsible for the disease limb-girdle muscular dystrophy 2H (LGMD2H). Previously, we generated Trim32 knockout mice (Trim32–/– mice) and showed that they display a myopathic phenotype accompanied by neurogenic features. Here, we used these mice to investigate the muscle-specific defects arising from the absence of TRIM32, which underlie the myopathic phenotype. Using 2 models of induced atrophy, we showed that TRIM32 is dispensable for muscle atrophy. Conversely, TRIM32 was necessary for muscle regrowth after atrophy. Furthermore, TRIM32-deficient primary myoblasts underwent premature senescence and impaired myogenesis due to accumulation of PIAS4, an E3 SUMO ligase and TRIM32 substrate that was previously shown to be associated with senescence. Premature senescence of myoblasts was also observed in vivo in an atrophy/regrowth model. Trim32–/– muscles had substantially fewer activated satellite cells, increased PIAS4 levels, and growth failure compared with wild-type muscles. Moreover, Trim32–/– muscles exhibited features of premature sarcopenia, such as selective type II fast fiber atrophy. These results imply that premature senescence of muscle satellite cells is an underlying pathogenic feature of LGMD2H and reveal what we believe to be a new mechanism of muscular dystrophy associated with reductions in available satellite cells and premature sarcopenia. PMID:22505452

  16. Adhalin, the 50 kD dystrophin associated protein, is not the locus for severe childhood autosomal recessive dystrophy (SCARMD)

    Energy Technology Data Exchange (ETDEWEB)

    McNally, E.M.; Selig, S.; Kunkel, L.M. [Children`s Hospital, Boston, MA (United States)

    1994-09-01

    Mutations in the carboxyl-terminus in dystrophin are normally sufficient to produce severely dystrophic muscle. This portion of dystrophin binds a complex of dystrophin-associated glycoproteins (DAGs). The genes encoding these DAGs are candidate genes for causing neuromuscular disease. Immunoreactivity for adhalin, the 50 kD DAG, is absent in muscle biopsies from patients with SCARMD, a form of dystrophy clinically similar Duchenne muscular dystrophy. Prior linkage analysis in SCARMD families revealed that the disease gene segregates with markers on chromosome 13. To determine the molecular role that adhalin may play in SCARMD, human cDNA and genomic sequences were isolated. Primers were designed based on predicted areas of conservation in rabbit adhalin and used in RT-PCR with human skeletal and cardiac muscle. RT-PCR products were confirmed by sequence as human adhalin and then used as probes for screening human cDNA and genomic libraries. Human and rabbit adhalin are 90% identical, and among the cDNAs, a novel splice form of adhalin was seen which may encode part of the 35 kD component of the dystrophin-glycoprotein complex. To our surprise, only human/rodent hybrids containing human chromosome 17 amplified adhalin sequences in a PCR analysis. FISH analysis with three overlapping genomic sequences confirmed the chromosome 17 location and further delineated the map position to 17q21. Therefore, adhalin is excluded as the gene causing SCARMD.

  17. High-resolution optical coherence tomography, autofluorescence, and infrared reflectance imaging in Sjögren reticular dystrophy.

    Science.gov (United States)

    Schauwvlieghe, Pieter-Paul; Torre, Kara Della; Coppieters, Frauke; Van Hoey, Anneleen; De Baere, Elfride; De Zaeytijd, Julie; Leroy, Bart P; Brodie, Scott E

    2013-01-01

    To describe the phenotype of three cases of Sjögren reticular dystrophy in detail, including high-resolution optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. Two unrelated teenagers were independently referred for ophthalmologic evaluation. Both underwent a full ophthalmologic workup, including electrophysiologic and extensive imaging with spectral-domain optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. In addition, mutation screening of ABCA4, PRPH2, and the mitochondrial tRNA gene was performed in Patient 1. Subsequently, the teenage sister of Patient 2 was examined. Strikingly similar phenotypes were present in these three patients. Fundoscopy showed bilateral foveal pigment alterations, and a lobular network of deep retinal, pigmented deposits throughout the posterior pole, tapering toward the midperiphery, with relative sparing of the immediate perifoveal macula and peripapillary area. This network is mildly to moderately hyperautofluorescent on autofluorescence and bright on near-infrared reflectance imaging. Optical coherence tomography showed abnormalities of the retinal pigment epithelium-Bruch membrane complex, photoreceptor outer segments, and photoreceptor inner/outer segment interface. The results of retinal function test were entirely normal. No molecular cause was detected in Patient 1. Imaging suggested that the lobular network of deep retinal deposits in Sjögren reticular dystrophy is the result of accumulation of both pigment and lipofuscin between photoreceptors and retinal pigment epithelium, as well as within the retinal pigment epithelium.

  18. Modulation of Protein Quality Control and Proteasome to Autophagy Switch in Immortalized Myoblasts from Duchenne Muscular Dystrophy Patients

    Directory of Open Access Journals (Sweden)

    Marion Wattin

    2018-01-01

    Full Text Available The maintenance of proteome integrity is of primary importance in post-mitotic tissues such as muscle cells; thus, protein quality control mechanisms must be carefully regulated to ensure their optimal efficiency, a failure of these processes being associated with various muscular disorders. Duchenne muscular dystrophy (DMD is one of the most common and severe forms of muscular dystrophies and is caused by mutations in the dystrophin gene. Protein quality control modulations have been diversely observed in degenerating muscles of patients suffering from DMD or in animal models of the disease. In this study, we investigated whether modulations of protein quality control mechanisms already pre-exist in undifferentiated myoblasts originating from DMD patients. We report for the first time that the absence of dystrophin in human myoblasts is associated with protein aggregation stress characterized by an increase of protein aggregates. This stress is combined with BAG1 to BAG3 switch, NFκB activation and up-regulation of BAG3/HSPB8 complexes that ensure preferential routing of misfolded/aggregated proteins to autophagy rather than to deficient 26S proteasome. In this context, restoration of pre-existing alterations of protein quality control processes might represent an alternative strategy for DMD therapies.

  19. Anoctamin 5 muscular dystrophy in Denmark

    DEFF Research Database (Denmark)

    Witting, Nanna; Duno, Morten; Petri, Helle

    2013-01-01

    mutations caused 11 % of our total cohort of LGMD2 cases making it the second most common LGMD2 etiology in Denmark. Eight patients complained of dysphagia and 3 dated symptoms of onset in childhood. Cardiac examinations revealed increased frequency of premature ventricular contractions. Four novel putative...... of reported dysphagia is a new phenotypic feature not previously reported, and cardiac investigations revealed that ANO5-patients may have an increased risk of ventricular arrhythmia....

