WorldWideScience

Sample records for dystrophin-deficiency adam12 overexpression

  1. Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased alpha 7 integrin, utrophin and associated glycoproteins

    DEFF Research Database (Denmark)

    Moghadaszadeh, Behzad; Albrechtsen, Reidar; Guo, Ling T;

    2003-01-01

    , and suggested that significant changes in mdx/ADAM12 muscle might occur post-transcriptionally. Indeed, by immunostaining and immunoblotting we found an approximately 2-fold increase in expression, and distinct extrasynaptic localization, of alpha 7B integrin and utrophin, the functional homolog of dystrophin....... The expression of the dystrophin-associated glycoproteins was also increased. In conclusion, these results demonstrate a novel way to alleviate dystrophin deficiency in mice, and may stimulate the development of new approaches to compensate for dystrophin deficiency in animals and humans....

  2. ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Guo, Ling T; Shelton, G Diane; Wewer, Ulla M

    2005-01-01

    We have recently shown that overexpression of ADAM12 results in increased muscle regeneration and significantly reduced pathology in mdx, dystrophin deficient mice. In the present study, we tested the effect of overexpressing ADAM12 in dy(W) laminin-deficient mice. dy mice have a very severe clin...

  3. Transgenic overexpression of ADAM12 suppresses muscle regeneration and aggravates dystrophy in aged mdx mice

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Jensen, Charlotte Harken; Wewer, Ulla M;

    2007-01-01

    Muscular dystrophies are characterized by insufficient restoration and gradual replacement of the skeletal muscle by fat and connective tissue. ADAM12 has previously been shown to alleviate the pathology of young dystrophin-deficient mdx mice, a model for Duchenne muscular dystrophy. The observed...... effect of ADAM12 was suggested to be mediated via a membrane-stabilizing up-regulation of utrophin, alpha7B integrin, and dystroglycans. Ectopic ADAM12 expression in normal mouse skeletal muscle also improved regeneration after freeze injury, presumably by the same mechanism. Hence, it was suggested...... overexpressing ADAM12 (ADAM12(+)/mdx mice), even though their utrophin levels were mildly elevated compared with age-matched controls. Thus, membrane stabilization was not sufficient to provide protection during prolonged disease. Consequently, we reinvestigated skeletal muscle regeneration in ADAM12 transgenic...

  4. ADAM12 alleviates the skeletal muscle pathology in mdx dystrophic mice

    DEFF Research Database (Denmark)

    Kronqvist, Pauliina; Kawaguchi, Nobuko; Albrechtsen, Reidar;

    2002-01-01

    we examined the role of the transmembrane ADAM12, a disintegrin and metalloprotease, which is normally associated with development and regeneration of skeletal muscle. We demonstrate that ADAM12 overexpression in the dystrophin-deficient mdx mice alleviated the muscle pathology in these animals...

  5. ADAM12 alleviates the skeletal muscle pathology in mdx dystrophic mice

    DEFF Research Database (Denmark)

    Kronqvist, Pauliina; Kawaguchi, Nobuko; Albrechtsen, Reidar;

    2002-01-01

    we examined the role of the transmembrane ADAM12, a disintegrin and metalloprotease, which is normally associated with development and regeneration of skeletal muscle. We demonstrate that ADAM12 overexpression in the dystrophin-deficient mdx mice alleviated the muscle pathology in these animals......Muscular dystrophy is characterized by muscle degeneration and insufficient regeneration and replacement of muscle fibers by connective tissue. New therapeutic strategies directed toward various forms of muscular dystrophy are needed to preserve muscle mass and promote regeneration. In this study......, as evidenced by less muscle cell necrosis and inflammation, lower levels of serum creatine kinase, and less uptake of Evans Blue dye into muscle fibers. These studies demonstrate that ADAM12 directly or indirectly contributes to muscle cell regeneration, stability, and survival....

  6. Myofiber-specific TEAD1 overexpression drives satellite cell hyperplasia and counters pathological effects of dystrophin deficiency

    Science.gov (United States)

    Southard, Sheryl; Kim, Ju-Ryoung; Low, SiewHui; Tsika, Richard W; Lepper, Christoph

    2016-01-01

    When unperturbed, somatic stem cells are poised to affect immediate tissue restoration upon trauma. Yet, little is known regarding the mechanistic basis controlling initial and homeostatic ‘scaling’ of stem cell pool sizes relative to their target tissues for effective regeneration. Here, we show that TEAD1-expressing skeletal muscle of transgenic mice features a dramatic hyperplasia of muscle stem cells (i.e. satellite cells, SCs) but surprisingly without affecting muscle tissue size. Super-numeral SCs attain a ‘normal’ quiescent state, accelerate regeneration, and maintain regenerative capacity over several injury-induced regeneration bouts. In dystrophic muscle, the TEAD1 transgene also ameliorated the pathology. We further demonstrate that hyperplastic SCs accumulate non-cell-autonomously via signal(s) from the TEAD1-expressing myofiber, suggesting that myofiber-specific TEAD1 overexpression activates a physiological signaling pathway(s) that determines initial and homeostatic SC pool size. We propose that TEAD1 and its downstream effectors are medically relevant targets for enhancing muscle regeneration and ameliorating muscle pathology. DOI: http://dx.doi.org/10.7554/eLife.15461.001 PMID:27725085

  7. Laryngeal Muscles Are Spared in the Dystrophin Deficient "mdx" Mouse

    Science.gov (United States)

    Thomas, Lisa B.; Joseph, Gayle L.; Adkins, Tracey D.; Andrade, Francisco H.; Stemple, Joseph C.

    2008-01-01

    Purpose: "Duchenne muscular dystrophy (DMD)" is caused by the loss of the cytoskeletal protein, dystrophin. The disease leads to severe and progressive skeletal muscle wasting. Interestingly, the disease spares some muscles. The purpose of the study was to determine the effects of dystrophin deficiency on 2 intrinsic laryngeal muscles, the…

  8. ADAM 12 protease induces adipogenesis in transgenic mice

    DEFF Research Database (Denmark)

    Kawaguchi, Nobuko; Xu, Xiufeng; Tajima, Rie

    2002-01-01

    in the perivascular space in muscle tissue of 1- to 2-week-old transgenic mice whereas mature lipid-laden adipocytes were seen at 3 to 4 weeks. Moreover, female transgenics expressing ADAM 12-S exhibited increases in body weight, total body fat mass, abdominal fat mass, and herniation, but were normoglycemic and did......-anchored protein, ADAM 12-L, and a shorter secreted form, ADAM 12-S. Here we report the occurrence of adipocytes in the skeletal muscle of transgenic mice in which overexpression of either form is driven by the muscle creatine kinase promoter. Cells expressing a marker of early adipogenesis were apparent...... not exhibit increased serum insulin, cholesterol, or triglycerides. Male transgenics were slightly overweight and also developed herniation but did not become obese. Transgenic mice expressing a truncated form of ADAM 12-S lacking the prodomain and the metalloprotease domain did not develop this adipogenic...

  9. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar

    2011-01-01

    Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...... that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 appears to be dispensable for its tumor-promoting effect. Interestingly, we demonstrate that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence...... tumor progression, but that ADAM12 expression by tumor cells is necessary for tumor progression in these mice. This finding is consistent with our observation that in human breast carcinoma ADAM12 is almost exclusively located in tumor cells and only rarely seen in the tumor-associated stroma. We...

  10. Disodium cromoglycate protects dystrophin-deficient muscle fibers from leakiness.

    Science.gov (United States)

    Marques, Maria Julia; Ventura Machado, Rafael; Minatel, Elaine; Santo Neto, Humberto

    2008-01-01

    In dystrophin-deficient fibers of mdx mice and in Duchenne dystrophy, the lack of dystrophin leads to sarcolemma breakdown and muscle degeneration. We verified that cromolyn, a mast-cell stabilizer agent, stabilized dystrophic muscle fibers using Evans blue dye as a marker of sarcolemma leakiness. Mdx mice (n=8; 14 days of age) received daily intraperitoneal injections of cromolyn (50 mg/kg body weight) for 15 days. Untreated mdx mice (n=8) were injected with saline. Cryostat cross-sections of the sternomastoid, tibialis anterior, and diaphragm muscles were stained with hematoxylin and eosin. Cromolyn dramatically reduced Evans blue dye-positive fibers in all muscles (P<0.05; Student's t-test) and led to a significant increase in the percentage of fibers with peripheral nuclei. This study supports the protective effects of cromolyn in dystrophic muscles and further indicates its action against muscle fiber leakiness in muscles that are differently affected by the lack of dystrophin.

  11. Activation of ADAM 12 protease by copper

    DEFF Research Database (Denmark)

    Loechel, F; Wewer, Ulla M.

    2001-01-01

    Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency......: elimination of the ADAM 12 cysteine switch by a point mutation in the propeptide had no effect on copper activation, whereas mutation of an unpaired cysteine residue in the catalytic domain resulted in a mutant form of ADAM 12-S that was insensitive to copper. This suggests a multi-step activation mechanism...

  12. Molecular profiling of ADAM12 in human bladder cancer

    DEFF Research Database (Denmark)

    Albrechtsen, Reidar; Dyrskjøt, Lars; Rudkjaer, Lise;

    2006-01-01

    PURPOSE: We have previously found ADAM12, a disintegrin and metalloprotease, to be an interesting biomarker for breast cancer. The purpose of this study was to determine the gene and protein expression profiles of ADAM12 in different grades and stages of bladder cancer. EXPERIMENTAL DESIGN: ADAM12...... staining on tissue arrays of bladder cancers. The presence and relative amount of ADAM12 in the urine of cancer patients were determined by Western blotting and densitometric measurements, respectively. RESULTS: ADAM12 mRNA expression was significantly up-regulated in bladder cancer, as determined...... by microarray analysis, and the level of ADAM12 mRNA correlated with disease stage. Reverse transcription-PCR, quantitative PCR, and in situ hybridization validated the gene expression results. Using immunohistochemistry, we found ADAM12 protein expression correlated with tumor stage and grade. Finally, ADAM12...

  13. Decreased inward rectifier potassium current IK1 in dystrophin-deficient ventricular cardiomyocytes.

    Science.gov (United States)

    Rubi, Lena; Koenig, Xaver; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2017-03-04

    Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current IK1, which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we investigated potential IK1 abnormalities in dystrophin-deficient ventricular cardiomyocytes derived from the hearts of Duchenne muscular dystrophy mouse models. We found that IK1 was substantially diminished in dystrophin-deficient cardiomyocytes when compared to wild type myocytes. This finding represents the first functional evidence for a significant role of the DAPC in the regulation of Kir2.x channels.

  14. ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function

    DEFF Research Database (Denmark)

    Kawaguchi, Nobuko; Sundberg, Christina; Kveiborg, Marie

    2003-01-01

    -100 from cells overexpressing ADAM12 than from control cells. Collectively, these results show that surface expression of ADAM12 impairs the function of beta1 integrins and, consequently, alters the organization of the actin cytoskeleton and extracellular matrix. These events may be necessary....... Moreover, ADAM12-expressing cells were more prone to apoptosis, which could be prevented by treating the cells with beta1-activating antibodies. A reduced and re-organized fibronectin-rich extracellular matrix accompanied these changes. In addition, beta1 integrin was more readily extracted with Triton X...

  15. Cellular roles of ADAM12 in health and disease

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Albrechtsen, Reidar; Couchman, John R;

    2008-01-01

    and it is a potential biomarker for breast cancer. It is therefore important to understand ADAM12's functions. Many cellular roles for ADAM12 have been suggested. It is an active metalloprotease, and has been implicated in insulin-like growth factor (IGF) receptor signaling, through cleavage of IGF-binding proteins...... to or from the cell interior. These ADAM12-mediated cellular effects appear to be critical events in both biological and pathological processes. This review presents current knowledge on ADAM12 functions gained from in vitro and in vivo observations, describes ADAM12's role in both normal physiology...

  16. Molecular profiling of ADAM12 in human bladder cancer

    DEFF Research Database (Denmark)

    Frolich, Camilla; Albrechtsen, Reidar; Andersen, Lars Dyrskjøt

    2006-01-01

    by microarray analysis, and the level of ADAM12 mRNA correlated with disease stage. Reverse transcription-PCR, quantitative PCR, and in situ hybridization validated the gene expression results. Using immunohistochemistry, we found ADAM12 protein expression correlated with tumor stage and grade. Finally, ADAM12...... could be detected in the urine by Western blotting; ADAM12 was present in higher levels in the urine from patients with bladder cancer compared with urine from healthy individuals. Significantly, following removal of tumor by surgery, in most bladder cancer cases examined, the level of ADAM12...

  17. Catalytic properties of ADAM12 and its domain deletion mutants

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Visse, Robert; Sørensen, Hans Peter

    2008-01-01

    Human ADAM12 (a disintegrin and metalloproteinase) is a multidomain zinc metalloproteinase expressed at high levels during development and in human tumors. ADAM12 exists as two splice variants: a classical type 1 membrane-anchored form (ADAM12-L) and a secreted splice variant (ADAM12-S) consisting...... of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits...... restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most...

  18. Reduction of the disintegrin and metalloprotease ADAM12 in preeclampsia

    DEFF Research Database (Denmark)

    Laigaard, Jennie; Sørensen, Tina; Placing, Sophie;

    2005-01-01

    OBJECTIVES: The secreted form of ADAM12 is a metalloprotease that may be involved in placental and fetal growth. We examined whether the concentration of ADAM12 in first-trimester maternal serum could be used as a marker for preeclampsia. METHODS: We developed a semiautomated, time-resolved, immu......OBJECTIVES: The secreted form of ADAM12 is a metalloprotease that may be involved in placental and fetal growth. We examined whether the concentration of ADAM12 in first-trimester maternal serum could be used as a marker for preeclampsia. METHODS: We developed a semiautomated, time......-resolved, immunofluorometric assay for the quantification of ADAM12 in serum. The assay detected ADAM12 in a range of 78-1248 microg/L. Serum samples derived from women in the first trimester of a normal pregnancy (n = 324) and from women who later developed preeclampsia during pregnancy (n = 160) were obtained from the First...... Trimester Copenhagen Study. ADAM12 levels were assayed in these serum samples. Serum levels of ADAM12 were converted to multiples of the median (MoM) after log-linear regression of concentration versus gestational age. RESULTS: Serum ADAM12 levels in women who developed preeclampsia during pregnancy had...

  19. Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice.

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakai

    Full Text Available Muscle satellite cells (SCs are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs isolated from Pax3(GFP/+ embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3(GFP/+ mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease.

  20. Dystrophin deficiency exacerbates skeletal muscle pathology in dysferlin-null mice

    Directory of Open Access Journals (Sweden)

    Han Renzhi

    2011-12-01

    Full Text Available Abstract Background Mutations in the genes coding for either dystrophin or dysferlin cause distinct forms of muscular dystrophy. Dystrophin links the cytoskeleton to the sarcolemma through direct interaction with β-dystroglycan. This link extends to the extracellular matrix by β-dystroglycan's interaction with α-dystroglycan, which binds extracellular matrix proteins, including laminin α2, agrin and perlecan, that possess laminin globular domains. The absence of dystrophin disrupts this link, leading to compromised muscle sarcolemmal integrity. Dysferlin, on the other hand, plays an important role in the Ca2+-dependent membrane repair of damaged sarcolemma in skeletal muscle. Because dysferlin and dystrophin play different roles in maintaining muscle cell integrity, we hypothesized that disrupting sarcolemmal integrity with dystrophin deficiency would exacerbate the pathology in dysferlin-null mice and allow further characterization of the role of dysferlin in skeletal muscle. Methods To test our hypothesis, we generated dystrophin/dysferlin double-knockout (DKO mice by breeding mdx mice with dysferlin-null mice and analyzed the effects of a combined deficiency of dysferlin and dystrophin on muscle pathology and sarcolemmal integrity. Results The DKO mice exhibited more severe muscle pathology than either mdx mice or dysferlin-null mice, and, importantly, the onset of the muscle pathology occurred much earlier than it did in dysferlin-deficient mice. The DKO mice showed muscle pathology of various skeletal muscles, including the mandible muscles, as well as a greater number of regenerating muscle fibers, higher serum creatine kinase levels and elevated Evans blue dye uptake into skeletal muscles. Lengthening contractions caused similar force deficits, regardless of dysferlin expression. However, the rate of force recovery within 45 minutes following lengthening contractions was hampered in DKO muscles compared to mdx muscles or dysferlin

  1. Human ADAM 12 (meltrin alpha) is an active metalloprotease

    DEFF Research Database (Denmark)

    Loechel, F; Gilpin, B J; Engvall, E

    1998-01-01

    in a latent form, probably by means of a cysteine switch. The zymogen could be activated chemically by alkylation with N-ethylmaleimide. Cleavage of the prodomain at a site for a furin-like endopeptidase resulted in an ADAM 12 protein with proteolytic activity. The protease activity was sensitive...... 12 is catalytically active. We used the trapping mechanism of alpha2-macroglobulin to assay for protease activity of wild-type and mutant ADAM 12 proteins produced in a COS cell transfection system. We found that ADAM 12 is synthesized as a zymogen, with the prodomain maintaining the metalloprotease...

  2. Molecular profiling of ADAM12 in human bladder cancer

    DEFF Research Database (Denmark)

    Frolich, Camilla; Albrechtsen, Reidar; Andersen, Lars Dyrskjøt

    2006-01-01

    PURPOSE: We have previously found ADAM12, a disintegrin and metalloprotease, to be an interesting biomarker for breast cancer. The purpose of this study was to determine the gene and protein expression profiles of ADAM12 in different grades and stages of bladder cancer. EXPERIMENTAL DESIGN: ADAM12...... gene expression was evaluated in tumors from 96 patients with bladder cancer using a customized Affymetrix GeneChip. Gene expression in bladder cancer was validated using reverse transcription-PCR, quantitative PCR, and in situ hybridization. Protein expression was evaluated by immunohistochemical...

  3. Deletion of Galgt2 (B4Galnt2) Reduces Muscle Growth in Response to Acute Injury and Increases Muscle Inflammation and Pathology in Dystrophin-Deficient Mice

    Science.gov (United States)

    Xu, Rui; Singhal, Neha; Serinagaoglu, Yelda; Chandrasekharan, Kumaran; Joshi, Mandar; Bauer, John A.; Janssen, Paulus M.L.; Martin, Paul T.

    2016-01-01

    Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2−/−mdx). Galgt2−/− mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice. PMID:26435413

  4. Dystrophin-deficient dogs with reduced myostatin have unequal muscle growth and greater joint contractures.

    Science.gov (United States)

    Kornegay, Joe N; Bogan, Daniel J; Bogan, Janet R; Dow, Jennifer L; Wang, Jiahui; Fan, Zheng; Liu, Naili; Warsing, Leigh C; Grange, Robert W; Ahn, Mihye; Balog-Alvarez, Cynthia J; Cotten, Steven W; Willis, Monte S; Brinkmeyer-Langford, Candice; Zhu, Hongtu; Palandra, Joe; Morris, Carl A; Styner, Martin A; Wagner, Kathryn R

    2016-01-01

    Myostatin (Mstn) is a negative regulator of muscle growth whose inhibition promotes muscle growth and regeneration. Dystrophin-deficient mdx mice in which myostatin is knocked out or inhibited postnatally have a less severe phenotype with greater total mass and strength and less fibrosis and fatty replacement of muscles than mdx mice with wild-type myostatin expression. Dogs with golden retriever muscular dystrophy (GRMD) have previously been noted to have increased muscle mass and reduced fibrosis after systemic postnatal myostatin inhibition. Based partly on these results, myostatin inhibitors are in development for use in human muscular dystrophies. However, persisting concerns regarding the effects of long-term and profound myostatin inhibition will not be easily or imminently answered in clinical trials. To address these concerns, we developed a canine (GRippet) model by crossbreeding dystrophin-deficient GRMD dogs with Mstn-heterozygous (Mstn (+/-)) whippets. A total of four GRippets (dystrophic and Mstn (+/-)), three GRMD (dystrophic and Mstn wild-type) dogs, and three non-dystrophic controls from two litters were evaluated. Myostatin messenger ribonucleic acid (mRNA) and protein levels were downregulated in both GRMD and GRippet dogs. GRippets had more severe postural changes and larger (more restricted) maximal joint flexion angles, apparently due to further exaggeration of disproportionate effects on muscle size. Flexors such as the cranial sartorius were more hypertrophied on magnetic resonance imaging (MRI) in the GRippets, while extensors, including the quadriceps femoris, underwent greater atrophy. Myostatin protein levels negatively correlated with relative cranial sartorius muscle cross-sectional area on MRI, supporting a role in disproportionate muscle size. Activin receptor type IIB (ActRIIB) expression was higher in dystrophic versus control dogs, consistent with physiologic feedback between myostatin and ActRIIB. However, there was no

  5. Heparan sulfate regulates ADAM12 through a molecular switch mechanism

    DEFF Research Database (Denmark)

    Sørensen, Hans P; Vives, Romain R; Manetopoulos, Christina

    2008-01-01

    tumor progression and chondrocyte proliferation in osteoarthritic cartilage, is shown to possess a pro/catalytic domain cationic molecular switch, regulated by exogenous heparan sulfate and heparin but also endogenous cell surface proteoglycans and the polyanion, calcium pentosan polysulfate. Sheddase...... functions of ADAM12 are regulated by the switch, as are proteolytic functions in placental tissue and sera of pregnant women. Moreover, human heparanase, an enzyme also linked to tumorigenesis, can promote ADAM12 sheddase activity at the cell surface through cleavage of the inhibitory heparan sulfate...

  6. Targeting ADAM12 in human disease: head, body or tail?

    DEFF Research Database (Denmark)

    Jacobsen, J; Wewer, U M

    2009-01-01

    ADAM12/meltrin alpha is a type I transmembrane multidomain protein involved in tumor progression and other severe diseases, including osteoarthritis, and as such could be considered as a potential drug target. In addition to protease activity, ADAM12 possesses cell binding and cell signaling......) and insulin-like growth factor receptor signaling. The body of the protein (consisting of the disintegrin, cysteine-rich, and EGF-like domains) is involved in contacts with the extracellular matrix and other cells through interactions with integrins and syndecans. Finally, the tail of the protein (consisting...

  7. Dystrophin-deficient cardiomyocytes derived from human urine: New biologic reagents for drug discovery

    Directory of Open Access Journals (Sweden)

    Xuan Guan

    2014-03-01

    Full Text Available The ability to extract somatic cells from a patient and reprogram them to pluripotency opens up new possibilities for personalized medicine. Induced pluripotent stem cells (iPSCs have been employed to generate beating cardiomyocytes from a patient's skin or blood cells. Here, iPSC methods were used to generate cardiomyocytes starting from the urine of a patient with Duchenne muscular dystrophy (DMD. Urine was chosen as a starting material because it contains adult stem cells called urine-derived stem cells (USCs. USCs express the canonical reprogramming factors c-myc and klf4, and possess high telomerase activity. Pluripotency of urine-derived iPSC clones was confirmed by immunocytochemistry, RT-PCR and teratoma formation. Urine-derived iPSC clones generated from healthy volunteers and a DMD patient were differentiated into beating cardiomyocytes using a series of small molecules in monolayer culture. Results indicate that cardiomyocytes retain the DMD patient's dystrophin mutation. Physiological assays suggest that dystrophin-deficient cardiomyocytes possess phenotypic differences from normal cardiomyocytes. These results demonstrate the feasibility of generating cardiomyocytes from a urine sample and that urine-derived cardiomyocytes retain characteristic features that might be further exploited for mechanistic studies and drug discovery.

  8. Longitudinal ambulatory measurements of gait abnormality in dystrophin-deficient dogs

    Directory of Open Access Journals (Sweden)

    Voit Thomas

    2011-04-01

    Full Text Available Abstract Background This study aimed to measure the gait abnormalities in GRMD (Golden retriever muscular dystrophy dogs during growth and disease progression using an ambulatory gait analyzer (3D-accelerometers as a possible tool to assess the effects of a therapeutic intervention. Methods Six healthy and twelve GRMD dogs were evaluated twice monthly, from the age of two to nine months. The evolution of each gait variable previously shown to be modified in control and dystrophin-deficient adults was assessed using two-ways variance analysis (age, clinical status with repeated measurements. A principal component analysis (PCA was applied to perfect multivariate data interpretation. Results Speed, stride length, total power and force significantly already decreased (p Conclusion The gait variables measured by the accelerometers were sensitive to early detect and follow the gait disorders and mirrored the heterogeneity of clinical presentations, giving sense to monitor gait in GRMD dogs during progression of the disease and pre-clinical therapeutic trials.

  9. Functional rescue of dystrophin-deficient mdx mice by a chimeric peptide-PMO.

    Science.gov (United States)

    Yin, Haifang; Moulton, Hong M; Betts, Corinne; Merritt, Thomas; Seow, Yiqi; Ashraf, Shirin; Wang, Qingsong; Boutilier, Jordan; Wood, Matthew Ja

    2010-10-01

    Splice modulation using antisense oligonucleotides (AOs) has been shown to yield targeted exon exclusion to restore the open reading frame and generate truncated but partially functional dystrophin protein. This has been successfully demonstrated in dystrophin-deficient mdx mice and in Duchenne muscular dystrophy (DMD) patients. However, DMD is a systemic disease; successful therapeutic exploitation of this approach will therefore depend on effective systemic delivery of AOs to all affected tissues. We have previously shown the potential of a muscle-specific/arginine-rich chimeric peptide-phosphorodiamidate morpholino (PMO) conjugate, but its long-term activity, optimized dosing regimen, capacity for functional correction and safety profile remain to be established. Here, we report the results of this chimeric peptide-PMO conjugate in the mdx mouse using low doses (3 and 6 mg/kg) administered via a 6 biweekly systemic intravenous injection protocol. We show 100% dystrophin-positive fibers and near complete correction of the dystrophin transcript defect in all peripheral muscle groups, with restoration of 50% dystrophin protein over 12 weeks, leading to correction of the DMD pathological phenotype and restoration of muscle function in the absence of detectable toxicity or immune response. Chimeric muscle-specific/cell-penetrating peptides therefore represent highly promising agents for systemic delivery of splice-correcting PMO oligomers for DMD therapy.

  10. Proteomic Profiling of the Dystrophin-Deficient mdx Phenocopy of Dystrophinopathy-Associated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ashling Holland

    2014-01-01

    Full Text Available Cardiorespiratory complications are frequent symptoms of Duchenne muscular dystrophy, a neuromuscular disorder caused by primary abnormalities in the dystrophin gene. Loss of cardiac dystrophin initially leads to changes in dystrophin-associated glycoproteins and subsequently triggers secondarily sarcolemmal disintegration, fibre necrosis, fibrosis, fatty tissue replacement, and interstitial inflammation. This results in progressive cardiac disease, which is the cause of death in a considerable number of patients afflicted with X-linked muscular dystrophy. In order to better define the molecular pathogenesis of this type of cardiomyopathy, several studies have applied mass spectrometry-based proteomics to determine proteome-wide alterations in dystrophinopathy-associated cardiomyopathy. Proteomic studies included both gel-based and label-free mass spectrometric surveys of dystrophin-deficient heart muscle from the established mdx animal model of dystrophinopathy. Comparative cardiac proteomics revealed novel changes in proteins associated with mitochondrial energy metabolism, glycolysis, signaling, iron binding, antibody response, fibre contraction, basal lamina stabilisation, and cytoskeletal organisation. This review summarizes the importance of studying cardiomyopathy within the field of muscular dystrophy research, outlines key features of the mdx heart and its suitability as a model system for studying cardiac pathogenesis, and discusses the impact of recent proteomic findings for exploring molecular and cellular aspects of cardiac abnormalities in inherited muscular dystrophies.

  11. Membrane Sealant Poloxamer P188 Protects Against Isoproterenol Induced Cardiomyopathy in Dystrophin Deficient Mice

    Directory of Open Access Journals (Sweden)

    Sali Arpana

    2011-05-01

    Full Text Available Abstract Background Cardiomyopathy in Duchenne muscular dystrophy (DMD is an increasing cause of death in patients. The absence of dystrophin leads to loss of membrane integrity, cell death and fibrosis in cardiac muscle. Treatment of cardiomyocyte membrane instability could help prevent cardiomyopathy. Methods Three month old female mdx mice were exposed to the β1 receptor agonist isoproterenol subcutaneously and treated with the non-ionic tri-block copolymer Poloxamer P188 (P188 (460 mg/kg/dose i.p. daily. Cardiac function was assessed using high frequency echocardiography. Tissue was evaluated with Evans Blue Dye (EBD and picrosirius red staining. Results BL10 control mice tolerated 30 mg/kg/day of isoproterenol for 4 weeks while death occurred in mdx mice at 30, 15, 10, 5 and 1 mg/kg/day within 24 hours. Mdx mice tolerated a low dose of 0.5 mg/kg/day. Isoproterenol exposed mdx mice showed significantly increased heart rates (p Conclusions This model suggests that chronic intermittent intraperitoneal P188 treatment can prevent isoproterenol induced cardiomyopathy in dystrophin deficient mdx mice.

  12. Metabolic remodeling agents show beneficial effects in the dystrophin-deficient mdx mouse model

    Directory of Open Access Journals (Sweden)

    Jahnke Vanessa E

    2012-08-01

    Full Text Available Abstract Background Duchenne muscular dystrophy is a genetic disease involving a severe muscle wasting that is characterized by cycles of muscle degeneration/regeneration and culminates in early death in affected boys. Mitochondria are presumed to be involved in the regulation of myoblast proliferation/differentiation; enhancing mitochondrial activity with exercise mimetics (AMPK and PPAR-delta agonists increases muscle function and inhibits muscle wasting in healthy mice. We therefore asked whether metabolic remodeling agents that increase mitochondrial activity would improve muscle function in mdx mice. Methods Twelve-week-old mdx mice were treated with two different metabolic remodeling agents (GW501516 and AICAR, separately or in combination, for 4 weeks. Extensive systematic behavioral, functional, histological, biochemical, and molecular tests were conducted to assess the drug(s' effects. Results We found a gain in body and muscle weight in all treated mice. Histologic examination showed a decrease in muscle inflammation and in the number of fibers with central nuclei and an increase in fibers with peripheral nuclei, with significantly fewer activated satellite cells and regenerating fibers. Together with an inhibition of FoXO1 signaling, these results indicated that the treatments reduced ongoing muscle damage. Conclusions The three treatments produced significant improvements in disease phenotype, including an increase in overall behavioral activity and significant gains in forelimb and hind limb strength. Our findings suggest that triggering mitochondrial activity with exercise mimetics improves muscle function in dystrophin-deficient mdx mice.

  13. Hierarchy of ADAM12 binding to integrins in tumor cells

    DEFF Research Database (Denmark)

    Thodeti, Charles Kumar; Fröhlich, Camilla; Nielsen, Christian Kamp

    2005-01-01

    ADAMs (a disintegrin and metalloprotease) comprise a family of cell surface proteins with protease and cell-binding activities. Using different forms and fragments of ADAM12 as substrates in cell adhesion and spreading assays, we demonstrated that alpha9beta1 integrin is the main receptor for ADA...

  14. Ex vivo stretch reveals altered mechanical properties of isolated dystrophin-deficient hearts.

    Science.gov (United States)

    Barnabei, Matthew S; Metzger, Joseph M

    2012-01-01

    Duchenne muscular dystrophy (DMD) is a progressive and fatal disease of muscle wasting caused by loss of the cytoskeletal protein dystrophin. In the heart, DMD results in progressive cardiomyopathy and dilation of the left ventricle through mechanisms that are not fully understood. Previous reports have shown that loss of dystrophin causes sarcolemmal instability and reduced mechanical compliance of isolated cardiac myocytes. To expand upon these findings, here we have subjected the left ventricles of dystrophin-deficient mdx hearts to mechanical stretch. Unexpectedly, isolated mdx hearts showed increased left ventricular (LV) compliance compared to controls during stretch as LV volume was increased above normal end diastolic volume. During LV chamber distention, sarcomere lengths increased similarly in mdx and WT hearts despite greater excursions in volume of mdx hearts. This suggests that the mechanical properties of the intact heart cannot be modeled as a simple extrapolation of findings in single cardiac myocytes. To explain these findings, a model is proposed in which disruption of the dystrophin-glycoprotein complex perturbs cell-extracellular matrix contacts and promotes the apparent slippage of myocytes past each other during LV distension. In comparison, similar increases in LV compliance were obtained in isolated hearts from β-sarcoglycan-null and laminin-α(2) mutant mice, but not in dysferlin-null mice, suggesting that increased whole-organ compliance in mdx mice is a specific effect of disrupted cell-extracellular matrix contacts and not a general consequence of cardiomyopathy via membrane defect processes. Collectively, these findings suggest a novel and cell-death independent mechanism for the progressive pathological LV dilation that occurs in DMD.

  15. Ex vivo stretch reveals altered mechanical properties of isolated dystrophin-deficient hearts.

    Directory of Open Access Journals (Sweden)

    Matthew S Barnabei

    Full Text Available Duchenne muscular dystrophy (DMD is a progressive and fatal disease of muscle wasting caused by loss of the cytoskeletal protein dystrophin. In the heart, DMD results in progressive cardiomyopathy and dilation of the left ventricle through mechanisms that are not fully understood. Previous reports have shown that loss of dystrophin causes sarcolemmal instability and reduced mechanical compliance of isolated cardiac myocytes. To expand upon these findings, here we have subjected the left ventricles of dystrophin-deficient mdx hearts to mechanical stretch. Unexpectedly, isolated mdx hearts showed increased left ventricular (LV compliance compared to controls during stretch as LV volume was increased above normal end diastolic volume. During LV chamber distention, sarcomere lengths increased similarly in mdx and WT hearts despite greater excursions in volume of mdx hearts. This suggests that the mechanical properties of the intact heart cannot be modeled as a simple extrapolation of findings in single cardiac myocytes. To explain these findings, a model is proposed in which disruption of the dystrophin-glycoprotein complex perturbs cell-extracellular matrix contacts and promotes the apparent slippage of myocytes past each other during LV distension. In comparison, similar increases in LV compliance were obtained in isolated hearts from β-sarcoglycan-null and laminin-α(2 mutant mice, but not in dysferlin-null mice, suggesting that increased whole-organ compliance in mdx mice is a specific effect of disrupted cell-extracellular matrix contacts and not a general consequence of cardiomyopathy via membrane defect processes. Collectively, these findings suggest a novel and cell-death independent mechanism for the progressive pathological LV dilation that occurs in DMD.

  16. Differential expression of myosin heavy chain isoforms in the masticatory muscles of dystrophin-deficient mice.

    Science.gov (United States)

    Spassov, Alexander; Gredes, Tomasz; Gedrange, Tomasz; Lucke, Silke; Morgenstern, Sven; Pavlovic, Dragan; Kunert-Keil, Christiane

    2011-12-01

    The dystrophin-deficient mouse (mdx) is a homologue animal model of Duchenne muscular dystrophy (DMD) and is characterized by slowly progressive muscle weakness accompanied by changes in myosin heavy chain (MyHC) composition. It is likely that the masticatory muscles undergo similar changes. The aim of this study was to examine the masticatory muscles (masseter, temporal, tongue, and soleus) of 100-day-old mdx and control mice (n = 8-10), and the fibre type distribution (by immunohistochemistry) as well as the expression of the corresponding MyHC messenger RNA (mRNA) (protein and mRNA expression, using Western blot or quantitative real-time polymerase chain reaction (RT-PCR)). Immunohistochemistry and western blot analysis revealed that the masticatory muscles in the control and mdx mice consisted mainly of type 2 fibres, whereas soleus muscle consisted of both type 1 and 2 fibres. In the masseter muscle, the mRNA in mdx mice was not different from that found in the controls. However, the mRNA content of the MyHC-2b isoform in mdx mice was lower in comparison with the controls in the temporal muscle [11.9 versus 36.9 per cent; P muscle (65.7 versus 73.8 per cent; P muscle was lower than in the controls (25.9 versus 30.8 per cent; P muscles of mdx mice may lead to changed fibre type composition. The different MyHC gene expression in mdx mice masticatory muscles may be seen as an adaptive mechanism to muscular dystrophy.

  17. The proton pump inhibitor lansoprazole improves the skeletal phenotype in dystrophin deficient mdx mice.

    Directory of Open Access Journals (Sweden)

    Arpana Sali

    Full Text Available BACKGROUND: In Duchenne muscular dystrophy (DMD, loss of the membrane stabilizing protein dystrophin results in myofiber damage. Microinjury to dystrophic myofibers also causes secondary imbalances in sarcolemmic ion permeability and resting membrane potential, which modifies excitation-contraction coupling and increases proinflammatory/apoptotic signaling cascades. Although glucocorticoids remain the standard of care for the treatment of DMD, there is a need to investigate the efficacy of other pharmacological agents targeting the involvement of imbalances in ion flux on dystrophic pathology. METHODOLOGY/PRINCIPAL FINDINGS: We designed a preclinical trial to investigate the effects of lansoprazole (LANZO administration, a proton pump inhibitor, on the dystrophic muscle phenotype in dystrophin deficient (mdx mice. Eight to ten week-old female mice were assigned to one of four treatment groups (n = 12 per group: (1 vehicle control; (2 5 mg/kg/day LANZO; (3 5 mg/kg/day prednisolone; and (4 combined treatment of 5 mg/kg/day prednisolone (PRED and 5 mg/kg/day LANZO. Treatment was administered orally 5 d/wk for 3 months. At the end of the study, behavioral (Digiscan and functional outcomes (grip strength and Rotarod were assessed prior to sacrifice. After sacrifice, body, tissue and organ masses, muscle histology, in vitro muscle force, and creatine kinase levels were measured. Mice in the combined treatment groups displayed significant reductions in the number of degenerating muscle fibers and number of inflammatory foci per muscle field relative to vehicle control. Additionally, mice in the combined treatment group displayed less of a decline in normalized forelimb and hindlimb grip strength and declines in in vitro EDL force after repeated eccentric contractions. CONCLUSIONS/SIGNIFICANCE: Together our findings suggest that combined treatment of LANZO and prednisolone attenuates some components of dystrophic pathology in mdx mice. Our findings

  18. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.

    Science.gov (United States)

    Miyazaki, Daigo; Nakamura, Akinori; Fukushima, Kazuhiro; Yoshida, Kunihiro; Takeda, Shin'ichi; Ikeda, Shu-ichi

    2011-05-01

    Matrix metalloproteases (MMPs) are a family of endopeptidases classified into subgroups based on substrate preference in normal physiological processes such as embryonic development and tissue remodeling, as well as in various disease processes via degradation of extracellular matrix components. Among the MMPs, MMP-9 and MMP-2 have been reported to be up-regulated in skeletal muscles in the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. A recent study showed that deletion of the MMP9 gene in mdx, a mouse model for DMD, improved skeletal muscle pathology and function; however, the role of MMP-2 in the dystrophin-deficient muscle is not well known. In this study, we aimed at verifying the role of MMP-2 in the dystrophin-deficient muscle by using mdx mice with genetic ablation of MMP-2 (mdx/MMP-2(-/-)). We found impairment of regenerated muscle fiber growth with reduction of angiogenesis in mdx/MMP-2(-/-) mice at 3 months of age. Expression of vascular endothelial growth factor-A (VEGF-A), an important angiogenesis-related factor, decreased in mdx/MMP-2(-/-) mice at 3 months of age. MMP-2 had not a critical role in the degradation of dystrophin-glycoprotein complex (DGC) components such as β-dystroglycan and β-sarcoglycan in the regeneration process of the dystrophic muscle. Accordingly, MMP-2 may be essential for growth of regenerated muscle fibers through VEGF-associated angiogenesis in the dystrophin-deficient skeletal muscle.

  19. Extracellular engagement of ADAM12 induces clusters of invadopodia with localized ectodomain shedding activity

    DEFF Research Database (Denmark)

    Albrechtsen, Reidar; Hansen, Dorte Stautz; Sanjay, Archana;

    2011-01-01

    -Src interaction site in the ADAM12 cytoplasmic domain, but was independent of the catalytic activity of ADAM12. Caveolin-1 and transmembrane protease MMP14/MT1-MMP were both present in the ADAM12-induced clusters of invadopodia, and cholesterol depletion prevented their formation, suggesting that lipid-raft...

  20. ADAM 12 as a second-trimester maternal serum marker in screening for Down syndrome

    DEFF Research Database (Denmark)

    Christiansen, Michael; Spencer, Kevin; Laigaard, Jennie

    2007-01-01

    ADAM 12 is a placenta-derived glycoprotein that is involved in growth and differentiation. The maternal serum concentration of ADAM 12 is a potential first-trimester maternal serum marker of Down syndrome (DS). Here we examine the potential of ADAM 12 as a second-trimester maternal serum marker...

  1. Regulation of ADAM12 cell-surface expression by protein kinase C epsilon

    DEFF Research Database (Denmark)

    Sundberg, Christina; Thodeti, Charles Kumar; Kveiborg, Marie;

    2004-01-01

    as a constitutively active protein. However, little is known about the regulation of ADAM12 cell-surface translocation. Here, we used human RD rhabdomyosarcoma cells, which express ADAM12 at the cell surface, in a temporal pattern. We report that protein kinase C (PKC) epsilon induces ADAM12 translocation to the cell...

  2. Trafficking of human ADAM 12-L: retention in the trans-Golgi network

    DEFF Research Database (Denmark)

    Hougaard, S; Loechel, F; Xu, X

    2000-01-01

    We have investigated the trafficking of the membrane-anchored form of human ADAM 12 (ADAM 12-L) fused to a green fluorescence protein tag. Subcellular localization of the protein in transiently transfected cells was determined by fluorescence microscopy and trypsin sensitivity. Full-length ADAM 12...... the cytoplasmic and transmembrane domains, but not the Src homology 3 domain (SH3) binding sites. These results raise the possibility that a trafficking checkpoint in the trans-Golgi network is one of the cellular mechanisms for regulation of ADAM 12-L function, by allowing a rapid release of ADAM 12-L...

  3. ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage

    DEFF Research Database (Denmark)

    Roy, Roopali; Wewer, Ulla M; Zurakowski, David

    2004-01-01

    ADAM 12 is a member of a family of disintegrin-containing metalloproteases that have been implicated in a variety of diseases including Alzheimer's disease, arthritis, and cancer. We purified ADAM 12 from the urine of breast cancer patients via Q-Sepharose anion exchange and gelatin-Sepharose aff......ADAM 12 is a member of a family of disintegrin-containing metalloproteases that have been implicated in a variety of diseases including Alzheimer's disease, arthritis, and cancer. We purified ADAM 12 from the urine of breast cancer patients via Q-Sepharose anion exchange and gelatin......-Sepharose affinity chromatography followed by protein identification by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Four peptides were identified that spanned the amino acid sequence of ADAM 12. Immunoblot analysis using ADAM 12-specific antibodies detected an approximately 68-k......Da band identified as the mature form of ADAM 12. To characterize catalytic properties of ADAM 12, full-length ADAM 12-S was expressed in COS-7 cells and purified. Substrate specificity studies demonstrated that ADAM 12-S degrades gelatin, type IV collagen, and fibronectin but not type I collagen...

  4. Nestin expression in end-stage disease in dystrophin-deficient heart: implications for regeneration from endogenous cardiac stem cells.

    Science.gov (United States)

    Berry, Suzanne E; Andruszkiewicz, Peter; Chun, Ju Lan; Hong, Jun

    2013-11-01

    Nestin(+) cardiac stem cells differentiate into striated cells following myocardial infarct. Transplantation of exogenous stem cells into myocardium of a murine model for Duchenne muscular dystrophy (DMD) increased proliferation of endogenous nestin(+) stem cells and resulted in the appearance of nestin(+) striated cells. This correlated with, and may be responsible for, prevention of dilated cardiomyopathy. We examined nestin(+) stem cells in the myocardium of dystrophin/utrophin-deficient (mdx/utrn(-/-)) mice, a model for DMD. We found that 92% of nestin(+) interstitial cells expressed Flk-1, a marker present on cardiac progenitor cells that differentiate into the cardiac lineage, and that a subset expressed Sca-1, present on adult cardiac cells that become cardiomyocytes. Nestin(+) interstitial cells maintained expression of Flk-1 but lost Sca-1 expression with age and were present in lower numbers in dystrophin-deficient heart than in wild-type heart. Unexpectedly, large clusters of nestin(+) striated cells ranging in size from 20 to 250 cells and extending up to 500 μm were present in mdx/utrn(-/-) heart near the end stage of disease. These cells were also present in dystrophin-deficient mdx/utrn(+/-) and mdx heart but not wild-type heart. Nestin(+) striated cells expressed cardiac troponin I, desmin, and Connexin 43 and correlated with proinflammatory CD68(+) macrophages. Elongated nestin(+) interstitial cells with striations were observed that did not express Flk-1 or the late cardiac marker cardiac troponin I but strongly expressed the early cardiac marker desmin. Nestin was also detected in endothelial and smooth muscle cells. These data indicate that new cardiomyocytes form in dystrophic heart, and nestin(+) interstitial cells may generate them in addition to other cells of the cardiac lineage.

  5. Evaluation of skeletal and cardiac muscle function after chronic administration of thymosin beta-4 in the dystrophin deficient mouse.

    Directory of Open Access Journals (Sweden)

    Christopher F Spurney

    Full Text Available Thymosin beta-4 (Tbeta4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. We studied the effects of chronic administration of Tbeta4 on the skeletal and cardiac muscle of dystrophin deficient mdx mice, the mouse model of Duchenne muscular dystrophy. Female wild type (C57BL10/ScSnJ and mdx mice, 8-10 weeks old, were treated with 150 microg of Tbeta4 twice a week for 6 months. To promote muscle pathology, mice were exercised for 30 minutes twice a week. Skeletal and cardiac muscle function were assessed via grip strength and high frequency echocardiography. Localization of Tbeta4 and amount of fibrosis were quantified using immunohistochemistry and Gomori's tri-chrome staining, respectively. Mdx mice treated with Tbeta4 showed a significant increase in skeletal muscle regenerating fibers compared to untreated mdx mice. Tbeta4 stained exclusively in the regenerating fibers of mdx mice. Although untreated mdx mice had significantly decreased skeletal muscle strength compared to untreated wild type, there were no significant improvements in mdx mice after treatment. Systolic cardiac function, measured as percent shortening fraction, was decreased in untreated mdx mice compared to untreated wild type and there was no significant difference after treatment in mdx mice. Skeletal and cardiac muscle fibrosis were also significantly increased in untreated mdx mice compared to wild type, but there was no significant improvement in treated mdx mice. In exercised dystrophin deficient mice, chronic administration of Tbeta4 increased the number of regenerating fibers in skeletal muscle and could have a potential role in treatment of skeletal muscle disease in Duchenne muscular dystrophy.

  6. Motor physical therapy affects muscle collagen type I and decreases gait speed in dystrophin-deficient dogs.

    Directory of Open Access Journals (Sweden)

    Thaís P Gaiad

    Full Text Available Golden Retriever Muscular Dystrophy (GRMD is a dystrophin-deficient canine model genetically homologous to Duchenne Muscular Dystrophy (DMD in humans. Muscular fibrosis secondary to cycles of degeneration/regeneration of dystrophic muscle tissue and muscular weakness leads to biomechanical adaptation that impairs the quality of gait. Physical therapy (PT is one of the supportive therapies available for DMD, however, motor PT approaches have controversial recommendations and there is no consensus regarding the type and intensity of physical therapy. In this study we investigated the effect of physical therapy on gait biomechanics and muscular collagen deposition types I and III in dystrophin-deficient dogs. Two dystrophic dogs (treated dogs-TD underwent a PT protocol of active walking exercise, 3×/week, 40 minutes/day, 12 weeks. Two dystrophic control dogs (CD maintained their routine of activities of daily living. At t0 (pre and t1 (post-physical therapy, collagen type I and III were assessed by immunohistochemistry and gait biomechanics were analyzed. Angular displacement of shoulder, elbow, carpal, hip, stifle and tarsal joint and vertical (Fy, mediolateral (Fz and craniocaudal (Fx ground reaction forces (GRF were assessed. Wilcoxon test was used to verify the difference of biomechanical variables between t0 and t1, considering p<.05. Type I collagen of endomysium suffered the influence of PT, as well as gait speed that had decreased from t0 to t1 (p<.000. The PT protocol employed accelerates morphological alterations on dystrophic muscle and promotes a slower velocity of gait. Control dogs which maintained their routine of activities of daily living seem to have found a better balance between movement and preservation of motor function.

  7. Sparing of the dystrophin-deficient cranial sartorius muscle is associated with classical and novel hypertrophy pathways in GRMD dogs.

    Science.gov (United States)

    Nghiem, Peter P; Hoffman, Eric P; Mittal, Priya; Brown, Kristy J; Schatzberg, Scott J; Ghimbovschi, Svetlana; Wang, Zuyi; Kornegay, Joe N

    2013-11-01

    Both Duchenne and golden retriever muscular dystrophy (GRMD) are caused by dystrophin deficiency. The Duchenne muscular dystrophy sartorius muscle and orthologous GRMD cranial sartorius (CS) are relatively spared/hypertrophied. We completed hierarchical clustering studies to define molecular mechanisms contributing to this differential involvement and their role in the GRMD phenotype. GRMD dogs with larger CS muscles had more severe deficits, suggesting that selective hypertrophy could be detrimental. Serial biopsies from the hypertrophied CS and other atrophied muscles were studied in a subset of these dogs. Myostatin showed an age-dependent decrease and an inverse correlation with the degree of GRMD CS hypertrophy. Regulators of myostatin at the protein (AKT1) and miRNA (miR-539 and miR-208b targeting myostatin mRNA) levels were altered in GRMD CS, consistent with down-regulation of myostatin signaling, CS hypertrophy, and functional rescue of this muscle. mRNA and proteomic profiling was used to identify additional candidate genes associated with CS hypertrophy. The top-ranked network included α-dystroglycan and like-acetylglucosaminyltransferase. Proteomics demonstrated increases in myotrophin and spectrin that could promote hypertrophy and cytoskeletal stability, respectively. Our results suggest that multiple pathways, including decreased myostatin and up-regulated miRNAs, α-dystroglycan/like-acetylglucosaminyltransferase, spectrin, and myotrophin, contribute to hypertrophy and functional sparing of the CS. These data also underscore the muscle-specific responses to dystrophin deficiency and the potential deleterious effects of differential muscle involvement. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. ADAM12-S stimulates bone growth in transgenic mice by modulating chondrocyte proliferation and maturation

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Albrechtsen, Reidar; Rudkjaer, Lise

    2006-01-01

    ADAM12-S transgenic mice exhibit a pronounced increase in the length of bones, such as femur, tibia, and vertebrae. The effect of ADAM12-S on longitudinal bone growth involves the modulation of chondrocyte proliferation and maturation, likely through proteolytic activities and altered cell......-extracellular matrix interactions in the growth plate. INTRODUCTION: The disintegrin and metalloprotease ADAM12 is expressed in both osteoblasts and osteoclasts, suggesting a regulatory role of ADAM12 in bone. However, thus far, no in vivo function of ADAM12 in the skeleton has been reported. MATERIALS AND METHODS......-extracellular matrix interactions. RESULTS: ADAM12-S transgenic mice exhibit increased longitudinal bone growth. The increased bone length is progressive and age dependent, with a maximum increase of 17% seen in the femur from 6-month-old transgenic mice. The effect is gene dose dependent, being more pronounced...

  9. ADAM33 and ADAM12 genetic polymorphisms and their expression in Egyptian children with asthma.

    Science.gov (United States)

    Shalaby, Sally M; Abdul-Maksoud, Rehab S; Abdelsalam, Sanaa M; Abdelrahman, Hadeel M; Abdelaziz Almalky, Mohamed A

    2016-01-01

    The ADAM family is involved in some pathologic processes, such as inflammation and asthma. To assess the association between ADAM33 and ADAM12 single-nucleotide polymorphisms (SNPs) with asthma risk and severity and to investigate the effect of ADAM33 and ADAM12 polymorphisms on expression of these proteases in sputum. Two SNPs of the ADAM33 gene, F+1 (rs511898) G/A and ST+4 (rs44707) A/C, and 2 SNPs of the ADAM12 gene, rs3740199 and rs1871054, were analyzed in 400 asthma cases and 200 controls aged 3 to 14 years using the polymerase chain reaction-restriction fragment length polymorphism method. Messenger RNA expression profile of ADAM33 and ADAM12 proteases in sputum from studied groups was determined by reverse transcription polymerase chain reaction. ADAM33 F+1 homozygous mutant genotype (AA) and ST+4 heterozygous and homozygous mutant genotype (AC and CC) and mutant alleles of both polymorphisms were significantly associated with asthma risk and severity in moderate and severe subgroups. Patients with the ADAM12 (rs3740199) CC genotype were at increased risk for moderate and severe asthma. Messenger RNA levels of ADAM12 were significantly increased in asthmatic children compared with controls, whereas we were not able to detect the expression of ADAM33 in the sputum of the groups studied. The ADAM12 expression was significantly higher in homozygous CC (variant type) compared with homozygous GG (wild type) of both ADAM12 rs3740199 and rs1871054 in the asthmatic group. Our analysis suggests a likely role for ADAM33 and ADAM12 in the development of asthma in Egyptian children. Furthermore, ADAM12 polymorphisms may affect ADAM12 expression in asthma. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Proteasome inhibitor (MG132 rescues Nav1.5 protein content and the cardiac sodium current in dystrophin-deficient mdx5cv mice

    Directory of Open Access Journals (Sweden)

    Jean-Sebastien eRougier

    2013-03-01

    Full Text Available The cardiac voltage-gated sodium channel, Nav1.5, plays a central role in cardiac excitability and impulse propagation and associates with the dystrophin multiprotein complex (DMC at the lateral membrane of cardiomyocytes. It was previously shown that Nav1.5 protein content and the sodium current (INa were both decreased in cardiomyocytes of dystrophin-deficient mdx5cv mice. In this study, wild-type (WT and mdx5cv mice were treated for 7 days with the proteasome inhibitor MG132 (10 µg/Kg/24 h using implanted osmotic mini pumps. MG132 rescued both the total amount of Nav1.5 protein and INa but, unlike in previous studies, de novo expression of dystrophin was not observed in skeletal or cardiac muscle. This study suggests that the reduced expression of Nav1.5 in dystrophin-deficient cells is dependent on proteasomal degradation.

  11. Cell-surface metalloprotease ADAM12 is internalized by a clathrin- and Grb2-dependent mechanism

    DEFF Research Database (Denmark)

    Hansen, Dorte Stautz; Leyme, Anthony; Grandal, Michael Vibo;

    2012-01-01

    ADAM12 (A Disintegrin And Metalloprotease 12), a member of the ADAMs family of transmembrane proteins, is involved in ectodomain shedding, cell-adhesion and signaling, with important implications in cancer. Therefore, mechanisms that regulate the levels and activity of ADAM12 at the cell-surface ...

  12. ADAM 12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3

    DEFF Research Database (Denmark)

    Loechel, F; Fox, J W; Murphy, G;

    2000-01-01

    that it cleaves insulin-like growth factor binding protein-3 (IGFBP-3). This result supports a role for ADAM 12-S in the degradation of IGFBP-3 in the blood of pregnant women. Furthermore, we tested for proteolysis of other members of the IGF binding protein family and found that ADAM 12-S cleaves IGFBP-5......ADAMs are a family of multidomain proteins having proteolytic and cell adhesion activities. We have previously shown that ADAM 12-S, the secreted soluble form of human ADAM 12, is a catalytically active protease. We now describe the purification of full-length recombinant ADAM 12-S and demonstrate...... in addition to IGFBP-3, but does not cleave IGFBP-1, -2, -4, or -6. ADAM 12-S may therefore be the IGFBP-5 protease that is secreted by osteoblasts and other cells. Cleavage of both IGFBP-3 and -5 by ADAM 12-S was inhibited by TIMP-3, raising the possibility that TIMP-3 is a physiological inhibitor of ADAM 12...

  13. A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo

    DEFF Research Database (Denmark)

    Gilpin, B J; Loechel, F; Mattei, M G

    1998-01-01

    , membrane-bound form designated ADAM 12-L (L for long form). These two forms arise by alternative splicing of a single gene located on chromosome 10q26. Northern blotting demonstrated that mRNAs of both forms are abundant in human term placenta and are also present in some tumor cell lines. The ADAM 12-L...

  14. Regulation of human ADAM 12 protease by the prodomain. Evidence for a functional cysteine switch

    DEFF Research Database (Denmark)

    Loechel, F; Overgaard, M T; Oxvig, C

    1999-01-01

    , with the prodomain maintaining the protease in a latent form. We now provide evidence that the latency mechanism of ADAM 12 can be explained by the cysteine switch model, in which coordination of Zn2+ in the active site of the catalytic domain by a cysteine residue in the prodomain is critical for inhibition...... of the protease. Replacing Cys179 with other amino acids results in an ADAM 12 proform that is proteolytically active, but latency can be restored by placing cysteine at other positions in the propeptide. None of the amino acids adjacent to the crucial cysteine residue is essential for blocking activity...... of the protease domain. In addition to its latency function, the prodomain is required for exit of ADAM 12 protease from the endoplasmic reticulum. Tissue inhibitor of metalloprotease-1, -2, and -3 were not found to block proteolytic activity of ADAM 12, hence a physiological inhibitor of ADAM 12 protease...

  15. ADAM 12, a disintegrin metalloprotease, interacts with insulin-like growth factor-binding protein-3

    DEFF Research Database (Denmark)

    Shi, Z; Xu, Wei; Loechel, F

    2000-01-01

    , as yet the pregnancy-specific protease, or proteases, have not been identified. We utilized a yeast two-hybrid assay and a human placental cDNA library to investigate IGFBP-3-interacting proteins. A disintegrin and metalloprotease-12 (ADAM 12), a member of a family of metalloprotease disintegrins...... that is highly expressed in placental tissue, was identified as interacting with IGFBP-3. This interaction involved the cysteine-rich domain of ADAM 12. Unlike other members of this family of disintegrin metalloproteases that are membrane proteins, ADAM 12 exists as an alternatively spliced soluble secreted...... medium on a heparin-Sepharose column also proteolyzed IGFBP-3. The degradation pattern was similar to that seen with pregnancy serum, and the presence of ADAM 12-S in serum during pregnancy was confirmed. The data suggest that ADAM 12-S has IGFBP-3 protease activity, and it may contribute to the IGFBP-3...

  16. A role for ADAM12 in breast tumor progression and stromal cell apoptosis

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Frohlich, Camilla; Albrechtsen, Reidar;

    2005-01-01

    of stromal fibroblasts in tumor initiation and progression has been elucidated. Here, we show that stromal cell apoptosis occurs in human breast carcinoma but is only rarely seen in nonmalignant breast lesions. Furthermore, we show that ADAM12, a disintegrin and metalloprotease up-regulated in human breast...... cancer, accelerates tumor progression in a mouse breast cancer model. ADAM12 does not influence tumor cell proliferation but rather confers both decreased tumor cell apoptosis and increased stromal cell apoptosis. This dual role of ADAM12 in governing cell survival is underscored by the finding that ADAM......12 increases the apoptotic sensitivity of nonneoplastic cells in vitro while rendering tumor cells more resistant to apoptosis. Together, these results show that the ability of ADAM12 to influence apoptosis may contribute to tumor progression....

  17. Proteomic Profiling of the Dystrophin-Deficient MDX Heart Reveals Drastically Altered Levels of Key Metabolic and Contractile Proteins

    Directory of Open Access Journals (Sweden)

    Caroline Lewis

    2010-01-01

    Full Text Available Although Duchenne muscular dystrophy is primarily classified as a neuromuscular disease, cardiac complications play an important role in the course of this X-linked inherited disorder. The pathobiochemical steps causing a progressive decline in the dystrophic heart are not well understood. We therefore carried out a fluorescence difference in-gel electrophoretic analysis of 9-month-old dystrophin-deficient versus age-matched normal heart, using the established MDX mouse model of muscular dystrophy-related cardiomyopathy. Out of 2,509 detectable protein spots, 79 2D-spots showed a drastic differential expression pattern, with the concentration of 3 proteins being increased, including nucleoside diphosphate kinase and lamin-A/C, and of 26 protein species being decreased, including ATP synthase, fatty acid binding-protein, isocitrate dehydrogenase, NADH dehydrogenase, porin, peroxiredoxin, adenylate kinase, tropomyosin, actin, and myosin light chains. Hence, the lack of cardiac dystrophin appears to trigger a generally perturbed protein expression pattern in the MDX heart, affecting especially energy metabolism and contractile proteins.

  18. Metabolic dysfunction and altered mitochondrial dynamics in the utrophin-dystrophin deficient mouse model of duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Meghna Pant

    Full Text Available The utrophin-dystrophin deficient (DKO mouse model has been widely used to understand the progression of Duchenne muscular dystrophy (DMD. However, it is unclear as to what extent muscle pathology affects metabolism. Therefore, the present study was focused on understanding energy expenditure in the whole animal and in isolated extensor digitorum longus (EDL muscle and to determine changes in metabolic enzymes. Our results show that the 8 week-old DKO mice consume higher oxygen relative to activity levels. Interestingly the EDL muscle from DKO mouse consumes higher oxygen per unit integral force, generates less force and performs better in the presence of pyruvate thus mimicking a slow twitch muscle. We also found that the expression of hexokinase 1 and pyruvate kinase M2 was upregulated several fold suggesting increased glycolytic flux. Additionally, there is a dramatic increase in dynamin-related protein 1 (Drp 1 and mitofusin 2 protein levels suggesting increased mitochondrial fission and fusion, a feature associated with increased energy demand and altered mitochondrial dynamics. Collectively our studies point out that the dystrophic disease has caused significant changes in muscle metabolism. To meet the increased energetic demand, upregulation of metabolic enzymes and regulators of mitochondrial fusion and fission is observed in the dystrophic muscle. A better understanding of the metabolic demands and the accompanied alterations in the dystrophic muscle can help us design improved intervention therapies along with existing drug treatments for the DMD patients.

  19. ADAM12 and alpha9beta1 integrin are instrumental in human myogenic cell differentiation

    DEFF Research Database (Denmark)

    Lafuste, Peggy; Sonnet, Corinne; Chazaud, Bénédicte

    2005-01-01

    Knowledge on molecular systems involved in myogenic precursor cell (mpc) fusion into myotubes is fragmentary. Previous studies have implicated the a disintegrin and metalloproteinase (ADAM) family in most mammalian cell fusion processes. ADAM12 is likely involved in fusion of murine mpc and human...... extracellular matrix, suggesting specific involvement of ADAM12-alpha9beta1 interaction in the fusion process. Evaluation of the fusion rate with regard to the size of myotubes showed that both ADAM12 antisense oligonucleotides and alpha9beta1 blockade inhibited more importantly formation of large (> or =5...

  20. Early right ventricular fibrosis and reduction in biventricular cardiac reserve in the dystrophin-deficient mdx heart.

    Science.gov (United States)

    Meyers, Tatyana A; Townsend, DeWayne

    2015-02-15

    Duchenne muscular dystrophy (DMD) is a progressive disease of striated muscle deterioration. Respiratory and cardiac muscle dysfunction are particularly clinically relevant because they result in the leading causes of death in DMD patients. Despite the clinical and physiological significance of these systems, little has been done to understand the cardiorespiratory interaction in DMD. We show here that prior to the onset of global cardiac dysfunction, dystrophin-deficient mdx mice have increased cardiac fibrosis with the right ventricle being particularly affected. Using a novel biventricular cardiac catheterization technique coupled with cardiac stress testing, we demonstrate that both the right and left ventricles have significant reductions in both systolic and diastolic function in response to dobutamine. Unstimulated cardiac function is relatively normal except for a significant reduction in the ventricular pressure transient duration compared with controls. These biventricular analyses also reveal the absence of a dobutamine-induced increase in isovolumic relaxation in the right ventricle of control hearts. Simultaneous assessment of biventricular pressure demonstrates a dobutamine-dependent enhancement of coupling between the ventricles in control mice, which is absent in mdx mice. Furthermore, studies probing the passive-extension properties of the left ventricle demonstrate that the mdx heart is significantly more compliant compared with age-matched C57BL/10 hearts, which have an age-dependent stiffening that is completely absent from dystrophic hearts. These new results indicate that right ventricular fibrosis is an early indicator of the development of dystrophic cardiomyopathy, suggesting a mechanism by which respiratory insufficiency may accelerate the development of heart failure in DMD.

  1. Defects in mitochondrial ATP synthesis in dystrophin-deficient mdx skeletal muscles may be caused by complex I insufficiency.

    Directory of Open Access Journals (Sweden)

    Emma Rybalka

    Full Text Available Duchenne Muscular Dystrophy is a chronic, progressive and ultimately fatal skeletal muscle wasting disease characterised by sarcolemmal fragility and intracellular Ca2+ dysregulation secondary to the absence of dystrophin. Mounting literature also suggests that the dysfunction of key energy systems within the muscle may contribute to pathological muscle wasting by reducing ATP availability to Ca2+ regulation and fibre regeneration. No study to date has biochemically quantified and contrasted mitochondrial ATP production capacity by dystrophic mitochondria isolated from their pathophysiological environment such to determine whether mitochondria are indeed capable of meeting this heightened cellular ATP demand, or examined the effects of an increasing extramitochondrial Ca2+ environment. Using isolated mitochondria from the diaphragm and tibialis anterior of 12 week-old dystrophin-deficient mdx and healthy control mice (C57BL10/ScSn we have demonstrated severely depressed Complex I-mediated mitochondrial ATP production rate in mdx mitochondria that occurs irrespective of the macronutrient-derivative substrate combination fed into the Kreb's cycle, and, which is partially, but significantly, ameliorated by inhibition of Complex I with rotenone and stimulation of Complex II-mediated ATP-production with succinate. There was no difference in the MAPR response of mdx mitochondria to increasing extramitochondrial Ca2+ load in comparison to controls, and 400 nM extramitochondrial Ca2+ was generally shown to be inhibitory to MAPR in both groups. Our data suggests that DMD pathology is exacerbated by a Complex I deficiency, which may contribute in part to the severe reductions in ATP production previously observed in dystrophic skeletal muscle.

  2. In silico investigation of ADAM12 effect on TGF-β receptors trafficking

    Directory of Open Access Journals (Sweden)

    LeMeur Nolwenn

    2009-09-01

    Full Text Available Abstract Background The transforming growth factor beta is known to have pleiotropic effects, including differentiation, proliferation and apoptosis. However the underlying mechanisms remain poorly understood. The regulation and effect of TGF-β signaling is complex and highly depends on specific protein context. In liver, we have recently showed that the disintegrin and metalloproteinase ADAM12 interacts with TGF-β receptors and modulates their trafficking among membranes, a crucial point in TGF-β signaling and development of fibrosis. The present study aims to better understand how ADAM12 impacts on TGF-β receptors trafficking and TGF-β signaling. Findings We extracted qualitative biological observations from experimental data and defined a family of models producing a behavior compatible with the presence of ADAM12. We computationally explored the properties of this family of models which allowed us to make novel predictions. We predict that ADAM12 increases TGF-β receptors internalization rate between the cell surface and the endosomal membrane. It also appears that ADAM12 modifies TGF-β signaling shape favoring a permanent response by removing the transient component observed under physiological conditions. Conclusion In this work, confronting differential models with qualitative biological observations, we obtained predictions giving new insights into the role of ADAM12 in TGF-β signaling and hepatic fibrosis process.

  3. Increased constitutive nitric oxide production by whole body periodic acceleration ameliorates alterations in cardiomyocytes associated with utrophin/dystrophin deficiency.

    Science.gov (United States)

    Lopez, Jose R; Kolster, Juan; Zhang, Rui; Adams, Jose

    2017-07-01

    Duchenne Muscular Dystrophy (DMD) cardiomyopathy is a progressive lethal disease caused by the lack of the dystrophin protein in the heart. The most widely used animal model of DMD is the dystrophin-deficient mdx mouse; however, these mice exhibit a mild dystrophic phenotype with heart failure only late in life. In contrast, mice deficient for both dystrophin and utrophin (mdx/utrn(-/-), or dKO) can be used to model severe DMD cardiomyopathy where pathophysiological indicators of heart failure are detectable by 8-10weeks of age. Nitric oxide (NO) is an important signaling molecule involved in vital functions of regulating rhythm, contractility, and microcirculation of the heart, and constitutive NO production affects the function of proteins involved in excitation-contraction coupling. In this study, we explored the efficacy of enhancing NO production as a therapeutic strategy for treating DMD cardiomyopathy using the dKO mouse model of DMD. Specifically, NO production was induced via whole body periodic acceleration (pGz), a novel non-pharmacologic intervention which enhances NO synthase (NOS) activity through sinusoidal motion of the body in a headward-footward direction, introducing pulsatile shear stress to the vascular endothelium and cardiomyocyte plasma membrane. Male dKO mice were randomized at 8weeks of age to receive daily pGz (480cpm, Gz±3.0m/s(2), 1h/d) for 4weeks or no treatment, and a separate age-matched group of WT animals (pGz-treated and untreated) served as non-diseased controls. At the conclusion of the protocol, cardiomyocytes from untreated dKO animals had, respectively, 4.3-fold and 3.5-fold higher diastolic resting concentration of Ca(2+) ([Ca(2+)]d) and Na(+) ([Na(+)]d) compared to WT, while pGz treatment significantly reduced these levels. For dKO cardiomyocytes, pGz treatment also improved the depressed contractile function, decreased oxidative stress, blunted the elevation in calpain activity, and mitigated the abnormal increase in [Ca

  4. ADAM12 as a marker of trisomy 18 in the first and second trimester of pregnancy.

    Science.gov (United States)

    Spencer, Kevin; Cowans, Nicholas J

    2007-09-01

    ADAM12 (a disintegrin and metalloprotease 12) is a placentally derived glycoprotein that appears to be involved in growth and differentiation. The maternal serum concentration of ADAM12 appears to be a very good marker of trisomy 21 in the early first trimester when levels are reduced, and in the second trimester around 16-18 weeks levels are elevated. One small preliminary study of first trimester pregnancies with trisomy 18 found reduced levels in the maternal serum, and we examine herein the potential of ADAM12 as a marker of trisomy 18 in both the first and second trimester of pregnancy. The concentration of ADAM12 was determined by a time-resolved immunofluorometric assay in 132 first and 12 second trimester cases of trisomy 18, and 389 first and 341 second trimester gestational age-matched control pregnancies. Medians of normal pregnancies were established by polynomial regression and used to determine the population distribution parameters for the trisomy 18 and control groups. Correlation with previously established pregnancy-associated plasma protein-A (PAPP-A) and free beta-human chorionic gonadotropin (beta-hCG) multiples of the median (MoMs) and nuchal translucency thickness (NT) MoM were determined and used to model the performance of first trimester screening with ADAM12 in combination with other first trimester markers. The maternal serum concentration of ADAM12 in the first trimester was significantly reduced with a median MoM of 0.829 (p trisomy 18 cases, and the median MoM increased from 0.51 at 10 weeks to 1.28 at 13 weeks and 2.09 across the 14-18 week window. ADAM12 was correlated with PAPP-A (r = 0.1918) in the first trimester of cases with trisomy 18 but less so with NT (r = 0.1594) and free beta-hCG (r = 0.0938). Modeled detection rates incorporating ADAM12, free beta-hCG, and NT were 92% at 1% false positive rate (88% at 0.5%) A combination of all four markers had a detection rate of 96.5% at a false positive rate of 1% (95% at 0.5%). ADAM

  5. Dystrophin-Deficient Cardiomyopathy.

    Science.gov (United States)

    Kamdar, Forum; Garry, Daniel J

    2016-05-31

    Dystrophinopathies are a group of distinct neuromuscular diseases that result from mutations in the structural cytoskeletal Dystrophin gene. Dystrophinopathies include Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), X-linked dilated cardiomyopathy, as well as DMD and BMD female carriers. The primary presenting symptom in most dystrophinopathies is skeletal muscle weakness. However, cardiac muscle is also a subtype of striated muscle and is similarly affected in many of the muscular dystrophies. Cardiomyopathies associated with dystrophinopathies are an increasingly recognized manifestation of these neuromuscular disorders and contribute significantly to their morbidity and mortality. Recent studies suggest that these patient populations would benefit from cardiovascular therapies, annual cardiovascular imaging studies, and close follow-up with cardiovascular specialists. Moreover, patients with DMD and BMD who develop end-stage heart failure may benefit from the use of advanced therapies. This review focuses on the pathophysiology, cardiac involvement, and treatment of cardiomyopathy in the dystrophic patient. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. [Second trimester screening for trisomy 21 using ADAM12-S as a maternal serum marker].

