WorldWideScience

Sample records for dysregulated iron homeostasis

  1. Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis

    DEFF Research Database (Denmark)

    Srinivasan, Gayathri; Aitken, Jesse D; Zhang, Benyue

    2012-01-01

    Various states of inflammation, including sepsis, are associated with hypoferremia, which limits iron availability to pathogens and reduces iron-mediated oxidative stress. Lipocalin 2 (Lcn2; siderocalin, 24p3) plays a central role in iron transport. Accordingly, Lcn2-deficient (Lcn2KO) mice exhib...... mortality, suggesting that Lcn2 may act as an antioxidant in vivo by regulating iron homeostasis. Thus, Lcn2-mediated regulation of labile iron protects the host against sepsis. Its small size and simple structure may make Lcn2 a deployable treatment for sepsis....

  2. [Iron dysregulation and anemias].

    Science.gov (United States)

    Ikuta, Katsuya

    2015-10-01

    Most iron in the body is utilized as a component of hemoglobin that delivers oxygen to the entire body. Under normal conditions, the iron balance is tightly regulated. However, iron dysregulation does occasionally occur; total iron content reductions cause iron deficiency anemia and overexpression of the iron regulatory peptide hepcidin disturbs iron utilization resulting in anemia of chronic disease. Conversely, the presence of anemia may ultimately lead to iron overload; for example, thalassemia, a common hereditary anemia worldwide, often requires transfusion, but long-term transfusions cause iron accumulation that leads to organ damage and other poor outcomes. On the other hand, there is a possibility that iron overload itself can cause anemia; iron chelation therapy for the post-transfusion iron overload observed in myelodysplastic syndrome or aplastic anemia improves dependency on transfusions in some cases. These observations reflect the extremely close relationship between anemias and iron metabolism.

  3. Iron homeostasis during pregnancy.

    Science.gov (United States)

    Fisher, Allison L; Nemeth, Elizabeta

    2017-12-01

    During pregnancy, iron needs to increase substantially to support fetoplacental development and maternal adaptation to pregnancy. To meet these iron requirements, both dietary iron absorption and the mobilization of iron from stores increase, a mechanism that is in large part dependent on the iron-regulatory hormone hepcidin. In healthy human pregnancies, maternal hepcidin concentrations are suppressed in the second and third trimesters, thereby facilitating an increased supply of iron into the circulation. The mechanism of maternal hepcidin suppression in pregnancy is unknown, but hepcidin regulation by the known stimuli (i.e., iron, erythropoietic activity, and inflammation) appears to be preserved during pregnancy. Inappropriately increased maternal hepcidin during pregnancy can compromise the iron availability for placental transfer and impair the efficacy of iron supplementation. The role of fetal hepcidin in the regulation of placental iron transfer still remains to be characterized. This review summarizes the current understanding and addresses the gaps in knowledge about gestational changes in hematologic and iron variables and regulatory aspects of maternal, fetal, and placental iron homeostasis. © 2017 American Society for Nutrition.

  4. DYSREGULATION OF ION HOMEOSTASIS BY ANTIFUNGAL AGENTS

    Directory of Open Access Journals (Sweden)

    Yongqiang eZhang

    2012-04-01

    Full Text Available Ion signaling and transduction networks are central to fungal development and virulence because they regulate gene expression, filamentation, host association and invasion, pathogen stress response and survival. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis by which a growing number of amphipathic but structurally unrelated compounds elicit antifungal activity. Included in this group is carvacrol, a terpenoid phenol that is a prominent component of oregano and other plant essential oils. Carvacrol triggers an early dose dependent Ca2+ burst and long lasting pH changes in the model yeast S. cerevisiae. The distinct phases of ionic transients and a robust transcriptional response that overlaps with Ca2+ stress and nutrient starvation point to specific signaling events elicited by plant terpenoid phenols, rather than a non-specific lesion of the membrane as was previously considered. We discuss the potential use of plant essential oils and other agents that disrupt ion signaling pathways as chemosensitizers to augment conventional antifungal therapy, and to convert fungistatic drugs with strong safety profiles into fungicides.

  5. Role of glutaredoxin 3 in iron homeostasis

    Science.gov (United States)

    Iron is an essential mineral nutrient that is tightly regulated through mechanisms involving iron regulatory genes, intracellular storage, and iron recycling. Dysregulation of these mechanisms often results in either excess tissue iron accumulation (overload) or iron deficiency (anemia). Many bioche...

  6. Iron deficiency in parkinsonism: region-specific iron dysregulation in Parkinson's disease and multiple system atrophy.

    Science.gov (United States)

    Visanji, Naomi P; Collingwood, Joanna F; Finnegan, Mary E; Tandon, Anurag; House, Emily; Hazrati, Lili-Naz

    2013-01-01

    Alpha synuclein pathology is widespread and found in diverse cell types in multiple system atrophy (MSA) as compared to Parkinson's disease (PD). The reason for this differential distribution is unknown. Regional differences in the distribution of iron are associated with neurodegenerative diseases, and here we characterize the relationship between iron homeostasis proteins and regional concentration, distribution and form of iron in MSA and PD. In PD substantia nigra, tissue iron and expression of the iron export protein ferroportin increased, while the iron storage protein ferritin expression was unchanged. In the basis pontis of MSA cases, increased total iron concentration coupled with a disproportionate increase in ferritin in dysmorphic microglia and a reduction in ferroportin expression. This is supported by isothermal remanent magnetisation evidence consistent with elevated concentrations of ferritin-bound iron in MSA basis pontis. Conventional opinion holds that excess iron is involved in neurodegeneration. Our data support that this may be the case in PD. While region-specific changes in iron are evident in both PD and MSA, the mechanisms of iron dysregulation appear quite distinct, with a failure to export iron from the MSA basis pontis coupling with significant intracellular accumulation of ferritin iron. This pattern also occurs, to a lesser extent, in the MSA putamen. Despite the excess tissue iron, the manner of iron dysregulation in MSA is reminiscent of changes in anemia of chronic disease, and our preliminary data, coupled with the widespread pathology and involvement of multiple cell types, may evidence a deficit in bioavailabile iron.

  7. Dysregulation of Iron Metabolism in Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Satoru Oshiro

    2011-01-01

    Full Text Available Dysregulation of iron metabolism has been observed in patients with neurodegenerative diseases (NDs. Utilization of several importers and exporters for iron transport in brain cells helps maintain iron homeostasis. Dysregulation of iron homeostasis leads to the production of neurotoxic substances and reactive oxygen species, resulting in iron-induced oxidative stress. In Alzheimer's disease (AD and Parkinson's disease (PD, circumstantial evidence has shown that dysregulation of brain iron homeostasis leads to abnormal iron accumulation. Several genetic studies have revealed mutations in genes associated with increased iron uptake, increased oxidative stress, and an altered inflammatory response in amyotrophic lateral sclerosis (ALS. Here, we review the recent findings on brain iron metabolism in common NDs, such as AD, PD, and ALS. We also summarize the conventional and novel types of iron chelators, which can successfully decrease excess iron accumulation in brain lesions. For example, iron-chelating drugs have neuroprotective effects, preventing neural apoptosis, and activate cellular protective pathways against oxidative stress. Glial cells also protect neurons by secreting antioxidants and antiapoptotic substances. These new findings of experimental and clinical studies may provide a scientific foundation for advances in drug development for NDs.

  8. Abnormal vascularization in mouse retina with dysregulated retinal cholesterol homeostasis

    OpenAIRE

    Omarova, Saida; Charvet, Casey D.; Reem, Rachel E.; Mast, Natalia; Zheng, Wenchao; Huang, Suber; Peachey, Neal S.; Pikuleva, Irina A.

    2012-01-01

    Several lines of evidence suggest a link between age-related macular degeneration and retinal cholesterol maintenance. Cytochrome P450 27A1 (CYP27A1) is a ubiquitously expressed mitochondrial sterol 27-hydroxylase that plays an important role in the metabolism of cholesterol and cholesterol-related compounds. We conducted a comprehensive ophthalmic evaluation of mice lacking CYP27A1. We found that the loss of CYP27A1 led to dysregulation of retinal cholesterol homeostasis, including unexpecte...

  9. Mitochondrial Iron Transport and Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Anshika eJain

    2013-09-01

    Full Text Available Iron (Fe is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.

  10. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  11. Current understanding of iron homeostasis.

    Science.gov (United States)

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  12. The liver in regulation of iron homeostasis.

    Science.gov (United States)

    Rishi, Gautam; Subramaniam, V Nathan

    2017-09-01

    The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism. Copyright © 2017 the American Physiological Society.

  13. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages

    Directory of Open Access Journals (Sweden)

    Susu M. Zughaier

    2014-01-01

    Full Text Available Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2 protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1 leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.

  14. Abnormal vascularization in mouse retina with dysregulated retinal cholesterol homeostasis.

    Science.gov (United States)

    Omarova, Saida; Charvet, Casey D; Reem, Rachel E; Mast, Natalia; Zheng, Wenchao; Huang, Suber; Peachey, Neal S; Pikuleva, Irina A

    2012-08-01

    Several lines of evidence suggest a link between age-related macular degeneration and retinal cholesterol maintenance. Cytochrome P450 27A1 (CYP27A1) is a ubiquitously expressed mitochondrial sterol 27-hydroxylase that plays an important role in the metabolism of cholesterol and cholesterol-related compounds. We conducted a comprehensive ophthalmic evaluation of mice lacking CYP27A1. We found that the loss of CYP27A1 led to dysregulation of retinal cholesterol homeostasis, including unexpected upregulation of retinal cholesterol biosynthesis. Cyp27a1-/- mice developed retinal lesions characterized by cholesterol deposition beneath the retinal pigment epithelium. Further, Cyp27a1-null mice showed pathological neovascularization, which likely arose from both the retina and the choroid, that led to the formation of retinal-choroidal anastomosis. Blood flow alterations and blood vessel leakage were noted in the areas of pathology. The Cyp27a1-/- retina was hypoxic and had activated Müller cells. We suggest a mechanism whereby abolished sterol 27-hydroxylase activity leads to vascular changes and identify Cyp27a1-/- mice as a model for one of the variants of type 3 retinal neovascularization occurring in some patients with age-related macular degeneration.