  20. An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy.

    Science.gov (United States)

    Eidinger, Osnat; Leibu, Rina; Newman, Hadas; Rizel, Leah; Perlman, Ido; Ben-Yosef, Tamar

    2015-01-01

    To investigate the genetic basis for autosomal recessive cone-rod dystrophy (CRD) in a consanguineous Israeli Jewish family. Patients underwent a detailed ophthalmic evaluation, including eye examination, visual field testing, optical coherence tomography (OCT), and electrophysiological tests, electroretinography (ERG) and visual evoked potential (VEP). Genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array was performed to identify homozygous regions shared among two of the affected individuals. Mutation screening of the underlying gene was performed with direct sequencing. In silico and in vitro analyses were used to predict the effect of the identified mutation on splicing. The affected family members are three siblings who have various degrees of progressive visual deterioration, glare, color vision abnormalities, and night vision difficulties. Visual field tests revealed central scotomas of different extension. Cone and rod ERG responses were reduced, with cones more severely affected. Homozygosity mapping revealed several homozygous intervals shared among two of the affected individuals. One included the PROM1 gene. Sequence analysis of the 26 coding exons of PROM1 in one affected individual revealed no mutations in the coding sequence or in intronic splice sites. However, in intron 21, proximate to the intron-exon junction, we observed a homozygous 10 bp deletion between positions -26 and -17 (c.2281-26_-17del). The deletion was linked to a known SNP, c.2281-6C>G. The deletion cosegregated with the disease in the family, and was not detected in public databases or in 101 ethnically-matched control individuals. In silico analysis predicted that this deletion would lead to altered intron 21 splicing. Bioinformatic analysis predicted that a recognition site for the SRSF2 splicing factor is located within the deleted sequence. The in vitro splicing assay demonstrated that c.2281-26_-17del leads to complete exon 22 skipping. A novel

  1. Prevalence of muscular dystrophy in patients with muscular disorders in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Khadijeh Hajinaghi Tehrani

    2018-05-01

    Full Text Available Muscular dystrophy is a group of diseases that is characterized by progressive muscle wasting and the weakness of variable distribution and severity. On the basis of the distribution of predominant muscle weakness, there are many different kinds of muscular dystrophy. Some dystrophies are especially frequent in certain populations. There are no studies on the prevalence of muscular dystrophy in Iran. This study was aimed to survey the prevalence of muscular dystrophy among Iranian patients with muscular disorders. This analytical cross-sectional study was conducted on 1000 patients with musculoskeletal disorders who visited the dystrophy association of Bou-Ali Hospital (Tehran from June 2014 to June 2016. Patients’ data were extracted using a checklist that included age, gender, age of onset, family history, findings from clinical diagnostic tests and types of muscular dystrophy. The clinical findings were the results of genetic tests; EMG-NCV; para-clinical findings, including LDH and CPK; and pathological findings. All data were analyzed by SPSS V.22 (IBM Inc., NY with Chi Square and One way ANOVA tests. All analyses were performed with P = 0.05 considered as the threshold of statistical significant. Out of the 337 patients studied, 262 (77.7% were male and 75 (22.3% were female. Subjects had a mean (± SD age of 26.08 (± 11.86 years with an age range of 3 to 59 years. The most common types of muscular dystrophy were found to be Duchenne dystrophy (131 cases, 38.9%, limb-girdle dystrophy (91 cases, 27%, Becker dystrophy (58 cases, 17.2%, FSHD dystrophy (31 cases, 9.2%, and SMA (26 cases, 7.7%, respectively. The results showed that a statistically significant relationship between dystrophy types and gender, age, family history, age of diagnosis, CPK and LDH levels (P < 0.001. There were no statistical relationship between dystrophy types and pathological findings (P = 0.57, EMG-NCV test results (P = 0.062, and genetic findings (P = 0

  2. Detection of new paternal dystrophin gene mutations in isolated cases of dystrophinopathy in females

    Energy Technology Data Exchange (ETDEWEB)

    Pegoraro, E.; Wessel, H.B.; Schwartz, L.; Hoffman, E.P. (Univ. of Pittsburgh, PA (United States)); Schimke, R.N. (Kansas Univ. Medical Center, Kansas City (United States)); Arahata, Kiichi; Hayashi, Yukiko (National Institute of Neurosciences, Tokyo (Japan)); Stern, H. (Children' s National Medical Center, Washington, DC (United States)); Marks, H. (A.I. duPont Institute, Wilmington (United States)); Glasberg, M.R. (Henry Ford Hospital, Detroit, MI (United States)) (and others)

    1994-06-01

    Duchenne muscular dystrophy is one of the most common lethal monogenic disorders and is caused by dystrophin deficiency. The disease is transmitted as an X-linked recessive trait; however, recent biochemical and clinical studies have shown that many girls and women with a primary myopathy have an underlying dystrophinopathy, despite a negative family history for Duchenne dystrophy. These isolated female dystrophinopathy patients carried ambiguous diagnoses with presumed autosomal recessive inheritance (limb-girdle muscular dystrophy) prior to biochemical detection of dystrophin abnormalities in their muscle biopsy. It has been assumed that these female dystrophinopathy patients are heterozygous carries who show preferential inactivation of the X chromosome harboring the normal dystrophin gene, although this has been shown for only a few X:autosome translocations and for two cases of discordant monozygotic twin female carriers. Here the authors study X-inactivation patterns of 13 female dystrophinopathy patients - 10 isolated cases and 3 cases with a positive family history for Duchenne dystrophy in males. They show that all cases have skewed X-inactivation patterns in peripheral blood DNA. Of the nine isolated cases informative in the assay, eight showed inheritance of the dystrophin gene mutation from the paternal germ line. Only a single case showed maternal inheritance. The 10-fold higher incidence of paternal transmission of dystrophin gene mutations in these cases is at 30-fold variance with Bayesian predictions and gene mutation rates. Thus, the results suggest some mechanistic interaction between new dystrophin gene mutations, paternal inheritance, and skewed X inactivation. The results provide both empirical risk data and a molecular diagnostic test method, which permit genetic counseling and prenatal diagnosis of this new category of patients. 58 refs., 7 figs., 2 tabs.

  3. Cone-rod dystrophy and amelogenesis imperfecta (Jalili syndrome): phenotypes and environs.

    Science.gov (United States)

    Jalili, I K

    2010-11-01

    To report a new phenotype with additional data on the oculo-dental syndrome of cone-rod dystrophy (CRD) and amelogenesis imperfecta (AI) caused by mutations on CNNM4, a metal transporter, with linkage at achromatopsia locus 2q11 (Jalili syndrome). Three siblings aged 5, 6, and 10 years from a six-generation Arab family in Gaza City underwent full systemic, ophthalmic, and dental examinations, investigations and detailed genealogy. Subjects presented at early childhood with visual impairment and abnormal dentition together with photophobia and fine nystagmus increasing under photopic conditions, in the presence of normal fundi. Electrophysiologically, photopic flicker responses were impaired; scotopic responses were extinguished at the age of 10 years. Anterior open bite accompanied AI in all siblings. The syndrome formed 83% of CRD cases in the Gaza Strip, which has a prevalence of 1 : 10,000. On the basis of clinical features and electrophysiology, two phenotypes exist: an infancy onset form with progressive macular lesion and an early childhood onset form with normal fundi. More prevalent than previously thought, Jalili syndrome presents a model of the effect of different mutations of the same genetic defect, observations of the same phenotype at different stages of the natural history of the disease, and the influence of epigenetic and tissue-specific factors as causes of phenotypic variability. The paper calls for action to tackle consanguinity in endogamous communities, addresses the possible role of high fluoride levels in groundwater as a trigger for genetic mutations, and the use of red-tinted filter in cone disorders.