    Science.gov (United States)

    Jiang, Tao; Lv, Ling; Yang, Bing; Sun, Yi-jun; Zhang, Xiao-juan; Sun, Yun; Xu, Qian-jun; Xu, Zheng-feng

    2012-06-01

    To investigate the value of a disintegrin and metalloproteinase 12 secreting form (ADAM12-S) as a maternal serum marker in second trimester screening for trisomy 21 (Down syndrome, DS), and to develop an appropriate prenatal DS screening protocol. Serum samples were collected from 53 pregnant women carrying a trisomy 21 fetus and 621 pregnant women with matched gestational age and weight carrying a healthy fetus. ADAM12-S concentrations were determined with a time-resolved fluorescence immunoassay (TRFIA). Curve fitting by weighted regression and other statistical methods were conducted, and the model was optimized for prenatal trisomy 21 screening program in second trimester. ADAM12-S alone or in combination with other two- or three-combination test was selected as a serum marker for prenatal second-trimester screening of trisomy 21 by calculation of detection rate (DR) and false positive rate (FPR). By comparison, the median multiple of the median (MoM) value of ADAM12-S in DS pregnancy group was higher than that of the control group (PHCG) has increased to 52.80% from 39.62% of the conventional two-combination test (AFP and free β-HCG). For women with a risk between 1/300 and 1/1000 by two-combination test for DS, the DR has increased from 39.62% to 47.12%, but FPR only increased by 0.8% after adding ADAM12-S as a maternal serum marker. Considering the increased DR of pregnancies with a risk between 1/300 and 1/1000 in second trimester, ADAM12-S may provide a feasible maternal serum maker when combined with AFP and free β-HCG. The cost-effectiveness ratio is reasonable.

  7. A substrate-optimized electrophoretic mobility shift assay for ADAM12

    DEFF Research Database (Denmark)

    Kotzsch, Alexander; Skovgaard, Tine; Buus, Uwe

    2014-01-01

    ADAM12 belongs to the A disintegrin and metalloprotease (ADAM) family of secreted sheddases activating extracellular growth factors such as epidermal growth factor receptor (EGFR) ligands and tumor necrosis factor-alpha (TNF-α). ADAM proteases, most notably ADAM17 (TNF-α-converting enzyme), have...

  8. Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion

    DEFF Research Database (Denmark)

    Iba, K; Albrechtsen, R; Gilpin, B J;

    1999-01-01

    The ADAMs (A disintegrin and metalloprotease) comprise a family of membrane-anchored cell surface proteins with a putative role in cell-cell and/or cell-matrix interactions. By immunostaining, ADAM 12 (meltrin alpha) was up-regulated in several human carcinomas and could be detected along the tum...

  9. ADAM12: a potential target for the treatment of chronic wounds

    DEFF Research Database (Denmark)

    Harsha, Asheesh; Stojadinovic, Olivera; Brem, Harold

    2008-01-01

    increase in the membranous and intracellular signal for ADAM12 in the epidermis of chronic wounds compared to healthy skin. These findings, coupled with our previous observations that lack of keratinocyte migration contributes to the pathogenesis of chronic ulcers, prompted us to evaluate how the absence...

  10. Aberrant location of inhibitory synaptic marker proteins in the hippocampus of dystrophin-deficient mice: implications for cognitive impairment in duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Elżbieta Krasowska

    Full Text Available Duchenne muscular dystrophy (DMD is a neuromuscular disease that arises from mutations in the dystrophin-encoding gene. Apart from muscle pathology, cognitive impairment, primarily of developmental origin, is also a significant component of the disorder. Convergent lines of evidence point to an important role for dystrophin in regulating the molecular machinery of central synapses. The clustering of neurotransmitter receptors at inhibitory synapses, thus impacting on synaptic transmission, is of particular significance. However, less is known about the role of dystrophin in influencing the precise expression patterns of proteins located within the pre- and postsynaptic elements of inhibitory synapses. To this end, we exploited molecular markers of inhibitory synapses, interneurons and dystrophin-deficient mouse models to explore the role of dystrophin in determining the stereotypical patterning of inhibitory connectivity within the cellular networks of the hippocampus CA1 region. In tissue from wild-type (WT mice, immunoreactivity of neuroligin2 (NL2, an adhesion molecule expressed exclusively in postsynaptic elements of inhibitory synapses, and the vesicular GABA transporter (VGAT, a marker of GABAergic presynaptic elements, were predictably enriched in strata pyramidale and lacunosum moleculare. In acute contrast, NL2 and VGAT immunoreactivity was relatively evenly distributed across all CA1 layers in dystrophin-deficient mice. Similar changes were evident with the cannabinoid receptor 1, vesicular glutamate transporter 3, parvalbumin, somatostatin and the GABAA receptor alpha1 subunit. The data show that in the absence of dystrophin, there is a rearrangement of the molecular machinery, which underlies the precise spatio-temporal pattern of GABAergic synaptic transmission within the CA1 sub-field of the hippocampus.

  11. ADAM12 is a four-leafed clover: the excised prodomain remains bound to the mature enzyme

    DEFF Research Database (Denmark)

    Wewer, Ulla M; Mörgelin, Matthias; Holck, Peter

    2006-01-01

    and soluble ADAM12-S. ADAM12 is synthesized as a zymogen with the prodomain keeping the metalloprotease inactive through a cysteine-switch mechanism. Maturation and activation of the protease involves the cleavage of the prodomain in the trans-Golgi or possibly at the cell surface by a furin...

  12. ADAM 12 may be used to reduce the false positive rate of first trimester combined screening for Down syndrome

    DEFF Research Database (Denmark)

    Christiansen, Michael; Pihl, Kasper; Hedley, Paula L.

    2010-01-01

    BACKGROUND: ADAM12 has been shown to be an efficient maternal serum marker for Down syndrome (DS) in the first trimester; but recent studies, using a second generation assay, have not confirmed these findings. We examined the efficiency of a second generation assay for ADAM12. MATERIALS AND METHODS...

  13. The level of ADAM12-S in maternal serum is an early first-trimester marker of fetal trisomy 18

    DEFF Research Database (Denmark)

    Laigaard, Jennie; Christiansen, Michael; Frohlich, Camilla

    2005-01-01

    (DS) fetus. On the basis of this finding, it was suggested that ADAM12-S might be a useful maternal serum marker of fetal chromosomal disease. OBJECTIVE: Retrospective examination of the use of ADAM12-S as a marker for fetal trisomy 18. METHOD: Serum samples were obtained from ten women during...... the first semester of their pregnancies with fetuses that had trisomy 18. An ELISA was used to determine the levels of ADAM12 in maternal serum. Results were compared to ADAM12-S levels, previously measured in the serum of 170 women carrying normal pregnancies during the first trimester. RESULTS: In all...... cases, the ADAM12-S concentration in maternal serum samples was lower in trisomy 18 pregnancies than in normal pregnancies, with a median multiple of the median (MoM) of 0.28 (p trisomy 18...

  14. ADAM12: a novel first-trimester maternal serum marker for Down syndrome

    DEFF Research Database (Denmark)

    Laigaard, Jennie; Sørensen, Tina; Fröhlich, Camilla

    2003-01-01

    /L at week 8 of pregnancy to 670 micro g/L at 16 weeks, and reached 12 000 micro g/L at term. In 18 first-trimester Down syndrome pregnancies, the concentration of ADAM12 was decreased, thus the median multiple of mean (MoM) value was 0.14 (0.01-0.76). A detection rate for foetal Down syndrome of 82...... levels decrease markedly during pregnancy. ADAM12 (A disintegrin and metalloprotease) is an IGFBP-3 and IGFBP-5 protease and is present in human pregnancy serum. The goal of this study was to determine whether ADAM12 concentration in maternal serum is a useful indicator of foetal health. METHODS: We......OBJECTIVES: The concentration of bioavailable insulin-like growth factor (IGF) I and II is important to foetal growth. It is regulated by insulin-like growth factor binding proteins (IGFBP) 1 through 6. Proteolytic cleavage of IGFBP-3 takes place in human pregnancy serum; accordingly, IGFBP-3 serum...

  15. Black bear parathyroid hormone has greater anabolic effects on trabecular bone in dystrophin-deficient mice than in wild type mice.

    Science.gov (United States)

    Gray, Sarah K; McGee-Lawrence, Meghan E; Sanders, Jennifer L; Condon, Keith W; Tsai, Chung-Jui; Donahue, Seth W

    2012-09-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease that has deleterious consequences in muscle and bone, leading to decreased mobility, progressive osteoporosis, and premature death. Patients with DMD experience a higher-than-average fracture rate, particularly in the proximal and distal femur and proximal tibia. The dystrophin-deficient mdx mouse is a model of DMD that demonstrates muscle degeneration and fibrosis and osteoporosis. Parathyroid hormone, an effective anabolic agent for post-menopausal and glucocorticoid-induced osteoporosis, has not been explored for DMD. Black bear parathyroid hormone (bbPTH) has been implicated in the maintenance of bone properties during extended periods of disuse (hibernation). We cloned bbPTH and found 9 amino acid residue differences from human PTH. Apoptosis was mitigated and cAMP was activated by bbPTH in osteoblast cultures. We administered 28nmol/kg of bbPTH 1-84 to 4-week old male mdx and wild type mice via daily (5×/week) subcutaneous injection for 6 weeks. Vehicle-treated mdx mice had 44% lower trabecular bone volume fraction than wild type mice. No changes were found in femoral cortical bone geometry or mechanical properties with bbPTH treatment in wild type mice, and only medio-lateral moment of inertia changed with bbPTH treatment in mdx femurs. However, μCT analyses of the trabecular regions of the distal femur and proximal tibia showed marked increases in bone volume fraction with bbPTH treatment, with a greater anabolic response (7-fold increase) in mdx mice than wild type mice (2-fold increase). Trabecular number increased in mdx long bone, but not wild type bone. Additionally, greater osteoblast area and decreased osteoclast area were observed with bbPTH treatment in mdx mice. The heightened response to PTH in mdx bone compared to wild type suggests a link between dystrophin deficiency, altered calcium signaling, and bone. These findings support further investigation of PTH as an anabolic

  16. Quantification of the mechanical behavior of carotid arteries from wild-type, dystrophin-deficient, and sarcoglycan-δ knockout mice

    Science.gov (United States)

    Gleason, Rudolph L.; Dye, Wendy W.; Wilson, Emily; Humphrey, Jay D.

    2008-01-01

    As patients with muscular dystrophy live longer because of improved clinical care, they will become increasingly susceptible to many of the cardiovascular diseases that affect the general population. There is, therefore, a pressing need to better understand both the biology and the mechanics of the arterial wall in these patients. In this paper, we use nonlinear constitutive relations to model, for the first time, the biaxial mechanical behavior of carotid arteries from two common mouse models of muscular dystrophy (dystrophin deficient and sarcoglycan-delta null) and wild-type controls. It is shown that a structurally motivated four-fiber family stress-strain relation describes the passive behavior of all three genotypes better than does a commonly used phenomenological exponential model, and that a Rachev-Hayashi model describes the mechanical contribution of smooth muscle contraction under basal tone. Because structurally motivated constitutive relations can be extended easily to model adaptations to altered hemodynamics, results from this study represent an important step toward the ultimate goal of understanding better the mechanobiology and pathophysiology of arteries in muscular dystrophy. PMID:18842267

  17. Evaluation of ADAM-12 as a diagnostic biomarker of ectopic pregnancy in women with a pregnancy of unknown location.

    Directory of Open Access Journals (Sweden)

    Andrew W Horne

    Full Text Available BACKGROUND: Ectopic pregnancy (EP remains the most life-threatening acute condition in modern gynaecology. It remains difficult to diagnose early and accurately. Women often present at emergency departments in early pregnancy with a 'pregnancy of unknown location' (PUL and diagnosis/exclusion of EP is challenging due to a lack of reliable biomarkers. Recent studies suggest that serum levels of a disintegrin and metalloprotease protein-12 (ADAM-12 can be used differentiate EP from viable intrauterine pregnancy (VIUP. Here we describe a prospective study evaluating the performance of ADAM-12 in differentiating EP from the full spectrum of alternative PUL outcomes in an independent patient cohort. METHODOLOGY/PRINCIPAL FINDINGS: Sera were collected from 120 patients at their first clinical presentation with a PUL and assayed for ADAM-12 by ELISA. Patients were categorized according to final pregnancy outcomes. Serum ADAM-12 concentrations were increased in women with histologically-confirmed EP (median 442 pg/mL; 25%-75% percentile 232-783 pg/mL compared to women with VIUP (256 pg/mL; 168-442 pg/mL or miscarriage (192 pg/mL; 133-476 pg/mL. Serum ADAM-12 did not differentiate histologically-confirmed EP from spontaneously resolving PUL (srPUL (416 pg/mL; 154-608 pg/mL. The diagnostic potential of ADAM-12 was only significant when 'ambiguous' PUL outcomes were excluded from the analysis (AROC = 0.6633; P = 0.03901. CONCLUSIONS/SIGNIFICANCE: When measured in isolation, ADAM-12 levels had limited value as a diagnostic biomarker for EP in our patient cohort. The development of a reliable serum biomarker-based test for EP remains an ongoing challenge.

  18. A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping.

    Directory of Open Access Journals (Sweden)

    Gemma L Walmsley

    Full Text Available BACKGROUND: Duchenne muscular dystrophy (DMD, which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deletions in the dystrophin gene that disrupt the reading frame resulting in unstable truncated products. For these patients, restoration of the reading frame via antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach. The major DMD deletion "hot spot" is found between exons 45 and 53, and skipping exon 51 in particular is predicted to ameliorate the dystrophic phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used animal model of DMD, although its mild phenotype limits its suitability in clinical trials. The Golden Retriever muscular dystrophy (GRMD model has a severe phenotype, but due to its large size, is expensive to use. Both these models have mutations in regions of the dystrophin gene distant from the commonly mutated DMD "hot spot". METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the severe phenotype, histopathological findings, and molecular analysis of Cavalier King Charles Spaniels with dystrophin-deficient muscular dystrophy (CKCS-MD. The dogs harbour a missense mutation in the 5' donor splice site of exon 50 that results in deletion of exon 50 in mRNA transcripts and a predicted premature truncation of the translated protein. Antisense oligonucleotide-mediated skipping of exon 51 in cultured myoblasts from an affected dog restored the reading frame and protein expression. CONCLUSIONS/SIGNIFICANCE: Given the small size of the breed, the amiable temperament and the nature of the mutation, we propose that CKCS-MD is a valuable new model for clinical trials of antisense oligonucleotide-induced exon skipping and other therapeutic approaches for DMD.

  19. Low-Level Laser Therapy (LLLT) in Dystrophin-Deficient Muscle Cells: Effects on Regeneration Capacity, Inflammation Response and Oxidative Stress.

    Science.gov (United States)

    Macedo, Aline Barbosa; Moraes, Luis Henrique Rapucci; Mizobuti, Daniela Sayuri; Fogaça, Aline Reis; Moraes, Fernanda Dos Santos Rapucci; Hermes, Tulio de Almeida; Pertille, Adriana; Minatel, Elaine

    2015-01-01

    The present study evaluated low-level laser therapy (LLLT) effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells), mdx (untreated mdx primary muscle cells), mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h), and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h). The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies.

  20. Low-Level Laser Therapy (LLLT in Dystrophin-Deficient Muscle Cells: Effects on Regeneration Capacity, Inflammation Response and Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Aline Barbosa Macedo

    Full Text Available The present study evaluated low-level laser therapy (LLLT effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD. Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells, mdx (untreated mdx primary muscle cells, mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h, and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h. The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies.

  1. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Guttridge Denis C

    2011-05-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain, targeted at blunting Nuclear Factor κB (NF-κB signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice. Methods To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice. Results At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice. Conclusions We conclude

  2. ADAM12 localizes with c-Src to actin-rich structures at the cell periphery and regulates Src kinase activity

    DEFF Research Database (Denmark)

    Stautz, Dorte; Sanjay, Archana; Hansen, Matilde Thye;

    2010-01-01

    to enhance Src kinase activity in response to external signals, such as integrin engagement. Thus, we suggest that activated c-Src binds, phosphorylates, and redistributes ADAM12-L to specific sites at the cell periphery, which may in turn promote signalling mechanisms regulating cellular processes...... partners and signalling proteins. We demonstrate here a c-Src-dependent redistribution of ADAM12-L from perinuclear areas to actin-rich Src-positive structures at the cell periphery, and identified two separate c-Src binding sites in the cytoplasmic tail of ADAM12-L that interact with the SH3 domain of c......-Src with different binding affinities. The association between ADAM12-L and c-Src is transient, but greatly stabilized when the c-Src kinase activity is disrupted. In agreement with this observation, kinase-active forms of c-Src induce ADAM12-L tyrosine phosphorylation. Interestingly, ADAM12-L was also found...

  3. The disintegrin and metalloproteinase ADAM12 contributes to TGF-beta signaling through interaction with the type II receptor

    DEFF Research Database (Denmark)

    Atfi, Azeddine; Dumont, Emmanuelle; Colland, Frédéric;

    2007-01-01

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological processes through two types of Ser/Thr transmembrane receptors: the TGF-beta type I receptor and the TGF-beta type II receptor (TbetaRII). Upon ligand binding, TGF-beta type I receptor activated by TbetaRII propagates...... signals to Smad proteins, which mediate the activation of TGF-beta target genes. In this study, we identify ADAM12 (a disintegrin and metalloproteinase 12) as a component of the TGF-beta signaling pathway that acts through association with TbetaRII. We found that ADAM12 functions by a mechanism...... independent of its protease activity to facilitate the activation of TGF-beta signaling, including the phosphorylation of Smad2, association of Smad2 with Smad4, and transcriptional activation. Furthermore, ADAM12 induces the accumulation of TbetaRII in early endosomal vesicles and stabilizes the Tbeta...

  4. Maternal serum ADAM12s as a potential marker of trisomy 21 prior to 10 weeks of gestation.

    Science.gov (United States)

    Spencer, Kevin; Vereecken, Annie; Cowans, Nicholas J

    2008-03-01

    ADAM12s (a disintegrin and metalloprotease) is a placenta-derived glycoprotein that is involved in growth and differentiation and has been shown to be a potential first-trimester and second-trimester marker of trisomy 21 and other aneuploides. Maternal ADAM12s concentrations show a considerable temporal variation with gestational age and in the initial study levels were found to be significantly reduced in the early first trimester. Here we study the levels prior to 10 weeks of gestation to establish further the effectiveness or otherwise of ADAM12s as an early screening marker. Samples collected as part of routine first-trimester screening were retrieved from storage. In total, ten samples from singleton pregnancies with trisomy 21 were identified and were collected between the 8th and 9th weeks of gestation-of these 80% had been identified by combined first-trimester screening. A series of 62 gestational age-matched samples from singleton pregnancies collected during the same period formed the control group. ADAM12s was measured by a new DELFIA assay incorporating two monoclonals (6E6 and 8F8). Results were expressed as multiples of the median (MoM). The median MoM ADAM12s at a median gestation of 9.3 weeks was 0.61 which was significantly lower than in the controls (p = 0.011) when compared by the Mann-Whitney test. The corresponding median pregnancy associated plasma protein (PAPP-A) was 0.30 and free beta-human chorionic gonadotropin (beta-hCG) 2.02. Combining the data from this study and from the only other published study with data prior to 10 weeks suggests that ADAM12s may have the potential as an early screening marker for trisomy 21, but may not be as reduced as first thought. Copyright (c) 2008 John Wiley & Sons, Ltd.

  5. Selective inhibition of ADAM12 catalytic activity through engineering of tissue inhibitor of metalloproteinase 2 (TIMP-2)

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Jacobsen, Jonas; Lee, Meng-Huee

    2010-01-01

    activity may be of great value therapeutically and as an investigative tool to elucidate its mechanisms of action. We have previously reported the inhibitory profile of TIMPs (tissue inhibitor of metalloproteinases) against ADAM12, demonstrating in addition to TIMP-3, a unique ADAM-inhibitory activity....../TACE (tumour necrosis factor alpha-converting enzyme). Kinetic analysis using a fluorescent peptide substrate demonstrated that the molecular interactions of N-TIMPs (N-terminal domains of TIMPs) with ADAM12 and TACE are for the most part comparable, yet revealed strikingly unique features of TIMP...

  6. First trimester screening for trisomy 21 in gestational week 8-10 by ADAM12-S as a maternal serum marker

    Directory of Open Access Journals (Sweden)

    Guitton Marie

    2010-10-01

    Full Text Available Abstract Background A disintegrin and metalloprotease 12 (ADAM12-S has previously been reported to be significantly reduced in maternal serum from women with fetal aneuploidy early in the first trimester and to significantly improve the quality of risk assessment for fetal trisomy 21 in prenatal screening. The aim of this study was to determine whether ADAM12-S is a useful serum marker for fetal trisomy 21 using the mixture model. Method In this case control study ADAM12-S was measured by KRYPTOR ADAM12-S immunoassay in maternal serum from gestational weeks 8 to 11 in 46 samples of fetal trisomy 21 and in 645 controls. Comparison of sensitivity and specificity of first trimester screening for fetal trisomy 21 with or without ADAM12-S included in the risk assessment using the mixture model. Results The concentration of ADAM12-S increased from week 8 to 11 and was negatively correlated with maternal weight. Log MoM ADAM12-S was positively correlated with log MoM PAPP-A (r = 0.39, P Conclusion The data show moderately decreased levels of ADAM12-S in cases of fetal aneuploidy in gestational weeks 8-11. However, including ADAM12-S in the routine risk does not improve the performance of first trimester screening for fetal trisomy 21.

  7. ADAM12 redistributes and activates MMP-14, resulting in gelatin degradation, reduced apoptosis and increased tumor growth

    DEFF Research Database (Denmark)

    Albrechtsen, Reidar; Hansen, Dorte Stautz; Vikeså, Jonas;

    2013-01-01

    Matrix metalloproteinases (MMPs), in particular MMP-2, MMP-9 and MMP-14, play a key role in various aspects of cancer pathology. Likewise, ADAMs (a disintegrin and metalloproteinases), including ADAM12, are upregulated in malignant tumors and contribute to the pathology of cancers. Here, we show...

  8. ADAM12 is expressed in the tumour vasculature and mediates ectodomain shedding of several membrane-anchored endothelial proteins

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Klitgaard, Marie; Noer, Julie B

    2013-01-01

    ADAM (a disintegrin and metalloproteinase) 12 is a metalloprotease implicated in cancer progression. ADAM12 can activate membrane-anchored proteins, such as sonic hedgehog, Delta-like 1 and certain epidermal growth factor receptor ligands, through a process called ectodomain shedding. We screened...

  9. The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to beta1 integrin-dependent cell spreading

    DEFF Research Database (Denmark)

    Iba, K; Albrechtsen, R; Gilpin, B;

    2000-01-01

    The ADAMs (a disintegrin and metalloprotease) family of proteins is involved in a variety of cellular interactions, including cell adhesion and ecto- domain shedding. Here we show that ADAM 12 binds to cell surface syndecans. Three forms of recombinant ADAM 12 were used in these experiments: the ...

  10. First trimester screening for trisomy 21 in gestational week 8-10 by ADAM12-S as a maternal serum marker.

    Science.gov (United States)

    Tørring, Niels; Ball, Susan; Wright, Dave; Sarkissian, Gaïané; Guitton, Marie; Darbouret, Bruno

    2010-10-29

    A disintegrin and metalloprotease 12 (ADAM12-S) has previously been reported to be significantly reduced in maternal serum from women with fetal aneuploidy early in the first trimester and to significantly improve the quality of risk assessment for fetal trisomy 21 in prenatal screening. The aim of this study was to determine whether ADAM12-S is a useful serum marker for fetal trisomy 21 using the mixture model. In this case control study ADAM12-S was measured by KRYPTOR ADAM12-S immunoassay in maternal serum from gestational weeks 8 to 11 in 46 samples of fetal trisomy 21 and in 645 controls. Comparison of sensitivity and specificity of first trimester screening for fetal trisomy 21 with or without ADAM12-S included in the risk assessment using the mixture model. The concentration of ADAM12-S increased from week 8 to 11 and was negatively correlated with maternal weight. Log MoM ADAM12-S was positively correlated with log MoM PAPP-A (r = 0.39, P hCG (r = 0.21, P trisomy 21 in gestational week 8 was 0.66 increasing to approx. 0.9 MoM in week 9 and 10. The use of ADAM12-S along with biochemical markers from the combined test (PAPP-A, free beta hCG) with or without nuchal translucency measurement did not affect the detection rate or false positive rate of fetal aneuploidy as compared to routine screening using PAPP-A and free β-hCG with or without nuchal translucency. The data show moderately decreased levels of ADAM12-S in cases of fetal aneuploidy in gestational weeks 8-11. However, including ADAM12-S in the routine risk does not improve the performance of first trimester screening for fetal trisomy 21.

  11. Mid-trimester maternal ADAM12 levels differ according to fetal gender in pregnancies complicated by preeclampsia.

    Science.gov (United States)

    Myers, Jenny E; Thomas, Grégoire; Tuytten, Robin; Van Herrewege, Yven; Djiokep, Raoul O; Roberts, Claire T; Kenny, Louise C; Simpson, Nigel A B; North, Robyn A; Baker, Philip N

    2015-02-01

    An overrepresentation of adverse pregnancy outcomes has been observed in pregnancies associated with a male fetus. We investigated the association between fetal gender and candidate biomarkers for preeclampsia. Proteins were quantified in samples taken at 20 weeks from women recruited to the SCreening fOr Pregnancy Endpoints (SCOPE) study (preeclampsia n = 150; no preeclampsia n = 450). In contrast to placental growth factor, soluble endoglin, and insulin-like growth factor acid labile subunit, levels of metallopeptidase domain 12 (ADAM12) at 20 weeks were dependent on fetal gender in pregnancies complicated by preeclampsia, for male (n = 73) fetuses the multiples of the median (MoM; interquartile range [IQR] 1.1-1.5) was 1.3, whereas for female fetuses (n = 75) MoM was 1.1 (1.0-1.3); P preeclampsia using ADAM12 levels was improved for pregnancies associated with a male fetus (area under receiver-operator curve [AUC] 0.73 [95% confidence interval [CI] 0.67-0.80]) than that of a female fetus (AUC 0.62 [0.55-0.70]); P = .03. The data presented here fit a contemporary hypothesis that there is a difference between the genders in response to an adverse maternal environment and suggest that an alteration in ADAM12 may reflect an altered placental response in pregnancies subsequently complicated by preeclampsia. © The Author(s) 2014.

  12. A comparative study of N-glycolylneuraminic acid (Neu5Gc and cytotoxic T cell (CT carbohydrate expression in normal and dystrophin-deficient dog and human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Paul T Martin

    Full Text Available The expression of N-glycolylneuraminic acid (Neu5Gc and the cytotoxic T cell (CT carbohydrate can impact the severity of muscular dystrophy arising from the loss of dystrophin in mdx mice. Here, we describe the expression of these two glycans in skeletal muscles of dogs and humans with or without dystrophin-deficiency. Neu5Gc expression was highly reduced (>95% in muscle from normal golden retriever crosses (GR, n = 3 and from golden retriever with muscular dystrophy (GRMD, n = 5 dogs at multiple ages (3, 6 and 13 months when compared to mouse muscle, however, overall sialic acid expression in GR and GRMD muscles remained high at all ages. Neu5Gc was expressed on only a minority of GRMD satellite cells, CD8⁺ T lymphocytes and macrophages. Human muscle from normal (no evident disease, n = 3, Becker (BMD, n = 3 and Duchenne (DMD, n = 3 muscular dystrophy individuals had absent to very low Neu5Gc staining, but some punctate intracellular muscle staining was present in BMD and DMD muscles. The CT carbohydrate was localized to the neuromuscular junction in GR muscle, while GRMD muscles had increased expression on a subset of myofibers and macrophages. In humans, the CT carbohydrate was ectopically expressed on the sarcolemmal membrane of some BMD muscles, but not normal human or DMD muscles. These data are consistent with the notion that altered Neu5Gc and CT carbohydrate expression may modify disease severity resulting from dystrophin deficiency in dogs and humans.

  13. A comparative study of N-glycolylneuraminic acid (Neu5Gc) and cytotoxic T cell (CT) carbohydrate expression in normal and dystrophin-deficient dog and human skeletal muscle.

    Science.gov (United States)

    Martin, Paul T; Golden, Bethannie; Okerblom, Jonathan; Camboni, Marybeth; Chandrasekharan, Kumaran; Xu, Rui; Varki, Ajit; Flanigan, Kevin M; Kornegay, Joe N

    2014-01-01

    The expression of N-glycolylneuraminic acid (Neu5Gc) and the cytotoxic T cell (CT) carbohydrate can impact the severity of muscular dystrophy arising from the loss of dystrophin in mdx mice. Here, we describe the expression of these two glycans in skeletal muscles of dogs and humans with or without dystrophin-deficiency. Neu5Gc expression was highly reduced (>95%) in muscle from normal golden retriever crosses (GR, n = 3) and from golden retriever with muscular dystrophy (GRMD, n = 5) dogs at multiple ages (3, 6 and 13 months) when compared to mouse muscle, however, overall sialic acid expression in GR and GRMD muscles remained high at all ages. Neu5Gc was expressed on only a minority of GRMD satellite cells, CD8⁺ T lymphocytes and macrophages. Human muscle from normal (no evident disease, n = 3), Becker (BMD, n = 3) and Duchenne (DMD, n = 3) muscular dystrophy individuals had absent to very low Neu5Gc staining, but some punctate intracellular muscle staining was present in BMD and DMD muscles. The CT carbohydrate was localized to the neuromuscular junction in GR muscle, while GRMD muscles had increased expression on a subset of myofibers and macrophages. In humans, the CT carbohydrate was ectopically expressed on the sarcolemmal membrane of some BMD muscles, but not normal human or DMD muscles. These data are consistent with the notion that altered Neu5Gc and CT carbohydrate expression may modify disease severity resulting from dystrophin deficiency in dogs and humans.

  14. Involvement of the serine/threonine p70S6 kinase in TGF-beta1-induced ADAM12 expression in cultured human hepatic stellate cells

    DEFF Research Database (Denmark)

    Le Pabic, Hélène; L'Helgoualc'h, Annie; Coutant, Alexandre;

    2005-01-01

    In chronic liver injury, quiescent hepatic stellate cells change into proliferative myofibroblast-like cells, which are a main source of fibrosis. We have recently reported that these cells synthesize ADAM12, a disintegrin and metalloprotease whose expression is up-regulated by TGF-beta1 in liver...... cancers. Here, we studied the role of the serine/threonine p70S6 kinase (p70S6K) in regulating TGF-beta1-induced ADAM12 expression....

  15. CT-GalNAc transferase overexpression in adult mice is associated with extrasynaptic utrophin in skeletal muscle fibres.

    Science.gov (United States)

    Durko, Margaret; Allen, Carol; Nalbantoglu, Josephine; Karpati, George

    2010-09-01

    Duchenne muscular dystrophy is a genetic muscle disease characterized by the absence of sub-sarcolemmal dystrophin that results in muscle fibre necrosis, progressive muscle wasting and is fatal. Numerous experimental studies with dystrophin-deficient mdx mice, an animal model for the disease, have demonstrated that extrasynaptic upregulation of utrophin, an analogue of dystrophin, can prevent muscle fibre deterioration and reduce or negate the dystrophic phenotype. A different approach for ectopic expression of utrophin relies on augmentation of CT-GalNAc transferase in muscle fibre. We investigated whether CT-GalNAc transferase overexpression in adult mice influence appearance of utrophin in the extrasynaptic sarcolemma. After electrotransfer of plasmid DNA carrying an expression cassette of CT-GalNAc transferase into tibialis anterior muscle of wild type and dystrophic mice, muscle sections were examined by immunofluorescence. CT-GalNAc transgene expression augmented sarcolemmal carbohydrate glycosylation and was accompanied by extrasynaptic utrophin. A 6-week time course study showed that the highest efficiency of utrophin overexpression in a plasmid harboured muscle fibres was 32.2% in CD-1 and 52% in mdx mice, 2 and 4 weeks after CT-GalNAc gene transfer, respectively. The study provides evidence that postnatal CT-GalNAc transferase overexpression stimulates utrophin upregulation that is inherently beneficial for muscle structure and strength restoration. Thus CT-GalNAc may provide an important therapeutic molecule for treatment of dystrophin deficiency in Duchenne muscular dystrophy.

  16. Two Single-Nucleotide Polymorphisms in ADAM12 Gene Are Associated with Early and Late Radiographic Knee Osteoarthritis in Estonian Population.

    Science.gov (United States)

    Kerna, Irina; Kisand, Kalle; Tamm, Ann E; Kumm, Jaanika; Tamm, Agu O

    2013-01-01

    Objectives. To investigate associations of selected single-nucleotide polymorphisms (SNPs) in ADAM12 gene with radiographic knee osteoarthritis (rKOA) in Estonian population. Methods. The rs3740199, rs1871054, rs1278279, and rs1044122 SNPs in ADAM12 gene were genotyped in 438 subjects (303 women) from population-based cohort, aged 32 to 57 (mean 45.4). The rKOA features were evaluated in the tibiofemoral joint (TFJ) and patellofemoral joint. Results. The early rKOA was found in 51.4% of investigated subjects (72% women) and 12.3% of participants (63% women) had advanced stage of diseases. The A allele of synonymous SNP rs1044122 was associated with early rKOA in TFJ, predominantly with the presence of osteophytes in females (OR 1.57; 95% CI 1.08-2.29, P = 0.018). The C allele of intron polymorphism rs1871054 carried risk for advanced rKOA, mostly to osteophyte formation in TFJ in males (OR 3.03; 95% CI 1.11-7.53, P = 0.018). Also the CCAA haplotype of ADAM12 was associated with osteophytosis, again mostly in TFJ in males (P = 0.014). For rs3740199 and rs1278279, no statistically significant associations were observed. Conclusion.  ADAM12 gene variants are related to rKOA risk during the early and late stages of diseases. The genetic risk seems to be predominantly associated with the appearance of osteophytes-a marker of bone remodelling and neochondrogenesis.

  17. Comparison of the diagnostic values of circulating steroid hormones, VEGF-A, PIGF, and ADAM12 in women with ectopic pregnancy

    Directory of Open Access Journals (Sweden)

    Zou Shien

    2013-02-01

    Full Text Available Abstract Background Several peripheral proteins that might be useful for detecting the presence of ectopic pregnancy (EP have been evaluated, but none have been proven entirely useful in the clinic. We investigated the presence and the possible changes in circulating molecules that distinguish between normal intrauterine pregnancy (IUP and tubal ectopic pregnancy. Methods Non-pregnant women during the menstrual cycle, women with IUP, and women with tubal EP after informed consent. Serum levels of 17β-estradiol (E2, progesterone (P4, testosterone (T, beta-human chorionic gonadotropin (β-hCG, vascular endothelial growth factor-A (VEGF-A, placental growth factor (PIGF, and a distintegrin and metalloprotease protein 12 (ADAM12 were analyzed. Receiver operating characteristic analysis was used to assess the diagnostic discrimination of EP and gestational age-matched IUP. Results E2, P4, PIGF, and ADAM12 levels increased and β-hCG decreased throughout IUP. E2 and VEGF-A levels were significantly different between women with tubal EP and IUP. However, using a serum β-hCG cut-off of less than 1000 mIU/mL, P4 was significantly lower in women with tubal EP compared to IUP. Although E2 was inversely correlated with VEGF-A in women in the early stages of IUP, E2 was not correlated with VEGF-A in women with EP prior to tubal surgery. There were no significant differences in either PIGF or ADAM12 alone between women with tubal EP or IUP. Although no significant correlations were seen between E2 and PIGF or P4 and ADAM12 in women in the early stages of IUP, E2 was positively correlated with PIGF and P4 was positively correlated with ADAM12 in women with EP prior to tubal surgery. Our studies defined associations but not causality. Conclusions Individual measurements of serum E2 or VEGF-A levels are strongly related to early pregnancy outcomes for women with IUP and EP, and pregnancy-associated E2 and VEGF-A levels provide diagnostic accuracy for the

  18. The Elsevier Trophoblast Research Award Lecture: Importance of metzincin proteases in trophoblast biology and placental development: a focus on ADAM12.

    Science.gov (United States)

    Aghababaei, Mahroo; Beristain, Alexander G

    2015-04-01

    Placental development is a highly regulated process requiring signals from both fetal and maternal uterine compartments. Within this complex system, trophoblasts, placental cells of epithelial lineage, form the maternal-fetal interface controlling nutrient, gas and waste exchange. The commitment of progenitor villous cytotrophoblasts to differentiate into diverse trophoblast subsets is a fundamental process in placental development. Differentiation of trophoblasts into invasive stromal- and vascular-remodeling subtypes is essential for uterine arterial remodeling and placental function. Inadequate placentation, characterized by defects in trophoblast differentiation, may underlie the earliest cellular events driving pregnancy disorders such as preeclampsia and fetal growth restriction. Molecularly, invasive trophoblasts acquire characteristics defined by profound alterations in cell-cell and cell-matrix adhesion, cytoskeletal reorganization and production of proteolytic factors. To date, most studies have investigated the importance of the matrix metalloproteinases (MMPs) and their ability to efficiently remodel components of the extracellular matrix (ECM). However, it is now becoming clear that besides MMPs, other related proteases regulate trophoblast invasion via mechanisms other than ECM turnover. In this review, we will summarize the current knowledge on the regulation of trophoblast invasion by members of the metzincin family of metalloproteinases. Specifically, we will discuss the emerging roles that A Disintegrin and Metalloproteinases (ADAMs) play in placental development, with a particular focus on the ADAM subtype, ADAM12.

  19. Brown Seaweed Fucoidan Inhibits Cancer Progression by Dual Regulation of mir-29c/ADAM12 and miR-17-5p/PTEN Axes in Human Breast Cancer Cells

    Science.gov (United States)

    Wu, Szu-Yuan; Yan, Ming-De; Wu, Alexander T.H.; Yuan, Kevin Sheng-Po; Liu, Shing Hwa

    2016-01-01

    In this study, we observed that brown seaweed fucoidan inhibited human breast cancer progression by upregulating microRNA (miR)-29c and downregulating miR-17-5p, thereby suppressing their target genes, a disintegrin and metalloproteinase 12 (ADAM12) and phosphatase and tensin homolog (PTEN), respectively. Moreover, fucoidan reduced the luciferase activity of 3'-untranslated region reporter; treatment of cells with the miR-29c mimic or miR-17-5p inhibitor also produced similar results. These effects of fucoidan inhibited the epithelial-mesenchymal transition in breast cancer cells, as evidenced by an increase in E-cadherin and a drop in N-cadherin, and inhibited breast cancer cell survival, as evidenced by the activation of the phosphoinositide 3-kinase/Akt pathway. Taken together, these findings demonstrate that fucoidan inhibits breast cancer progression by regulating the miR-29c/ADAM12 and miR-17-5p/PTEN axes. Fucoidan is a potential chemopreventive/chemotherapeutic agent for breast cancer. PMID:27994679

  20. Dystrophin deficiency-induced changes in porcine skeletal muscle

    Science.gov (United States)

    A novel porcine stress syndrome was detected in the U.S. Meat Animal Research Center’s swine research population when two sibling barrows died of apparent stress symptoms (open mouth breathing, vocalization, and refusal to move or stand) after transport at 12 weeks of age. At eight weeks of age, the...

  1. Gait analysis using accelerometry in dystrophin-deficient dogs.

    Science.gov (United States)

    Barthélémy, Inès; Barrey, Eric; Thibaud, Jean-Laurent; Uriarte, Ane; Voit, Thomas; Blot, Stéphane; Hogrel, Jean-Yves

    2009-11-01

    Dogs affected with Golden Retriever Muscular Dystrophy (GRMD) exhibit striking clinical similarities with patients suffering from Duchenne muscular dystrophy (DMD), particularly gait impairments. The purpose of this study was to describe the use and reliability of accelerometry in gait assessment of dogs with muscular dystrophy. Eight healthy and 11 GRMD adult dogs underwent three gait assessment sessions, using accelerometry. Three-axial recordings of accelerations were performed, and gait variables calculated. Total power, force and regularity of accelerations, stride length and speed, normalized by height at withers, stride frequency, and cranio-caudal power were significantly decreased, whereas medio-lateral power was significantly increased in GRMD dogs. Moreover, these variables were repeatable within and between sessions. Accelerometry provides reliable variables which highlight specific gait patterns of GRMD dogs, describing objectively and quantitatively their slow, short-stepped, and swaying gait. As it is easy to set-up, quick to perform and inexpensive, accelerometry represents a useful tool, to assess locomotion during pre-clinical trials.

  2. Functional Substitution by TAT-Utrophin in Dystrophin-Deficient Mice

    OpenAIRE

    2009-01-01

    Editors' Summary Background Muscular dystrophies are genetic (inherited) diseases in which the body's muscles gradually weaken and degenerate. The commonest and most severe muscular dystrophy—Duchenne muscular dystrophy—affects 1 in 3,500 boys (girls can be carriers of the disease but rarely have any symptoms). At birth, these boys seem normal but the symptoms of their disease begin to appear in early childhood. Affected children may initially have difficulty walking or find it to hard to sit...

  3. Dystrophin deficiency leads to disturbance of LAMP1-vesicle-associated protein secretion

    DEFF Research Database (Denmark)

    Duguez, S.; Duddy, W.; Johnston, H.

    2013-01-01

    Duchenne muscular dystrophy results from loss of the protein dystrophin, which links the intracellular cytoskeletal network with the extracellular matrix, but deficiency in this function does not fully explain the onset or progression of the disease. While some intracellular events involved...... of new potential therapeutic targets....

  4. Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice.

    Science.gov (United States)

    Hernández-Ochoa, Erick O; Pratt, Stephen J P; Garcia-Pelagio, Karla P; Schneider, Martin F; Lovering, Richard M

    2015-04-01

    Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild-type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high-speed confocal microscopy and the voltage-sensitive indicator di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS) to assess the action potential (AP) properties. We also examined AP-induced Ca(2+) transients using high-speed confocal microscopy with rhod-2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP-induced Ca(2+) transients, with a further Ca(2+) transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca(2+) signals suggest changes in excitability and remodeling of the global Ca(2+) signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  5. Effect of Dystrophin Deficiency on Selected Intrinsic Laryngeal Muscles of the "mdx" Mouse

    Science.gov (United States)

    Fry, Lisa T.; Stemple, Joseph C.; Andreatta, Richard D.; Harrison, Anne L.; Andrade, Francisco H.

    2010-01-01

    Background: Intrinsic laryngeal muscles (ILM) show biological differences from the broader class of skeletal muscles. Yet most research regarding ILM specialization has been completed on a few muscles, most notably the thyroarytenoid and posterior cricoarytenoid. Little information exists regarding the biology of other ILM. Early evidence suggests…

  6. Dietary phosphorus overload aggravates the phenotype of the dystrophin-deficient mdx mouse.

    Science.gov (United States)

    Wada, Eiji; Yoshida, Mizuko; Kojima, Yoriko; Nonaka, Ikuya; Ohashi, Kazuya; Nagata, Yosuke; Shiozuka, Masataka; Date, Munehiro; Higashi, Tetsuo; Nishino, Ichizo; Matsuda, Ryoichi

    2014-11-01

    Duchenne muscular dystrophy is a lethal X-linked disease with no effective treatment. Progressive muscle degeneration, increased macrophage infiltration, and ectopic calcification are characteristic features of the mdx mouse, a murine model of Duchenne muscular dystrophy. Because dietary phosphorus/phosphate consumption is increasing and adverse effects of phosphate overloading have been reported in several disease conditions, we examined the effects of dietary phosphorus intake in mdx mice phenotypes. On weaning, control and mdx mice were fed diets containing 0.7, 1.0, or 2.0 g phosphorus per 100 g until they were 90 days old. Dystrophic phenotypes were evaluated in cryosections of quadriceps and tibialis anterior muscles, and maximal forces and voluntary activity were measured. Ectopic calcification was analyzed by electron microscopy to determine the cells initially responsible for calcium deposition in skeletal muscle. Dietary phosphorus overload dramatically exacerbated the dystrophic phenotypes of mdx mice by increasing inflammation associated with infiltration of M1 macrophages. In contrast, minimal muscle necrosis and inflammation were observed in exercised mdx mice fed a low-phosphorus diet, suggesting potential beneficial therapeutic effects of lowering dietary phosphorus intake on disease progression. To our knowledge, this is the first report showing that dietary phosphorus intake directly affects muscle pathological characteristics of mdx mice. Dietary phosphorus overloading promoted dystrophic disease progression in mdx mice, whereas restricting dietary phosphorus intake improved muscle pathological characteristics and function.

  7. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Thibaut Larcher

    Full Text Available A few animal models of Duchenne muscular dystrophy (DMD are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  8. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Larcher, Thibaut; Lafoux, Aude; Tesson, Laurent; Remy, Séverine; Thepenier, Virginie; François, Virginie; Le Guiner, Caroline; Goubin, Helicia; Dutilleul, Maéva; Guigand, Lydie; Toumaniantz, Gilles; De Cian, Anne; Boix, Charlotte; Renaud, Jean-Baptiste; Cherel, Yan; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio; Huchet, Corinne

    2014-01-01

    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  9. Evaluation of the therapeutic potential of carbonic anhydrase inhibitors in two animal models of dystrophin deficient muscular dystrophy.

    Science.gov (United States)

    Giacomotto, Jean; Pertl, Cordula; Borrel, Caroline; Walter, Maggie C; Bulst, Stefanie; Johnsen, Bob; Baillie, David L; Lochmüller, Hanns; Thirion, Christian; Ségalat, Laurent

    2009-11-01

    Duchenne Muscular Dystrophy is an inherited muscle degeneration disease for which there is still no efficient treatment. However, compounds active on the disease may already exist among approved drugs but are difficult to identify in the absence of cellular models. We used the Caenorhabditis elegans animal model to screen a collection of 1000 already approved compounds. Two of the most active hits obtained were methazolamide and dichlorphenamide, carbonic anhydrase inhibitors widely used in human therapy. In C. elegans, these drugs were shown to interact with CAH-4, a putative carbonic anhydrase. The therapeutic efficacy of these compounds was further validated in long-term experiments on mdx mice, the mouse model of Duchenne Muscular Dystrophy. Mice were treated for 120 days with food containing methazolamide or dichlorphenamide at two doses each. Musculus tibialis anterior and diaphragm muscles were histologically analyzed and isometric muscle force was measured in M. extensor digitorum longus. Both substances increased the tetanic muscle force in the treated M. extensor digitorum longus muscle group, dichlorphenamide increased the force significantly by 30%, but both drugs failed to increase resistance of muscle fibres to eccentric contractions. Histological analysis revealed a reduction of centrally nucleated fibers in M. tibialis anterior and diaphragm in the treated groups. These studies further demonstrated that a C. elegans-based screen coupled with a mouse model validation strategy can lead to the identification of potential pharmacological agents for rare diseases.

  10. Effective exon skipping and dystrophin restoration by 2'-o-methoxyethyl antisense oligonucleotide in dystrophin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Lu Yang

    Full Text Available Antisense oligonucleotide (AO-mediated exon-skipping therapy is one of the most promising therapeutic strategies for Duchenne Muscular Dystrophy (DMD and several AO chemistries have been rigorously investigated. In this report, we focused on the effect of 2'-O-methoxyethyl oligonucleotides (MOE on exon skipping in cultured mdx myoblasts and mice. Efficient dose-dependent skipping of targeted exon 23 was achieved in myoblasts with MOE AOs of different lengths and backbone chemistries. Furthermore, we established that 25-mer MOE phosphorothioate (PS AOs provided the greatest exon-skipping efficacy. When compared with 2'O methyl phosphorothioate (2'OmePS AOs, 25-mer MOE (PS AOs also showed higher exon-skipping activity in vitro and in mdx mice after intramuscular injections. Characterization of uptake in vitro corroborated with exon-skipping results, suggesting that increased uptake of 25-mer MOE PS AOs might partly contribute to the difference in exon-skipping activity observed in vitro and in mdx mice. Our findings demonstrate the substantial potential for MOE PS AOs as an alternative option for the treatment of DMD.

  11. Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors

    Science.gov (United States)

    Cai, B.; Spencer, M. J.; Nakamura, G.; Tseng-Ong, L.; Tidball, J. G.

    2000-01-01

    Previous investigations have shown that cytotoxic T lymphocytes (CTLs) contribute to muscle pathology in the dystrophin-null mutant mouse (mdx) model of Duchenne muscular dystrophy through perforin-dependent and perforin-independent mechanisms. We have assessed whether the CTL-mediated pathology includes the promotion of eosinophilia in dystrophic muscle, and thereby provides a secondary mechanism through which CTLs contribute to muscular dystrophy. Quantitative immunohistochemistry confirmed that eosinophilia is a component of the mdx dystrophy. In addition, electron microscopic observations show that eosinophils traverse the basement membrane of mdx muscle fibers and display sites of close apposition of eosinophil and muscle membranes. The close membrane apposition is characterized by impingement of eosinophilic rods of major basic protein into the muscle cell membrane. Transfer of mdx splenocytes and mdx muscle extracts to irradiated C57 mice by intraperitoneal injection resulted in muscle eosinophilia in the recipient mice. Double-mutant mice lacking dystrophin and perforin showed less eosinophilia than was displayed by mdx mice that expressed perforin. Finally, administration of prednisolone, which has been shown previously to reduce the concentration of CTLs in dystrophic muscle, produced a significant reduction in eosinophilia. These findings indicate that eosinophilia is a component of the mdx pathology that is promoted by perforin-dependent cytotoxicity of effector T cells. However, some eosinophilia of mdx muscle is independent of perforin-mediated processes.

  12. Early manifestation of alteration in cardiac function in dystrophin deficient mdx mouse using 3D CMR tagging

    Directory of Open Access Journals (Sweden)

    Zhong Jia

    2009-10-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is caused by the absence of the cytoskeletal protein, dystrophin. In DMD patients, dilated cardiomyopathy leading to heart failure may occur during adolescence. However, early cardiac dysfunction is frequently undetected due to physical inactivity and generalized debilitation. The objective of this study is to determine the time course of cardiac functional alterations in mdx mouse, a mouse model of DMD, by evaluating regional ventricular function with CMR tagging. Methods In vivo myocardial function was evaluated by 3D CMR tagging in mdx mice at early (2 months, middle (7 months and late (10 months stages of disease development. Global cardiac function, regional myocardial wall strains, and ventricular torsion were quantified. Myocardial lesions were assessed with Masson's trichrome staining. Results Global contractile indexes were similar between mdx and C57BL/6 mice in each age group. Histology analysis showed that young mdx mice were free of myocardial lesions. Interstitial fibrosis was present in 7 month mdx mice, with further development into patches or transmural lesions at 10 months of age. As a result, 10 month mdx mice showed significantly reduced regional strain and torsion. However, young mdx mice showed an unexpected increase in regional strain and torsion, while 7 month mdx mice displayed similar regional ventricular function as the controls. Conclusion Despite normal global ventricular function, CMR tagging detected a biphasic change in myocardial wall strain and torsion, with an initial increase at young age followed by progressive decrease at older ages. These results suggest that CMR tagging can provide more sensitive measures of functional alterations than global functional indexes in dystrophin-related cardiomyopathies.

  13. NUCKS overexpression in breast cancer

    Directory of Open Access Journals (Sweden)

    Kittas Christos

    2009-08-01

    Full Text Available Abstract Background NUCKS (Nuclear, Casein Kinase and Cyclin-dependent Kinase Substrate is a nuclear, DNA-binding and highly phosphorylated protein. A number of reports show that NUCKS is highly expressed on the level of mRNA in several human cancers, including breast cancer. In this work, NUCKS expression on both RNA and protein levels was studied in breast tissue biopsies consisted of invasive carcinomas, intraductal proliferative lesions, benign epithelial proliferations and fibroadenomas, as well as in primary cultures derived from the above biopsies. Specifically, in order to evaluate the level of NUCKS protein in correlation with the histopathological features of breast disease, immunohistochemistry was employed on paraffin sections of breast biopsies of the above types. In addition, NUCKS expression was studied by means of Reverse Transcription PCR (RT-PCR, real-time PCR (qRT-PCR and Western immunoblot analyses in the primary cell cultures developed from the same biopsies. Results The immunohistochemical Results showed intense NUCKS staining mostly in grade I and II breast carcinomas compared to normal tissues. Furthermore, NUCKS was moderate expressed in benign epithelial proliferations, such as adenosis and sclerosing adenosis, and highly expressed in intraductal lesions, specifically in ductal carcinomas in situ (DCIS. It is worth noting that all the fibroadenoma tissues examined were negative for NUCKS staining. RT-PCR and qRT-PCR showed an increase of NUCKS expression in cells derived from primary cultures of proliferative lesions and cancerous tissues compared to the ones derived from normal breast tissues and fibroadenomas. This increase was also confirmed by Western immunoblot analysis. Although NUCKS is a cell cycle related protein, its expression does not correlate with Ki67 expression, neither in tissue sections nor in primary cell cultures. Conclusion The results show overexpression of the NUCKS protein in a number of non

  14. Association between paternal schizophrenia and low birthweight:ADAM12 may matter

    Institute of Scientific and Technical Information of China (English)

    Hans-Gert Bernstein; Susan Müller; Johann Steiner; Nadine Farkas; Bernhard Bogerts; Uwe Lendeckel

    2010-01-01

    @@ Dear Editor, I am Dr Hans-Gert Bernstein from the Department of Psychiatry, University of Magdeburg, Germany.Although it is now a well-established fact that mothers with schizophrenia are at higher risk for obstetric complications (preterm births, preeclampsia, low birthweight [LBW] and small-for-gestational-age babies), a putative paternal impact was largely ignored until recently.

  15. Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC

    Directory of Open Access Journals (Sweden)

    Lin Zhong-Zhe

    2010-08-01

    Full Text Available Abstract Background To investigate the significance of Aurora B expression in hepatocellular carcinoma (HCC. Methods The Aurora B and Aurora A mRNA level was measured in 160 HCCs and the paired nontumorous liver tissues by reverse transcription-polymerase chain reaction. Mutations of the p53 and β-catenin genes were analyzed in 134 and 150 tumors, respectively, by direct sequencing of exon 2 to exon 11 of p53 and exon 3 of β-catenin. Anticancer effects of AZD1152-HQPA, an Aurora B kinase selective inhibitor, were examined in Huh-7 and Hep3B cell lines. Results Aurora B was overexpressed in 98 (61% of 160 HCCs and in all 7 HCC cell lines examined. The overexpression of Aurora B was associated with Aurora A overexpression (P = 0.0003 and p53 mutation (P = 0.002 and was inversely associated with β-catenin mutation (P = 0.002. Aurora B overexpression correlated with worse clinicopathologic characteristics. Multivariate analysis confirmed that Aurora B overexpression was an independent poor prognostic factor, despite its interaction with Aurora A overexpression and mutations of p53 and β-catenin. In Huh-7 and Hep3B cells, AZD1152-HQPA induced proliferation blockade, histone H3 (Ser10 dephosphorylation, cell cycle disturbance, and apoptosis. Conclusion Aurora B overexpression is an independent molecular marker predicting tumor invasiveness and poor prognosis of HCC. Aurora B kinase selective inhibitors are potential therapeutic agents for HCC treatment.

  16. Hand1 overexpression inhibits medulloblastoma metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Asuthkar, Swapna; Guda, Maheedhara R. [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Martin, Sarah E. [Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Antony, Reuben; Fernandez, Karen [Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Lin, Julian [Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Tsung, Andrew J. [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Illinois Neurological Institute, Peoria, IL 61656 (United States); Velpula, Kiran K., E-mail: velpula@uic.edu [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States)

    2016-08-19

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. - Highlights: • Hand1 expression is downregulated in Medulloblastoma. • Hand1 over expression reduce

  17. Tissue Doppler imaging for detection of radial and longitudinal myocardial dysfunction in a family of cats affected by dystrophin-deficient hypertrophic muscular dystrophy.

    Science.gov (United States)

    Chetboul, Valérie; Blot, Stephane; Sampedrano, Carolina Carlos; Thibaud, Jean-Laurent; Granger, Nicolas; Tissier, Renaud; Bruneval, Patrick; Gaschen, Frederic; Gouni, Vassiliki; Nicolle, Audrey P; Pouchelon, Jean-Louis

    2006-01-01

    Diagnosis of feline hypertrophic cardiomyopathy currently is based on the presence of myocardial hypertrophy detected using conventional echocardiography. The accuracy of tissue Doppler imaging (TDI) for earlier detection of the disease has never been described. The objective of this sudy was to quantify left ventricular free wall (LVFW) velocities in cats with hypertrophic muscular dystrophy (HFMD) during preclinical cardiomyopathy using TDI. The study animals included 22 healthy controls and 7 cats belonging to a family of cats with HFMD (2 affected adult males, 2 heterozygous adult females, one 2.5-month-old affected male kitten, and 2 phenotypically normal female kittens from the same litter). All cats were examined via conventional echocardiography and 2-dimensional color TDI. No LVFW hypertrophy was detected in the 2 carriers or in the affected kitten when using conventional echocardiography and histologic examination, respectively. The LVFW also was normal for 1 affected male and at the upper limit of normal for the 2nd male. Conversely, LVFW dysfunction was detected in all affected and carrier cats with HFMD when using TDI. TDI consistently detects LVFW dysfunction in cats with HFMD despite the absence of myocardial hypertrophy. Therefore, TDI appears more sensitive than conventional echocardiography in detecting regional myocardial abnormalities.

  18. A new technique for the quantitative assessment of 8-oxoguanine in nuclear DNA as a marker of oxidative stress. Application to dystrophin-deficient DMD skeletal muscles.

    Science.gov (United States)

    Nakae, Yoshiko; Stoward, Peter J; Bespalov, Ivan A; Melamede, Robert J; Wallace, Susan S

    2005-09-01

    This is the first report on the development of an immunohistochemical technique, combined with quantitative image analysis, for the assessment of oxidative stress quantitatively in nuclear DNA in situ, and its application to measure DNA damage in Duchenne muscular dystrophic (DMD) muscles. Three sequential staining procedures for cell nuclei, a cell marker, and a product of oxidative DNA damage, 8-oxoguanine (8-oxoG), were performed. First, the nuclei in muscle sections were stained with Neutral Red followed by the capture of their images with an image analysis system used for absorbance measurements. Second, the same sections were then immunostained for laminin in basement membranes as the cell marker. Next, the sections were treated with 2 N HCl to remove the bound Neutral Red and to denature tissue DNA. Third, the sections were immunostained for 8-oxoG in DNA, using diaminobenzidine (DAB) to reveal the antibody complex. This was followed by capture of the images of the immunostained sections as previously. The absorbances at 451.2 nm of bound Neutral Red and DAB polymer oxides, the final product of 8-oxoG immunostaining, were measured in the same myonuclei in the sections. Analysis of these absorbances permitted indices of the 8-oxoG content, independent of the nuclear densities, to be determined in nuclear DNA in single myofibres and myosatellite cells surrounded by basement membranes. We found that the mean index for the myonuclei in biceps brachii muscles of 2- to 7-year-old patients was 14% higher than that in age-matched normal controls. This finding of the increased oxidative stress in the myonuclei in young DMD muscles agrees with the previous reports of increased oxidative stress in the cytoplasm in the DMD myofibres and myosatellite cells. The present technique for the quantitative assessment of oxidative stress in nuclear DNA in situ is applicable not only in biomedical research but also in the development of effective drugs for degenerative diseases related to oxidative stress.

  19. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice

    Directory of Open Access Journals (Sweden)

    Ute Ulrike Botzenhart

    2016-01-01

    Full Text Available The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice.

  20. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice)

    Science.gov (United States)

    Todorov, Teodor

    2016-01-01

    The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice. PMID:27689088

  1. Frequent Nek1 overexpression in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Cai, Yu, E-mail: aihaozuqiu22@163.com [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Pin [Med-X Research Institute, Shanghai Jiao Tong University, Shanghai (China); Zhao, Weiguo [Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2016-08-05

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  2. Overexpressed TP73 induces apoptosis in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Perlaky Laszlo

    2007-07-01

    Full Text Available Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. Methods We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Results Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and

  3. Nucleophosmin is overexpressed in thyroid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Pianta, Annalisa; Puppin, Cinzia [Dipartimento di Scienze e Tecnologie Biomediche, Universita di Udine, Udine (Italy); Franzoni, Alessandra; Fabbro, Dora [Azienda Ospedaliero-Universitaria ' S. Maria della Misericordia' Udine, Udine (Italy); Di Loreto, Carla [Dipartimento di Ricerche Mediche e Morfologiche, Universita di Udine, Udine (Italy); Bulotta, Stefania [Department of Pharmacobiological Sciences, Universita di Catanzaro ' Magna Graecia' , Catanzaro (Italy); Deganuto, Marta; Paron, Igor; Tell, Gianluca [Dipartimento di Scienze e Tecnologie Biomediche, Universita di Udine, Udine (Italy); Puxeddu, Efisio [Department of Internal Medicine, Universita di Perugia, Perugia (Italy); Filetti, Sebastiano [Department of Clinical Sciences, Universita di Roma ' La Sapienza' , Roma (Italy); Russo, Diego [Department of Pharmacobiological Sciences, Universita di Catanzaro ' Magna Graecia' , Catanzaro (Italy); Damante, Giuseppe, E-mail: giuseppe.damante@uniud.it [Dipartimento di Scienze e Tecnologie Biomediche, Universita di Udine, Udine (Italy); Azienda Ospedaliero-Universitaria ' S. Maria della Misericordia' Udine, Udine (Italy)

    2010-07-02

    Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells. In this work, we analyzed both NPM mRNA and protein levels in a series of human thyroid tumor tissues and cell lines. By using immunohistochemistry, NPM overexpression was detected in papillary, follicular, undifferentiated thyroid cancer, and also in follicular benign adenomas, indicating it as an early event during thyroid tumorigenesis. In contrast, various levels of NPM mRNA levels as detected by quantitative RT-PCR were observed in tumor tissues, suggesting a dissociation between protein and transcript expression. The same behavior was observed in the normal thyroid FRTL5 cell lines. In these cells, a positive correlation between NPM protein levels, but not mRNA, and proliferation state was detected. By using thyroid tumor cell lines, we demonstrated that such a post-mRNA regulation may depend on NPM binding to p-Akt, whose levels were found to be increased in the tumor cells, in parallel with reduction of PTEN. In conclusion, our present data demonstrate for the first time that nucleophosmin is overexpressed in thyroid tumors, as an early event of thyroid tumorigenesis. It seems as a result of a dysregulation occurring at protein and not transcriptional level related to an increase of p-Akt levels of transformed thyrocytes.

  4. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    Science.gov (United States)

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer

  5. Overexpression of Colligin 2 in Glioma Vasculature is Associated with Overexpression of Heat Shock Factor 2.

    Science.gov (United States)

    Mustafa, Dana A M; Sieuwerts, Anieta M; Zheng, Ping Pin; Kros, Johan M

    2010-10-20

    In previous studies we found expression of the protein colligin 2 (heat shock protein 47 (HSP47), SERPINH1) in glioma neovasculature while not in normal brain tissue. Generally, the regulation of heat shock gene expression in eukaryotes is mediated by heat shock factors (HSF). In mammals, three heat shock transcription factors, HSF-1, -2, and -4, have been isolated. Here we investigated the relation between the expression of colligin 2 and these heat shock factors at the mRNA level using real-time reverse transcriptase PCR (qRT-PCR) in different grades of astrocytic tumorigenesis, viz., low-grade glioma and glioblastoma. Endometrium samples, representing physiological angiogenesis, were included as controls. Since colligin 2 is a chaperon for collagens, the gene expression of collagen I (COL1A1) was also investigated. The blood vessel density of the samples was monitored by expression of the endothelial marker CD31 (PECAM1). Because NG2-immunopositive pericytic cells are involved in glioma neovascularization, the expression of NG2 (CSPG4) was also measured.We demonstrate overexpression of HSF2 in both stages of glial tumorigenesis (reaching significance only in low-grade glioma) and also minor elevated levels of HSF1 as compared to normal brain. There were no differences in expression of HSF4 between low-grade glioma and normal brain while HSF4 was downregulated in glioblastoma. In the endometrium samples, none of the HSFs were upregulated. In the low-grade gliomas SERPINH appeared to be slightly overexpressed with a parallel 4-fold upregulation of COL1A1, while in glioblastoma there was over 5-fold overexpression of SERPINH1 and more than 150-fold overexpression of COL1A1. In both the lowgrade gliomas and the glioblastomas overexpression of CSPG4 was found and overexpression of PECAM1 was only found in the latter. Our data suggest that the upregulated expression of colligin 2 in glioma is accompanied by upregulation of COL1A1, CSPG4, HSF2 and to a lesser extent

  6. Vldlr overexpression causes hyperactivity in rats.

    Science.gov (United States)

    Iwata, Keiko; Izumo, Nobuo; Matsuzaki, Hideo; Manabe, Takayuki; Ishibashi, Yukiko; Ichitani, Yukio; Yamada, Kazuo; Thanseem, Ismail; Anitha, Ayyappan; Vasu, Mahesh Mundalil; Shimmura, Chie; Wakuda, Tomoyasu; Kameno, Yosuke; Takahashi, Taro; Iwata, Yasuhide; Suzuki, Katsuaki; Nakamura, Kazuhiko; Mori, Norio

    2012-10-30

    Reelin regulates neuronal positioning in cortical brain structures and neuronal migration via binding to the lipoprotein receptors Vldlr and Lrp8. Reeler mutant mice display severe brain morphological defects and behavioral abnormalities. Several reports have implicated reelin signaling in the etiology of neurodevelopmental and psychiatric disorders, including autism, schizophrenia, bipolar disorder, and depression. Moreover, it has been reported that VLDLR mRNA levels are increased in the post-mortem brain of autistic patients. We generated transgenic (Tg) rats overexpressing Vldlr, and examined their histological and behavioral features. Spontaneous locomotor activity was significantly increased in Tg rats, without detectable changes in brain histology. Additionally, Tg rats tended to show performance deficits in the radial maze task, suggesting that their spatial working memory was slightly impaired. Thus, Vldlr levels may be involved in determining locomotor activity and memory function. Unlike reeler mice, patients with neurodevelopmental or psychiatric disorders do not show striking neuroanatomical aberrations. Therefore, it is notable, from a clinical point of view, that we observed behavioral phenotypes in Vldlr-Tg rats in the absence of neuroanatomical abnormalities.

  7. Vldlr overexpression causes hyperactivity in rats

    Directory of Open Access Journals (Sweden)

    Iwata Keiko

    2012-10-01

    Full Text Available Abstract Background Reelin regulates neuronal positioning in cortical brain structures and neuronal migration via binding to the lipoprotein receptors Vldlr and Lrp8. Reeler mutant mice display severe brain morphological defects and behavioral abnormalities. Several reports have implicated reelin signaling in the etiology of neurodevelopmental and psychiatric disorders, including autism, schizophrenia, bipolar disorder, and depression. Moreover, it has been reported that VLDLR mRNA levels are increased in the post-mortem brain of autistic patients. Methods We generated transgenic (Tg rats overexpressing Vldlr, and examined their histological and behavioral features. Results Spontaneous locomotor activity was significantly increased in Tg rats, without detectable changes in brain histology. Additionally, Tg rats tended to show performance deficits in the radial maze task, suggesting that their spatial working memory was slightly impaired. Thus, Vldlr levels may be involved in determining locomotor activity and memory function. Conclusions Unlike reeler mice, patients with neurodevelopmental or psychiatric disorders do not show striking neuroanatomical aberrations. Therefore, it is notable, from a clinical point of view, that we observed behavioral phenotypes in Vldlr-Tg rats in the absence of neuroanatomical abnormalities.

  8. [Overexpression of FKS1 to improve yeast autolysis-stress].

    Science.gov (United States)

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing.

  9. Overexpression of vsr in Escherichia coli is mutagenic.

    Science.gov (United States)

    Doiron, K M; Viau, S; Koutroumanis, M; Cupples, C G

    1996-01-01

    Overexpression of vsr in Escherichia coli stimulates transition and frameshift mutations. The pattern of mutations suggests that mutagenesis is due to saturation or inactivation of dam-directed mismatch repair. PMID:8763960

  10. ADAM12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling

    DEFF Research Database (Denmark)

    Le Pabic, Hélène; Bonnier, Dominique; Wewer, Ulla M

    2003-01-01

    "A disintegrin and metalloproteinases" (ADAMs) form a family of cell-surface glycoproteins with potential protease and cell-adhesion activities. We have investigated ADAM expression in human liver cancers and their regulation by several cytokines involved in liver injury. Using degenerative RT-PC...

  11. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    Directory of Open Access Journals (Sweden)

    Rodrigo S Lacruz

    Full Text Available We have previously identified amelotin (AMTN as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL and ameloblastin (AMBN was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  12. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    Science.gov (United States)

    Lacruz, Rodrigo S; Nakayama, Yohei; Holcroft, James; Nguyen, Van; Somogyi-Ganss, Eszter; Snead, Malcolm L; White, Shane N; Paine, Michael L; Ganss, Bernhard

    2012-01-01

    We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  13. Combinatorial method for overexpression of membrane proteins in Escherichia coli.

    Science.gov (United States)

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-07-30

    Membrane proteins constitute 20-30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters.