  15. Air pollution particles and iron homeostasis | Science ...

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects.General Significance: Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation fol

  16. Misregulation of iron homeostasis in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Anna Gajowiak

    2016-06-01

    Full Text Available Iron is essential for all mammalian cells, but it is toxic in excess. Our understanding of molecular mechanisms ensuring iron homeostasis at both cellular and systemic levels has dramatically increased over the past 15 years. However, despite major advances in this field, homeostatic regulation of iron in the central nervous system (CNS requires elucidation. It is unclear how iron moves in the CNS and how its transfer to the CNS across the blood-brain and the blood-cerebrospinal fluid barriers, which separate the CNS from the systemic circulation, is regulated. Increasing evidence indicates the role of iron dysregulation in neuronal cell death observed in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS. ALS is a progressive neurodegenerative disorder characterized by selective cortical czynand spinal motor neuron dysfunction that results from a complex interplay among various pathogenic factors including oxidative stress. The latter is known to strongly affect cellular iron balance, creating a vicious circle to exacerbate oxidative injury. The role of iron in the pathogenesis of ALS is confirmed by therapeutic effects of iron chelation in ALS mouse models. These models are of great importance for deciphering molecular mechanisms of iron accumulation in neurons. Most of them consist of transgenic rodents overexpressing the mutated human superoxide dismutase 1 (SOD1 gene. Mutations in the SOD1 gene constituteone of the most common genetic causes of the inherited form of ALS. However, it should beconsidered that overexpression of the SOD1 gene usually leads to increased SOD1 enzymaticactivity, a condition which does not occur in human pathology and which may itself changethe expression of iron metabolism genes.

  17. Iron homeostasis related genes in rice

    Directory of Open Access Journals (Sweden)

    Gross Jeferson

    2003-01-01

    Full Text Available Iron is essential for plants. However, excess iron is toxic, leading to oxidative stress and decreased productivity. Therefore, plants must use finely tuned mechanisms to keep iron homeostasis in each of their organs, tissues, cells and organelles. A few of the genes involved in iron homeostasis in plants have been identified recently, and we used some of their protein sequences as queries to look for corresponding genes in the rice (Oryza sativa genome. We have assigned possible functions to thirty-nine new rice genes. Together with four previously reported sequences, we analyzed a total of forty-three genes belonging to five known protein families: eighteen YS (Yellow Stripe, two FRO (Fe3+-chelate reductase oxidase, thirteen ZIP (Zinc regulated transporter / Iron regulated transporter Protein, eight NRAMP (Natural Resistance - Associated Macrophage Protein, and two Ferritin proteins. The possible cellular localization and number of potential transmembrane domains were evaluated, and phylogenetic analysis performed for each gene family. Annotation of genomic sequences was performed. The presence and number of homologues in each gene family in rice and Arabidopsis is discussed in light of the established iron acquisition strategies used by each one of these two plants.

  18. Iron dysregulation combined with aging prevents sepsis-induced apoptosis.

    Science.gov (United States)

    Javadi, Pardis; Buchman, Timothy G; Stromberg, Paul E; Turnbull, Isaiah R; Vyas, Dinesh; Hotchkiss, Richard S; Karl, Irene E; Coopersmith, Craig M

    2005-09-01

    Sepsis, iron loading, and aging cause independent increases in gut epithelial and splenic apoptosis. It is unknown how their combination will affect apoptosis and systemic cytokine levels. Hfe-/- mice (a murine homologue of hemochromatosis) abnormally accumulate iron in their tissues. Aged (24-26 months) or mature (16-18 months) Hfe-/- mice and wild type (WT) littermates were subjected to cecal ligation and puncture (CLP) or sham laparotomy. Intestine, spleen, and blood were harvested 24 h later and assessed for apoptosis and cytokine levels. Gut epithelial and splenic apoptosis were low in both aged septic and sham Hfe-/- mice, regardless of the amount of iron in their diet. Mature septic WT mice had increased apoptosis compared to age-matched sham WT mice. Mature septic Hfe-/- mice had similar levels of intestinal cell death to age-matched septic WT mice but higher levels of splenic apoptosis. Apoptosis was significantly lower in septic aged Hfe-/- mice than septic mature Hfe-/- animals. Interleukin-6 was elevated in septic aged Hfe-/- mice compared to sham mice. Although sepsis, chronic iron dysregulation, and aging each increase gut and splenic apoptosis, their combination yields cell death levels similar to sham animals despite the fact that aged Hfe-/- mice are able to mount an inflammatory response following CLP and mature Hfe-/- mice have elevated sepsis-induced apoptosis. Combining sepsis with two risk factors that ordinarily increase cell death and increase mortality in CLP yields an apoptotic response that could not have been predicted based upon each element in isolation.

  19. Dysregulated homeostasis of target tissues or autoantigens - A novel principle in autoimmunity.

    Science.gov (United States)

    Petersen, Frank; Yue, Xiaoyang; Riemekasten, Gabriela; Yu, Xinhua

    2017-06-01

    Monogenic autoimmune disorders provide a powerful tool for our understanding of the principles of autoimmunity due to the obvious impact of a single gene on the disease. So far, approximately 100 single gene defects causing murine monogenic autoimmune disorders have been reported and the functional characterization of these genes will provide significant progress in understanding the nature of autoimmunity. According to their function, genes leading to monogenic autoimmune disorders can be categorized into two groups. An expectable first group contains genes involved in the homeostasis of the immune system, including homeostasis of immune organs and immune cells. Intriguingly, the second group consists of genes functionally involved in the homeostasis of target tissues or autoantigens. According to our novel hypothesis, we propose that autoimmunity represents a consequence of a dysregulated homeostasis of the immune system and/or its targets including autoantigens and target tissues. In this review we refer to both aspects of homeostasis in autoimmunity with a highlight on the role of the homeostasis of target tissues and autoantigens. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Development of iron homeostasis in infants and young children.

    Science.gov (United States)

    Lönnerdal, Bo

    2017-12-01

    Healthy, term, breastfed infants usually have adequate iron stores that, together with the small amount of iron that is contributed by breast milk, make them iron sufficient until ≥6 mo of age. The appropriate concentration of iron in infant formula to achieve iron sufficiency is more controversial. Infants who are fed formula with varying concentrations of iron generally achieve sufficiency with iron concentrations of 2 mg/L (i.e., with iron status that is similar to that of breastfed infants at 6 mo of age). Regardless of the feeding choice, infants' capacity to regulate iron homeostasis is important but less well understood than the regulation of iron absorption in adults, which is inverse to iron status and strongly upregulated or downregulated. Infants who were given daily iron drops compared with a placebo from 4 to 6 mo of age had similar increases in hemoglobin concentrations. In addition, isotope studies have shown no difference in iron absorption between infants with high or low hemoglobin concentrations at 6 mo of age. Together, these findings suggest a lack of homeostatic regulation of iron homeostasis in young infants. However, at 9 mo of age, homeostatic regulatory capacity has developed although, to our knowledge, its extent is not known. Studies in suckling rat pups showed similar results with no capacity to regulate iron homeostasis at 10 d of age when fully nursing, but such capacity occurred at 20 d of age when pups were partially weaned. The major iron transporters in the small intestine divalent metal-ion transporter 1 (DMT1) and ferroportin were not affected by pup iron status at 10 d of age but were strongly affected by iron status at 20 d of age. Thus, mechanisms that regulate iron homeostasis are developed at the time of weaning. Overall, studies in human infants and experimental animals suggest that iron homeostasis is absent or limited early in infancy largely because of a lack of regulation of the iron transporters DMT1 and ferroportin

  1. Iron Homeostasis in Peripheral Nervous System, Still a Black Box?

    Science.gov (United States)

    Taveggia, Carla

    2014-01-01

    Abstract Significance: Iron is the most abundant transition metal in biology and an essential cofactor for many cellular enzymes. Iron homeostasis impairment is also a component of peripheral neuropathies. Recent Advances: During the past years, much effort has been paid to understand the molecular mechanism involved in maintaining systemic iron homeostasis in mammals. This has been stimulated by the evidence that iron dyshomeostasis is an initial cause of several disorders, including genetic and sporadic neurodegenerative disorders. Critical Issues: However, very little has been done to investigate the physiological role of iron in peripheral nervous system (PNS), despite the development of suitable cellular and animal models. Future Directions: To stimulate research on iron metabolism and peripheral neuropathy, we provide a summary of the knowledge on iron homeostasis in the PNS, on its transport across the blood–nerve barrier, its involvement in myelination, and we identify unresolved questions. Furthermore, we comment on the role of iron in iron-related disorder with peripheral component, in demyelinating and metabolic peripheral neuropathies. Antioxid. Redox Signal. 21, 634–648. PMID:24409826

  2. Immunity to plant pathogens and iron homeostasis.

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Ironing Out the Wrinkles in Host Defense: Interactions between Iron Homeostasis and Innate Immunity

    Science.gov (United States)

    Wang, Lijian; Cherayil, Bobby J.