  4. POPDC1S201F causes muscular dystrophy and arrhythmia by affecting protein trafficking

    Science.gov (United States)

    Schindler, Roland F.R.; Scotton, Chiara; Zhang, Jianguo; Passarelli, Chiara; Ortiz-Bonnin, Beatriz; Simrick, Subreena; Schwerte, Thorsten; Poon, Kar-Lai; Fang, Mingyan; Rinné, Susanne; Froese, Alexander; Nikolaev, Viacheslav O.; Grunert, Christiane; Müller, Thomas; Tasca, Giorgio; Sarathchandra, Padmini; Drago, Fabrizio; Dallapiccola, Bruno; Rapezzi, Claudio; Arbustini, Eloisa; Di Raimo, Francesca Romana; Neri, Marcella; Selvatici, Rita; Gualandi, Francesca; Fattori, Fabiana; Pietrangelo, Antonello; Li, Wenyan; Jiang, Hui; Xu, Xun; Bertini, Enrico; Decher, Niels; Wang, Jun; Brand, Thomas; Ferlini, Alessandra

    2015-01-01

    The Popeye domain–containing 1 (POPDC1) gene encodes a plasma membrane–localized cAMP-binding protein that is abundantly expressed in striated muscle. In animal models, POPDC1 is an essential regulator of structure and function of cardiac and skeletal muscle; however, POPDC1 mutations have not been associated with human cardiac and muscular diseases. Here, we have described a homozygous missense variant (c.602C>T, p.S201F) in POPDC1, identified by whole-exome sequencing, in a family of 4 with cardiac arrhythmia and limb-girdle muscular dystrophy (LGMD). This allele was absent in known databases and segregated with the pathological phenotype in this family. We did not find the allele in a further screen of 104 patients with a similar phenotype, suggesting this mutation to be family specific. Compared with WT protein, POPDC1S201F displayed a 50% reduction in cAMP affinity, and in skeletal muscle from patients, both POPDC1S201F and WT POPDC2 displayed impaired membrane trafficking. Forced expression of POPDC1S201F in a murine cardiac muscle cell line (HL-1) increased hyperpolarization and upstroke velocity of the action potential. In zebrafish, expression of the homologous mutation (popdc1S191F) caused heart and skeletal muscle phenotypes that resembled those observed in patients. Our study therefore identifies POPDC1 as a disease gene causing a very rare autosomal recessive cardiac arrhythmia and LGMD, expanding the genetic causes of this heterogeneous group of inherited rare diseases. PMID:26642364

  5. Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle Wehling-Henricks

    2010-05-01

    Full Text Available Duchenne muscular dystrophy (DMD is the most common, lethal disease of childhood. One of 3500 new-born males suffers from this universally-lethal disease. Other than the use of corticosteroids, little is available to affect the relentless progress of the disease, leading many families to use dietary supplements in hopes of reducing the progression or severity of muscle wasting. Arginine is commonly used as a dietary supplement and its use has been reported to have beneficial effects following short-term administration to mdx mice, a genetic model of DMD. However, the long-term effects of arginine supplementation are unknown. This lack of knowledge about the long-term effects of increased arginine metabolism is important because elevated arginine metabolism can increase tissue fibrosis, and increased fibrosis of skeletal muscles and the heart is an important and potentially life-threatening feature of DMD.We use both genetic and nutritional manipulations to test whether changes in arginase metabolism promote fibrosis and increase pathology in mdx mice. Our findings show that fibrotic lesions in mdx muscle are enriched with arginase-2-expressing macrophages and that muscle macrophages stimulated with cytokines that activate the M2 phenotype show elevated arginase activity and expression. We generated a line of arginase-2-null mutant mdx mice and found that the mutation reduced fibrosis in muscles of 18-month-old mdx mice, and reduced kyphosis that is attributable to muscle fibrosis. We also observed that dietary supplementation with arginine for 17-months increased mdx muscle fibrosis. In contrast, arginine-2 mutation did not reduce cardiac fibrosis or affect cardiac function assessed by echocardiography, although 17-months of dietary supplementation with arginine increased cardiac fibrosis. Long-term arginine treatments did not decrease matrix metalloproteinase-2 or -9 or increase the expression of utrophin, which have been reported as beneficial

  6. Development of Non-Hormonal Steroids for the Treatment of Duchenne Muscular Dystrophy

    Science.gov (United States)

    2013-02-01

    constructs envisioned in gene therapy, are also expressed in Becker muscular dystrophy (alleles of dystrophinopathy leading to milder disease). In other words...the Treatment of Duchenne Muscular Dystrophy PRINCIPAL INVESTIGATOR: Terence Partridge, PhD CONTRACTING ORGANIZATION: Children’s...Duchenne Muscular Dystrophy 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0754 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Terence Partridge

  7. Surgical Orthodontic Treatment of a Patient Affected by Type 1 Myotonic Dystrophy (Steinert Syndrome)

    OpenAIRE

    Cacucci, Laura; Ricci, Beatrice; Moretti, Maria; Gasparini, Giulio; Pelo, Sandro; Grippaudo, Cristina

    2017-01-01

    Myotonic dystrophy, or Steinert’s disease, is the most common form of muscular dystrophy that occurs in adults. This multisystemic form involves the skeletal muscles but affects also the eye, the endocrine system, the central nervous system, and the cardiac system. The weakness of the facial muscles causes a characteristic facial appearance frequently associated with malocclusions. Young people with myotonic dystrophy, who also have severe malocclusions, have bad oral functions such as chewin...

  8. A decline in PABPN1 induces progressive muscle weakness in oculopharyngeal muscle dystrophy and in muscle aging

    DEFF Research Database (Denmark)

    Anvar, Seyed Yahya; Raz, Yotam; Verway, Nisha

    2013-01-01

    Oculopharyngeal muscular dystrophy (OPMD) is caused by trinucleotide repeat expansion mutations in Poly(A) binding protein 1 (PABPN1). PABPN1 is a regulator of mRNA stability and is ubiquitously expressed. Here we investigated how symptoms in OPMD initiate only at midlife and why a subset...... of skeletal muscles is predominantly affected. Genome-wide RNA expression profiles from Vastus lateralis muscles human carriers of expanded-PABPN1 at pre-symptomatic and symptomatic stages were compared with healthy controls. Major expression changes were found to be associated with age rather than...... with expression of expanded-PABPN1, instead transcriptomes of OPMD and elderly muscles were significantly similar (P...