  14. Combinatorial Method for Overexpression of Membrane Proteins in Escherichia coli*

    Science.gov (United States)

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-01-01

    Membrane proteins constitute 20–30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters. PMID:20525689

  15. RECK overexpression reduces invasive ability in ameloblastoma cells.

    Science.gov (United States)

    Liang, Qi-xiang; Liang, Yan-can; Xu, Zhi-ying; Chen, Wei-liang; Xie, Hong-liang; Zhang, Bin

    2014-09-01

    Ameloblastoma is a frequent odontogenic neoplasm characterized by local invasiveness and high risk of recurrence. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a tumor suppressor that inhibits metastasis and angiogenesis. The aim of this study was to investigate effects of RECK overexpression on invasive potential in ameloblastoma cells. Lentiviral vectors containing human RECK gene were created and subsequently stably transfected into immortalized ameloblastoma cell line hTERT(+) -AM. Functional characteristics of hTERT(+) -AM cells with stable RECK overexpression included proliferation, migration, invasion, and regulation of matrix metalloproteinases (MMP)-2, MMP-9 measured by zymography or commercially available assays. The stable and higher expression of RECK mRNA and protein (P 0.05). Overexpression of RECK gene significantly inhibited cell invasive ability of hTERT(+) -AM cells, suggesting RECK may be a new target for ameloblastoma treatment. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    Science.gov (United States)

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells.

  17. Overexpression of TFAM protects 3T3-L1 adipocytes from NYGGF4 (PID1) overexpression-induced insulin resistance and mitochondrial dysfunction.

    Science.gov (United States)

    Shi, Chun-Mei; Xu, Guang-Feng; Yang, Lei; Fu, Zi-Yi; Chen, Ling; Fu, Hai-Long; Shen, Ya-Hui; Zhu, Lu; Ji, Chen-Bo; Guo, Xi-Rong

    2013-07-01

    NYGGF4, also known as phosphotyrosine interaction domain containing 1(PID1), is a recently discovered gene which is involved in obesity-related insulin resistance (IR) and mitochondrial dysfunction. We aimed to further elucidate the effects and mechanisms underlying NYGGF4-induced IR by investigating the effect of overexpressing mitochondrial transcription factor A (TFAM), which is essential for mitochondrial DNA transcription and replication, on NYGGF4-induced IR and mitochondrial abnormalities in 3T3-L1 adipocytes. Overexpression of TFAM increased the mitochondrial copy number and ATP content in both control 3T3-L1 adipocytes and NYGGF4-overexpressing adipocytes. Reactive oxygen species (ROS) production was enhanced in NYGGF4-overexpressing adipocytes and reduced in TFAM-overexpressing adipocytes; co-overexpression of TFAM significantly attenuated ROS production in NYGGF4-overexpressing adipocytes. However, overexpression of TFAM did not affect the mitochondrial transmembrane potential (ΔΨm) in control 3T3-L1 adipocytes or NYGGF4-overexpressing adipocytes. In addition, co-overexpression of TFAM-enhanced insulin-stimulated glucose uptake by increasing Glucose transporter type 4 (GLUT4) translocation to the PM in NYGGF4-overexpressing adipocytes. Overexpression of NYGGF4 significantly inhibited tyrosine phosphorylation of Insulin receptor substrate 1 (IRS-1) and serine phosphorylation of Akt, whereas overexpression of TFAM strongly induced phosphorylation of IRS-1 and Akt in NYGGF4-overexpressing adipocytes. This study demonstrates that NYGGF4 plays a role in IR by impairing mitochondrial function, and that overexpression of TFAM can restore mitochondrial function to normal levels in NYGGF4-overexpressing adipocytes via activation of the IRS-1/PI3K/Akt signaling pathway.

  18. Matrix metalloproteinase-8 overexpression prevents proper tissue repair

    DEFF Research Database (Denmark)

    Danielsen, Patricia Louise; Holst, Anders V; Maltesen, Henrik R

    2011-01-01

    The collagenolytic matrix metalloproteinase-8 (MMP-8) is essential for normal tissue repair but is often overexpressed in wounds with disrupted healing. Our aim was to study the impact of a local excess of this neutrophil-derived proteinase on wound healing using recombinant adenovirus-driven tra......The collagenolytic matrix metalloproteinase-8 (MMP-8) is essential for normal tissue repair but is often overexpressed in wounds with disrupted healing. Our aim was to study the impact of a local excess of this neutrophil-derived proteinase on wound healing using recombinant adenovirus...

  19. Tobacco, alcohol, and p53 overexpression in early colorectal neoplasia

    Directory of Open Access Journals (Sweden)

    Mansukhani Mahesh

    2003-11-01

    Full Text Available Abstract Background The p53 tumor suppressor gene is commonly mutated in colorectal cancer. While the effect of p53 mutations on colorectal cancer prognosis has been heavily studied, less is known about how epidemiologic risk factors relate to p53 status, particularly in early colorectal neoplasia prior to clinically invasive colorectal cancer (including adenomas, carcinoma in situ (CIS, and intramucosal carcinoma. Methods We examined p53 status, as measured by protein overexpression, in 157 cases with early colorectal neoplasia selected from three New York City colonoscopy clinics. After collecting paraffin-embedded tissue blocks, immunohistochemistry was performed using an anti-p53 monoclonal mouse IgG2a [BP53-12-1] antibody. We analyzed whether p53 status was different for risk factors for colorectal neoplasia relative to a polyp-free control group (n = 508. Results p53 overexpression was found in 10.3%, 21.7%, and 34.9%, of adenomatous polyps, CIS, and intramucosal cases, respectively. Over 90% of the tumors with p53 overexpression were located in the distal colon and rectum. Heavy cigarette smoking (30+ years was associated with cases not overexpressing p53 (OR = 1.8, 95% CI = 1.1–2.9 but not with those cases overexpressing p53 (OR = 1.0, 95% CI = 0.4–2.6. Heavy beer consumption (8+ bottles per week was associated with cases overexpressing p53 (OR = 4.0, 95% CI = 1.3–12.0 but not with cases without p53 overexpression (OR = 1.6, 95% CI = 0.7–3.7. Conclusion Our findings that p53 overexpression in early colorectal neoplasia may be positively associated with alcohol intake and inversely associated with cigarette smoking are consistent with those of several studies of p53 expression and invasive cancer, and suggest that there may be relationships of smoking and alcohol with p53 early in the adenoma to carcinoma sequence.

  20. Optimization of membrane protein overexpression and purification using GFP fusions

    NARCIS (Netherlands)

    Drew, David; Lerch, Mirjam; Kunji, Edmund; Slotboom, Dirk-Jan; de Gier, Jan-Willem

    2006-01-01

    Optimizing conditions for the overexpression and purification of membrane proteins for functional and structural studies is usually a Laborious and time-consuming process. This process can be accelerated using membrane protein-GFP fusions(1-3), which allows direct monitoring and visualization of mem

  1. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma.

    Science.gov (United States)

    Gupta, S; Srivastava, M; Ahmad, N; Bostwick, D G; Mukhtar, H

    2000-01-01

    Aberrant or increased expression of cyclooxygenase (COX)-2 has been implicated in the pathogenesis of many diseases including carcinogenesis. COX-2 has been shown to be over-expressed in some human cancers. Employing semi-quantitative reverse transcription-PCR, immunoblotting, and immunohistochemistry we assessed COX-2 expression in samples of pair-matched benign and cancer tissue obtained from the same prostate cancer patient. Mean levels of COX-2 mRNA were 3.4-fold higher in prostate cancer tissue (n = 12) compared with the paired benign tissue. The immunoblot analysis demonstrated that as compared to benign tissue COX-2 protein was over-expressed in 10 of 12 samples examined. Immunohistochemical analysis also verified COX-2 over-expression in cancer than in benign tissue. To our knowledge, this is the first in vivo study showing an over-expression of COX-2 in prostate cancer. These data suggest that COX-2 inhibitors may be useful for prevention or therapy of prostate cancer in humans.

  2. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Directory of Open Access Journals (Sweden)

    Vinciane Régnier

    Full Text Available BACKGROUND: The cystathionine β-synthase (CBS gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA metabolism, a pathway important for several brain physiological processes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1 expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. CONCLUSION/SIGNIFICANCE: We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  3. Macrophages overexpressing Aire induce CD4+Foxp3+ T cells.

    Science.gov (United States)

    Sun, Jitong; Fu, Haiying; Wu, Jing; Zhu, Wufei; Li, Yi; Yang, Wei

    2013-01-01

    Aire plays an important role in central immune tolerance by regulating the transcription of thousands of genes. However, the role of Aire in the peripheral immune system is poorly understood. Regulatory T (Treg) cells are considered essential for the maintenance of peripheral tolerance, but the effect of Aire on Treg cells in the peripheral immune system is currently unknown. In this study, we investigated the effects of macrophages overexpressing Aire on CD4+Foxp3+ Treg cells by co-culturing Aire-overexpressing RAW264.7 cells or their supernatant with splenocytes. The results show that macrophages overexpressing Aire enhanced the expression of Foxp3 mRNA and induced different subsets of Treg cells in splenocytes through cell-cell contact or a co-culture supernatants. TGF-β is a key molecule in the increases of CD4+CD45RA+Foxp3hi T cell and activating Treg (aTreg) levels observed following cell‑supernatant co-culturing. Subsets of Treg cells were induced by Aire-overexpressing macrophages, and the manipulation of Treg cells by the targeting of Aire may provide a method for the treatment of inflammatory or autoimmune diseases.

  4. HPA axis dysregulation in mice overexpressing corticotropin releasing hormone.

    NARCIS (Netherlands)

    Groenink, L.; Dirks, A.; Verdouw, P.M.; Schipholt, M.; Veening, J.G.; Gugten, J. van der; Olivier, B.

    2002-01-01

    BACKGROUND: Hypersecretion of corticotropin-releasing hormone (CRH) in the brain has been implicated in stress-related human pathologies. We developed a transgenic mouse line overexpressing CRH (CRH-OE) exclusively in neural tissues to assess the effect of long-term CRH overproduction on regulation

  5. Perilipin overexpression in mice protects against diet-induced obesity

    Science.gov (United States)

    Miyoshi, Hideaki; Souza, Sandra C.; Endo, Mikiko; Sawada, Takashi; Perfield, James W.; Shimizu, Chikara; Stancheva, Zlatina; Nagai, So; Strissel, Katherine J.; Yoshioka, Narihito; Obin, Martin S.; Koike, Takao; Greenberg, Andrew S.

    2010-01-01

    Perilipin A is the most abundant phosphoprotein on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Perilipin null mice exhibit diminished adipose tissue, elevated basal lipolysis, reduced catecholamine-stimulated lipolysis, and increased insulin resistance. To understand the physiological consequences of increased perilipin expression in vivo, we generated transgenic mice that overexpressed either human or mouse perilipin using the adipocyte-specific aP2 promoter/enhancer. Phenotypes of female transgenic and wild-type mice were characterized on chow and high-fat diets (HFDs). When challenged with an HFD, transgenic mice exhibited lower body weight, fat mass, and adipocyte size than wild-type mice. Expression of oxidative genes was increased and lipogenic genes decreased in brown adipose tissue of transgenic mice. Basal and catecholamine-stimulated lipolysis was decreased and glucose tolerance significantly improved in transgenic mice fed a HFD. Perilipin overexpression in adipose tissue protects against HFD-induced adipocyte hypertrophy, obesity, and glucose intolerance. Alterations in brown adipose tissue metabolism may mediate the effects of perilipin overexpression on body fat, although the mechanisms by which perilipin overexpression alters brown adipose tissue metabolism remain to be determined. Our findings demonstrate a novel role for perilipin expression in adipose tissue metabolism and regulation of obesity and its metabolic complications. PMID:19797618

  6. Neuroglobin-overexpression reduces traumatic brain lesion size in mice

    Directory of Open Access Journals (Sweden)

    Zhao Song

    2012-06-01

    Full Text Available Abstract Background Accumulating evidence has demonstrated that over-expression of Neuroglobin (Ngb is neuroprotective against hypoxic/ischemic brain injuries. In this study we tested the neuroprotective effects of Ngb over-expression against traumatic brain injury (TBI in mice. Results Both Ngb over-expression transgenic (Ngb-Tg and wild-type (WT control mice were subjected to TBI induced by a controlled cortical impact (CCI device. TBI significantly increased Ngb expression in the brains of both WT and Ngb-Tg mice, but Ngb-Tg mice had significantly higher Ngb protein levels at the pre-injury baseline and post-TBI. Production of oxidative tissue damage biomarker 3NT in the brain was significantly reduced in Ngb-Tg mice compared to WT controls at 6 hours after TBI. The traumatic brain lesion volume was significantly reduced in Ngb Tg mice compared to WT mice at 3 weeks after TBI; however, there were no significant differences in the recovery of sensorimotor and spatial memory functional deficits between Ngb-Tg and WT control mice for up to 3 weeks after TBI. Conclusion Ngb over-expression reduced traumatic lesion volume, which might partially be achieved by decreasing oxidative stress.

  7. APRIL is overexpressed in cancer: link with tumor progression

    Directory of Open Access Journals (Sweden)

    Veyrune Jean-Luc

    2009-03-01

    Full Text Available Abstract Background BAFF and APRIL share two receptors – TACI and BCMA – and BAFF binds to a third receptor, BAFF-R. Increased expression of BAFF and APRIL is noted in hematological malignancies. BAFF and APRIL are essential for the survival of normal and malignant B lymphocytes, and altered expression of BAFF or APRIL or of their receptors (BCMA, TACI, or BAFF-R have been reported in various B-cell malignancies including B-cell non-Hodgkin's lymphoma, chronic lymphocytic leukemia, Hodgkin's lymphoma, multiple myeloma, and Waldenstrom's macroglobulinemia. Methods We compared the expression of BAFF, APRIL, TACI and BAFF-R gene expression in 40 human tumor types – brain, epithelial, lymphoid, germ cells – to that of their normal tissue counterparts using publicly available gene expression data, including the Oncomine Cancer Microarray database. Results We found significant overexpression of TACI in multiple myeloma and thyroid carcinoma and an association between TACI expression and prognosis in lymphoma. Furthermore, BAFF and APRIL are overexpressed in many cancers and we show that APRIL expression is associated with tumor progression. We also found overexpression of at least one proteoglycan with heparan sulfate chains (HS, which are coreceptors for APRIL and TACI, in tumors where APRIL is either overexpressed or is a prognostic factor. APRIL could induce survival or proliferation directly through HS proteoglycans. Conclusion Taken together, these data suggest that APRIL is a potential prognostic factor for a large array of malignancies.

  8. Constitutive overexpression of muscarinic receptors leads to vagal hyperreactivity.

    Directory of Open Access Journals (Sweden)

    Angelo Livolsi

    Full Text Available BACKGROUND: Alterations in muscarinic receptor expression and acetylcholinesterase (AchE activity have been observed in tissues from Sudden Infant Death Syndrome (SIDS. Vagal overactivity has been proposed as a possible cause of SIDS as well as of vasovagal syncopes. The aim of the present study was to seek whether muscarinic receptor overexpression may be the underlying mechanism of vagal hyperreactivity. Rabbits with marked vagal pauses following injection of phenylephrine were selected and crossed to obtain a vagal hyperreactive strain. The density of cardiac muscarinic receptors and acetylcholinesterase (AchE gene expression were assessed. Blood markers of the observed cardiac abnormalities were also sought. METHODOLOGY/PRINCIPAL FINDINGS: Cardiac muscarinic M(2 and M(3 receptors were overexpressed in hyperreactive rabbits compared to control animals (2.3-fold and 2.5-fold, respectively and the severity of the phenylephrine-induced bradycardia was correlated with their densities. A similar overexpression of M(2 receptors was observed in peripheral mononuclear white blood cells, suggesting that cardiac M(2 receptor expression can be inferred with high confidence from measurements in blood cells. Sequencing of the coding fragment of the M(2 receptor gene revealed a single nucleotide mutation in 83% of hyperreactive animals, possibly contributing for the transcript overexpression. Significant increases in AchE expression and activity were also assessed (AchE mRNA amplification ratio of 3.6 versus normal rabbits. This phenomenon might represent a compensatory consequence of muscarinic receptors overexpression. Alterations in M(2 receptor and AchE expression occurred between the 5th and the 7th week of age, a critical period also characterized by a higher mortality rate of hyperreactive rabbits (52% in H rabbits versus 13% in normal rabbits and preceeded the appearance of functional disorders. CONCLUSIONS/SIGNIFICANCE: The results suggest that

  9. DEK over-expression promotes mitotic defects and micronucleus formation.

    Science.gov (United States)

    Matrka, Marie C; Hennigan, Robert F; Kappes, Ferdinand; DeLay, Monica L; Lambert, Paul F; Aronow, Bruce J; Wells, Susanne I

    2015-01-01

    The DEK gene encodes a nuclear protein that binds chromatin and is involved in various fundamental nuclear processes including transcription, RNA splicing, DNA replication and DNA repair. Several cancer types characteristically over-express DEK at the earliest stages of transformation. In order to explore relevant mechanisms whereby DEK supports oncogenicity, we utilized cancer databases to identify gene transcripts whose expression patterns are tightly correlated with that of DEK. We identified an enrichment of genes involved in mitosis and thus investigated the regulation and possible function of DEK in cell division. Immunofluorescence analyses revealed that DEK dissociates from DNA in early prophase and re-associates with DNA during telophase in human keratinocytes. Mitotic cell populations displayed a sharp reduction in DEK protein levels compared to the corresponding interphase population, suggesting DEK may be degraded or otherwise removed from the cell prior to mitosis. Interestingly, DEK overexpression stimulated its own aberrant association with chromatin throughout mitosis. Furthermore, DEK co-localized with anaphase bridges, chromosome fragments, and micronuclei, suggesting a specific association with mitotically defective chromosomes. We found that DEK over-expression in both non-transformed and transformed cells is sufficient to stimulate micronucleus formation. These data support a model wherein normal chromosomal clearance of DEK is required for maintenance of high fidelity cell division and chromosomal integrity. Therefore, the overexpression of DEK and its incomplete removal from mitotic chromosomes promotes genomic instability through the generation of genetically abnormal daughter cells. Consequently, DEK over-expression may be involved in the initial steps of developing oncogenic mutations in cells leading to cancer initiation.

  10. Overexpression of esterase D in kidney from trisomy 13 fetuses.

    Science.gov (United States)

    Loughna, S; Bennett, P; Gau, G; Nicolaides, K; Blunt, S; Moore, G

    1993-01-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. Images Figure 1 Figure 2 Figure 3 PMID:8213811

  11. Role of overexpressed CFA/I fimbriae in bacterial swimming.

    Science.gov (United States)

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, Sangmu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 CFA/I fimbriae on bacterial swimming motility.

  12. Overexpression of esterase D in kidney from trisomy 13 fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Loughna, S.; Moore, G. (Institute of Obstetrics and Gynaecology, London (United Kingdom)); Gau, G.; Blunt, S. (Cytogenetics Lab., London (United Kingdom)); Nicolaides, K. (King' s College School of Medicine and Dentistry, London (United Kingdom))

    1993-10-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. 34 refs., 3 figs., 2 tabs.

  13. Nmdmc overexpression extends Drosophila lifespan and reduces levels of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Suyeun [Department of Preventive Medicine, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705 (Korea, Republic of); Jang, Yeogil; Paik, Donggi [Department of Physiology, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705 (Korea, Republic of); Lee, Eunil, E-mail: eunil@korea.ac.kr [Department of Preventive Medicine, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705 (Korea, Republic of); Park, Joong-Jean, E-mail: parkjj@korea.ac.kr [Department of Physiology, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705 (Korea, Republic of)

    2015-10-02

    NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase (NMDMC) is a bifunctional enzyme involved in folate-dependent metabolism and highly expressed in rapidly proliferating cells. However, Nmdmc physiological roles remain unveiled. We found that ubiquitous Nmdmc overexpression enhanced Drosophila lifespan and stress resistance. Interestingly, Nmdmc overexpression in the fat body was sufficient to increase lifespan and tolerance against oxidative stress. In addition, these conditions coincided with significant decreases in the levels of mitochondrial ROS and Hsp22 as well as with a significant increase in the copy number of mitochondrial DNA. These results suggest that Nmdmc overexpression should be beneficial for mitochondrial homeostasis and increasing lifespan. - Highlights: • Ubiquitous Nmdmc overexpression enhanced lifespan and stress tolerance. • Nmdmc overexpression in the fat body extended longevity. • Fat body-specific Nmdmc overexpression increased oxidative stress resistance. • Nmdmc overexpression decreased Hsp22 transcript levels and ROS. • Nmdmc overexpression increased mitochondrial DNA copy number.

  14. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mattanovich Diethard

    2008-07-01

    Full Text Available Abstract Background High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by overexpression of the single genes as well as a combined deregulation of up to all six riboflavin synthesis genes. Results Overexpression of the first gene of the riboflavin biosynthetic pathway (RIB1 is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant of shake flask cultures growing on glucose. Sequential deregulation of all the genes, by exchange of their native promoter with the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP increases the riboflavin accumulation significantly. Conclusion The regulation of the pathway is distributed over more than one gene. High cell density cultivations of a P. pastoris strain overexpressing all six RIB genes allow the accumulation of 175 mg/L riboflavin in the supernatant. The basis for rational engineering of riboflavin production in P. pastoris has thus been established.

  15. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) overexpression in human colorectal cancer.

    Science.gov (United States)

    Mansilla, Francisco; da Costa, Kerry-Ann; Wang, Shuli; Kruhøffer, Mogens; Lewin, Tal M; Orntoft, Torben F; Coleman, Rosalind A; Birkenkamp-Demtröder, Karin

    2009-01-01

    The alteration of the choline metabolite profile is a well-established characteristic of cancer cells. In colorectal cancer (CRC), phosphatidylcholine is the most prominent phospholipid. In the present study, we report that lysophosphatidylcholine acyltransferase 1 (LPCAT1; NM_024830.3), the enzyme that converts lysophosphatidylcholine into phosphatidylcholine, was highly overexpressed in colorectal adenocarcinomas when compared to normal mucosas. Our microarray transcription profiling study showed a significant (p mucosas. Immunohistochemical analysis of colon tumors with a polyclonal antibody to LPCAT1 confirmed the upregulation of the LPCAT1 protein. Overexpression of LPCAT1 in COS7 cells localized the protein to the endoplasmic reticulum and the mitochondria and increased LPCAT1 specific activity 38-fold. In cultured cells, overexpressed LPCAT1 enhanced the incorporation of [(14)C]palmitate into phosphatidylcholine. COS7 cells transfected with LPCAT1 showed no growth rate alteration, in contrast to the colon cancer cell line SW480, which significantly (p < 10(-5)) increased its growth rate by 17%. We conclude that LPCAT1 may contribute to total choline metabolite accumulation via phosphatidylcholine remodeling, thereby altering the CRC lipid profile, a characteristic of malignancy.

  16. Impact of Adiponectin Overexpression on Allergic Airways Responses in Mice

    Directory of Open Access Journals (Sweden)

    Norah G. Verbout

    2013-01-01

    Full Text Available Obesity is an important risk factor for asthma. Obese individuals have decreased circulating adiponectin, an adipose-derived hormone with anti-inflammatory properties. We hypothesized that transgenic overexpression of adiponectin would attenuate allergic airways inflammation and mucous hyperplasia in mice. To test this hypothesis, we used mice overexpressing adiponectin (Adipo Tg. Adipo Tg mice had marked increases in both serum adiponectin and bronchoalveolar lavage (BAL fluid adiponectin. Both acute and chronic ovalbumin (OVA sensitization and challenge protocols were used. In both protocols, OVA-induced increases in total BAL cells were attenuated in Adipo Tg versus WT mice. In the acute protocol, OVA-induced increases in several IL-13 dependent genes were attenuated in Adipo Tg versus WT mice, even though IL-13 per se was not affected. With chronic exposure, though OVA-induced increases in goblet cells numbers per millimeter of basement membrane were greater in Adipo Tg versus WT mice, mRNA abundance of mucous genes in lungs was not different. Also, adiponectin overexpression did not induce M2 polarization in alveolar macrophages. Our results indicate that adiponectin protects against allergen-induced inflammatory cell recruitment to the airspaces, but not development of goblet cell hyperplasia.

  17. PACSIN3 Overexpression Increases Adipocyte Glucose Transport through GLUT1

    Science.gov (United States)

    Roach, William; Plomann, Markus

    2007-01-01

    PACSIN family members regulate intracellular vesicle trafficking via their ability to regulate cytoskeletal rearrangement. These processes are known to be involved in trafficking of GLUT1 and GLUT4 in adipocytes. In this study PACSIN3 was observed to be the only PACSIN isoform that increases in expression during 3T3-L1 adipocyte differentiation. Overexpression of PACSIN3 in 3T3-L1 adipocytes caused an elevation of glucose uptake. Subcellular fractionation revealed that PACSIN3 overexpression elevated GLUT1 plasma membrane localization without effecting GLUT4 distribution. In agreement with this result, examination of GLUT exofacial presentation at the cell surface by photoaffinity labeling revealed significantly increased GLUT1, but not GLUT4, after overexpression of PACSIN3. These results establish a role for PACSIN3 in regulating glucose uptake in adipocytes via its preferential participation in GLUT1 trafficking. They are consistent with the proposal, which is supported by a recent study, that GLUT1, but not GLUT4, is predominantly endocytosed via the coated pit pathway in unstimulated 3T3-L1 adipocytes. PMID:17320047

  18. Dentin sialoprotein and dentin phosphoprotein overexpression during amelogenesis.

    Science.gov (United States)

    Paine, Michael L; Luo, Wen; Wang, Hong-Jun; Bringas, Pablo; Ngan, Amanda Y W; Miklus, Vetea G; Zhu, Dan-Hong; MacDougall, Mary; White, Shane N; Snead, Malcolm L

    2005-09-09

    The gene for dentin sialophosphoprotein produces a single protein that is post-translationally modified to generate two distinct extracellular proteins: dentin sialoprotein and dentin phosphoprotein. In teeth, dentin sialophosphoprotein is expressed primarily by odontoblast cells, but is also transiently expressed by presecretory ameloblasts. Because of this expression profile it appears that dentin sialophosphoprotein contributes to the early events of amelogenesis, and in particular to those events that result in the formation of the dentino-enamel junction and the adjacent "aprismatic" enamel. Using a transgenic animal approach we have extended dentin sialoprotein or dentin phosphoprotein expression throughout the developmental stages of amelogenesis. Overexpression of dentin sialoprotein results in an increased rate of enamel mineralization, however, the enamel morphology is not significantly altered. In wild-type animals, the inclusion of dentin sialoprotein in the forming aprismatic enamel may account for its increased hardness properties, when compared with bulk enamel. In contrast, the overexpression of dentin phosphoprotein creates "pitted" and "chalky" enamel of non-uniform thickness that is more prone to wear. Disruptions to the prismatic enamel structure are also a characteristic of the dentin phosphoprotein overexpressing animals. These data support the previous suggestion that dentin sialoprotein and dentin phosphoprotein have distinct functions related to tooth formation, and that the dentino-enamel junction should be viewed as a unique transition zone between enamel and the underlying dentin. These results support the notion that the dentin proteins expressed by presecretory ameloblasts contribute to the unique properties of the dentino-enamel junction.

  19. Overexpression of Lamin B Receptor Results in Impaired Skin Differentiation.

    Directory of Open Access Journals (Sweden)

    Agustín Sola Carvajal

    Full Text Available Hutchinson-Gilford progeria syndrome (HGPS is a rare segmental progeroid disorder commonly caused by a point mutation in the LMNA gene that results in the increased activation of an intra-exonic splice site and the production of a truncated lamin A protein, named progerin. In our previous work, induced murine epidermal expression of this specific HGPS LMNA mutation showed impaired keratinocyte differentiation and upregulated lamin B receptor (LBR expression in suprabasal keratinocytes. Here, we have developed a novel transgenic animal model with induced overexpression of LBR in the interfollicular epidermis. LBR overexpression resulted in epidermal hypoplasia, along with the downregulation and mislocalization of keratin 10, suggesting impaired keratinocyte differentiation. Increased LBR expression in basal and suprabasal cells did not coincide with increased proliferation. Similar to our previous report of HGPS mice, analyses of γH2AX, a marker of DNA double-strand breaks, revealed an increased number of keratinocytes with multiple foci in LBR-overexpressing mice compared with wild-type mice. In addition, suprabasal LBR-positive cells showed densely condensed and peripherally localized chromatin. Our results show a moderate skin differentiation phenotype, which indicates that upregulation of LBR is not the sole contributor to the HGPS phenotype.

  20. Overexpression of Mafb in podocytes protects against diabetic nephropathy.

    Science.gov (United States)

    Morito, Naoki; Yoh, Keigyou; Ojima, Masami; Okamura, Midori; Nakamura, Megumi; Hamada, Michito; Shimohata, Homare; Moriguchi, Takashi; Yamagata, Kunihiro; Takahashi, Satoru

    2014-11-01

    We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target.

  1. Differences in radiosensitivity between three HER2 overexpressing cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Ann-Charlott; Tolmachev, Vladimir; Stenerloew, Bo [Uppsala University, Unit of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Goestring, Lovisa [Affibody AB, Bromma (Sweden); Palm, Stig [Sahlgrenska Academy at Goeteborg University, Department of Radiation Physics, Goeteborg (Sweden); Carlsson, Joergen [Uppsala University, Unit of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Rudbeck Laboratory, Biomedical Radiation Sciences, Uppsala (Sweden)

    2008-06-15

    HER2 is a potential target for radionuclide therapy, especially when HER2 overexpressing breast cancer cells are resistant to Herceptin {sup registered} treatment. Therefore, it is of interest to analyse whether HER2 overexpressing tumour cells have different inherent radiosensitivity. The radiosensitivity of three often used HER2 overexpressing cell lines, SKOV-3, SKBR-3 and BT-474, was analysed. The cells were exposed to conventional photon irradiation, low linear energy transfer (LET), to characterise their inherent radiosensitivity. The analysis was made with clonogenic survival and growth extrapolation assays. The cells were also exposed to alpha particles, high LET, from {sup 211}At decays using the HER2-binding affibody molecule {sup 211}At-(Z{sub HER2:4}){sub 2} as targeting agent. Assays for studies of internalisation of the affibody molecule were applied. SKOV-3 cells were most radioresistant, SKBR-3 cells were intermediate and BT-474 cells were most sensitive as measured with the clonogenic and growth extrapolation assays after photon irradiation. The HER2 dependent cellular uptake of {sup 211}At was qualitatively similar for all three cell lines. However, the sensitivity to the alpha particles from {sup 211}At differed; SKOV-3 was most resistant, SKBR-3 intermediate and BT-474 most sensitive. These differences were unexpected because it is assumed that all types of cells should have similar sensitivity to high-LET radiation. The sensitivity to alpha particle exposure correlated with internalisation of the affibody molecule and with size of the cell nucleus. There can be differences in radiosensitivity, which, if they also exist between patient breast cancer cells, are important to consider for both conventional radiotherapy and for HER2-targeted radionuclide therapy. (orig.)

  2. Identification of developmental regulatory genes in Aspergillus nidulans by overexpression.

    Science.gov (United States)

    Marhoul, J F; Adams, T H

    1995-02-01

    Overexpression of several Aspergillus nidulans developmental regulatory genes has been shown to cause growth inhibition and development at inappropriate times. We set out to identify previously unknown developmental regulators by constructing a nutritionally inducible A. nidulans expression library containing small, random genomic DNA fragments inserted next to the alcA promoter [alcA(p)] in an A. nidulans transformation vector. Among 20,000 transformants containing random alcA(p) genomic DNA fusion constructs, we identified 66 distinct mutant strains in which alcA(p) induction resulted in growth inhibition as well as causing other detectable phenotypic changes. These growth inhibited mutants were divided into 52 FIG (Forced expression Inhibition of Growth) and 14 FAB (Forced expression Activation of brlA) mutants based on whether or not alcA(p) induction resulted in accumulation of mRNA for the developmental regulatory gene brlA. In four FAB mutants, alcA(p) induction not only activated brlA expression but also caused hyphae to differentiate into reduced conidiophores that produced viable spores from the tips as is observed after alcA(p)::brlA induction. Sequence analyses of the DNA fragments under alcA(p) control in three of these four sporulating strains showed that in two cases developmental activation resulted from overexpression of previously uncharacterized genes, whereas in the third strain, the alcA(p) was fused to brlA. The potential uses for this strategy in identifying genes whose overexpression results in specific phenotypic changes like developmental induction are discussed.

  3. Targeting GPR110 in HER2-Overexpressing Breast Cancers

    Science.gov (United States)

    2015-10-01

    models. To understand whether GPR110 overexpression is a common phenomenon in anti-HER2 therapy resistance, we first interrogated the RNAseq data...selected resistant models, prioritized based on the RNAseq data. We have found that GPR110 mRNA levels were significantly higher in LR, TR, and...HER2’resistant’deriva9ves’vs.’parental’cells’ by’ RNAseq ." A" total" of" 9" an+,HER2" resistant"models" that" included" lapa+nib" (L),resistant" (LR

  4. BRCA1-IRIS overexpression promotes formation of aggressive breast cancers.

    Directory of Open Access Journals (Sweden)

    Yoshiko Shimizu

    Full Text Available INTRODUCTION: Women with HER2(+ or triple negative/basal-like (TN/BL breast cancers succumb to their cancer rapidly due, in part to acquired Herceptin resistance and lack of TN/BL-targeted therapies. BRCA1-IRIS is a recently discovered, 1399 residue, BRCA1 locus alternative product, which while sharing 1365 residues with the full-length product of this tumor suppressor gene, BRCA1/p220, it has oncoprotein-like properties. Here, we examine whether BRCA1-IRIS is a valuable treatment target for HER2(+ and/or TN/BL tumors. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical staining of large cohort of human breast tumor samples using new monoclonal anti-BRCA1-IRIS antibody, followed by correlation of BRCA1-IRIS expression with that of AKT1, AKT2, p-AKT, survivin and BRCA1/p220, tumor status and age at diagnosis. Generation of subcutaneous tumors in SCID mice using human mammary epithelial (HME cells overexpressing TERT/LT/BRCA1-IRIS, followed by comparing AKT, survivin, and BRCA1/p220 expression, tumor status and aggressiveness in these tumors to that in tumors developed using TERT/LT/Ras(V12-overexpressing HME cells. Induction of primary and invasive rat mammary tumors using the carcinogen N-methyl-N-nitrosourea (NMU, followed by analysis of rat BRCA1-IRIS and ERα mRNA levels in these tumors. High BRCA1-IRIS expression was detected in the majority of human breast tumors analyzed, which was positively correlated with that of AKT1-, AKT2-, p-AKT-, survivin, but negatively with BRCA1/p220 expression. BRCA1-IRIS-positivity induced high-grade, early onset and metastatic HER2(+ or TN/BL tumors. TERT/LT/BRCA1-IRIS overexpressing HME cells formed invasive subcutaneous tumors that express high AKT1, AKT2, p-AKT and vimentin, but no CK19, p63 or BRCA1/p220. NMU-induced primary and invasive rat breast cancers expressed high levels of rat BRCA1-IRIS mRNA but low levels of rat ERα mRNA. CONCLUSION/SIGNIFICANCE: BRCA1-IRIS overexpression triggers aggressive

  5. Impairment of protein trafficking upon overexpression and mutation of optineurin.

    Directory of Open Access Journals (Sweden)

    BumChan Park

    Full Text Available BACKGROUND: Glaucoma is a major blinding disease characterized by progressive loss of retinal ganglion cells (RGCs and axons. Optineurin is one of the candidate genes identified so far. A mutation of Glu(50 to Lys (E50K has been reported to be associated with a more progressive and severe disease. Optineurin, known to interact with Rab8, myosin VI and transferrin receptor (TfR, was speculated to have a role in protein trafficking. Here we determined whether, and how optineurin overexpression and E50K mutation affect the internalization of transferrin (Tf, widely used as a marker for receptor-mediated endocytosis. METHODOLOGY/PRINCIPAL FINDINGS: Human retinal pigment epithelial (RPE and rat RGC5 cells transfected to overexpress wild type optineurin were incubated with Texas Red-Tf to evaluate Tf uptake. Granular structures or dots referred to as foci formed in perinuclear regions after transfection. An impairment of the Tf uptake was in addition observed in transfected cells. Compared to overexpression of the wild type, E50K mutation yielded an increased foci formation and a more pronounced defect in Tf uptake. Co-transfection with TfR, but not Rab8 or myosin VI, construct rescued the optineurin inhibitory effect, suggesting that TfR was the factor involved in the trafficking phenotype. Forced expression of both wild type and E50K optineurin rendered TfR to colocalize with the foci. Surface biotinylation experiments showed that the surface level of TfR was also reduced, leading presumably to an impeded Tf uptake. A non-consequential Leu(157 to Ala (L157A mutation that displayed much reduced foci formation and TfR binding had normal TfR distribution, normal surface TfR level and normal Tf internalization. CONCLUSIONS/SIGNIFICANCE: The present study demonstrates that overexpression of wild type optineurin results in impairment of the Tf uptake in RPE and RGC5 cells. The phenotype is related to the optineurin interaction with TfR. Our results

  6. Over-expression of EGFR in Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    BO Ai-hua; HOU Jin-chao; LAN Yong-hao; TIAN Ya-ting; ZHANG Jun-yan

    2008-01-01

    Objective:To explore the relationship of overexpression of epidermal growth factor receptor(EGFR)in occurrence,development and treatment of breast cancer. Methods:Samples of 46 breast adenoma tissues and 86 breast cancer tissues were regularly dehydrate-fixed,embedded in paraffin,sliced in to 5 μm thick,stained with SABC immunohistochemistry and coloured with DAB. Results:The positive staining of EGFR was shown as brown- yellow and distributed in cytoplasm.The positive rates in the tissues of breast adenosis and breast cancer were 17.04%(6/46)and 56.98%(49/86)respectively.The positive rates of EGFR in the tissue of invasive ductal carcinoma was 64.49%(41/59),which was significantly higher than that in in situ carcinoma(P<0.05).The positive rate of lymph metastasis group was higher than that in non-lymph metastasis group (P<0.05). Conclusion:The overexpression of EGFR was related with occurrence,lymph metastasis and pathologic types of breast cancer.The examination of EGFR in the breast cancer can serve as a guidance for target chemotherapy.

  7. Focal adhesion kinase overexpression and its impact on human osteosarcoma

    Science.gov (United States)

    Chen, Yong; Yang, Aizhen; Chen, Hui; Zhang, Jian; Wu, Sujia; Shi, Xin; Wang, Chen; Sun, Xiaoliang

    2015-01-01

    Focal adhesion kinase (FAK) has been implicated in tumorigenesis in various malignancies. We sought to examine the expression patterns of FAK and the activated form, phosphorylated FAK (pFAK), in human osteosarcoma and to investigate the correlation of FAK expression with clinicopathologic parameters and prognosis. In addition, the functional consequence of manipulating the FAK protein level was investigated in human osteosarcoma cell lines. Immunohistochemical staining was used to detect FAK and pFAK in pathologic archived materials from 113 patients with primary osteosarcoma. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognoses. The role of FAK in the cytological behavior of MG63 and 143B human osteosarcoma cell lines was studied via FAK protein knock down with siRNA. Cell proliferation, migration, invasiveness and apoptosis were assessed using the CCK8, Transwell and Annexin V/PI staining methods. Both FAK and pFAK were overexpressed in osteosarcoma. There were significant differences in overall survival between the FAK-/pFAK- and FAK+/pFAK- groups (P = 0.016), the FAK+/pFAK- and FAK+/pFAK+ groups (P = 0.012) and the FAK-/pFAK- and FAK+/pFAK+ groups (P osteosarcoma cell proliferation and apoptosis. These results collectively suggest that FAK overexpression and phosphorylation might predict more aggressive biologic behavior in osteosarcoma and may be an independent predictor of poor prognosis. PMID:26393679

  8. Overexpression of glutamine synthetases confers transgenic rice herbicide resistance

    Institute of Scientific and Technical Information of China (English)

    Sun Hui; Huang Qiman; Su Jin

    2005-01-01

    Glutamine synthetase (GS, E.C.6.3.1.2) is a key enzyme involved in the assimilation of inorganic nitrogen in higher plants and gram-negative microorganisms. GS is the targeting enzyme of a herbicide phosphinothricin (PPT) or Basta. In order to generate PPT-resistant transgenic rice via overexpression of GS, we constructed a plant expression vector p2GS harboring two different isoenzymes GS1 and GS2 cDNAs under the control of constitutive promoters of rice Act1 and maize Ubiquitin(Ubi) genes. The p2GS was introduced into rice genome by Agrobacterium-mediated transformation and confirmed by PCR and Southern blot hybridization. GS-transgene expression was first detected by Northern blot analyses. Results from Basta test indicated that GS-transgenic plants can tolerate as high as 0.3% Basta solution. In addition, our results also demonstrated that GS overexpression conferred transformed rice calli PPT resistance. Thus, GS cassette can serve as a selective marker gene instead of bar cassette for selection of PPT transformants.

  9. Overexpression of neurofilament H disrupts normal cell structure and function

    Science.gov (United States)

    Szebenyi, Gyorgyi; Smith, George M.; Li, Ping; Brady, Scott T.

    2002-01-01

    Studying exogenously expressed tagged proteins in live cells has become a standard technique for evaluating protein distribution and function. Typically, expression levels of experimentally introduced proteins are not regulated, and high levels are often preferred to facilitate detection. However, overexpression of many proteins leads to mislocalization and pathologies. Therefore, for normative studies, moderate levels of expression may be more suitable. To understand better the dynamics of intermediate filament formation, transport, and stability in a healthy, living cell, we inserted neurofilament heavy chain (NFH)-green fluorescent protein (GFP) fusion constructs in adenoviral vectors with tetracycline (tet)-regulated promoters. This system allows for turning on or off the synthesis of NFH-GFP at a selected time, for a defined period, in a dose-dependent manner. We used this inducible system for live cell imaging of changes in filament structure and cell shape, motility, and transport associated with increasing NFH-GFP expression. Cells with low to intermediate levels of NFH-GFP were structurally and functionally similar to neighboring, nonexpressing cells. In contrast, overexpression led to pathological alterations in both filament organization and cell function. Copyright 2002 Wiley-Liss, Inc.

  10. SERCA overexpression reduces hydroxyl radical injury in murine myocardium.

    Science.gov (United States)

    Hiranandani, Nitisha; Bupha-Intr, Tepmanas; Janssen, Paul M L

    2006-12-01

    Hydroxyl radicals (*OH) are involved in the pathogenesis of ischemia-reperfusion injury and are observed in clinical situations, including acute heart failure, stroke, and myocardial infarction. Acute transient exposure to *OH causes an intracellular Ca(2+) overload and leads to impaired contractility. We investigated whether upregulation of sarcoplasmic reticulum Ca(2+)-ATPase function (SERCA) can attenuate *OH-induced dysfunction. Small, contracting right ventricular papillary muscles from wild-type (WT) SERCA1a-overexpressing (transgenic, TG) and SERCA2a heterogeneous knockout (HET) mice were directly exposed to *OH. This brief 2-min exposure led to a transient elevation of diastolic force (F(dia)) and depression of developed force (F(dev)). In WT mice, F(dia) increased to 485 +/- 49% and F(dev) decreased to 11 +/- 3%. In sharp contrast, in TG mice F(dia) increased only to 241 +/- 17%, whereas F(dev) decreased only to 51 +/- 5% (P group. The results indicate that SERCA overexpression can reduce the *OH-induced contractile dysfunction in murine myocardium, whereas a reduced SR Ca(2+)-ATPase activity aggravates this injury. Loss of pPLB levels at Ser16 likely amplifies the differences observed in injury response.

  11. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    Directory of Open Access Journals (Sweden)

    Chunxiang Yao

    Full Text Available Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2, react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat, an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  12. Overexpression of Indian hedgehog partially rescues short stature homeobox 2-overexpression-associated congenital dysplasia of the temporomandibular joint in mice.

    Science.gov (United States)

    Li, Xihai; Liang, Wenna; Ye, Hongzhi; Weng, Xiaping; Liu, Fayuan; Lin, Pingdong; Liu, Xianxiang

    2015-09-01

    The role of short stature homeobox 2 (shox2) in the development and homeostasis of the temporomandibular joint (TMJ) has been well documented. Shox2 is known to be expressed in the progenitor cells and perichondrium of the developing condyle. A previous study by our group reported that overexpression of shox2 leads to congenital dysplasia of the TMJ via downregulation of the Indian hedgehog (Ihh) signaling pathway, which is essential for embryonic disc primordium formation and mandibular condylar growth. To determine whether overexpression of Ihh may rescue the overexpression of shox2 leading to congenital dysplasia of the TMJ, a mouse model in which Ihh and shox2 were overexpressed (Wnt1-Cre; pMes-stop shox2; pMes-stop Ihh mice) was utilized to assess the consequences of this overexpression on TMJ development during post-natal life. The results showed that the developmental process and expression levels of runt-related transcription factor 2 and sex determining region Y-box 9 in the TMJ of the Wnt1-Cre; pMes-stop shox2; pMes-stop Ihh mice were similar to those in wild‑type mice. Overexpression of Ihh rescued shox2 overexpression-associated reduction of extracellular matrix components. However, overexpression of Ihh did not inhibit the shox2 overexpression-associated increase of matrix metalloproteinases (MMPs) MMP9, MMP13 and apoptosis in the TMJ. These combinatory cellular and molecular defects appeared to account for the observed congenital dysplasia of TMJ, suggesting that overexpression of Ihh partially rescued shox2 overexpression‑associated congenital dysplasia of the TMJ in mice.

  13. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Chae-Ok [Department of Bioengineering, College of Engineering, Hanyang University, Seoul (Korea, Republic of); Han, Deok-Jong [Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Eun Young, E-mail: choieun@ulsan.ac.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-12-04

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  14. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Bissell, Mina J; Werb, Zena

    1995-06-01

    An intact basement membrane (BM) is essential for the proper function, differentiation and morphology of many epithelial cells. The disruption or loss of this BM occurs during normal development as well as in the disease state. To examine the importance of BM during mammary gland development in vivo, we generated transgenic mice that inappropriately express autoactivating isoforms of the matrix metalloproteinase stromelysin-1. The mammary glands from these mice are both functionally and morphologically altered throughout development. We have now documented a dramatic incidence of breast tumors in several independent lines of these mice. These data suggest that overexpression of stromelysin-1 and disruption of the BM may be a key step in the multi-step process of breast cancer.

  15. T Cell Integrin Overexpression as a Model of Murine Autoimmunity

    Directory of Open Access Journals (Sweden)

    Yung Raymond L.

    2003-01-01

    Full Text Available Integrin adhesion molecules have important adhesion and signaling functions. They also play a central role in the pathogenesis of many autoimmune diseases. Over the past few years we have described a T cell adoptive transfer model to investigate the role of T cell integrin adhesion molecules in the development of autoimmunity. This report summarizes the methods we used in establishing this murine model. By treating murine CD4+ T cells with DNA hypomethylating agents and by transfection we were able to test the in vitro effects of integrin overexpression on T cell autoreactive proliferation, cytotoxicity, adhesion and trafficking. Furthermore, we showed that the ability to induce in vivo autoimmunity may be unique to the integrin lymphocyte function associated antigen-1 (LFA-1.

  16. Transgenic cloned sheep overexpressing ovine toll-like receptor 4.

    Science.gov (United States)

    Deng, Shoulong; Li, Guiguan; Zhang, Jinlong; Zhang, Xiaosheng; Cui, Maosheng; Guo, Yong; Liu, Guoshi; Li, Guangpeng; Feng, Jianzhong; Lian, Zhengxing

    2013-07-01

    An ovine fetal fibroblast cell line highly expressing TLR4 was established by inserting TLR4 into a reconstructive p3S-LoxP plasmid. Transgenic sheep overexpressing TLR4 were produced by transferring TLR4-transfected fetal fibroblasts into metaphase (M)II-stage enucleated oocytes (using SCNT). Because reconstructed embryos derived from MII-stage enucleated oocytes matured in vivo using a delayed-activated method had a higher pregnancy rate (18.52%) than that from MII-stage enucleated oocytes matured in vitro, the former procedure was used. Nine TLR4-transgenic live births were confirmed using polymerase chain reaction and Southern blot analysis. Increased expression of TLR4 at mRNA and protein levels in ear tissues of transgenic lambs were verified using reverse transcription polymerase chain reaction and immunohistochemistry, respectively. More toll-like receptor 4 protein was expressed by peripheral blood monocytes and/or macrophages collected from 3-month-old TLR4-transgenic than nontransgenic lambs at 0, 1, and 4 hours after lipopolysaccharide stimulation. Furthermore, interferon-γ and tumor necrosis factor α secreted by monocytes and/or macrophages of TLR4-transgenic lambs were significantly higher at 1 hour. Therefore, lipopolysaccharide-induced inflammatory responses from monocytes and/or macrophages occurred sooner in TLR4-transgenic lambs, consistent with an enhanced host immune response. In conclusion, transgenic sheep overexpressing TLR4 are a primary model to investigate the role of transgenic animals in disease resistance and have potential for breeding sheep with disease resistance.

  17. Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Alam Hunain

    2012-01-01

    Full Text Available Abstract Background Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC. Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC. Methods To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131 using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients. Results Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (P = 0.041, increased lymph node metastasis (P = 0.001, less differentiation (P = 0.005, increased recurrence (P = 0.038 and shorter survival (P = 0.004 of the patients. Conclusion In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and

  18. Tubular overexpression of gremlin induces renal damage susceptibility in mice.

    Directory of Open Access Journals (Sweden)

    Alejandra Droguett

    Full Text Available A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1 specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage

  19. Enhanced acetaminophen hepatotoxicity in transgenic mice overexpressing BCL-2.

    Science.gov (United States)

    Adams, M L; Pierce, R H; Vail, M E; White, C C; Tonge, R P; Kavanagh, T J; Fausto, N; Nelson, S D; Bruschi, S A

    2001-11-01

    Mitochondria play an important role in the cell death induced by many drugs, including hepatotoxicity from overdose of the popular analgesic, acetaminophen (APAP). To investigate mitochondrial alterations associated with APAP-induced hepatotoxicity, the subcellular distribution of proapoptotic BAX was determined. Based on the antiapoptotic characteristics of BCL-2, we further hypothesized that if a BAX component was evident then BCL-2 overexpression may be hepatoprotective. Mice, either with a human bcl-2 transgene (-/+) or wild-type mice (WT; -/-), were dosed with 500 or 600 mg/kg (i.p.) APAP or a nonhepatotoxic isomer, N-acetyl-m-aminophenol (AMAP). Immunoblot analyses indicated increased mitochondrial BAX-beta content very early after APAP or AMAP treatment. This was paralleled by disappearance of BAX-alpha from the cytosol of APAP treated animals and, to a lesser extent, with AMAP treatment. Early pathological evidence of APAP-induced zone 3 necrosis was seen in bcl-2 (-/+) mice, which progressed to massive panlobular necrosis with hemorrhage by 24 h. In contrast, WT mice dosed with APAP showed a more typical, and less severe, centrilobular necrosis. AMAP-treated bcl-2 (-/+) mice displayed only early microvesicular steatosis without progression to extensive necrosis. Decreased complex III activity, evident as early as 6 h after treatment, correlated well with plasma enzyme activities at 24 h (AST r(2) = 0.89, ALT r(2) = 0.87) thereby confirming a role for mitochondria in APAP-mediated hepatotoxicity. In conclusion, these data suggest for the first time that BAX may be an early determinant of APAP-mediated hepatotoxicity and that BCL-2 overexpression unexpectedly enhances APAP hepatotoxicity.

  20. Enhanced fatty acid flux triggered by adiponectin overexpression.

    Science.gov (United States)

    Shetty, Shoba; Ramos-Roman, Maria A; Cho, You-Ree; Brown, Jonathan; Plutzky, Jorge; Muise, Eric S; Horton, Jay D; Scherer, Philipp E; Parks, Elizabeth J

    2012-01-01

    Adiponectin overexpression in mice increases insulin sensitivity independent of adiposity. Here, we combined stable isotope infusion and in vivo measurements of lipid flux with transcriptomic analysis to characterize fatty acid metabolism in transgenic mice that overexpress adiponectin via the aP2-promoter (ADNTg). Compared with controls, fasted ADNTg mice demonstrated a 31% reduction in plasma free fatty acid concentrations (P = 0.008), a doubling of ketones (P = 0.028), and a 68% increase in free fatty acid turnover in plasma (15.1 ± 1.5 vs. 25.3 ± 6.8 mg/kg · min, P = 0.011). ADNTg mice had 2-fold more brown adipose tissue mass, and triglyceride synthesis and turnover were 5-fold greater in this organ (P = 0.046). Epididymal white adipose tissue was slightly reduced, possibly due to the approximately 1.5-fold increase in the expression of genes involved in oxidation (peroxisome proliferator-activated receptor α, peroxisome proliferator-activated receptor-γ coactivator 1α, and uncoupling protein 3). In ADNTg liver, lipogenic gene expression was reduced, but there was an unexpected increase in the expression of retinoid pathway genes (hepatic retinol binding protein 1 and retinoic acid receptor beta and adipose Cyp26A1) and liver retinyl ester content (64% higher, P < 0.02). Combined, these data support a physiological link between adiponectin signaling and increased efficiency of triglyceride synthesis and hydrolysis, a process that can be controlled by retinoids. Interactions between adiponectin and retinoids may underlie adiponectin's effects on intermediary metabolism.

  1. Conditional astroglial Rictor overexpression induces malignant glioma in mice.

    Directory of Open Access Journals (Sweden)

    Tariq Bashir

    Full Text Available BACKGROUND: Hyperactivation of the mTORC2 signaling pathway has been shown to contribute to the oncogenic properties of gliomas. Moreover, overexpression of the mTORC2 regulatory subunit Rictor has been associated with increased proliferation and invasive character of these tumor cells. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether Rictor overexpression was sufficient to induce glioma formation in mice, we inserted a Cre-lox-regulated human Rictor transgene into the murine ROSA26 locus. This floxed Rictor strain was crossed with mice expressing the Cre recombinase driven from the glial fibrillary acidic protein (GFAP promoter whose expression is limited to the glial cell compartment. Double transgenic GFAP-Cre/Rictor(loxP/loxP mice developed multifocal infiltrating glioma containing elevated mTORC2 activity and typically involved the subventricular zone (SVZ and lateral ventricle. Analysis of Rictor-dependent signaling in these tumors demonstrated that in addition to elevated mTORC2 activity, an mTORC2-independent marker of cortical actin network function, was also elevated. Upon histological examination of the neoplasms, many displayed oligodendroglioma-like phenotypes and expressed markers associated with oligodendroglial lineage tumors. To determine whether upstream oncogenic EGFRvIII signaling would alter tumor phenotypes observed in the GFAP-Cre/Rictor(loxP/loxP mice, transgenic GFAP-EGFRvIII; GFAP-Cre/Rictor(loxP/loxP mice were generated. These mice developed mixed astrocytic-oligodendroglial tumors, however glioma formation was accelerated and correlated with increased mTORC2 activity. Additionally, the subventricular zone within the GFAP-Cre/Rictor(loxP/loxP mouse brain was markedly expanded, and a further proliferation within this compartment of the brain was observed in transgenic GFAP-EGFRvIII; GFAP-Cre/Rictor(loxP/loxP mice. CONCLUSION/SIGNIFICANCE: These data collectively establish Rictor as a novel oncoprotein and support

  2. Conditional Astroglial Rictor Overexpression Induces Malignant Glioma in Mice

    Science.gov (United States)

    Bashir, Tariq; Cloninger, Cheri; Artinian, Nicholas; Anderson, Lauren; Bernath, Andrew; Holmes, Brent; Benavides-Serrato, Angelica; Sabha, Nesrin; Nishimura, Robert N.; Guha, Abhijit; Gera, Joseph

    2012-01-01

    Background Hyperactivation of the mTORC2 signaling pathway has been shown to contribute to the oncogenic properties of gliomas. Moreover, overexpression of the mTORC2 regulatory subunit Rictor has been associated with increased proliferation and invasive character of these tumor cells. Methodology/Principal Findings To determine whether Rictor overexpression was sufficient to induce glioma formation in mice, we inserted a Cre-lox-regulated human Rictor transgene into the murine ROSA26 locus. This floxed Rictor strain was crossed with mice expressing the Cre recombinase driven from the glial fibrillary acidic protein (GFAP) promoter whose expression is limited to the glial cell compartment. Double transgenic GFAP-Cre/RictorloxP/loxP mice developed multifocal infiltrating glioma containing elevated mTORC2 activity and typically involved the subventricular zone (SVZ) and lateral ventricle. Analysis of Rictor-dependent signaling in these tumors demonstrated that in addition to elevated mTORC2 activity, an mTORC2-independent marker of cortical actin network function, was also elevated. Upon histological examination of the neoplasms, many displayed oligodendroglioma-like phenotypes and expressed markers associated with oligodendroglial lineage tumors. To determine whether upstream oncogenic EGFRvIII signaling would alter tumor phenotypes observed in the GFAP-Cre/RictorloxP/loxP mice, transgenic GFAP-EGFRvIII; GFAP-Cre/RictorloxP/loxP mice were generated. These mice developed mixed astrocytic-oligodendroglial tumors, however glioma formation was accelerated and correlated with increased mTORC2 activity. Additionally, the subventricular zone within the GFAP-Cre/RictorloxP/loxP mouse brain was markedly expanded, and a further proliferation within this compartment of the brain was observed in transgenic GFAP-EGFRvIII; GFAP-Cre/RictorloxP/loxP mice. Conclusion/Significance These data collectively establish Rictor as a novel oncoprotein and support the role of dysregulated

  3. Overexpression of SOS (Salt Overly Sensitive)Genes Increases Salt Tolerance in Transgenic Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Qing Yang; Zhi-Zhong Chen; Xiao-Feng Zhoua; Hai-Bo Yin; Xia Li; Xiu-Fang Xin; Xu-Hui Hong; Jian-Kang Zhu; Zhizhong Gong

    2009-01-01

    Soil salinity is a major abiotic stress that decreases plant growth and productivity. Recently, it was reported that plants overexpressing AtNHX1 or SOS1 have significantly increased salt tolerance. To test whether overexpression of multiple genes can improve plant salt tolerance even more, we produced six different transgenic Arabidopsis plants that overexpress AtNHX1, SOS3, AtNHXl + SOS3, SOS1, SOS2 + SOS3, or SOS1 + SOS2 + SOS3. Northern blot analyses confirmed the presence of high levels of the relevant gene transcripts in transgenic plants. Transgenic Arabidopsis plants overexpressing AtNHX1 alone did not present any significant increase in salt tolerance, contrary to earlier reports. We found that transgenic plants overexpressing SOS3 exhibit increased salt tolerance similar to plants overexpressing SOS1. Moreover, salt tolerance of transgenic plants overexpressing AtNHXl + SOS3, 50S2 + SOS3, or SOS1 + SOS2 +SOS3, respectively, appeared similar to the tolerance of transgenic plants overexpressing either SOS1 or SOS3 alone.

  4. Long-term polarization of microglia upon alpha-synuclein overexpression in nonhuman primates

    DEFF Research Database (Denmark)

    Barkholt, Pernille; Sanchez-Guajardo, Vanesa Maria; Kirik, Denis

    2012-01-01

    We have previously shown that persistent ﰇ-sy- nuclein overexpression in ventral midbrain of marmoset leads to a distinctive neurodegenerative process and motor defects. The neurodegeneration was confined to caudate putamen dopaminergic fibers in animals overexpressing wild-type (wt) ﰇ-synuclein....

  5. Transcription factors and molecular epigenetic marks underlying EpCAM overexpression in ovarian cancer

    NARCIS (Netherlands)

    van der Gun, B. T. F.; de Groote, M. L.; Kazemier, H. G.; Arendzen, A. J.; Terpstra, P.; Ruiters, M. H. J.; McLaughlin, P. M. J.; Rots, M. G.

    2011-01-01

    BACKGROUND: The epithelial cell adhesion molecule (EpCAM) is overexpressed on carcinomas, and its downregulation inhibits the oncogenic potential of multiple tumour types. Here, we investigated underlying mechanisms of epcam overexpression in ovarian carcinoma. METHODS: Expression of EpCAM and DNA m

  6. Correlation between human papillomavirus and p16 overexpression in oropharyngeal tumours

    DEFF Research Database (Denmark)

    Grønhøj Larsen, C; Gyldenløve, M; Jensen, D H

    2014-01-01

    A significant proportion of squamous cell carcinomas of the oropharynx (OP-SCC) are related to human papillomavirus (HPV) infection and p16 overexpression. This subgroup proves better prognosis and survival but no evidence exists on the correlation between HPV and p16 overexpression based on diag...

  7. Ornithine decarboxylase gene is overexpressed in colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Hai-Yan Hu; Bing Zhang; Xian-Xi Liu; Chun-Ying Jiang; Yi Lu; Shi-Lian Liu; Ji-Feng Bian; Xiao-Ming Wang; Zhao Geng; Yan Zhang

    2005-01-01

    AIM: To investigate the ornithine decarboxylase (ODC)gene expression in colorectal carcinoma, ODC mRNA was assayed by RT-PCR and ODC protein was detected by a monoclonal antibody against fusion of human colon ODC prepared by hybridoma technology.METHODS: Total RNA was extracted from human colorectal cancer tissues and their normal counterpart tissues. ODC mRNA levels were examined by RT-PCR.ODC genes amplified from RT-PCR were cloned into a prokaryotic vector pQE-30. The expressed proteins were purified by chromatography. Anti-ODC mAb was prepared with classical hybridoma techniques and used to determine the ODC expression in colon cancer tissues by immunohistochemical and Western blotting assay.RESULTS: A cell line, which could steadily secrete antiODC mAb, was selected through subcloning four times.Western blotting reconfirmed the mAb and ELISA showed that its subtype was IgG2a. RT-PCR showed that the ODC mRNA level increased greatly in colon cancer tissues (P<0.01). Immunohistochemical staining showed that colorectal carcinoma cells expressed a significantly higher level of ODC than normal colorectal mucosa (98.6±1.03%vs 5.26±5%, P<0.01).CONCLUSION: ODC gene overexpression is significantly related to human colorectal carcinoma. ODC gene expression may be a marker for the gene diagnosis and therapy of colorectal carcinoma.

  8. Overexpression and topology of bacterial oligosaccharyltransferase PglB

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lei [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States); Woodward, Robert [Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States); Ding, Yan; Liu, Xian-wei [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Yi, Wen; Bhatt, Veer S. [Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States); Chen, Min [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Zhang, Lian-wen [College of Pharmacy, Nankai University, Tianjin 300071 (China); Wang, Peng George, E-mail: wang.892@osu.edu [National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Shandong 250100 (China); Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 (United States)

    2010-04-16

    Campylobacter jejuni contains a post-translational N-glycosylation system in which a STT3 homologue, PglB, functions as the oligosaccharyltransferase. Herein, we established a method for obtaining relatively large quantities of homogenous PglB proteins. PglB was overexpressed in Escherichia coli C43(DE3) at a level of 1 mg/L cell cultures. The activity of purified PglB was verified using a chemically synthesized sugar donor: N-acetylgalactosamine-diphospho-undecaprenyl (GalNAc-PP-Und) and a synthesized peptide acceptor. The result confirms that PglB is solely responsible for the oligosaccharyltransferase activity and complements the finding that PglB exhibits relaxed sugar substrate specificity. In addition, we performed the topology mapping of PglB using the PhoA/LacZ fusion method. The topological model shows that PglB possesses 11 transmembrane segments and two relatively large periplasmic regions other than the C-terminal domain, which is consistent with the proposal of the common N{sub cyt}-C{sub peri} topology with 11 transmembrane segments for the STT3 family proteins.

  9. Overexpression of kynurenic acid in stroke: An endogenous neuroprotector?

    Science.gov (United States)

    Mangas, A; Yajeya, J; González, N; Ruiz, I; Duleu, S; Geffard, M; Coveñas, R

    2017-05-01

    It is known that kynurenic acid (KYNA) exerts a neuroprotective effect against the neuronal loss induced by ischemia; acting as a scavenger, and exerting antioxidant action. In order to study the distribution of KYNA, a highly specific monoclonal antibody directed against KYNA was developed. This distribution was studied in control rats and in animals in which a middle cerebral artery occlusion (stroke model) was induced. By double immunohistochemistry, astrocytes containing KYNA and GFAP were exclusively found in the ipsilateral cerebral cortex and/or striatum, at 2, 5 and 21days after the induction of stroke. In control animals and in the contralateral side of the stroke animals, no immunoreactivity for KYNA was found. Under pathological conditions, the presence of KYNA is reported for the first time in the mammalian brain from early phases of stroke. The distribution of KYNA matches perfectly with the infarcted regions suggesting that, in stroke, this overexpressed molecule could be involved in neuroprotective/scavenger/antioxidant mechanisms. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Impaired skeletal formation in mice overexpressing DMP1

    Directory of Open Access Journals (Sweden)

    Michael Albazzaz

    2009-09-01

    Full Text Available Michael Albazzaz, Karthikeyan Narayanan, Jianjun Hao, Roma Andheri, Amsaveni Ramachandran, Sriram Ravindran, Anne GeorgeBrodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, University of Illinois, Chicago, IL, USAAbstract: Dentin matrix protein 1 (DMP1 is a noncollagenous protein expressed in mineralized tissues such as bone, dentin, and cartilage. To investigate the role of DMP1 during bone formation, transgenic mice overexpressing DMP1 under the control of the CMV promoter were generated. These mice displayed an increased mineralization phenotype in bone. In addition, accelerated terminal differentiation of the epiphyseal growth plate chondrocytes were also observed. To investigate the potential role of DMP1 in osteoblast differentiation, bone marrow stem cells were stimulated with DMP1 and assayed for “early” and “late” markers for osteoblast differentiation. DMP1 treatment increased the expression of CBFA1, BMP2, COL1, and OCN within two days. An in vitro mineralized nodule formation assay demonstrated that the bone marrow stem cells could differentiate and form a mineralized matrix in the presence of DMP1. Together, these results support a model whereby DMP1 functions as a key regulatory molecule that is required for normal growth and development of bone and cartilage.Keywords: dentin matrix protein 1, mineralization, osteoblast, chondrocytes, transgenic mice

  11. Overexpression of microRNA-99a Attenuates Cardiac Hypertrophy

    Science.gov (United States)

    Li, Ran; Bai, Jian; Ding, Liang; Gu, Rong; Wang, Lian; Xu, Biao

    2016-01-01

    Pathological cardiomyocyte hypertrophy is associated with significantly increased risk of heart failure, one of the leading medical causes of mortality worldwide. MicroRNAs are known to be involved in pathological cardiac remodeling. However, whether miR-99a participates in the signaling cascade leading to cardiac hypertrophy is unknown. To evaluate the role of miR-99a in cardiac hypertrophy, we assessed the expression of miR-99a in hypertrophic cardiomyocytes induced by isoprenaline (ISO)/angiotensin-II (Ang II) and in mice model of cardiac hypertrophy induced by transverse aortic constriction (TAC). Expression of miR-99a was evaluated in these hypertrophic cells and hearts. We also found that miR-99a expression was highly correlated with cardiac function of mice with heart failure (8 weeks after TAC surgery). Overexpression of miR-99a attenuated cardiac hypertrophy in TAC mice and cellular hypertrophy in stimuli treated cardiomyocytes through down-regulation of expression of mammalian target of rapamycin (mTOR). These results indicate that miR-99a negatively regulates physiological hypertrophy through mTOR signaling pathway, which may provide a new therapeutic approach for pressure-overload heart failure. PMID:26914935

  12. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    Science.gov (United States)

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Overexpression of Eag1 potassium channels in clinical tumours

    Directory of Open Access Journals (Sweden)

    Schliephacke Tessa

    2006-10-01

    Full Text Available Abstract Background Certain types of potassium channels (known as Eag1, KCNH1, Kv10.1 are associated with the production of tumours in patients and in animals. We have now studied the expression pattern of the Eag1 channel in a large range of normal and tumour tissues from different collections utilising molecular biological and immunohistochemical techniques. Results The use of reverse transcription real-time PCR and specifically generated monoclonal anti-Eag1 antibodies showed that expression of the channel is normally limited to specific areas of the brain and to restricted cell populations throughout the body. Tumour samples, however, showed a significant overexpression of the channel with high frequency (up to 80% depending on the tissue source regardless of the detection method (staining with either one of the antibodies, or detection of Eag1 RNA. Conclusion Inhibition of Eag1 expression in tumour cell lines reduced cell proliferation. Eag1 may therefore represent a promising target for the tailored treatment of human tumours. Furthermore, as normal cells expressing Eag1 are either protected by the blood-brain barrier or represent the terminal stage of normal differentiation, Eag1 based therapies could produce only minor side effects.

  14. The small co-chaperone p23 overexpressing transgenic mouse.

    Science.gov (United States)

    Zhang, Junli; Spilman, Patricia; Chen, Sylvia; Gorostiza, Olivia; Matalis, Alex; Niazi, Kayvan; Bredesen, Dale E; Rao, Rammohan V

    2013-01-30

    Studies from multiple laboratories have identified the roles of several ER stress-induced cell death modulators and effectors. Earlier, we described the role of p23 a small co-chaperone protein in preventing ER stress-induced cell death. p23 is cleaved by caspases at D142 to yield p19 (a 19 kDa product) during ER stress-induced cell death. Mutation of the caspase cleavage site not only blocks formation of the 19 kDa product but also attenuates the cell death process triggered by various ER stressors. Thus, uncleavable p23 (p23D142N) emerges as a reasonable candidate to test for potential inhibition of neurodegenerative disease phenotype that features misfolded proteins and ER stress. In the present work we report the generation of transgenic mouse lines that overexpress wild-type p23 or uncleavable p23 under the control of a ROSA promoter. These mice should prove useful for studying the role of p23 and/or uncleavable p23 in cellular stress-induced cell death. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Overexpression of Wnt5a Promotes Angiogenesis in NSCLC

    Directory of Open Access Journals (Sweden)

    Lingli Yao

    2014-01-01

    Full Text Available To evaluate Wnt5a expression and its role in angiogenesis of non-small-cell lung cancer (NSCLC, immunohistochemistry and CD31/PAS double staining were performed to examine the Wnt5a expression and we analyze the relationships between Wnt5a and microvessel density (MVD, vasculogenic mimicry (VM, and some related proteins. About 61.95% of cases of 205 NSCLC specimens exhibited high expression of Wnt5a. Wnt5a expression level was upregulated in the majority of NSCLC tissues, especially in squamous cell carcinoma, while its expression level in adenocarcinoma was the lowest. Wnt5a was also found more frequently expressed in male patients than in female patients. Except for histological classification and gender, little association was found between Wnt5a and clinicopathological features. Moreover, Wnt5a was significantly correlated with prognosis. Overall, Wnt5a-positive expression in patients with NSCLC indicated shorter survival time. As for vascularization in NSCLC, Wnt5a showed close association with VM and MVD. In addition, Wnt5a was positively related with β-catenin-nu, VE-cadherin, MMP2, and MMP9. The results demonstrated that overexpression of Wnt5a may play an important role in NSCLC angiogenesis and it may function via canonical Wnt signal pathway. This study will provide evidence for further research on NSCLC and also will provide new possible target for NSCLC diagnosis and therapeutic strategies.