    2009-01-01

    Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Recent advances in our understanding of the molecular regulation of iron metabolism have shed new light on how alterations in iron homeostasis both contribute to and influence innate immunity. In this article, we review what is currently known about the role of iron in the response to infection. PMID:20375603

  4. Hepcidin and Iron Homeostasis during Pregnancy

    Directory of Open Access Journals (Sweden)

    Mary Dawn Koenig

    2014-08-01

    Full Text Available Hepcidin is the master regulator of systemic iron bioavailability in humans. This review examines primary research articles that assessed hepcidin during pregnancy and postpartum and report its relationship to maternal and infant iron status and birth outcomes; areas for future research are also discussed. A systematic search of the databases Medline and Cumulative Index to Nursing and Allied Health returned 16 primary research articles including 10 human and six animal studies. Collectively, the results indicate that hepcidin is lower during pregnancy than in a non-pregnant state, presumably to ensure greater iron bioavailability to the mother and fetus. Pregnant women with undetectable serum hepcidin transferred a greater quantity of maternally ingested iron to their fetus compared to women with detectable hepcidin, indicating that maternal hepcidin in part determines the iron bioavailability to the fetus. However, inflammatory states, including preeclampsia, malaria infection, and obesity were associated with higher hepcidin during pregnancy compared to healthy controls, suggesting that maternal and fetal iron bioavailability could be compromised in such conditions. Future studies should examine the relative contribution of maternal versus fetal hepcidin to the control of placental iron transfer as well as optimizing maternal and fetal iron bioavailability in pregnancies complicated by inflammation.

  5. Peripheral effects of FAAH deficiency on fuel and energy homeostasis: role of dysregulated lysine acetylation.

    Directory of Open Access Journals (Sweden)

    Bhavapriya Vaitheesvaran

    Full Text Available FAAH (fatty acid amide hydrolase, primarily expressed in the liver, hydrolyzes the endocannabinoids fatty acid ethanolamides (FAA. Human FAAH gene mutations are associated with increased body weight and obesity. In our present study, using targeted metabolite and lipid profiling, and new global acetylome profiling methodologies, we examined the role of the liver on fuel and energy homeostasis in whole body FAAH(-/- mice.FAAH(-/- mice exhibit altered energy homeostasis demonstrated by decreased oxygen consumption (Indirect calorimetry. FAAH(-/- mice are hyperinsulinemic and have adipose, skeletal and hepatic insulin resistance as indicated by stable isotope phenotyping (SIPHEN. Fed state skeletal muscle and liver triglyceride levels was increased 2-3 fold, while glycogen was decreased 42% and 57% respectively. Hepatic cholesterol synthesis was decreased 22% in FAAH(-/- mice. Dysregulated hepatic FAAH(-/- lysine acetylation was consistent with their metabolite profiling. Fasted to fed increases in hepatic FAAH(-/- acetyl-CoA (85%, p<0.01 corresponded to similar increases in citrate levels (45%. Altered FAAH(-/- mitochondrial malate dehydrogenase (MDH2 acetylation, which can affect the malate aspartate shuttle, was consistent with our observation of a 25% decrease in fed malate and aspartate levels. Decreased fasted but not fed dihydroxyacetone-P and glycerol-3-P levels in FAAH(-/- mice was consistent with a compensating contribution from decreased acetylation of fed FAAH(-/- aldolase B. Fed FAAH(-/- alcohol dehydrogenase (ADH acetylation was also decreased.Whole body FAAH deletion contributes to a pre-diabetic phenotype by mechanisms resulting in impairment of hepatic glucose and lipid metabolism. FAAH(-/- mice had altered hepatic lysine acetylation, the pattern sharing similarities with acetylation changes reported with chronic alcohol treatment. Dysregulated hepatic lysine acetylation seen with impaired FAA hydrolysis could support the liver

  6. CYP27A1 Loss Dysregulates Cholesterol Homeostasis in Prostate Cancer.

    Science.gov (United States)

    Alfaqih, Mahmoud A; Nelson, Erik R; Liu, Wen; Safi, Rachid; Jasper, Jeffery S; Macias, Everardo; Geradts, Joseph; Thompson, J Will; Dubois, Laura G; Freeman, Michael R; Chang, Ching-Yi; Chi, Jen-Tsan; McDonnell, Donald P; Freedland, Stephen J

    2017-04-01

    In this study, we used a bioinformatic approach to identify genes whose expression is dysregulated in human prostate cancers. One of the most dramatically downregulated genes identified encodes CYP27A1, an enzyme involved in regulating cellular cholesterol homeostasis. Importantly, lower CYP27A1 transcript levels were associated with shorter disease-free survival and higher tumor grade. Loss of CYP27A1 in prostate cancer was confirmed at the protein level by immunostaining for CYP27A1 in annotated tissue microarrays. Restoration of CYP27A1 expression in cells where its gene was silenced attenuated their growth in vitro and in tumor xenografts. Studies performed in vitro revealed that treatment of prostate cancer cells with 27-hydroxycholesterol (27HC), an enzymatic product of CYP27A1, reduced cellular cholesterol content in prostate cancer cell lines by inhibiting the activation of sterol regulatory-element binding protein 2 and downregulating low-density lipoprotein receptor expression. Our findings suggest that CYP27A1 is a critical cellular cholesterol sensor in prostate cells and that dysregulation of the CYP27A1/27HC axis contributes significantly to prostate cancer pathogenesis. Cancer Res; 77(7); 1662-73. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Deficiency of a alpha-1-antitrypsin influences systemic iron homeostasis

    Science.gov (United States)

    Abstract Background: There is evidence that proteases and anti-proteases participate in the iron homeostasis of cells and living systems. We tested the postulate that alpha-1 antitrypsin (A1AT) polymorphism and the consequent deficiency of this anti-protease in humans are asso...

  8. Heme metabolism as an integral part of iron homeostasis

    Directory of Open Access Journals (Sweden)

    Paweł Lipiński

    2014-01-01

    Full Text Available Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways – heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S] – is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.

  9. [Heme metabolism as an integral part of iron homeostasis].

    Science.gov (United States)

    Lipiński, Paweł; Starzyński, Rafał R; Styś, Agnieszka; Gajowiak, Anna; Staroń, Robert

    2014-01-02

    Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways--heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S])--is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis) as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.

  10. Iron Homeostasis in Yellowstone National Park Hot Spring Microbial Communities

    Science.gov (United States)

    Brown, I.; Tringe, S. G.; Franklin, H.; Bryant, D. A.; Klatt, C. G.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    It has been postulated that life may have originated on Earth, and possibly on Mars, in association with hydrothermal activity and high concentrations of ferrous iron. However, it is not clear how an iron-rich thermal hydrosphere could be hospitable to microbes, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, the study of microbial diversity in iron-depositing hot springs (IDHS) and the mechanisms of iron homeostasis and suppression of oxidative stress may help elucidate how Precambrian organisms could withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe(2+) and O2. Proteins and clusters of orthologous groups (COGs) involved in the maintenance of Fe homeostasis found in cyanobacteria (CB) inhabiting environments with high and low [Fe] were main target of this analysis. Preliminary results of the analysis suggest that the Chocolate Pots (CP) microbial community is heavily dominated by phototrophs from the cyanobacteria (CB), Chloroflexi and Chlorobi phyla, while the Mushroom Spring (MS) effluent channel harbors a more diverse community in which Chloroflexi are the dominant phototrophs. It is speculated that CB inhabiting IDHS have an increased tolerance to both high concentrations of Fe(2+) and ROS produced in the Fenton reaction. This hypothesis was explored via a comparative analysis of the diversity of proteins and COGs involved in Fe and redox homeostasis in the CP and MS microbiomes.

  11. Asthma as a disruption in iron homeostasis | Science ...

    Science.gov (United States)

    Over several decades, asthma has evolved from being recognized as a single disease to include a diverse group of phenotypes with dissimilar natural histories, pathophysiologies, responses to treatment, and distinctive molecular pathways. With the application of Occam’s razor to asthma, it is proposed that there is one cause underlying the numerous phenotypes of this disease and that the responsible molecular pathway is a deficiency of iron in the lung tissues. This deficiency can be either absolute (e.g. asthma in the neonate and during both pregnancy and menstruation) or functional (e.g. asthma associated with infections, smoking, and obesity). Comparable associations between asthma co-morbidity (e.g. eczema, urticaria, restless leg syndrome, and pulmonary hypertension) with iron deficiency support such a shared mechanistic pathway. Therapies directed at asthma demonstrate a capacity to impact iron homeostasis, further strengthening the relationship. Finally, pathophysiologic events producing asthma, including inflammation, increases in Th2 cells, and muscle contraction, can correlate with iron availability. Recognition of a potential association between asthma and an absolute and/or functional iron deficiency suggests specific therapeutic interventions including inhaled iron. Asthma is a public health issue that has environmental triggers. Iron homeostasis is an essential mechanism whereby the body manages the impact of environmental agents on overall

  12. Burkholderia pseudomallei modulates host iron homeostasis to facilitate iron availability and intracellular survival.

    Directory of Open Access Journals (Sweden)

    Imke H E Schmidt

    2018-01-01

    Full Text Available The control over iron homeostasis is critical in host-pathogen-interaction. Iron plays not only multiple roles for bacterial growth and pathogenicity, but also for modulation of innate immune responses. Hepcidin is a key regulator of host iron metabolism triggering degradation of the iron exporter ferroportin. Although iron overload in humans is known to increase susceptibility to Burkholderia pseudomallei, it is unclear how the pathogen competes with the host for the metal during infection. This study aimed to investigate whether B. pseudomallei, the causative agent of melioidosis, modulates iron balance and how regulation of host cell iron content affects intracellular bacterial proliferation.Upon infection of primary macrophages with B. pseudomallei, expression of ferroportin was downregulated resulting in higher iron availability within macrophages. Exogenous modification of iron export function by hepcidin or iron supplementation by ferric ammonium citrate led to increased intracellular iron pool stimulating B. pseudomallei growth, whereas the iron chelator deferoxamine reduced bacterial survival. Iron-loaded macrophages exhibited a lower expression of NADPH oxidase, iNOS, lipocalin 2, cytokines and activation of caspase-1. Infection of mice with the pathogen caused a diminished hepatic ferroportin expression, higher iron retention in the liver and lower iron levels in the serum (hypoferremia. In vivo administration of ferric ammonium citrate tended to promote the bacterial growth and inflammatory response, whereas limitation of iron availability significantly ameliorated bacterial clearance, attenuated serum cytokine levels and improved survival of infected mice.Our data indicate that modulation of the cellular iron balance is likely to be a strategy of B. pseudomallei to improve iron acquisition and to restrict antibacterial immune effector mechanisms and thereby to promote its intracellular growth. Moreover, we provide evidence that