  9. Tibialis anterior muscle needle biopsy and sensitive biomolecular methods: a useful tool in myotonic dystrophy type 1

    Directory of Open Access Journals (Sweden)

    S. Iachettini

    2015-10-01

    Full Text Available Myotonic dystrophy type 1 (DM1 is a neuromuscular disorder caused by a CTG repeat expansion in 3’UTR of DMPK gene. This mutation causes accumulation of toxic RNA in nuclear foci leading to splicing misregulation of specific genes. In view of future clinical trials with antisense oligonucleotides in DM1 patients, it is important to set up sensitive and minimally-invasive tools to monitor the efficacy of treatments on skeletal muscle. A tibialis anterior (TA muscle sample of about 60 mg was obtained from 5 DM1 patients and 5 healthy subjects through a needle biopsy. A fragment of about 40 mg was used for histological examination and a fragment of about 20 mg was used for biomolecular analysis. The TA fragments obtained with the minimally-invasive needle biopsy technique is enough to perform all the histopathological and biomolecular evaluations useful to monitor a clinical trial on DM1 patients.

  10. Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs.

    Directory of Open Access Journals (Sweden)

    Lluís Sánchez

    Full Text Available Four full-sibling intact male Miniature Poodles were evaluated at 4-19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog.

  11. Androgen receptor agonists increase lean mass, improve cardiopulmonary functions and extend survival in preclinical models of Duchenne muscular dystrophy.

    Science.gov (United States)

    Ponnusamy, Suriyan; Sullivan, Ryan D; You, Dahui; Zafar, Nadeem; He Yang, Chuan; Thiyagarajan, Thirumagal; Johnson, Daniel L; Barrett, Maron L; Koehler, Nikki J; Star, Mayra; Stephenson, Erin J; Bridges, Dave; Cormier, Stephania A; Pfeffer, Lawrence M; Narayanan, Ramesh

    2017-07-01

    Duchenne muscular dystrophy (DMD) is a neuromuscular disease that predominantly affects boys as a result of mutation(s) in the dystrophin gene. DMD is characterized by musculoskeletal and cardiopulmonary complications, resulting in shorter life-span. Boys afflicted by DMD typically exhibit symptoms within 3-5 years of age and declining physical functions before attaining puberty. We hypothesized that rapidly deteriorating health of pre-pubertal boys with DMD could be due to diminished anabolic actions of androgens in muscle, and that intervention with an androgen receptor (AR) agonist will reverse musculoskeletal complications and extend survival. While castration of dystrophin and utrophin double mutant (mdx-dm) mice to mimic pre-pubertal nadir androgen condition resulted in premature death, maintenance of androgen levels extended the survival. Non-steroidal selective-AR modulator, GTx-026, which selectively builds muscle and bone was tested in X-linked muscular dystrophy mice (mdx). GTx-026 significantly increased body weight, lean mass and grip strength by 60-80% over vehicle-treated mdx mice. While vehicle-treated castrated mdx mice exhibited cardiopulmonary impairment and fibrosis of heart and lungs, GTx-026 returned cardiopulmonary function and intensity of fibrosis to healthy control levels. GTx-026 elicits its musculoskeletal effects through pathways that are distinct from dystrophin-regulated pathways, making AR agonists ideal candidates for combination approaches. While castration of mdx-dm mice resulted in weaker muscle and shorter survival, GTx-026 treatment increased the muscle mass, function and survival, indicating that androgens are important for extended survival. These preclinical results support the importance of androgens and the need for intervention with AR agonists to treat DMD-affected boys. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. A tetranucleotide repeat (D4S1652) is linked to facioscapulohumeral dystrophy and shows no linkage disequilibrium with the disease

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, K.D.; Bailey, H.L.; Mills, K.A. [and others

    1994-09-01

    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant dystrophy which is associated with a deletion in a subtelomeric repeat element on 4q35. The gene has not yet been identified. The probe detecting this deletion (D4F104S1) is not chromosome 4-specific, and at least one large family has been identified which is not linked to chromosome 4. Thus, persymptomatic/prenatal diagnosis can only be provided to families that are proven to be chromosome 4-linked or where a new mutation is demonstrated. The markers available to demonstrate linkage to chromosome 4, D4S139, D4S163, and D4F35S1, are VNTRs. We have used D4S1652, a tetranucleotide repeat recently identified by the Cooperative Human Linkage Center, in our FSHD families. We found it is completely linked to the 4q35 VNTRs and to the disease phenotype. Physical mapping, using radiation hybrids and somatic cell hybrids, places D4S1652 between D4S139, an interval of approximately 1 Mb. We have used D4S1652 to look for linkage disequilibrium in our FSHD patient population. This result is of interest because of our hypothesis that the deletion in the subtelomeric repeat element alters transcription of a more proximal gene through a position effect. Previously available markers have been unsatisfactory for this experiment because of difficulty comparing numerous VNTR alleles across families. We observed 4, easily distinguished, D4S1652 alleles in our families. We studied 14 chromosomes associated with disease phenotype and 55 chromosomes from nontransmitting parents. We found no evidence for linkage disequilibrium ({chi}{sup 2}=1.313, nonsignificant). This result will need confirmation with a larger patient population, but is consistent with the clinical observation that there is a high rate of a new mutation in this disorder.

  13. Transcriptome Analysis of Ullrich Congenital Muscular Dystrophy Fibroblasts Reveals a Disease Extracellular Matrix Signature and Key Molecular Regulators.

    Directory of Open Access Journals (Sweden)

    Sonia Paco

    Full Text Available Collagen VI related myopathies encompass a range of phenotypes with involvement of skeletal muscle, skin and other connective tissues. They represent a severe and relatively common form of congenital disease for which there is no treatment. Collagen VI in skeletal muscle and skin is produced by fibroblasts.In order to gain insight into the consequences of collagen VI mutations and identify key disease pathways we performed global gene expression analysis of dermal fibroblasts from patients with Ullrich Congenital Muscular Dystrophy with and without vitamin C treatment. The expression data were integrated using a range of systems biology tools. Results were validated by real-time PCR, western blotting and functional assays.We found significant changes in the expression levels of almost 600 genes between collagen VI deficient and control fibroblasts. Highly regulated genes included extracellular matrix components and surface receptors, including integrins, indicating a shift in the interaction between the cell and its environment. This was accompanied by a significant increase in fibroblasts adhesion to laminin. The observed changes in gene expression profiling may be under the control of two miRNAs, miR-30c and miR-181a, which we found elevated in tissue and serum from patients and which could represent novel biomarkers for muscular dystrophy. Finally, the response to vitamin C of collagen VI mutated fibroblasts significantly differed from healthy fibroblasts. Vitamin C treatment was able to revert the expression of some key genes to levels found in control cells raising the possibility of a beneficial effect of vitamin C as a modulator of some of the pathological aspects of collagen VI related diseases.

  14. DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations.

    Directory of Open Access Journals (Sweden)

    Jonas Juan-Mateu

    Full Text Available Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5% were exonic deletions, 64 (11.1% were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%. Small mutations were identified in 105 cases (18.2%, most being nonsense/frameshift types (75.2%. Mutations in splice sites, however, were relatively frequent (20%. In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD, with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure.