  16. Impaired baroreflex function in mice overexpressing alpha-synuclein

    Directory of Open Access Journals (Sweden)

    Sheila eFleming

    2013-07-01

    Full Text Available Cardiovascular autonomic dysfunction, such as orthostatic hypotension consequent to baroreflex failure and cardiac sympathetic denervation, is frequently observed in the synucleinopathy Parkinson’s disease (PD. In the present study, the baroreceptor reflex was assessed in mice overexpressing human wildtype alpha-synuclein (Thy1-aSyn, a genetic mouse model of synucleinopathy. The beat-to-beat change in heart rate, computed from R-R interval, in relation to blood pressure was measured in anesthetized and conscious mice equipped with arterial blood pressure telemetry transducers during transient bouts of hypertension and hypotension. Compared to wildtype, tachycardia following nitroprusside-induced hypotension was significantly reduced in Thy1-aSyn mice. Thy1-aSyn mice also showed an abnormal cardiovascular response (i.e., diminished tachycardia to muscarinic blockade with atropine. We conclude that Thy1-aSyn mice have impaired basal and dynamic range of sympathetic and parasympathetic-mediated changes in heart rate and will be a useful model for long-term study of cardiovascular autonomic dysfunction associated with PD.

  17. Overexpression of microRNA-99a Attenuates Cardiac Hypertrophy.

    Science.gov (United States)

    Li, Qiaoling; Xie, Jun; Wang, Bingjian; Li, Ran; Bai, Jian; Ding, Liang; Gu, Rong; Wang, Lian; Xu, Biao

    2016-01-01

    Pathological cardiomyocyte hypertrophy is associated with significantly increased risk of heart failure, one of the leading medical causes of mortality worldwide. MicroRNAs are known to be involved in pathological cardiac remodeling. However, whether miR-99a participates in the signaling cascade leading to cardiac hypertrophy is unknown. To evaluate the role of miR-99a in cardiac hypertrophy, we assessed the expression of miR-99a in hypertrophic cardiomyocytes induced by isoprenaline (ISO)/angiotensin-II (Ang II) and in mice model of cardiac hypertrophy induced by transverse aortic constriction (TAC). Expression of miR-99a was evaluated in these hypertrophic cells and hearts. We also found that miR-99a expression was highly correlated with cardiac function of mice with heart failure (8 weeks after TAC surgery). Overexpression of miR-99a attenuated cardiac hypertrophy in TAC mice and cellular hypertrophy in stimuli treated cardiomyocytes through down-regulation of expression of mammalian target of rapamycin (mTOR). These results indicate that miR-99a negatively regulates physiological hypertrophy through mTOR signaling pathway, which may provide a new therapeutic approach for pressure-overload heart failure.

  18. Cardiac muscarinic receptor overexpression in sudden infant death syndrome.

    Directory of Open Access Journals (Sweden)

    Angelo Livolsi

    Full Text Available BACKGROUND: Sudden infant death syndrome (SIDS remains the leading cause of death among infants less than 1 year of age. Disturbed expression of some neurotransmitters and their receptors has been shown in the central nervous system of SIDS victims but no biological abnormality of the peripheral vago-cardiac system has been demonstrated to date. The present study aimed to seek vago-cardiac abnormalities in SIDS victims. The cardiac level of expression of muscarinic receptors, as well as acetylcholinesterase enzyme activity were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Left ventricular samples and blood samples were obtained from autopsies of SIDS and children deceased from non cardiac causes. Binding experiments performed with [(3H]NMS, a selective muscarinic ligand, in cardiac membrane preparations showed that the density of cardiac muscarinic receptors was increased as shown by a more than doubled B(max value in SIDS (n = 9 SIDS versus 8 controls. On average, the erythrocyte acetylcholinesterase enzyme activity was also significantly increased (n = 9 SIDS versus 11 controls. CONCLUSIONS: In the present study, it has been shown for the first time that cardiac muscarinic receptor overexpression is associated with SIDS. The increase of acetylcholinesterase enzyme activity appears as a possible regulatory mechanism.

  19. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  20. Overexpression and export of Vibrio anguillarum metalloprotease in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Zhang Fengli; Chi Zhenming; Chen Jixiang; Wu Longfei; Liang Likun

    2007-01-01

    Vibrio anguillarum metalloprotease, an extracellular zinc metalloprotease involved in the virulence mechanism of Vibrio anguillarum, is synthesized from the empA gene as a 611-residue precursor and naturally secreted via Sec secretion pathway in Vibrio anguillarum. In this study, heterologous expression of the empA gene encoding metallopmtease and export of the recombinant metalloprotease in Escherichia coliwere examined. The empA gene was subcloned into pBAD24 with arabinose promoter and sequenced. The sequence encoded a polypeptide(611 amino acids)consisting of four domains: a signal peptide, an Nterminal propeptide, a mature region and a C-terminal propeptide. The empA gene inserted in plasmid pBAD24 was overexpressed in TOP10 strain of E. Coli after arabinose induction. The 36kDa polypeptide of the recombinant metalloprotease as the mature protease was further confirmed by SDS-PAGE and immunoblotting. It was found that recombinant metalloprotease with the EmpA activity and antigenicity wasexported into the periplasm of Escherichia coli cells via Sec translocation pathway, whereas it was secreted into extracellular environments in V. Anguillarum. The results imply that the expression, export and processing mechanism of the protein in E. Coli are similar to those in V. Anguillarum.

  1. Effects of p53 overexpression on neoplastic cell pro-liferation and apoptosis in thymic carcinoma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate p53 overexpression and its correlation with neoplastic cell proliferation and apoptosis in 20 thymic carcinomas. Methods: 20 surgical samples of thymic carcinoma were collected randomly during the past 15 years in the Guangzhou area. Immunohistochemical staining was performed using LSAB method with anti-p53 monoclonal antibody (DO-7) and proliferating cell nuclear antigen (clone PC 10) as primary antibodies. The p53 index was indicated by the number of p53 positive cells among 100 carcinoma cells. More than 25 percentage of p53 positive cells found in tissue sections was recognized as p53 overexpression. Carcinoma cell proliferation activity was assayed by PCNA index (PI), and apoptosis degree was evaluated by TUNEL (TdT-mediated dUTP-X nick end labeling) index (TI) using Boehringer Mannheim In Situ Death Detection Kit. Results: P53 positive cells could be found in vast majority of thymic carcinomas (19/20) and the overexpression rate reached 35% (7/20). The median PI (40%) of 7 cases with p53 overexpression was higher than that (31%) of 13 cases without p53 overexpression, but there was no statistical significance that existed between these two data (P>0.05). The median TI (0.5/HPF) of 7 p53 overexpression cases was much lower than that (4.5/HPF) of 13 non-overexpression cases, and there was a significant difference statistically (P<0.05). Conclusion: p53 expression was a frequent finding in thymic carcinoma cells, and the p53 overexpression which might represent p53 inactivation or gene mutation was often involved in thymic carcino-genesis. The median PCNA index of p53 overexpression group was higher than that of non-overexpression group though there existed no statistical difference. This indicates that the inhibiting function of p53 on cell proliferation seemed lost in p53 overexpressed thymic carcinomas. It is worthy to be specially mentioned that the inducing function of p53 on cell apoptosis was markedly lost in p53 overexpressed thymic

  2. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin.

    Science.gov (United States)

    Pascual, María Belén; Jing, Zhong Ping; Kirby, Edward G; Cánovas, Francisco M; Gallardo, Fernando

    2008-01-01

    Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth

  3. [Overexpression of Penicillium expansum lipase gene in Pichia pastoris].

    Science.gov (United States)

    Yuan, Cai; Lin, Lin; Shi, Qiao-Qin; Wu, Song-Gang

    2003-03-01

    The alkaline lipase gene of Penicillium expansum (PEL) was coloned into the yeast integrative plasmid pPIC3.5K, which was then transformed into His4 mutant yeast GS115. Recombinant Pichia strains were obtained by minimal olive oil-methanol plates screening and confirmed by PCR. The expression producus of PEL gene was analysis by SDS-PAGE and olive oil plate, the result indicated that PEL gene was functionally overexpressed in Pichia pastoris and up to 95% of the secreted protein. Recombinant lipase had a molecular mass of 28kD, showing a range similar to that of PEL, could hydrolyze olive oil and formed clear halos in the olive oil plates. Four different strategies (different media, pH, glycerol and methanol concentration) were applied to optimize the cultivation conditions, the activity of lipase was up to 260 u/mL under the optimal cultivation conditions. It is pointed out that the absence of the expensive biotin and yeast nitrogen base in the medium increased the lipase production. The possible reason of this result is absence of yeast nitrogen base increased the medium pH during cultivation, and PEL shows a higher stability at this condition. The lipase activity of the supernatant from the culture grown at pH 7 was higher than the one from the culture in the same medium at pH 6.0 is due to the pH stability of PEL too. The results also showed that the methanol and glycerol concentration had a marked effect on the production of lipase.

  4. ADAM-10 over-expression increases cortical synaptogenesis.

    Science.gov (United States)

    Bell, Karen F S; Zheng, Luyu; Fahrenholz, Falk; Cuello, A Claudio

    2008-04-01

    Cortical cholinergic, glutamatergic and GABAergic terminals become upregulated during early stages of the transgenic amyloid pathology. Abundant evidence suggests that sAPP alpha, the product of the non-amyloidogenic alpha-secretase pathway, is neurotrophic both in vitro and when exogenously applied in vivo. The disintegrin metalloprotease ADAM-10 has been shown to have alpha-secretase activity in vivo. To determine whether sAPP alpha has an endogenous biological influence on cortical presynaptic boutons in vivo, we quantified cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities in either ADAM-10 moderate expressing (ADAM-10 mo) transgenic mice, which moderately overexpress ADAM-10, or age-matched non-transgenic controls. Both early and late ontogenic time points were investigated. ADAM-10 mo transgenic mice display significantly elevated cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities at the early time point (8 months). Only the cholinergic presynaptic bouton density remains significantly elevated in late-staged ADAM-10 mo transgenic animals (18 months). To confirm that the observed elevations were due to increased levels of endogenous murine sAPP alpha, exogenous human sAPP alpha was infused into the cortex of non-transgenic control animals for 1 week. Exogenous infusion of sAPP alpha led to significant elevations in the cholinergic, glutamatergic and GABAergic cortical presynaptic bouton populations. These results are the first to demonstrate an in vivo influence of ADAM-10 on neurotransmitter-specific cortical synaptic plasticity and further confirm the neurotrophic influence of sAPP alpha on cortical synaptogenesis.

  5. Cholesteatoma fibroblasts promote epithelial cell proliferation through overexpression of epiregulin.

    Directory of Open Access Journals (Sweden)

    Mamoru Yoshikawa

    Full Text Available To investigate whether keratinocytes proliferate in response to epiregulin produced by subepithelial fibroblasts derived from middle ear cholesteatoma. Tissue samples were obtained from patients undergoing tympanoplasty. The quantitative polymerase chain reaction and immunohistochemistry were performed to examine epiregulin expression and localization in cholesteatoma tissues and retroauricular skin tissues. Fibroblasts were cultured from cholesteatoma tissues and from normal retroauricular skin. These fibroblasts were used as feeder cells for culture with a human keratinocyte cell line (PHK16-0b. To investigate the role of epiregulin in colony formation by PHK16-0b cells, epiregulin mRNA expression was knocked down in fibroblasts by using short interfering RNA and epiregulin protein was blocked with a neutralizing antibody. Epiregulin mRNA expression was significantly elevated in cholesteatoma tissues compared with that in normal retroauricular skin. Staining for epiregulin was more intense in the epithelial cells and subepithelial fibroblasts of cholesteatoma tissues than in retroauricular skin. When PHK16-0b cells were cultured with cholesteatoma fibroblasts, their colony-forming efficiency was 50% higher than when these cells were cultured with normal skin fibroblasts. Also, knockdown of epiregulin mRNA in cholesteatoma fibroblasts led to greater suppression of colony formation than knockdown in skin fibroblasts. Furthermore, the colony-forming efficiency of PHK16-0b cells was significantly reduced after treatment with an epiregulin neutralizing antibody in co-culture with cholesteatoma fibroblasts, but not in co-culture with skin fibroblasts. These results suggest that keratinocyte hyperproliferation in cholesteatoma is promoted through overexpression of epiregulin by subepithelial fibroblasts via epithelial-mesenchymal interactions, which may play a crucial role in the pathogenesis of middle ear cholesteatoma.

  6. LIM only 4 is overexpressed in late stage pancreas cancer

    Directory of Open Access Journals (Sweden)

    Fujita Hayato

    2008-12-01

    Full Text Available Abstract Background LIM-only 4 (LMO4, a member of the LIM-only (LMO subfamily of LIM domain-containing transcription factors, was initially reported to have an oncogenic role in breast cancer. We hypothesized that LMO4 may be related to pancreatic carcinogenesis as it is in breast carcinogenesis. If so, this could result in a better understanding of tumorigenesis in pancreatic cancer. Methods We measured LMO4 mRNA levels in cultured cells, pancreatic bulk tissues and microdissected target cells (normal ductal cells; pancreatic intraepithelial neoplasia-1B [PanIN-1B] cells; PanIN-2 cells; invasive ductal carcinoma [IDC] cells; intraductal papillary-mucinous adenoma [IPMA] cells; IPM borderline [IPMB] cells; and invasive and non-invasive IPM carcinoma [IPMC] by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR. Results 9 of 14 pancreatic cancer cell lines expressed higher levels of LMO4 mRNA than did the human pancreatic ductal epithelial cell line (HPDE. In bulk tissue samples, expression of LMO4 was higher in pancreatic carcinoma than in intraductal papillary-mucinous neoplasm (IPMN or non-neoplastic pancreas (p LMO4 than did normal ductal epithelia or PanIN-1B cells (p p = 0.014. IPMC cells expressed significantly higher levels of LMO4 than did normal ductal epithelia (p p p = 0.003. Conclusion Pancreatic carcinomas (both IDC and IPMC expressed significantly higher levels of LMO4 mRNA than did normal ductal epithelia, PanIN-1B, PanIN-2, IPMA and IPMB. These results suggested that LMO4 is overexpressed at late stages in carcinogenesis of pancreatic cancer.

  7. WDR62 overexpression is associated with a poor prognosis in patients with lung adenocarcinoma.

    Science.gov (United States)

    Shinmura, Kazuya; Kato, Hisami; Kawanishi, Yuichi; Igarashi, Hisaki; Inoue, Yusuke; Yoshimura, Katsuhiro; Nakamura, Satoki; Fujita, Hidehiko; Funai, Kazuhito; Tanahashi, Masayuki; Niwa, Hiroshi; Ogawa, Hiroshi; Sugimura, Haruhiko

    2017-08-01

    Human WDR62, which is localized in the cytoplasm including the centrosome, is known to be responsible for primary microcephaly; however, the role of WDR62 abnormality in cancers remains largely unknown. In this study, we aimed to reveal the pathological role of WDR62 abnormality in lung adenocarcinoma (LAC). We first examined the WDR62 mRNA expression level of LAC (n = 64) using a QRT-PCR analysis and found that WDR62 mRNA transcripts were significantly overexpressed in LAC (P = 0.0432, Wilcoxon matched pairs test). An immunohistochemical analysis for LAC (n = 237) showed that WDR62 proteins were also significantly overexpressed in LAC (P lung cancer cell line H1299. WDR62-overexpressing lung cancer cells exhibited an increase in cell growth. Moreover, the concurrent overexpression of WDR62 and TPX2, a WDR62-interacting protein that is also overexpressed in LAC, induced centrosome amplification in the lung cells. Finally, we disclosed that the concurrent overexpression of WDR62 and TPX2 is common in diverse human cancers, using data from the Cancer Genome Atlas. These results suggested that WDR62 overexpression is associated with a poor prognosis in patients with LAC and leads to an increase in the malignant potential of lung cells. © 2017 Wiley Periodicals, Inc.

  8. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lijie [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China); Dong, Pingping [Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai (China); Liu, Longzi; Gao, Qiang; Duan, Meng [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China); Zhang, Si; Chen, She [Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Xue, Ruyi, E-mail: xue.ruyi@zs-hospital.sh.cn [Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai (China); Wang, Xiaoying, E-mail: xiaoyingwang@fudan.edu.cn [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China)

    2016-04-29

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstrated that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. - Highlights: • Pofut1 overexpression in HCC was correlated with aggressive tumor behaviors. • Pofut1 overexpression in HCC was associated with poor prognosis. • Pofut1 promoted cell proliferation, migration and invasion in hepatoma cells. • Pofut1 activated Notch signaling pathway in hepatoma cells.

  9. EFFECTS OF p53 OVEREXPRESSION ON NEOPLASTIC CELL MITOSIS AND APOPTOSIS IN NASOPHARYNGEAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To investigate the p53 overexpression and its correlation withneoplastic cell mitosis and apoptosis in 43 nasopharyngeal carcinomas (NPCs). Methods: Forty-three pretreated NPC biopsy samples were randomly collected in the year 1997 for this study. p53 overexpression was detected by LSAB immunohistochemistry using DO-7 primary antibody. Mitotic figures were counted on H&E stained slides, and apoptotic cells on TUNEL-stained slides by use of in-situ cell death detection kit. Both of mitotic and apoptotic cells were quantitated by cell numbers per one high power field (5′ 40) averagely in terms of mitotic index (MI) and TUNEL index (TI), respectively. To compare the mean MIs of two groups categorized by different percentages of positive p53 positive cells found in NPC specimens was taken for the purpose of designating the criterion of p53 overexpression. And then, the correlation of p53 overexpression with MI and TI was made by statistical analysis. Results: Because statistically significant difference appeared at the criterion of 20%, the p53 overexpression of NPC was defined as≥20% of positive cells found. The p53 overexpression thus could be detected in 37 out of 43 NPCs, reaching 86.05% (37/43). The mean MI (1.87± 1.78/HPF) of 37 NPCs with p53 overexpression was significantly higher than that (0.76± 0.63/HPF) of 6 NPCs without p53 overexpression, the P value being <0.05. However, there was no statistical difference between the mean TI (24.50± 26.66HPF) of 37 NPCs with p53 overexpression and TI (23.17± 25.30/HPF) of 6 NPCs without p53 overexpression. Conclusions: p53 overexpression of NPC could be designated by ≥20% of positive neoplastic cells found in pretreated NPC specimens, and the rate of which reached 86.05% (37/43). The overexpressed p53 could enhance cell proliferative activity in pretreated NPCs represented by increasing of MI, but showed no effect on neoplastic cell apoptosis.

  10. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism

    Directory of Open Access Journals (Sweden)

    Karhumaa Kaisa

    2011-07-01

    Full Text Available Abstract Background Isobutanol can be a better biofuel than ethanol due to its higher energy density and lower hygroscopicity. Furthermore, the branched-chain structure of isobutanol gives a higher octane number than the isomeric n-butanol. Saccharomyces cerevisiae was chosen as the production host because of its relative tolerance to alcohols, robustness in industrial fermentations, and the possibility for future combination of isobutanol production with fermentation of lignocellulosic materials. Results The yield of isobutanol was improved from 0.16 to 0.97 mg per g glucose by simultaneous overexpression of biosynthetic genes ILV2, ILV3, and ILV5 in valine metabolism in anaerobic fermentation of glucose in mineral medium in S. cerevisiae. Isobutanol yield was further improved by twofold by the additional overexpression of BAT2, encoding the cytoplasmic branched-chain amino-acid aminotransferase. Overexpression of ILV6, encoding the regulatory subunit of Ilv2, in the ILV2 ILV3 ILV5 overexpression strain decreased isobutanol production yield by threefold. In aerobic cultivations in shake flasks in mineral medium, the isobutanol yield of the ILV2 ILV3 ILV5 overexpression strain and the reference strain were 3.86 and 0.28 mg per g glucose, respectively. They increased to 4.12 and 2.4 mg per g glucose in yeast extract/peptone/dextrose (YPD complex medium under aerobic conditions, respectively. Conclusions Overexpression of genes ILV2, ILV3, ILV5, and BAT2 in valine metabolism led to an increase in isobutanol production in S. cerevisiae. Additional overexpression of ILV6 in the ILV2 ILV3 ILV5 overexpression strain had a negative effect, presumably by increasing the sensitivity of Ilv2 to valine inhibition, thus weakening the positive impact of overexpression of ILV2, ILV3, and ILV5 on isobutanol production. Aerobic cultivations of the ILV2 ILV3 ILV5 overexpression strain and the reference strain showed that supplying amino acids in cultivation media

  11. Overexpression of NYGGF4 (PID1) induces mitochondrial impairment in 3T3-L1 adipocytes.

    Science.gov (United States)

    Zhao, Yaping; Zhang, Chunmei; Chen, Xiaohui; Gao, Chunlin; Ji, Chenbo; Chen, Fukun; Zhu, Chun; Zhu, Jingai; Wang, Jialin; Qian, Lingmei; Guo, Xirong

    2010-07-01

    NYGGF4 is a recently discovered gene that is involved in obesity-associated insulin resistance. The exact mechanism by which NYGGF4 induces insulin resistance has not yet been fully elucidated. In this study, we demonstrated that the overexpression of NYGGF4 in 3T3-L1 adipocytes decreased mitochondrial mass, mitochondrial DNA, and intracellular ATP synthesis. In addition, NYGGF4 overexpression also led to an imbalance of the mitochondrial dynamics and excess intracellular ROS production. Collectively, our results indicated that the overexpression of NYGGF4 caused mitochondrial dysfunction in adipocytes, which might be responsible for the development of NYGGF4-induced insulin resistance.

  12. Overexpression of peanut diacylglycerol acyltransferase 2 in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Zhenying Peng

    Full Text Available Diacylglycerol acyltransferase (DGAT is the rate-limiting enzyme in triacylglycerol biosynthesis in eukaryotic organisms. Triacylglycerols are important energy-storage oils in plants such as peanuts, soybeans and rape. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2 genes were cloned from the peanut cultivar 'Luhua 14' using a homologous gene sequence method and rapid amplification of cDNA ends. To understand the role of AhDGAT2 in triacylglycerol biosynthesis, two AhDGAT2 nucleotide sequences that differed by three amino acids were expressed as glutathione S-transferase (GST fusion proteins in Escherichia coli Rosetta (DE3. Following IPTG induction, the isozymes (AhDGAT2a and AhDGAT2b were expressed as 64.5 kDa GST fusion proteins. Both AhDGAT2a and AhDGAT2b occurred in the host cell cytoplasm and inclusion bodies, with larger amounts in the inclusion bodies. Overexpression of AhDGATs depressed the host cell growth rates relative to non-transformed cells, but cells harboring empty-vector, AhDGAT2a-GST, or AhDGAT2b-GST exhibited no obvious growth rate differences. Interestingly, induction of AhDGAT2a-GST and AhDGAT2b-GST proteins increased the sizes of the host cells by 2.4-2.5 times that of the controls (post-IPTG induction. The total fatty acid (FA levels of the AhDGAT2a-GST and AhDGAT2a-GST transformants, as well as levels of C12:0, C14:0, C16:0, C16:1, C18:1n9c and C18:3n3 FAs, increased markedly, whereas C15:0 and C21:0 levels were lower than in non-transformed cells or those containing empty-vectors. In addition, the levels of some FAs differed between the two transformant strains, indicating that the two isozymes might have different functions in peanuts. This is the first time that a full-length recombinant peanut DGAT2 has been produced in a bacterial expression system and the first analysis of its effects on the content and composition of fatty acids in E. coli. Our results indicate that AhDGAT2 is a strong candidate gene for

  13. Metabolic engineering of apple by overexpression of the MdMyb10 gene

    Directory of Open Access Journals (Sweden)

    Khaled A.L. Rihani

    2017-06-01

    In the present study, the flavonoid pathway was successfully modified in apple by overexpressing the MdMyb10 transcription factor to validate the hypothesis of increased effect on plant disease resistance.

  14. Oncoprotein MDM2 Overexpression is Associated with Poor Prognosis in Distinct Non-Hodgkin's Lymphoma Entities

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Nielsen, O; Pedersen, Niels Tinggaard

    1999-01-01

    MDM2 is an oncoprotein involved in the regulation of p53. MDM2 exerts its tumorigenic potential through p53-dependent and -independent mechanisms. It is frequently overexpressed in various malignancies. Little is known about the prognostic value of MDM2 expression in non-Hodgkin's lymphomas (NHL......). We analyzed MDM2 expression immunohistochemically in 188 NHL cases from a prospective population-based NHL registry. The aim was to identify MDM2 expression profiles in various histological NHL subtypes and analyze whether MDM2 expression correlated with clinical variables and p53 status. MDM2...... overexpression was present in 42 (22%) of 188 cases. The frequency was highest in aggressive/very aggressive NHL (P MDM2 overexpression was associated with higher-grade disease (P = .008). MDM2 overexpression was not related to a phenotype indicating...

  15. Overexpression of Ref-1 Inhibits Lead-induced Endothelial Cell Death via the Upregulation of Catalase.

    Science.gov (United States)

    Lee, Kwon Ho; Lee, Sang Ki; Kim, Hyo Shin; Cho, Eun Jung; Joo, Hee Kyoung; Lee, Eun Ji; Lee, Ji Young; Park, Myoung Soo; Chang, Seok Jong; Cho, Chung-Hyun; Park, Jin Bong; Jeon, Byeong Hwa

    2009-12-01

    The role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the lead (Pb)-induced cellular response was investigated in the cultured endothelial cells. Pb caused progressive cellular death in endothelial cells, which occurred in a concentration- and time-dependent manner. However, Ref-1 overexpression with AdRef-1 significantly inhibited Pb-induced cell death in the endothelial cells. Also the overexpression of Ref-1 significantly suppressed Pb-induced superoxide and hydrogen peroxide elevation in the endothelial cells. Pb exposure induced the downregulation of catalase, it was inhibited by the Ref-1 overexpression in the endothelial cells. Taken together, our data suggests that the overexpression of Ref-1 inhibited Pb-induced cell death via the upregulation of catalase in the cultured endothelial cells.

  16. ADAM12/syndecan-4 signaling promotes beta 1 integrin-dependent cell spreading through protein kinase Calpha and RhoA

    DEFF Research Database (Denmark)

    Thodeti, Charles Kumar; Albrechtsen, Reidar; Grauslund, Morten

    2002-01-01

    in Chinese hamster ovary beta1 cells as revealed by 12G10 staining. Further, expression of myristoylated, constitutively active PKCalpha resulted in beta(1) integrin-dependent cell spreading, but additional activation of RhoA was required to induce stress fiber formation. In summary, these data provide novel...

  17. Cardiac specific ATP-sensitive K+ channel (KATP) overexpression results in embryonic lethality.

    Science.gov (United States)

    Toib, Amir; Zhang, Hai Xia; Broekelmann, Thomas J; Hyrc, Krzysztof L; Guo, Qiusha; Chen, Feng; Remedi, Maria S; Nichols, Colin G

    2012-09-01

    Transgenic mice overexpressing SUR1 and gain of function Kir6.2[∆N30, K185Q] K(ATP) channel subunits, under cardiac α-myosin heavy chain (αMHC) promoter control, demonstrate arrhythmia susceptibility and premature death. Pregnant mice, crossed to carry double transgenic progeny, which harbor high levels of both overexpressed subunits, exhibit the most extreme phenotype and do not deliver any double transgenic pups. To explore the fetal lethality and embryonic phenotype that result from K(ATP) overexpression, wild type (WT) and K(ATP) overexpressing embryonic cardiomyocytes were isolated, cultured and voltage-clamped using whole cell and excised patch clamp techniques. Whole mount embryonic imaging, Hematoxylin and Eosin (H&E) and α smooth muscle actin (αSMA) immunostaining were used to assess anatomy, histology and cardiac development in K(ATP) overexpressing and WT embryos. Double transgenic embryos developed in utero heart failure and 100% embryonic lethality by 11.5 days post conception (dpc). K(ATP) currents were detectable in both WT and K(ATP)-overexpressing embryonic cardiomyocytes, starting at early stages of cardiac development (9.5 dpc). In contrast to adult cardiomyocytes, WT and K(ATP)-overexpressing embryonic cardiomyocytes exhibit basal and spontaneous K(ATP) current, implying that these channels may be open and active under physiological conditions. At 9.5 dpc, live double transgenic embryos demonstrated normal looping pattern, although all cardiac structures were collapsed, probably representing failed, non-contractile chambers. In conclusion, K(ATP) channels are present and active in embryonic myocytes, and overexpression causes in utero heart failure and results in embryonic lethality. These results suggest that the K(ATP) channel may have an important physiological role during early cardiac development.

  18. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

    OpenAIRE

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H.; Patton-Vogt, Jana; Bakalinsky, Alan T.

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a ...

  19. Establishment and initial characterization of SOX2-overexpressing NT2/D1 cell clones.

    Science.gov (United States)

    Drakulic, D; Krstic, A; Stevanovic, M

    2012-05-15

    SOX2, a universal marker of pluripotent stem cells, is a transcription factor that helps control embryonic development in vertebrates; its expression persists in neural stem/progenitor cells into adulthood. Considering the critical role of the SOX2 transcription factor in the regulation of genes required for self-renewal and pluripotency of stem cells, we developed and characterized SOX2-overexpressing NT2/D1 cell clones. Using Southern blot and semi-quantitative RT-PCR, we confirmed integration and expression of exogenous SOX2 in three NT2/D1 cell clones. Overexpression of the SOX2 gene was detected in two of these clones. SOX2 overexpression in NT2/D1 cell clones resulted in altered expression of key pluripotency genes OCT4 and NANOG. Furthermore, SOX2-overexpressing NT2/D1 cell clones entered into retinoic acid-dependent neural differentiation, even when there was elevated SOX2 expression. After 21 days of induction by retinoic acid, expression of neural markers (neuroD1 and synaptophysin) was higher in induced cell clones than in induced parental cells. The cell clone with SOX2 overexpression had an approximately 1.3-fold higher growth rate compared to parental cells. SOX2 overexpression did not increase the population of cells undergoing apoptosis. Taken together, we developed two SOX2-overexpressing cell clones, with constitutive SOX2 expression after three weeks of retinoic acid treatment. SOX2 overexpression resulted in altered expression of pluripotency-related genes, increased proliferation, and altered expression of neural markers after three weeks of retinoic acid treatment.

  20. Overexpression of Porcine Beta-Defensin 2 Enhances Resistance to Actinobacillus pleuropneumoniae Infection in Pigs.

    Science.gov (United States)

    Yang, Xi; Cheng, Yu-Ting; Tan, Mei-Fang; Zhang, Hua-Wei; Liu, Wan-Quan; Zou, Geng; Zhang, Liang-Sheng; Zhang, Chun-Yan; Deng, Si-Min; Yu, Lei; Hu, Xue-Ying; Li, Lu; Zhou, Rui

    2015-07-01

    To reduce the need for antibiotics in animal production, alternative approaches are needed to control infection. We hypothesized that overexpression of native defensin genes will provide food animals with enhanced resistance to bacterial infections. In this study, recombinant porcine beta-defensin 2 (PBD-2) was overexpressed in stably transfected PK-15 porcine kidney cells. PBD-2 antibacterial activities against Actinobacillus pleuropneumoniae, an important respiratory pathogen causing porcine contagious pleuropneumonia, were evaluated on agar plates. Transgenic pigs constitutively overexpressing PBD-2 were produced by a somatic cell cloning method, and their resistance to bacterial infection was evaluated by direct or cohabitation infection with A. pleuropneumoniae. Recombinant PBD-2 peptide that was overexpressed in the PK-15 cells showed antibacterial activity against A. pleuropneumoniae. PBD-2 was overexpressed in the heart, liver, spleen, lungs, kidneys, and jejunum of the transgenic pigs, which showed significantly lower bacterial loads in the lungs and reduced lung lesions after direct or cohabitation infection with A. pleuropneumoniae. The results demonstrate that transgenic overexpression of PBD-2 in pigs confers enhanced resistance against A. pleuropneumoniae infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Regulation of polyphenols accumulation by combined overexpression/silencing key enzymes of phyenylpropanoid pathway

    Institute of Scientific and Technical Information of China (English)

    Junli Chang; Jie Luo; Guangyuan He

    2009-01-01

    There is a growing interest in the metabolic engineering of plant with increased desirable polyphenols such as chlorogenic acid (CGA) and rutin. In this study, the effects of overexpression of both phenylalanine ammonia lyase (AtPAL2), the first enzyme of the phe-nylpropanoid pathway, and hydroxycinnamoyl-CoA quinate:hydroxycinnamoyl transferase (NtHQT), the last enzyme of CGA biosynthesis, and the overexpres-sion of AtPAL2 together with silencing of NtHQT were investigated in tobacco. Transgenic tobacco plants over-expressing AtPAL2 showed two and five times increases of CGA and rutin levels than the wild-type (WT) plants, respectively. Overexpression of NtHQT further increases the accumulation of CGA in the AtPAL2 plants to about three times than that of the WT level, while silencing of NtHQT in AtPAL2 plants results in ~12 times increase in rutin level than that of the WT plants. Simultaneous overexpression of phenylalanine ammonia lyase (PAL) and overexpression/silencing HQT could be used for the production of functional food with increased polyphenols.

  2. Overexpression of Fatty-Acid-β-Oxidation-Related Genes Extends the Lifespan of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Shin-Hae Lee

    2012-01-01

    Full Text Available A better understanding of the aging process is necessary to ensure that the healthcare needs of an aging population are met. With the trend toward increased human life expectancies, identification of candidate genes affecting the regulation of lifespan and its relationship to environmental factors is essential. Through misexpression screening of EP mutant lines, we previously isolated several genes extending lifespan when ubiquitously overexpressed, including the two genes encoding the fatty-acid-binding protein and dodecenoyl-CoA delta-isomerase involved in fatty-acid β-oxidation, which is the main energy resource pathway in eukaryotic cells. In this study, we analyzed flies overexpressing the two main components of fatty-acid β-oxidation, and found that overexpression of fatty-acid-β-oxidation-related genes extended the Drosophila lifespan. Furthermore, we found that the ability of dietary restriction to extend lifespan was reduced by the overexpression of fatty-acid-β-oxidation-related genes. Moreover, the overexpression of fatty-acid-β-oxidation-related genes enhanced stress tolerance to oxidative and starvation stresses and activated the dFOXO signal, indicating translocation to the nucleus and transcriptional activation of the dFOXO target genes. Overall, the results of this study suggest that overexpression of fatty-acid-β-oxidation-related genes extends lifespan in a dietary-restriction-related manner, and that the mechanism of this process may be related to FOXO activation.

  3. Extending the Impact of RAC1b Overexpression to Follicular Thyroid Carcinomas

    Science.gov (United States)

    Faria, Márcia; Capinha, Liliana; Simões-Pereira, Joana; Bugalho, Maria João; Silva, Ana Luísa

    2016-01-01

    RAC1b is a hyperactive variant of the small GTPase RAC1 known to be a relevant molecular player in different cancers. Previous studies from our group lead to the evidence that its overexpression in papillary thyroid carcinoma (PTC) is associated with an unfavorable prognosis. In the present study, we intended to extend the analysis of RAC1b expression to thyroid follicular neoplasms and to seek for clinical correlations. RAC1b expression levels were determined by RT-qPCR in thyroid follicular tumor samples comprising 23 follicular thyroid carcinomas (FTCs) and 33 follicular thyroid adenomas (FTAs). RAC1b was found to be overexpressed in 33% of carcinomas while no RAC1b overexpression was documented among follicular adenomas. Patients with a diagnosis of FTC were divided into two groups based on longitudinal evolution and final outcome. RAC1b overexpression was significantly associated with both the presence of distant metastases (P = 0.01) and poorer clinical outcome (P = 0.01) suggesting that, similarly to that previously found in PTCs, RAC1b overexpression in FTCs is also associated with worse outcomes. Furthermore, the absence of RAC1b overexpression in follicular adenomas hints its potential as a molecular marker likely to contribute, in conjunction with other putative markers, to the preoperative differential diagnosis of thyroid follicular lesions. PMID:27127508

  4. Extending the Impact of RAC1b Overexpression to Follicular Thyroid Carcinomas

    Directory of Open Access Journals (Sweden)

    Márcia Faria

    2016-01-01

    Full Text Available RAC1b is a hyperactive variant of the small GTPase RAC1 known to be a relevant molecular player in different cancers. Previous studies from our group lead to the evidence that its overexpression in papillary thyroid carcinoma (PTC is associated with an unfavorable prognosis. In the present study, we intended to extend the analysis of RAC1b expression to thyroid follicular neoplasms and to seek for clinical correlations. RAC1b expression levels were determined by RT-qPCR in thyroid follicular tumor samples comprising 23 follicular thyroid carcinomas (FTCs and 33 follicular thyroid adenomas (FTAs. RAC1b was found to be overexpressed in 33% of carcinomas while no RAC1b overexpression was documented among follicular adenomas. Patients with a diagnosis of FTC were divided into two groups based on longitudinal evolution and final outcome. RAC1b overexpression was significantly associated with both the presence of distant metastases (P = 0.01 and poorer clinical outcome (P = 0.01 suggesting that, similarly to that previously found in PTCs, RAC1b overexpression in FTCs is also associated with worse outcomes. Furthermore, the absence of RAC1b overexpression in follicular adenomas hints its potential as a molecular marker likely to contribute, in conjunction with other putative markers, to the preoperative differential diagnosis of thyroid follicular lesions.

  5. Mechanisms of cell cycle control revealed by a systematic and quantitative overexpression screen in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Wei Niu

    2008-07-01

    Full Text Available Regulation of cell cycle progression is fundamental to cell health and reproduction, and failures in this process are associated with many human diseases. Much of our knowledge of cell cycle regulators derives from loss-of-function studies. To reveal new cell cycle regulatory genes that are difficult to identify in loss-of-function studies, we performed a near-genome-wide flow cytometry assay of yeast gene overexpression-induced cell cycle delay phenotypes. We identified 108 genes whose overexpression significantly delayed the progression of the yeast cell cycle at a specific stage. Many of the genes are newly implicated in cell cycle progression, for example SKO1, RFA1, and YPR015C. The overexpression of RFA1 or YPR015C delayed the cell cycle at G2/M phases by disrupting spindle attachment to chromosomes and activating the DNA damage checkpoint, respectively. In contrast, overexpression of the transcription factor SKO1 arrests cells at G1 phase by activating the pheromone response pathway, revealing new cross-talk between osmotic sensing and mating. More generally, 92%-94% of the genes exhibit distinct phenotypes when overexpressed as compared to their corresponding deletion mutants, supporting the notion that many genes may gain functions upon overexpression. This work thus implicates new genes in cell cycle progression, complements previous screens, and lays the foundation for future experiments to define more precisely roles for these genes in cell cycle progression.

  6. Enhancement of geraniol resistance of Escherichia coli by MarA overexpression.

    Science.gov (United States)

    Shah, Asad Ali; Wang, Chonglong; Chung, Young-Ryun; Kim, Jae-Yean; Choi, Eui-Sung; Kim, Seon-Won

    2013-03-01

    Improvement of a microorganism's tolerance against organic solvents is required for a microbial factory producing terpenoid based biofuels. The bacterial genes, marA, imp, cls and cti have been found to increase organic solvent tolerance. Thus, the tolerance against the following terpenoids (isopentenol, geraniol, myrcene, and farnesol) was studied with overexpression of marA, imp, cls and cti genes in Escherichia coli. The marA overexpression significantly enhanced the tolerance of E. coli against geraniol, whereas there was no tolerance improvement against the terpenoids by overexpression of cls and cti genes. The imp overexpression even yielded sensitive phenotype to the tested solvents. The colony forming efficiency of the marA overexpressing E. coli was increased by 10(4)-fold in plate overlay of geraniol compared to that of wild type E. coli and a two-fold decrease of intracellular geraniol accumulation was also observed in liquid culture of geraniol. Single knock-out mutations of marA, or one of the following genes (acrA, acrB and tolC) encoding AcrAB-TolC efflux pump made E. coli hypersensitive to geraniol. The geraniol tolerance conferred by marA overexpression was attributed to the AcrAB-TolC efflux pump that is activated by MarA.

  7. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development.

    Science.gov (United States)

    Wu, Shu; Platteau, Astrid; Chen, Shaoyi; McNamara, George; Whitsett, Jeffrey; Bancalari, Eduardo

    2010-05-01

    Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinates complex biological processes during development, differentiation, and tissue repair. Overexpression of CTGF is associated with mechanical ventilation with high tidal volume and oxygen exposure in newborn lungs. However, the role of CTGF in postnatal lung development and remodeling is not well understood. In the present study, a double-transgenic mouse model was generated with doxycycline-inducible overexpression of CTGF in respiratory epithelial cells. Overexpression of CTGF from Postnatal Days 1-14 resulted in thicker alveolar septa and decreased secondary septal formation. This is correlated with increased myofibroblast differentiation and disorganized elastic fiber deposition in alveolar septa. Overexpression of CTGF also decreased alveolar capillary network formation. There were increased alpha-smooth muscle actin expression and collagen deposition, and dramatic thickening in the peribronchial/peribronchiolar and perivascular regions in the double-transgenic lungs. Furthermore, overexpression of CTGF increased integrin-linked kinase expression, activated its downstream signaling target, Akt, as well as increased mRNA expression of fibronectin. These data demonstrate that overexpression of CTGF disrupts alveologenesis and capillary formation, and induces fibrosis during the critical period of alveolar development. These histologic changes are similar to those observed in lungs of infants with bronchopulmonary dysplasia.

  8. Overexpression of the receptor tyrosine kinase EphA4 in human gastric cancers

    Institute of Scientific and Technical Information of China (English)

    Mariko Oki; Hiroyuki Yamamoto; Hiroaki Taniguchi; Yasushi Adachi; Kohzoh Imai; Yasuhisa Shinomura

    2008-01-01

    AIM: To clarify the expression and role of Ephrin receptor A4 (EphA4) in gastric cancer in relation to clinicopathological characteristics and the expression of fibroblast growth factor receptor 1 (RGFR1) and ephrin ligands.METHODS: Eleven gastric carcinoma cell lines,24 paired surgical fresh specimens of gastric adenocarcinoma and adjacent nontumor tissue,74 conventional formalin-fixed,paraffin-embedded tumor specimens,and 55 specimens spotted on tissue microarray (TMA)were analyzed.Reverse transcription-PCR (RT-PCR),real-time RT-PCR,immunohistochemistry,and cell growth assays were performed.RESULTS: Overexpression of EphA4 mRNA expression was observed in 8 (73%) of 11 gastric cancer cell lines and 10 (42%) of 24 gastric cancer tissues.Overexpression of EphA4,analyzed by immunohistochemistry,was observed in 62 (48%) of 129 gastric cancer tissues.EphA4 overexpression,at the protein level,was significantly associated with depth of invasion and recurrence.EphA4 overexpression was also correlated with FGFR1 overexpression.Patients with EphA4-positive cancer had significantly shorter overall survival periods than did those with EphA4-negative cancer (P= 0.0008).The mRNAs for ephrin ligands were coexpressed in various combinations in gastric cancer cell lines and cancer tissues.Downregulation of EphA4 expression by siRNA in EphA4-overexpressing gastric cancer cell lines resulted in a significant decrease in cell growth.CONCLUSION: Our results suggest that overexpression of EphA4 plays a role in gastric cancer.

  9. A novel vector-based method for exclusive overexpression of star-form microRNAs.

    Directory of Open Access Journals (Sweden)

    Bo Qu

    Full Text Available The roles of microRNAs (miRNAs as important regulators of gene expression have been studied intensively. Although most of these investigations have involved the highly expressed form of the two mature miRNA species, increasing evidence points to essential roles for star-form microRNAs (miRNA*, which are usually expressed at much lower levels. Owing to the nature of miRNA biogenesis, it is challenging to use plasmids containing miRNA coding sequences for gain-of-function experiments concerning the roles of microRNA* species. Synthetic microRNA mimics could introduce specific miRNA* species into cells, but this transient overexpression system has many shortcomings. Here, we report that specific miRNA* species can be overexpressed by introducing artificially designed stem-loop sequences into short hairpin RNA (shRNA overexpression vectors. By our prototypic plasmid, designed to overexpress hsa-miR-146b-3p, we successfully expressed high levels of hsa-miR-146b-3p without detectable change of hsa-miR-146b-5p. Functional analysis involving luciferase reporter assays showed that, like natural miRNAs, the overexpressed hsa-miR-146b-3p inhibited target gene expression by 3'UTR seed pairing. Our demonstration that this method could overexpress two other miRNAs suggests that the approach should be broadly applicable. Our novel strategy opens the way for exclusively stable overexpression of miRNA* species and analyzing their unique functions both in vitro and in vivo.

  10. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells.

    Science.gov (United States)

    Cho, Kyoung Bin; Cho, Min Kyong; Lee, Won Young; Kang, Keon Wook

    2010-07-28

    The c-myc gene is frequently overexpressed in human breast cancer and its target genes are involved in tumorigenesis. Epithelial mesenchymal transitions (EMT), where cells undergo a developmental switch from a polarized epithelial phenotype to a highly motile mesenchymal phenotype, are associated with invasion and motility of cancer cells. Basal E-cadherin expression was down-regulated in c-myc overexpressing MCF10A (c-myc-MCF10A) cells compared to GFP-overexpressing MCF10A (GFP-MCF10A) cells, while N-cadherin was distinctly increased in c-myc-MCF10A cells. Given that glycogen synthase kinase-3beta (GSK-3beta) and the snail axis have key roles in E-cadherin deregulation during EMT, we investigated the role of GSK-3beta/snail signaling pathways in the induction of EMT by c-myc overexpression. In contrast to GFP-MCF10A cells, both the transcriptional activity and the ubiquitination-dependent protein stability of snail were enhanced in c-myc-MCF10A cells, and this was reversed by GSK-3beta overexpression. We also found that c-myc overexpression inhibits GSK-3beta activity through activation of extracellular signal-regulated kinase (ERK). Inhibition of ERK by dominant negative mutant transfection or chemical inhibitor significantly suppressed snail gene transcription. These results suggest that c-myc overexpression during transformation of mammary epithelial cells (MEC) is involved in EMTs via ERK-dependent GSK-3beta inactivation and subsequent snail activation.

  11. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Li, E-mail: luli7300@126.com [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Wen-Hui [Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001 (China); Yan, Ba-Yi; Yang, Gui-Jiao [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Li, Ang [Department of Medicine, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Department of Anatomy, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Yang, Wu-Lin, E-mail: wulinyoung@163.com [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research - A*STAR (Singapore)

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.

  12. Immunohistochemical determination of HER-2/neu overexpression in malignant melanoma reveals no prognostic value, while c-Kit (CD117 overexpression exhibits potential therapeutic implications

    Directory of Open Access Journals (Sweden)

    Potti Anil

    2003-01-01

    Full Text Available Abstract Background HER-2/neu and c-kit (CD117 onco-protein are increasingly being recognized as targets for therapy in solid tumors, but data on their role in malignant melanoma is currently limited. We studied the prevalence of overexpression of HER-2/neu and c-Kit in 202 patients with malignant melanoma to evaluate a possible prognostic value of these molecular targets in malignant melanoma. Methods Overexpression of HER-2/neu and c-Kit was evaluated using immunohistochemical assays in 202 archival tissue specimens. Results Between 1991 and 2001, 202 subjects (109 males; 54% and 93 females; 46% with malignant melanoma were studied with a mean age of 57 years (age range: 15–101 years. The most common histologic type was amelanotic melanoma (n = 62; 30.7% followed by superficial spreading melanoma (n = 54; 26.7%. The depth of penetration of melanoma (Breslow thickness, pT Stage ranged from 0.4 mm (stage pT1 to 8.0 mm (stage pT4A. Mean thickness was 2.6 mm (stage pT3A. The ECOG performance scores ranged from 0 to 3. Only 2 patients (0.9% revealed HER-2/neu overexpression, whereas 46 (22.8% revealed c-Kit overexpression. Multivariate analysis performed did not show a significant difference in survival between c-Kit positive and negative groups (p = 0.36. Interestingly, not only was c-Kit more likely to be overexpressed in the superficial spreading type, a preliminary association between the presence or absence of c-Kit overexpression and the existence of another second primary tumor was also observed. Conclusions The results of our large study indicate that the HER-2/neu onco-protein neither has a role in melanogenesis nor is a potential target for clinical trials with monoclonal antibody therapy. This indicates there is no role for its testing in patients with malignant melanoma. Although c-Kit, expressed preferentially in the superficial spreading type, may not have prognostic value, it does have significant therapeutic implications as a

  13. Correlation between human papillomavirus and p16 overexpression in oropharyngeal tumours: a systematic review

    Science.gov (United States)

    Grønhøj Larsen, C; Gyldenløve, M; Jensen, D H; Therkildsen, M H; Kiss, K; Norrild, B; Konge, L; von Buchwald, C

    2014-01-01

    Background: A significant proportion of squamous cell carcinomas of the oropharynx (OP-SCC) are related to human papillomavirus (HPV) infection and p16 overexpression. This subgroup proves better prognosis and survival but no evidence exists on the correlation between HPV and p16 overexpression based on diagnostic measures and definition of p16 overexpression. We evaluated means of p16 and HPV diagnostics, and quantified overexpression of p16 in HPV-positive and -negative OP-SCCs by mode of immunohistochemical staining of carcinoma cells. Methods: PubMed, Embase, and the Cochrane Library were searched from 1980 until October 2012. We applied the following inclusion criteria: a minimum of 20 cases of site-specific OP-SCCs, and HPV and p16 results present. Studies were categorised into three groups based on their definition of p16 overexpression: verbal definition, nuclear and cytoplasmatic staining between 5 and 69%, and ⩾70% staining. Results: We identified 39 studies with available outcome data (n=3926): 22 studies (n=1980) used PCR, 6 studies (n=688) used ISH, and 11 studies (n=1258) used both PCR and ISH for HPV diagnostics. The methods showed similar HPV-positive results. Overall, 52.5% of the cases (n=2062) were HPV positive. As to p16 overexpression, 17 studies (n=1684) used a minimum of 5–69% staining, and 7 studies (n=764) used ⩾70% staining. Fifteen studies (n=1478) referred to a verbal definition. Studies showed high heterogeneity in diagnostics of HPV and definition of p16. The correlation between HPV positivity and p16 overexpression proved best numerically in the group applying ⩾70% staining for p16 overexpression. The group with verbal definitions had a significantly lower false-positive rate, but along with the group applying 5–69% staining showed a worse sensitivity compared with ⩾70% staining. Conclusions: There are substantial differences in how studies diagnose HPV and define p16 overexpression. Numerically, p16 staining is better to

  14. Overexpression of the cholesterol-binding protein MLN64 induces liver damage in the mouse

    Institute of Scientific and Technical Information of China (English)

    Juan Enrique Tichauer; Juan Francisco Miquel; Attilio Rigotti; Silvana Zanlungo; Mar(i)a Gabriela Morales; Ludwig Amigo; Leopoldo Galdames; Andrés Kléin; Verónica Quifio(n)es; Carla Ferrada; Alejandra Alvarez R; Marie-Christine Rio

    2007-01-01

    AIM: To examine the in vivo phenotype associated with hepatic metastatic lymph node 64 (MLN64) over-expression.METHODS: Recombinant-adenovirus-mediated MLN64 gene transfer was used to overexpress MLN64 in the livers of C57BL/6 mice. We measured the effects of MLN64 overexpression on hepatic cholesterol content, bile flow, biliary lipid secretion and apoptosis markers. For in vitro studies cultured CHO cells with transient MLN64 overexpression were utilized and apoptosis by TUNEL assay was measured.RESULTS: Livers from Ad.MLN64-infected mice exhibited early onset of liver damage and apoptosis. This response correlated with increases in liver cholesterol content and biliary bile acid concentration, and impaired bile flow. We investigated whether liver MLN64 expression could be modulated in a murine model of hepatic injury. We found increased hepatic MLN64 mRNA and protein levels in mice with chenodeoxycholic acid-induced liver damage. In addition, cultured CHO cells with transient MLN64 overexpression showed increased apoptosis.CONCLUSION: In summary, hepatic MLN64 over-expression induced damage and apoptosis in murine livers and altered cholesterol metabolism. Further studies are required to elucidate the relevance of these findings under physiologic and disease conditions.

  15. Overexpression of BIRC6 Is a Predictor of Prognosis for Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Tingting Hu

    Full Text Available Inhibitors of apoptosis proteins (IAPs have been well investigated in human cancers, where they are frequently overexpressed and associated with poor prognosis. Here we explored the role of baculoviral IAP repeat containing 6 (BIRC6, a member of IAPs, in human colorectal cancer (CRC.We used Western blotting and immunohistochemistry to examine BIRC6 expression in 7 CRC cell lines and 126 CRC clinical samples. We determined the biological significance of BIRC6 in CRC cell lines by a lentivirus-mediated silencing method.We reported that BIRC6 was overexpressed in CRC cell lines and clinical CRC tissues. BIRC6 overexpression was correlated with tumor size and invasion depth of CRC. BIRC6 overexpression is associated with worse overall survival (OS (P = 0.001 and shorter disease-free survival (DFS (P = 0.010. BIRC6 knockdown inhibited cell proliferation, arrested cell cycle at S phase, downregulated cyclin A2, B1, D1 and E1 levels, and sensitized CRC cells to chemotherapy in vitro and in vivo.Taken together, these data suggests that BIRC6 overexpression is a predictor of poor prognosis in colorectal cancer and BIRC6 could be a potential target of CRC therapy.

  16. Absence of Hyperplasia in Gasp-1 Overexpressing Mice is Dependent on Myostatin Up-Regulation

    Directory of Open Access Journals (Sweden)

    Caroline Brun

    2014-09-01

    Full Text Available Background/Aims: Overexpression of Gasp-1, an inhibitor of myostatin, leads to a hypermuscular phenotype due to hypertrophy rather than hyperplasia in mice. However to date, the cellular and molecular mechanisms underlying this phenotype are not investigated. Methods: Skeletal muscles of overexpressing Gasp-1 mice, called Tg(Gasp-1 mice, were analyzed by histological methods. Satellite cell-derived myoblasts from these mice were used to investigate the molecular mechanisms. Results: We demonstrated that hypertrophy in Tg(Gasp-1 mice was related to a myonuclear accretion during the first 3 postnatal weeks and an activation of the pro-hypertrophic Akt/mTORC/p70S6K signaling. In accordance with these results, we showed that overexpressing Gasp-1 primary myoblasts proliferated faster and myonuclei average per myotube was increased during differentiation. Molecular analysis revealed that Gasp-1 overexpression resulted in increased myostatin expression related to its auto-regulation. Despite its inhibition, myostatin led to Pax7 deregulation through its non-canonical Erk1/2 signaling pathway. Consistent with this, inhibition of Erk1/2 signaling pathway as well as neutralization of secreted myostatin rescue the Pax7 expression in overexpressing Gasp-1 myoblasts. Conclusion: Our study shows that myostatin is able to act independently of its canonical pathway to regulate the Pax7 expression. Altogether, our results indicate that myostatin could regulate muscle development despite its protein inhibition.

  17. Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation.

    Science.gov (United States)

    Brun, Caroline; Périé, Luce; Baraige, Fabienne; Vernus, Barbara; Bonnieu, Anne; Blanquet, Véronique

    2014-01-01

    Overexpression of Gasp-1, an inhibitor of myostatin, leads to a hypermuscular phenotype due to hypertrophy rather than hyperplasia in mice. However to date, the cellular and molecular mechanisms underlying this phenotype are not investigated. Skeletal muscles of overexpressing Gasp-1 mice, called Tg(Gasp-1) mice, were analyzed by histological methods. Satellite cell-derived myoblasts from these mice were used to investigate the molecular mechanisms. We demonstrated that hypertrophy in Tg(Gasp-1) mice was related to a myonuclear accretion during the first 3 postnatal weeks and an activation of the pro-hypertrophic Akt/mTORC/p70S6K signaling. In accordance with these results, we showed that overexpressing Gasp-1 primary myoblasts proliferated faster and myonuclei average per myotube was increased during differentiation. Molecular analysis revealed that Gasp-1 overexpression resulted in increased myostatin expression related to its auto-regulation. Despite its inhibition, myostatin led to Pax7 deregulation through its non-canonical Erk1/2 signaling pathway. Consistent with this, inhibition of Erk1/2 signaling pathway as well as neutralization of secreted myostatin rescue the Pax7 expression in overexpressing Gasp-1 myoblasts. Our study shows that myostatin is able to act independently of its canonical pathway to regulate the Pax7 expression. Altogether, our results indicate that myostatin could regulate muscle development despite its protein inhibition. © 2014 S. Karger AG, Basel.

  18. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

    Directory of Open Access Journals (Sweden)

    Terry D. Hinds

    2016-02-01

    Full Text Available Unlike the glucocorticoid receptor α (GRα, GR β (GRβ has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx and muscle ring finger 1 (MuRF1 response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  19. Rsf-1 overexpression correlates with poor prognosis and cell proliferation in colon cancer.

    Science.gov (United States)

    Liu, Shuli; Dong, Qianze; Wang, Enhua

    2012-10-01

    Rsf-1 (HBXAP) was recently reported to be overexpressed in various cancers and associated with the malignant behavior of cancer cells. However, the expression of Rsf-1 and its biological roles in colon cancer have not been reported. The molecular mechanism of Rsf-1 in cancer aggressiveness remains ambiguous. In the present study, we analyzed the expression pattern of Rsf-1 in colon cancer tissues and found that Rsf-1 was overexpressed in 50.4 % of colon cancer specimens. There was a significant association between Rsf-1 overexpression and TNM stage (p = 0.0205), lymph node metastasis (p = 0.0025), and poor differentiation (p = 0.0235). Furthermore, Rsf-1 overexpression correlated with a poor prognosis in colon cancer patients (p = 0.0011). In addition, knockdown of Rsf-1 expression in HT29 and HCT116 cells with high endogenous Rsf-1 expression decrease cell proliferation and colony formation ability. Further analysis showed that Rsf-1 knockdown decreased cyclin E expression and phospho-Rb level. In conclusion, Rsf-1 is overexpressed in colon cancers and contributes to malignant cell growth by cyclin E and phospho-Rb modulation, which makes Rsf-1 a candidate therapeutic target in colon cancer.

  20. IL-5-overexpressing mice exhibit eosinophilia and altered wound healing through mechanisms involving prolonged inflammation.

    Science.gov (United States)

    Leitch, Victoria D; Strudwick, Xanthe L; Matthaei, Klaus I; Dent, Lindsay A; Cowin, Allison J

    2009-02-01

    Leucocytes are essential in healing wounds and are predominantly involved in the inflammatory and granulation stages of wound repair. Eosinophils are granulocytic leucocytes and are specifically regulated by interleukin-5 (IL-5), a cytokine produced by T helper 2 (Th2) cells. To characterize more clearly the role of the IL-5 and eosinophils in the wound healing process, IL-5-overexpressing and IL-5-deficient mice were used as models of eosinophilia and eosinophil depletion, respectively. Our results reveal a significantly altered inflammatory response between IL-5-overexpressing and IL-5 knockout mice post-wounding. Healing was significantly delayed in IL-5-overexpressing mice with wounds gaping wider and exhibiting impaired re-epithelialization. A delay in collagen deposition was observed suggesting a direct effect on matrix synthesis. A significant increase in inflammatory cell infiltration, particularly eosinophils and CD4(+) cells, one of the main cell types which secrete IL-5, was observed in IL-5-overexpressing mice wounds suggesting that one of the main roles of IL-5 in wound repair may be to promote the infiltration of eosinophils into healing wounds. Healing is delayed in IL-5-overexpressing mice and this corresponds to significantly increased levels of eosinophils and CD4(+) cells within the wound site that may contribute to and exacerbate the inflammatory response, resulting in detrimental wound repair.

  1. ten-a overexpression causes abnormal pattern in the Drosophila compound eye

    Institute of Scientific and Technical Information of China (English)

    LERTLUK NGERNSIRI; NORA FASCETTI; SUPPALUK ROMRATANAPAN; STEFAN BAUMGARTNER

    2006-01-01

    Ten-a is one of the two Drosophila proteins that belong to the Ten M protein family. This protein is a type Ⅱ transmembrane protein and is expressed mainly in the embryonic CNS, in the larval eye imaginal disc and in the compound eye of the pupa. Here,we investigate the role of ten-a during development of the compound eye by using the Gal4/UAS system to induce ten-a overexpression in the developing eye. We found that overexpression of ten-a can perturb eye development during all stages examined. In an early stage, overexpression of ten-a in eye primordial cells caused small and rough eyes and interfered with photoreceptor cell recruitment, resulting in some ommatidia having fewer or extra photoreceptor cells. Conversely, ten-a overexpression during ommatidial formation caused severe eye defects due to absence of many cellular components. Interestingly,overexpression of ten-a in the late stage developing ommatidial cluster affected the number of pigment cells, caused cone cells proliferation in many ommatidia, and caused some photoreceptor cell defects. These results suggest that ten-a may be a novel gene required for normal eye morphogenesis.

  2. Functional and gene expression analysis of hTERT overexpressed endothelial cells

    Directory of Open Access Journals (Sweden)

    Haruna Takano

    2008-09-01

    Full Text Available Haruna Takano1, Satoshi Murasawa1,2, Takayuki Asahara1,2,31Institute of Biomedical Research and Innovation, Kobe, Japan; 2RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; 3Tokai University of School of Medicine, Tokai, JapanAbstract: Telomerase dysfunction contributes to cellular senescence. Recent advances indicate the importance of senescence in maintaining vascular cell function in vitro. Human telomerase reverse transcriptase (hTERT overexpression is thought to lead to resistance to apoptosis and oxidative stress. However, the mechanism in endothelial lineage cells is unclear. We tried to generate an immortal endothelial cell line from human umbilical vein endothelial cells using a no-virus system and examine the functional mechanisms of hTERT overexpressed endothelial cell senescence in vitro. High levels of hTERT genes and endothelial cell-specific markers were expressed during long-term culture. Also, angiogenic responses were observed in hTERT overexpressed endothelial cell. These cells showed a delay in senescence and appeared more resistant to stressed conditions. PI3K/Akt-related gene levels were enhanced in hTERT overexpressed endothelial cells. An up-regulated PI3K/Akt pathway caused by hTERT overexpression might contribute to anti-apoptosis and survival effects in endothelial lineage cells.Keywords: endothelial, telomerase, senescence, oxidative stress, anti-apoptosis, PI3K/Akt pathway

  3. HER3 over-expression and overall survival in gastrointestinal cancers.

    Science.gov (United States)

    Wang, Yadong; Yang, Haiyan; Duan, Guangcai

    2015-12-15

    Published studies on the association between human epidermal factor receptor 3 (HER3) expression and overall survival (OS) in gastrointestinal cancers have yielded conflicting results. The aim of this study was to explore the association of HER3 over-expression with OS in gastrointestinal cancers. A systematic search was performed through Medline/PubMed, Embase, Science Direct and Elsevier. The summary odds ratio (OR) with 95% confidence interval (CI) was calculated to estimate the strength of the association. Overall, we observed that HER3 over-expression was associated with worse OS at five years (OR = 1.38, 95% CI: 1.04-1.82); however, HER3 over-expression was not associated with worse OS at three years (OR = 1.33, 95% CI: 0.97-1.84). The cumulative meta-analysis showed similar results. In subgroup analyses by tumor type, HER3 over-expression in gastric cancers was associated with worse OS at both three years (OR = 1.69, 95% CI: 1.28-2.25) and five years (OR = 1.74, 95% CI: 1.26-2.41). In conclusion, our results suggest that HER3 over-expression may be associated with worse overall survival in gastric cancers. Well-designed studies with a large sample size are required to further confirm our findings.

  4. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells.

    Science.gov (United States)

    Wang, Fang; Chen, Yifan; Huang, Lihua; Liu, Tao; Huang, Yue; Zhao, Jianming; Wang, Xiaokun; Yang, Ke; Ma, Shaolin; Huang, Liyan; To, Kenneth Kin Wah; Gu, Yong; Fu, Liwu

    2015-12-01

    The overexpression of ATP-binding cassette (ABC) transporters is closely associated with the development of multidrug resistance (MDR) in certain types of cancer, which represents a formidable obstacle to the successful cancer chemotherapy. Here, we investigated that cetuximab, an EGFR monoclonal antibody, reversed the chemoresistance mediated by ABCB1, ABCG2 or ABCC1. Our results showed that cetuximab significantly enhanced the cytotoxicity of ABCB1 substrate agent in ABCB1-overexpressing MDR cells but had no effect in their parental drug sensitive cells and ABCC1, ABCG2 overexpressing cells. Furthermore, cetuximab markedly increased intracellular accumulation of doxorubicin (DOX) and rhodamine 123 (Rho 123) in ABCB1-overexpressing MDR cancer cells in a concentration-dependent manner. Cetuximab stimulated the ATPase activity but did not alter the expression level of ABCB1 or block phosphorylation of AKT and ERK. Interestingly, cetuximab decreased the cell membrane fluidity which was known to decrease the function of ABCB1. Our findings advocate further clinical investigation of combination chemotherapy of cetuximab and conventional chemotherapeutic drugs in ABCB1 overexpressing cancer patients.

  5. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Piia, E-mail: piia.takabe@uef.fi [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Bart, Geneviève [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Ropponen, Antti [University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio (Finland); Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland)

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  6. LOTUS overexpression accelerates neuronal plasticity after focal brain ischemia in mice.

    Science.gov (United States)

    Takase, Hajime; Kurihara, Yuji; Yokoyama, Taka-Akira; Kawahara, Nobutaka; Takei, Kohtaro

    2017-01-01

    Nogo receptor-1 (NgR1) and its ligands inhibit neuronal plasticity and limit functional recovery after brain damage such as ischemic stroke. We have previously shown that lateral olfactory tract usher substance (LOTUS) antagonizes NgR1-mediated signaling. Here, we investigated whether LOTUS enhances neuronal plasticity and functional recovery after brain focal ischemia in adult mice. Focal ischemic infarcts were induced in wild-type and LOTUS-overexpressing transgenic mice via middle cerebral artery occlusion. Endogenous LOTUS expression was increased in brain and cervical spinal cord of the contralateral side of ischemia in the chronic phase after brain ischemia. LOTUS overexpression accelerated midline-crossing axonal sprouting from the contralateral side to the ipsilateral side of ischemia in the medullar reticular formation and gray matter of denervated cervical spinal cord. Importantly, LOTUS overexpression improved neurological score highly correlated with laterality ratio of corticoreticular fibers of the medulla oblongata, indicating that LOTUS overexpression may overcome the inhibitory environment induced by NgR1 signaling for damaged motor pathway reconstruction after ischemic stroke. Thus, our data suggest that LOTUS overexpression accelerates neuronal plasticity in the brainstem and cervical spinal cord after stroke and LOTUS administration is useful for future therapeutic strategies.

  7. Proteomic characterization of Her2/neu-overexpressing breast cancer cells.

    Science.gov (United States)

    Chen, Hexin; Pimienta, Genaro; Gu, Yiben; Sun, Xu; Hu, Jianjun; Kim, Min-Sik; Chaerkady, Raghothama; Gucek, Marjan; Cole, Robert N; Sukumar, Saraswati; Pandey, Akhilesh

    2010-11-01

    The receptor tyrosine kinase HER2 is an oncogene amplified in invasive breast cancer and its overexpression in mammary epithelial cell lines is a strong determinant of a tumorigenic phenotype. Accordingly, HER2-overexpressing mammary tumors are commonly indicative of a poor prognosis in patients. Several quantitative proteomic studies have employed two-dimensional gel electrophoresis in combination with MS/MS, which provides only limited information about the molecular mechanisms underlying HER2/neu signaling. In the present study, we used a SILAC-based approach to compare the proteomic profile of normal breast epithelial cells with that of Her2/neu-overexpressing mammary epithelial cells, isolated from primary mammary tumors arising in mouse mammary tumor virus-Her2/neu transgenic mice. We identified 23 proteins with relevant annotated functions in breast cancer, showing a substantial differential expression. This included overexpression of creatine kinase, retinol-binding protein 1, thymosin 4 and tumor protein D52, which correlated with the tumorigenic phenotype of Her2-overexpressing cells. The differential expression pattern of two genes, gelsolin and retinol binding protein 1, was further validated in normal and tumor tissues. Finally, an in silico analysis of published cancer microarray data sets revealed a 23-gene signature, which can be used to predict the probability of metastasis-free survival in breast cancer patients.

  8. Effect of transgenic overexpression of FLIP on lymphocytes on development and resolution of experimental autoimmune thyroiditis.

    Science.gov (United States)

    Fang, Yujiang; Sharp, Gordon C; Braley-Mullen, Helen

    2011-09-01

    In our previous studies, resolution of granulomatous experimental autoimmune thyroiditis (G-EAT) was promoted when thyroid epithelial cells were protected from Fas-mediated apoptosis due to transgenic overexpression of FLIP. We hypothesized that if FLIP were overexpressed on lymphocytes, CD4(+) effector cells would be protected from Fas-mediated apoptosis, and resolution would be delayed. To test this hypothesis, we generated transgenic (Tg) mice overexpressing FLIP under the CD2 promoter. Transgenic FLIP was expressed on CD4(+) and CD8(+) T cells and B cells. Transgenic overexpression of FLIP protected cultured splenocytes from Fas-mediated, but not irradiation-induced, apoptosis in vitro. Unexpectedly, Tg(+) donor cells transferred minimal G-EAT, which was partially overcome by depleting donor CD8(+) T cells. When Tg(+) and Tg(-) donors transferred equivalent disease, G-EAT resolution was delayed in FLIP transgenic mice. However, CD2-FLIP Tg(+) donors often transferred less severe G-EAT, even after depletion of CD8(+) T cells. This influenced the rate of G-EAT resolution, resulting in little difference in G-EAT resolution between groups. Tg(+) mice always had reduced anti-mouse thyroglobulin autoantibody responses, compared with Tg(-) littermates, presumably because of FLIP overexpression on B cells. These results suggest that effects of transgenic FLIP on a particular autoimmune disease vary, depending on what cells express the transgene and whether those cells are effector cells or if they function to modulate disease.

  9. Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium Synechocystis PCC 6803.