  13. Local iron homeostasis in the breast ductal carcinoma microenvironment

    International Nuclear Information System (INIS)

    Marques, Oriana; Porto, Graça; Rêma, Alexandra; Faria, Fátima; Cruz Paula, Arnaud; Gomez-Lazaro, Maria; Silva, Paula; Martins da Silva, Berta; Lopes, Carlos

    2016-01-01

    While the deregulation of iron homeostasis in breast epithelial cells is acknowledged, iron-related alterations in stromal inflammatory cells from the tumor microenvironment have not been explored. Immunohistochemistry for hepcidin, ferroportin 1 (FPN1), transferrin receptor 1 (TFR1) and ferritin (FT) was performed in primary breast tissues and axillary lymph nodes in order to dissect the iron-profiles of epithelial cells, lymphocytes and macrophages. Furthermore, breast carcinoma core biopsies frozen in optimum cutting temperature (OCT) compound were subjected to imaging flow cytometry to confirm FPN1 expression in the cell types previously evaluated and determine its cellular localization. We confirm previous results by showing that breast cancer epithelial cells present an ‘iron-utilization phenotype’ with an increased expression of hepcidin and TFR1, and decreased expression of FT. On the other hand, lymphocytes and macrophages infiltrating primary tumors and from metastized lymph nodes display an ‘iron-donor’ phenotype, with increased expression of FPN1 and FT, concomitant with an activation profile reflected by a higher expression of TFR1 and hepcidin. A higher percentage of breast carcinomas, compared to control mastectomy samples, present iron accumulation in stromal inflammatory cells, suggesting that these cells may constitute an effective tissue iron reservoir. Additionally, not only the deregulated expression of iron-related proteins in epithelial cells, but also on lymphocytes and macrophages, are associated with clinicopathological markers of breast cancer poor prognosis, such as negative hormone receptor status and tumor size. The present results reinforce the importance of analyzing the tumor microenvironment in breast cancer, extending the contribution of immune cells to local iron homeostasis in the tumor microenvironment context

  14. Copper Stress Affects Iron Homeostasis by Destabilizing Iron-Sulfur Cluster Formation in Bacillus subtilis

    NARCIS (Netherlands)

    Chillappagari, Shashi; Seubert, Andreas; Trip, Hein; Kuipers, Oscar P.; Marahiel, Mohamed A.; Miethke, Marcus

    2010-01-01

    Copper and iron are essential elements for cellular growth. Although bacteria have to overcome limitations of these metals by affine and selective uptake, excessive amounts of both metals are toxic for the cells. Here we investigated the influences of copper stress on iron homeostasis in Bacillus

  15. Dissecting plant iron homeostasis under short and long-term iron fluctuations

    DEFF Research Database (Denmark)

    Shirvanehdeh, Behrooz Darbani; Briat, Jean-Francois; Holm, Preben Bach

    2013-01-01

    A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we...... discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between...... elements is also considered, with a specific emphasis on the relationship between iron homeostasis and phosphorus and copper deficiencies. As the environment is a crucial parameter for modulating plant responses, we also highlight how diurnal fluctuations govern iron metabolism. Evolutionary aspects...

  16. Deficiency of α-1-antitrypsin influences systemic iron homeostasis

    Directory of Open Access Journals (Sweden)

    Ghio AJ

    2013-01-01

    Full Text Available Andrew J Ghio,1 Joleen M Soukup,1 Judy H Richards,1 Bernard M Fischer,2 Judith A Voynow,2 Donald E Schmechel31US Environmental Protection Agency, Chapel Hill, NC, USA; 2Division of Pediatric Pulmonary Medicine, Department of Pediatrics,3Joseph and Kathleen Bryan Alzheimer Disease Research Center, Department of Medicine (Neurology, Duke University Medical Center, Durham, NC, USAAbstract: There is evidence that proteases and antiproteases participate in the iron homeostasis of cells and living systems. We tested the postulate that α-1 antitrypsin (A1AT polymorphism and the consequent deficiency of this antiprotease in humans are associated with a systemic disruption in iron homeostasis. Archived plasma samples from Alpha-1 Foundation (30 MM, 30 MZ, and 30 ZZ individuals were analyzed for A1AT, ferritin, transferrin, and C-reactive protein (CRP. Plasma samples were also assayed for metals using inductively coupled plasma atomic emission spectroscopy (ICPAES. Plasma levels of A1AT in MZ and ZZ individuals were approximately 60% and 20% of those for MM individuals respectively. Plasma ferritin concentrations in those with the ZZ genotype were greater relative to those individuals with either MM or MZ genotype. Plasma transferrin for MM, MZ, and ZZ genotypes showed no significant differences. Linear regression analysis revealed a significant (negative relationship between plasma concentrations of A1AT and ferritin while that between A1AT and transferrin levels was not significant. Plasma CRP concentrations were not significantly different between MM, MZ, and ZZ individuals. ICPAES measurement of metals confirmed elevated plasma concentrations of nonheme iron among ZZ individuals. Nonheme iron concentrations correlated (negatively with levels of A1AT. A1AT deficiency is associated with evidence of a disruption in iron homeostasis with plasma ferritin and nonheme iron concentrations being elevated among those with the ZZ genotype.Keywords: α-1

  17. Iron biofortification and homeostasis in transgenic cassava roots expressing an algal iron assimilatory protein, FEA1

    Directory of Open Access Journals (Sweden)

    Uzoma eIhemere

    2012-09-01

    Full Text Available We have engineered the starchy root crop cassava (Manihot esculenta to express the Chlamydomonas reinhardtii iron assimilatory protein, FEA1, in roots to enhance its nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 gm meal. Significantly, the expression of the FEA1 protein did not alter iron levels in leaves. Transgenic plants also had normal levels of zinc in leaves and roots consistent with the specific uptake of iron mediated by the FEA1 protein. Relative to wild-type plants, FEA1 expressing plants had reduced Fe(III chelate reductase activity and gene expression levels consistent with the more efficient uptake of iron in FEA1 transgenic plants. We also show that genes involved in iron homeostasis in cassava have altered tissue-specific patterns of expression in transgenic plants. Steady state transcript levels of the metal-chelate transporter MeYSL1, and the iron storage proteins, MeFER2 and MeFER6, were elevated in various tissues of FEA1 transgenic plants compared to wild-type plants. These results suggest that these gene products play a role in iron translocation and homeostasis in FEA1 transgenic cassava plants. These results are discussed in terms of enhanced strategies for the iron biofortification of plants.

  18. Out of Balance—Systemic Iron Homeostasis in Iron-Related Disorders

    Directory of Open Access Journals (Sweden)

    Andrea U. Steinbicker

    2013-08-01

    Full Text Available Iron is an essential element in our daily diet. Most iron is required for the de novo synthesis of red blood cells, where it plays a critical role in oxygen binding to hemoglobin. Thus, iron deficiency causes anemia, a major public health burden worldwide. On the other extreme, iron accumulation in critical organs such as liver, heart, and pancreas causes organ dysfunction due to the generation of oxidative stress. Therefore, systemic iron levels must be tightly balanced. Here we focus on the regulatory role of the hepcidin/ferroportin circuitry as the major regulator of systemic iron homeostasis. We discuss how regulatory cues (e.g., iron, inflammation, or hypoxia affect the hepcidin response and how impairment of the hepcidin/ferroportin regulatory system causes disorders of iron metabolism.

  19. Endoplasmic reticulum-mitochondria junction is required for iron homeostasis.

    Science.gov (United States)

    Xue, Yong; Schmollinger, Stefan; Attar, Narsis; Campos, Oscar A; Vogelauer, Maria; Carey, Michael F; Merchant, Sabeeha S; Kurdistani, Siavash K

    2017-08-11

    The endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) is a protein complex that physically tethers the two organelles to each other and creates the physical basis for communication between them. ERMES functions in lipid exchange between the ER and mitochondria, protein import into mitochondria, and maintenance of mitochondrial morphology and genome. Here, we report that ERMES is also required for iron homeostasis. Loss of ERMES components activates an Aft1-dependent iron deficiency response even in iron-replete conditions, leading to accumulation of excess iron inside the cell. This function is independent of known ERMES roles in calcium regulation, phospholipid biosynthesis, or effects on mitochondrial morphology. A mutation in the vacuolar protein sorting 13 ( VPS13 ) gene that rescues the glycolytic phenotype of ERMES mutants suppresses the iron deficiency response and iron accumulation. Our findings reveal that proper communication between the ER and mitochondria is required for appropriate maintenance of cellular iron levels. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2013-05-01

    Full Text Available Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world’s population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA metabolism, in comparison to their non-transgenic siblings. Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of Yellow Stripe-like protein family, and a transporter of the NA-Fe(II complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content.