  15. Muscular dystrophies: key elements for everyday diagnosis and management

    Directory of Open Access Journals (Sweden)

    Alberto Palladino

    2013-12-01

    Full Text Available Muscular dystrophies are a heterogeneous group of inherited disorders that share similar clinical features and dystrophic changes on muscle biopsy, associated with progressive weakness. Weakness may be noted at birth or develop in late adult life. In recent years, cardiac involvement has been observed in a growing number of genetic muscle diseases, and considerable progress has been made in understanding the relationships between disease skeletal muscle and cardiac muscle disease. This review will focus on the skeletal muscle diseases most commonly associated with cardiac complications that can be diagnosed by echocardiography, such as dystrophinopathies including Duchenne (DMD and Becker (BMD muscular dystrophies, cardiomyopathy of DMD/BMD carriers and X-L dilated cardiomyopathy.

  16. Why short stature is beneficial in Duchenne muscular dystrophy.

    Science.gov (United States)

    Bodor, Marko; McDonald, Craig M

    2013-09-01

    Duchenne muscular dystrophy (DMD) is caused by a genetic defect resulting in absent dystrophin, yet children are able to walk when small and young but lose this ability as they grow. The mdx mouse has absent dystrophin yet does not exhibit significant disability. Allometric modeling of linearly increasing load per muscle fiber and stress on the sarcolemma with growth and exponential decline associated with loss of muscle fibers correlated with case studies and animal models of DMD. Smaller species or breeds are predictably less affected than large as follows: mdx mice muscular dystrophy (GRMD) dogs < large GRMD dogs < humans. Case reports of combined growth hormone and dystrophin deficiency show a relatively benign course of disease. Future therapeutic trials in DMD might include specific growth inhibitors in combination with standard of care treatments to delay the clinical onset and reduce the severity of disease and disability. Copyright © 2013 Wiley Periodicals, Inc.

  17. Challenges to oligonucleotides-based therapeutics for Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Goyenvalle Aurélie

    2011-02-01

    Full Text Available Abstract Antisense oligonucleotides are short nucleic acids designed to bind to specific messenger RNAs in order to modulate splicing patterns or inhibit protein translation. As such, they represent promising therapeutic tools for many disorders and have been actively developed for more than 20 years as a form of molecular medicine. Although significant progress has been made in developing these agents as drugs, they are yet not recognized as effective therapeutics and several hurdles remain to be overcome. Within the last few years, however, the prospect of successful oligonucleotides-based therapies has moved a step closer, in particular for Duchenne muscular dystrophy. Clinical trials have recently been conducted for this myopathy, where exon skipping is being used to achieve therapeutic outcomes. In this review, the recent developments and clinical trials using antisense oligonucleotides for Duchenne muscular dystrophy are discussed, with emphasis on the challenges ahead for this type of therapy, especially with regards to delivery and regulatory issues.

  18. Neuroaxonal Dystrophy and Cavitating Leukoencephalopathy of Chihuahua Dogs.

    Science.gov (United States)

    Degl'Innocenti, Sara; Asiag, Nimrod; Zeira, Offer; Falzone, Cristian; Cantile, Carlo

    2017-09-01

    A novel form of neuroaxonal dystrophy is described in 3 Chihuahua pups, 2 of which were from the same litter. It was characterized not only by accumulation of numerous and widely distributed axonal swellings (spheroids) but also by a severe cavitating leukoencephalopathy. The dogs presented with progressive neurological signs, including gait abnormalities and postural reaction deficits. Magnetic resonance images and gross examination at necropsy revealed dilation of lateral ventricles and cerebral atrophy, accompanied by cavitation of the subcortical white matter. Histopathologically, severe axonal degeneration with formation of large spheroids was found in the cerebral and cerebellar white matter, thalamus, and brainstem nuclei. Small-caliber spheroids were observed in the cerebral and cerebellar gray matter. The telencephalic white matter had severe myelin loss and cavitation with relative sparing of the U-fibers. Different from previously reported cases of canine neuroaxonal dystrophy, in these Chihuahuas the spheroid distribution predominantly involved the white matter with secondary severe leukoencephalopathy.

  19. Dystrophin Immunity in Duchenne’s Muscular Dystrophy

    Science.gov (United States)

    Mendell, Jerry R.; Campbell, Katherine; Rodino-Klapac, Louise; Sahenk, Zarife; Shilling, Chris; Lewis, Sarah; Bowles, Dawn; Gray, Steven; Li, Chengwen; Galloway, Gloria; Malik, Vinod; Coley, Brian; Clark, K. Reed; Li, Juan; Xiao, Xiao; Samulski, Jade; McPhee, Scott W.; Samulski, R. Jude; Walker, Christopher M.

    2010-01-01

    SUMMARY We report on delivery of a functional dystrophin transgene to skeletal muscle in six patients with Duchenne’s muscular dystrophy. Dystrophin-specific T cells were detected after treatment, providing evidence of transgene expression even when the functional protein was not visualized in skeletal muscle. Circulating dystrophin-specific T cells were unexpectedly detected in two patients before vector treatment. Revertant dystrophin fibers, which expressed functional, truncated dystrophin from the deleted endogenous gene after spontaneous in-frame splicing, contained epitopes targeted by the autoreactive T cells. The potential for T-cell immunity to self and nonself dystrophin epitopes should be considered in designing and monitoring experimental therapies for this disease. (Funded by the Muscular Dystrophy Association and others; ClinicalTrials.gov number, NCT00428935.) PMID:20925545

  20. The new frontier in muscular dystrophy research: booster genes

    DEFF Research Database (Denmark)

    Engvall, Eva; Wewer, Ulla M

    2003-01-01

    More than 30 different forms of muscular dystrophy (MD) have been molecularly characterized and can be diagnosed, but progress toward treatment has been slow. Gene replacement therapy has met with great difficulty because of the large size of the defective genes and because of difficulties...... of the boosters are better understood, drugs may be developed to provide the boost to muscle. Some of the experiences in models of muscular dystrophy may inspire new approaches in other genetic degenerative diseases as well....... in delivering a gene to all muscle groups. Cell replacement therapy has also been difficult to realize. Will it even be possible to design specific therapy protocols for all MDs? Or is a more realistic goal to treat some of the secondary manifestations that are common to several forms of MD, such as membrane...

  1. NAD+ Biosynthesis Ameliorates a Zebrafish Model of Muscular Dystrophy

    Science.gov (United States)

    Goody, Michelle F.; Kelly, Meghan W.; Reynolds, Christine J.; Khalil, Andre; Crawford, Bryan D.; Henry, Clarissa A.