    Science.gov (United States)

    Liang, Feiyan; Lindblad, Peter

    2016-11-01

    Synechocystis PCC 6803 is a model unicellular cyanobacterium used in e.g. photosynthesis and CO2 assimilation research. In the present study we examined the effects of overexpressing Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), sedoheptulose 1,7-biphosphatase (SBPase), fructose-bisphosphate aldolase (FBA) and transketolase (TK), confirmed carbon flux control enzymes of the Calvin-Bassham-Benson (CBB) cycle in higher plants, in Synechocystis PCC 6803. Overexpressing RuBisCO, SBPase and FBA resulted in increased in vivo oxygen evolution (maximal 115%), growth rate and biomass accumulation (maximal 52%) under 100μmolphotonsm(-2)s(-1) light condition. Cells overexpressing TK showed a chlorotic phenotype but increased biomass by approximately 42% under 100μmolphotonsm(-2)s(-1) light condition. Under 15μmolphotonsm(-2)s(-1) light condition, cells overexpressing TK showed enhanced in vivo oxygen evolution. This study demonstrates increased growth and biomass accumulation when overexpressing selected enzymes of the CBB cycle. RuBisCO, SBPase, FBA and TK are identified as four potential targets to improve growth and subsequently also yield of valuable products from Synechocystis PCC 6803. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Assessing behavioural effects of chronic HPA axis activation using conditional CRH-overexpressing mice.

    Science.gov (United States)

    Dedic, Nina; Touma, Chadi; Romanowski, Cristoph P; Schieven, Marcel; Kühne, Claudia; Ableitner, Martin; Lu, Ailing; Holsboer, Florian; Wurst, Wolfgang; Kimura, Mayumi; Deussing, Jan M

    2012-07-01

    The corticotropin-releasing hormone (CRH) and its cognate receptors have been implicated in the pathophysiology of stress-related disorders. Hypersecretion of central CRH and elevated glucocorticoid levels, as a consequence of impaired feedback control, have been shown to accompany mood and anxiety disorders. However, a clear discrimination of direct effects of centrally hypersecreted CRH from those resulting from HPA axis activation has been difficult. Applying a conditional strategy, we have generated two conditional CRH-overexpressing mouse lines: CRH-COE ( Del ) mice overexpress CRH throughout the body, while CRH-COE ( APit ) mice selectively overexpress CRH in the anterior and intermediate lobe of the pituitary. Both mouse lines show increased basal plasma corticosterone levels and consequently develop signs of Cushing's syndrome. However, while mice ubiquitously overexpressing CRH exhibited increased anxiety-related behaviour, overexpression of CRH in the pituitary did not produce alterations in emotional behaviour. These results suggest that chronic hypercorticosteroidism alone is not sufficient to alter anxiety-related behaviour but rather that central CRH hyperdrive on its own or in combination with elevated glucocorticoids is responsible for the increase in anxiety-related behaviour. In conclusion, the generated mouse lines represent valuable animal models to study the consequences of chronic CRH overproduction and HPA axis activation.

  11. Overexpressed Genes/ESTs and Characterization of Distinct Amplicons on 17823 in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ayse E. Erson

    2001-01-01

    Full Text Available 17823 is a frequent site of gene amplification in breast cancer. Several lines of evidence suggest the presence of multiple amplicons on 17823. To characterize distinct amplicons on 17823 and localize putative oncogenes, we screened genes and expressed sequence tags (ESTs in existing physical and radiation hybrid maps for amplification and overexpression in breast cancer cell lines by semiquantitative duplex PCR, semiquantitative duplex RT-PCR, Southern blot, Northern blot analyses. We identified two distinct amplicons on 17823, one including TBX2 and another proximal region including RPS6KB1 (PS6K and MUL. In addition to these previously reported overexpressed genes, we also identified amplification and overexpression of additional uncharacterized genes and ESTs, some of which suggest potential oncogenic activity. In conclusion, we have further defined two distinct regions of gene amplification and overexpression on 17823 with identification of new potential oncogene candidates. Based on the amplification and overexpression patterns of known and as of yet unrecognized genes on 17823, it is likely that some of these genes mapping to the discrete amplicons function as oncogenes and contribute to tumor progression in breast cancer cells.

  12. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway.

    Science.gov (United States)

    Ma, Lijie; Dong, Pingping; Liu, Longzi; Gao, Qiang; Duan, Meng; Zhang, Si; Chen, She; Xue, Ruyi; Wang, Xiaoying

    2016-04-29

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstrated that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC.

  13. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato

    DEFF Research Database (Denmark)

    Albacete, Alfonso; Cantero-Navarro, Elena; Grosskinsky, Dominik Kilian

    2015-01-01

    in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall...... invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50......%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold...

  14. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism

    DEFF Research Database (Denmark)

    Chen, Xiao; Nielsen, Kristian Fog; Borodina, Irina;

    2011-01-01

    of its relative tolerance to alcohols, robustness in industrial fermentations, and the possibility for future combination of isobutanol production with fermentation of lignocellulosic materials. RESULTS: The yield of isobutanol was improved from 0.16 to 0.97 mg per g glucose by simultaneous...... overexpression of biosynthetic genes ILV2, ILV3, and ILV5 in valine metabolism in anaerobic fermentation of glucose in mineral medium in S. cerevisiae. Isobutanol yield was further improved by twofold by the additional overexpression of BAT2, encoding the cytoplasmic branched-chain amino-acid aminotransferase...... were 3.86 and 0.28 mg per g glucose, respectively. They increased to 4.12 and 2.4 mg per g glucose in yeast extract/peptone/dextrose (YPD) complex medium under aerobic conditions, respectively. CONCLUSIONS: Overexpression of genes ILV2, ILV3, ILV5, and BAT2 in valine metabolism led to an increase...

  15. Overexpression of citrus polygalacturonase-inhibiting protein in citrus black rot pathogen Alternaria citri.

    Science.gov (United States)

    Katoh, Hiroshi; Nalumpang, Sarunya; Yamamoto, Hiroyuki; Akimitsu, Kazuya

    2007-05-01

    The rough lemon (Citrus jambhiri) gene encoding polygalacturonase-inhibiting protein (RlemPGIPA) was overexpressed in the pathogenic fungus Alternaria citri. The overexpression mutant AcOPI6 retained the ability to utilize pectin as a sole carbon source, and the overexpression of polygalacturonase-inhibiting protein did not have any effect on the growth of AcOPI6 in potato dextrose and pectin medium. The pathogenicity of AcOPI6 to cause a black rot symptom in citrus fruits was also unchanged. Polygalacturonase-inhibiting protein was secreted together with endopolygalacturonase into culture filtrates of AcOPI6, and oligogalacturonides were digested from polygalacturonic acid by both proteins in the culture filtrates. The reaction mixture containing oligogalacturonides possessed activity for induction of defense-related gene, RlemLOX, in rough lemon leaves.

  16. Overexpression of p53 Gene in Esophageal and Cervical Cancer and the Relationship with Radiotherapy Effects

    Institute of Scientific and Technical Information of China (English)

    张晓智; 王晓丽; 李旭

    2003-01-01

    Objective:To investigate the relationship between p53 protein overexpression in esophageal and cervical squamous cell cancer and their clinical radiosensitivity. Methods: The immuno-histochemical assays were done for 52 cases with esophageal and cervical squamous cell cancer. The relationship between the assay results and short-term radiotherapy was investigated. Results: p53 overer-pression was 52.38% and 35. 48% respectively, in esophageal cancer and cervical cancer;p53 over-expression in high differentiated squamous cell cancer was knver than these in moderate and poor differentiated cases(P0. 05). In the cases of cervical cancer, p53 overexpression had the less short-term effect(P0. 05).Conclusion:This study suggests that p53 gene has the certain relationship with tumor radiosensitivity.

  17. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells.

    Science.gov (United States)

    Do, Minh Truong; Kim, Hyung Gyun; Choi, Jae Ho; Khanal, Tilak; Park, Bong Hwan; Tran, Thu Phuong; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-12-01

    Piperine is a bioactive component of black pepper, Piper nigrum Linn, commonly used for daily consumption and in traditional medicine. Here, the molecular mechanisms by which piperine exerts antitumor effects in HER2-overexpressing breast cancer cells was investigated. The results showed that piperine strongly inhibited proliferation and induced apoptosis through caspase-3 activation and PARP cleavage. Furthermore, piperine inhibited HER2 gene expression at the transcriptional level. Blockade of ERK1/2 signaling by piperine significantly reduced SREBP-1 and FAS expression. Piperine strongly suppressed EGF-induced MMP-9 expression through inhibition of AP-1 and NF-κB activation by interfering with ERK1/2, p38 MAPK, and Akt signaling pathways resulting in a reduction in migration. Finally, piperine pretreatment enhanced sensitization to paclitaxel killing in HER2-overexpressing breast cancer cells. Our findings suggest that piperine may be a potential agent for the prevention and treatment of human breast cancer with HER2 overexpression.

  18. HER2 over-expression and response to different chemotherapy regimens in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Jin ZHANG; Yan LIU

    2008-01-01

    Purpose: To exam the relationship between HER2 over-expression and different adjuvant chemotherapies in breast cancer. Patients and Methods: A total of 1625 primary breast cancer patients who received post-surgery adjuvant chemotherapy in Tianjin Cancer Hospital, China, from July 2002 to November 2005 were included in the study. Among them, 600 patients were given CMF (CTX+MTX+5-Fu) regimen, 600 given CEF (CTX+E-ADM+5-Fu) regimen, and 425 given anthracyclines plus taxanes regimen, with mean follow-up time of 42 months. Results: In CMF treatment group, the 3-year disease free survival (DFS)in HER2 over-expressed patients was lower than that of the HER2-negative ones (89.80% vs 91.24%, P=0.0348); in node-positive subgroup, the 3-year DFS was 84.72% in HER2 over-expressed patients, and 90.18% in the HER-2-negative ones (P=0.0271).Compared to CMF regimen, anthracyclines and anthracyclines plus taxanes regimens are more effective (P<0.05) in node-positive HER2 over-expression than those in the node-negative. Conclusion: HER2 over-expression is an independent index for predicting poor prognosis and short DFS for breast cancer patients. HER2 over-expressed patients are resistant to CMF regimen chemotherapy, but sensitive to anthracyclines-based or anthracyclines plus taxanes regimen. HER2 expression can be taken as a marker for therapies in breast cancer.

  19. Defects in cellular sorting and retroviral assembly induced by GGA overexpression

    Directory of Open Access Journals (Sweden)

    Nagashima Kunio

    2009-09-01

    Full Text Available Abstract Background We previously demonstrated that overexpression of Golgi-localized, γ-ear containing, Arf-binding (GGA proteins inhibits retrovirus assembly and release by disrupting the function of endogenous ADP ribosylation factors (Arfs. GGA overexpression led to the formation of large, swollen vacuolar compartments, which in the case of GGA1 sequestered HIV-1 Gag. Results In the current study, we extend our previous findings to characterize in depth the GGA-induced compartments and the determinants for retroviral Gag sequestration in these structures. We find that GGA-induced structures are derived from the Golgi and contain aggresome markers. GGA overexpression leads to defects in trafficking of transferrin receptor and recycling of cation-dependent mannose 6-phosphate receptor. Additionally, we find that compartments induced by GGA overexpression sequester Tsg101, poly-ubiquitin, and, in the case of GGA3, Hrs. Interestingly, brefeldin A treatment, which leads to the dissociation of endogenous GGAs from membranes, does not dissociate the GGA-induced compartments. GGA mutants that are defective in Arf binding and hence association with membranes also induce the formation of GGA-induced structures. Overexpression of ubiquitin reverses the formation of GGA-induced structures and partially rescues HIV-1 particle production. We found that in addition to HIV-1 Gag, equine infectious anemia virus Gag is also sequestered in GGA1-induced structures. The determinants in Gag responsible for sequestration map to the matrix domain, and recruitment to these structures is dependent on Gag membrane binding. Conclusion These data provide insights into the composition of structures induced by GGA overexpression and their ability to disrupt endosomal sorting and retroviral particle production.

  20. Overexpression of Hypoxia-Inducible Factor-1α Exacerbates Endothelial Barrier Dysfunction Induced by Hypoxia

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2013-09-01

    Full Text Available Background/Aims: The mechanisms involved in endothelial barrier dysfunction induced by hypoxia are incompletely understood. There is debate about the role of hypoxia-inducible factor-1α (HIF-1α in endothelial barrier disruption. The aim of this study was to investigate the effect of genetic overexpression of HIF-1α on barrier function and the underlying mechanisms in hypoxic endothelial cells. Methods: The plasmid pcDNA3.1/V5-His-HIF-1α was stably transfected into human endothelial cells. The cells were exposed to normoxia or hypoxia. The mRNA and protein expressions of HIF-1α were detected by RT-PCR and Western blot respectively. The barrier function was assessed by measuring the transendothelial electrical resistance (TER. The Western blot analysis was used to determine the protein expression of glucose transporter-1 (GLUT-1, zonular occludens-1 (ZO-1, occludin, and myosin light chain kinase (MLCK in endothelial cells. The mRNA expression of proinflammatory cytokines was detected by qRT-PCR. Results: Genetic overexpression of HIF-1α significantly increased the mRNA and protein expression of HIF-1α in endothelial cells. The overexpression of HIF-1α enhanced the hypoxia-induced increase of HIF-1α and GLUT-1 protein expression. HIF-1α overexpression not only exacerbated hypoxia-induced endothelial barrier dysfunction but also augmented hypoxia-induced up-regulation of MLCK protein expression. HIF-1α overexpression also enhanced IL-1β, IL-6 and TNF-α mRNA expression. Conclusion: We provide evidence that genetic overexpression of HIF-1α aggravates the hypoxia-induced endothelial barrier dysfunction via enhancing the up-regulation of MLCK protein expression caused by hypoxia, suggesting a potential role for HIF-1α in the pathogenesis of endothelial barrier dysfunction in hypoxia.

  1. SERCA1 overexpression minimizes skeletal muscle damage in dystrophic mouse models.

    Science.gov (United States)

    Mázala, Davi A G; Pratt, Stephen J P; Chen, Dapeng; Molkentin, Jeffery D; Lovering, Richard M; Chin, Eva R

    2015-05-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting secondary to repeated muscle damage and inadequate repair. Elevations in intracellular free Ca²⁺ have been implicated in disease progression, and sarcoplasmic/endoplasmic reticulum Ca²⁺-ATPase 1 (SERCA1) overexpression has been shown to ameliorate the dystrophic phenotype in mdx mice. The purpose of this study was to assess the effects of SERCA1 overexpression in the more severe mdx/Utr(-/-) mouse model of DMD. Mice overexpressing SERCA1 were crossed with mdx/Utr ± mice to generate mdx/Utr(-/-)/+SERCA1 mice and compared with wild-type (WT), WT/+SERCA1, mdx/+SERCA1, and genotype controls. Mice were assessed at ∼12 wk of age for changes in Ca²⁺ handling, muscle mass, quadriceps torque, markers of muscle damage, and response to repeated eccentric contractions. SERCA1-overexpressing mice had a two- to threefold increase in maximal sarcoplasmic reticulum Ca²⁺-ATPase activity compared with WT which was associated with normalization in body mass for both mdx/+SERCA1 and mdx/Utr(-/-)/+SERCA1. Torque deficit in the quadriceps after eccentric injury was 2.7-fold greater in mdx/Utr(-/-) vs. WT mice, but only 1.5-fold greater in mdx/Utr(-/-)/+SERCA1 vs. WT mice, an attenuation of 44%. Markers of muscle damage (% centrally nucleated fibers, necrotic area, and serum creatine kinase levels) were higher in both mdx and mdx/Utr(-/-) vs. WT, and all were attenuated by overexpression of SERCA1. These data indicate that SERCA1 overexpression ameliorates functional impairments and cellular markers of damage in a more severe mouse model of DMD. These findings support targeting intracellular Ca²⁺ control as a therapeutic approach for DMD.

  2. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli.

    Science.gov (United States)

    Lee, Won-Heong; Chin, Young-Wook; Han, Nam Soo; Kim, Myoung-Dong; Seo, Jin-Ho

    2011-08-01

    Biosynthesis of guanosine 5'-diphosphate-L-fucose (GDP-L-fucose) requires NADPH as a reducing cofactor. In this study, endogenous NADPH regenerating enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (Icd), and NADP(+)-dependent malate dehydrogenase (MaeB) were overexpressed to increase GDP-L-fucose production in recombinant Escherichia coli. The effects of overexpression of each NADPH regenerating enzyme on GDP-L-fucose production were investigated in a series of batch and fed-batch fermentations. Batch fermentations showed that overexpression of G6PDH was the most effective for GDP-L-fucose production. However, GDP-L-fucose production was not enhanced by overexpression of G6PDH in the glucose-limited fed-batch fermentation. Hence, a glucose feeding strategy was optimized to enhance GDP-L-fucose production. Fed-batch fermentation with a pH-stat feeding mode for sufficient supply of glucose significantly enhanced GDP-L-fucose production compared with glucose-limited fed-batch fermentation. A maximum GDP-L-fucose concentration of 235.2 ± 3.3 mg l(-1), corresponding to a 21% enhancement in the GDP-L-fucose production compared with the control strain overexpressing GDP-L-fucose biosynthetic enzymes only, was achieved in the pH-stat fed-batch fermentation of the recombinant E. coli overexpressing G6PDH. It was concluded that sufficient glucose supply and efficient NADPH regeneration are crucial for NADPH-dependent GDP-L-fucose production in recombinant E. coli.

  3. Improved antibody production in Chinese hamster ovary cells by ATF4 overexpression

    OpenAIRE

    Haredy, AM; Nishizawa, A.; Honda, K.; T. Ohya; Ohtake, H; Omasa, T

    2013-01-01

    To improve antibody production in Chinese hamster ovary (CHO) cells, the humanized antibody-producing CHO DP-12-SF cell line was transfected with the gene encoding activating transcription factor 4 (ATF4), a central factor in the unfolded protein response. Overexpression of ATF4 significantly enhanced the production of antibody in the CHO DP-12-SF cell line. The specific IgG production rate of in the ATF4-overexpressing CHO-ATF4-16 cells was approximately 2.4 times that of the parental host c...

  4. Overexpression of NRPS4 leads to increased surface hydrophobicity in Fusarium graminearum

    DEFF Research Database (Denmark)

    Hansen, Frederik Teilfeldt; Droce, Aida; Sørensen, Jens Laurids;

    2012-01-01

    brassicicola and Cochloibolus heterostrophus has been shown to result in mutants unable to repel water. In a time study of surface hydrophobicity we observed that water droplets could penetrate seven day old colonies of the NRPS4 deletion mutants. Loss in ability to repel water was first observed on 13 days...... old cultures of the wild type strain, whereas the overexpression strain remained water repellant throughout the 38 day time study. The conidia of both mutants were examined and those of the overexpression mutant showed distinct morphological differences in form of collapsed cells. These observations...

  5. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    Science.gov (United States)

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  6. Distance between RBS and AUG plays an important role in overexpression of recombinant proteins.

    Science.gov (United States)

    Berwal, Sunil K; Sreejith, R K; Pal, Jayanta K

    2010-10-15

    The spacing between ribosome binding site (RBS) and AUG is crucial for efficient overexpression of genes when cloned in prokaryotic expression vectors. We undertook a brief study on the overexpression of genes cloned in Escherichia coli expression vectors, wherein the spacing between the RBS and the start codon was varied. SDS-PAGE and Western blot analysis indicated a high level of protein expression only in constructs where the spacing between RBS and AUG was approximately 40 nucleotides or more, despite the synthesis of the transcripts in the representative cases investigated.

  7. STEAP1 protein overexpression is an independent marker for biochemical recurrence in prostate carcinoma

    DEFF Research Database (Denmark)

    Ihlaseh-Catalano, Shadia M; Drigo, Sandra A; de Jesus, Carlos M N;

    2013-01-01

    . STEAP1 and STEAP2 transcript analysis showed no differences between the groups tested. Although not significant, higher STEAP1 mRNA levels were detected in tumours with high Gleason scores and in patients who presented with biochemical recurrence (BCR). STEAP1 overexpression was detected in PCa......, and was significantly associated with high-grade Gleason scores, seminal vesicle invasion, BCR, and worse outcome (metastasis or PCa-specific death). STEAP1 overexpression was significantly associated with shorter BCR-free survival. Multivariate analysis revealed that STEAP1 is an independent marker for BCR...

  8. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases

    Directory of Open Access Journals (Sweden)

    Yu-Hung eYeh

    2015-05-01

    Full Text Available Upon recognition of microbe-associated molecular patterns (MAMPs such as the bacterial flagellin (or the derived peptide flg22 by pattern-recognition receptors (PRRs such as the FLAGELLIN SENSING2 (FLS2, plants activate the pattern-triggered immunity (PTI response. The L-type lectin receptor kinase-VI.2 (LecRK-VI.2 is a positive regulator of Arabidopsis thaliana PTI. Cysteine-rich receptor-like kinases (CRKs possess two copies of the C-X8-C-X2-C (DUF26 motif in their extracellular domains and are thought to be involved in plant stress resistance, but data about CRK functions are scarce. Here we show that Arabidopsis overexpressing the LecRK-VI.2-responsive CRK4, CRK6 and CRK36 demonstrated an enhanced PTI response and were resistant to virulent bacteria Pseudomonas syringae pv. tomato DC3000. Notably, the flg22-triggered oxidative burst was primed in CRK4, CRK6, and CRK36 transgenics and up-regulation of the PTI-responsive gene FLG22-INDUCED RECEPTOR-LIKE 1 (FRK1 was potentiated upon flg22 treatment in CRK4 and CRK6 overexpression lines or constitutively increased by CRK36 overexpression. PTI-mediated callose deposition was not affected by overexpression of CRK4 and CRK6, while CRK36 overexpression lines demonstrated constitutive accumulation of callose. In addition, Pst DC3000-mediated stomatal reopening was blocked in CRK4 and CRK36 overexpression lines, while overexpression of CRK6 induced constitutive stomatal closure suggesting a strengthening of stomatal immunity. Finally, bimolecular fluorescence complementation and co-immunoprecipitation analyses in Arabidopsis protoplasts suggested that the plasma membrane localized CRK4, CRK6 and CRK36 associate with the PRR FLS2. Association with FLS2 and the observation that overexpression of CRK4, CRK6, and CRK36 boosts specific PTI outputs and resistance to bacteria suggest a role for these CRKs in Arabidopsis innate immunity.

  9. Constitutive phosphorylation of aurora-a on ser51 induces its stabilization and consequent overexpression in cancer.

    Directory of Open Access Journals (Sweden)

    Shojiro Kitajima

    Full Text Available BACKGROUND: The serine/threonine kinase Aurora-A (Aur-A is a proto-oncoprotein overexpressed in a wide range of human cancers. Overexpression of Aur-A is thought to be caused by gene amplification or mRNA overexpression. However, recent evidence revealed that the discrepancies between amplification of Aur-A and overexpression rates of Aur-A mRNA were observed in breast cancer, gastric cancer, hepatocellular carcinoma, and ovarian cancer. We found that aggressive head and neck cancers exhibited overexpression and stabilization of Aur-A protein without gene amplification or mRNA overexpression. Here we tested the hypothesis that aberration of the protein destruction system induces accumulation and consequently overexpression of Aur-A in cancer. PRINCIPAL FINDINGS: Aur-A protein was ubiquitinylated by APC(Cdh1 and consequently degraded when cells exited mitosis, and phosphorylation of Aur-A on Ser51 was observed during mitosis. Phosphorylation of Aur-A on Ser51 inhibited its APC(Cdh1-mediated ubiquitylation and consequent degradation. Interestingly, constitutive phosphorylation on Ser51 was observed in head and neck cancer cells with protein overexpression and stabilization. Indeed, phosphorylation on Ser51 was observed in head and neck cancer tissues with Aur-A protein overexpression. Moreover, an Aur-A Ser51 phospho-mimetic mutant displayed stabilization of protein during cell cycle progression and enhanced ability to cell transformation. CONCLUSIONS/SIGNIFICANCE: Broadly, this study identifies a new mode of Aur-A overexpression in cancer through phosphorylation-dependent inhibition of its proteolysis in addition to gene amplification and mRNA overexpression. We suggest that the inhibition of Aur-A phosphorylation can represent a novel way to decrease Aur-A levels in cancer therapy.

  10. Improved antibody production in Chinese hamster ovary cells by ATF4 overexpression.

    Science.gov (United States)

    Haredy, Ahmad M; Nishizawa, Akitoshi; Honda, Kohsuke; Ohya, Tomoshi; Ohtake, Hisao; Omasa, Takeshi

    2013-12-01

    To improve antibody production in Chinese hamster ovary (CHO) cells, the humanized antibody-producing CHO DP-12-SF cell line was transfected with the gene encoding activating transcription factor 4 (ATF4), a central factor in the unfolded protein response. Overexpression of ATF4 significantly enhanced the production of antibody in the CHO DP-12-SF cell line. The specific IgG production rate of in the ATF4-overexpressing CHO-ATF4-16 cells was approximately 2.4 times that of the parental host cell line. Clone CHO-ATF4-16 did not show any change in growth rate compared with the parental cells or mock-transfected CHO-DP12-SF cells. The expression levels of mRNAs encoding both the antibody heavy and light chains in the CHO-ATF4-16 clone were analyzed. This analysis showed that ATF4 overexpression improved the total production and specific production rate of antibody without affecting the mRNA transcription level. These results indicate that ATF4 overexpression is a promising method for improving recombinant IgG production in CHO cells.

  11. Overexpression of dilp2 causes nutrient-dependent semi-lethality in Drosophila

    Directory of Open Access Journals (Sweden)

    Yukiko eSato-Miyata

    2014-04-01

    Full Text Available Insulin/insulin-like growth factor (IGF plays an important role as a systemic regulator of metabolism in multicellular organisms. Hyperinsulinemia, a high level of blood insulin, is often associated with impaired physiological conditions such as hypoglycemia, insulin resistance, and diabetes. However, due to the complex pathophysiology of hyperinsulinemia, the causative role of excess insulin/IGF signaling has remained elusive. To investigate the biological effects of a high level of insulin in metabolic homeostasis and physiology, we generated flies overexpressing Drosophila insulin-like peptide 2 (Dilp2, which has the highest potential of promoting tissue growth among the Ilp genes in Drosophila. In this model, a UAS-Dilp2 transgene was overexpressed under control of sd-Gal4 that drives expression predominantly in developing imaginal wing discs. Overexpression of Dilp2 caused semi-lethality, which was partially suppressed by mutations in the insulin receptor (InR or Akt1, suggesting that dilp2-induced semi-lethality is mediated by the PI3K/Akt1 signaling. We found that dilp2-overexpressing flies exhibited intensive autophagy in fat body cells. Interestingly, the dilp2-induced autophagy as well as the semi-lethality was partially rescued by increasing the protein content relative to glucose in the media. Our results suggest that excess insulin/IGF signaling impairs the physiology of animals, which can be ameliorated by controlling the nutritional balance between proteins and carbohydrates, at least in flies.

  12. Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production.

    Science.gov (United States)

    Sun, Jiayi; Peebles, Christie A M

    2016-09-01

    Catharanthus roseus produces many pharmaceutically important terpenoid indole alkaloids (TIAs) such as vinblastine, vincristine, ajmalicine, and serpentine. Past metabolic engineering efforts have pointed to the tight regulation of the TIA pathway and to multiple rate-limiting reactions. Transcriptional regulator ORCA3 (octadecanoid responsive Catharanthus AP2-domain protein), activated by jasmonic acid, plays a central role in regulating the TIA pathway. In this study, overexpressing ORCA3 under the control of a glucocorticoid-inducible promoter in C. roseus hairy roots resulted in no change in the total amount of TIAs measured. RT-qPCR results showed that ORCA3 overexpression triggered the upregulation of transcripts of most of the known TIA pathway genes. One notable exception was the decrease in strictosidine glucosidase (SGD) transcripts. These results corresponded to previously published results. In this study, ORCA3 and SGD were both engineered in hairy roots under the control of a glucocorticoid-inducible promoter. Co-overexpression of ORCA3 and SGD resulted in a significant (p < 0.05) increase in serpentine by 44 %, ajmalicine by 32 %, catharanthine by 38 %, tabersonine by 40 %, lochnericine by 60 % and hörhammericine by 56 % . The total alkaloid pool was increased significantly by 47 %. Thus, combining overexpression of a positive regulator and a pathway gene which is not controlled by this regulator provided a way to enhance alkaloid production.

  13. Regulation of TRAIL-Medicated Apoptosis in Prostate Cancer by Overexpression of XIAP

    Science.gov (United States)

    2006-01-01

    depolymerizarion and promotes the formation of metasta- ble microtubules . This interferes with the normal function of microtubules , prevention of mitotic spindle... mitotic spindle resulting in an arrest of the dividing cells at metaphase (4). DNA damage mediated apoptotic signals, however, can be attenuated...1-0023 TITLE: Regulation of TRAIL-Medicated Apoptosis in Prostate Cancer by Overexpression of XIAP

  14. p130Cas over-expression impairs mammary branching morphogenesis in response to estrogen and EGF.

    Directory of Open Access Journals (Sweden)

    Maria del Pilar Camacho Leal

    Full Text Available p130Cas adaptor protein regulates basic processes such as cell cycle control, survival and migration. p130Cas over-expression has been related to mammary gland transformation, however the in vivo consequences of p130Cas over-expression during mammary gland morphogenesis are not known. In ex vivo mammary explants from MMTV-p130Cas transgenic mice, we show that p130Cas impairs the functional interplay between Epidermal Growth Factor Receptor (EGFR and Estrogen Receptor (ER during mammary gland development. Indeed, we demonstrate that p130Cas over-expression upon the concomitant stimulation with EGF and estrogen (E2 severely impairs mammary morphogenesis giving rise to enlarged multicellular spherical structures with altered architecture and absence of the central lumen. These filled acinar structures are characterized by increased cell survival and proliferation and by a strong activation of Erk1/2 MAPKs and Akt. Interestingly, antagonizing the ER activity is sufficient to re-establish branching morphogenesis and normal Erk1/2 MAPK activity. Overall, these results indicate that high levels of p130Cas expression profoundly affect mammary morphogenesis by altering epithelial architecture, survival and unbalancing Erk1/2 MAPKs activation in response to growth factors and hormones. These results suggest that alteration of morphogenetic pathways due to p130Cas over-expression might prime mammary epithelium to tumorigenesis.

  15. CXCL12/SDF-1 over-expression in human insulinomas and its biological relevance

    DEFF Research Database (Denmark)

    Ilhan, Aysegul; Nabokikh, Anastasiya; Maj, Magdalena

    2009-01-01

    This study was performed on the basis of previously obtained investigative gene array data concerning the over-expression of CXCL12/SDF-1 in human insulinomas versus human pancreatic islet preparations. The presence of CXCL12/SDF-1 was studied by RT-qPCR in human insulinomas (n=8) versus pancreatic...

  16. HMGA2 overexpression plays a critical role in the progression of esophageal squamous carcinoma

    Science.gov (United States)

    Palumbo, Antonio; Meireles Da Costa, Nathalia; Esposito, Francesco; De Martino, Marco; D'Angelo, Daniela; de Sousa, Vanessa Paiva Leite; Martins, Ivanir; Nasciutti, Luiz Eurico; Fusco, Alfredo; Pinto, Luis Felipe Ribeiro

    2016-01-01

    Esophageal Squamous Cell Carcinoma (ESCC) is the most common esophageal tumor worldwide. However, there is still a lack of deeper knowledge about biological alterations involved in ESCC development. High Mobility Group A (HMGA) protein family has been related with poor outcome and malignant cell transformation in several tumor types. In this way, the aim of this study was to analyze the expression of HMGA1 and HMGA2 expression in ESCC and their role in crucial cellular features. We evaluated HMGA1 and HMGA2 mRNA expression in 52 paired ESCC and normal surrounding tissue samples by qRT-PCR. Here, we show that HMGA2, but not HMGA1, is overexpressed in ESCC samples. This result was further confirmed by the immunohistochemical analysis. Indeed, accordingly to mRNA expression data, HMGA2, but not HMGA1, was overexpressed in approximately 90% of ESCC samples, while it was barely expressed in the respective control. Conversely, HMGA1, but not HMGA2, was overexpressed in esophageal adenocarcinoma samples. Interestingly, HMGA2 abrogation attenuated the malignant phenotype of two ESCC cell lines, suggesting that HMGA2 overexpression is involved in ESCC progression. PMID:27027341

  17. EphB6 overexpression and Apc mutation together promote colorectal cancer.

    Science.gov (United States)

    Xu, Dan; Yuan, Liang; Liu, Xin; Li, Mingqi; Zhang, Fubin; Gu, Xin Yue; Zhang, Dongwei; Yang, Youlin; Cui, Binbin; Tong, Jinxue; Zhou, Jin; Yu, Zhiwei

    2016-05-24

    The erythropoietin-producing hepatocyte (Eph) family tyrosine kinases play important roles in tumorigenesis and cancer aggression. In this study, we investigated the role of EphB6 in oncogenic transformation of colorectal epithelial cells in vitro and in vivo. EphB6 is upregulated in human colorectal cancer (CRC) tissues as compared to normal tissues, and its overexpression promotes proliferation, migration and invasion by IMCE colorectal adenoma cells, in which one Apc allele is mutated. EphB6 overexpression together with Apc mutation leads to the development of colorectal tumors in vivo. Expression microarrays using mRNAs and lncRNAs isolated from EphB6-overexpresssing IMCE and control cells revealed a large number of dysregulated genes involved in cancer-related functions and pathways. The present study is the first to demonstrate that EphB6 overexpression together with Apc gene mutations may enhance proliferation, invasion and metastasis by colorectal epithelial cells. Microarray data and pathway analysis of differentially expressed genes provided insight into possible EphB6-regulated mechanisms promoting tumorigenesis and cancer progression. EphB6 overexpression may represent a novel, effective biomarker predictive of cell proliferation, invasion and metastasis patterns in CRC tumors.

  18. Overexpression and surface localization of the Chlamydia trachomatis major outer membrane protein in Escherichia coli

    DEFF Research Database (Denmark)

    Koehler, JF; Birkelund, Svend; Stephens, RS

    1992-01-01

    The Chlamydia trachomatis major outer membrane protein (MOMP) is the quantitatively predominant surface protein which has important functional, structural and antigenic properties. We have cloned and overexpressed the MOMP in Escherichia coli. The MOMP is surface exposed in C. trachomatis and cap...... the contribution of the MOMP variable segments to the topographical interactions which determine the antigenic structure responsible for human immune response....

  19. The relation between xyr1 overexpression in Trichoderma harzianum and sugarcane bagasse saccharification performance.

    Science.gov (United States)

    da Silva Delabona, Priscila; Rodrigues, Gisele Nunes; Zubieta, Mariane Paludetti; Ramoni, Jonas; Codima, Carla Aloia; Lima, Deise Juliana; Farinas, Cristiane Sanchez; da Cruz Pradella, José Geraldo; Seiboth, Bernhard

    2017-03-20

    This work investigates the influence of the positive regulator XYR1 of Trichoderma harzianum on the production of cellulolytic enzymes, using sugarcane bagasse as carbon source. Constitutive expression of xyr1 was achieved under the control of the strong Trichoderma reesei pki1 promoter. Five clones with xyr1 overexpression achieved higher xyr1 expression and greater enzymatic productivity when cultivated under submerged fermentation, hence validating the genetic construction for T. harzianum. Clone 5 presented a relative expression of xyr1 26-fold higher than the parent strain and exhibited 66, 37, and 36% higher values for filter paper activity, xylanase activity, and β-glucosidase activity, respectively, during cultivation in a stirred-tank bioreactor. The overexpression of xyr1 in T. harzianum resulted in an enzymatic complex with significantly improved performance in sugarcane bagasse saccharification, with an enhancement of 25% in the first 24h. Our results also show that constitutive overexpression of xyr1 leads to the induction of several important players in biomass degradation at early (24h) and also late (48h) timepoints of inoculation. However, we also observed that the carbon catabolite repressor CRE1 was upregulated in xyr1 overexpression mutants. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression and suggest an attractive approach for increasing total cellulase productivity in T. harzianum. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.

    Science.gov (United States)

    Lee, Won-Heong; Seo, Seung-Oh; Bae, Yi-Hyun; Nan, Hong; Jin, Yong-Su; Seo, Jin-Ho

    2012-11-01

    Engineering of Saccharomyces cerevisiae to produce advanced biofuels such as isobutanol has received much attention because this yeast has a natural capacity to produce higher alcohols. In this study, construction of isobutanol production systems was attempted by overexpression of effective 2-keto acid decarboxylase (KDC) and combinatorial overexpression of valine biosynthetic enzymes in S. cerevisiae D452-2. Among the six putative KDC enzymes from various microorganisms, 2-ketoisovalerate decarboxylase (Kivd) from L. lactis subsp. lactis KACC 13877 was identified as the most suitable KDC for isobutanol production in the yeast. Isobutanol production by the engineered S. cerevisiae was assessed in micro-aerobic batch fermentations using glucose as a sole carbon source. 93 mg/L isobutanol was produced in the Kivd overexpressing strain, which corresponds to a fourfold improvement as compared with the control strain. Isobutanol production was further enhanced to 151 mg/L by additional overexpression of acetolactate synthase (Ilv2p), acetohydroxyacid reductoisomerase (Ilv5p), and dihydroxyacid dehydratase (Ilv3p) in the cytosol.

  1. Working Memory Deficits, Increased Anxiety-Like Traits, and Seizure Susceptibility in BDNF Overexpressing Mice

    Science.gov (United States)

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher…

  2. Segmentation of HER2 protein overexpression in immunohistochemically stained breast cancer images using Support Vector Machines

    Science.gov (United States)

    Pezoa, Raquel; Salinas, Luis; Torres, Claudio; Härtel, Steffen; Maureira-Fredes, Cristián; Arce, Paola

    2016-10-01

    Breast cancer is one of the most common cancers in women worldwide. Patient therapy is widely supported by analysis of immunohistochemically (IHC) stained tissue sections. In particular, the analysis of HER2 overexpression by immunohistochemistry helps to determine when patients are suitable to HER2-targeted treatment. Computational HER2 overexpression analysis is still an open problem and a challenging task principally because of the variability of immunohistochemistry tissue samples and the subjectivity of the specialists to assess the samples. In addition, the immunohistochemistry process can produce diverse artifacts that difficult the HER2 overexpression assessment. In this paper we study the segmentation of HER2 overexpression in IHC stained breast cancer tissue images using a support vector machine (SVM) classifier. We asses the SVM performance using diverse color and texture pixel-level features including the RGB, CMYK, HSV, CIE L*a*b* color spaces, color deconvolution filter and Haralick features. We measure classification performance for three datasets containing a total of 153 IHC images that were previously labeled by a pathologist.

  3. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2015-05-01

    Full Text Available ERBB2 is an oncogenic receptor tyrosine kinase overexpressed in a subset of human breast cancer and other cancers. We recently found that human prolidase (PEPD, a dipeptidase, is a high affinity ERBB2 ligand and cross-links two ERBB2 monomers. Here, we show that recombinant human PEPD (rhPEPD strongly inhibits ERBB2-overexpressing tumors in mice, whereas it does not impact tumors without ERBB2 overexpression. rhPEPD causes ERBB2 depletion, disrupts oncogenic signaling orchestrated by ERBB2 homodimers and heterodimers, and induces apoptosis. The impact of enzymatically-inactive mutant rhPEPDG278D on ERBB2 is indistinguishable from that of rhPEPD, but rhPEPDG278D is superior to rhPEPD for tumor inhibition. The enzymatic function of rhPEPD stimulates HIF-1α and other pro-survival factors in tumors, which likely attenuates its antitumor activity. rhPEPDG278D is also attractive in that it may not interfere with the physiologic function of endogenous PEPD in normal cells. Collectively, we have identified a human protein as an inhibitory ERBB2 ligand that inhibits ERBB2-overexpressing tumors in vivo. Several anti-ERBB2 agents are on the market but are hampered by drug resistance and high drug cost. rhPEPDG278D may synergize with these agents and may also be highly cost-effective, since it targets ERBB2 with a different mechanism and can be produced in bacteria.

  4. Improved hydrogen production under microaerophilic conditions by overexpression of polyphosphate kinase in Enterobacter aerogenes.

    Science.gov (United States)

    Lu, Yuan; Zhang, Chong; Lai, Qiheng; Zhao, Hongxin; Xing, Xin-Hui

    2011-02-08

    Effects of different microaerophilic conditions on cell growth, glucose consumption, hydrogen production and cellular metabolism of wild Enterobacter aerogenes strain and polyphosphate kinase (PPK) overexpressing strain were systematically studied in this paper, using NaH(2)PO(4) as the phosphate sources. Under different microaerophilic conditions, PPK-overexpressing strain showed better cell growth, glucose consumption and hydrogen production than the wild strain. In the presence of limited oxygen (2.1%) and by PPK overexpression, the hydrogen production per liter of culture, the hydrogen production per cell and the hydrogen yield per mol of glucose increased by 20.1%, 12.3% and 10.8%, respectively, compared with the wild strain under strict anaerobic conditions. Metabolic analysis showed that the increase of the total hydrogen yield was attributed to the improvement of NADH pathway. The result of more reductive cellular oxidation state balance also further demonstrated that, under proper initial microaerophilic conditions and by PPK overexpression, the cell could adjust the cellular redox states and make more energy flow into hydrogen production pathways.

  5. Transgenic overexpression of expansin influences particle size distribution and improves viscosity of tomato juice and paste

    NARCIS (Netherlands)

    Kalamaki, M.S.; Powell, A.L.T.; Struijs, K.; Labavitch, J.M.; Reid, D.S.; Bennett, A.B.

    2003-01-01

    Suppression of the expression of a ripening-related expansin gene, LeExp1, in tomato enhanced fruit firmness and overexpression of LeExp1 resulted in increased fruit softening. Because of the incompletely understood relationship between fresh fruit texture and the consistency of processed products,

  6. RhoC GTPase Overexpression Modulates Induction of Angiogenic Factors in Breast Cells

    Directory of Open Access Journals (Sweden)

    Kenneth L. van Golen

    2000-09-01

    Full Text Available Inflammatory breast cancer (IBC is a distinct and aggressive form of locally advanced breast cancer. IBC is highly angiogenic, invasive, and metastatic at its inception. Previously, we identified specific genetic alterations of IBC that contribute to this highly invasive phenotype. RhoC GTPase was overexpressed in 90% of archival IBC tumor samples, but not in stage-matched, non-IBC tumors. To study the role of RhoC GTPase in contributing to an IBC-like phenotype, we generated stable transfectants of human mammary epithelial cells overexpressing the RhoC gene, and studied the effect of RhoC GTPase overexpression on the modulation of angiogenesis in IBC. Levels of vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF, interleukin-6 (IL-6, and interleukin-8 (IL-8 were significantly higher in the conditioned media of the HME-RhoC transfectants than in the untransfected HME and HME-β-galactosidase control media, similar to the SUM149 IBC cell line. Inhibition of RhoC function by introduction of C3 exotransferase decreased production of angiogenic factors by the HME-RhoC transfectants and the SUM149 IBC cell line, but did not affect the control cells. These data support the conclusion that overexpression of RhoC GTPase is specifically and directly implicated in the control of the production of angiogenic factors by IBC cells.

  7. VEGF receptor-2 (Flk-1 overexpression in mice counteracts focal epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Litsa Nikitidou

    Full Text Available Vascular endothelial growth factor (VEGF was first described as an angiogenic agent, but has recently also been shown to exert various neurotrophic and neuroprotective effects in the nervous system. These effects of VEGF are mainly mediated by its receptor, VEGFR-2, which is also referred to as the fetal liver kinase receptor 1 (Flk-1. VEGF is up-regulated in neurons and glial cells after epileptic seizures and counteracts seizure-induced neurodegeneration. In vitro, VEGF administration suppresses ictal and interictal epileptiform activity caused by AP4 and 0 Mg(2+ via Flk-1 receptor. We therefore explored whether increased VEGF signaling through Flk-1 overexpression may regulate epileptogenesis and ictogenesis in vivo. To this extent, we used transgenic mice overexpressing Flk-1 postnatally in neurons. Intriguingly, Flk-1 overexpressing mice were characterized by an elevated threshold for seizure induction and a decreased duration of focal afterdischarges, indicating anti-ictal action. On the other hand, the kindling progression in these mice was similar to wild-type controls. No significant effects on blood vessels or glia cells, as assessed by Glut1 and GFAP immunohistochemistry, were detected. These results suggest that increased VEGF signaling via overexpression of Flk-1 receptors may directly affect seizure activity even without altering angiogenesis. Thus, Flk-1 could be considered as a novel target for developing future gene therapy strategies against ictal epileptic activity.

  8. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sugiyama, Minetaka; Akase, Shin-Pei; Nakanishi, Ryota; Kaneko, Yoshinobu; Harashima, Satoshi

    2016-10-01

    Polylactic acid plastics are receiving increasing attention for the control of atmospheric CO2 emissions. Lactic acid, the building block for polylactic acid, is produced by fermentation technology from renewable carbon sources. The yeast Saccharomyces cerevisiae, harboring the lactate dehydrogenases gene (LDH), produces lactic acid at a large scale due to its strong acid resistance, to its simple nutritional requirements and to its ease of genetic engineering. Since improvement of lactic acid resistance is correlated with an increase of lactic acid production under non-neutralizing condition, we isolated a novel gene that enhances lactic acid resistance using a multi-copy yeast genomic DNA library. In this study, we identified the ESBP6 gene, which increases lactic acid resistance when overexpressed and which encodes a protein with similarity to monocarboxylate permeases. Although ESBP6 was not induced in response to lactic acid stress, it caused weak but reproducible sensitivity to lactic acid when disrupted. Furthermore, intracellular pH in the ESBP6 overexpressing strain was higher than that in the wild-type strain under lactic acid stressed condition, suggesting that Esbp6 plays some roles in lactic acid adaptation response. The ESBP6 overexpressing strain carrying the LDH gene induced 20% increase in lactic acid production compared with the wild-type strain carrying the LDH gene under non-neutralizing conditions. These results indicate that overexpression of ESBP6 provides a novel and useful tool to improve lactic acid resistance and lactic acid production in yeast.

  9. Overexpression of ABCG1 protein attenuates arteriosclerosis and endothelial dysfunction in atherosclerotic rabbits

    Directory of Open Access Journals (Sweden)

    Martin Ungerer

    2012-06-01

    Full Text Available The ABCG1 protein is centrally involved in reverse cholesterol transport from the vessel wall. Investigation of the effects of ABCG1 overexpression or knockdown in vivo has produced controversial results and strongly depended on the gene intervention model in which it was studied. Therefore, we investigated the effect of local overexpression of human ABCG1 in a novel model of vessel wall-directed adenoviral gene transfer in atherosclerotic rabbits. We conducted local, vascular-specific gene transfer by adenoviral delivery of human ABCG1 (Ad-ABCG1-GFP in cholesterol-fed atherosclerotic rabbits in vivo. Endothelial overexpression of ABCG1 markedly reduced atheroprogression (plaque size and almost blunted vascular inflammation, as shown by markedly reduced macrophage and smooth muscle cell invasion into the vascular wall. Also endothelial function, as determined by vascular ultrasound in vivo, was improved in rabbits after gene transfer with Ad-ABCG1-GFP. Therefore, both earlier and later stages of atherosclerosis were improved in this model of somatic gene transfer into the vessel wall. In contrast to results in transgenic mice, overexpression of ABCG1 by somatic gene transfer to the atherosclerotic vessel wall results in a significant improvement of plaque morphology and composition, and of vascular function in vivo.

  10. Accumulation of thymidine-derived sugars in thymidine phosphorylase overexpressing cells

    NARCIS (Netherlands)

    Bijnsdorp, I. V.; Azijli, K.; Jansen, E. E.; Wamelink, M. M.; Jakobs, C.; Struys, E. A.; Fukushima, M.; Kruyt, F. A. E.; Peters, G. J.

    2010-01-01

    Thymidine phosphorylase (TP) is often overexpressed in cancer and potentially plays a role in the stimulation of angiogenesis The exact mechanism of angiogenesis induction is unclear, but is postulated to be related to thymidine-derived sugars. TP catalyzes the conversion of thymidine (TdR) to thymi

  11. Cell division cycle 20 overexpression predicts poor prognosis for patients with lung adenocarcinoma.

    Science.gov (United States)

    Shi, Run; Sun, Qi; Sun, Jing; Wang, Xin; Xia, Wenjie; Dong, Gaochao; Wang, Anpeng; Jiang, Feng; Xu, Lin

    2017-03-01

    The cell division cycle 20, a key component of spindle assembly checkpoint, is an essential activator of the anaphase-promoting complex. Aberrant expression of cell division cycle 20 has been detected in various human cancers. However, its clinical significance has never been deeply investigated in non-small-cell lung cancer. By analyzing The Cancer Genome Atlas database and using some certain online databases, we validated overexpression of cell division cycle 20 in both messenger RNA and protein levels, explored its clinical significance, and evaluated the prognostic role of cell division cycle 20 in non-small-cell lung cancer. Cell division cycle 20 expression was significantly correlated with sex (p = 0.003), histological classification (p cell lung cancer patients. In lung adenocarcinoma patients, overexpression of cell division cycle 20 was significantly associated with bigger primary tumor size (p = 0.0023), higher MKI67 level (r = 0.7618, p cell carcinoma patients, no significant association of cell division cycle 20 expression was observed with any clinical parameter or prognosis. Overexpression of cell division cycle 20 is associated with poor prognosis in lung adenocarcinoma patients, and its overexpression can also be used to identify high-risk groups. In conclusion, cell division cycle 20 might serve as a potential biomarker for lung adenocarcinoma patients.

  12. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Gøtzsche, Casper René; Nikitidou, Litsa; Sørensen, Andreas;

    2012-01-01

    on kainate-induced motor seizures in rats. However, combined overexpression of Y5 receptors and neuropeptide Y exerted prominent suppression of seizures. This seizure-suppressant effect of combination gene therapy with Y5 receptors and neuropeptide Y was significantly stronger as compared to neuropeptide Y...

  13. ß-Cell Specific Overexpression of GPR39 Protects against Streptozotocin-Induced Hyperglycemia

    DEFF Research Database (Denmark)

    Egerod, Kristoffer Lihme; Jin, Chunyu; Petersen, Pia Steen;

    2011-01-01

    and OGTT. Although the overexpression of the constitutively active GPR39 receptor in animals not treated with streptozotocin appeared by itself to impair the glucose tolerance slightly and to decrease the ß-cell mass, it nevertheless totally protected against the gradual hyperglycemia in the steptozotocin...

  14. Overexpression of homologous phytochrome genes in tomato: exploring the limits in photoperception

    NARCIS (Netherlands)

    Husaineid, S.H.; Kok, R.A.; Schreuder, M.E.L.; Plas, van der L.H.W.; Krol, van der A.R.

    2007-01-01

    Transgenic tomato [Lycopersicon esculentum (=Solanum lycopersicum)] lines overexpressing tomato PHYA, PHYB1, or PHYB2, under control of the constitutive double-35S promoter from cauliflower mosaic virus (CaMV) have been generated to test the level of saturation in individual phytochrome-signalling p

  15. THE OVEREXPRESSION AND SIGNIFICANCE OF CYCLIN D1 AND P53 IN CERVICAL SQUAMOUS CELL CARCINOMAS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To investigate the significance of overexpresson of eyclin D1 and P53 protein in cervical squamous cell carcinomas.Methods:Fifty cases of invasive cervical squamous cell carcinomas and 10 Cases of normal cervical squamous epithelia were investigated with immunihistochemical technique.Results:The overexpressioin of cyclin D1 and P53 in invasive cervical carcinomas was 70% and 50%,respectively,There was no overexpression of them in the control group.The overexpression of cyclin D1 in grade Ⅱand Ⅲ was much higher than that in grade I(P<0.05),The overexpresson of cyclin D1 in stage Ⅲof cervical carcinoma was significantly higher than that in stage Ⅱ(P<0.05).The overexpression of P53 in grade -Ⅱand gradeⅢ of cervical carcinoma was remarkably higher than that in grade I(P<0.05),Conclusion:The action point of both cyclin D1 and P53 may be at G1/S transtition.The overexpression of them was associated with development and progression of cervical carcinoma probably in different mechanisms and different pathways.

  16. Overexpression of Interleukin-18 Aggravates Cardiac Fibrosis and Diastolic Dysfunction in Fructose-Fed Rats

    Science.gov (United States)

    Xing, Shan-Shan; Bi, Xiu-Ping; Tan, Hong-Wei; Zhang, Yun; Xing, Qi-Chong; Zhang, Wei

    2010-01-01

    Inflammation plays an important role in the pathophysiology of the metabolic syndrome (MS). We determined whether the overexpression of interleukin (IL)-18 could aggravate left ventricular (LV) remodeling and diastolic dysfunction in fructose-fed rats (FFRs). To create an animal model for MS, male Wistar rats received 10% fructose in water for 8 months. We used an adenovirus encoding rat IL-18 to overexpress IL-18 in FFRs by intravenous administration. IL-18 overexpression led to increases in collagen volume fraction and collagen deposition. LV systolic function was unaltered. But the LV end-diastolic pressure and the time constant of isovolumic relaxation (tau) were increased. Peak negative value of time derivative of LV pressure (−dp/dt) was decreased. Isovolumic relaxation time and myocardial index, as assessed by echocardiography, were increased. Overexpression of IL-18 leads to aggravated LV remodeling and dysfunction in FFRs. Attenuation of the inflammatory process may provide a novel therapeutic strategy in treating metabolic cardiomyopathy. PMID:20644901

  17. SIRT4 overexpression protects against diabetic nephropathy by inhibiting podocyte apoptosis

    Science.gov (United States)

    Shi, Jian-Xia; Wang, Qi-Jin; Li, Hui; Huang, Qin

    2017-01-01

    Diabetic nephropathy is a diabetic complication associated with capillary damage and increased mortality. Sirtuin 4 (SIRT4) plays an important role in mitochondrial function and the pathogenesis of metabolic diseases, including aging kidneys. The aim of the present study was to investigate the association between SIRT4 and diabetic nephropathy in a glucose-induced mouse podocyte model. A CCK-8 assay showed that glucose simulation significantly inhibited podocyte proliferation in a time- and concentration-dependent manner. Reverse transcription-quantitative polymerase chain reaction and western blot analysis showed that the mRNA and protein levels of SIRT4 were notably decreased in a concentration-dependent manner in glucose-simulated podocytes. However, SIRT4 overexpression increased proliferation and suppressed apoptosis, which was accompanied by increases in mitochondrial membrane potential and reduced production of reactive oxygen species (ROS). Notably, SIRT4 overexpression downregulated the expression of apoptosis-related proteins NOX1, Bax and phosphorylated p38 and upregulated the expression of Bcl-2 in glucose-simulated podocytes. In addition, SIRT4 overexpression significantly attenuated the inflammatory response, indicated by reductions in the levels of TNF-α, IL-1β and IL-6. These results demonstrate for the first time that the overexpression of SIRT4 prevents glucose-induced podocyte apoptosis and ROS production and suggest that podocyte apoptosis represents an early pathological mechanism leading to diabetic nephropathy. PMID:28123512

  18. THE OVEREXPRESSION AND SIGNIFICANCE OF CYCLIN D1 AND P53 IN CERVICAL SQUAMOUS CELL CARCINOMAS

    Institute of Scientific and Technical Information of China (English)

    王晓丽; 王梅; 李明众; 宋天保; 任娟; 尚菊战

    2002-01-01

    Objective To investigate the significance of ov erexpresson of cyclin D1 and P53 protein in cervical squamous cell carcinomas.Methods Fifty cases of in vasive cervical squamous cell carcinomas and 10 cases of normal cervical squamou s epithelia were investigated with immunihistochemical technique. Results The overexpression of cyclin D1 and P53 in invasive cer vical carcinomas was 70% and 50 %, respectively. There was no overexpression of them in the control group. The o verexpression of cyclin D1 in grade Ⅱ and Ⅲ was much higher than that in grad eⅠ(P<0.05). The overexpresson of cyclin D1 in stage Ⅲ of cervical carcinom a was significantly higher than that in stage Ⅱ (P<0.05). The overexpress ion of P53 in grade Ⅱ and grade Ⅲ of cervical carcinoma was remarkably higher than that in grade Ⅰ (P<0.05).Conclusion The action point of both cyclin D1 and P53 may be at G1/S transition. The overexpression of them was associated with development and progression of cervical carcinoma probably in different mechanisms and differen t pathways.

  19. erbB2 Overexpression in Uterine Serous Cancer: A Molecular Target for Trastuzumab Therapy

    Directory of Open Access Journals (Sweden)

    Karim S. ElSahwi

    2011-01-01

    Full Text Available Endometrial cancer is the most common female genital tract malignancy in the United States. Type I endometrial cancer is usually diagnosed at an early stage, and has a good prognosis. Type II is very aggressive, and is responsible for most uterine cancer relapses and deaths. Uterine serous adenocarcinomas (USC constitute the majority of Type II variants. They have a higher propensity for lymph node and distant metastases. They are frequently aneuploid and associated with p53 mutations. erbB2 overexpression in USC has been described. The incidence, which is higher in African Americans, ranges from 18–80%. erbB2 overexpression was found to be associated with higher stage, chemoresistance, and worse survival. Trastuzumab a humanized mAb was approved by the FDA for treatment of breast cancers that overexpress erbB2 in combination with standard chemotherapy. Evidence of trastuzumab activity in USC has been reported in vitro, as well as in case reports of advanced and recurrent cases. Promising results were obtained in these heavily pretreated patients either with trastuzumab alone or in combination with chemotherapy. This supports the hypothesis that trastuzumab may very well be an attractive and viable treatment option for advanced stage USC tumors that overexpress the erbB2, and is worthy of further study.

  20. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  1. Overexpression of thrombospondin-1 reduces growth and vascular index but not perfusion in glioblastoma

    DEFF Research Database (Denmark)

    Kragh, Michael; Quistorff, Bjørn; Tenan, Mirna

    2002-01-01

    Little is known about the effects of antiangiogenic therapy on perfusion of human tumors and the mechanisms by which tumors can adapt to these treatments and recur. Here, we examined the effects of serial passaging of LN-229 human glioma xenografts overexpressing thrombospondin (TSP)-1 on tumor g...

  2. Oncogenic role of clusterin overexpression in multistage colorectal tumorigenesis and progression

    Institute of Scientific and Technical Information of China (English)

    Dan Xie; Liang Hu; Xin-Yuan Guan; Jonathan S.T. Sham; Wei-Fen Zeng; Li-Hong Che; Meng Zhang; Hui-Xi Wu; Han-Liang Lin; Jian-Ming Wen; Sze Hang Lau

    2005-01-01

    AIM: To investigate the expression pattern of clusterin in colorectal adenoma-carcinoma-metastasis series, and to explore the potential role of dusterin in multistage colorectal tumorigenesis and progression.METHOD:S: A colorectal carcinoma (CRC)-tissue microarray (TMA), which contained 85 advanced CRCs including 43 cases of Dukes B, 21 of Dukes C and 21 of Dukes D tumors, were used for assessing the expression of clusterin (clone 41D) and tumor cell apoptotic index (AI) by immunohistochemistry and TUNEL assay, respectively. Moreover the potential correlation of dusterin expression with the patient'sclinical-pathological features were also examined. RESULTS: The positive staining of clusterin in different colorectal tissues was primarily a cytoplasmic pattern. Cytoplasmic overexpression of clusterin was detected in none of the normal coloredal mucosa, 17% of the adenomas, 46% of the primary CRCs, and 57% of the CRC metastatic lesions. In addition, a significant positive correlation between overexpression of clusterin and advanced clinical (Dukes) stage was observed (P<0.01). Overexpression of cytoplasmic clusterin in CRCs was inversely correlated with tumor apoptotic index (P<0.01), indicating the anti apoptotic function of cytoplasmic clusterin in CRCs.CONCLUSION: These data suggests that overexpression of cytoplasmic dustin might be involved in the tumorigenesis and/or progression of CRCs. The anti-apoptotic function of cytoplasmic dusterin may be responsible, at least in part, for the development and biologically aggressive behavior of CRC.

  3. Rhomboid-7 over-expression results in Opa1-like processing and malfunctioning mitochondria.

    Science.gov (United States)

    Rahman, Mokhlasur; Kylsten, Per

    2011-10-22

    Rhomboid-7 (rho-7) is a mitochondrial-specific intramembranous protease. The loss-of-function mutation rho-7 results in semi-lethality, while escapers have a reduced lifespan with several neurological disorders [1]. Here we show that general, or CNS-specific expression of rho-7 can rescue the lethality of rho-7. General, or CNS-specific over-expression of rho-7 in otherwise wild-type animals caused semi-lethality, with approximately 50% of the animals escaping this lethality, developing into adults displaying a shortened life span with larval locomotory problem. On a cellular level, over-expression resulted in severe depression of ATP levels and cytochrome c oxidase subunit II mRNA levels, a lowered number of mitochondria in neurons and aggregation of mitochondria in the brain indicating mitochondrial malfunction. Over-expression of rho-7 in developing eye discs resulted in an elevated apoptotic index. In the CNS, elevated levels of rho-7 were accompanied by both isoforms of Opa1-like, a dynamin-like GTPase, a mitochondrial component involved in regulating mitochondrial dynamics and function, including apoptosis. Most, but not all, of rho-7 over-expression phenotypes were suppressed by introducing a heterozygous mutation for Opa1-like. Our results suggest that rho-7 and Opa1-like function in a common molecular pathway affecting mitochondrial function and apoptosis in Drosophila melanogaster.

  4. Overexpression of PGC-1α Increases Fatty Acid Oxidative Capacity of Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Nataša Nikolić

    2012-01-01

    Full Text Available We investigated the effects of PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α overexpression on the oxidative capacity of human skeletal muscle cells ex vivo. PGC-1α overexpression increased the oxidation rate of palmitic acid and mRNA expression of genes regulating lipid metabolism, mitochondrial biogenesis, and function in human myotubes. Basal and insulin-stimulated deoxyglucose uptake were decreased, possibly due to upregulation of PDK4 mRNA. Expression of fast fiber-type gene marker (MHCIIa was decreased. Compared to skeletal muscle in vivo, PGC-1α overexpression increased expression of several genes, which were downregulated during the process of cell isolation and culturing. In conclusion, PGC-1α overexpression increased oxidative capacity of cultured myotubes by improving lipid metabolism, increasing expression of genes involved in regulation of mitochondrial function and biogenesis, and decreasing expression of MHCIIa. These results suggest that therapies aimed at increasing PGC-1α expression may have utility in treatment of obesity and obesity-related diseases.

  5. Overexpression of SbMyb60 in sorghum bicolor impacts both primary and secondary metabolism

    Science.gov (United States)

    Few transcription factors have been identified in C4 grasses that either positively or negatively regulate monolignol biosynthesis. Previously, overexpression of SbMyb60 in sorghum (Sorghum bicolor (L.) Moench) was shown to induce monolignol synthesis, which led to elevated lignin deposition and al...

  6. Effects of mineralocorticoid receptor overexpression on anxiety and memory after early life stress in female mice

    Directory of Open Access Journals (Sweden)

    Sofia eKanatsou

    2016-01-01

    Full Text Available Early-life stress is a risk factor for the development of psychopathology, particularly in women. Human studies have shown that certain haplotypes of NR3C2, encoding the mineralocorticoid receptor (MR, that result in gain of function, may protect against the consequences of stress exposure, including childhood trauma. Here, we tested the hypothesis that forebrain-specific overexpression of MR in female mice would ameliorate the effects of early-life stress on anxiety and memory in adulthood. We found that early-life stress increased anxiety, did not alter spatial discrimination and reduced contextual fear memory in adult female mice. Transgenic overexpression of MR did not alter anxiety but affected spatial memory performance and enhanced contextual fear memory formation. The effects of early life stress on anxiety and contextual fear were not affected by transgenic overexpression of MR. Thus MR overexpression in the forebrain does not represent a major resilience factor to early life adversity in female mice.

  7. Immunological and Clinical Effects of Vaccines Targeting p53-Overexpressing Malignancies

    NARCIS (Netherlands)

    Vermeij, R.; Leffers, N.; van der Burg, S. H.; Melief, C. J.; Daemen, T.; Nijman, H. W.

    2011-01-01

    Approximately 50% of human malignancies carry p53 mutations, which makes it a potential antigenic target for cancer immunotherapy. Adoptive transfer with p53-specific cytotoxic T-lymphocytes (CTL) and CD4(+) T-helper cells eradicates p53-overexpressing tumors in mice. Furthermore, p53 antibodies and

  8. Over-expression of calpastatin inhibits calpain activation and attenuates post-infarction myocardial remodeling.

    Directory of Open Access Journals (Sweden)

    Tingqiao Ye

    Full Text Available Calpain is activated following myocardial infarction and ablation of calpastatin (CAST, an endogenous inhibitor of calpains, promotes left ventricular remodeling after myocardial infarction (MI. The present study aimed to investigate the effect of transgenic over-expression of CAST on the post-infarction myocardial remodeling process.We established transgenic mice (TG ubiquitously over-expressing human CAST protein and produced MI in TG mice and C57BL/6J wild-type (WT littermates.The CAST protein expression was profoundly upregulated in the myocardial tissue of TG mice compared with WT littermates (P < 0.01. Overexpression of CAST significantly reduced the infarct size (P < 0.01 and blunted MI-induced interventricular hypertrophy, global myocardial fibrosis and collagen I and collagen III deposition, hypotension and hemodynamic disturbances at 21 days after MI. Moreover, the MI-induced up-regulation and activation of calpains were obviously attenuated in CAST TG mice. MI-induced down-regulation of CAST was partially reversed in TG mice. Additionally, the MI-caused imbalance of matrix metalloproteinases and their inhibitors was improved in TG mice.Transgenic over-expression of CAST inhibits calpain activation and attenuates post-infarction myocardial remodeling.

  9. Overexpression of SIRT1 is a poor prognostic factor for advanced colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Jiang Kewei; Lyu Liang; Shen Zhanlong; Zhang Jizhun; Zhang Hui; Dong Jianqiang; Yan Yichao

    2014-01-01

    Background Sirtuin 1 (SIRT1) has been reported to have diverse roles in various biological processes through deacetylation of histone and nonhistone proteins.However,the correlations among SIRT1 protein expression,clinicopathological parameters,and survival of colorectal cancer patients remain unclear.Methods SIRT1 protein expression was measured by immunohistochemistry in a paraffin-embedded tissue microarray,including 120 paired colorectal cancer and normal mucosa tissues.The correlations among SIRT1 protein expression,clinicopathological features,and prognosis were analyzed.Results All samples (100%) were positive for SIRT1,with variable staining in the cytoplasm rather than in the nucleus.There was significant difference in SIRT1 overexpression between adenocarcinomas and normal mucosal tissue (P<0.01,x2 test).SIRT1 overexpression was more frequently observed in advanced-stage tumors (P=0.046,0.002,x2test).SIRT1 overexpression was significantly correlated with poor overall survival (P=0.013,log-rank test) and diseasefree survival (P=0.012,log-rank test).Conclusions SIRT1 overexpression correlated with advanced stage and poor prognosis.SIRT1 may play an important role in the progression of colorectal cancer.

  10. Up-regulation of lactosylceramide synthase in MDR1 overexpressing human liver tumour cells

    NARCIS (Netherlands)

    Hummel, [No Value; Klappe, K; Kok, JW

    2005-01-01

    HepG2 cells, stably transfected with MDR1 cDNA, encoding the P-glycoprotein multidrug resistance efflux pump, display an altered sphingolipid composition compared to control cells, stably transfected with empty vector. The MDR1 over-expressing cells display a -3-fold increased level of

  11. Overexpress of CD47 does not alter the stemness of MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Oanh Thi-Kieu Nguyen

    2016-09-01

    Full Text Available Background: CD47 is a transmembrane glycoprotein expressed on all cells in the body and particularly overexpressed on cancer cells and cancer stem cells of both hematologic and solid malignancies. In the immune system, CD47 acts as a and ldquo;don't eat me and rdquo; signal, inhibiting phagocytosis by macrophages by interaction with signal regulatory protein and #945; (SIRP and #945;. In cancer, CD47 promotes tumor invasion and metastasis. This study aimed to evaluate the stemness of breast cancer cells when CD47 is overexpressed. Methods: MCF-7 breast cancer cells were transfected with plasmid pcDNA3.4-CD47 containing the CD47 gene. The stemness of the transduced MCF7 cell population was evaluated by expression of CD44 and CD24 markers, anti-tumor drug resistance and mammosphere formation. Results: Transfection of plasmid pcDNA3.4-CD47 significantly increased the expression of CD47 in MCF-7 cells. The overexpression of CD47 in transfected MCF-7 cells led to a significant increase in the CD44+CD24- population, but did not increase doxorubicin resistance of the cells or their capacity to form mammospheres. Conclusion: CD47 overexpression enhances the CD44+CD24- phenotype of breast cancer cells as observed by an increase in the CD44+CD24- expressing population. However, these changes are insufficient to increase the stemness of breast cancer cells. [Biomed Res Ther 2016; 3(9.000: 826-835

  12. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Stephanie M Wittig-Blaich

    2011-07-01

    Full Text Available The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases.

  13. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells12

    Science.gov (United States)

    Wittig-Blaich, Stephanie M; Kacprzyk, Lukasz A; Eismann, Thorsten; Bewerunge-Hudler, Melanie; Kruse, Petra; Winkler, Eva; Strauss, Wolfgang S L; Hibst, Raimund; Steiner, Rudolf; Schrader, Mark; Mertens, Daniel; Sültmann, Holger; Wittig, Rainer

    2011-01-01

    The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox)-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases. PMID:21750652

  14. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells

    DEFF Research Database (Denmark)

    Miyake, K; Mickley, L; Litman, Thomas

    1999-01-01

    Reports of multiple distinct mitoxantrone-resistant sublines without overexpression of P-glycoprotein or the multidrug-resistance associated protein have raised the possibility of the existence of another major transporter conferring drug resistance. In the present study, a cDNA library from mito...

  15. NDRG1 overexpression promotes the progression of esophageal squamous cell carcinoma through modulating Wnt signaling pathway

    Science.gov (United States)

    Ai, Runna; Sun, Yulin; Guo, Zhimin; Wei, Wei; Zhou, Lanping; Liu, Fang; Hendricks, Denver T.; Xu, Yang; Zhao, Xiaohang

    2016-01-01

    ABSTRACT N-myc down-regulated gene 1 (NDRG1) has been shown to regulate tumor growth and metastasis in various malignant tumors and also to be dysregulated in esophageal squamous cell carcinoma (ESCC). Here, we show that NDRG1 overexpression (91.9%, 79/86) in ESCC tumor tissues is associated with poor overall survival of esophageal cancer patients. When placed in stable transfectants of the KYSE 30 ESCC cell line generated by lentiviral transduction with the ectopic overexpression of NDRG1, the expression of transducin-like enhancer of Split 2 (TLE2) was decreased sharply, however β−catenin was increased. Mechanistically, NDRG1 physically associates with TLE2 and β−catenin to affect the Wnt pathway. RNA interference and TLE2 overexpression studies demonstrate that NDRG1 fails to active Wnt pathway compared with isogenic wild-type controls. Strikingly, NDRG1 overexpression induces the epithelial mesenchymal transition (EMT) through activating the Wnt signaling pathway in ESCC cells, decreased the expression of E-cadherin and enhanced the expression of Snail. Our study elucidates a mechanism of NDRG1-regulated Wnt pathway activation and EMT via affecting TLE2 and  β-catenin expression in esophageal cancer cells. This indicates a pro-oncogenic role for NDRG1 in esophageal cancer cells whereby it modulates tumor progression. PMID:27414086

  16. Clinicopathological correlation and prognostic significance of protein kinase cα overexpression in human gastric carcinoma.