  1. Abnormal brain iron homeostasis in human and animal prion disorders.

    Directory of Open Access Journals (Sweden)

    Ajay Singh

    2009-03-01

    Full Text Available Neurotoxicity in all prion disorders is believed to result from the accumulation of PrP-scrapie (PrP(Sc, a beta-sheet rich isoform of a normal cell-surface glycoprotein, the prion protein (PrP(C. Limited reports suggest imbalance of brain iron homeostasis as a significant associated cause of neurotoxicity in prion-infected cell and mouse models. However, systematic studies on the generality of this phenomenon and the underlying mechanism(s leading to iron dyshomeostasis in diseased brains are lacking. In this report, we demonstrate that prion disease-affected human, hamster, and mouse brains show increased total and redox-active Fe (II iron, and a paradoxical increase in major iron uptake proteins transferrin (Tf and transferrin receptor (TfR at the end stage of disease. Furthermore, examination of scrapie-inoculated hamster brains at different timepoints following infection shows increased levels of Tf with time, suggesting increasing iron deficiency with disease progression. Sporadic Creutzfeldt-Jakob disease (sCJD-affected human brains show a similar increase in total iron and a direct correlation between PrP and Tf levels, implicating PrP(Sc as the underlying cause of iron deficiency. Increased binding of Tf to the cerebellar Purkinje cell neurons of sCJD brains further indicates upregulation of TfR and a phenotype of neuronal iron deficiency in diseased brains despite increased iron levels. The likely cause of this phenotype is sequestration of iron in brain ferritin that becomes detergent-insoluble in PrP(Sc-infected cell lines and sCJD brain homogenates. These results suggest that sequestration of iron in PrP(Sc-ferritin complexes induces a state of iron bio-insufficiency in prion disease-affected brains, resulting in increased uptake and a state of iron dyshomeostasis. An additional unexpected observation is the resistance of Tf to digestion by proteinase-K, providing a reliable marker for iron levels in postmortem human brains. These

  2. Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake

    Science.gov (United States)

    2016-01-01

    Mycobacterium tuberculosis requires iron for normal growth but faces a limitation of the metal ion due to its low solubility at biological pH and the withholding of iron by the mammalian host. The pathogen expresses the Fe3+-specific siderophores mycobactin and carboxymycobactin to chelate the metal ion from insoluble iron and the host proteins transferrin, lactoferrin, and ferritin. Siderophore-mediated iron uptake is essential for the survival of M. tuberculosis, as knockout mutants, which were defective in siderophore synthesis or uptake, failed to survive in low-iron medium and inside macrophages. But as excess iron is toxic due to its catalytic role in the generation of free radicals, regulation of iron uptake is necessary to maintain optimal levels of intracellular iron. The focus of this review is to present a comprehensive overview of iron homeostasis in M. tuberculosis that is discussed in the context of mycobactin biosynthesis, transport of iron across the mycobacterial cell envelope, and storage of excess iron. The clinical significance of the serum iron status and the expression of the iron-regulated protein HupB in tuberculosis (TB) patients is presented here, highlighting the potential of HupB as a marker, notably in extrapulmonary TB cases. PMID:27402628

  3. Dysregulation of Iron Metabolism in Cholangiocarcinoma Stem-like Cells

    DEFF Research Database (Denmark)

    Raggi, Chiara; Gammella, Elena; Correnti, Margherita

    2017-01-01

    conditions, CSC form 3D spheres (SPH), which retain stem-like tumour-initiating features. Here, we found different expression of iron proteins indicating increased iron content, oxidative stress and higher expression of CSC markers in CCA-SPH compared to tumour cells growing as monolayers. Exposure...

  4. Iron Biofortification and Homeostasis in Transgenic Cassava Roots Expressing the Algal Iron Assimilatory Gene, FEA1

    Science.gov (United States)

    Ihemere, Uzoma E.; Narayanan, Narayanan N.; Sayre, Richard T.

    2012-01-01

    We have engineered the tropical root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory gene, FEA1, in its storage roots with the objective of enhancing the root nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 g meal. Significantly, the expression of the FEA1 gene in storage roots did not alter iron levels in leaves. Transgenic plants also had normal levels of zinc in leaves and roots consistent with the specific uptake of ferrous iron mediated by the FEA1 protein. Relative to wild-type plants, fibrous roots of FEA1 expressing plants had reduced Fe (III) chelate reductase activity consistent with the more efficient uptake of iron in the transgenic plants. We also show that multiple cassava genes involved in iron homeostasis have altered tissue-specific patterns of expression in leaves, stems, and roots of transgenic plants consistent with increased iron sink strength in transgenic roots. These results are discussed in terms of strategies for the iron biofortification of plants. PMID:22993514

  5. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    Science.gov (United States)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  6. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia.

    Science.gov (United States)

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean-Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana; Liantonio, Antonella

    2017-06-01

    Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose-limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium-dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS-R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast-twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin-induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. Cisplatin-treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up-regulation of atrogin1/Murf-1 genes and a down-regulation of Pgc1-a gene, all indexes of muscle atrophy, and by a two-fold increase in resting intracellular calcium, [Ca 2+ ] i , compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store-operated calcium entry were ~50% significantly reduced in cisplatin-treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in

  7. The Organization of Controller Motifs Leading to Robust Plant Iron Homeostasis.

    Directory of Open Access Journals (Sweden)

    Oleg Agafonov

    Full Text Available Iron is an essential element needed by all organisms for growth and development. Because iron becomes toxic at higher concentrations iron is under homeostatic control. Plants face also the problem that iron in the soil is tightly bound to oxygen and difficult to access. Plants have therefore developed special mechanisms for iron uptake and regulation. During the last years key components of plant iron regulation have been identified. How these components integrate and maintain robust iron homeostasis is presently not well understood. Here we use a computational approach to identify mechanisms for robust iron homeostasis in non-graminaceous plants. In comparison with experimental results certain control arrangements can be eliminated, among them that iron homeostasis is solely based on an iron-dependent degradation of the transporter IRT1. Recent IRT1 overexpression experiments suggested that IRT1-degradation is iron-independent. This suggestion appears to be misleading. We show that iron signaling pathways under IRT1 overexpression conditions become saturated, leading to a breakdown in iron regulation and to the observed iron-independent degradation of IRT1. A model, which complies with experimental data places the regulation of cytosolic iron at the transcript level of the transcription factor FIT. Including the experimental observation that FIT induces inhibition of IRT1 turnover we found a significant improvement in the system's response time, suggesting a functional role for the FIT-mediated inhibition of IRT1 degradation. By combining iron uptake with storage and remobilization mechanisms a model is obtained which in a concerted manner integrates iron uptake, storage and remobilization. In agreement with experiments the model does not store iron during its high-affinity uptake. As an iron biofortification approach we discuss the possibility how iron can be accumulated even during high-affinity uptake.

  8. Brain Iron Homeostasis: From Molecular Mechanisms To Clinical Significance and Therapeutic Opportunities

    Science.gov (United States)

    Haldar, Swati; Tripathi, Ajai K.; Horback, Katharine; Wong, Joseph; Sharma, Deepak; Beserra, Amber; Suda, Srinivas; Anbalagan, Charumathi; Dev, Som; Mukhopadhyay, Chinmay K.; Singh, Ajay

    2014-01-01

    Abstract Iron has emerged as a significant cause of neurotoxicity in several neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), sporadic Creutzfeldt-Jakob disease (sCJD), and others. In some cases, the underlying cause of iron mis-metabolism is known, while in others, our understanding is, at best, incomplete. Recent evidence implicating key proteins involved in the pathogenesis of AD, PD, and sCJD in cellular iron metabolism suggests that imbalance of brain iron homeostasis associated with these disorders is a direct consequence of disease pathogenesis. A complete understanding of the molecular events leading to this phenotype is lacking partly because of the complex regulation of iron homeostasis within the brain. Since systemic organs and the brain share several iron regulatory mechanisms and iron-modulating proteins, dysfunction of a specific pathway or selective absence of iron-modulating protein(s) in systemic organs has provided important insights into the maintenance of iron homeostasis within the brain. Here, we review recent information on the regulation of iron uptake and utilization in systemic organs and within the complex environment of the brain, with particular emphasis on the underlying mechanisms leading to brain iron mis-metabolism in specific neurodegenerative conditions. Mouse models that have been instrumental in understanding systemic and brain disorders associated with iron mis-metabolism are also described, followed by current therapeutic strategies which are aimed at restoring brain iron homeostasis in different neurodegenerative conditions. We conclude by highlighting important gaps in our understanding of brain iron metabolism and mis-metabolism, particularly in the context of neurodegenerative disorders. Antioxid. Redox Signal. 20, 1324–1363. PMID:23815406

  9. Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae.

    Science.gov (United States)

    Begg, Stephanie L; Eijkelkamp, Bart A; Luo, Zhenyao; Couñago, Rafael M; Morey, Jacqueline R; Maher, Megan J; Ong, Cheryl-Lynn Y; McEwan, Alastair G; Kobe, Bostjan; O'Mara, Megan L; Paton, James C; McDevitt, Christopher A

    2015-03-03

    Cadmium is a transition metal ion that is highly toxic in biological systems. Although relatively rare in the Earth's crust, anthropogenic release of cadmium since industrialization has increased biogeochemical cycling and the abundance of the ion in the biosphere. Despite this, the molecular basis of its toxicity remains unclear. Here we combine metal-accumulation assays, high-resolution structural data and biochemical analyses to show that cadmium toxicity, in Streptococcus pneumoniae, occurs via perturbation of first row transition metal ion homeostasis. We show that cadmium uptake reduces the millimolar cellular accumulation of manganese and zinc, and thereby increases sensitivity to oxidative stress. Despite this, high cellular concentrations of cadmium (~17 mM) are tolerated, with negligible impact on growth or sensitivity to oxidative stress, when manganese and glutathione are abundant. Collectively, this work provides insight into the molecular basis of cadmium toxicity in prokaryotes, and the connection between cadmium accumulation and oxidative stress.

  10. PfsR is a key regulator of iron homeostasis in Synechocystis PCC 6803.

    Directory of Open Access Journals (Sweden)

    Dan Cheng

    Full Text Available Iron is an essential cofactor in numerous cellular processes. The iron deficiency in the oceans affects the primary productivity of phytoplankton including cyanobacteria. In this study, we examined the function of PfsR, a TetR family transcriptional regulator, in iron homeostasis of the cyanobacterium Synechocystis PCC 6803. Compared with the wild type, the pfsR deletion mutant displayed stronger tolerance to iron limitation and accumulated significantly more chlorophyll a, carotenoid, and phycocyanin under iron-limiting conditions. The mutant also maintained more photosystem I and photosystem II complexes than the wild type after iron deprivation. In addition, the activities of photosystem I and photosystem II were much higher in pfsR deletion mutant than in wild-type cells under iron-limiting conditions. The transcripts of pfsR were enhanced by iron limitation and inactivation of the gene affected pronouncedly expression of fut genes (encoding a ferric iron transporter, feoB (encoding a ferrous iron transporter, bfr genes (encoding bacterioferritins, ho genes (encoding heme oxygenases, isiA (encoding a chlorophyll-binding protein, and furA (encoding a ferric uptake regulator. The iron quota in pfsR deletion mutant cells was higher than in wild-type cells both before and after exposure to iron limitation. Electrophoretic mobility shift assays showed that PfsR bound to its own promoter and thereby auto-regulated its own expression. These data suggest that PfsR is a critical regulator of iron homeostasis.