    2012-01-01

    Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin

  2. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle F Goody

    Full Text Available Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction

  3. A bedside measure of body composition in Duchenne muscular dystrophy.

    Science.gov (United States)

    Elliott, Sarah A; Davidson, Zoe E; Davies, Peter S W; Truby, Helen

    2015-01-01

    In clinical practice, monitoring body composition is a critical component of nutritional assessment and weight management in boys with Duchenne muscular dystrophy. We aimed to evaluate the accuracy of a simple bedside measurement tool for body composition, namely bioelectrical impedance analysis, in boys with Duchenne muscular dystrophy. Measures of fat-free mass were determined using a bioelectrical impedance analysis machine and compared against estimations obtained from a reference body composition model. Additionally, the use of raw impedance values was analyzed using three existing predictive equations for the estimation of fat-free mass. Accuracy of bioelectrical impedance analysis was assessed by comparison against the reference model by calculation of biases and limits of agreement. Body composition was measured in 10 boys with Duchenne muscular dystrophy, mean age 9.01 ± 2.34 years. The bioelectrical impedance analysis machine values of fat-free mass were on average 2.3 ± 14.1 kg higher than reference values. Limits of agreement (based on 95% confidence interval of the mean) were -7.4 to 2.9 kg. There was a significant correlation between the mean fat-free mass and difference in fat-free mass between the bioelectrical impedance analysis machine and the reference model (r = -0.86; P = 0.02) suggesting that the bias was not consistent across the range of measurements. The most accurate predictive equation for the estimation of fat-free mass using raw impedance values was the equation by Pietrobelli et al. (mean difference, -0.7 kg; 95% limits of agreement, -3.5 to 2.0 kg). In a clinical setting, where a rapid assessment of body composition is advantageous, the use of raw impedance values, combined with the equation by Pietrobelli et al., is recommended for the accurate estimation of fat-free mass, in boys with Duchenne muscular dystrophy. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Sarcopenia and sarcopenic obesity in patients with muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Luciano eMerlini

    2014-10-01

    Full Text Available Aging sarcopenia and muscular dystrophy are two conditions characterized by lower skeletal muscle quantity, lower muscle strength, and lower physical performance. Aging is associated with a peculiar alteration in body composition called sarcopenic obesity characterized by a decrease in lean body mass and increase in fat mass. To evaluate the presence of sarcopenia and obesity in a cohort of adult patients with muscular dystrophy we have used the measurement techniques considered golden standard for sarcopenia that is for muscle mass dual energy X-ray absorptiometry (DXA, for muscle strength hand held dynamometry, and for physical performance gait speed. The study involved 14 adult patients with different types of muscular dystrophy. We were able to demonstrate that all patient were sarcopenic-obese. We showed in fact that all were sarcopenic based on appendicular lean, fat & bone free, mass index (ALMI. In addition all resulted obese according to the % of body fat determined by DXA in contrast with their body mass index ranging from underweight to obese. Skeletal muscle mass determined by DXA was markedly reduced in all patients and correlated with residual muscle strength determined by hand held dynamometry, and physical performances determined by gait speed and respiratory function. Finally we showed that ALMI was the best linear explicator of muscle strength and physical function. Altogether, our study suggest the relevance of a proper evaluation of body composition in muscular dystrophy and we propose to use, both in research and practice, the measurement techniques that has already been demonstrated effective in aging sarcopenia.

  5. Dystrophin Immunity in Duchenne’s Muscular Dystrophy

    OpenAIRE

    Mendell, Jerry R.; Campbell, Katherine; Rodino-Klapac, Louise; Sahenk, Zarife; Shilling, Chris; Lewis, Sarah; Bowles, Dawn; Gray, Steven; Li, Chengwen; Galloway, Gloria; Malik, Vinod; Coley, Brian; Clark, K. Reed; Li, Juan; Xiao, Xiao

    2010-01-01

    We report on delivery of a functional dystrophin transgene to skeletal muscle in six patients with Duchenne’s muscular dystrophy. Dystrophin-specific T cells were detected after treatment, providing evidence of transgene expression even when the functional protein was not visualized in skeletal muscle. Circulating dystrophin-specific T cells were unexpectedly detected in two patients before vector treatment. Revertant dystrophin fibers, which expressed functional, truncated dystrophin from th...

  6. Duchenne muscular dystrophy with associated growth hormone deficiency

    International Nuclear Information System (INIS)

    Ghafoor, T.; Mahmood, A.; Shams, S.

    2003-01-01

    A patient with duchenne muscular dystrophy (DMD) and growth hormone (GH) deficiency is described who had no clinical evidence of muscular weakness before initiation of GH replacement therapy. Treatment with human GH resulted in appearance of symptoms of easy fatigability and muscle weakness. Thorough investigations including serum creating phosphokinase (CK) levels in recommended in every patient with GH deficiency before starting GH replacement therapy. (author)

  7. CINRG: Infrastructure for Clinical Trials in Duchenne Dystrophy

    Science.gov (United States)

    2012-09-01

    Cardiac Outcome Measures in Children with Muscular Dystrophy o Cardiac MRI Protocol: PITT0110 - Cardiac Magnetic Resonance: A Parallel Protocol...permitted during the study. Study drug. The study drug was PTX (Trental; Sanofi- Aventis U.S. LLC, Bridgewater, NJ) tablets , an FDA-approved pharmaceutical...that is available for oral administration as 400-mg oblong tablets . Both the study drug PTX and placebo were overencapsulated by Capsugel (Pfizer Inc

  8. Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy

    Science.gov (United States)

    Xu, Huaigeng

    2017-01-01

    In the past decade, the development of two innovative technologies, namely, induced pluripotent stem cells (iPSCs) and the CRISPR Cas9 system, has enabled researchers to model diseases derived from patient cells and precisely edit DNA sequences of interest, respectively. In particular, Duchenne muscular dystrophy (DMD) has been an exemplary monogenic disease model for combining these technologies to demonstrate that genome editing can correct genetic mutations in DMD patient-derived iPSCs. DMD is an X-linked genetic disorder caused by mutations that disrupt the open reading frame of the dystrophin gene, which plays a critical role in stabilizing muscle cells during contraction and relaxation. The CRISPR Cas9 system has been shown to be capable of targeting the dystrophin gene and rescuing its expression in in vitro patient-derived iPSCs and in vivo DMD mouse models. In this review, we highlight recent advances made using the CRISPR Cas9 system to correct genetic mutations and discuss how emerging CRISPR technologies and iPSCs in a combined platform can play a role in bringing a therapy for DMD closer to the clinic. PMID:28607562

  9. Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Peter Gee

    2017-01-01

    Full Text Available In the past decade, the development of two innovative technologies, namely, induced pluripotent stem cells (iPSCs and the CRISPR Cas9 system, has enabled researchers to model diseases derived from patient cells and precisely edit DNA sequences of interest, respectively. In particular, Duchenne muscular dystrophy (DMD has been an exemplary monogenic disease model for combining these technologies to demonstrate that genome editing can correct genetic mutations in DMD patient-derived iPSCs. DMD is an X-linked genetic disorder caused by mutations that disrupt the open reading frame of the dystrophin gene, which plays a critical role in stabilizing muscle cells during contraction and relaxation. The CRISPR Cas9 system has been shown to be capable of targeting the dystrophin gene and rescuing its expression in in vitro patient-derived iPSCs and in vivo DMD mouse models. In this review, we highlight recent advances made using the CRISPR Cas9 system to correct genetic mutations and discuss how emerging CRISPR technologies and iPSCs in a combined platform can play a role in bringing a therapy for DMD closer to the clinic.