    Directory of Open Access Journals (Sweden)

    Shee-Chan Lin

    Full Text Available OBJECTIVES: This study investigated the PKCα protein expression in gastric carcinoma, and correlated it with clinicopathological parameters. The prognostic significance of PKCα protein expression in gastric carcinoma was analyzed. METHODS: Quantitative real-time PCR test was applied to compare the PKCα mRNA expression in tumorous and nontumorous tissues of gastric carcinoma in ten randomly selected cases. Then PKCα protein expression was evaluated in 215 cases of gastric carcinoma using immunohistochemical method. The immunoreactivity was scored semiquantitatively as: 0 = absent; 1 = weak; 2 = moderate; and 3 = strong. All cases were further classified into two groups, namely PKCα overexpression group with score 2 or 3, and non-overexpression group with score 0 or 1. The PKCα protein expression was correlated with clinicopathological parameters. Survival analysis was performed to determine the prognostic significance of PKCα protein expression in patients with gastric carcinoma. RESULTS: PKCα mRNA expression was upregulated in all ten cases of gastric carcinoma via quantitative real-time PCR test. In immunohistochemical study, eighty-eight out of 215 cases (41% of gastric carcinoma revealed PKCα protein overexpression, which was statistically correlated with age (P = 0.0073, histologic type (P<0.0001, tumor differentiation (P = 0.0110, depth of invasion (P = 0.0003, angiolymphatic invasion (P = 0.0373, pathologic stage (P = 0.0047, and distant metastasis (P = 0.0048. We found no significant difference in overall and disease free survival rates between PKCα overexpression and non-overexpression groups (P = 0.0680 and 0.0587. However, PKCα protein overexpression emerged as a significant independent prognostic factor in multivariate Cox regression analysis (hazard ratio 0.632, P = 0.0415. CONCLUSIONS: PKCα protein is upregulated in gastric carcinoma. PKCα protein expression is

  17. Protein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double-tagged fusion proteins

    Directory of Open Access Journals (Sweden)

    Cheng Chung-Hsien

    2010-08-01

    Full Text Available Abstract Background Overexpression of recombinant proteins usually triggers the induction of heat shock proteins that regulate aggregation and solubility of the overexpressed protein. The two-dimensional gel electrophoresis (2-DE-mass spectrometry approach was used to profile the proteome of Escherichia coli overexpressing N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase and N-acetyl-D-neuraminic acid aldolase (Neu5Ac aldolase, both fused to glutathione S-transferase (GST and polyionic peptide (5D or 5R. Results Overexpression of fusion proteins by IPTG induction caused significant differential expression of numerous cellular proteins; most of these proteins were down-regulated, including enzymes connected to the pentose phosphate pathway and the enzyme LuxS that could lead to an inhibition of tRNA synthesis. Interestingly, when plasmid-harboring cells were cultured in LB medium, gluconeogenesis occurred mainly through MaeB, while in the host strain, gluconeogenesis occurred by a different pathway (by Mdh and PckA. Significant up-regulation of the chaperones ClpB, HslU and GroEL and high-level expression of two protective small heat shock proteins (IbpA and IbpB were found in cells overexpressing GST-GlcNAc 2-epimerase-5D but not in GST-Neu5Ac aldolase-5R-expressing E. coli. Although most of the recombinant protein was present in insoluble aggregates, the soluble fraction of GST-GlcNAc 2-epimerase-5D was higher than that of GST-Neu5Ac aldolase-5R. Also, in cells overexpressing recombinant GST-GlcNAc 2-epimerase-5D, the expression of σ32 was maintained at a higher level following induction. Conclusions Differential expression of metabolically functional proteins, especially those in the gluconeogenesis pathway, was found between host and recombinant cells. Also, the expression patterns of chaperones/heat shock proteins differed among the plasmid-harboring bacteria in response to overproduction of recombinant proteins. In conclusion, the

  18. Over-expressed CmbT multidrug resistance transporter improves the fitness of Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Filipić Brankica

    2013-01-01

    Full Text Available The influence of the over-expression of CmbT multidrug resistance transporter on the growth rate of Lactococcus lactis NZ9000 was studied. L. lactis is a lactic acid bacteria (LAB widely used as a starter culture in dairy industry. Recently characterized CmbT MDR transporter in L. lactis confers resistance to a wide variety of toxic compounds as well as to some clinically relevant antibiotics. In this study, the cmbT gene was over-expressed in the strain L. lactis NZ9000 in the presence of nisin inducer. Over-expression of the cmbT gene in L. lactis NZ9000 was followed by RT-PCR. The obtained results showed that the cmbT gene was successfully over-expressed by addition of sub-inhibitory amounts of nisin. Growth curves of L. lactis NZ9000/pCT50 over-expressing the cmbT gene and L. lactis NZ9000 control strain were followed in the rich medium as well as in the chemically defined medium in the presence solely of methionine (0.084 mM or mix of methionine and cysteine (8.4 mM and 8.2 mM, respectively. Resulting doubling times revealed that L. lactis NZ9000/pCT50 had higher growth rate comparing to the control strain. This could be a consequence of the CmbT efflux activity, which improves the fitness of the host bacterium through the elimination of toxic compounds from the cell.

  19. Overexpression of Histone Deacetylase 6 Enhances Resistance to Porcine Reproductive and Respiratory Syndrome Virus in Pigs

    Science.gov (United States)

    Li, Qiuyan; Li, Zhiguo; Wang, Meng; Liu, Lin; Tian, Kegong; Li, Ning

    2017-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically relevant viral pathogens in pigs and causes substantial losses in the pig industry worldwide each year. At present, PRRSV vaccines do not effectively prevent and control this disease. Consequently, it is necessary to develop new antiviral strategies to compensate for the inefficacy of the available vaccines. Histone deacetylase 6 (HDAC6) is an important member of the histone deacetylase family that is responsible for regulating many important biological processes. Studies have shown that HDAC6 has anti-viral activities during the viral life cycle. However, whether HDAC6 overexpression enhances resistance to PRRSV in pigs remains unknown. In this study, we used a somatic cell cloning method to produce transgenic (TG) pigs that constitutively overexpress porcine HDAC6. These TG pigs showed germ line transmission with continued overexpression of HDAC6. In vitro, virus-challenged porcine alveolar macrophages (PAMs) overexpressed HDAC6, which suppressed viral gene expression and PRRSV production. In vivo, resistance to PRRSV in TG pigs was evaluated by direct or cohabitation mediated infection with a highly pathogenic PRRSV (HP-PRRSV) strain. Compared with non-TG (NTG) siblings, TG pigs showed a significantly lower viral load in the lungs and an extended survival time after infection with HP-PRRSV via intramuscular injection. In the cohabitation study, NTG pigs housed with challenged NTG pigs exhibited significantly worse clinical symptoms than the other three in-contact groups. These results collectively suggest that HDAC6 overexpression enhances resistance to PRRSV infection both in vitro and in vivo. Our findings suggest the potential involvement of HDAC6 in the response to PRRSV, which will facilitate the development of novel therapies for PRRSV. PMID:28052127

  20. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors.

    Science.gov (United States)

    Kobayashi, Koichi; Sasaki, Daichi; Noguchi, Ko; Fujinuma, Daiki; Komatsu, Hirohisa; Kobayashi, Masami; Sato, Mayuko; Toyooka, Kiminori; Sugimoto, Keiko; Niyogi, Krishna K; Wada, Hajime; Masuda, Tatsuru

    2013-08-01

    In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.

  1. CDC25B overexpression stabilises centrin 2 and promotes the formation of excess centriolar foci.

    Directory of Open Access Journals (Sweden)

    Rose Boutros

    Full Text Available CDK-cyclin complexes regulate centriole duplication and microtubule nucleation at specific cell cycle stages, although their exact roles in these processes remain unclear. As the activities of CDK-cyclins are themselves positively regulated by CDC25 phosphatases, we investigated the role of centrosomal CDC25B during interphase. We report that overexpression of CDC25B, as is commonly found in human cancer, results in a significant increase in centrin 2 at the centrosomes of interphase cells. Conversely, CDC25B depletion causes a loss of centrin 2 from the centrosome, which can be rescued by treatment with the proteasome inhibitor MG132. CDC25B overexpression also promotes the formation of excess centrin 2 "foci". These foci can accumulate other centrosome proteins, including γ-tubulin and PCM-1, and can function as microtubule organising centres, indicating that these represent functional centrosomes. Formation of centrin 2 foci can be blocked by specific inhibition of CDK2 but not CDK1. CDK2-mediated phosphorylation of Monopolar spindle 1 (Mps1 at the G1/S transition is essential for the initiation of centrosome duplication, and Mps1 is reported to phosphorylate centrin 2. Overexpression of wild-type or non-degradable Mps1 exacerbated the formation of excess centrin 2 foci induced by CDC25B overexpression, while kinase-dead Mps1 has a protective effect. Together, our data suggest that CDC25B, through activation of a centrosomal pool of CDK2, stabilises the local pool of Mps1 which in turn regulates the level of centrin 2 at the centrosome. Overexpression of CDC25B may therefore contribute to tumourigenesis by perturbing the natural turnover of centrosome proteins such as Mps1 and centrin 2, thus resulting in the de novo assembly of extra-numerary centrosomes and potentiating chromosome instability.

  2. Effects of clusterin over-expression on metastatic progression and therapy in breast cancer

    Directory of Open Access Journals (Sweden)

    Chatterjee Namita

    2010-03-01

    Full Text Available Abstract Background Clusterin is a secreted glycoprotein that is upregulated in a variety of cell lines in response to stress, and enhances cell survival. A second nuclear isoform of clusterin that is associated with cell death has also been identified. The aim of this study was to determine the role(s of the secretory isoform in breast tumor progression and metastasis. Methods To investigate the role of secretory clusterin in the biology of breast cancer tumor growth and resistance to therapy we have engineered an MCF-7 cell line (MCF-7CLU that over-expresses clusterin. We have measured the in vitro effects of clusterin over-expression on cell cycle, cell death, and sensitivity to TNFalpha and tamoxifen. Using an orthotopic model of breast cancer, we have also determined the effects of over-expression of clusterin on tumor growth and metastatic progression. Results In vitro, over-expression of secretory clusterin alters the cell cycle kinetics and decreases the rate of cell death, resulting in the enhancement of cell growth. Over-expression of secretory clusterin also blocks the TNFalpha-mediated induction of p21 and abrogates the cleavage of Bax to t-Bax, rendering the MCF-7CLU cells significantly more resistant to the cytokine than the parental cells. Orthotopic primary tumors derived from MCF-7CLU cells grow significantly more rapidly than tumors derived from parental MCF-7 cells and, unlike the parental cells, metastasize frequently to the lungs. Conclusions These data suggest that secretory clusterin, which is frequently up-regulated in breast cancers by common therapies, including anti-estrogens, may play a significant role in tumor growth, metastatic progression and subsequent drug resistance in surviving cells.

  3. Frequent Overexpression of Aurora Kinase A in Upper Gastrointestinal Adenocarcinomas Correlates With Potent Antiapoptotic Functions

    Science.gov (United States)

    Dar, Altaf A.; Zaika, Alexander; Piazuelo, Maria B.; Correa, Pelayo; Koyama, Tatsuki; Belkhiri, Abbes; Washington, Kay; Castells, Antoni; Pera, Manuel; El-Rifai, Wael

    2014-01-01

    BACKGROUND Upper gastrointestinal adenocarcinomas are a common cause of cancer-related deaths. In this study, the authors investigated the prevalence and biological significance of Aurora Kinase A (AURKA) overexpression in upper gastrointestinal adenocarcinomas. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical staining on tumor tissue microarrays (TMA) were used to study the expression of AURKA in upper gastrointestinal adenocarcinomas. To investigate the biological and signaling impact of AURKA, the authors used multiple in vitro assays that included 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), TUNEL (terminal deoxynucleotidyl transferase–mediated nick-end labeling), cytochrome C release, flow cytometry, luciferase reporter, and Western blot analysis. RESULTS Frequent overexpression of AURKA transcript in upper gastrointestinal adenocarcinomas was detected compared with normal samples (47%; P = .001). The immunohistochemical analysis of 130 tumors demonstrated moderate-to-strong immunostaining of AURKA in >50% of upper gastrointestinal adenocarcinomas. By using camptothecin as a drug-induced apoptosis in vitro model, the authors demonstrated that the expression of AURKA provided protection against apoptosis to gastrointestinal cancer cells (AGS and RKO) (P =.006) and RIE-1 primary intestinal epithelial cells (P =.001). The AURKA overexpression mediated an increase in phosphorylation of AKTSer473 with an increase in HDM2 level. The shRNA-knockdown of AKT in AURKA-overexpressing cells reversed this effect and showed a significant increase in the p53 protein level, indicating a possible nexus of AURKA/AKT/p53. Indeed, overexpression of AURKA led to a remarkable reduction in the transcription activity of p53, with subsequent reductions in transcript and protein levels of its downstream proapoptotic transcription targets (p21, BAX, NOXA, and PUMA). CONCLUSIONS Study results indicated that AURKA provides

  4. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Zou Ruiyang

    2011-04-01

    Full Text Available Abstract Background Accurate interpretation of quantitative PCR (qPCR data requires normalization using constitutively expressed reference genes. Ribosomal RNA is often used as a reference gene for transcriptional studies in E. coli. However, the choice of reliable reference genes has not been systematically validated. The objective of this study is to identify a set of reliable reference genes for transcription analysis in recombinant protein over-expression studies in E. coli. Results In this study, the meta-analysis of 240 sets of single-channel Affymetrix microarray data representing over-expressions of 63 distinct recombinant proteins in various E. coli strains identified twenty candidate reference genes that were stably expressed across all conditions. The expression of these twenty genes and two commonly used reference genes, rrsA encoding ribosomal RNA 16S and ihfB, was quantified by qPCR in E. coli cells over-expressing four genes of the 1-Deoxy-D-Xylulose 5-Phosphate pathway. From these results, two independent statistical algorithms identified three novel reference genes cysG, hcaT, and idnT but not rrsA and ihfB as highly invariant in two E. coli strains, across different growth temperatures and induction conditions. Transcriptomic data normalized by the geometric average of these three genes demonstrated that genes of the lycopene synthetic pathway maintained steady expression upon enzyme overexpression. In contrast, the use of rrsA or ihfB as reference genes led to the mis-interpretation that lycopene pathway genes were regulated during enzyme over-expression. Conclusion This study identified cysG/hcaT/idnT to be reliable novel reference genes for transcription analysis in recombinant protein producing E. coli.

  5. Effects of CYP7A1 overexpression on cholesterol and bile acid homeostasis.

    Science.gov (United States)

    Pandak, W M; Schwarz, C; Hylemon, P B; Mallonee, D; Valerie, K; Heuman, D M; Fisher, R A; Redford, K; Vlahcevic, Z R

    2001-10-01

    The initial and rate-limiting step in the classic pathway of bile acid biosynthesis is 7alpha-hydroxylation of cholesterol, a reaction catalyzed by cholesterol 7alpha-hydroxylase (CYP7A1). The effect of CYP7A1 overexpression on cholesterol homeostasis in human liver cells has not been examined. The specific aim of this study was to determine the effects of overexpression of CYP7A1 on key regulatory steps involved in hepatocellular cholesterol homeostasis, using primary human hepatocytes (PHH) and HepG2 cells. Overexpression of CYP7A1 in HepG2 cells and PHH was accomplished by using a recombinant adenovirus encoding a CYP7A1 cDNA (AdCMV-CYP7A1). CYP7A1 overexpression resulted in a marked activation of the classic pathway of bile acid biosynthesis in both PHH and HepG2 cells. In response, there was decreased HMG-CoA-reductase (HMGR) activity, decreased acyl CoA:cholesterol acyltransferase (ACAT) activity, increased cholesteryl ester hydrolase (CEH) activity, and increased low-density lipoprotein receptor (LDLR) mRNA expression. Changes observed in HMGR, ACAT, and CEH mRNA levels paralleled changes in enzyme specific activities. More specifically, LDLR expression, ACAT activity, and CEH activity appeared responsive to an increase in cholesterol degradation after increased CYP7A1 expression. Conversely, accumulation of the oxysterol 7alpha-hydroxycholesterol in the microsomes after CYP7A1 overexpression was correlated with a decrease in HMGR activity.

  6. Overexpression of a novel cell cycle regulator ecdysoneless in breast cancer: a marker of poor prognosis in HER2/neu-overexpressing breast cancer patients.

    Science.gov (United States)

    Zhao, Xiangshan; Mirza, Sameer; Alshareeda, Alaa; Zhang, Ying; Gurumurthy, Channabasavaiah Basavaraju; Bele, Aditya; Kim, Jun Hyun; Mohibi, Shakur; Goswami, Monica; Lele, Subodh M; West, William; Qiu, Fang; Ellis, Ian O; Rakha, Emad A; Green, Andrew R; Band, Hamid; Band, Vimla

    2012-07-01

    Uncontrolled proliferation is one of the hallmarks of breast cancer. We have previously identified the human Ecd protein (human ortholog of Drosophila Ecdysoneless, hereafter called Ecd) as a novel promoter of mammalian cell cycle progression, a function related to its ability to remove the repressive effects of Rb-family tumor suppressors on E2F transcription factors. Given the frequent dysregulation of cell cycle regulatory components in human cancer, we used immunohistochemistry of paraffin-embedded tissues to examine Ecd expression in normal breast tissue versus tissues representing increasing breast cancer progression. Initial studies of a smaller cohort without outcomes information showed that Ecd expression was barely detectable in normal breast tissue and in hyperplasia of breast, but high levels of Ecd were detected in benign breast hyperplasia, ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDCs) of the breast. In this cohort of 104 IDC patients, Ecd expression levels showed a positive correlation with higher grade (P=0.04). Further analyses of Ecd expression using a larger, independent cohort (954) confirmed these results, with a strong positive correlation of elevated Ecd expression with higher histological grade (P=0.013), mitotic index (P=0.032), and Nottingham Prognostic Index score (P=0.014). Ecd expression was positively associated with HER2/neu (P=0.002) overexpression, a known marker of poor prognosis in breast cancer. Significantly, increased Ecd expression showed a strong positive association with shorter breast cancer specific survival (BCSS) (P=0.008) and disease-free survival (DFS) (P=0.003) in HER2/neu overexpressing patients. Taken together, our results reveal Ecd as a novel marker for breast cancer progression and show that levels of Ecd expression predict poorer survival in Her2/neu overexpressing breast cancer patients.

  7. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hanwen [Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208 (United States); Pirisi, Lucia [Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Creek, Kim E., E-mail: creekk@sccp.sc.edu [Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208 (United States)

    2015-01-01

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling.

  8. Osteopontin Overexpression Induced Tumor Progression and Chemoresistance to Oxaliplatin through Induction of Stem-Like Properties in Human Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Lui Ng

    2015-01-01

    Full Text Available Colorectal cancer (CRC is one of the most common and fatal malignancies worldwide. The poor prognosis of colorectal cancer patients is due to development of chemoresistance and cancer metastasis. Recently osteopontin (OPN has been associated with stem-like properties in colorectal cancer. This study further examined the clinicopathological significance of OPN in CRC and its effect on chemoresistance and transcription of stem cell markers. We examined the transcription level of OPN in 84 CRC patients and correlated the expression with their clinicopathological parameters. The associations of OPN overexpression with transcription of stem cell markers and response to chemotherapy in DLD1-OPN overexpressing clones and CRC patients were also investigated. Our results showed that OPN was significantly overexpressed in CRC, and its overexpression correlated with tumor stage and poor prognosis. Overexpression of CRC induced OCT4 and SOX2 expression in vitro and correlated with SOX2 overexpression in CRC patients. In addition, DLD1-OPN overexpressing cells showed enhanced ability to survive upon oxaliplatin treatment, and OPN expression was higher in CRC patients who were resistant to oxaliplatin-involved chemotherapy treatment. Thus, CRC cells overexpressing OPN demonstrated stem-like properties and OPN inhibition is a potential therapeutic approach to combat CRC progression and chemoresistance.

  9. Role of immunohistochemical overexpression of matrix metalloproteinases MMP-2 and MMP-11 in the prognosis of death by ovarian cancer.

    Science.gov (United States)

    Périgny, Martine; Bairati, Isabelle; Harvey, Isabelle; Beauchemin, Michel; Harel, François; Plante, Marie; Têtu, Bernard

    2008-02-01

    Matrix metalloproteinases (MMPs) are enzymes thought to be involved in tumor invasion. We hypothesized that MMP-2 and MMP-11 overexpression was associated with the aggressiveness of ovarian carcinoma. This study was performed on samples from 100 patients with stage III ovarian carcinomas treated surgically between 1990 and 2000. Immunohistochemical staining was performed on ovarian tumors and peritoneal implants using monoclonal antibodies. Overexpression was defined as more than 10% of cells expressing the marker. Multivariate analyses showed that only MMP-2 overexpression by cancer cells in peritoneal implants was associated with a significant risk of death by disease (hazard ratio, 2.65; 95% confidence interval, 1.41-4.97; P =.003). MMP-11 overexpression was not predictive of survival. These results suggest that MMP-2 overexpression by cancer cells in peritoneal implants and not in the primary ovarian cancer is predictive of ovarian cancer prognosis and more likely reflects the presence of particularly aggressive clones of cancer cells.

  10. Cyclopamine and jervine induce COX-2 overexpression in human erythroleukemia cells but only cyclopamine has a pro-apoptotic effect

    Energy Technology Data Exchange (ETDEWEB)

    Ghezali, Lamia; Leger, David Yannick; Limami, Youness [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Cook-Moreau, Jeanne [Université de Limoges, FR 3503 GEIST, UMR CNRS 7276 “Contrôle de la réponse immune B et lymphoproliférations”, Faculté de Médecine, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Beneytout, Jean-Louis [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Liagre, Bertrand, E-mail: bertrand.liagre@unilim.fr [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France)

    2013-04-15

    Erythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effect on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-κB dependent. Inhibition of NF-κB reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines. - Highlights: ► Cyclopamine alone but not jervine induces apoptosis in human erythroleukemia cells. ► Cyclopamine and jervine induce COX-2 overexpression. ► COX-2 overexpression is implicated in resistance to cyclopamine-induced apoptosis. ► Apoptotic potential of jervine is restrained by NF-κB pathway activation. ► PKC is involved in cyclopamine-induced apoptosis and COX-2 overexpression.

  11. The cooperation between hMena overexpression and HER2 signalling in breast cancer.

    Science.gov (United States)

    Di Modugno, Francesca; Mottolese, Marcella; DeMonte, Lucia; Trono, Paola; Balsamo, Michele; Conidi, Andrea; Melucci, Elisa; Terrenato, Irene; Belleudi, Francesca; Torrisi, Maria Rosaria; Alessio, Massimo; Santoni, Angela; Nisticò, Paola

    2010-12-30

    hMena and the epithelial specific isoform hMena(11a) are actin cytoskeleton regulatory proteins belonging to the Ena/VASP family. EGF treatment of breast cancer cell lines upregulates hMena/hMena(11a) expression and phosphorylates hMena(11a), suggesting cross-talk between the ErbB receptor family and hMena/hMena(11a) in breast cancer. The aim of this study was to determine whether the hMena/hMena(11a) overexpression cooperates with HER-2 signalling, thereby affecting the HER2 mitogenic activity in breast cancer. In a cohort of breast cancer tissue samples a significant correlation among hMena, HER2 overexpression, the proliferation index (high Ki67), and phosphorylated MAPK and AKT was found and among the molecular subtypes the highest frequency of hMena overexpressing tumors was found in the HER2 subtype. From a clinical viewpoint, concomitant overexpression of HER2 and hMena identifies a subgroup of breast cancer patients showing the worst prognosis, indicating that hMena overexpression adds prognostic information to HER2 overexpressing tumors. To identify a functional link between HER2 and hMena, we show here that HER2 transfection in MCF7 cells increased hMena/hMena(11a) expression and hMena(11a) phosphorylation. On the other hand, hMena/hMena(11a) knock-down reduced HER3, AKT and p44/42 MAPK phosphorylation and inhibited the EGF and NRG1-dependent HER2 phosphorylation and cell proliferation. Of functional significance, hMena/hMena(11a) knock-down reduced the mitogenic activity of EGF and NRG1. Collectively these data provide new insights into the relevance of hMena and hMena(11a) as downstream effectors of the ErbB receptor family which may represent a novel prognostic indicator in breast cancer progression, helping to stratify patients.

  12. The cooperation between hMena overexpression and HER2 signalling in breast cancer.

    Directory of Open Access Journals (Sweden)

    Francesca Di Modugno

    Full Text Available hMena and the epithelial specific isoform hMena(11a are actin cytoskeleton regulatory proteins belonging to the Ena/VASP family. EGF treatment of breast cancer cell lines upregulates hMena/hMena(11a expression and phosphorylates hMena(11a, suggesting cross-talk between the ErbB receptor family and hMena/hMena(11a in breast cancer. The aim of this study was to determine whether the hMena/hMena(11a overexpression cooperates with HER-2 signalling, thereby affecting the HER2 mitogenic activity in breast cancer. In a cohort of breast cancer tissue samples a significant correlation among hMena, HER2 overexpression, the proliferation index (high Ki67, and phosphorylated MAPK and AKT was found and among the molecular subtypes the highest frequency of hMena overexpressing tumors was found in the HER2 subtype. From a clinical viewpoint, concomitant overexpression of HER2 and hMena identifies a subgroup of breast cancer patients showing the worst prognosis, indicating that hMena overexpression adds prognostic information to HER2 overexpressing tumors. To identify a functional link between HER2 and hMena, we show here that HER2 transfection in MCF7 cells increased hMena/hMena(11a expression and hMena(11a phosphorylation. On the other hand, hMena/hMena(11a knock-down reduced HER3, AKT and p44/42 MAPK phosphorylation and inhibited the EGF and NRG1-dependent HER2 phosphorylation and cell proliferation. Of functional significance, hMena/hMena(11a knock-down reduced the mitogenic activity of EGF and NRG1. Collectively these data provide new insights into the relevance of hMena and hMena(11a as downstream effectors of the ErbB receptor family which may represent a novel prognostic indicator in breast cancer progression, helping to stratify patients.

  13. Cutaneous neurturin overexpression alters mechanical, thermal, and cold responsiveness in physiologically identified primary afferents.

    Science.gov (United States)

    Jankowski, Michael P; Baumbauer, Kyle M; Wang, Ting; Albers, Kathryn M; Davis, Brian M; Koerber, H Richard

    2017-03-01

    Neurotrophic factors play an important role in the regulation of functional properties of sensory neurons under normal and pathological conditions. The GDNF family member neurturin is one such factor that has been linked to modulating responsiveness to peripheral stimuli. Neurturin binds to the GFRα2 receptor, a receptor found primarily in isolectin B4-expressing polymodal cutaneous nociceptors. Previous work has shown that knockout of GFRα2 alters heat, but not mechanical, responses in dissociated sensory neurons and reduces pain-related behaviors during the second phase of the formalin test. Research has also shown that overexpression of neurturin in basal keratinocytes increases behavioral responsiveness to mechanical stimulation and innocuous cooling of the skin without affecting noxious heat responses. Here we directly examined the impact of neurturin overexpression on cutaneous afferent function. We compared physiological responses of individual sensory neurons to mechanical and thermal stimulation of the skin, using an ex vivo skin-nerve-dorsal root ganglion-spinal cord preparation produced from neurturin-overexpressing (NRTN/OE) mice and wild-type littermate controls. We found that neurturin overexpression increases responsiveness to innocuous mechanical stimuli in A-fiber nociceptors, alters thermal responses in the polymodal subpopulation of C-fiber sensory neurons, and changes the relative numbers of mechanically sensitive but thermally insensitive C-fiber afferents. These results demonstrate the potential roles of different functional groups of sensory neurons in the behavioral changes observed in mice overexpressing cutaneous neurturin and highlight the importance of neurturin in regulating cutaneous afferent response properties.NEW & NOTEWORTHY GDNF family neurotrophic factors regulate the development and function of primary sensory neurons. Of these, neurturin has been shown to modulate mechanical and cooling sensitivity behaviorally. Here we show

  14. Bortezomib improves progression-free survival in multiple myeloma patients overexpressing preferentially expressed antigen of melanoma

    Institute of Scientific and Technical Information of China (English)

    Qin Yazhen; Lu Jin; Bao Li; Zhu Honghu; Li Jinlan; Li Lingdi; Lai Yueyun

    2014-01-01

    Background Significant efforts have been made to identify factors that differentiate patients treated with novel therapies,such as bortezomib in multiple myeloma (MM).The exact expression pattern and prognostic value of the cancer/testis antigen preferentially expressed antigen of melanoma (PRAME) in MM are unknown and were explored in this study.Methods The transcript level of PRAME was detected in bone marrow specimens from 100 newly diagnosed MM patients using real-time quantitative polymerase chain reaction,and the prognostic value of PRAME was determined through retrospective survival analysis.PRAME expression higher than the upper limit of normal bone marrow was defined as PRAME overexpression or PRAME (+).Results Sixty-two patients (62.0%) overexpressed PRAME.PRAME overexpression showed no prognostic significance to either overall survival (n=100) or progression-free survival (PFS,n=96,all P >0.05) of patients.The patients were also categorized according to regimens with or without bortezomib.PRAME overexpression tended to be associated with a lower two-year PFS rate in patients treated with non-bortezomib-containing regimens (53.5% vs.76.9%,P=0.071).By contrast,it was not associated with the two-year PFS rate in patients with bortezomib-containing regimens (77.5% vs.63.9%,P >0.05).When the patients were categorized into PRAME (+) and PRAME (-) groups,treatment with bortezomib-containing regimens predicted a higher two-year PFS rate in PRAME (+) patients (77.5% vs.53.5%,P=0.027) but showed no significant effect on two-year PFS rate in PRAME (-) patients (63.9% vs.76.9%,P >0.05).Conclusion PRAME overexpression might be an adverse prognostic factor of PFS in MM patients treated with non-bortezomib-containing regimens.Bortezomib improves PFS in patients overexpressing PRAME.

  15. Overexpression of Wilms tumor 1 gene as a negative prognostic indicator in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Xiaodong Lyu

    Full Text Available Chromosomal aberrations are useful in assessing treatment options and clinical outcomes of acute myeloid leukemia (AML patients. However, 40 ∼ 50% of the AML patients showed no chromosomal abnormalities, i.e., with normal cytogenetics aka the CN-AML patients. Testing of molecular aberrations such as FLT3 or NPM1 can help to define clinical outcomes in the CN-AML patients but with various successes. Goal of this study was to test the possibility of Wilms' tumor 1 (WT1 gene overexpression as an additional molecular biomarker. A total of 103 CN-AML patients, among which 28% had overexpressed WT1, were studied over a period of 38 months. Patient's response to induction chemotherapy as measured by the complete remission (CR rate, disease-free survival (DFS and overall survival (OS were measured. Our data suggested that WT1 overexpression correlated negatively with the CR rate, DFS and OS. Consistent with previous reports, CN-AML patients can be divided into three different risk subgroups based on the status of known molecular abnormalities, i.e., the favorable (NPM1(mt/no FLT3(ITD, the unfavorable (FLT3(ITD and the intermediate risk subgroups. The WT1 overexpression significantly reduced the CR, DFS and OS in both the favorable and unfavorable groups. As the results, patients with normal WT1 gene expression in the favorable risk group showed the best clinical outcomes and all survived with complete remission and disease-free survival over the 37 month study period; in contrast, patients with WT1 overexpression in the unfavorable risk group displayed the worst clinical outcomes. WT1 overexpression by itself is an independent and negative indicator for predicting CR rate, DFS and OS of the CN-AML patients; moreover, it increases the statistical power of predicting the same clinical outcomes when it is combined with the NPM1(mt or the FLT3(ITD genotypes that are the good or poor prognostic markers of CN-AML.

  16. Effects of EpCAM overexpression on human breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Krobitsch Sylvia

    2011-01-01

    Full Text Available Abstract Background Recently, EpCAM has attracted major interest as a target for antibody- and vaccine-based cancer immunotherapies. In breast cancer, the EpCAM antigen is overexpressed in 30-40% of all cases and this increased expression correlates with poor prognosis. The use of EpCAM-specific monoclonal antibodies is a promising treatment approach in these patients. Methods In order to explore molecular changes following EpCAM overexpression, we investigated changes of the transcriptome upon EpCAM gene expression in commercially available human breast cancer cells lines Hs578T and MDA-MB-231. To assess cell proliferation, a tetrazolium salt based assay was performed. A TCF/LEF Reporter Kit was used to measure the transcriptional activity of the Wnt/β-catenin pathway. To evaluate the accumulation of β-catenin in the nucleus, a subcellular fractionation assay was performed. Results For the first time we could show that expression profiling data of EpCAM transfected cell lines Hs578TEpCAM and MDA-MB-231EpCAM indicate an association of EpCAM overexpression with the downregulation of the Wnt signaling inhibitors SFRP1 and TCF7L2. Confirmation of increased Wnt signaling was provided by a TCF/LEF reporter kit and by the finding of the nuclear accumulation of ß-catenin for MDA-MB-231EpCAM but not Hs578TEpCAM cells. In Hs578T cells, an increase of proliferation and chemosensitivity to Docetaxel was associated with EpCAM overexpression. Conclusions These data show a cell type dependent modification of Wnt signaling components after EpCAM overexpression in breast cancer cell lines, which results in marginal functional changes. Further investigations on the interaction of EpCAM with SFRP1 and TCF7L2 and on additional factors, which may be causal for changes upon EpCAM overexpression, will help to characterize unique molecular properties of EpCAM-positive breast cancer cells.

  17. Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice.

    Directory of Open Access Journals (Sweden)

    Tetsuya Chujo

    Full Text Available WRKY transcription factors and mitogen-activated protein kinase (MAPK cascades have been shown to play pivotal roles in the regulation of plant defense responses. We previously reported that OsWRKY53-overexpressing rice plants showed enhanced resistance to the rice blast fungus. In this study, we identified OsWRKY53 as a substrate of OsMPK3/OsMPK6, components of a fungal PAMP-responsive MAPK cascade in rice, and analyzed the effect of OsWRKY53 phosphorylation on the regulation of basal defense responses to a virulence race of rice blast fungus Magnaporthe oryzae strain Ina86-137. An in vitro phosphorylation assay revealed that the OsMPK3/OsMPK6 activated by OsMKK4 phosphorylated OsWRKY53 recombinant protein at its multiple clustered serine-proline residues (SP cluster. When OsWRKY53 was coexpressed with a constitutively active mutant of OsMKK4 in a transient reporter gene assay, the enhanced transactivation activity of OsWRKY53 was found to be dependent on phosphorylation of the SP cluster. Transgenic rice plants overexpressing a phospho-mimic mutant of OsWRKY53 (OsWRKY53SD showed further-enhanced disease resistance to the blast fungus compared to native OsWRKY53-overexpressing rice plants, and a substantial number of defense-related genes, including pathogenesis-related protein genes, were more upregulated in the OsWRKY53SD-overexpressing plants compared to the OsWRKY53-overexpressing plants. These results strongly suggest that the OsMKK4-OsMPK3/OsMPK6 cascade regulates transactivation activity of OsWRKY53, and overexpression of the phospho-mimic mutant of OsWRKY53 results in a major change to the rice transcriptome at steady state that leads to activation of a defense response against the blast fungus in rice plants.

  18. Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Deniaud

    Full Text Available BACKGROUND: The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. METHODOLOGY AND PRINCIPAL FINDINGS: We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. CONCLUSION: This study shows that the binding to DNA

  19. Overexpression, purification and crystallization of the tetrameric form of SorC sorbitol operon regulator

    Energy Technology Data Exchange (ETDEWEB)

    Sanctis, Daniele de; Rêgo, Ana T.; Marçal, David; McVey, Colin E.; Carrondo, Maria A. [Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901 Oeiras (Portugal); Enguita, Francisco J., E-mail: fenguita@fm.ul.pt [Instituto de Medicina Molecular, Avenida Professor Egas Moniz, 1649-028 Lisboa (Portugal); Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901 Oeiras (Portugal)

    2008-01-01

    The sorbitol operon regulator from K. pneumoniae has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 3.2 Å. The sorbitol operon regulator (SorC) regulates the metabolism of l-sorbose in Klebsiella pneumonia. SorC was overexpressed in Escherichia coli and purified, and crystals were obtained of a tetrameric form. A single crystal showed X-ray diffraction to 3.20 Å. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 91.6, b = 113.3, c = 184.1 Å. Analysis of the molecular-replacement solution indicates the presence of four SorC molecules in the asymmetric unit.

  20. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis.

    Science.gov (United States)

    Zhang, Wenbo; Wei, Rui; Chen, Su; Jiang, Jing; Li, Huiyu; Huang, Haijiao; Yang, Guang; Wang, Shuo; Wei, Hairong; Liu, Guifeng

    2015-06-01

    We cloned a Cinnamoyl-CoA Reductase gene (BpCCR1) from an apical meristem and first internode of Betula platyphylla and characterized its functions in lignin biosynthesis, wood formation and tree growth through transgenic approaches. We generated overexpression and suppression transgenic lines and analyzed them in comparison with the wild-type in terms of lignin content, anatomical characteristics, height and biomass. We found that BpCCR1 overexpression could increase lignin content up to 14.6%, and its underexpression decreased lignin content by 6.3%. Surprisingly, modification of BpCCR1 expression led to conspicuous changes in wood characteristics, including xylem vessel number and arrangement, and secondary wall thickness. The growth of transgenic trees in terms of height was also significantly influenced by the modification of BpCCR1 genes. We discuss the functions of BpCCR1 in the context of a phylogenetic tree built with CCR genes from multiple species.

  1. Over-expression of ST3Gal-I promotes mammary tumorigenesis

    DEFF Research Database (Denmark)

    Picco, Gianfranco; Julien, Sylvain; Brockhausen, Inka

    2010-01-01

    3Gal-I adds sialic acid to the galactose residue of core 1 (Galbeta1,3GalNAc) O-glycans and this enzyme is over-expressed in breast cancer resulting in the expression of sialylated core 1 glycans. In order to study the role of ST3Gal-I in mammary tumor development, we developed transgenic mice...... and lactating mammary glands, the stomach, lungs and intestine. Although no obvious defects were observed in the fully developed mammary gland, when these mice were crossed with PyMT mice, a highly significant decrease in tumor latency was observed compared to the PyMT mice on an identical background....... These results indicate that ST3Gal-I is acting as a tumor promoter in this model of breast cancer. This, we believe, is the first demonstration that over-expression of a glycosyltransferase involved in mucin-type O-linked glycosylation can promote tumorigenesis....

  2. X-ray microtomographic visualization of Escherichia coli by metalloprotein overexpression

    CERN Document Server

    Mizutani, Ryuta; Ohtsuka, Masato; Kimura, Minoru; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    This paper reports X-ray microtomographic visualization of the microorganism Escherichia coli overexpressing a metalloprotein ferritin. The three-dimensional distribution of linear absorption coefficients determined using a synchrotron radiation microtomograph with a simple projection geometry revealed that the X-ray absorption was homogeneously distributed, suggesting that every E. coli cell was labeled with the ferritin. The ferritin-expressing E. coli exhibited linear absorption coefficients comparable to those of phosphotungstic-acid stained cells. The submicrometer structure of the ferritin-expressing E. coli cells was visualized by Zernike phase contrast using an imaging microtomograph equipped with a Fresnel zone plate. The obtained images revealed curved columnar or bunching oval structures corresponding to the E. coli cells. These results indicate that the metalloprotein overexpression facilitates X-ray visualization of three-dimensional cellular structures of biological objects.

  3. Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis.

    Science.gov (United States)

    Nakai, Yusuke; Fujiwara, Sumire; Kubo, Yasuyuki; Sato, Masa H

    2013-03-01

    VOZ (vascular plant one zinc-finger protein) is a plant specific one-zinc finger type transcriptional activator, which is highly conserved through land plant evolution. We have previously shown that loss-of-function mutations in VOZ1 and VOZ2 showed increased cold and drought stress tolerances whereas decreased biotic stress resistance in Arabidopsis. Here, we demonstrate that transgenic plants overexpressing VOZ2 impairs freezing and drought stress tolerances but increases resistance to a fungal pathogen, Colletoricum higginsianum. Consistent with changes in the tolerance to biotic and abiotic stresses, the expression of marker genes for these stresses is significantly altered compared with those of the wild-type plant. These results indicate that a overexpression of VOZ2 confers biotic stress tolerance but impairs abiotic stress tolerances in Arabidopsis.

  4. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    Science.gov (United States)

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

  5. Overexpression of Annexin II Receptor-Induced Autophagy Protects Against Apoptosis in Uveal Melanoma Cells.

    Science.gov (United States)

    Zhang, Yuelu; Song, Hongyuan; Guo, Ting; Zhu, Yongzhe; Tang, Hailin; Qi, Zhongtian; Zhao, Ping; Zhao, Shihong

    2016-05-01

    Uveal melanoma is the most common primary malignant intraocular tumor in adults and still lacks effective systemic therapies. Annexin A2 receptor (AXIIR), a receptor for Annexin II, was demonstrated to play an important role in multiple cells, but its role in uveal melanoma cells remains exclusive. Herein, the authors reported that overexpression of AXIIR was able to reduce cell viability and activate apoptosis apparently in the Mum2C uveal melanoma cell line. Meanwhile, overexpression of AXIIR could induce autophagy and increase autophagy flux. After autophagy was inhibited by chloroquine, enhanced apoptosis and cytotoxicity could be detected. In summary, these data highlighted the crucial role of AXIIR in reducing Mum2C cell viability through inducing apoptosis, while autophagy played a protective role in this process. Interference of this gene may be a promising method for uveal melanoma therapy and combination with specific inhibitor of autophagy may serve as a supplementary.

  6. Over-expression of microRNA169 confers enhanced drought tolerance to tomato.

    Science.gov (United States)

    Zhang, Xiaohui; Zou, Zhe; Gong, Pengjuan; Zhang, Junhong; Ziaf, Khurram; Li, Hanxia; Xiao, Fangming; Ye, Zhibiao

    2011-02-01

    Plant miRNA regulates multiple developmental and physiological processes, including drought responses. We found that the accumulation of Sly-miR169 in tomato (Solanum lycopersicum) was induced by drought stress. Consequently, Sly-miR169 targets, namely, three nuclear factor Y subunit genes (SlNF-YA1/2/3) and one multidrug resistance-associated protein gene (SlMRP1), were significantly down-regulated by drought stress. Constitutive over-expression of a miR169 family member, Sly-miR169c, in tomato plant can efficiently down-regulate the transcripts of the target genes. Compared with non-transgenic plants, transgenic plants over-expressing Sly-miR169c displayed reduced stomatal opening, decreased transpiration rate, lowered leaf water loss, and enhanced drought tolerance. Our study is the first to provide evidence that the Sly-miR169c negatively regulates stomatal movement in tomato drought responses.

  7. Analysis of Rheb in the cellular slime mold Dictyostelium discoideum: Cellular localization, spatial expression and overexpression

    Indian Academy of Sciences (India)

    Pynskhem Bok Swer; Pooja Bhadoriya; Shweta Saran

    2014-03-01

    Dictyostelium discoideum encodes a single Rheb protein showing sequence similarity to human homologues of Rheb. The DdRheb protein shares 52% identity and 100% similarity with the human Rheb1 protein. Fluorescence of Rheb yellow fluorescent protein fusion was detected in the D. discoideum cytoplasm. Reverse transcription-polymerase chain reaction and whole-mount in situ hybridization analyses showed that rheb is expressed at all stages of development and in prestalk cells in the multicellular structures developed. When the expression of rheb as a fusion with lacZ was driven under its own promoter, the -galactosidase activity was seen in the prestalk cells. D. discoideum overexpressing Rheb shows an increase in the size of the cell. Treatment of the overexpressing Rheb cells with rapamycin confirms its involvement in the TOR signalling pathway.

  8. Glycomic and sialoproteomic data of gastric carcinoma cells overexpressing ST3GAL4

    Directory of Open Access Journals (Sweden)

    Stefan Mereiter

    2016-06-01

    Full Text Available Gastric carcinoma MKN45 cells stably transfected with the full-length ST3GAL4 gene were characterised by glycomic and sialoproteomic analysis. Complementary strategies were applied to assess the glycomic alterations induced by ST3GAL4 overexpression. The N- and O-glycome data were generated in two parallel structural analyzes, based on PGC-ESI-MS/MS. Data on glycan structure identification and relative abundance in ST3GAL4 overexpressing cells and respective mock control are presented. The sialoproteomic analysis based on titanium-dioxide enrichment of sialopeptides with subsequent LC-MS/MS identification was performed. This analysis identified 47 proteins with significantly increased sialylation. The data in this article is associated with the research article published in Biochim Biophys Acta “Glycomic analysis of gastric carcinoma cells discloses glycans as modulators of RON receptor tyrosine kinase activation in cancer” [1].

  9. Mannose 6-Phosphate Receptor Is Reduced in -Synuclein Overexpressing Models of Parkinsons Disease

    DEFF Research Database (Denmark)

    Matrone, Carmela; Dzamko, Nicolas; Madsen, Peder;

    2016-01-01

    Increasing evidence points to defects in autophagy as a common denominator in most neurodegenerative conditions. Progressive functional decline in the autophagy-lysosomal pathway (ALP) occurs with age, and the consequent impairment in protein processing capacity has been associated with a higher...... to autophagy defects in PD neurons is still uncertain. Here we demonstrate that MPR300 shuttling between endosomes and the trans Golgi network is altered in α-synuclein overexpressing neurons. Consequently, CD is not correctly trafficked to lysosomes and cannot be processed to generate its mature active form......, leading to a reduced CD-mediated α-synuclein degradation and α-synuclein accumulation in neurons. MPR300 is downregulated in brain from α-synuclein overexpressing animal models and in PD patients with early diagnosis. These data indicate MPR300 as crucial player in the autophagy-lysosomal dysfunctions...

  10. Glycomic and sialoproteomic data of gastric carcinoma cells overexpressing ST3GAL4.

    Science.gov (United States)

    Mereiter, Stefan; Magalhães, Ana; Adamczyk, Barbara; Jin, Chunsheng; Almeida, Andreia; Drici, Lylia; Ibáñez-Vea, Maria; Larsen, Martin R; Kolarich, Daniel; Karlsson, Niclas G; Reis, Celso A

    2016-06-01

    Gastric carcinoma MKN45 cells stably transfected with the full-length ST3GAL4 gene were characterised by glycomic and sialoproteomic analysis. Complementary strategies were applied to assess the glycomic alterations induced by ST3GAL4 overexpression. The N- and O-glycome data were generated in two parallel structural analyzes, based on PGC-ESI-MS/MS. Data on glycan structure identification and relative abundance in ST3GAL4 overexpressing cells and respective mock control are presented. The sialoproteomic analysis based on titanium-dioxide enrichment of sialopeptides with subsequent LC-MS/MS identification was performed. This analysis identified 47 proteins with significantly increased sialylation. The data in this article is associated with the research article published in Biochim Biophys Acta "Glycomic analysis of gastric carcinoma cells discloses glycans as modulators of RON receptor tyrosine kinase activation in cancer" [1].

  11. Overexpression of the CmACS-3 gene in melon causes abnormal pollen development.

    Science.gov (United States)

    Zhang, H; Luan, F

    2015-01-01

    Sexual diversity expressed by the Curcurbitaceae family is a primary example of developmental plasticity in plants. Most melon genotypes are andromonoecious, where an initial phase of male flowers is followed by a mixture of bisexual and male flowers. Over-expression of the CmACS-3 gene in melon plants showed an increased number of flower buds, and increased femaleness as demonstrated by a larger number bisexual buds. Transformation of CmACS-3 in melons showed earlier development of and an increased number of bisexual buds that matured to anthesis but also increased the rate of development of the bisexual buds to maturity. Field studies showed that CmACS-3-overexpressing melons had earlier mature bisexual flowers, earlier fruit set, and an increased number of fruits set on closely spaced nodes on the main stem.

  12. Overexpression of Bax sensitizes prostate cancer cells to TGF-β induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Pei Hui LIN; Zui PAN; Lin ZHENG; Na LI; David DANIELPOUR; Jian Jie MA

    2005-01-01

    NRP-154 is a tumorigenic epithelial cell line derived from the preneoplastic dorsal-lateral prostate of rats. These cells are exquisitely sensitive to TGF-β induced apoptosis. In contrast, we find that NRP-154 cells can sustain overexpression of exogenous Bax protein, which is different from non-tumor cells where Bax functions as a ubiquitous stimulator of apoptosis. NRP-154 cells stably overexpressing Bax show increased sensitivity to TGF-β induced apoptosis. The degree of TGF-β induced apoptosis displays high correlation with cleavage of Bax at the amino-terminus. Our data indicate that prostate cancer cells can host high levels of latent Bax which can be activated through post-translational modification.

  13. Ras1CA overexpression in the posterior silk gland improves silk yield

    Institute of Scientific and Technical Information of China (English)

    Li Ma; Hanfu Xu; Jinqi Zhu; Sanyuan Ma; Yan Liu; Rong-Jing Jiang; Qingyou Xia; Sheng Li

    2011-01-01

    Sericulture has been greatly advanced by applying hybrid breeding techniques to the domesticated silkworm,Bombyx mori,but has reached a plateau during the last decades. For the first time,we report improved silk yield in a GAL4/UAS transgenic silkworm. Overexpression of the Ras1CA oncogene specifically in the posterior silk gland improved fibroin production and silk yield by 60%,while increasing food consumption by only 20%. Ras activation by Ras1CA overexpression in the posterior silk gland enhanced phosphorylation levels of Ras downstream effector proteins,up-regulated fibroin mRNA levels,increased total DNA content,and stimulated endoreplication. Moreover,Rasl activation increased cell and nuclei sizes,enriched subcellular organelles related to protein synthesis,and stimulated ribosome biogenesis for mRNA translation. We conclude that Rasl activation increases cell size and protein synthesis in the posterior silk gland,leading to silk yield improvement.

  14. Methoxychlor induces atresia of antral follicles in ERalpha-overexpressing mice.

    Science.gov (United States)

    Tomic, Dragana; Frech, Maria Silvina; Babus, Janice K; Gupta, Rupesh K; Furth, Priscilla A; Koos, Robert D; Flaws, Jodi A

    2006-09-01

    Methoxychlor (MXC) is a pesticide that is known to bind to estrogen receptor alpha (ERalpha) and to induce atresia of antral ovarian follicles. Although studies have shown that MXC is toxic to the ovary, we hypothesize that perturbation to the estrogen-signaling system (i.e., increase or decrease in estrogen sensitivity) might alter ovarian responsiveness to MXC. Thus, we examined whether ERalpha overexpression alters the ability of MXC to increase follicle atresia. To do so, we employed a transgenic mouse model in which ERalpha can be inducibly overexpressed in animal tissues (ERalpha overexpressors). We dosed female controls and ERalpha overexpressors with sesame oil (vehicle control) or MXC (32 and 64 mg/kg/day) for 20 days. After dosing, the ovaries were collected for histological evaluation of follicle numbers and follicle atresia, while blood was collected for measurements of hormones. Estrous cycles were determined in all animals to ensure that all were terminated during estrus. Although there were no significant effects of MXC on the numbers of primordial, primary, and preantral follicles in both controls and ERalpha overexpressors, there was an effect on antral follicles. Specifically, our data indicate that 32 and 64 mg/kg MXC increased the percentage of atretic follicles compared to vehicle in both control and ERalpha overexpressor groups. Moreover, there was a clear trend toward greater sensitivity to 64 mg/kg MXC in ERalpha-overexpressing mice compared to control animals. Specifically, at the 64-mg/kg MXC dose, ERalpha-overexpressing mice had a significantly higher percentage of atretic follicles compared to control animals (controls = 21.5 +/- 3%, n = 5; ERalpha overexpressors = 37 +/- 23%, n = 9, p < or = 0.05 vs. controls). After 20 days of dosing, there were no differences in estradiol levels between controls and ERalpha-overexpressing mice in all treatment groups. Follicle-stimulating hormone (FSH) levels were similar in sesame oil-treated control

  15. X-ray microtomographic visualization of Escherichia coli by metalloprotein overexpression.

    Science.gov (United States)

    Mizutani, Ryuta; Taguchi, Keisuke; Ohtsuka, Masato; Kimura, Minoru; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-07-01

    This paper reports X-ray microtomographic visualization of the microorganism Escherichia coli overexpressing a metalloprotein ferritin. The three-dimensional distribution of linear absorption coefficients determined using a synchrotron radiation microtomograph with a simple projection geometry revealed that the X-ray absorption was homogeneously distributed, suggesting that every E. coli cell was labeled with the ferritin. The ferritin-expressing E. coli exhibited linear absorption coefficients comparable with those of phosphotungstic acid stained cells. The submicrometer structure of the ferritin-expressing E. coli cells was visualized by Zernike phase contrast using an imaging microtomograph equipped with a Fresnel zone plate. The obtained images revealed curved columnar or bunching oval structures corresponding to the E. coli cells. These results indicate that the metalloprotein overexpression facilitates X-ray visualization of three-dimensional cellular structures of biological objects.

  16. Brain-derived neurotrophic factor (BDNF) overexpression in the forebrain results in learning and memory impairments.

    Science.gov (United States)

    Cunha, Carla; Angelucci, Andrea; D'Antoni, Angela; Dobrossy, Mate D; Dunnett, Stephen B; Berardi, Nicoletta; Brambilla, Riccardo

    2009-03-01

    In this study we analyzed the effect on behavior of a chronic exposure to brain-derived neurotrophic factor (BDNF), by analysing a mouse line overexpressing BDNF under the alphaCaMKII promoter, which drives the transgene expression exclusively to principal neurons of the forebrain. BDNF transgenic mice and their WT littermates were examined with a battery of behavioral tests, in order to evaluate motor coordination, learning, short and long-term memory formation. Our results demonstrate that chronic BDNF overexpression in the central nervous system (CNS) causes learning deficits and short-term memory impairments, both in spatial and instrumental learning tasks. This observation suggests that a widespread increase in BDNF in forebrain networks may result in adverse effects on learning and memory formation.

  17. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiying [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China); Rao, Qing, E-mail: raoqing@gmail.com [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China); Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China)

    2009-09-04

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  18. Over-expression of LPTS-L in hepatocellular carcinoma cell line SMMC-7721 induces crisis

    Institute of Scientific and Technical Information of China (English)

    Cheng Liao; Mu-Jun Zhao; Jing Zhao; Di Jia; Hai Song; Zai-Ping Li

    2002-01-01

    AIM: To evaluate the function of the longer transcripts LPTS-Lin hepatocellular carcinoma cell line SMMC-7721.METHODS: SMMC-7721 cells were transfected with LPTSL expression construct and stably transfected cells were selected by G418. Multiple single clones formed and were checked for their phenotype. In the study of the effect on telomerase activity of LPTS-Lin vitro, GST-LPTS-L fusion protein was expressed in E.coli and purified by glutathioneagarose column. Telomeric repeat amplification protocol (TRAP) assays were performed to study the influence of telomerase activity in SMMC-7721 cells.RESULTS: Over-expression of LPTS-L induced SMMC-7721 cells into crisis. LPTS-L could inhibit the telomerase activity in SMMC-7721 cellsin vitro.CONCLUSION: LPTS-L is a potent telomeraseinhibitor. Over-expression of LPTS-L can induce hepatoma cells into crisis due to the reduction of telomerase activity.

  19. Overexpression of the prostaglandin E2 receptor EP2 results in enhanced skin tumor development.

    Science.gov (United States)

    Sung, Y M; He, G; Hwang, D H; Fischer, S M

    2006-09-07

    We previously showed that the EP2 knockout mice were resistant to chemically induced skin carcinogenesis. The purpose of this study was to investigate the role of the overexpression of the EP2 receptor in mouse skin carcinogenesis. To determine the effect of overexpression of EP2, we used EP2 transgenic (TG) mice and wild-type (WT) mice in a DMBA (7,12-dimethylbenz[alpha]anthracene)/TPA (12-O-tetradecanoylphorbol-13-acetate) two-stage carcinogenesis protocol. EP2 TG mice developed significantly more tumors compared with WT mice. Overexpression of the EP2 receptor increased TPA-induced keratinocyte proliferation both in vivo and in vitro. In addition, the epidermis of EP2 TG mice 48 h after topical TPA treatment was significantly thicker compared to that of WT mice. EP2 TG mice showed significantly increased cyclic adenosine monophosphate levels in the epidermis after prostaglandin E2 (PGE2) treatment. The inflammatory response to TPA was increased in EP2 TG mice, as demonstrated by an increased number of macrophages in the dermis. Tumors and 7 x TPA-treated and DMBA-TPA-treated (6 weeks) skins from EP2 TG mice produced more blood vessels than those of WT mice as determined by CD-31 immunostaining. Vascular endothelial growth factor (VEGF) protein expression was significantly increased in squamous cell carcinoma (SCC) samples from EP2 TG mice compared that of WT mice. There was, however, no difference in the number of apoptotic cells in tumors from WT and EP2 TG mice. Together, our results suggest that the overexpression of the EP2 receptor plays a significant role in the protumorigenic action of PGE2 in mouse skin.

  20. Identification of cytotoxic drugs that selectively target tumor cells with MYC overexpression.

    Directory of Open Access Journals (Sweden)

    Anna Frenzel

    Full Text Available Expression of MYC is deregulated in a wide range of human cancers, and is often associated with aggressive disease and poorly differentiated tumor cells. Identification of compounds with selectivity for cells overexpressing MYC would hence be beneficial for the treatment of these tumors. For this purpose we used cell lines with conditional MYCN or c-MYC expression, to screen a library of 80 conventional cytotoxic compounds for their ability to reduce tumor cell viability and/or growth in a MYC dependent way. We found that 25% of the studied compounds induced apoptosis and/or inhibited proliferation in a MYC-specific manner. The activities of the majority of these were enhanced both by c-MYC or MYCN over-expression. Interestingly, these compounds were acting on distinct cellular targets, including microtubules (paclitaxel, podophyllotoxin, vinblastine and topoisomerases (10-hydroxycamptothecin, camptothecin, daunorubicin, doxorubicin, etoposide as well as DNA, RNA and protein synthesis and turnover (anisomycin, aphidicholin, gliotoxin, MG132, methotrexate, mitomycin C. Our data indicate that MYC overexpression sensitizes cells to disruption of specific pathways and that in most cases c-MYC and MYCN overexpression have similar effects on the responses to cytotoxic compounds. Treatment of the cells with topoisomerase I inhibitors led to down-regulation of MYC protein levels, while doxorubicin and the small molecule MYRA-A was found to disrupt MYC-Max interaction. We conclude that the MYC pathway is only targeted by a subset of conventional cytotoxic drugs currently used in the clinic. Elucidating the mechanisms underlying their specificity towards MYC may be of importance for optimizing treatment of tumors with MYC deregulation. Our data also underscores that MYC is an attractive target for novel therapies and that cellular screenings of chemical libraries can be a powerful tool for identifying compounds with a desired biological activity.

  1. Identification of cytotoxic drugs that selectively target tumor cells with MYC overexpression.

    Science.gov (United States)

    Frenzel, Anna; Zirath, Hanna; Vita, Marina; Albihn, Ami; Henriksson, Marie Arsenian

    2011-01-01

    Expression of MYC is deregulated in a wide range of human cancers, and is often associated with aggressive disease and poorly differentiated tumor cells. Identification of compounds with selectivity for cells overexpressing MYC would hence be beneficial for the treatment of these tumors. For this purpose we used cell lines with conditional MYCN or c-MYC expression, to screen a library of 80 conventional cytotoxic compounds for their ability to reduce tumor cell viability and/or growth in a MYC dependent way. We found that 25% of the studied compounds induced apoptosis and/or inhibited proliferation in a MYC-specific manner. The activities of the majority of these were enhanced both by c-MYC or MYCN over-expression. Interestingly, these compounds were acting on distinct cellular targets, including microtubules (paclitaxel, podophyllotoxin, vinblastine) and topoisomerases (10-hydroxycamptothecin, camptothecin, daunorubicin, doxorubicin, etoposide) as well as DNA, RNA and protein synthesis and turnover (anisomycin, aphidicholin, gliotoxin, MG132, methotrexate, mitomycin C). Our data indicate that MYC overexpression sensitizes cells to disruption of specific pathways and that in most cases c-MYC and MYCN overexpression have similar effects on the responses to cytotoxic compounds. Treatment of the cells with topoisomerase I inhibitors led to down-regulation of MYC protein levels, while doxorubicin and the small molecule MYRA-A was found to disrupt MYC-Max interaction. We conclude that the MYC pathway is only targeted by a subset of conventional cytotoxic drugs currently used in the clinic. Elucidating the mechanisms underlying their specificity towards MYC may be of importance for optimizing treatment of tumors with MYC deregulation. Our data also underscores that MYC is an attractive target for novel therapies and that cellular screenings of chemical libraries can be a powerful tool for identifying compounds with a desired biological activity.

  2. WISP-1 overexpression upregulates cell proliferation in human salivary gland carcinomas via regulating MMP-2 expression

    Science.gov (United States)

    Li, Fu-Jun; Wang, Xin-Juan; Zhou, Xiao-Li

    2016-01-01

    Background WISP-1 is a member of the CCN family of growth factors and has been reported to play an important role in tumorigenesis by triggering downstream events via integrin signaling. However, little is known about the role of WISP-1 in proliferation of salivary gland carcinoma (SGC) cells. Methods In this study, we investigated the WISP-1 expression in SGC tissues via immunohistochemical staining, Western blotting assay, and real-time quantitative polymerase chain reaction method, and then evaluated the regulatory role of WISP-1 in the growth of SGC A-253 cells. In addition, the role of MMP-2 in the WISP-1-mediated growth regulation was also investigated. Results It was demonstrated that the WISP-1 expression was upregulated at both mRNA and protein levels in 15 of 21 SGC tumor tissues, compared to the non-tumor tissues (five of 21), associated with the lymph node dissection and bone invasion. The in vitro CCK-8 assay and colony-forming assay demonstrated that the exogenous WISP-1 treatment or the WISP-1 overexpression promoted the growth of A-253 cells. In addition, we confirmed that the WISP-1 overexpression upregulated the MMP-2 expression in A-253 cells with the gain-of-function and loss-of-function strategies, and that the MMP-2 knockdown attenuated the WISP-1-mediated growth promotion of A-253 cells. Conclusion We found that WISP-1 was overexpressed in the human SGCs, and the WISP-1 overexpression promoted the salivary gland cell proliferation via upregulating MMP-2 expression. Our study recognized the oncogenic role of WISP-1 in human SGCs, which could serve as a potential target for anticancer therapy. PMID:27799801

  3. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode.

    Science.gov (United States)

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Zhu, Junwei J; Zhuang, Xiaofeng; Liu, Wusheng; Pantalone, Vincent R; Arelli, Prakash R; Stewart, Charles N; Chen, Feng

    2013-12-01

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence-related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full-length cDNAs of GmSAMT1 from a SCN-resistant soybean line and from a SCN-susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli-expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μM. To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN-susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.

  4. Salivary gland tumors in transgenic mice with targeted PLAG1 proto-oncogene overexpression.

    Science.gov (United States)

    Declercq, Jeroen; Van Dyck, Frederik; Braem, Caroline V; Van Valckenborgh, Isabelle C; Voz, Marianne; Wassef, Michel; Schoonjans, Luc; Van Damme, Boudewijn; Fiette, Laurence; Van de Ven, Wim J M

    2005-06-01

    Pleomorphic adenoma gene 1 (PLAG1) proto-oncogene overexpression is implicated in various human neoplasias, including salivary gland pleomorphic adenomas. To further assess the oncogenic capacity of PLAG1, two independent PLAG1 transgenic mouse strains were established, PTMS1 and PTMS2, in which activation of PLAG1 overexpression is Cre mediated. Crossbreeding of PTMS1 or PTMS2 mice with MMTV-Cre transgenic mice was done to target PLAG1 overexpression to salivary and mammary glands, in the P1-Mcre/P2-Mcre offspring. With a prevalence of 100% and 6%, respectively, P1-Mcre and P2-Mcre mice developed salivary gland tumors displaying various pleomorphic adenoma features. Moreover, histopathologic analysis of salivary glands of 1-week-old P1-Mcre mice pointed at early tumoral stages in epithelial structures. Malignant characteristics in the salivary gland tumors and frequent lung metastases were found in older tumor-bearing mice. PLAG1 overexpression was shown in all tumors, including early tumoral stages. The tumors revealed an up-regulation of the expression of two distinct, imprinted gene clusters (i.e., Igf2/H19 and Dlk1/Gtl2). With a latency period of about 1 year, 8% of the P2-Mcre mice developed mammary gland tumors displaying similar histopathologic features as the salivary gland tumors. In conclusion, our results establish the strong and apparently direct in vivo tumorigenic capacity of PLAG1 and indicate that the transgenic mice constitute a valuable model for pleomorphic salivary gland tumorigenesis and potentially for other glands as well.

  5. Overexpression of Sprouty 2 in Mouse Lung Epithelium Inhibits Urethane-Induced Tumorigenesis

    OpenAIRE

    Minowada, George; Miller, York E.

    2008-01-01

    Members of the Sprouty family encode novel proteins that are thought to function primarily as intracellular antagonists of the Ras-signaling pathway. Increased Ras signaling is a critical characteristic of human lung adenocarcinoma, the most common type of non–small cell lung cancer. Sprouty 2 is expressed in the lung epithelium, the tissue layer from which lung cancers arise. We hypothesized that overexpression of Sprouty 2 in the distal lung epithelium would inhibit lung tumorigenesis. To t...

  6. Overexpression of centrosomal protein Nlp confers breast carcinoma resistance to paclitaxel.

    Science.gov (United States)

    Zhao, Weihong; Song, Yongmei; Xu, Binghe; Zhan, Qimin

    2012-02-01

    Nlp (ninein-like protein), an important molecule involved in centrosome maturation and spindle formation, plays an important role in tumorigenesis and its abnormal expression was recently observed in human breast and lung cancers. In this study, the correlation between overexpression of Nlp and paclitaxel chemosensitivity was investigated to explore the mechanisms of resistance to paclitaxel and to understand the effect of Nlp upon apoptosis induced by chemotherapeutic agents. Nlp expression vector was stably transfected into breast cancer MCF-7 cells. With Nlp overexpression, the survival rates, cell cycle distributions and apoptosis were analyzed in transfected MCF-7 cells by MTT test and FCM approach. The immunofluorescent assay was employed to detect the changes of microtubule after paclitaxel treatment. Immunoblotting analysis was used to examine expression of centrosomal proteins and apoptosis associated proteins. Subsequently, Nlp expression was retrospectively examined with 55 breast cancer samples derived from paclitaxel treated patients. Interestingly, the survival rates of MCF-7 cells with Nlp overexpressing were higher than that of control after paclitaxel treatment. Nlp overexpression promoted G2-M arrest and attenuated apoptosis induced by paclitaxel, which was coupled with elevated Bcl-2 protein. Nlp expression significantly lessened the microtubule polymerization and bundling elicited by paclitaxel attributing to alteration on the structure or dynamics of β-tubulin but not on its expression. The breast cancer patients with high expression of Nlp were likely resistant to the treatment of paclitaxel, as the response rate in Nlp negative patients was 62.5%, whereas was 58.3 and 15.8% in Nlp (+) and Nlp (++) patients respectively (p = 0.015). Nlp expression was positive correlated with those of Plk1 and PCNA. These findings provide insights into more rational chemotherapeutic regimens in clinical practice, and more effective approaches might be

  7. Transgenic mice overexpressing γ-aminobutyric acid transporter subtype I develop obesity

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Transgenic mice ubiquitously overexpressing murine γaminobutyric acid transporter subtype I were created. Unexpectedly, these mice markedly exhibited heritable obesity,which features significantly increased body weight and fat deposition. Behavioral examination revealed that transgenic mice have slightly reduced spontaneous locomotive capacity and altered feeding pattern. This preliminary finding indicates that the inappropriate level of γ-aminobutyric acid transporters may be directly or indirectly involved in the pathogenic mechanism underlying certain types of obesity.

  8. Hepatic Overexpression of Hemopexin Inhibits Inflammation and Vascular Stasis in Murine Models of Sickle Cell Disease.

    Science.gov (United States)

    Vercellotti, Gregory M; Zhang, Ping; Nguyen, Julia; Abdulla, Fuad; Chen, Chunsheng; Nguyen, Phong; Nowotny, Carlos; Steer, Clifford J; Smith, Ann; Belcher, John D

    2016-07-19

    Sickle cell disease (SCD) patients have low serum hemopexin (Hpx) levels due to chronic hemolysis. We hypothesize that in SCD mice, hepatic overexpression of hemopexin will scavenge the proximal mediator of vascular activation, heme, and will inhibit inflammation and microvascular stasis. To examine the protective role of Hpx in SCD, we transplanted bone marrow from NY1DD SCD mice into Hpx(-/-) or Hpx(+/+) C57BL/6 mice. Dorsal skin fold chambers were implanted in week 13 post-transplant and microvascular stasis (% non-flowing venules) evaluated in response to heme infusion. Hpx(-/-) sickle mice had significantly greater microvascular stasis in response to heme infusion than Hpx(+/+) sickle mice (pBeauty (SB) transposon-mediated gene transfer to overexpress wild-type rat Hpx (wt-Hpx) in NY1DD and Townes-SS SCD mice. Control SCD mice were treated with lactated Ringer's solution (LRS) or a luciferase (Luc) plasmid. Plasma and hepatic Hpx were significantly increased compared to LRS and Luc controls. Microvascular stasis in response to heme infusion in NY1DD and Townes-SS mice overexpressing wt-Hpx had significantly less stasis than controls (p<0.05). Wt-Hpx overexpression markedly increased hepatic nuclear Nrf2 expression, HO-1 activity and protein, the heme-Hpx binding protein and scavenger receptor, CD91/LRP1 and decreased NF-κB activation. Two missense (ms)-Hpx SB-constructs that bound neither heme nor the Hpx receptor, CD91/LRP1, did not prevent heme-induced stasis. In conclusion, increasing Hpx levels in transgenic sickle mice via gene transfer activates the Nrf2/HO-1 anti-oxidant axis and ameliorates inflammation and vaso-occlusion.

  9. Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli

    OpenAIRE

    2011-01-01

    International audience; This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarifi...

  10. Cooperatively transcriptional and epigenetic regulation of sonic hedgehog overexpression drives malignant potential of breast cancer.