  11. The biological effect of asbestos exposure is dependent on changes in iron homeostasis

    Science.gov (United States)

    Abstract Functional groups on the surface of fibrous silicates can complex iron. We tested the postulate that 1) asbestos complexes and sequesters host cell iron resulting in a disruption of metal homeostasis and 2) this loss of essential metal results in an oxidative stress and...

  12. Metabolomic profiling identifies potential pathways involved in the interaction of iron homeostasis with glucose metabolism

    Directory of Open Access Journals (Sweden)

    Lars Stechemesser

    2017-01-01

    Conclusions: Our data suggest that high serum ferritin concentrations are linked to impaired glucose homeostasis in subjects with the MetS. Iron excess is associated to distinct changes in the serum concentrations of phosphatidylcholine subsets. A pathway involving sarcosine and citrulline also may be involved in iron-induced impairment of glucose metabolism.

  13. Comparative sensitivity of rat cerebellar neurons to dysregulation of divalent cation homeostasis and cytotoxicity caused by methylmercury

    International Nuclear Information System (INIS)

    Edwards, Joshua R.; Marty, M. Sue; Atchison, William D.

    2005-01-01

    The objective of the present study was to determine the relative effectiveness of methylmercury (MeHg) to alter divalent cation homeostasis and cause cell death in MeHg-resistant cerebellar Purkinje and MeHg-sensitive granule neurons. Application of 0.5-5 μM MeHg to Purkinje and granule cells grown in culture caused a concentration- and time-dependent biphasic increase in fura-2 fluorescence. At 0.5 and 1 μM MeHg, the elevations of fura-2 fluorescence induced by MeHg were biphasic in both cell types, but significantly delayed in Purkinje as compared to granule cells. Application of the heavy-metal chelator, TPEN, to Purkinje cells caused a precipitous decline in a proportion of the fura-2 fluorescence signal, indicating that MeHg causes release of Ca 2+ and non-Ca 2+ divalent cations. Purkinje cells were also more resistant than granule cells to the neurotoxic effects of MeHg. At 24.5 h after-application of 5 μM MeHg, 97.7% of Purkinje cells were viable. At 3 μM MeHg there was no detectable loss of Purkinje cell viability. In contrast, only 40.6% of cerebellar granule cells were alive 24.5 h after application of 3 μM MeHg. In conclusion, Purkinje neurons in primary cultures appear to be more resistant to MeHg-induced dysregulation of divalent cation homeostasis and subsequent cell death when compared to cerebellar granule cells. There is a significant component of non-Ca 2+ divalent cation released by MeHg in Purkinje neurons

  14. A Multi-Scale Model of Hepcidin Promoter Regulation Reveals Factors Controlling Systemic Iron Homeostasis

    Science.gov (United States)

    Muckenthaler, Martina U.; Legewie, Stefan

    2014-01-01

    Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF) phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease. PMID:24391488

  15. A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Guillem Casanovas

    2014-01-01

    Full Text Available Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.

  16. The actin-binding protein profilin 2 is a novel regulator of iron homeostasis.

    Science.gov (United States)

    Luscieti, Sara; Galy, Bruno; Gutierrez, Lucia; Reinke, Michael; Couso, Jorge; Shvartsman, Maya; Di Pascale, Antonio; Witke, Walter; Hentze, Matthias W; Pilo Boyl, Pietro; Sanchez, Mayka

    2017-10-26

    Cellular iron homeostasis is controlled by the iron regulatory proteins (IRPs) 1 and 2 that bind cis -regulatory iron-responsive elements (IRE) on target messenger RNAs (mRNA). We identified profilin 2 ( Pfn2 ) mRNA, which encodes an actin-binding protein involved in endocytosis and neurotransmitter release, as a novel IRP-interacting transcript, and studied its role in iron metabolism. A combination of electrophoretic mobility shift assay experiments and bioinformatic analyses led to the identification of an atypical and conserved IRE in the 3' untranslated region of Pfn2 mRNA. Pfn2 mRNA levels were significantly reduced in duodenal samples from mice with intestinal IRP ablation, suggesting that IRPs exert a positive effect on Pfn2 mRNA expression in vivo. Overexpression of Pfn2 in HeLa and Hepa1-6 cells reduced their metabolically active iron pool. Importantly, Pfn2-deficient mice showed iron accumulation in discrete areas of the brain (olfactory bulb, hippocampus, and midbrain) and reduction of the hepatic iron store without anemia. Despite low liver iron levels, hepatic hepcidin expression remained high, likely because of compensatory activation of hepcidin by mild inflammation. Splenic ferroportin was increased probably to sustain hematopoiesis. Overall, our results indicate that Pfn2 expression is controlled by the IRPs in vivo and that Pfn2 contributes to maintaining iron homeostasis in cell lines and mice. © 2017 by The American Society of Hematology.

  17. HIF-1 Regulates Iron Homeostasis in Caenorhabditis elegans by Activation and Inhibition of Genes Involved in Iron Uptake and Storage

    Science.gov (United States)

    Romney, Steven Joshua; Newman, Ben S.; Thacker, Colin; Leibold, Elizabeth A.

    2011-01-01

    Caenorhabditis elegans ftn-1 and ftn-2, which encode the iron-storage protein ferritin, are transcriptionally inhibited during iron deficiency in intestine. Intestinal specific transcription is dependent on binding of ELT-2 to GATA binding sites in an iron-dependent enhancer (IDE) located in ftn-1 and ftn-2 promoters, but the mechanism for iron regulation is unknown. Here, we identify HIF-1 (hypoxia-inducible factor -1) as a negative regulator of ferritin transcription. HIF-1 binds to hypoxia-response elements (HREs) in the IDE in vitro and in vivo. Depletion of hif-1 by RNA interference blocks transcriptional inhibition of ftn-1 and ftn-2 reporters, and ftn-1 and ftn-2 mRNAs are not regulated in a hif-1 null strain during iron deficiency. An IDE is also present in smf-3 encoding a protein homologous to mammalian divalent metal transporter-1. Unlike the ftn-1 IDE, the smf-3 IDE is required for HIF-1–dependent transcriptional activation of smf-3 during iron deficiency. We show that hif-1 null worms grown under iron limiting conditions are developmentally delayed and that depletion of FTN-1 and FTN-2 rescues this phenotype. These data show that HIF-1 regulates intestinal iron homeostasis during iron deficiency by activating and inhibiting genes involved in iron uptake and storage. PMID:22194696

  18. The diverse roles of FRO family metalloreductases in iron and copper homeostasis.

    Science.gov (United States)

    Jain, Anshika; Wilson, Grandon T; Connolly, Erin L

    2014-01-01

    Iron and copper are essential for plants and are important for the function of a number of protein complexes involved in photosynthesis and respiration. As the molecular mechanisms that control uptake, trafficking and storage of these nutrients emerge, the importance of metalloreductase-catalyzed reactions in iron and copper metabolism has become clear. This review focuses on the ferric reductase oxidase (FRO) family of metalloreductases in plants and highlights new insights into the roles of FRO family members in metal homeostasis. Arabidopsis FRO2 was first identified as the ferric chelate reductase that reduces ferric iron-chelates at the root surface-rhizosphere interface. The resulting ferrous iron is subsequently transported across the plasma membrane of root epidermal cells by the ferrous iron transporter, IRT1. Recent work has shown that two other members of the FRO family (FRO4 and FRO5) function redundantly to reduce copper to facilitate its uptake from the soil. In addition, FROs appear to play important roles in subcellular compartmentalization of iron as FRO7 is known to contribute to delivery of iron to chloroplasts while mitochondrial family members FRO3 and FRO8 are hypothesized to influence mitochondrial metal ion homeostasis. Finally, recent studies have underscored the importance of plasma membrane-localized ferric reductase activity in leaves for photosynthetic efficiency. Taken together, these studies highlight a number of diverse roles for FROs in both iron and copper metabolism in plants.

  19. The diverse roles of FRO family metalloreductases in iron and copper homeostasis

    Directory of Open Access Journals (Sweden)

    Anshika eJain

    2014-03-01

    Full Text Available Iron and copper are essential for plants and are important for the function of a number of protein complexes involved in photosynthesis and respiration. As the molecular mechanisms that control uptake, trafficking and storage of these nutrients emerge, the importance of metalloreductase-catalyzed reactions in iron and copper metabolism has become clear. This review focuses on the FRO family of metalloreductases in plants and highlights new insights into the roles of FRO family members in metal homeostasis. Arabidopsis FRO2 was first identified as the ferric chelate reductase that reduces ferric iron-chelates at the root surface-rhizosphere interface. The resulting ferrous iron is subsequently transported across the plasma membrane of root epidermal cells by the ferrous iron transporter, IRT1. Recent work has shown that two other members of the FRO family (FRO4 and FRO5 function redundantly to reduce copper to facilitate its uptake from the soil. In addition, FROs appear to play important roles in subcellular compartmentalization of iron as FRO7 is known to contribute to delivery of iron to chloroplasts while mitochondrial family members FRO3 and FRO8 are hypothesized to influence mitochondrial metal ion homeostasis. Finally, recent studies have underscored the importance of plasma membrane-localized ferric reductase activity in leaves for photosynthetic efficiency. Taken together, these studies highlight a number of diverse roles for FROs in both iron and copper metabolism in plants.