  10. Modulation of Stem Cell Differentiation and Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and Regeneration after Injury

    Science.gov (United States)

    2011-03-01

    Duchenne muscular dystrophy (DMD). To examine whether counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic factor...extracellular matrix, and fat, characterizes muscle dystrophy , and in particular Duchenne muscular dystrophy (DMD) (1,2), as seen also in its animal model...stem cells (MDSC) into myogenic as opposed to lipofibrogenic lineages is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). To

  11. Secondary Conditions Among Males With Duchenne or Becker Muscular Dystrophy.

    Science.gov (United States)

    Latimer, Rebecca; Street, Natalie; Conway, Kristin Caspers; James, Kathy; Cunniff, Christopher; Oleszek, Joyce; Fox, Deborah; Ciafaloni, Emma; Westfield, Christina; Paramsothy, Pangaja

    2017-06-01

    Duchenne and Becker muscular dystrophy are X-linked neuromuscular disorders characterized by progressive muscle degeneration. Despite the involvement of multiple systems, secondary conditions among affected males have not been comprehensively described. Two hundred nine caregivers of affected males (aged 3-31 years) identified by the Muscular Dystrophy Surveillance, Tracking, and Research Network completed a mailed survey that included questions about secondary conditions impacting multiple body functions. The 5 most commonly reported conditions in males with Duchenne were cognitive deficits (38.4%), constipation (31.7%), anxiety (29.3%), depression (27.4%), and obesity (19.5%). Higher frequencies of anxiety, depression, and kidney stones were found among nonambulatory males compared to ambulatory males. Attention-deficit hyperactivity disorder (ADHD) was more common in ambulatory than nonambulatory males. These data support clinical care recommendations for monitoring of patients with Duchenne or Becker muscular dystrophy by a multidisciplinary team to prevent and treat conditions that may be secondary to the diagnosis.

  12. Skeletal muscle CT of lower extremities in myotonic dystrophy

    International Nuclear Information System (INIS)

    Takahashi, Ryosuke; Imai, Terukuni; Sadashima, Hiromichi; Matsumoto, Sadayuki; Yamamoto, Toru; Kusaka, Hirofumi; Yamasaki, Masahiro; Maya, Kiyomi; Tanabe, Masaya

    1988-01-01

    We evaluated the leg and thigh muscles of 4 control subjects and 10 patients with myotonic dystrophy using computed tomography. Taking previous reports about the skeletal muscle CT of myotonic dystrophy into account, we concluded that the following 5 features are characteristic of myotonic dystrophy: 1. The main change is the appearance of low-density areas in muscles; these areas reflect fat tissue. In addition, the muscle mass decreases in size. 2. The leg is more severely affected than the thigh. 3. In the thigh, although the m. quadriceps femoris, especially the vastus muscles, tends to be affected, the m. adductor longus and magnus tend to be preserved. 4. In the leg, although the m. tibialis anterior and m. triceps surae tend to be affected, the m. peroneus longus, brevis, and m. tibialis posterior tend to be preserved. 5. Compensatory hypertrophy is often observed in the m. rectus femoris, m. adductor longus, m. adductor magnus, m. peroneus longus, and m. peroneus brevis, accompanied by the involvement of their agonist muscles. (author)

  13. [New international classification of corneal dystrophies and clinical landmarks].

    Science.gov (United States)

    Lisch, W; Seitz, B

    2008-07-01

    The International Committee on Classification of Corneal Dystrophies, briefly IC (3)D, was founded with the sponsorship of the American Cornea Society and the American Academy of Ophthalmology in July 2005. This committee consists of 17 corneal experts (1) from USA, Asia and Europe. The goal of this group was to develop a new, internationally accepted classification of corneal dystrophies (CD) based on modern clinical, histological and genetical knowledge. The aim of the new classification should be to avoid wrong interpretations and misnomers of the different forms of CD. The IC (3)D extensive manuscript is in press as Supplement publication in the journal "Cornea". The 25 different CD are divided in four categories by clinical and genetical knowledge. Additionally, templates for each type of CD are included. Finally, many typical color slit-lamp photos are presented in the publication together with essential references and current genetical results in tabular form. As members of IC (3)D the authors present a clinical landmark survey of the different corneal dystrophies. The ophthalmologist is the first to examine and to diagnose a new patient with a probable CD at the slit-lamp. Our elaborated table of landmarks is supposed to be a "bridge" for the ophthalmologist to precisely define the corneal opacities of a presumed CD. This "bridge" makes it easier for them to study the IC (3)D Supplement publication and to get more information including adequate differential diagnosis.

  14. Composite biomarkers for assessing Duchenne muscular dystrophy: an initial assessment.

    Science.gov (United States)

    Shklyar, Irina; Pasternak, Amy; Kapur, Kush; Darras, Basil T; Rutkove, Seward B

    2015-02-01

    Compared with individual parameters, composite biomarkers may provide a more effective means for monitoring disease progression and the effects of therapy in clinical trials than single measures. In this study, we built composite biomarkers for use in Duchenne muscular dystrophy by combining values from two objective measures of disease severity: electrical impedance myography and quantitative ultrasound and evaluating how well they correlated to standard functional measures. Using data from an ongoing study of electrical impedance myography and quantitative ultrasound in 31 Duchenne muscular dystrophy and 26 healthy boys aged 2-14 years, we combined data sets by first creating z scores based on the normal subject data and then using simple mathematical operations (addition and multiplication) to create composite measures. These composite scores were then correlated to age and standard measures of function including the 6-minute walk test, the North Star Ambulatory Assessment, and handheld dynamometry. Combining data sets resulted in stronger correlations with all four outcomes than for either electrical impedance myography or quantitative ultrasound alone in six of eight instances. These improvements reached statistical significance (P Duchenne muscular dystrophy clinical trials is warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Heme oxygenase and carbon monoxide protect from muscle dystrophy.

    Science.gov (United States)

    Chan, Mun Chun; Ziegler, Olivia; Liu, Laura; Rowe, Glenn C; Das, Saumya; Otterbein, Leo E; Arany, Zoltan

    2016-11-28

    Duchenne muscle dystrophy (DMD) is one of the most common lethal genetic diseases of children worldwide and is 100% fatal. Steroids, the only therapy currently available, are marred by poor efficacy and a high side-effect profile. New therapeutic approaches are urgently needed. Here, we leverage PGC-1α, a powerful transcriptional coactivator known to protect against dystrophy in the mdx murine model of DMD, to search for novel mechanisms of protection against dystrophy. We identify heme oxygenase-1 (HO-1) as a potential novel target for the treatment of DMD. Expression of HO-1 is blunted in the muscles from the mdx murine model of DMD, and further reduction of HO-1 by genetic haploinsufficiency worsens muscle damage in mdx mice. Conversely, induction of HO-1 pharmacologically protects against muscle damage. Mechanistically, HO-1 degrades heme into biliverdin, releasing in the process ferrous iron and carbon monoxide (CO). We show that exposure to a safe low dose of CO protects against muscle damage in mdx mice, as does pharmacological treatment with CO-releasing molecules. These data identify HO-1 and CO as novel therapeutic agents for the treatment of DMD. Safety profiles and clinical testing of inhaled CO already exist, underscoring the translational potential of these observations.