    Science.gov (United States)

    Duan, Zhao-Heng; Wang, Hao-Chuan; Zhao, Dong-Mei; Ji, Xiao-Xin; Song, Min; Yang, Xiao-Jun; Cui, Wei

    2015-08-01

    Sonic hedgehog (Shh), a ligand of Hedgehog signaling pathway, is considered an important oncogene and an exciting potential therapeutic target in several cancers. Comprehensive understanding of the regulation mechanism of Shh in cancer cells is necessary to find an effective approach to selectively block its tumorigenic function. We and others previously demonstrated that nuclear factor-kappa B (NF-κB) activation and promoter hypomethylation contributed to the overexpression of Shh. However, the relationship between transcriptional and epigenetic regulation of Shh, and their roles in the malignant phenotype of cancer cells are still not clearly elucidated. In the present study, our data showed that the level of Shh was higher in breast cancer tissues with positive NF-κB nuclear staining and promoter hypomethylation. In addition, survival analysis revealed that Shh overexpression, but not hypomethylation and NF-κB nuclear staining, was a poor prognosis indicator for breast cancers. Moreover, in vitro data demonstrated that both NF-κB activation and hypomethylation in promoter region were positively associated with the overexpression of Shh. Mechanistically, the hypomethylation in Shh promoter could facilitate NF-κB binding to its site, and subsequently cooperate to induce transcription of Shh. Furthermore, the biological function data indicated that overexpressed Shh enhanced the self-renewal capacity and migration ability of breast cancer cells, which could be augmented by promoter demethylation and NF-κB activation. Overall, our findings reveal multiple and cooperative mechanisms of Shh upregulation in cancer cells, and the roles of Shh in tumor malignant behavior, thus suggesting a new strategy for therapeutic interventions to reduce Shh in tumors and improve patients' prognosis.

  11. Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana.

    Science.gov (United States)

    Kandoi, Deepika; Mohanty, Sasmita; Govindjee; Tripathy, Baishnab C

    2016-12-01

    Plants with C4 photosynthesis are efficient in carbon assimilation and have an advantage over C3 photosynthesis. In C4 photosynthesis, the primary CO2 fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). Here, we show that overexpression of Zea mays PEPC cDNA, under the control of (35)S promoter, in Arabidopsis thaliana resulted in ~7-10 fold higher protein abundance and ~7-10 fold increase in PEPC activity in the transgenic lines than that in the vector control. We suggest that overexpression of PEPC played an anaplerotic role to increase the supply of 4-carbon carboxylic acids, which provided carbon skeletons for increased amino acid and protein synthesis. Higher protein content must have been responsible for increased metabolic processes including chlorophyll biosynthesis, photosynthesis, and respiration. Consequently, the PEPC-overexpressed transgenic plants had higher chlorophyll content, enhanced electron transport rate (ETR), lower non-photochemical quenching (NPQ) of chlorophyll a fluorescence, and a higher performance index (PI) than the vector control. Consistent with these observations, the rate of CO2 assimilation, the starch content, and the dry weight of PEPC-overexpressed plants increased by 14-18 %, 10-18 %, and 6.5-16 %, respectively. Significantly, transgenics were tolerant to salt stress as they had increased ability to synthesize amino acids, including the osmolyte proline. NaCl (150 mM)-treated transgenic plants had higher variable to maximum Chl a fluorescence (F v/F m) ratio, higher PI, higher ETR, and lower NPQ than the salt-treated vector controls. These results suggest that expression of C4 photosynthesis enzyme(s) in a C3 plant can improve its photosynthetic capacity with enhanced tolerance to salinity stress.

  12. Overexpression of the transcription factor Yap1 modifies intracellular redox conditions and enhances recombinant protein secretion

    Directory of Open Access Journals (Sweden)

    Marizela Delic

    2014-10-01

    Full Text Available Oxidative folding of secretory proteins in the endoplasmic reticulum (ER is a redox active process, which also impacts the redox conditions in the cytosol. As the transcription factor Yap1 is involved in the transcriptional response to oxidative stress, we investigate its role upon the production of secretory proteins, using the yeast Pichia pastoris as model, and report a novel important role of Yap1 during oxidative protein folding. Yap1 is needed for the detoxification of reactive oxygen species (ROS caused by increased oxidative protein folding. Constitutive co-overexpression of PpYAP1 leads to increased levels of secreted recombinant protein, while a lowered Yap1 function leads to accumulation of ROS and strong flocculation. Transcriptional analysis revealed that more than 150 genes were affected by overexpression of YAP1, in particular genes coding for antioxidant enzymes or involved in oxidation-reduction processes. By monitoring intracellular redox conditions within the cytosol and the ER using redox-sensitive roGFP1 variants, we could show that overexpression of YAP1 restores cellular redox conditions of protein-secreting P. pastoris by reoxidizing the cytosolic redox state to the levels of the wild type. These alterations are also reflected by increased levels of oxidized intracellular glutathione (GSSG in the YAP1 co-overexpressing strain. Taken together, these data indicate a strong impact of intracellular redox balance on the secretion of (recombinant proteins without affecting protein folding per se. Re-establishing suitable redox conditions by tuning the antioxidant capacity of the cell reduces metabolic load and cell stress caused by high oxidative protein folding load, thereby increasing the secretion capacity.

  13. A Simple Method for Assessment of MDR Bacteria for Over-Expressed Efflux Pumps

    OpenAIRE

    Martins, Marta; McCusker, Matthew P.; Viveiros, Miguel; Couto, Isabel; Fanning, Séamus; Pagès, Jean-Marie; Amaral, Leonard

    2013-01-01

    It is known that bacteria showing a multi-drug resistance phenotype use several mechanisms to overcome the action of antibiotics. As a result, this phenotype can be a result of several mechanisms or a combination of thereof. The main mechanisms of antibiotic resistance are: mutations in target genes (such as DNA gyrase and topoisomerase IV); over-expression of efflux pumps; changes in the cell envelope; down regulation of membrane porins, and modified lipopolysaccharide component of the outer...

  14. Transglutaminase 2 overexpression induces depressive-like behavior and impaired TrkB signaling in mice

    Science.gov (United States)

    Pandya, Chirayu D; Hoda, Nasrul; Crider, Amanda; Peter, Diya; Kutiyanawalla, Ammar; Kumar, Sanjiv; Ahmed, Anthony O; Turecki, Gustavo; Hernandez, Caterina M; Terry, Alvin V

    2016-01-01

    Serotonin (5-HT) and brain derived neurotrophic factor (BDNF) are two signaling molecules that play important regulatory roles in the development and plasticity of neural circuits that are known to be altered in depression. However, the mechanism by which 5-HT regulates BDNF signaling is unknown. In the present study, we found that 5-HT treatment increases BDNF receptor, TrkB (tropomyosin related kinase B) levels in mouse primary cortical neurons via a Rac1 (RAS-related C3 botulinum toxin substrate 1)-dependent mechanism. Significant increases in the levels of transglutaminase 2 (TG2, which is implicated in transamidation of 5-HT to Rac1) are observed in the mouse prefrontal cortex (PFC) following chronic exposure to stress. We also found that TG2 levels are increased in the postmortem PFC of depressed suicide subjects relative to matched controls. Moreover, in mice, neuronal overexpression of TG2 resulted in the atrophy of neurons and reduced levels of TrkB in the PFC as well as a depressive-like phenotype. Overexpression of TG2 in mouse cortical neurons reduced TrkB levels as a result of impaired endocytosis of TrkB. TG2 inhibition by either a viral particle or pharmacological approach attenuated behavioral deficits caused by chronic unpredictable stress. Moreover, the overexpression of TrkB in the mouse PFC ameliorated the depressive-like phenotype of TG2 overexpressed mice. Taken together, these postmortem and preclinical findings identify TG2 as a critical mediator of the altered TrkB expression and depressive-like behaviors associated with chronic exposure to stress and suggest that TG2 may represent a novel therapeutic target in depression. PMID:27620841

  15. Overexpression of the mitochondrial T3 receptor induces skeletal muscle atrophy during aging.

    Directory of Open Access Journals (Sweden)

    François Casas

    Full Text Available In previous studies, we characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43 acting as a mitochondrial transcription factor. In in vitro and in vivo studies, we have shown that p43 increases mitochondrial transcription and mitochondrial biogenesis. In addition, p43 overexpression in skeletal muscle stimulates mitochondrial respiration and induces a shift in metabolic and contractile features of muscle fibers which became more oxidative.Here we have studied the influence of p43 overexpression in skeletal muscle of mice during aging. We report that p43 overexpression initially increased mitochondrial mass. However, after the early rise in mitochondrial DNA occurring at 2 months of age in transgenic mice, we observed a progressive decrease of mitochondrial DNA content which became 2-fold lower at 23 months of age relatively to control animals. Moreover, p43 overexpression induced an oxidative stress characterized by a strong increase of lipid peroxidation and protein oxidation in quadriceps muscle, although antioxidant enzyme activities (catalase and superoxide dismutase were stimulated. In addition, muscle atrophy became detectable at 6 months of age, probably through a stimulation of the ubiquitin proteasome pathway via two muscle-specific ubiquitin ligases E3, Atrogin-1/MAFbx and MuRF1.Taken together, these results demonstrate that a prolonged stimulation of mitochondrial activity induces muscle atrophy. In addition, these data underline the importance of a tight control of p43 expression and suggest that a deregulation of the direct T3 mitochondrial pathway could be one of the parameters involved in the occurrence of sarcopenia.

  16. Ki-67 overexpression in WHO grade II gliomas is associated with poor postoperative seizure control.

    Science.gov (United States)

    Yuan, Yang; Xiang, Wang; Yanhui, Liu; Ruofei, Liang; Shuang, Liu; Yingjun, Fan; Qiao, Zhou; Yanwu, Yang; Qing, Mao

    2013-12-01

    Seizures are the most common initial symptom in patients with low-grade gliomas, and approximately 30% of these patients still suffer from epilepsy after gross-total resection of the tumour. We examined the relationship between the overexpression of ki-67 in WHO grade II gliomas and seizure control. A series of 93 histologically confirmed WHO grade II glioma tissues were analysed through immunohistochemical staining for ki-67 expression. Follow-up visits regarding seizure control were scheduled at 12 months. The Engel classification was used to categorise patients' seizure status. Of the 93 patients analysed, 65 (66.3%) patients initially presented with seizures. A total of 36 patients were diagnosed with WHO grade II oligodendrogliomas, 29 patients had oligoastrocytomas and 28 patients had astrocytomas. Ki-67 was over-expressed in 15 patients. One year after surgery poor seizure control was observed in 11 of these patients. In contrast, low ki-67 expression (seizure control was observed in 36 patients (difference between ki-67 over- and low expression groups P = 0.002). Logistic regression analysis revealed that patients with gross-total resection achieved better seizure control while ki-67 overexpression and age below 38 years were poor seizure control factors explained of the variance of seizure outcome (OR: 0.382, 4.354 and 1.822, respectively). In WHO grade II gliomas, Ki-67 is a molecular marker which predicts poor seizure control of glioma patients after the resection of the tumour. Gross-total resection, ki-67 overexpression and age below 38 years significantly affect seizure prognosis. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  17. Astroglial c-Myc overexpression predisposes mice to primary malignant gliomas

    DEFF Research Database (Denmark)

    Jensen, Niels Aagaard; Pedersen, Karen-Marie; Lihme, Frederikke

    2003-01-01

    in the ventricular zone and, analogous to human glioblastomas, exhibit molecular and morphological heterogeneity. Levels of connexin 43 in the majority of the tumors are unaltered from normal tissue, indicating that GEM tumors have retained the capacity to establish syncytial networks. In line with this, individual...... the neoplastic process, presumably by inducing the sustained growth of early astroglial cells. This is in contrast to most other transgenic studies in which c-Myc overexpression requires co-operating transgenes for rapid tumor induction....

  18. Glutamate Decarboxylase 1 Overexpression as a Poor Prognostic Factor in Patients with Nasopharyngeal Carcinoma

    Science.gov (United States)

    Lee, Yi-Ying; Chao, Tung-Bo; Sheu, Ming-Jen; Tian, Yu-Feng; Chen, Tzu-Ju; Lee, Sung-Wei; He, Hong-Lin; Chang, I-Wei; Hsing, Chung-Hsi; Lin, Ching-Yih; Li, Chien-Feng

    2016-01-01

    Background: Glutamate decarboxylase 1 (GAD1) which serves as a rate-limiting enzyme involving in the production of γ-aminobutyric acid (GABA), exists in the GABAergic neurons in the central nervous system (CNS). Little is known about the relevance of GAD1 to nasopharyngeal carcinoma (NPC). Through data mining on a data set derived from a published transcriptome database, this study first identified GAD1 as a differentially upregulated gene in NPC. We aimed to evaluate GAD1 expression and its prognostic effect on patients with early and locoregionally advanced NPC. Methods: We evaluated GAD1 immunohistochemistry and performed an H-score analysis on biopsy specimens from 124 patients with nonmetastasized NPC receiving treatment. GAD1 overexpression was defined as an H score higher than the median value. The findings of such an analysis are correlated with clinicopathological behaviors and survival rates, namely disease-specific survival (DSS), distant-metastasis-free survival (DMeFS), and local recurrence-free survival (LRFS) rates. Results: GAD1 overexpression was significantly associated with an increase in the primary tumor status (p < 0.001) and American Joint Committee on Cancer (AJCC) stages III-IV (p = 0.002) and was a univariate predictor of adverse outcomes of DSS (p = 0.002), DMeFS (p < 0.0001), and LRFS (p = 0.001). In the multivariate comparison, in addition to advanced AJCC stages III-IV, GAD1 overexpression remained an independent prognosticator of short DSS (p = 0.004, hazard ratio = 2.234), DMeFS (p < 0.001, hazard ratio = 4.218), and LRFS (p = 0.013, hazard ratio = 2.441) rates. Conclusions: Our data reveal that GAD1 overexpression was correlated with advanced disease status and may thus be a critical prognostic indicator of poor outcomes in NPC and a potential therapeutic target to facilitate the development of effective treatment modalities. PMID:27698909

  19. L-Endoglin overexpression increases renal fibrosis after unilateral ureteral obstruction.

    Directory of Open Access Journals (Sweden)

    Bárbara Oujo

    Full Text Available Transforming growth factor-β (TGF-β plays a pivotal role in renal fibrosis. Endoglin, a 180 KDa membrane glycoprotein, is a TGF-β co-receptor overexpressed in several models of chronic kidney disease, but its function in renal fibrosis remains uncertain. Two membrane isoforms generated by alternative splicing have been described, L-Endoglin (long and S-Endoglin (short that differ from each other in their cytoplasmic tails, being L-Endoglin the most abundant isoform. The aim of this study was to assess the effect of L-Endoglin overexpression in renal tubulo-interstitial fibrosis. For this purpose, a transgenic mouse which ubiquitously overexpresses human L-Endoglin (L-ENG+ was generated and unilateral ureteral obstruction (UUO was performed in L-ENG+ mice and their wild type (WT littermates. Obstructed kidneys from L-ENG+ mice showed higher amounts of type I collagen and fibronectin but similar levels of α-smooth muscle actin (α-SMA than obstructed kidneys from WT mice. Smad1 and Smad3 phosphorylation were significantly higher in obstructed kidneys from L-ENG+ than in WT mice. Our results suggest that the higher increase of renal fibrosis observed in L-ENG+ mice is not due to a major abundance of myofibroblasts, as similar levels of α-SMA were observed in both L-ENG+ and WT mice, but to the higher collagen and fibronectin synthesis by these fibroblasts. Furthermore, in vivo L-Endoglin overexpression potentiates Smad1 and Smad3 pathways and this effect is associated with higher renal fibrosis development.

  20. Targeted overexpression of mitochondrial catalase prevents radiation-induced cognitive dysfunction.

    Science.gov (United States)

    Parihar, Vipan K; Allen, Barrett D; Tran, Katherine K; Chmielewski, Nicole N; Craver, Brianna M; Martirosian, Vahan; Morganti, Josh M; Rosi, Susanna; Vlkolinsky, Roman; Acharya, Munjal M; Nelson, Gregory A; Allen, Antiño R; Limoli, Charles L

    2015-01-01

    Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain.

  1. Dendrosomal nanocurcumin and p53 overexpression synergistically trigger apoptosis in glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Reihaneh Keshavarz

    2016-12-01

    Full Text Available Objective(s: Glioblastoma is the most lethal tumor of the central nervous system. Here, we aimed to evaluate the effects of exogenous delivery of p53 and a nanoformulation of curcumin called dendrosomal curcumin (DNC, alone and in combination, on glioblastoma tumor cells. Materials and Methods: MTT assay was exploited to measure the viability of U87-MG cells against DNC treatment. Cells were separately subjected to DNC treatment and transfected with p53-containing vector and then were co-exposed to DNC and p53 overexpression. Annexin-V-FLUOS staining followed by flow cytometry and real-time PCR were applied to examine apoptosis and analyze the expression levels of the genes involved in cell cycle and oncogenesis, respectively. Results: The results of cell viability assay through MTT indicated that DNC inhibits the proliferation of U87-MG cells in a time- and dose-dependent manner. Apoptosis evaluation revealed that p53 overexpression accompanied by DNC treatment can act in a synergistic manner to significantly enhance the number of apoptotic cells (90% compared with their application alone (15% and 38% for p53 overexpression and DNC, respectively. Also, real-time PCR data showed that the concomitant exposure of cells to both DNC and p53 overexpression leads to an enhanced expression of GADD45 and a reduced expression of NF-κB and c-Myc. Conclusion: The findings of the current study suggest that our combination strategy, which merges two detached gene (p53 and drug (curcumin delivery systems into an integrated platform, may represent huge potential as a novel and efficient modality for glioblastoma treatment.

  2. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan, E-mail: quan_haotj@126.com

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  3. The Effect of MicroRNA-124 Overexpression on Anti-Tumor Drug Sensitivity.

    Directory of Open Access Journals (Sweden)

    Shiau-Mei Chen

    Full Text Available MicroRNAs play critical roles in regulating various physiological processes, including growth and development. Previous studies have shown that microRNA-124 (miR-124 participates not only in regulation of early neurogenesis but also in suppression of tumorigenesis. In the present study, we found that overexpression of miR-124 was associated with reduced DNA repair capacity in cultured cancer cells and increased sensitivity of cells to DNA-damaging anti-tumor drugs, specifically those that cause the formation of DNA strand-breaks (SBs. We then examined which DNA repair-related genes, particularly the genes of SB repair, were regulated by miR-124. Two SB repair-related genes, encoding ATM interactor (ATMIN and poly (ADP-ribose polymerase 1 (PARP1, were strongly affected by miR-124 overexpression, by binding of miR-124 to the 3¢-untranslated region of their mRNAs. As a result, the capacity of cells to repair DNA SBs, such as those resulting from homologous recombination, was significantly reduced upon miR-124 overexpression. A particularly important therapeutic implication of this finding is that overexpression of miR-124 enhanced cell sensitivity to multiple DNA-damaging agents via ATMIN- and PARP1-mediated mechanisms. The translational relevance of this role of miR-124 in anti-tumor drug sensitivity is suggested by the finding that increased miR-124 expression correlates with better breast cancer prognosis, specifically in patients receiving chemotherapy. These findings suggest that miR-124 could potentially be used as a therapeutic agent to improve the efficacy of chemotherapy with DNA-damaging agents.

  4. Anosmin-1 over-expression regulates oligodendrocyte precursor cell proliferation, migration and myelin sheath thickness.

    Science.gov (United States)

    Murcia-Belmonte, Verónica; Esteban, Pedro F; Martínez-Hernández, José; Gruart, Agnès; Luján, Rafael; Delgado-García, José María; de Castro, Fernando

    2016-04-01

    During development of the central nervous system, anosmin-1 (A1) works as a chemotropic cue contributing to axonal outgrowth and collateralization, as well as modulating the migration of different cell types, fibroblast growth factor receptor 1 (FGFR1) being the main receptor involved in all these events. To further understand the role of A1 during development, we have analysed the over-expression of human A1 in a transgenic mouse line. Compared with control mice during development and in early adulthood, A1 over-expressing transgenic mice showed an enhanced oligodendrocyte precursor cell (OPC) proliferation and a higher number of OPCs in the subventricular zone and in the corpus callosum (CC). The migratory capacity of OPCs from the transgenic mice is increased in vitro due to a higher basal activation of ERK1/2 mediated through FGFR1 and they also produced more myelin basic protein (MBP). In vivo, the over-expression of A1 resulted in an elevated number of mature oligodendrocytes with higher levels of MBP mRNA and protein, as well as increased levels of activation of the ERK1/2 proteins, while electron microscopy revealed thicker myelin sheaths around the axons of the CC in adulthood. Also in the mature CC, the nodes of Ranvier were significantly longer and the conduction velocity of the nerve impulse in vivo was significantly increased in the CC of A1 over-expressing transgenic mice. Altogether, these data confirmed the involvement of A1 in oligodendrogliogenesis and its relevance for myelination.

  5. CYP2J2 overexpression protects against arrhythmia susceptibility in cardiac hypertrophy.

    Directory of Open Access Journals (Sweden)

    Christina Westphal

    Full Text Available Maladaptive cardiac hypertrophy predisposes one to arrhythmia and sudden death. Cytochrome P450 (CYP-derived epoxyeicosatrienoic acids (EETs promote anti-inflammatory and antiapoptotic mechanisms, and are involved in the regulation of cardiac Ca(2+-, K(+- and Na(+-channels. To test the hypothesis that enhanced cardiac EET biosynthesis counteracts hypertrophy-induced electrical remodeling, male transgenic mice with cardiomyocyte-specific overexpression of the human epoxygenase CYP2J2 (CYP2J2-TG and wildtype littermates (WT were subjected to chronic pressure overload (transverse aortic constriction, TAC or β-adrenergic stimulation (isoproterenol infusion, ISO. TAC caused progressive mortality that was higher in WT (42% over 8 weeks after TAC, compared to CYP2J2-TG mice (6%. In vivo electrophysiological studies, 4 weeks after TAC, revealed high ventricular tachyarrhythmia inducibility in WT (47% of the stimulation protocols, but not in CYP2J2-TG mice (0%. CYP2J2 overexpression also enhanced ventricular refractoriness and protected against TAC-induced QRS prolongation and delocalization of left ventricular connexin-43. ISO for 14 days induced high vulnerability for atrial fibrillation in WT mice (54% that was reduced in CYP-TG mice (17%. CYP2J2 overexpression also protected against ISO-induced reduction of atrial refractoriness and development of atrial fibrosis. In contrast to these profound effects on electrical remodeling, CYP2J2 overexpression only moderately reduced TAC-induced cardiac hypertrophy and did not affect the hypertrophic response to β-adrenergic stimulation. These results demonstrate that enhanced cardiac EET biosynthesis protects against electrical remodeling, ventricular tachyarrhythmia, and atrial fibrillation susceptibility during maladaptive cardiac hypertrophy.

  6. Overexpression of Caspase-1 in adenocarcinoma of pancreas and chronic pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yin-Mo Yang; Marco Ramadani; Yan-Ting Huang

    2003-01-01

    AIM: To identify the expression of Caspase-l(interleukin1.β converting enzyme) and its role in adenoma of the pancreas and chronic pancreatitis.METHODS: The expression of Caspase-1 was assessed in 42 pancreatic cancer tissue samples, 38 chronic pancreatitis specimens, and 9 normal pancreatic tissues by immunohistochemistry and Western blot analysis.RESULTS: Overexpression of Caspase-1 was observed in both disorders, but there were differences in the expression patterns in distinct morphologic compartments. Pancreatic cancer tissues showed a clear cytoplasmatic overexpression of Caspase-1 in tumor cells of 71% of the tumors, whereas normal pancreatic tissues showed only occasional immunoreactivity. In chronic pancreatitis, overexpression of Caspase-1 was found in atrophic acinar cells (89 %),hyperplastic ducts (87 %), and dedifferentiating acinar cells (84 %). Although in atrophic cells a clear nuclear expression was found, hyperplastic ducts and dedifferentiating acinar cells showed dear cytoplasmic expression. Western blot analysis revealed a marked expression of the 45 kDa precursor of Caspase-1 in pancreatic cancer and chronic pancreatitis (80 %and 86 %, respectively). Clear bands at 30 kDa, which suggested the p10-p20 heterodimer of active Caspase-1, were found in 60 % of the cancer tissue and 14 % of the pancreatitis tissue specimens, but not in normal pancreatic tissues.CONCLUSION: Overexpression of Caspase-1 is a frequent event in pancreatic disorders and its differential expression patterns may reflect two functions of the protease. One is its participation in the apoptotic pathway in atrophic acinar cells and tumor-surrounding pancreatitis tissue, the other is its possible role in proliferative processes in pancreatic cancer cells and hyperplastic duct cells and dedifferentiating acinar cells in chronic pancreatitis.

  7. Amplification and overexpression of the EGF receptor gene in primary human glioblastomas.

    Science.gov (United States)

    Libermann, T A; Nusbaum, H R; Razon, N; Kris, R; Lax, I; Soreq, H; Whittle, N; Waterfield, M D; Ullrich, A; Schlessinger, J

    1985-01-01

    The expression of epidermal growth factor (EGF) receptor in brain tumours of glial origin was studied at the protein, mRNA and genomic levels. Four out of 10 glioblastomas that overexpress EGF receptor also have gene amplification. The amplified genes appear to be rearranged, generating an aberrant mRNA in at least one of these tumours. Such receptor defects may be relevant to tumorigenesis of human glioblastomas.

  8. α-Ketoacids as precursors for phenylalanine and tyrosine labelling in cell-based protein overexpression.

    Science.gov (United States)

    Lichtenecker, Roman J; Weinhäupl, Katharina; Schmid, Walther; Konrat, Robert

    2013-12-01

    (13)C-α-ketoacid metabolic precursors of phenylalanine and tyrosine effectively enter the metabolism of a protein overexpressing E. coli strain to label Phe- and Tyr-residues devoid of any cross-labelling. The methodology gives access to highly selective labelling patterns as valuable tools in protein NMR spectroscopy without the need of (15)N-chiral amino acid synthesis using organic chemistry.

  9. Overexpression of Serpinb1 in Chinese hamster ovary cells increases recombinant IgG productivity.

    Science.gov (United States)

    Lin, Nan; Brooks, Jeanne; Sealover, Natalie; George, Henry J; Kayser, Kevin J

    2015-01-10

    We report the discovery and validation of a novel CHO cell engineering target for improving IgG expression, serpin peptidase inhibitor, clade B, member 1 (Serpinb1). Transcriptomic studies using microarrays revealed that Serpinb1 was up-regulated in cultures with IgG heavy and light chain transcription transiently repressed compared with cultures treated with non-targeting siRNA. As proof of concept, a lentiviral vector was employed to overexpress the Chinese Hamster Serpinb1 in a CHOZN(®) Glutamine Synthetase (-/-) recombinant IgG producing CHO line. The lentiviral stable pool demonstrated 4.2-fold SERPINB1 overexpression compared with the non-transduced control. The peak viable cell density (VCD) and peak IgG volumetric productivity of the lentiviral stable pool increased 1.3 and 2.0 fold, respectively, compared with the non-transduced control. For host cell engineering, a plasmid encoding SERPINB1 was transfected into the CHOZN(®) GS (-/-) host cell line to create several stable pools. Single-cell clones isolated from the pools were characterized for their SERPINB1 expression levels and growth. The clone (SERPINB1_OE_27) with the highest SERPINB1 expression had decreased peak viable cell density and exponential phase growth rate. Selected SERPINB1 OE clones were subsequently evaluated for their IgG expression capabilities using GS selection. Clone SERPINB1_OE_42 with moderate SERPINB1 overexpression demonstrated increased IgG productivity in "bulk" selection. We conclude that manipulating Serpinb1 expression can lead to increased recombinant IgG productivity, but the effect in host cell lines may vary by clone and by overexpression level. This work represents the ongoing effort in applying "-omics" findings to novel CHO host cell line engineering.

  10. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance

    OpenAIRE

    Kim, Jason K.; Fillmore, Jonathan J.; Chen, Yan; Yu, Chunli; Moore, Irene K.; Pypaert, Marc; Lutz, E. Peer; Kako, Yuko; Velez-Carrasco, Wanda; Goldberg, Ira J.; Breslow, Jan L.; Shulman, Gerald I.

    2001-01-01

    Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic–euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle–lipoprotein lipase mice had a 3...

  11. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young-Mi, E-mail: youngmi_ham@hms.harvard.edu [College of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States); Mahoney, Sarah Jane [Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-06-10

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.

  12. Behavioral decline and premature lethality upon pan-neuronal ferritin overexpression in Drosophila infected with a virulent form of Wolbachia.

    Directory of Open Access Journals (Sweden)

    Stylianos eKosmidis

    2014-04-01

    Full Text Available Iron is required for organismal growth. Therefore, limiting iron availability may be a key part of the host’s innate immune response to various pathogens, for example in Drosophila infected with Zygomycetes. One way the host can transiently reduce iron bioavailability is by ferritin overexpression. To study the effects of neuronal-specific ferritin overexpression on survival and neurodegeneration we generated flies simultaneously over-expressing transgenes for both ferritin subunits in all neurons. We used two independent recombinant chromosomes bearing UAS-Fer1HCH, UAS-Fer2LCH transgenes and obtained qualitatively different levels of late-onset behavioral and lifespan declines. We subsequently discovered that one parental strain had been infected with a virulent form of the bacterial endosymbiont Wolbachia, causing widespread neuronal apoptosis and premature death. This phenotype was exacerbated by ferritin overexpression and was curable by antibiotic treatment. Neuronal ferritin overexpression in uninfected flies did not cause evident neurodegeneration but resulted in a late-onset behavioral decline, as previously reported for ferritin overexpression in glia. The results suggest that ferritin overexpression in the central nervous system of flies is tolerated well in young individuals with adverse manifestations appearing only late in life or under unrelated pathophysiological conditions.

  13. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  14. Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Jian-Ying [Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan (China); Hung, Jan-Jong, E-mail: petehung@mail.ncku.edu.tw [Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan (China); Institute of Bioinformatics and Biosignal Transduction, National Cheng-Kung University, Tainan 701, Taiwan (China)

    2011-04-15

    Highlights: {yields} Overexpression of HDAC1 induces Sp1 deacetylation and raises Sp1/p300 complex formation to bind to PP2Ac promoter. {yields} Overexpression of HDAC1 strongly inhibits the phosphorylation of pRb through up-regulation of PP2A. {yields} Overexpressed HDAC1 restrains cell proliferaction and induces cell senescence though a novel Sp1/PP2A/pRb pathway. -- Abstract: Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.

  15. AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist.

    Science.gov (United States)

    Rhodes, Daniel R; Ateeq, Bushra; Cao, Qi; Tomlins, Scott A; Mehra, Rohit; Laxman, Bharathi; Kalyana-Sundaram, Shanker; Lonigro, Robert J; Helgeson, Beth E; Bhojani, Mahaveer S; Rehemtulla, Alnawaz; Kleer, Celina G; Hayes, Daniel F; Lucas, Peter C; Varambally, Sooryanarayana; Chinnaiyan, Arul M

    2009-06-23

    Breast cancer patients have benefited from the use of targeted therapies directed at specific molecular alterations. To identify additional opportunities for targeted therapy, we searched for genes with marked overexpression in subsets of tumors across a panel of breast cancer profiling studies comprising 3,200 microarray experiments. In addition to prioritizing ERBB2, we found AGTR1, the angiotensin II receptor type I, to be markedly overexpressed in 10-20% of breast cancer cases across multiple independent patient cohorts. Validation experiments confirmed that AGTR1 is highly overexpressed, in several cases more than 100-fold. AGTR1 overexpression was restricted to estrogen receptor-positive tumors and was mutually exclusive with ERBB2 overexpression across all samples. Ectopic overexpression of AGTR1 in primary mammary epithelial cells, combined with angiotensin II stimulation, led to a highly invasive phenotype that was attenuated by the AGTR1 antagonist losartan. Similarly, losartan reduced tumor growth by 30% in AGTR1-positive breast cancer xenografts. Taken together, these observations indicate that marked AGTR1 overexpression defines a subpopulation of ER-positive, ERBB2-negative breast cancer that may benefit from targeted therapy with AGTR1 antagonists, such as losartan.

  16. Cardiac Characteristics of Transgenic Mice Overexpressing Refsum Disease Gene-Associated Protein within the Heart.

    Science.gov (United States)

    Koh, J T; Choi, H H; Ahn, K Y; Kim, J U; Kim, J H; Chun, J Y; Baik, Y H; Kim, K K

    2001-09-01

    Arrhythmia is a common cardiac symptom of Refsum disease. Recently, we identified a novel neuron-specific PAHX-associated protein (PAHX-AP1), which binds to the Refsum disease gene (PAHX). In this report, we developed heart-targeted transgenic (TG) mice under the control of alpha-myosin heavy chain promoter to determine whether cardiac overexpression of PAHX-AP1 provokes cardiac involvement symptoms. Northern and in situ hybridization analyses revealed PAHX-AP1 transcript was overexpressed in TG atrium, especially in the sinoatrial node. TG mice showed tachycardia, and tachyarrhythmia was observed in 20% of TG mice. Isolated TG atria showed higher frequency beating and were more sensitive to aconitine-induced tachyarrhythmia than the wild-type, and 40% of the TG atria showed irregular beating. Action potential duration in TG atrial fiber was shortened much more than the wild-type. Systemic administration of arrhythmogenic agents induced arrhythmia in TG mice, while no arrhythmia with the same dose in nonTG mice. Our results indicate that the chronic atrial tachycardia by overexpressed neuron-specific PAHX-AP1 transgene in atrium may be responsible for the increased susceptibility to arrhythmia.

  17. Overexpression of ribosome recycling factor causes increased production of avermectin in Streptomyces avermitilis strains.

    Science.gov (United States)

    Li, Lili; Guo, Jia; Wen, Ying; Chen, Zhi; Song, Yuan; Li, Jilun

    2010-07-01

    Ribosome recycling factor (RRF), encoded by frr gene, is involved in the release of ribosomes from the translational post-termination complex for a new round of initiation. In this study, the frr gene with either its own promoter or with ermE p was cloned into a multi-copy vector, pKC1139, and a single-site integrative vector, pSET152, respectively. The resulting plasmids were transformed into Streptomyces avermitilis wild-type strain ATCC31267, avermectin high-producing mutant strain 76-02-e, and the engineered strain GB-165 that produces only avermectin B. The results showed that overexpression of frr increased avermectin yield (by 3- to 3.7-fold in the wild-type strain) and revealed an frr gene "copy number effect"; i.e., multiple copies of frr had a greater promoting effect on avermectin production than a single copy in each of the three transformed S. avermitilis strains. Comparison of the growth and expression of the ave genes in an frr-overexpressing strain and wild-type ATCC31267 indicated that frr overexpression promoted cell growth as well as the expression of ave genes (including pathway-specific positive regulatory gene aveR for avermectin biosynthesis and ave structural genes), leading in turn to avermectin overproduction. These findings provide an effective approach for the improvement of antibiotic production in Streptomyces.

  18. Overexpression of adenylate cyclase-associated protein 2 is a novel prognostic marker in malignant melanoma.

    Science.gov (United States)

    Masugi, Yohei; Tanese, Keiji; Emoto, Katsura; Yamazaki, Ken; Effendi, Kathryn; Funakoshi, Takeru; Mori, Mariko; Sakamoto, Michiie

    2015-12-01

    Malignant melanoma is one of the lethal malignant tumors worldwide. Previously we reported that adenylate cyclase-associated protein 2 (CAP2), which is a well-conserved actin regulator, was overexpressed in hepatocellular carcinoma; however, CAP2 expression in other clinical cancers remains unclear. The aim of the current study was to clarify the clinicopathological significance of CAP2 overexpression in malignant melanoma. Immunohistochemical analyses revealed that many melanoma cells exhibited diffuse cytoplasmic expression of CAP2, whereas no normal melanocytes showed detectable immunostaining for CAP2. A high level of CAP2 expression was seen in 14 of 50 melanomas and was significantly correlated with greater tumor thickness and nodular melanoma subtypes. In addition, a high level of CAP2 expression was associated with poor overall survival in univariate and multivariate analyses. For 13 patients, samples of primary and metastatic melanoma tissue were available: four patients exhibited higher levels of CAP2 expression in metastatic tumor compared to the primary site, whereas no patient showed lower levels of CAP2 expression in metastatic melanomas. Our findings show that CAP2 overexpression is a novel prognostic marker in malignant melanoma and that CAP2 expression seems to increase stepwise during tumor progression, suggesting the involvement of CAP2 in the aggressive behavior of malignant melanoma.

  19. Trop-2 protein overexpression is an independent marker for predicting disease recurrence in endometrioid endometrial carcinoma

    Directory of Open Access Journals (Sweden)

    Bignotti Eliana

    2012-11-01

    Full Text Available Abstract Background Endometrial cancer is the most common gynecologic malignancy in developed countries. Trop-2 is a glycoprotein involved in cellular signal transduction and is differentially overexpressed relative to normal tissue in a variety of human adenocarcinomas, including endometrioid endometrial carcinomas (EEC. Trop-2 overexpression has been proposed as a marker for biologically aggressive tumor phenotypes. Methods Trop-2 protein expression was quantified using tissue microarrays consisting of formalin-fixed paraffin-embedded specimens from 118 patients who underwent surgical staging from 2001–9 by laparotomy for EEC. Clinicopathologic characteristics including age, stage, grade, lymphovascular space invasion, and medical comorbidities were correlated with immunostaining score. Univariate and multivariate analyses were performed for overall survival, disease-free survival, and progression-free survival in relation to clinical parameters and Trop-2 protein expression. Results Clinical outcome data were available for 103 patients. Strong Trop-2 immunostaining was significantly associated with higher tumor grade (p=0.02 and cervical involvement (p Conclusions Trop-2 protein overexpression is significantly associated with higher tumor grade and serves as an independent prognostic factor for DFS in endometrioid endometrial cancer.

  20. Overexpression of the RieskeFeS Protein Increases Electron Transport Rates and Biomass Yield.

    Science.gov (United States)

    Simkin, Andrew J; McAusland, Lorna; Lawson, Tracy; Raines, Christine A

    2017-09-01

    In this study, we generated transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing the Rieske FeS protein (PetC), a component of the cytochrome b6f (cyt b6f) complex. Increasing the levels of this protein resulted in concomitant increases in the levels of cyt f (PetA) and cyt b6 (PetB), core proteins of the cyt b6f complex. Interestingly, an increase in the levels of proteins in both the photosystem I (PSI) and PSII complexes also was seen in the Rieske FeS overexpression plants. Although the mechanisms leading to these changes remain to be identified, the transgenic plants presented here provide novel tools to explore this. Importantly, overexpression of the Rieske FeS protein resulted in substantial and significant impacts on the quantum efficiency of PSI and PSII, electron transport, biomass, and seed yield in Arabidopsis plants. These results demonstrate the potential for manipulating electron transport processes to increase crop productivity. © 2017 The author(s). All Rights Reserved.

  1. Overexpression of CTHRC1 in hepatocellular carcinoma promotes tumor invasion and predicts poor prognosis.

    Directory of Open Access Journals (Sweden)

    Yu-Ling Chen

    Full Text Available Collagen triple helix repeat containing-1 (CTHRC1 is a secreted glycoprotein that activates the planar cell polarity pathway of Wnt signaling. Using microarray analysis, we found that the CTHRC1 gene is overexpressed in hepatocellular carcinoma (HCC. The level of CTHRC1 mRNA was measured in 201 surgically resected HCCs using real time reverse transcription-polymerase chain reaction. Overexpression of CTHRC1 in HCC was associated with large tumor size and advanced tumor stage. Furthermore, expression of CTHRC1 as was identified as an independent prognostic factors in the multivariate analysis. Suppression of CTHRC1 expression inhibited tumor migration and invasion whereas overexpression of CTHRC1 promoted tumor invasion. Activation of RhoA, but not Rac1 or Cdc42, was found to play a crucial role in CTHRC1-induced cell migration. CTHRC1 promoted adhesion of cancer cells to extracellular matrix through induction of integrin β1 expression and activation of focal adhesion kinase. These results suggest CTHRC1 promotes tumor invasion and metastasis by enhancing the adhesion and migratory abilities of tumor cells. It is also a promising biomarker for predicting the prognosis of patients with HCC.

  2. Superoxide dismutase overexpression protects against glucocorticoid-induced depressive-like behavioral phenotypes in mice.

    Science.gov (United States)

    Uchihara, Yuki; Tanaka, Ken-ichiro; Asano, Teita; Tamura, Fumiya; Mizushima, Tohru

    2016-01-22

    In the stress response, activation of the hypothalamic-pituitary-adrenal axis, and particularly the release of glucocorticoids, plays a critical role. However, dysregulation of this system and sustained high plasma levels of glucocorticoids can result in depression. Recent studies have suggested the involvement of reactive oxygen species (ROS), such as superoxide anion, in depression. However, direct evidence for a role of ROS in the pathogenesis of this disorder is lacking. In this study, using transgenic mice expressing human Cu/Zn-superoxide dismutase (SOD1), an enzyme that catalyzes the dismutation of superoxide anions, we examined the effect of SOD1 overexpression on depressive-like behavioral phenotypes in mice. Depressive-like behaviors were induced by daily subcutaneous administration of the glucocorticoid corticosterone for 4 weeks, and was monitored with the social interaction test, the sucrose preference test and the forced swim test. These tests revealed that transgenic mice overexpressing SOD1 are more resistant to glucocorticoid-induced depressive-like behavioral disorders than wild-type animals. Furthermore, compared with wild-type mice, transgenic mice showed a reduction in the number of 8-hydroxy-2'-deoxyguanosine (a marker of oxidative stress)-positive cells in the hippocampal CA3 region following corticosterone administration. These results suggest that overexpression of SOD1 protects mice against glucocorticoid-induced depressive-like behaviors by decreasing cellular ROS levels.

  3. Overexpression of SULT2B1b Promotes Angiogenesis in Human Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Wen Chen

    2016-03-01

    Full Text Available Background/Aims: Overexpression of cytosolic sulfotransferase 2B1b (SULT2B1b has been commonly found in colorectal and hepatocellular carcinoma, suggesting that SULT2B1b might act as a potential oncogenic protein. However, its clinical significance and biological role in gastric cancer progression remain largely unknown. Methods: Expressions of SULT2B1b in clinical gastric cancer (GC samples were examined using qRT-PCR and Western blot. Results: SULT2B1b was markedly overexpressed in human GC samples, and positively correlated with vessel density and associated with poor clinical features. We also demonstrated that overexpression of SULT2B1b resulted in increased tumor angiogenesis and tumor growth in mouse GC models. In addition, ablation of SULT2B1b in human GC cells lines BGC823 and MKN45 decreased the capability of the cells to recruit endothelial cells. Moreover, depletion of SULT2B1b in GC cells reduced VEGF-A expression by downregulating SP1 and AP2. Conclusion: Our results suggested that the SULT2B1b-mediated angiogenic pathway could serve as biomarkers for GC diagnosis and prognosis, and suppressing SULT2B1b-mediated angiogenic signaling might be a promising strategy for developing novel GC treatment.

  4. Identification of a novel subgroup of melanomas with KIT/cyclin-dependent kinase-4 overexpression.

    Science.gov (United States)

    Smalley, Keiran S M; Contractor, Rooha; Nguyen, Thiennga K; Xiao, Min; Edwards, Robin; Muthusamy, Viswanathan; King, Alastair J; Flaherty, Keith T; Bosenberg, Marcus; Herlyn, Meenhard; Nathanson, Katherine L

    2008-07-15

    Although many melanomas harbor either activating mutations in BRAF or NRAS, there remains a substantial, yet little known, group of tumors without either mutation. Here, we used a genomic strategy to define a novel group of melanoma cell lines with co-overexpression of cyclin-dependent kinase 4 (CDK4) and KIT. Although this subgroup lacked any known KIT mutations, they had high phospho-KIT receptor expression, indicating receptor activity. Quantitative PCR confirmed the existence of a similar KIT/CDK4 subgroup in human melanoma samples. Pharmacologic studies showed the KIT/CDK4-overexpressing subgroup to be resistant to BRAF inhibitors but sensitive to imatinib in both in vitro and in vivo melanoma models. Mechanistically, imatinib treatment led to increased apoptosis and G(1) phase cell cycle arrest associated with the inhibition of phospho-ERK and increased expression of p27(KIP). Other melanoma cell lines, which retained some KIT expression but lacked phospho-KIT, were not sensitive to imatinib, suggesting that KIT expression alone is not predictive of response. We suggest that co-overexpression of KIT/CDK4 is a potential mechanism of oncogenic transformation in some BRAF/NRAS wild-type melanomas. This group of melanomas may be a subpopulation for which imatinib or other KIT inhibitors may constitute optimal therapy.

  5. Zinc finger protein 521 overexpression increased transcript levels of Fndc5 in mouse embryonic stem cells

    Indian Academy of Sciences (India)

    Motahere-Sadat Hashemi; Abbas Kiani Esfahani; Maryam Peymani; Alireza Shoaraye Nejati; Kamran Ghaedi; Mohammad Hossein Nasr-Esfahani; Hossein Baharvand

    2016-03-01

    Zinc finger protein 521 is highly expressed in brain, neural stem cells and early progenitors of the human hematopoietic cells. Zfp521 triggers the cascade of neurogenesis inmouse embryonic stemcells through inducing expression of the early neuroectodermal genes Sox1, Sox3 and Pax6. Fndc5, a precursor of Irisin has inducing effects on the expression level of brain derived neurotrophic factor in hippocampus. Therefore, it is most likely that Fndc5 may play an important role in neural differentiation. To exhibit whether the expression of this protein is under regulation with Zfp521, we overexpressed Zfp521 in a stable transformants of mESCs expressing EGFP under control of Fndc5 promoter. Increased expression of Zfp521 enhanced transcription levels of both EGFP and endogenous Fndc5. This result was confirmed by overexpression the aforementioned vectors in HEK cells and indicated that Zfp521 functions upstream of Fndc5 expression. It is most likely that Zfp521 may act through the binding to its response element on Fndc5 core promoter. Therefore it is concluding that an enhanced expression of Fndc5 in neural progenitor cells is stimulated by Zfp521 overexpression in these cells.

  6. Hypoxia-inducible factor 1 alpha and vascular endothelial growth factor overexpression in ischemic colitis

    Institute of Scientific and Technical Information of China (English)

    Tomoyuki Okuda; Takeshi Azuma; Masahiro Ohtani; Ryuho Masaki; Yoshiyuki Ito; Yukinao Yamazaki; Shigeji Ito; Masaru Kuriyama

    2005-01-01

    AIM: To examine the etiology and pathophysiology in human ischemic colitis from the viewpoint of ischemic favors such as hypoxia-inducible factor 1 alpha (HIF-1alpha and vascular endothelial growth factor (VEGF).METHODS: Thirteen patients with ischemic colitis and 21 normal controls underwent colonoscopy. The follow-up colonoscopy was performed in 8 patients at 7 to 10 d after theoccurrence of ischemic colitis. Biopsy samples were subjected to real-time RT-PCR and immunohistochemistry to detect the expression of HIF-1 alpha and VEGF.RESULTS: HIF-1 alpha and VEGF expression were found in the normal colon tissues by RT-PCR and immunohistochemistry.HIF-1 alpha and VEGF were overexpressed in the lesions of ischemic colitis. Overexpressed HIF-1 alpha and VEGF RNA quickly decreased to the normal level in the scar regions at 7 to 10 d after the occurrence of ischemic colitis.CONCLUSION: Constant expression of HIF-1 alpha and VEGF in normal human colon tissue suggested that HIF-1alpha and VEGF play an important role in maintaining tissue integrity. We confirmed the ischemic crisis in ischemic colitis at the molecular level, demonstrating overexpression of HIF-1 alpha and VEGF in ischemic lesions. These ischemic factors may play an important role in the pathophysiology of ischemic colitis.

  7. Over-expression of thymosin beta 4 promotes abnormal tooth development and stimulation of hair growth.

    Science.gov (United States)

    Cha, Hee-Jae; Philp, Deborah; Lee, Soo-Hyun; Moon, Hye-Sung; Kleinman, Hynda K; Nakamura, Takashi

    2010-01-01

    Thymosin beta 4 has multi-functional roles in cell physiology. It accelerates wound healing, hair growth and angiogenesis, and increases laminin-5 expression in corneal epithelium. Furthermore, thymosin beta 4 stimulates tumor growth and metastasis by induction of cell migration and vascular endothelial growth factor-mediated angiogenesis. Using a construct on the skin-specific keratin-5 promoter, we have developed thymosin beta 4 over-expressing transgenic mice to further study its functional roles. Thymosin beta 4 in adult skin and in embryonic stages of the transgenic mouse was analyzed by both Western blot and immunohistochemistry. The over-expression of thymosin beta 4 was observed especially around hair follicles and in the teeth in the transgenic mice. We examined the phenotype of the thymosin beta 4 over-expressing mice. Hair growth was accelerated. In addition, the transgenic mice had abnormally-shaped white teeth and dull incisors. We found that the expression of laminin-5 was up-regulated in the skin of the transgenic mice. We conclude that thymosin beta 4 has an important physiological role in hair growth and in tooth development.

  8. In vivo photoacoustic tomography of EGFR overexpressed in hepatocellular carcinoma mouse xenograft.

    Science.gov (United States)

    Zhou, Quan; Li, Zhao; Zhou, Juan; Joshi, Bishnu P; Li, Gaoming; Duan, Xiyu; Kuick, Rork; Owens, Scott R; Wang, Thomas D

    2016-06-01

    EGFR is a promising cell surface target for in vivo imaging that is highly overexpressed in hepatocellular carcinoma (HCC), a common cancer worldwide. Peptides penetrate easily into tumors for deep imaging, and clear rapidly from the circulation to minimize background. We aim to demonstrate use of an EGFR specific peptide to detect HCC xenograft tumors in mice with photoacoustic imaging. Nude mice implanted with human HCC cells that overexpress EGFR were injected intravenously with Cy5.5-labeled EGFR and scrambled control peptides respectively. Photoacoustic images collected from 0 to 24 h. Photoacoustic signal peaked in tumors at 3 h post-injection. Images from 0 to 1.8 cm beneath the skin revealed increased target-to-background (T/B) ratio from tumors. The T/B ratio was significantly greater for the EGFR versus control peptide. Clearance of signal was observed by ∼24 h. EGFR overexpression was validated with immunofluorescence and immunohistochemistry. A peptide specific for EGFR delivered systemically can detect HCC xenograft tumors in vivo with photoacoustic imaging.

  9. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity.

    Science.gov (United States)

    Park, Jiyoung; Rho, Ho Kyung; Kim, Kang Ho; Choe, Sung Sik; Lee, Yun Sok; Kim, Jae Bum

    2005-06-01

    Glucose-6-phosphate dehydrogenase (G6PD) produces cellular NADPH, which is required for the biosynthesis of fatty acids and cholesterol. Although G6PD is required for lipogenesis, it is poorly understood whether G6PD in adipocytes is involved in energy homeostasis, such as lipid and glucose metabolism. We report here that G6PD plays a role in adipogenesis and that its increase is tightly associated with the dysregulation of lipid metabolism and insulin resistance in obesity. We observed that the enzymatic activity and expression levels of G6PD were significantly elevated in white adipose tissues of obese models, including db/db, ob/ob, and diet-induced obesity mice. In 3T3-L1 cells, G6PD overexpression stimulated the expression of most adipocyte marker genes and elevated the levels of cellular free fatty acids, triglyceride, and FFA release. Consistently, G6PD knockdown via small interfering RNA attenuated adipocyte differentiation with less lipid droplet accumulation. Surprisingly, the expression of certain adipocytokines such as tumor necrosis factor alpha and resistin was increased, whereas that of adiponectin was decreased in G6PD overexpressed adipocytes. In accordance with these results, overexpression of G6PD impaired insulin signaling and suppressed insulin-dependent glucose uptake in adipocytes. Taken together, these data strongly suggest that aberrant increase of G6PD in obese and/or diabetic subjects would alter lipid metabolism and adipocytokine expression, thereby resulting in failure of lipid homeostasis and insulin resistance in adipocytes.

  10. TET2 Overexpression in Chronic Lymphocytic Leukemia Is Unrelated to the Presence of TET2 Variations

    Directory of Open Access Journals (Sweden)

    María Hernández-Sánchez

    2014-01-01

    Full Text Available TET2 is involved in a variety of hematopoietic malignancies, mainly in myeloid malignancies. Most mutations of TET2 have been identified in myeloid disorders, but some have also recently been described in mature lymphoid neoplasms. In contrast to the large amount of data about mutations of TET2, some data are available for gene expression. Moreover, the role of TET2 in chronic lymphocytic leukemia (CLL is unknown. This study analyzes both TET2 expression and mutations in 48 CLL patients. TET2 expression was analyzed by exon arrays and quantitative real-time polymerase chain reaction (qRT-PCR. Next-generation sequencing (NGS technology was applied to investigate the presence of TET2 variations. Overexpression of TET2 was observed in B-cell lymphocytes from CLL patients compared with healthy donors (P = 0.004. In addition, in CLL patients, an overexpression of TET2 was also observed in the clonal B cells compared with the nontumoral cells (P = 0.002. However, no novel mutations were observed. Therefore, overexpression of TET2 in CLL seems to be unrelated to the presence of genomic TET2 variations.

  11. Influenza A induces dysfunctional immunity and death in MeCP2-overexpressing mice

    Science.gov (United States)

    Cronk, James C.; Herz, Jasmin; Kim, Taeg S.; Louveau, Antoine; Moser, Emily K.; Smirnov, Igor; Tung, Kenneth S.; Braciale, Thomas J.

    2017-01-01

    Loss of function or overexpression of methyl-CpG-binding protein 2 (MeCP2) results in the severe neurodevelopmental disorders Rett syndrome and MeCP2 duplication syndrome, respectively. MeCP2 plays a critical role in neuronal function and the function of cells throughout the body. It has been previously demonstrated that MeCP2 regulates T cell function and macrophage response to multiple stimuli, and that immune-mediated rescue imparts significant benefit in Mecp2-null mice. Unlike Rett syndrome, MeCP2 duplication syndrome results in chronic, severe respiratory infections, which represent a significant cause of patient morbidity and mortality. Here, we demonstrate that MeCP2Tg3 mice, which overexpress MeCP2 at levels 3- to 5-fold higher than normal, are hypersensitive to influenza A/PR/8/34 infection. Prior to death, MeCP2Tg3 mice experienced a host of complications during infection, including neutrophilia, increased cytokine production, excessive corticosterone levels, defective adaptive immunity, and vascular pathology characterized by impaired perfusion and pulmonary hemorrhage. Importantly, we found that radioresistant cells are essential to infection-related death after bone marrow transplantation. In all, these results demonstrate that influenza A infection in MeCP2Tg3 mice results in pathology affecting both immune and nonhematopoietic cells, suggesting that failure to effectively respond and clear viral respiratory infection has a complex, multicompartment etiology in the context of MeCP2 overexpression. PMID:28138553

  12. Ovarian cancer stem cell like side populations are enriched following chemotherapy and overexpress EZH2

    Science.gov (United States)

    Rizzo, Siân; Hersey, Jenny M.; Mellor, Paul; Dai, Wei; Santos-Silva, Alessandra; Liber, Daniel; Luk, Louisa; Titley, Ian; Carden, Craig P; Box, Garry; Hudson, David L.; Kaye, Stanley B.; Brown, Robert

    2010-01-01

    Platinum-based chemotherapy, with cytoreductive surgery, is the cornerstone of treatment of advanced ovarian cancer, however acquired drug resistance is a major clinical obstacle. It has been proposed that subpopulations of tumour cells with stem-cell like properties, such as so-called side populations (SP) which over-express ABC drug-transporters, can sustain the growth of drug resistant tumour cells, leading to tumour recurrence following chemotherapy. The histone methyltransferase EZH2 is a key component of the Polycomb Repressive Complex 2 (PRC2) required for maintenance of a stem cell state and overexpression has been implicated in drug resistance and shorter survival of ovarian cancer patients. We observe higher percentage SP in ascites from patients that have relapsed following chemotherapy compared to chemonaive patients, consistent with selection for this subpopulation during platinum-based chemotherapy. Furthermore, ABCB1 (P-glycoprotein) and EZH2 are consistently over-expressed in SP compared to non-SP from patients’ tumour cells. SiRNA knockdown of EZH2 leads to loss of SP in ovarian tumour models, reduced anchorage-independent growth and reduced tumour growth in vivo. Together these data support a key role for EZH2 in the maintenance of a drug-resistant tumour-sustaining subpopulation of cells in ovarian cancers undergoing chemotherapy. As such, EZH2 is an important target for anticancer drug development. PMID:21216927

  13. Transgenic mice overexpressing renin exhibit glucose intolerance and diet-genotype interactions

    Directory of Open Access Journals (Sweden)

    Sarah J. Fletcher

    2013-01-01

    Full Text Available Numerous animal and clinical investigations have pointed to a potential role of the renin-angiotensin system (RAS in the development of insulin resistance and diabetes in conditions of expanded fat mass. However, the mechanisms underlying this association remain unclear. We used a transgenic mouse model overexpressing renin in the liver (RenTgMK to examine the effects of chronic activation of RAS on adiposity and insulin sensitivity. Hepatic overexpression of renin resulted in constitutively elevated plasma angiotensin II (4-6-fold increase vs. wild type. Surprisingly, RenTgMK mice developed glucose intolerance despite low levels of adiposity and insulinemia. The transgenics also had lower plasma triglyceride levels. Glucose intolerance in transgenic mice fed a low-fat diet was comparable to that observed in high fat-fed wild type mice. Glucose intolerance was exacerbated by high-fat feeding, only in female transgenic mice. These studies demonstrate that overexpression of renin and associated hyperangiotensinemia impair glucose tolerance in a diet-dependent manner and further support a consistent role of RAS in the pathogenesis of diabetes and insulin resistance, independent of changes in fat mass.

  14. Overexpression of Ferredoxin, PETF, Enhances Tolerance to Heat Stress in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Li-Fen Huang

    2013-10-01

    Full Text Available Reactive oxygen species (ROS produced by plants in adverse environments can cause damage to organelles and trigger cell death. Removal of excess ROS can be achieved through the ascorbate scavenger pathway to prevent plant cell death. The amount of this scavenger can be regulated by ferredoxin (FDX. Chloroplastic FDXs are electron transfer proteins that perform in distributing photosynthetic reducing power. In this study, we demonstrate that overexpression of the endogenous photosynthetic FDX gene, PETF, in Chlamydomonas reinhardtii could raise the level of reduced ascorbate and diminish H2O2 levels under normal growth conditions. Furthermore, the overexpressing PETF transgenic Chlamydomonas lines produced low levels of H2O2 and exhibited protective effects that were observed through decreased chlorophyll degradation and increased cell survival under heat-stress conditions. The findings of this study suggest that overexpression of PETF can increase the efficiency of ROS scavenging in chloroplasts to confer heat tolerance. The roles of PETF in the downregulation of the ROS level offer a method for potentially improving the tolerance of crops against heat stress.

  15. CmMYB19 Over-Expression Improves Aphid Tolerance in Chrysanthemum by Promoting Lignin Synthesis

    Science.gov (United States)

    Wang, Yinjie; Sheng, Liping; Zhang, Huanru; Du, Xinping; An, Cong; Xia, Xiaolong; Chen, Fadi; Jiang, Jiafu; Chen, Sumei

    2017-01-01

    The gene encoding the MYB (v-myb avian myeloblastosis vira l oncogene homolog) transcription factor CmMYB19 was isolated from chrysanthemum. It encodes a 200 amino acid protein and belongs to the R2R3-MYB subfamily. CmMYB19 was not transcriptionally activated in yeast, while a transient expression experiment conducted in onion epidermal cells suggested that the CmMYB19 product localized to the nucleus. CmMYB19 transcription was induced by aphid (Macrosiphoniella sanborni) infestation, and the abundance of transcript was higher in the leaf and stem than in the root. The over-expression of CmMYB19 restricted the multiplication of the aphids. A comparison of transcript abundance of the major genes involved in lignin synthesis showed that CmPAL1 (phenylalanine ammonia lyase 1), CmC4H (cinnamate4 hydroxylase), Cm4CL1 (4-hydroxy cinnamoyl CoA ligase 1), CmHCT (hydroxycinnamoyl CoA-shikimate/quinate hydroxycinnamoyl transferase), CmC3H1 (coumarate3 hydroxylase1), CmCCoAOMT1 (caffeoyl CoA O-methyltransferase 1) and CmCCR1 (cinnamyl CoA reductase1) were all upregulated, in agreement with an increase in lignin content in CmMYB19 over-expressing plants. Collectively, the over-expression of CmMYB19 restricted the multiplication of the aphids on the host, mediated by an enhanced accumulation of lignin. PMID:28287502

  16. Enhanced arsenic accumulation in Saccharomyces cerevisiae overexpressing transporters Fps1p or Hxt7p.

    Science.gov (United States)

    Shah, Dhawal; Shen, Michael W Y; Chen, Wilfred; Da Silva, Nancy A

    2010-10-01

    Arsenic contamination of ground water affects the health of millions of people worldwide. Bioremediation has the potential to lower contaminant levels in cases where physical methods are either ineffective or cost prohibitive. The yeast Saccharomyces cerevisiae was engineered for enhanced arsenite accumulation by overexpression of transporters responsible for the influx of the contaminant. The transporter genes FPS1 and HXT7 were cloned under the control of the late-phase ADH2-promoter. This allowed for protein production at high biomass levels without the addition of inducer. Following the transfer of stationary phase cells to buffer, the engineered strains were capable of 3-4-fold greater arsenic uptake as compared to control cells. Further, at trace levels of the metalloid, the cells overexpressing the Fps1p transporter removed ca. 40% more arsenite from the extracellular medium than the controls. Arsenic uptake was also evaluated in cells overexpressing the transporters coupled with high-level production of cytosolic As sequestors (phytochelatins or bacterial ArsRp) to act as an intracellular sink. This led to an up to 4-fold increase in As accumulation in the resting cell culture as compared to native cells. The results demonstrate important steps needed to engineer a yeast biosorbent with enhanced accumulation capabilities for this metalloid.

  17. Overexpression of a Drosophila homolog of apolipoprotein D leads to increased stress resistance and extended lifespan.

    Science.gov (United States)

    Walker, David W; Muffat, Julien; Rundel, Colin; Benzer, Seymour

    2006-04-01

    Increased Apolipoprotein D (ApoD) expression has been reported in various neurological disorders, including Alzheimer's disease, schizophrenia, and stroke, and in the aging brain . However, whether ApoD is toxic or a defense is unknown. In a screen to identify genes that protect Drosophila against acute oxidative stress, we isolated a fly homolog of ApoD, Glial Lazarillo (GLaz). In independent transgenic lines, overexpression of GLaz resulted in increased resistance to hyperoxia (100% O(2)) as well as a 29% extension of lifespan under normoxia. These flies also displayed marked improvements in climbing and walking ability after sublethal exposure to hyperoxia. Overexpression of Glaz also increased resistance to starvation without altering lipid or protein content. To determine whether GLaz might be important in protection against reperfusion injury, we subjected the flies to hypoxia, followed by recovery under normoxia. Overexpression of GLaz was protective against behavioral deficits caused in normal flies by this ischemia/reperfusion paradigm. This and the accompanying paper by Sanchez et al. (in this issue of Current Biology) are the first to manipulate the levels of an ApoD homolog in a model organism. Our data suggest that human ApoD may play a protective role and thus may constitute a therapeutic target to counteract certain neurological diseases.

  18. The relevance of EGFR overexpression for the prediction of the malignant transformation of oral leukoplakia.

    Science.gov (United States)

    Ries, Jutta; Vairaktaris, Eleftherios; Agaimy, Abbas; Bechtold, Moritz; Gorecki, Patricia; Neukam, Friedrich W; Nkenke, Emeka

    2013-09-01

    The present study evaluated the relevance of EGFR overexpression in prediction of malignant transformation of oral leukoplakia (OLP). The retrospective study comprised paraffin-embedded tissue samples of OLP that transformed into oral squamous cell carcinoma (OSCC) (n=53) and tissue samples of OLP that did not transform into OSCC (n=45) during a follow-up period of 5 years. EGFR overexpression was assessed immunohistochemically. A significantly different expression rate of EGFR was determined between transformed and non-transformed OLP (p=0.017). A statistically significant increase of EGFR expression for low dysplasia lesions in group I compared to group II was proven (D0, p=0.013; D1, p=0.049). By calculation of ROC curve and determination of highest Youden index the optimal threshold value [cut-off point (COP) = 44.96] for distinguishing the transformed from non-transformed lesions was estimated (critical expression rate of EGFR). Using the determined COP the correlation between high-risk lesions and the detection of increased expression rates were significant (p=0.001). In the future, the assessment of EGFR overexpression in OLP may allow identifying OLP lesions with an increased risk of malignant transformation that may have been regarded harmless when only the grade of dysplasia had been taken into account.

  19. A potential oncogenic role of the commonly observed E2F5 overexpression in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yuzhu Jiang; Seon-Hee Yim; Hai-Dong Xu; Seung-Hyun Jung; So Young Yang; Hae-Jin Hu; Chan-Kwon Jung; Yeun-Jun Chung

    2011-01-01

    AIM: To explore the expression pattern of E2F5 in primary hepatocellular carcinomas (HCCs) and elucidate the roles of E2F5 in hepatocarcinogenesis. METHODS: E2F5 expression was analyzed in 120 primary HCCs and 29 normal liver tissues by immunohistochemistry analysis. E2F5-small interfering RNA was transfected into HepG2, an E2F5-overexpressed HCC cell line. After E2F5 knockdown, cell growth capacity and migrating potential were examined. RESULTS: E2F5 was significantly overexpressed in primary HCCs compared with normal liver tissues (P = 0.008). The E2F5-silenced cells showed significantly reduced proliferation (P = 0.004). On the colony formation and soft agar assays, the number of colonies was significantly reduced in E2F5-silenced cells (P = 0.004 and P = 0.009, respectively). E2F5 knockdown resulted in the accumulation of G0/G1 phase cells and a reduction of S phase cells. The number of migrating/invading cells was also reduced after E2F5 knockdown (P = 0.021). CONCLUSION: To our knowledge, this is the first evidence that E2F5 is commonly overexpressed in primary HCC and that E2F5 knockdown significantly repressed the growth of HCC cells.

  20. Macrophage-specific overexpression of interleukin-5 attenuates atherosclerosis in LDL receptor-deficient mice.

    Science.gov (United States)

    Zhao, W; Lei, T; Li, H; Sun, D; Mo, X; Wang, Z; Zhang, K; Ou, H

    2015-08-01

    Interleukin-5 (IL-5) increases the secretion of natural T15/EO6 IgM antibodies that inhibit the uptake of oxidized low-density lipoprotein (LDL) by macrophages. This study aimed to determine whether macrophage-specific expression of IL-5 in LDL receptor-deficient mice (Ldlr(-/-)) could improve cholesterol metabolism and reduce atherosclerosis. To induce macrophage-specific IL-5 expression, the pLVCD68-IL5 lentivirus was delivered into Ldlr(-/-) mice via bone marrow transplantation. The recipient mice were fed a Western-type diet for 12 weeks to induce lesion formation. We found that IL-5 was efficiently and specifically overexpressed in macrophages in recipients of pLVCD68-IL5-transduced bone marrow cells (BMC). Plasma titers of T15/EO6 IgM antibodies were significantly elevated by 58% compared with control mice transplanted with pLVCD68 lacking the IL-5 coding sequence. Plaque areas of aortas in IL-5-overexpressing mice were reduced by 43% and associated with a 2.4-fold decrease in lesion size at the aortic roots when compared with mice receiving pLVCD68-transduced BMCs. The study showed that macrophage-specific overexpression of IL-5 inhibited the progression of atherosclerotic lesions. These findings suggest that modulation of IL-5 cytokine expression represents a potential strategy for intervention of familial hypercholesterolemia and other cardiovascular diseases.

  1. GH/STAT5 signaling during the growth period in livers of mice overexpressing GH.

    Science.gov (United States)

    Martinez, Carolina S; Piazza, Verónica G; Díaz, María E; Boparai, Ravneet K; Arum, Oge; Ramírez, María C; González, Lorena; Becú-Villalobos, Damasia; Bartke, Andrzej; Turyn, Daniel; Miquet, Johanna G; Sotelo, Ana I

    2015-04-01

    GH/STAT5 signaling is desensitized in the liver in adult transgenic mice overexpressing GH; however, these animals present greater body size. To assess whether the STAT5 pathway is active during the growth period in the liver in these animals, and how signaling modulators participate in this process, growing transgenic mice and normal siblings were evaluated. STAT5 does not respond to an acute GH-stimulus, but displays higher basal phosphorylation in the livers of growing GH-overexpressing mice. GH receptor and the positive modulators glucocorticoid receptor and HNF1 display greater abundance in transgenic animals, supporting the activity of STAT5. The negative modulators cytokine-induced suppressor and PTP1B are increased in GH-overexpressing mice. The suppressors SOCS2 and SOCS3 exhibit higher mRNA levels in transgenic mice but lower protein content, indicating that they are being actively degraded. Therefore, STAT5 signaling is increased in the liver in GH-transgenic mice during the growth period, with a balance between positive and negative effectors resulting in accelerated but controlled growth.

  2. Overexpression of the protein tyrosine phosphatase PRL-2 correlates with breast tumor formation and progression.

    Science.gov (United States)

    Hardy, Serge; Wong, Nau Nau; Muller, William J; Park, Morag; Tremblay, Michel L

    2010-11-01

    The PRL-1, PRL-2, and PRL-3 phosphatases are prenylated protein tyrosine phosphatases with oncogenic activity that are proposed to drive tumor metastasis. We found that PRL-2 mRNA is elevated in primary breast tumors relative to matched normal tissue, and also dramatically elevated in metastatic lymph nodes compared with primary tumors. PRL-2 knockdown in metastatic MDA-MB-231 breast cancer cells decreased anchorage-independent growth and cell migration, suggesting that the malignant phenotype of these cells is mediated at least in part through PRL-2 signaling. In different mouse mammary tumor-derived cell lines overexpressing PRL-2, we confirmed its role in anchorage-independent growth and cell migration. Furthermore, injection of PRL-2-overexpressing cells into the mouse mammary fat pad promoted extracellular signal-regulated kinase 1/2 activation and tumor formation. MMTV-PRL-2 transgenic mice engineered to overexpress the enzyme in mammary tissue did not exhibit spontaneous tumorigenesis, but they exhibited an accelerated development of mammary tumors initiated by introduction of an MMTV-ErbB2 transgene. Together, our results argue that PRL-2 plays a role in breast cancer progression.

  3. Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis.

    Science.gov (United States)

    Park, Sei-Kyoung; Hong, Joo Y; Arslan, Fatih; Kanneganti, Vydehi; Patel, Basant; Tietsort, Alex; Tank, Elizabeth M H; Li, Xingli; Barmada, Sami J; Liebman, Susan W

    2017-05-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43's effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS.

  4. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    Full Text Available Fatty acid binding protein 4 (FABP4 is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG mice using α myosin-heavy chain (α-MHC promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.