  20. Longitudinal Analysis of the Interaction Between Obesity and Pregnancy on Iron Homeostasis: Role of Hepcidin.

    Science.gov (United States)

    Flores-Quijano, María Eugenia; Montalvo-Velarde, Irene; Vital-Reyes, Victor Saul; Rodríguez-Cruz, Maricela; Rendón-Macías, Mario Enrique; López-Alarcón, Mardia

    2016-10-01

    When pregnancy occurs in obese women, two opposite mechanisms for iron homeostasis concur: increased need for available iron to support erythropoiesis and decreased iron mobilization from diets and stores due to obesity-related inflammation linked to overexpressed hepcidin. Few studies have examined the role of hepcidin on maternal iron homeostasis in the context of obese pregnancy. The aim of the study was to evaluate the combined effect of maternal obesity and pregnancy on hepcidin and maternal iron status while accounting for inflammation and iron supplementation. We conducted a secondary analysis of a cohort of pregnant women recruited from a referral obstetric hospital in Mexico City. Circulating biomarkers of iron status (hepcidin, ferritin [SF], transferrin receptor [sTfR], erythropoietin [EPO]), and inflammation (C-reactive protein [CRP], tumor necrosis factor-[TNF]α, and interleukin-[IL]6) were determined monthly throughout pregnancy. Repeated measures ANOVA and logistic regression models were used for statistics. Twenty-three obese (Ob) and 25 lean (Lc) women were studied. SF and hepcidin declined, and EPO and sTfR increased throughout pregnancy in both groups. sTfR increased more in Ob than in Lc (p = 0.024). The smallest hepcidin decline occurred in iron-supplemented Ob women compared to non-supplemented Lc women (p = 0.022). The risk for iron deficiency at the end of pregnancy was higher for Ob than for Lc (OR = 4.45, 95% CI = 2.07-9.58) after adjusting for iron supplementation and hepcidin concentration. Pre-gestational obesity increases the risk of maternal iron deficiency despite iron supplementation. Overexpressed hepcidin appears to be a potential mechanism. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  1. Iron biofortification and homeostasis in transgenic cassava roots expressing an algal iron assimilatory protein, FEA1

    OpenAIRE

    Uzoma eIhemere; Narayanan eNarayanan; Richard eSayre

    2012-01-01

    We have engineered the starchy root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory protein, FEA1, in roots to enhance its nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 gm meal. Significantly, the expression of the FEA1 protein did not alter iron levels in l...

  2. The interplay between mitochondrial protein and iron homeostasis and its possible role in ageing.

    Science.gov (United States)

    Mallikarjun, Venkatesh; Sriram, Ashwin; Scialo, Filippo; Sanz, Alberto

    2014-08-01

    Free (labile or chelatable) iron is extremely redox-active and only represents a small fraction of the total mitochondrial iron population. Several studies have shown that the proportion of free iron increases with age, leading to increased Fenton chemistry in later life. It is not clear why free iron accumulates in mitochondria, but it does so in parallel with an inability to degrade and recycle damaged proteins that causes loss of mitochondrial protein homeostasis (proteostasis). The increase in oxidative damage that has been shown to occur with age might be explained by these two processes. While this accumulation of oxidative damage has often been cited as causative to ageing there are examples of model organisms that possess high levels of oxidative damage throughout their lives with no effect on lifespan. Interestingly, these same animals are characterised by an outstanding ability to maintain correct proteostasis during their entire life. ROS can damage critical components of the iron homeostasis machinery, while the efficacy of mitochondrial quality control mechanisms will determine how detrimental that damage is. Here we review the interplay between iron and organellar quality control in mitochondrial dysfunction and we suggest that a decline in mitochondrial proteostasis with age leaves iron homeostasis (where several key stages are thought to be dependent on proteostasis machinery) vulnerable to oxidative damage and other age-related stress factors. This will have severe consequences for the electron transport chain and TCA cycle (among other processes) where several components are acutely dependent on correct assembly, insertion and maintenance of iron-sulphur clusters, leading to energetic crisis and death. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Guofen eGao

    2014-02-01

    Full Text Available Mitochondrial ferritin (FtMt is a novel iron-storage protein in mitochondria. Evidences have shown that FtMt is structurally and functionally similar to the cytosolic H-chain ferritin. It protects mitochondria from iron-induced oxidative damage presumably through sequestration of potentially harmful excess free iron. It also participates in the regulation of iron distribution between cytosol and mitochondrial contents. Unlike the ubiquitously expressed H-ferritin, FtMt is mainly expressed in testis and brain, which suggests its tissue-related roles. FtMt is involved in pathogenesis of neurodegenerative diseases, as its increased expression has been observed in Alzheimer’s disease, restless legs syndrome and Friedreich’s ataxia. Studies from our laboratory showed that in Alzheimer’s disease, FtMt overexpression attenuated the β-amyloid induced neurotoxicity, which on the other hand increased significantly when FtMt expression was knocked down. It is also found that, by maintaining mitochondrial iron homeostasis, FtMt could prevent 6-hydroxydopamine induced dopaminergic cell damage in Parkinson’s disease. These recent findings on FtMt regarding its functions in regulation of brain iron homeostasis and its protective role in pathogenesis of neurodegenerative diseases are summarized and reviewed.

  4. Deferoxamine regulates neuroinflammation and iron homeostasis in a mouse model of postoperative cognitive dysfunction.

    Science.gov (United States)

    Li, Yuping; Pan, Ke; Chen, Lin; Ning, Jiao-Lin; Li, Xiaojun; Yang, Ting; Terrando, Niccolò; Gu, Jianteng; Tao, Guocai

    2016-10-12

    Postoperative cognitive dysfunction (POCD) is a common complication after surgery, especially amongst elderly patients. Neuroinflammation and iron homeostasis are key hallmarks of several neurological disorders. In this study, we investigated the role of deferoxamine (DFO), a clinically used iron chelator, in a mouse model of surgery-induced cognitive dysfunction and assessed its neuroprotective effects on neuroinflammation, oxidative stress, and memory function. A model of laparotomy under general anesthesia and analgesia was used to study POCD. Twelve to 14 months C57BL/6J male mice were treated with DFO, and changes in iron signaling, microglia activity, oxidative stress, inflammatory cytokines, and neurotrophic factors were assessed in the hippocampus on postoperative days 3, 7, and 14. Memory function was evaluated using fear conditioning and Morris water maze tests. BV2 microglia cells were used to test the anti-inflammatory and neuroprotective effects of DFO. Peripheral surgical trauma triggered changes in hippocampal iron homeostasis including ferric iron deposition, increase in hepcidin and divalent metal transporter-1, reduction in ferroportin and ferritin, and oxidative stress. Microglia activation, inflammatory cytokines, brain-derived neurotropic factor impairments, and cognitive dysfunction were found up to day 14 after surgery. Treatment with DFO significantly reduced neuroinflammation and improved cognitive decline by modulating p38 MAPK signaling, reactive oxygen species, and pro-inflammatory cytokines release. Iron imbalance represents a novel mechanism underlying surgery-induced neuroinflammation and cognitive decline. DFO treatment regulates neuroinflammation and microglia activity after surgery.

  5. AtHO1 is involved in iron homeostasis in an NO-dependent manner.

    Science.gov (United States)

    Li, Hua; Song, Jian Bo; Zhao, Wen Ting; Yang, Zhi Min

    2013-07-01

    AtHO1 (HY1) encodes heme oxygenase-1 in Arabidopsis, catalyzing cleavage of heme to biliverdin with the release of iron and carbon monoxide (CO). Our previous study showed that CO as an endogenous component is able to improve plant adaptation to iron deficiency. Here, we performed a genetic study to identify further the putative role of AtHO1 in the iron deficiency response. Iron deficiency induced AtHO1 expression at the transcriptional and translational levels. Evidence has been provided that overexpression of AtHO1 could confer plant tolerance to iron deficiency by improving expression of AtFIT, AtFRO2 and AtIRT1, the activity of ferric-chelate reductase (FCR) and iron accumulation. In contrast, RNA interference with AtHO1 expression in 35S::AntiHO1 plants and the AtHO1 loss-of-function (hy1 mutant) resulted in adverse phenotypes. In 35S::AtHO1 transgenic lines, a higher level of CO and water-soluble iron, and a lower level of heme were identified, suggesting that AtHO1-regulated iron homeostasis was possibly through the catabolism of heme to produce CO and free iron. Because nitric oxide (NO) is known to regulate iron homeostasis in plants, the connection between AtHO1 expression and NO action was examined. AtHO1-overexpressing plants generated more NO, whereas knock-down of AtHO1 expression reduced the level of NO in plants. The NO scavenger cPTIO [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylini dazoline-1-oxyl-3-oxide] caused a decrease in AtHO1-induced FCR activity. Under both iron-sufficient and -deficient conditions, administration of the NO donor sodium nitroprusside induced FCR activity in the hy1 plants. These results suggest that AtHO1 is involved in iron homeostasis in an NO-dependent manner.