  16. Skeletal, cardiac, and respiratory muscle function and histopathology in the P448Lneo- mouse model of FKRP-deficient muscular dystrophy.

    Science.gov (United States)

    Yu, Qing; Morales, Melissa; Li, Ning; Fritz, Alexander G; Ruobing, Ren; Blaeser, Anthony; Francois, Ershia; Lu, Qi-Long; Nagaraju, Kanneboyina; Spurney, Christopher F

    2018-04-06

    Fukutin-related protein (FKRP) mutations are the most common cause of dystroglycanopathies known to cause both limb girdle and congenital muscular dystrophy. The P448Lneo- mouse model has a knock-in mutation in the FKRP gene and develops skeletal, respiratory, and cardiac muscle disease. We studied the natural history of the P448Lneo- mouse model over 9 months and the effects of twice weekly treadmill running. Forelimb and hindlimb grip strength (Columbus Instruments) and overall activity (Omnitech Electronics) assessed skeletal muscle function. Echocardiography was performed using VisualSonics Vevo 770 (FujiFilm VisualSonics). Plethysmography was performed using whole body system (ADInstruments). Histological evaluations included quantification of inflammation, fibrosis, central nucleation, and fiber size variation. P448Lneo- mice had significantly increased normalized tissue weights compared to controls at 9 months of age for the heart, gastrocnemius, soleus, tibialis anterior, quadriceps, and triceps. There were no significant differences seen in forelimb or hindlimb grip strength or activity monitoring in P448Lneo- mice with or without exercise compared to controls. Skeletal muscles demonstrated increased inflammation, fibrosis, central nucleation, and variation in fiber size compared to controls (p muscular dystrophies.

  17. Modulation of Stem Cells Differentiation and Myostatin as an approach to Counteract fibrosis in Muscle Dystrophy and Regeneration after Injury

    Science.gov (United States)

    2010-03-01

    Duchenne muscular dystrophy (DMD), hampers cell therapy in the muscle , and is a feasible therapeutic target. Myostatin (Mst), a...17 Figure 18 Figure 19 Figure 20 Figure 21 • Muscle lipofibrotic degeneration characterizes Duchenne muscular dystrophy (DMD), hampers cell therapy...SUBJECT TERMS Myostatin, muscle dystrophy , stem cells, myogenesis, Oct-4; Duchenne 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT

  18. Loss of heterozygosity and carrier identification in Duchenne muscular dystrophy: a familiar case with recombination event

    Directory of Open Access Journals (Sweden)

    Fonseca-Mendoza Dora Janeth

    2012-04-01

    Full Text Available Duchenne/Becker Muscular Dystrophy (DMD/BMD is an X-linked recessive disease characterizedby muscular weakness. It is caused by mutations on the dystrophin gen. Loss of heterozygosityallows us to identify female carriers of deletions on the dystrophin gen. Objective: identifyfemale carriers in a family with a patient affected by DMD. Material and methods: nine familymembers and the affected child were analyzed using DNA extraction and posterior amplificationof ten STRs on the dystrophin gen. Haplotypes were constructed and the carrier status determinedin two of the six women analyzed due to loss of heterozygosity in three STRs. Additionally, weobserved a recombination event. Conclusions: loss of heterozygosity allows us to establish witha certainty of 100% the carrier status of females with deletions on the dystrophin gen. By theconstruction of haplotypes we were able to identify the X chromosome with the deletion in twoof the six women analyzed. We also determined a recombination event in one of the sisters of theaffected child. These are described with a high frequency (12%. A possible origin for the mutationis a gonadal mosaicism in the maternal grandfather or in the mother of the affected childin a very early stage in embryogensis. This can be concluded using the analysis of haplotypes.

  19. Immortalized Muscle Cell Model to Test the Exon Skipping Efficacy for Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Quynh Nguyen

    2017-10-01

    Full Text Available Duchenne muscular dystrophy (DMD is a lethal genetic disorder that most commonly results from mutations disrupting the reading frame of the dystrophin (DMD gene. Among the therapeutic approaches employed, exon skipping using antisense oligonucleotides (AOs is one of the most promising strategies. This strategy aims to restore the reading frame, thus producing a truncated, yet functioning dystrophin protein. In 2016, the Food and Drug Administration (FDA conditionally approved the first AO-based drug, eteplirsen (Exondys 51, developed for DMD exon 51 skipping. An accurate and reproducible method to quantify exon skipping efficacy is essential for evaluating the therapeutic potential of different AOs sequences. However, previous in vitro screening studies have been hampered by the limited proliferative capacity and insufficient amounts of dystrophin expressed by primary muscle cell lines that have been the main system used to evaluate AOs sequences. In this paper, we illustrate the challenges associated with primary muscle cell lines and describe a novel approach that utilizes immortalized cell lines to quantitatively evaluate the exon skipping efficacy in in vitro studies.

  20. A phase 1/2a follistatin gene therapy trial for becker muscular dystrophy.

    Science.gov (United States)

    Mendell, Jerry R; Sahenk, Zarife; Malik, Vinod; Gomez, Ana M; Flanigan, Kevin M; Lowes, Linda P; Alfano, Lindsay N; Berry, Katherine; Meadows, Eric; Lewis, Sarah; Braun, Lyndsey; Shontz, Kim; Rouhana, Maria; Clark, Kelly Reed; Rosales, Xiomara Q; Al-Zaidy, Samiah; Govoni, Alessandra; Rodino-Klapac, Louise R; Hogan, Mark J; Kaspar, Brian K

    2015-01-01

    Becker muscular dystrophy (BMD) is a variant of dystrophin deficiency resulting from DMD gene mutations. Phenotype is variable with loss of ambulation in late teenage or late mid-life years. There is currently no treatment for this condition. In this BMD proof-of-principle clinical trial, a potent myostatin antagonist, follistatin (FS), was used to inhibit the myostatin pathway. Extensive preclinical studies, using adeno-associated virus (AAV) to deliver follistatin, demonstrated an increase in strength. For this trial, we used the alternatively spliced FS344 to avoid potential binding to off target sites. AAV1.CMV.FS344 was delivered to six BMD patients by direct bilateral intramuscular quadriceps injections. Cohort 1 included three subjects receiving 3 × 10(11) vg/kg/leg. The distance walked on the 6MWT was the primary outcome measure. Patients 01 and 02 improved 58 meters (m) and 125 m, respectively. Patient 03 showed no change. In Cohort 2, Patients 05 and 06 received 6 × 10(11) vg/kg/leg with improved 6MWT by 108 m and 29 m, whereas, Patient 04 showed no improvement. No adverse effects were encountered. Histological changes corroborated benefit showing reduced endomysial fibrosis, reduced central nucleation, more normal fiber size distribution with muscle hypertrophy, especially at high dose. The results are encouraging for treatment of dystrophin-deficient muscle diseases.