  5. Overexpressed human heme Oxygenase-1 decreases adipogenesis in pigs and porcine adipose-derived stem cells.

    Science.gov (United States)

    Park, Eun Jung; Koo, Ok Jae; Lee, Byeong Chun

    2015-11-27

    Adipose-derived mesenchymal stem cells (ADSC) are multipotent, which means they are able to differentiate into several lineages in vivo and in vitro under proper conditions. This indicates it is possible to determine the direction of differentiation of ADSC by controlling the microenvironment. Heme oxygenase 1 (HO-1), a type of antioxidant enzyme, attenuates adipogenicity and obesity. We produced transgenic pigs overexpressing human HO-1 (hHO-1-Tg), and found that these animals have little fatty tissue when autopsied. To determine whether overexpressed human HO-1 suppresses adipogenesis in pigs, we analyzed body weight increases of hHO-1-Tg pigs and wild type (WT) pigs of the same strain, and induced adipogenic differentiation of ADSC derived from WT and hHO-1-Tg pigs. The hHO-1-Tg pigs had lower body weights than WT pigs from 16 weeks of age until they died. In addition, hHO-1-Tg ADSC showed reduced adipogenic differentiation and expression of adipogenic molecular markers such as PPARγ and C/EBPα compared to WT ADSC. These results suggest that HO-1 overexpression reduces adipogenesis both in vivo and in vitro, which could support identification of therapeutic targets of obesity and related metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Overexpression of poplar cellulase accelerates growth and disturbs the closing movements of leaves in sengon.

    Science.gov (United States)

    Hartati, Sri; Sudarmonowati, Enny; Park, Yong Woo; Kaku, Tomomi; Kaida, Rumi; Baba, Kei'ichi; Hayashi, Takahisa

    2008-06-01

    In this study, poplar (Populus alba) cellulase (PaPopCel1) was overexpressed in a tropical Leguminosae tree, sengon (Paraserianthes falcataria), by the Agrobacterium tumefaciens method. PaPopCel1 overexpression increased the length and width of stems with larger leaves, which showed a moderately higher density of green color than leaves of the wild type. The pairs of leaves on the transgenic plants closed more slowly during sunset than those on the wild-type plants. When main veins from each genotype were excised and placed on a paper towel, however, the leaves of the transgenic plants closed more rapidly than those of the wild-type plant. Based on carbohydrate analyses of cell walls, the leaves of the transgenic plants contained less wall-bound xyloglucan than those of the wild-type plants. In situ xyloglucan endotransglucosylase activity showed that the incorporation of whole xyloglucan, potentially for wall tightening, occurred in the parenchyma cells (motor cells) of the petiolule pulvinus attached to the main vein, although the transgenic plant incorporated less whole xyloglucan than the wild-type plant. These observations support the hypothesis that the paracrystalline sites of cellulose microfibrils are attacked by poplar cellulase, which loosens xyloglucan intercalation, resulting in an irreversible wall modification. This process could be the reason why the overexpression of poplar cellulase both promotes plant growth and disturbs the biological clock of the plant by altering the closing movements of the leaves of the plant.

  7. Perturbation of Auxin Homeostasis and Signaling by PINOID Overexpression Induces Stress Responses in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Kumud Saini

    2017-08-01

    Full Text Available Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS. However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID, a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology.

  8. The effect of cdk-5 overexpression on tau phosphorylation and spatial memory of rat

    Institute of Scientific and Technical Information of China (English)

    LIAO Xiaomei; ZHANG Yingchun; WANG Yipeng; WANG Jianzhi

    2004-01-01

    In Alzheimer's disease (AD), hyperphosphorylation of tau may be the underlying mechanism for the cytoskeletal abnormalities and neuronal death. It was reported that cyclin-dependent kinase5 (cdk-5) could phosphorylate tau at most AD-related epitopes in vitro. In this study, we investigated the effect of cdk-5 overexpression on tau phosphorylation and spatial memory in rat. We demonstrated that 24 h after transfection into rat hippocampus, cdk-5 was overexpressed and induced a reduced staining with antibody tau-1 and an enhanced staining with antibodies 12e8 and PHF-1, suggesting hyperphosphorylation of tau at Ser199/202, Ser262/356 and Ser396/404 sites. Additionally, the cdk-5 transfected rats showed long latency to find the hidden platform in Morris water maze compared to the control rat. 48 h after transfection, the level of cdk-5 was decreased significantly, and the latency of rats to find the hidden platform was prolonged. It implies that in vivo overexpression of cdk-5 leads to impairment of spatial memory in rat and tau hyperphosphorylation may be the underlying mechanism.

  9. Overexpression of Fyn tyrosine kinase causes abnormal development of primary sensory neurons in Xenopus laevis embryos.

    Science.gov (United States)

    Saito, R; Fujita, N; Nagata, S

    2001-06-01

    The expression and function of the Src family protein tyrosine kinase Fyn in Xenopus laevis embryos have been examined. In situ hybridization analysis demonstrated nervous system-specific expression of Fyn mRNA in tail-bud embryos. However, a class of primary sensory neurons; that is, Rohon-Beard (RB) neurons, which is positive for immunoglobulin superfamily cell adhesion molecules (CAM), neural cell adhesion molecule (N-CAM) and contactin, is devoid of Fyn expression. Injection of Fyn mRNA into one of the blastomeres at the 2-cell stage led to overexpression of Fyn in the injected half of the tail-bud embryos. Immunolabeling of the embryos with anti-HNK-1 antibody revealed that the peripheral axons of RB neurons were partially misguided and bound to each other to form abnormal subcutaneous fascicles. Similar abnormality was induced by injection of the Fyn overexpression vector. The incidence of abnormality appeared dose-dependent, being 68-92% of the injected embryos at 50-400 pg of mRNA. Co-injection of the contactin antisense vector depleted contactin mRNA accumulation without affecting Fyn overexpression and reduced the incidence of the abnormal RB-cell phenotype. However, the N-CAM antisense was ineffective in reducing this abnormality. These results suggest that Fyn can modify signals regulating axonal guidance or fasciculation in the developing X. laevis nervous system and that contactin may affect this action of Fyn.

  10. Hepatocellular alterations and dysregulation of oncogenic pathways in the liver of transgenic mice overexpressing growth hormone.

    Science.gov (United States)

    Miquet, Johanna G; Freund, Thomas; Martinez, Carolina S; González, Lorena; Díaz, María E; Micucci, Giannina P; Zotta, Elsa; Boparai, Ravneet K; Bartke, Andrzej; Turyn, Daniel; Sotelo, Ana I

    2013-04-01

    Growth hormone (GH) overexpression throughout life in transgenic mice is associated with the development of liver tumors at old ages. The preneoplastic pathology observed in the liver of young adult GH-overexpressing mice is similar to that present in humans at high risk of hepatic cancer. To elucidate the molecular pathogenesis underlying the pro-oncogenic liver pathology induced by prolonged exposure to elevated GH levels, the activation and expression of several components of signal transduction pathways that have been implicated in hepatocellular carcinogenesis were evaluated in the liver of young adult GH-transgenic mice. In addition, males and females were analyzed in parallel in order to evaluate sexual dimorphism. Transgenic mice from both sexes exhibited hepatocyte hypertrophy with enlarged nuclear size and exacerbated hepatocellular proliferation, which were higher in males. Dysregulation of several oncogenic pathways was observed in the liver of GH-overexpressing transgenic mice. Many signaling mediators and effectors were upregulated in transgenic mice compared with normal controls, including Akt2, NFκB, GSK3β, β-catenin, cyclin D1, cyclin E, c-myc, c-jun and c-fos. The molecular alterations described did not exhibit sexual dimorphism in transgenic mice except for higher gene expression and nuclear localization of cyclin D1 in males. We conclude that prolonged exposure to GH induces in the liver alterations in signaling pathways involved in cell growth, proliferation and survival that resemble those found in many human tumors.

  11. Overexpression of mitofilin in the mouse heart promotes cardiac hypertrophy in response to hypertrophic stimuli.

    Science.gov (United States)

    Zhang, Yuan; Xu, Jing; Luo, Yu-Xuan; An, Xi-Zhou; Zhang, Ran; Liu, Guang; Li, Hongliang; Chen, Hou-Zao; Liu, De-Pei

    2014-10-20

    Mitofilin was originally described as a heart muscle protein because of its abundance in the heart tissue; however, its function in the heart is still to be elucidated. Thus, this study aims at investigating the role of mitofilin in the heart in response to hypertrophic stimuli. In this study, a significant increase in mitofilin expression was observed in the hearts of patients with hypertrophic cardiomyopathy. Transgenic (TG) mice with cardiomyocyte-specific overexpression of mitofilin were generated, and cardiac hypertrophy was introduced by transverse aortic constriction (TAC) or chronic infusion of isoproterenol (ISO). In TG mice overexpressing mitofilin, the level of cardiac hypertrophy was significantly greater than that in wild-type (WT) mice after TAC and ISO stimulation. A detailed analysis showed that compared with WT mice, the level of reactive oxygen species was increased after TAC and ISO induction and mitochondrial oxidative phosphorylation (OXPHOS) activity in the TG hearts was lower. These alterations may contribute to the aggravated cardiac hypertrophy observed in response to TAC and ISO stimulation. Over-expression of mitofilin promotes cardiac hypertrophy under pathological conditions both in vivo and in vitro. Mitofilin, a mitochondria protein, is shown to be related to cardiac hypertrophy for the first time, which enhances our understanding of the role of mitochondria in cardiac hypertrophy.

  12. Conditional Cripto overexpression in satellite cells promotes myogenic commitment and enhances early regeneration.

    Science.gov (United States)

    Prezioso, Carolina; Iaconis, Salvatore; Andolfi, Gennaro; Zentilin, Lorena; Iavarone, Francescopaolo; Guardiola, Ombretta; Minchiotti, Gabriella

    2015-01-01

    Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. Despite extensive studies, knowledge of the molecular mechanisms underlying the early events associated with satellite cell activation and myogenic commitment in muscle regeneration remains still incomplete. Cripto is a novel regulator of postnatal skeletal muscle regeneration and a promising target for future therapy. Indeed, Cripto is expressed both in myogenic and inflammatory cells in skeletal muscle after acute injury and it is required in the satellite cell compartment to achieve effective muscle regeneration. A critical requirement to further explore the in vivo cellular contribution of Cripto in regulating skeletal muscle regeneration is the possibility to overexpress Cripto in its endogenous configuration and in a cell and time-specific manner. Here we report the generation and the functional characterization of a novel mouse model for conditional expression of Cripto, i.e., the Tg:DsRed (loxP/loxP) Cripto-eGFP mice. Moreover, by using a satellite cell specific Cre-driver line we investigated the biological effect of Cripto overexpression in vivo, and provided evidence that overexpression of Cripto in the adult satellite cell compartment promotes myogenic commitment and differentiation, and enhances early regeneration in a mouse model of acute injury.

  13. Enhanced leavening ability of baker's yeast by overexpression of SNR84 with PGM2 deletion.

    Science.gov (United States)

    Lin, Xue; Zhang, Cui-Ying; Bai, Xiao-Wen; Xiao, Dong-Guang

    2015-06-01

    Dough-leavening ability is one of the main aspects considered when selecting a baker's yeast strain for baking industry. Generally, modification of maltose metabolic pathway and known regulatory networks of maltose metabolism were used to increase maltose metabolism to improve leavening ability in lean dough. In this study, we focus on the effects of PGM2 (encoding for the phosphoglucomutase) and SNR84 (encoding for the H/ACA snoRNA) that are not directly related to both the maltose metabolic pathway and known regulatory networks of maltose metabolism on the leavening ability of baker's yeast in lean dough. The results show that the modifications on PGM2 and/or SNR84 are effective ways in improving leavening ability of baker's yeast in lean dough. Deletion of PGM2 decreased cellular glucose-1-phosphate and overexpression of SNR84 increased the maltose permease activity. These changes resulted in 11, 19 and 21% increases of the leavening ability for PGM2 deletion, SNR84 overexpression and SNR84 overexpression combining deleted PGM2, respectively.

  14. Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes.

    Science.gov (United States)

    Leeggangers, Hendrika A C F; Folta, Adam; Muras, Aleksandra; Nap, Jan-Peter; Mlynarova, Ludmila

    2015-02-01

    In the life of flowering plants, seed germination is a critical step to ensure survival into the next generation. Generally the seed prior to germination has been in a dormant state with a low rate of metabolism. In the transition from a dormant seed to a germinating seed, various epigenetic mechanisms play a regulatory role. Here, we demonstrate that the over-expression of chromatin remodeling ATPase genes (AtCHR12 or AtCHR23) reduced the frequency of seed germination in Arabidopsis thaliana up to 30% relative to the wild-type seeds. On the other hand, single loss-of-function mutations of the two genes did not affect seed germination. The reduction of germination in over-expressing mutants was more pronounced in stress conditions (salt or high temperature), showing the impact of the environment. Reduced germinations upon over-expression coincided with increased transcript levels of seed maturation genes and with reduced degradation of their mRNAs stored in dry seeds. Our results indicate that repression of AtCHR12/23 gene expression in germinating wild-type Arabidopsis seeds is required for full germination. This establishes a functional link between chromatin modifiers and regulatory networks towards seed maturation and germination.

  15. Overexpression of S100A4 is closely associated with progression of colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Yong-Gu Cho; Chang-Jae Kim; Suk-Woo Nam; Shin-Hee Yoon; Sug-Hyung Lee; Nam-Jin Yoo; Jung-Young Lee; Won-Sang Park

    2005-01-01

    AIM: To investigate whether S100A4 played an important role in the development or progression of colorectal cancer.METHODS: A total of 124 colorectal adenocarcinoma tissue specimens were analyzed by immunohistochemistry for the expression of S100A4 protein and subsequently investigated for the gene mutations in the coding region of S100A4 gene. The specimens were collected over a 3-year period in the laboratories at our large teaching hospital in Seoul, Republic of Korea.RESULTS: Normal colonic epithelium either failed to express or showed focal weak expression of S100A4. Moderate to strong cytoplasmic expression of S100A4 was seen in 69(55.6%) of the 124 colorectal carcinoma tissue specimens.S100A4 expression was detected in 43 (69.4%) of 62specimens with lymph node metastasis. Statistically,overexpression of S100A4 was significantly associated with Dukes' stage and lymph node metastasis. Nuclear staining was also observed in 24 (19.4%) of 124 samples and closely associated with Dukes' stage. However, there was no significant correlation between overexpression of S100A4and other investigated clinico-pathologic parameters,including tumor localization, tumor size, and survival period.In mutational analysis, no gene mutation was found in the analyzed genomic area of colorectal cancer.CONCLUSION: Overexpression of 5100A4 may be closely related with the aggressiveness of colorectal carcinoma.

  16. Over-Expression of Catalase in Myeloid Cells Confers Acute Protection Following Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    E. Bernadette Cabigas

    2014-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in the United States and new treatment options are greatly needed. Oxidative stress is increased following myocardial infarction and levels of antioxidants decrease, causing imbalance that leads to dysfunction. Therapy involving catalase, the endogenous scavenger of hydrogen peroxide (H2O2, has been met with mixed results. When over-expressed in cardiomyocytes from birth, catalase improves function following injury. When expressed in the same cells in an inducible manner, catalase showed a time-dependent response with no acute benefit, but a chronic benefit due to altered remodeling. In myeloid cells, catalase over-expression reduced angiogenesis during hindlimb ischemia and prevented monocyte migration. In the present study, due to the large inflammatory response following infarction, we examined myeloid-specific catalase over-expression on post-infarct healing. We found a significant increase in catalase levels following infarction that led to a decrease in H2O2 levels, leading to improved acute function. This increase in function could be attributed to reduced infarct size and improved angiogenesis. Despite these initial improvements, there was no improvement in chronic function, likely due to increased fibrosis. These data combined with what has been previously shown underscore the need for temporal, cell-specific catalase delivery as a potential therapeutic option.

  17. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma

    Science.gov (United States)

    Mai, Shi-Juan; Wang, Meng-He; Zhang, Mei-Yin; Zheng, X.F. Steven; Wang, Hui-Yun

    2016-01-01

    Histone deacetylases (HDACs) mediate histone deacetylation, leading to transcriptional repression, which is involved in many diseases, including age-related tissue degeneration, heart failure and cancer. In this study, we were aimed to investigate the expression, clinical significance and biological function of HDAC4 in esophageal carcinoma (EC). We found that HDAC4 mRNA and protein are overexpressed in esophageal squamous cell carcinoma (ESCC) tissues and cell lines. HDAC4 overexpression is associated with higher tumor grade, advanced clinical stage and poor survival. Mechanistically, HDAC4 promotes proliferation and G1/S cell cycle progression in EC cells by inhibiting cyclin-dependent kinase (CDK) inhibitors p21 and p27 and up-regulating CDK2/4 and CDK-dependent Rb phosphorylation. HDAC4 also enhances ESCC cell migration. Furthermore, HDAC4 positively regulates epithelial-mesenchymal transition (EMT) by increasing the expression of Vimentin and decreasing the expression of E-Cadherin/α-Catenin. Together, our study shows that HDAC4 overexpression is important for the oncogenesis of EC, which may serve as a useful prognostic biomarker and therapeutic target for this malignancy. PMID:27295551

  18. Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion.

    Science.gov (United States)

    Ainscow, E K; Zhao, C; Rutter, G A

    2000-07-01

    Islet beta-cells express low levels of lactate dehydrogenase and have high glycerol phosphate dehydrogenase activity. To determine whether this configuration favors oxidative glucose metabolism via mitochondria in the beta-cell and is important for beta-cell metabolic signal transduction, we have determined the effects on glucose metabolism and insulin secretion of acute overexpression of the skeletal muscle isoform of lactate dehydrogenase (LDH)-A. Monitored in single MIN6 beta-cells, LDH hyperexpression (achieved by intranuclear cDNA microinjection or adenoviral infection) diminished the response to glucose of both phases of increases in mitochondrial NAD(P)H, as well as increases in mitochondrial membrane potential, cytosolic free ATP, and cystolic free Ca2+. These effects were observed at all glucose concentrations, but were most pronounced at submaximal glucose levels. Correspondingly, adenoviral vector-mediated LDH-A overexpression reduced insulin secretion stimulated by 11 mmol/l glucose and the subsequent response to stimulation with 30 mmol/l glucose, but it was without significant effect when the concentration of glucose was raised acutely from 3 to 30 mmol/l. Thus, overexpression of LDH activity interferes with normal glucose metabolism and insulin secretion in the islet beta-cell type, and it may therefore be directly responsible for insulin secretory defects in some forms of type 2 diabetes. The results also reinforce the view that glucose-derived pyruvate metabolism in the mitochondrion is critical for glucose-stimulated insulin secretion in the beta-cell.

  19. Cardiac‐specific Hexokinase 2 Overexpression Attenuates Hypertrophy by Increasing Pentose Phosphate Pathway Flux

    Science.gov (United States)

    McCommis, Kyle S.; Douglas, Diana L.; Krenz, Maike; Baines, Christopher P.

    2013-01-01

    Background The enzyme hexokinase‐2 (HK2) phosphorylates glucose, which is the initiating step in virtually all glucose utilization pathways. Cardiac hypertrophy is associated with a switch towards increased glucose metabolism and decreased fatty acid metabolism. Recent evidence suggests that the increased glucose utilization is compensatory to the down‐regulated fatty acid metabolism during hypertrophy and is, in fact, beneficial. Therefore, we hypothesized that increasing glucose utilization by HK2 overexpression would decrease cardiac hypertrophy. Methods and Results Mice with cardiac‐specific HK2 overexpression displayed decreased hypertrophy in response to isoproterenol. Neonatal rat ventricular myocytes (NRVMs) infected with an HK2 adenovirus similarly displayed decreased hypertrophy in response to phenylephrine. Hypertrophy increased reactive oxygen species (ROS) levels, which were attenuated by HK2 overexpression, thereby decreasing NRVM hypertrophy and death. HK2 appears to modulate ROS via the pentose phosphate pathway, as inhibition of glucose‐6‐phosphate dehydrogenase with dehydroepiandrosterone decreased the ability of HK2 to diminish ROS and hypertrophy. Conclusions These results suggest that HK2 attenuates cardiac hypertrophy by decreasing ROS accumulation via increased pentose phosphate pathway flux. PMID:24190878

  20. Zinc finger protein 407 overexpression upregulates PPAR target gene expression and improves glucose homeostasis in mice.

    Science.gov (United States)

    Charrier, Alyssa; Wang, Li; Stephenson, Erin J; Ghanta, Siddharth V; Ko, Chih-Wei; Croniger, Colleen M; Bridges, Dave; Buchner, David A

    2016-11-01

    The peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors is central to the pathophysiology and treatment of metabolic disease through the receptors' ability to regulate the expression of genes involved in glucose homeostasis, adipogenesis, and lipid metabolism. However, the mechanism by which PPAR is regulated remains incompletely understood. We generated a transgenic mouse strain (ZFP-TG) that overexpressed Zfp407 primarily in muscle and heart. Transcriptome analysis by RNA-Seq identified 1,300 differentially expressed genes in the muscle of ZFP-TG mice, among which PPAR target genes were significantly enriched. Among the physiologically important PPARγ target genes, Glucose transporter (Glut)-4 mRNA and protein levels were increased in heart and muscle. The increase in Glut4 and other transcriptional effects of Zfp407 overexpression together decreased body weight and lowered plasma glucose, insulin, and HOMA-IR scores relative to control littermates. When placed on high-fat diet, ZFP-TG mice remained more glucose tolerant than their wild-type counterparts. Cell-based assays demonstrated that Zfp407 synergistically increased the transcriptional activity of all PPAR subtypes, PPARα, PPARγ, and PPARδ. The increased PPAR activity was not associated with increased PPAR mRNA or protein levels, suggesting that Zfp407 posttranslationally regulates PPAR activity. Collectively, these results demonstrate that Zfp407 overexpression improved glucose homeostasis. Thus, Zfp407 represents a new drug target for treating metabolic disease. Copyright © 2016 the American Physiological Society.

  1. S-phase delay in human hepatocellular carcinoma cells induced by overexpression of integrin β1

    Institute of Scientific and Technical Information of China (English)

    Yu-Long Liang; Ting-Wen Lei; Heng Wu; Jian-Min Sn; Li-Ying Wang; Qun-Ying Lei; Xi-Liang Zha

    2003-01-01

    AIM:To clarify the mechanisms of integrin overexpression in negatively regulating the cell cycle control of hepatocellular carcinoma cells SMMC-7721.METHODS: The cell cycle pattern was determined by flow cytometry. The mRNA and protein expression levels were assayed by RT-PCR and Western blot, respectively. Stable transfection was performed by Lipofectamine 2000 reagent,and cells were screened by G418.RESULTS: Overexpression of α5β1 or β1 integrin induced S-phase delay in SMMC-7721 cells, and this delay was possibly due to the accumulation of cyclin-dependent kinase inhibitors (CKIs) p21cip1 and p27kip1. The decrease of protein kinase B (PKB) phosphorylation was present in this signaling pathway, but focal adhesion kinase (FAK) was not involved.When phosphorylation of PKB was solely blocked by wortmannin, p27kip1 protein level was increased. Moreover,S-phase delay was recurred when attachment of the parental SMMC-7721 cells was inhibited by the preparation of polyHEME, and this cell cycle pattern was similar to that of β1-7721 or α5β1-7721 cells.CONCLUSION: S-phase delay induced by overexpression of integrin β1 subunit is attributed to the decrease of PKB phosphorylation and subsequent increases of p21cip1 and p27kip1 proteins, and may be involved in the unoccupied α5β1because of lack of its ligands.

  2. Overexpression of several Arabidopsis histone genes increases agrobacterium-mediated transformation and transgene expression in plants.

    Science.gov (United States)

    Tenea, Gabriela N; Spantzel, Joerg; Lee, Lan-Ying; Zhu, Yanmin; Lin, Kui; Johnson, Susan J; Gelvin, Stanton B

    2009-10-01

    The Arabidopsis thaliana histone H2A-1 is important for Agrobacterium tumefaciens-mediated plant transformation. Mutation of HTA1, the gene encoding histone H2A-1, results in decreased T-DNA integration into the genome of Arabidopsis roots, whereas overexpression of HTA1 increases transformation frequency. To understand the mechanism by which HTA1 enhances transformation, we investigated the effects of overexpression of numerous Arabidopsis histones on transformation and transgene expression. Transgenic Arabidopsis containing cDNAs encoding histone H2A (HTA), histone H4 (HFO), and histone H3-11 (HTR11) displayed increased transformation susceptibility, whereas histone H2B (HTB) and most histone H3 (HTR) cDNAs did not increase transformation. A parallel increase in transient gene expression was observed when histone HTA, HFO, or HTR11 overexpression constructs were cotransfected with double- or single-stranded forms of a gusA gene into tobacco (Nicotiana tabacum) protoplasts. However, these cDNAs did not increase expression of a previously integrated transgene. We identified the N-terminal 39 amino acids of H2A-1 as sufficient to increase transient transgene expression in plants. After transfection, transgene DNA accumulates more rapidly in the presence of HTA1 than with a control construction. Our results suggest that certain histones enhance transgene expression, protect incoming transgene DNA during the initial stages of transformation, and subsequently increase the efficiency of Agrobacterium-mediated transformation.

  3. Overexpression of p53 mRNA in colorectal cancer and its relationship to p53 gene mutation.

    OpenAIRE

    el-Mahdani, N.; Vaillant, J. C.; Guiguet, M; PRÉVOT, S.; Bertrand, V.; Bernard, C.; Parc, R.; Béréziat, G.; Hermelin, B

    1997-01-01

    We analysed the frequency of p53 mRNA overexpression in a series of 109 primary colorectal carcinomas and its association with p53 gene mutation, which has been correlated with short survival. Sixty-nine of the 109 cases (63%) demonstrated p53 mRNA overexpression, without any correlation with stage or site of disease. Comparison with p53 gene mutation indicated that, besides cases in which p53 gene mutation and p53 mRNA overexpression were either both present (40 cases) or both absent (36 cas...

  4. Effects of overexpression of Pkn2, a transmembrane protein serine/threonine kinase, on development of Myxococcus xanthus.

    OpenAIRE

    Udo, H; Inouye, M; Inouye, S.

    1996-01-01

    Pkn2 is a putative transmembrane protein serine/threonine kinase required for normal development of Myxococcus xanthus. The effect of Pkn2 overexpression on development of M. xanthus was examined by expressing pkn2 under the control of a kanamycin promoter. Pkn2 was clearly detected by Western blot (immunoblot) analysis in the overexpression strain (the PKm/pkn2 strain) but could not be detected in the wild-type strain. Overexpressed Pkn2 was located almost exclusively in the membrane fractio...

  5. Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Pan, Ya-Ping; Xu, Yuan-Hong; Wang, Zhong-Xin; Fang, Ya-Ping; Shen, Ji-Lu

    2016-08-01

    Efflux pump systems are one of the most important mechanisms conferring multidrug resistance in Pseudomonas aeruginosa. MexAB-OprM efflux pump is one of the largest multi-drug resistant efflux pumps with high-level expression, which is controlled by regulatory genes mexR, nalC, and nalD. This study investigated the role of efflux pump MexAB-OprM in 75 strains of carbapenem-resistant P. aeruginosa and evaluated the influence of point mutation of the regulatory genes. The minimum inhibitory concentrations of imipenem and meropenem, with or without MC207110, an efflux pump inhibitor, were determined by agar dilution method to select the positive strains for an overexpressed active efflux pump. Carba NP test and EDTA-disk synergy test were used for the detection of carbapenemase and metallo-β-lactamases, respectively. The gene mexA, responsible for the fusion protein structure, and the reference gene rpoD of the MexAB-OprM pump were amplified by real-time PCR. The quantity of relative mRNA expression was determined simultaneously. By PCR method, the efflux regulatory genes mexR, nalC, and nalD and outer membrane protein OprD2 were amplified for the strains showing overexpression of MexAB-OprM and subsequently analyzed by BLAST. Among the 75 P. aeruginosa strains, the prevalence of efflux pump-positive phenotype was 17.3 % (13/75). Carba NP test and EDTA-disk synergy test were all negative in the 13 strains. PCR assay results showed that ten strains overexpressed the MexAB-OprM efflux pump and were all positive for the regulatory genes mexR, nalC, and nalD. Sequence analysis indicated that of the ten isolates, nine had a mutation (Gly → Glu) at 71st amino acid position in NalC, and eight also had a mutation (Ser → Arg) at 209th position in NalC. Only one strain had a mutation (Thr → Ile) at the 158th amino acid position in NalD, whereas eight isolates had mutations in MexR. In conclusion, overexpression of efflux pump MexAB-OprM plays an important role in

  6. Expression profiling in transgenic FVB/N embryonic stem cells overexpressing STAT3

    Directory of Open Access Journals (Sweden)

    Yokota Takashi

    2008-05-01

    Full Text Available Abstract Background The transcription factor STAT3 is a downstream target of the LIF signalling cascade. LIF signalling or activation is sufficient to maintain embryonic stem (ES cells in an undifferentiated and pluripotent state. To further investigate the importance of STAT3 in the establishment of ES cells we have in a first step derived stable pluripotent embryonic stem cells from transgenic FVB mice expressing a conditional tamoxifen dependent STAT3-MER fusion protein. In a second step, STAT3-MER overexpressing cells were used to identify STAT3 pathway-related genes by expression profiling in order to identify new key-players involved in maintenance of pluripotency in ES cells. Results Transgenic STAT3-MER blastocysts yielded pluripotent germline-competent ES cells at a high frequency in the absence of LIF when established in tamoxifen-containing medium. Expression profiling of tamoxifen-induced transgenic FVB ES cell lines revealed a set of 26 genes that were markedly up- or down-regulated when compared with wild type cells. The expression of four of the up-regulated genes (Hexokinase II, Lefty2, Pramel7, PP1rs15B was shown to be restricted to the inner cell mass (ICM of the blastocysts. These differentially expressed genes represent potential candidates for the maintenance of pluripotency of ES cells. We finally overexpressed two candidate genes, Pem/Rhox5 and Pramel7, in ES cells and demonstrated that their overexpression is sufficient for the maintenance of expression of ES cell markers as well as of the typical morphology of pluripotent ES cells in absence of LIF. Conclusion Overexpression of STAT3-MER in the inner cell mass of blastocyst facilitates the establishment of ES cells and induces the upregulation of potential candidate genes involved in the maintenance of pluripotency. Two of them, Pem/Rhox5 and Pramel7, when overexpressed in ES cells are able to maintain the embryonic stem cells in a pluripotent state in a LIF independent

  7. IL-10-overexpressing B cells regulate innate and adaptive immune responses.

    Science.gov (United States)

    Stanic, Barbara; van de Veen, Willem; Wirz, Oliver F; Rückert, Beate; Morita, Hideaki; Söllner, Stefan; Akdis, Cezmi A; Akdis, Mübeccel

    2015-03-01

    Distinct human IL-10-producing B-cell subsets with immunoregulatory properties have been described. However, the broader spectrum of their direct cellular targets and suppressive mechanisms has not been extensively studied, particularly in relation to direct and indirect IL-10-mediated functions. The aim of the study was to investigate the effects of IL-10 overexpression on the phenotype and immunoregulatory capacity of B cells. Primary human B cells were transfected with hIL-10, and IL-10-overexpressing B cells were characterized for cytokine and immunoglobulin production by means of specific ELISA and bead-based assays. Antigen presentation, costimulation capacity, and transcription factor signatures were analyzed by means of flow cytometry and quantitative RT-PCR. Effects of IL-10-overexpresing B cells on Toll-like receptor-triggered cytokine release from PBMCs, LPS-triggered maturation of monocyte-derived dendritic cells, and tetanus toxoid-induced PBMC proliferation were assessed in autologous cocultures. IL-10-overexpressing B cells acquired a prominent immunoregulatory profile comprising upregulation of suppressor of cytokine signaling 3 (SOCS3), glycoprotein A repetitions predominant (GARP), the IL-2 receptor α chain (CD25), and programmed cell death 1 ligand 1 (PD-L1). Concurrently, their secretion profile was characterized by a significant reduction in levels of proinflammatory cytokines (TNF-α, IL-8, and macrophage inflammatory protein 1α) and augmented production of anti-inflammatory IL-1 receptor antagonist and vascular endothelial growth factor. Furthermore, IL-10 overexpression was associated with a decrease in costimulatory potential. IL-10-overexpressing B cells secreted less IgE and potently suppressed proinflammatory cytokines in PBMCs, maturation of monocyte-derived dendritic cells (rendering their profile to regulatory phenotype), and antigen-specific proliferation in vitro. Our data demonstrate an essential role for IL-10 in inducing an

  8. Overexpression of Catalase Enhances Benzo(a)pyrene Detoxification in Endothelial Microsomes

    Science.gov (United States)

    Yang, Fang; Yang, Hong; Ramesh, Aramandla; Goodwin, J. Shawn; Okoro, Emmanuel U.; Guo, ZhongMao

    2016-01-01

    We previously reported that overexpression of catalase upregulated xenobiotic- metabolizing enzyme (XME) expression and diminished benzo(a)pyrene (BaP) intermediate accumulation in mouse aortic endothelial cells (MAECs). Endoplasmic reticulum (ER) is the most active organelle involved in BaP metabolism. To examine the involvement of ER in catalase-induced BaP detoxification, we compared the level and distribution of XMEs, and the profile of BaP intermediates in the microsomes of wild-type and catalase transgenic endothelial cells. Our data showed that endothelial microsomes were enriched in cytochrome P450 (CYP) 1A1, CYP1B1 and epoxide hydrolase 1 (EH1), and contained considerable levels of NAD(P)H: quinone oxidoreductase-1 (NQO1) and glutathione S-transferase-pi (GSTP). Treatment of wild-type MAECs with 1μM BaP for 2 h increased the expression of microsomal CYP1A1, 1B1 and NQO1 by ~300, 64 and 116%, respectively. However, the same treatment did not significantly alter the expression of EH1 and GSTP. Overexpression of catalase did not significantly increase EH1, but upregulated BaP-induced expression of microsomal CYP1A1, 1B1, NQO1 and GSTP in the following order: 1A1>NQO1>GSTP>1B1. Overexpression of catalase did not alter the distribution of each of these enzymes in the microsomes. In contrast to our previous report showing lower level of BaP phenols versus BaP diols/diones in the whole-cell, this report demonstrated that the sum of microsomal BaP phenolic metabolites were ~60% greater than that of the BaP diols/diones after exposure of microsomes to BaP. Overexpression of catalase reduced the concentrations of microsomal BaP phenols and diols/diones by ~45 and 95%, respectively. This process enhanced the ratio of BaP phenol versus diol/dione metabolites in a potent manner. Taken together, upregulation of phase II XMEs and CYP1 proteins, but not EH1 in the ER might be the mechanism by which overexpression of catalase reduces the levels of all the BaP metabolites

  9. MECHANISMS OF MRP OVER-EXPRESSION IN 4 HUMAN LUNG-CANCER CELL-LINES AND ANALYSIS OF THE MRP AMPLICON

    NARCIS (Netherlands)

    EIJDEMS, EWHM; DEHAAS, M; COCOMARTIN, JM; OTTENHEIM, CPE; ZAMAN, GJR; DAUWERSE, HG; BREUNING, MH; TWENTYMAN, PR; BORST, P; BAAS, F

    1995-01-01

    Some multidrug resistant cell lines over-express the gene encoding the multidrug-resistance-associated protein (MRP). In all cell lines reported thus far, over-expression is associated with gene amplification. We have studied the predominant mechanisms of MRP over-expression in 4 human lung-cancer c

  10. The Effect of cdk- 5 Overexpression and Overactivation on Tau Hyperphosphorylation in Cultured N2a Cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Juan; LI Hong-lian; FENG You-mei; WANG Jian-zhi

    2005-01-01

    Neurofibrillary tangles (NFTs) are one of the neuropathological hallmarks of Alzheimer' s disease (AD) and abnormally hyperphosphorylated tau is the major protein of NFTs. It was reported that cyclin-dependent kinase5 (Cdk-5) could phosphorylate tau at most AD-related epitopes in vivo. In this study, we investigated the effect of cdk-5 overexpression on tau hyperphosphorylation in neuroblastoma N2a cells. We demonstrated that overexpression of cdk-5 which resulted in a 3.5-fold Cdk5 activation in the transfected cells induced a dramatic increase in phosphorylation of tau at several phosphorylation sites. Overexpression of cdk-5 led to a reduced staining with antibody Tau-1 and an enhanced staining with antibody PHF-1, suggesting hy perphosphorylation of tau at Ser199/202 and Ser396/404 sites. It implies that in vitro overexpression of cdk-5 leads to Cdk5 overactivation and tau hyperphosphorylation may be the underline mechanism.

  11. Widespread p53 overexpression in human malignant tumors. An immunohistochemical study using methacarn-fixed, embedded tissue.

    Science.gov (United States)

    Porter, P. L.; Gown, A. M.; Kramp, S. G.; Coltrera, M. D.

    1992-01-01

    p53 is a nuclear protein believed to play an important role, through mutation and overexpression, in the progression of human malignant tumors. The authors employed a monoclonal antibody, 1801, and investigated overexpression of p53 in a series of 255 malignant and benign tumors, using deparaffinized sections of methacarn-fixed tissue. Overall, immunohistochemically detected p53 overexpression was found in 39% of malignant tumors, with considerable variation within individual tumor types (34% of breast carcinomas, 92% of ovarian carcinomas, 33% of soft tissue sarcomas). Homogenous, heterogenous, and focal immunostaining patterns were noted. With rare exceptions, no immunostaining of any benign tumors was noted. No immunostaining was found in adjacent, benign tissues, or in a series of fetal tissues. This is the first demonstration of widespread p53 overexpression in alcohol-fixed, embedded tissue and confirms the major role played by p53 in human malignancies. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1731521

  12. Over-expression of a putative oxidoreductase (UcpA) for increasing furfural or 5-hydroxymethylfurfural tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuan; Miller, Elliot N.; Yomano, Lorraine P.; Shanmugam, Keelnatham T.; Ingram, Lonnie O' Neal

    2016-05-24

    The subject invention pertains to overexpression of a putative oxidoreductase (ucpA) for increasing furfural tolerance in genetically modified microorganisms. Genetically modified microorganisms capable of overexpressing UcpA are also provided. Increased expression of ucpA was shown to increase furfural tolerance by 50%, and to permit the fermentation of sugars to products in the presence of 15 mM furfural.

  13. Overexpression of human and fly frataxins in Drosophila provokes deleterious effects at biochemical, physiological and developmental levels.

    Directory of Open Access Journals (Sweden)

    Juan A Navarro

    Full Text Available BACKGROUND: Friedreich's ataxia (FA, the most frequent form of inherited ataxias in the Caucasian population, is caused by a reduced expression of frataxin, a highly conserved protein. Model organisms have contributed greatly in the efforts to decipher the function of frataxin; however, the precise function of this protein remains elusive. Overexpression studies are a useful approach to investigate the mechanistic actions of frataxin; however, the existing literature reports contradictory results. To further investigate the effect of frataxin overexpression, we analyzed the consequences of overexpressing human (FXN and fly (FH frataxins in Drosophila. METHODOLOGY/PRINCIPAL FINDINGS: We obtained transgenic flies that overexpressed human or fly frataxins in a general pattern and in different tissues using the UAS-GAL4 system. For both frataxins, we observed deleterious effects at the biochemical, histological and behavioral levels. Oxidative stress is a relevant factor in the frataxin overexpression phenotypes. Systemic frataxin overexpression reduces Drosophila viability and impairs the normal embryonic development of muscle and the peripheral nervous system. A reduction in the level of aconitase activity and a decrease in the level of NDUF3 were also observed in the transgenic flies that overexpressed frataxin. Frataxin overexpression in the nervous system reduces life span, impairs locomotor ability and causes brain degeneration. Frataxin aggregation and a misfolding of this protein have been shown not to be the mechanism that is responsible for the phenotypes that have been observed. Nevertheless, the expression of human frataxin rescues the aconitase activity in the fh knockdown mutant. CONCLUSION/SIGNIFICANCE: Our results provide in vivo evidence of a functional equivalence for human and fly frataxins and indicate that the control of frataxin expression is important for treatments that aim to increase frataxin levels.

  14. Overexpression of Human and Fly Frataxins in Drosophila Provokes Deleterious Effects at Biochemical, Physiological and Developmental Levels

    Science.gov (United States)

    Soriano, Sirena; Botella, José A.; Schneuwly, Stephan; Martínez-Sebastián, María J.; Moltó, María D.

    2011-01-01

    Background Friedreich's ataxia (FA), the most frequent form of inherited ataxias in the Caucasian population, is caused by a reduced expression of frataxin, a highly conserved protein. Model organisms have contributed greatly in the efforts to decipher the function of frataxin; however, the precise function of this protein remains elusive. Overexpression studies are a useful approach to investigate the mechanistic actions of frataxin; however, the existing literature reports contradictory results. To further investigate the effect of frataxin overexpression, we analyzed the consequences of overexpressing human (FXN) and fly (FH) frataxins in Drosophila. Methodology/Principal Findings We obtained transgenic flies that overexpressed human or fly frataxins in a general pattern and in different tissues using the UAS-GAL4 system. For both frataxins, we observed deleterious effects at the biochemical, histological and behavioral levels. Oxidative stress is a relevant factor in the frataxin overexpression phenotypes. Systemic frataxin overexpression reduces Drosophila viability and impairs the normal embryonic development of muscle and the peripheral nervous system. A reduction in the level of aconitase activity and a decrease in the level of NDUF3 were also observed in the transgenic flies that overexpressed frataxin. Frataxin overexpression in the nervous system reduces life span, impairs locomotor ability and causes brain degeneration. Frataxin aggregation and a misfolding of this protein have been shown not to be the mechanism that is responsible for the phenotypes that have been observed. Nevertheless, the expression of human frataxin rescues the aconitase activity in the fh knockdown mutant. Conclusion/Significance Our results provide in vivo evidence of a functional equivalence for human and fly frataxins and indicate that the control of frataxin expression is important for treatments that aim to increase frataxin levels. PMID:21779322

  15. AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist

    OpenAIRE

    Rhodes, Daniel R; Ateeq, Bushra; Cao, Qi; Tomlins, Scott A.; Mehra, Rohit; Laxman, Bharathi; Kalyana-Sundaram, Shanker; Lonigro, Robert J.; Helgeson, Beth E.; Bhojani, Mahaveer S.; Rehemtulla, Alnawaz; Kleer, Celina G.; Hayes, Daniel F.; Lucas, Peter C.; Varambally, Sooryanarayana

    2009-01-01

    Breast cancer patients have benefited from the use of targeted therapies directed at specific molecular alterations. To identify additional opportunities for targeted therapy, we searched for genes with marked overexpression in subsets of tumors across a panel of breast cancer profiling studies comprising 3,200 microarray experiments. In addition to prioritizing ERBB2, we found AGTR1, the angiotensin II receptor type I, to be markedly overexpressed in 10–20% of breast cancer cases across mult...

  16. Myc overexpression enhances of epicardial contribution to the developing heart and promotes extensive expansion of the cardiomyocyte population

    Science.gov (United States)

    Villa del Campo, Cristina; Lioux, Ghislaine; Carmona, Rita; Sierra, Rocío; Muñoz-Chápuli, Ramón; Clavería, Cristina; Torres, Miguel

    2016-01-01

    Myc is an essential regulator of cell growth and proliferation. Myc overexpression promotes the homeostatic expansion of cardiomyocyte populations by cell competition, however whether this applies to other cardiac lineages remains unknown. The epicardium contributes signals and cells to the developing and adult injured heart and exploring strategies for modulating its activity is of great interest. Using inducible genetic mosaics, we overexpressed Myc in the epicardium and determined the differential expansion of Myc-overexpressing cells with respect to their wild type counterparts. Myc-overexpressing cells overcolonized all epicardial-derived lineages and showed increased ability to invade the myocardium and populate the vasculature. We also found massive colonization of the myocardium by Wt1Cre-derived Myc-overexpressing cells, with preservation of cardiac development. Detailed analyses showed that this contribution is unlikely to derive from Cre activity in early cardiomyocytes but does not either derive from established epicardial cells, suggesting that early precursors expressing Wt1Cre originate the recombined cardiomyocytes. Myc overexpression does not modify the initial distribution of Wt1Cre-recombined cardiomyocytes, indicating that it does not stimulate the incorporation of early expressing Wt1Cre lineages to the myocardium, but differentially expands this initial population. We propose that strategies using epicardial lineages for heart repair may benefit from promoting cell competitive ability. PMID:27752085

  17. Ferritin Overexpression for Noninvasive Magnetic Resonance Imaging–Based Tracking of Stem Cells Transplanted into the Heart

    Directory of Open Access Journals (Sweden)

    Anna V. Naumova

    2010-07-01

    Full Text Available An unmet need in cardiac cell therapy is a noninvasive imaging technique capable of tracking changes in graft size over time and monitoring cell dynamics such as replication and death, factors to which commonly used superparamagnetic nanoparticles are insensitive. Our goal was to explore if overexpression of ferritin, a nontoxic iron-binding protein, can be used for noninvasive magnetic resonance imaging (MRI of cells transplanted into the infarcted heart. Mouse skeletal myoblasts (C2C12 cells were engineered to overexpress ferritin. Ferritin overexpression did not interfere with cell viability, proliferation, or differentiation into multinucleated myotubes. Ferritin overexpression caused a 25% decrease in T2 relaxation time in vitro compared to wild-type cells. Transgenic grafts were detected in vivo 3 weeks after transplantation into infarcted hearts of syngeneic mice as areas of hypointensity caused by iron accumulation in overexpressed ferritin complexes. Graft size evaluation by MRI correlated tighly with histologic measurements (R2 = .8. Our studies demonstrated the feasibility of ferritin overexpression in mouse skeletal myoblasts and the successful detection of transgenic cells by MRI in vitro and in vivo after transplantation into the infarcted mouse heart. These experiments lay the groundwork for using the MRI gene reporter ferritin to track stem cells transplanted to the heart.

  18. Overexpression of Protein Kinase Mζ in the Prelimbic Cortex Enhances the Formation of Long-Term Fear Memory.

    Science.gov (United States)

    Xue, Yan-Xue; Zhu, Zhen-Zhen; Han, Hai-Bin; Liu, Jian-Feng; Meng, Shi-Qiu; Chen, Chen; Yang, Jian-Li; Wu, Ping; Lu, Lin

    2015-08-01

    Neuroplasticity in the prefrontal cortex (PFC) after fear conditioning has been suggested to regulate the formation and expression of fear memory. Protein kinase Mζ (PKMζ), an isoform of protein kinase C with persistent activity, is involved in the formation and maintenance of memory. However, less is known about the role of PKMζ in the PFC in the formation of fear memory. We investigated whether the overexpression of PKMζ enhances the formation of auditory fear memory in rats. We found that microinfusion of lentiviral vector-expressing PKMζ into the prelimbic cortex (PrL) selectively enhanced the expression of PKMζ without influencing the expression of other isoforms of PKC. The overexpression of PKMζ in the PrL enhanced the formation of long-term fear memory without affecting short-term fear memory, whereas the overexpression of PKMζ in the infralimbic cortex had no effect on either short-term or long-term fear memory. The overexpression of PKMζ in the PrL had no effect on anxiety-like behavior or locomotor activity. We also found that PKMζ overexpression potentiated the fear conditioning-induced increase in the membrane levels of glutamate subunit 2 of AMPA receptors in the PrL. These results demonstrate that the overexpression of PKMζ in the PrL but not infralimbic cortex selectively enhanced the formation of long-term fear memory, and PKMζ in the PrL may be involved in the formation of fear memory.

  19. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress.

    Science.gov (United States)

    Ding, Jun; Holzwarth, Garrett; Bradford, C Samuel; Cooley, Ben; Yoshinaga, Allen S; Patton-Vogt, Jana; Abeliovich, Hagai; Penner, Michael H; Bakalinsky, Alan T

    2015-10-01

    In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity.

  20. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress

    Science.gov (United States)

    Ding, Jun; Holzwarth, Garrett; Bradford, C. Samuel; Cooley, Ben; Yoshinaga, Allen S.; Patton-Vogt, Jana; Abeliovich, Hagai; Penner, Michael H.; Bakalinsky, Alan T.

    2017-01-01

    In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity. PMID:26051671

  1. Prognosis of HER2 over-expressing gastric cancer patients with liver metastasis

    Institute of Scientific and Technical Information of China (English)

    Hai-Zhen Dang; Yang Yu; Shun-Chang Jiao

    2012-01-01

    AIM:To study the risk factors for liver metastasis and the prognosis in patients with human epidermal growth factor receptor 2 (HER2) over-expressing gastric cancer (GC).METHODS:A total of 84 GC patients recruited from the General Hospital of the People's Liberation Army (PLA) between 2003 and 2010 were randomly enrolled in this study.HER2 expression was detected by immunohistochemistry in 84 GC patients with liver metastases.The study group consisted of 66 men and 18 women,with an average age of 54 years (range:19-74years).Liver metastasis was diagnosed by magnetic resonance imaging or computed tomography.Patients were followed-up and predictive factors of liver metastasis were evaluated.RESULTS:The median follow-up period was 47 mo (range:6-85 mo).The characteristics of 35 (25.7%)patients with HER2 over-expression of liver metastatic GC are presented.HER2 over-expression was detected in 23 out of 49 (46.9%) patients with intestinal GC,and 9 out of 35 (25.7%) patients with diffuse GC.29 out of 59 (49.2%) patients aged < 60 years were HER2-positive,while 8 out of 25 (32%) patients aged ≥ 60were HER2-positive; a significant difference (P < 0.05).Univariate analysis (log-rank test) showed that HER2 over-expression,sex,Lauren classification,differentiation and disease-free interval were correlated with poor survival (P < 0.05).Survival analysis with a survival curve showed that HER2 over-expression was significantly relevant,with a reduced survival time in GC patients with liver metastases (P < 0.01).2-year survival was not associated with the patient's age.A diseasefree survival longer than 12 mo has a significant association with extended overall survival (OS) in GC patients with liver metastases.The median survival time after the diagnosis of liver metastases was 18 mo [95% confidence interval (CI):9.07-26.94] among HER2 positive GC patients with liver metastases.In comparison,for 49 (69.4%) out of 84 HER2 negative patients with liver

  2. HER-2/neu and CD117 (c-kit overexpression in patients with pesticide exposure and extensive stage small cell lung carcinoma (ESSCLC

    Directory of Open Access Journals (Sweden)

    Potti Anil

    2005-06-01

    Full Text Available Abstract Background The rate of detection of HER-2/neu and CD117 (c-kit overexpression in small cell lung cancer (SCLC has varied widely; between 5–35% and 21–70% respectively. Methods To evaluate the relationship between pesticide exposure and HER-2/neu and CD117 overexpression in extensive stage SCLC (ESSCLC, we identified patients with ESSCLC and assessed pesticide exposure using a predetermined questionnaire. An exposure index (hours/day × days/year × years ≥ 2400 hours was considered as 'exposed.' HER-2/neu overexpression was evaluated on archival tissue using the DAKO Hercep test, and CD117 testing was performed using immunohistochemistry (A4052 polyclonal antibody. Results 193 ESSCLC patients were identified. Pesticide exposure data could be obtained on 174 patients (84 females and 109 males with a mean age of 68.5 years. 53/174 (30.4% revealed HER-2/neu overexpression. 54/174 (31.03% specimens showed CD117 overexpression by IHC. On multivariate analysis, HER-2/neu overexpression was associated with diminished survival (p neu overexpression and 47/121 (38.8% patients without overexpression had exposure to pesticides (odds ratio: 5.38; p Conclusion Pesticide exposure affects HER-2/neu but not CD117 overexpression. Future studies are needed to determine specific pesticide(s/pesticide components that are responsible for HER-2/neu overexpression in ESSCLC, and to validate our findings in other solid tumors that overexpress HER-2/neu.

  3. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato.

    Science.gov (United States)

    Sui, Na; Li, Meng; Zhao, Shi-Jie; Li, Feng; Liang, Hui; Meng, Qing-Wei

    2007-10-01

    A tomato (Lycopersicon esculentum Mill.) glycerol-3-phosphate acyltransferase gene (LeGPAT) was isolated. The deduced amino acid sequence revealed that LeGPAT contained four acyltransferase domains, showing high identities with GPAT in other plant species. A GFP fusion protein of LeGPAT was targeted to chloroplast in cowpea mesophyll protoplast. RNA gel blot showed that the mRNA accumulation of LeGPAT in the wild type (WT) was induced by chilling temperature. Higher expression levels were observed when tomato leaves were exposed to 4 degrees C for 4 h. RNA gel and western blot analysis confirmed that the sense gene LeGPAT was transferred into the tomato genome and overexpressed under the control of 35S-CaMV. Although tomato is classified as a chilling-sensitive plant, LeGPAT exhibited selectivity to 18:1 over 16:0. Overexpression of LeGPAT increased total activity of LeGPAT and cis-unsaturated fatty acids in PG in thylakoid membrane. Chilling treatment induced less ion leakage from the transgenic plants than from the WT. The photosynthetic rate and the maximal photochemical efficiency of PS II (Fv/Fm) in transgenic plants decreased more slowly during chilling stress and recovered faster than in WT under optimal conditions. The oxidizable P700 in both WT and transgenic plants decreased obviously at chilling temperature under low irradiance, but the oxidizable P700 recovered faster in transgenic plants than in the WT. These results indicate that overexpression of LeGPAT increased the levels of PG cis-unsaturated fatty acids in thylakoid membrane, which was beneficial for the recovery of chilling-induced PS I photoinhibition in tomato.

  4. Overexpression of AtBMI1C, a polycomb group protein gene, accelerates flowering in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Polycomb group protein (PcG-mediated gene silencing is emerging as an essential developmental regulatory mechanism in eukaryotic organisms. PcGs inactivate or maintain the silenced state of their target chromatin by forming complexes, including Polycomb Repressive Complex 1 (PRC1 and 2 (PRC2. Three PRC2 complexes have been identified and characterized in Arabidopsis; of these, the EMF and VRN complexes suppress flowering by catalyzing the trimethylation of lysine 27 on histone H3 of FLOWER LOCUS T (FT and FLOWER LOCUS C (FLC. However, little is known about the role of PRC1 in regulating the floral transition, although AtRING1A, AtRING1B, AtBMI1A, and AtBMI1B are believed to regulate shoot apical meristem and embryonic development as components of PRC1. Moreover, among the five RING finger PcGs in the Arabidopsis genome, four have been characterized. Here, we report that the fifth, AtBMI1C, is a novel, ubiquitously expressed nuclear PcG protein and part of PRC1, which is evolutionarily conserved with Psc and BMI1. Overexpression of AtBMI1C caused increased H2A monoubiquitination and flowering defects in Arabidopsis. Both the suppression of FLC and activation of FT were observed in AtBMI1C-overexpressing lines, resulting in early flowering. No change in the H3K27me3 level in FLC chromatin was detected in an AtBMI1C-overexpressing line. Our results suggest that AtBMI1C participates in flowering time control by regulating the expression of FLC; moreover, the repression of FLC by AtBMI1C is not due to the activity of PRC2. Instead, it is likely the result of PRC1 activity, into which AtBMI1C is integrated.

  5. MDM4 overexpression contributes to synoviocyte proliferation in patients with rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nanwei [Department of Orthopaedics, The Affiliated Hospital of Nanjing Medical University, Changzhou Second People' s Hospital, Changzhou 213003 (China); Wang, Yuji, E-mail: yujiwang@sohu.com [Department of Orthopaedics, The Affiliated Hospital of Nanjing Medical University, Changzhou Second People' s Hospital, Changzhou 213003 (China); State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China); Li, Dawei [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China); Chen, Guoqiang, E-mail: 13929981788@139.com [Department of Rheumatology and Immunology, The First People' s Hospital of Foshan, Foshan 528000 (China); Sun, Rongbin; Zhu, Ruixia [Department of Orthopaedics, The Affiliated Hospital of Nanjing Medical University, Changzhou Second People' s Hospital, Changzhou 213003 (China); Sun, Sai [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China); Liu, Hongwei [Department of Orthopaedics, The Affiliated Hospital of Nanjing Medical University, Changzhou Second People' s Hospital, Changzhou 213003 (China); Yang, Guang [Center of Research, The First People' s Hospital of Foshan, Foshan 528000 (China); Dong, Tianhua [Department of Orthopaedics, The First Affiliated Hospital of Suzhou University, Suzhou 215007 (China)

    2010-10-22

    Research highlights: {yields} Elevated MDM4 mRNA and protein levels in FLS from patients with RA and OA. {yields} Strong MDM4 staining in synovial cells of inflammatory synovium. {yields} MDM4 knockdown increased p53 and p21 levels, and inhibited the proliferation of RA FLS. {yields} MDM4 overexpression increased p53 while decreased p21 levels, and promoted the growth of RA FLS. -- Abstract: Rheumatoid arthritis (RA) is a chronic autoimmune disease with features of inflammatory cell infiltration, synovial cell invasive proliferation, and ultimately, irreversible joint destruction. It has been reported that the p53 pathway is involved in RA pathogenesis. MDM4/MDMX is a major negative regulator of p53. To determine whether MDM4 contributes to RA pathogenesis, MDM4 mRNA and protein expression were assessed in fibroblast-like synoviocytes (FLS) by real-time PCR, western blotting, and in synovial tissues by immunohistochemistry. Furthermore, MDM4 was knocked down and overexpressed by lentivirus-mediated expression, and the proliferative capacity of FLS was determined by MTS assay. We found that cultured FLS from RA and osteoarthritis (OA) patients exhibited higher levels of MDM4 mRNA and protein expression than those from trauma controls. MDM4 protein was highly expressed in the synovial lining and sublining cells from both types of arthritis. Finally, MDM4 knockdown inhibited the proliferation of RA FLS by enhancing functional p53 levels while MDM4 overexpression promoted the growth of RA FLS by inhibiting p53 effects. Taken together, our results suggest that the abundant expression of MDM4 in FLS may contribute to the hyperplasia phenotype of RA synovial tissues.

  6. Enhanced tolerance to drought in transgenic rice plants overexpressing C4 photosynthesis enzymes

    Directory of Open Access Journals (Sweden)

    Jun-Fei Gu

    2013-12-01

    Full Text Available Maize-specific pyruvate orthophosphate dikinase (PPDK was overexpressed in rice independently or in combination with the maize C4-specific phosphoenolpyruvate carboxylase (PCK. The wild-type (WT cultivar Kitaake and transgenic plants were evaluated in independent field and tank experiments. Three soil moisture treatments, well-watered (WW, moderate drought (MD and severe drought (SD, were imposed from 9 d post-anthesis till maturity. Leaf physiological and biochemical traits, root activities, biomass, grain yield, and yield components in the untransformed WT and two transgenic rice lines (PPDK and PCK were systematically studied. Compared with the WT, both transgenic rice lines showed increased leaf photosynthetic rate: by 20%–40% under WW, by 45%–60% under MD, and by 80%–120% under SD. The transgenic plants produced 16.1%, 20.2% and 20.0% higher grain yields than WT under the WW, MD and SD treatments, respectively. Under the same soil moisture treatments, activities of phosphoenolpyruvate carboxylase (PEPC and carbonic anhydrase (CA in transgenic plants were 3–5-fold higher than those in WT plants. Compared with ribulose-1,5-bisphosphate carboxylase, activities of PEPC and CA were less reduced under both MD and SD treatments. The transgenic plants also showed higher leaf water content, stomatal conductance, transpiration efficiency, and root oxidation activity and a stronger active oxygen scavenging system than the WT under all soil moisture treatments, especially MD and SD. The results suggest that drought tolerance is greatly enhanced in transgenic rice plants overexpressing C4 photosynthesis enzymes. This study was performed under natural conditions and normal planting density to evaluate yield advantages on a field basis. It may open a new avenue to drought-tolerance breeding via overexpression of C4 enzymes in rice.

  7. Cdk5r1 Overexpression Induces Primary β-Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Carrie Draney

    2016-01-01

    Full Text Available Decreased β-cell mass is a hallmark of type 1 and type 2 diabetes. Islet transplantation as a method of diabetes therapy is hampered by the paucity of transplant ready islets. Understanding the pathways controlling islet proliferation may be used to increase functional β-cell mass through transplantation or by enhanced growth of endogenous β-cells. We have shown that the transcription factor Nkx6.1 induces β-cell proliferation by upregulating the orphan nuclear hormone receptors Nr4a1 and Nr4a3. Using expression analysis to define Nkx6.1-independent mechanisms by which Nr4a1 and Nr4a3 induce β-cell proliferation, we demonstrated that cyclin-dependent kinase 5 regulatory subunit 1 (Cdk5r1 is upregulated by Nr4a1 and Nr4a3 but not by Nkx6.1. Overexpression of Cdk5r1 is sufficient to induce primary rat β-cell proliferation while maintaining glucose stimulated insulin secretion. Overexpression of Cdk5r1 in β-cells confers protection against apoptosis induced by etoposide and thapsigargin, but not camptothecin. The Cdk5 kinase complex inhibitor roscovitine blocks islet proliferation, suggesting that Cdk5r1 mediated β-cell proliferation is a kinase dependent event. Overexpression of Cdk5r1 results in pRb phosphorylation, which is inhibited by roscovitine treatment. These data demonstrate that activation of the Cdk5 kinase complex is sufficient to induce β-cell proliferation while maintaining glucose stimulated insulin secretion.

  8. Transgenic overexpression of SUR1 in the heart suppresses sarcolemmal K(ATP).

    Science.gov (United States)

    Flagg, Thomas P; Remedi, Maria Sara; Masia, Ricard; Gomes, Jefferson; McLerie, Meredith; Lopatin, Anatoli N; Nichols, Colin G

    2005-10-01

    The lack of pathological consequences of cardiac ATP-sensitive potassium channel (K(ATP)) channel gene manipulation is in stark contrast to the effect of similar perturbations in the pancreatic beta-cell. Because the pancreatic and cardiac channel share the same pore-forming subunit (Kir6.2), the different effects of genetic manipulation likely reflect, at least in part, the tissue-specific expression of the regulatory subunit (SUR1 in pancreas vs. SUR2A in heart) of the bipartite channel complex. To examine this, we have generated transgenic (TG) mice that overexpress epitope-tagged SUR1 or SUR2A under the transcriptional control of the alpha-myosin heavy chain promoter. Western blot and real time RT-PCR analysis confirm transgene expression in the heart, and variable levels of SUR1 RNA and protein, in 16 viable founder lines. Surprisingly, activation of channels by either pharmacological agents (diazoxide and pinacidil) or metabolic inhibitors (oligomycin and 2-deoxyglucose) reveals a suppression of total K(ATP) conductance in high expressing TG mice. Moreover, K(ATP) channel activity was significantly reduced in excised cardiac patches from TG myocytes that overexpress either SUR1 or SUR2A. Using a recombinant cell system, we show that overexpression of either SUR1 or Kir6.2 suppresses the functional expression of K(ATP) from optimized dimeric SUR1-Kir6.2. Thus, the graded effect of SUR1 expression in the intact heart appears to demonstrate an in vivo requirement for 1:1 expression ratio of Kir6.2 and SURx.

  9. Increase in cellulose accumulation and improvement of saccharification by overexpression of arabinofuranosidase in rice.

    Directory of Open Access Journals (Sweden)

    Minako Sumiyoshi

    Full Text Available Cellulosic biomass is available for the production of biofuel, with saccharification of the cell wall being a key process. We investigated whether alteration of arabinoxylan, a major hemicellulose in monocots, causes an increase in saccharification efficiency. Arabinoxylans have β-1,4-D-xylopyranosyl backbones and 1,3- or 1,4-α-l-arabinofuranosyl residues linked to O-2 and/or O-3 of xylopyranosyl residues as side chains. Arabinose side chains interrupt the hydrogen bond between arabinoxylan and cellulose and carry an ester-linked feruloyl substituent. Arabinose side chains are the base point for diferuloyl cross-links and lignification. We analyzed rice plants overexpressing arabinofuranosidase (ARAF to study the role of arabinose residues in the cell wall and their effects on saccharification. Arabinose content in the cell wall of transgenic rice plants overexpressing individual ARAF full-length cDNA (OsARAF1-FOX and OsARAF3-FOX decreased 25% and 20% compared to the control and the amount of glucose increased by 28.2% and 34.2%, respectively. We studied modifications of cell wall polysaccharides at the cellular level by comparing histochemical cellulose staining patterns and immunolocalization patterns using antibodies raised against α-(1,5-linked l-Ara (LM6 and β-(1,4-linked d-Xyl (LM10 and LM11 residues. However, they showed no visible phenotype. Our results suggest that the balance between arabinoxylan and cellulose might maintain the cell wall network. Moreover, ARAF overexpression in rice effectively leads to an increase in cellulose accumulation and saccharification efficiency, which can be used to produce bioethanol.

  10. The Novel Gene CRNDE Encodes a Nuclear Peptide (CRNDEP Which Is Overexpressed in Highly Proliferating Tissues.

    Directory of Open Access Journals (Sweden)

    Lukasz Michal Szafron

    Full Text Available CRNDE, recently described as the lncRNA-coding gene, is overexpressed at RNA level in human malignancies. Its role in gametogenesis, cellular differentiation and pluripotency has been suggested as well. Herein, we aimed to verify our hypothesis that the CRNDE gene may encode a protein product, CRNDEP. By using bioinformatics methods, we identified the 84-amino acid ORF encoded by one of two CRNDE transcripts, previously described by our research team. This ORF was cloned into two expression vectors, subsequently utilized in localization studies in HeLa cells. We also developed a polyclonal antibody against CRNDEP. Its specificity was confirmed in immunohistochemical, cellular localization, Western blot and immunoprecipitation experiments, as well as by showing a statistically significant decrease of endogenous CRNDEP expression in the cells with transient shRNA-mediated knockdown of CRNDE. Endogenous CRNDEP localizes predominantly to the nucleus and its expression seems to be elevated in highly proliferating tissues, like the parabasal layer of the squamous epithelium, intestinal crypts or spermatocytes. After its artificial overexpression in HeLa cells, in a fusion with either the EGFP or DsRed Monomer fluorescent tag, CRNDEP seems to stimulate the formation of stress granules and localize to them. Although the exact role of CRNDEP is unknown, our preliminary results suggest that it may be involved in the regulation of the cell proliferation. Possibly, CRNDEP also participates in oxygen metabolism, considering our in silico results, and the correlation between its enforced overexpression and the formation of stress granules. This is the first report showing the existence of a peptide encoded by the CRNDE gene.

  11. Astrocyte-specific overexpressed gene signatures in response to methamphetamine exposure in vitro

    KAUST Repository

    Bortell, Nikki

    2017-03-09

    BackgroundAstrocyte activation is one of the earliest findings in the brain of methamphetamine (Meth) abusers. Our goal in this study was to identify the characteristics of the astrocytic acute response to the drug, which may be critical in pathogenic outcomes secondary to the use.MethodsWe developed an integrated analysis of gene expression data to study the acute gene changes caused by the direct exposure to Meth treatment of astrocytes in vitro, and to better understand how astrocytes respond, what are the early molecular markers associated with this response. We examined the literature in search of similar changes in gene signatures that are found in central nervous system disorders.ResultsWe identified overexpressed gene networks represented by genes of an inflammatory and immune nature and that are implicated in neuroactive ligand-receptor interactions. The overexpressed networks are linked to molecules that were highly upregulated in astrocytes by all doses of methamphetamine tested and that could play a role in the central nervous system. The strongest overexpressed signatures were the upregulation of MAP2K5, GPR65, and CXCL5, and the gene networks individually associated with these molecules. Pathway analysis revealed that these networks are involved both in neuroprotection and in neuropathology. We have validated several targets associated to these genes.ConclusionsGene signatures for the astrocytic response to Meth were identified among the upregulated gene pool, using an in vitro system. The identified markers may participate in dysfunctions of the central nervous system but could also provide acute protection to the drug exposure. Further in vivo studies are necessary to establish the role of these gene networks in drug abuse pathogenesis.

  12. Enhanced tolerance to drought in transgenic rice plants overexpressing C4 photosynthesis enzymes

    Institute of Scientific and Technical Information of China (English)

    Jun-Fei; Gu; Ming; Qiu; Jian-Chang; Yang

    2013-01-01

    Maize-specific pyruvate orthophosphate dikinase(PPDK) was overexpressed in rice independently or in combination with the maize C4-specific phosphoenolpyruvate carboxylase(PCK). The wild-type(WT) cultivar Kitaake and transgenic plants were evaluated in independent field and tank experiments. Three soil moisture treatments,well-watered(WW), moderate drought(MD) and severe drought(SD), were imposed from 9d post-anthesis till maturity. Leaf physiological and biochemical traits, root activities,biomass, grain yield, and yield components in the untransformed WT and two transgenic rice lines(PPDK and PCK) were systematically studied. Compared with the WT, both transgenic rice lines showed increased leaf photosynthetic rate: by 20%–40% under WW, by45%–60% under MD, and by 80%–120% under SD. The transgenic plants produced 16.1%,20.2% and 20.0% higher grain yields than WT under the WW, MD and SD treatments,respectively. Under the same soil moisture treatments, activities of phosphoenolpyruvate carboxylase(PEPC) and carbonic anhydrase(CA) in transgenic plants were 3–5-fold higher than those in WT plants. Compared with ribulose-1,5-bisphosphate carboxylase, activities of PEPC and CA were less reduced under both MD and SD treatments. The transgenic plants also showed higher leaf water content, stomatal conductance, transpiration efficiency, and root oxidation activity and a stronger active oxygen scavenging system than the WT under all soil moisture treatments, especially MD and SD. The results suggest that drought tolerance is greatly enhanced in transgenic rice plants overexpressing C4photosynthesis enzymes. This study was performed under natural conditions and normal planting density to evaluate yield advantages on a field basis. It may open a new avenue to droughttolerance breeding via overexpression of C4enzymes in rice.

  13. Metallothionein overexpression and its prognostic relevance in intrahepatic cholangiocarcinoma and extrahepatic hilar cholangiocarcinoma (Klatskin tumors).

    Science.gov (United States)

    Schmitz, Klaus Jürgen; Lang, Hauke; Kaiser, Gernot; Wohlschlaeger, Jeremias; Sotiropoulos, Georgios Charalambos; Baba, Hideo Andreas; Jasani, Bharat; Schmid, Kurt Werner

    2009-12-01

    Metallothionein is a group of small molecular weight cysteine-rich proteins with a broad variety of functions. Metallothionein has been shown to regulate apoptosis and proliferation. Overexpression of metallothionein frequently occurs in human tumors and is related to prognosis as well as therapy response. However, metallothionein expression and its clinical relevance in cholangiocarcinoma have not been investigated. The present study aimed to analyze metallothionein over-expression and its possible prognostic impact in intrahepatic cholangiocarcinoma and hilar extrahepatic cholangiocarcinoma (Klatskin tumors). We investigated the relationship of immunohistochemically demonstrated metallothionein expression with various clinicopathological parameters in a series of 56 intrahepatic and 56 extrahepatic cholangiocarcinoma. In noncancerous bile duct epithelia metallothionein was only occasionally weakly expressed; strong metallothionein overexpression (>50% metallothionein -pos