  6. Iron homeostasis during risperidone treatment in children and adolescents.

    Science.gov (United States)

    Calarge, Chadi A; Ziegler, Ekhard E; Del Castillo, Nicole; Aman, Michael; McDougle, Christopher J; Scahill, Lawrence; McCracken, James T; Arnold, L Eugene

    2015-11-01

    Previous cross-sectional evidence has linked antipsychotic-related weight gain to reduced body iron concentration. Using longitudinal data, we examined the association between changes in weight following risperidone initiation or discontinuation and ferritin concentration. Study 1: Between April 2004 and September 2007, participants were enrolled from outpatient settings in a prospective randomized clinical trial comparing the efficacy of risperidone monotherapy to the combination of risperidone and behavior therapy in targeting disruptive behavior in 4- to 13-year-old children with DSM-IV-TR-based autism spectrum disorder. Study 2: Medically healthy 7- to 17-year-old participants in long-term open-label risperidone treatment at study entry returned for follow-up 1.5 years later, between July 2007 and July 2011. Available blood samples were used to measure ferritin. Linear multivariable regression analysis tested the association between ferritin concentration and change in age-sex-specific body mass index (BMI) z score between study entry and endpoint, adjusting for relevant confounders. Study 1 sample consisted of 73 participants (85% males, mean age: 7.7 ± 2.4 years). After 18.0 ± 2.0 weeks on risperidone, their BMI z score increased by 0.93 ± 0.70 points and ferritin concentration declined by 6.8 ± 13.3 μg/L. After adjusting for age and sex, change in BMI z score was inversely correlated with percent change in ferritin concentration (β = -18.3, P risperidone at study entry. At follow-up, 1.5 ± 0.3 years later, risperidone was discontinued in 26 of the 96 who were included in the analysis. Neither change in BMI z score nor in ferritin concentration was different between those who continued versus discontinued risperidone. However, a reduction in BMI z score between study entry and follow-up was associated with higher ferritin concentration at follow-up in participants who discontinued risperidone compared to those who continued it (P = .01). Risperidone

  7. The Porphyromonas gingivalis ferric uptake regulator orthologue does not regulate iron homeostasis

    Directory of Open Access Journals (Sweden)

    Catherine Butler

    2015-09-01

    Full Text Available Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that has an absolute requirement for iron which it transports from the host as heme and/or Fe2+. Iron transport must be regulated to prevent toxic effects from excess metal in the cell. P. gingivalis has one ferric uptake regulator (Fur orthologue encoded in its genome called Har, which would be expected to regulate the transport and usage of iron within this bacterium. As a gene regulator, inactivation of Har should result in changes in gene expression of several genes compared to the wild-type. This dataset (GEO accession number GSE37099 provides information on expression levels of genes in P. gingivalis in the absence of Har. Surprisingly, these genes do not relate to iron homeostasis.

  8. Cytokine Dysregulation in MECP2- and CDKL5-Related Rett Syndrome: Relationships with Aberrant Redox Homeostasis, Inflammation, and ω-3 PUFAs

    Directory of Open Access Journals (Sweden)

    Silvia Leoncini

    2015-01-01

    Full Text Available An involvement of the immune system has been suggested in Rett syndrome (RTT, a devastating neurodevelopmental disorder related to oxidative stress, and caused by a mutation in the methyl-CpG binding protein 2 gene (MECP2 or, more rarely, cyclin-dependent kinase-like 5 (CDKL5. To date, it is unclear whether both mutations may have an impact on the circulating cytokine patterns. In the present study, cytokines involved in the Th1-, Th2-, and T regulatory (T-reg response, as well as chemokines, were investigated in MECP2- (MECP2-RTT (n=16 and CDKL5-Rett syndrome (CDKL5-RTT (n=8, before and after ω-3 polyunsaturated fatty acids (PUFAs supplementation. A major cytokine dysregulation was evidenced in untreated RTT patients. In MECP2-RTT, a Th2-shifted balance was evidenced, whereas in CDKL5-RTT both Th1- and Th2-related cytokines (except for IL-4 were upregulated. In MECP2-RTT, decreased levels of IL-22 were observed, whereas increased IL-22 and T-reg cytokine levels were evidenced in CDKL5-RTT. Chemokines were unchanged. The cytokine dysregulation was proportional to clinical severity, inflammatory status, and redox imbalance. Omega-3 PUFAs partially counterbalanced cytokine changes, as well as aberrant redox homeostasis and the inflammatory status. RTT is associated with a subclinical immune dysregulation as the likely consequence of a defective inflammation regulatory signaling system.

  9. Iron overload alters glucose homeostasis, causes liver steatosis, and increases serum triacylglycerols in rats.

    Science.gov (United States)

    Silva, Maísa; Silva, Marcelo E; de Paula, Heberth; Carneiro, Cláudia Martins; Pedrosa, Maria Lucia

    2008-06-01

    The objective of this study was to investigate the effect of iron overload with a hyperlipidemic diet on the histologic feature of hepatic tissue, the lipid and glycemic serum profiles, and the markers of oxidative damage and stress in a rat model. Twenty-four male Fischer rats, purchased from Experimental Nutrition Laboratory, Federal University of Ouro Preto, were assigned to 4 equal groups, 2 were fed a standard cholesterol-free diet (group C or control and CI or control with iron) containing 8.0% soybean oil and 2 were fed a hyperlipidemic diet (group H or hyperlipidemic and HI or hyperlipidemic with iron) containing 1.0% cholesterol and 25.0% soybean oil. A total of 50 mg of iron was administered to rats in groups CI and HI in 5 equal doses (1 every 3 weeks for a 16-week period) by intraperitoneal injections of 0.1 mL of iron dextran solution (100 g Fe(2+)/L; Sigma, St Louis, Mo). The other rats in groups C and H were treated in a similar manner but with sterile saline (0.1 mL). Irrespective of the diet, iron excess enhanced serum triacylglycerols (P .05) were observed in paraoxonase activities or in serum levels of free or total sulfhydryl radicals, malondialdehyde, or total antioxidants. The findings suggest that iron excess in the rat probably modifies lipid metabolism and, as a consequence, alters glucose homeostasis and increases the level of serum triacylglycerols but not of cholesterol.

  10. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia.

    Science.gov (United States)

    Callens, Celine; Coulon, Séverine; Naudin, Jerome; Radford-Weiss, Isabelle; Boissel, Nicolas; Raffoux, Emmanuel; Wang, Pamella Huey Mei; Agarwal, Saurabh; Tamouza, Houda; Paubelle, Etienne; Asnafi, Vahid; Ribeil, Jean-Antoine; Dessen, Philippe; Canioni, Danielle; Chandesris, Olivia; Rubio, Marie Therese; Beaumont, Carole; Benhamou, Marc; Dombret, Hervé; Macintyre, Elizabeth; Monteiro, Renato C; Moura, Ivan C; Hermine, Olivier

    2010-04-12

    Differentiating agents have been proposed to overcome the impaired cellular differentiation in acute myeloid leukemia (AML). However, only the combinations of all-trans retinoic acid or arsenic trioxide with chemotherapy have been successful, and only in treating acute promyelocytic leukemia (also called AML3). We show that iron homeostasis is an effective target in the treatment of AML. Iron chelating therapy induces the differentiation of leukemia blasts and normal bone marrow precursors into monocytes/macrophages in a manner involving modulation of reactive oxygen species expression and the activation of mitogen-activated protein kinases (MAPKs). 30% of the genes most strongly induced by iron deprivation are also targeted by vitamin D3 (VD), a well known differentiating agent. Iron chelating agents induce expression and phosphorylation of the VD receptor (VDR), and iron deprivation and VD act synergistically. VD magnifies activation of MAPK JNK and the induction of VDR target genes. When used to treat one AML patient refractory to chemotherapy, the combination of iron-chelating agents and VD resulted in reversal of pancytopenia and in blast differentiation. We propose that iron availability modulates myeloid cell commitment and that targeting this cellular differentiation pathway together with conventional differentiating agents provides new therapeutic modalities for AML.

  11. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia

    Science.gov (United States)

    Callens, Celine; Coulon, Séverine; Naudin, Jerome; Radford-Weiss, Isabelle; Boissel, Nicolas; Raffoux, Emmanuel; Wang, Pamella Huey Mei; Agarwal, Saurabh; Tamouza, Houda; Paubelle, Etienne; Asnafi, Vahid; Ribeil, Jean-Antoine; Dessen, Philippe; Canioni, Danielle; Chandesris, Olivia; Rubio, Marie Therese; Beaumont, Carole; Benhamou, Marc; Dombret, Hervé; Macintyre, Elizabeth; Monteiro, Renato C.

    2010-01-01

    Differentiating agents have been proposed to overcome the impaired cellular differentiation in acute myeloid leukemia (AML). However, only the combinations of all-trans retinoic acid or arsenic trioxide with chemotherapy have been successful, and only in treating acute promyelocytic leukemia (also called AML3). We show that iron homeostasis is an effective target in the treatment of AML. Iron chelating therapy induces the differentiation of leukemia blasts and normal bone marrow precursors into monocytes/macrophages in a manner involving modulation of reactive oxygen species expression and the activation of mitogen-activated protein kinases (MAPKs). 30% of the genes most strongly induced by iron deprivation are also targeted by vitamin D3 (VD), a well known differentiating agent. Iron chelating agents induce expression and phosphorylation of the VD receptor (VDR), and iron deprivation and VD act synergistically. VD magnifies activation of MAPK JNK and the induction of VDR target genes. When used to treat one AML patient refractory to chemotherapy, the combination of iron-chelating agents and VD resulted in reversal of pancytopenia and in blast differentiation. We propose that iron availability modulates myeloid cell commitment and that targeting this cellular differentiation pathway together with conventional differentiating agents provides new therapeutic modalities for AML. PMID:20368581

  12. The PICALM protein plays a key role in iron homeostasis and cell proliferation.

    Directory of Open Access Journals (Sweden)

    Paula B Scotland

    Full Text Available The ubiquitously expressed phosphatidylinositol binding clathrin assembly (PICALM protein associates with the plasma membrane, binds clathrin, and plays a role in clathrin-mediated endocytosis. Alterations of the human PICALM gene are present in aggressive hematopoietic malignancies, and genome-wide association studies have recently linked the PICALM locus to late-onset Alzheimer's disease. Inactivating and hypomorphic Picalm mutations in mice cause different degrees of severity of anemia, abnormal iron metabolism, growth retardation and shortened lifespan. To understand PICALM's function, we studied the consequences of PICALM overexpression and characterized PICALM-deficient cells derived from mutant fit1 mice. Our results identify a role for PICALM in transferrin receptor (TfR internalization and demonstrate that the C-terminal PICALM residues are critical for its association with clathrin and for the inhibitory effect of PICALM overexpression on TfR internalization. Murine embryonic fibroblasts (MEFs that are deficient in PICALM display several characteristics of iron deficiency (increased surface TfR expression, decreased intracellular iron levels, and reduced cellular proliferation, all of which are rescued by retroviral PICALM expression. The proliferation defect of cells that lack PICALM results, at least in part, from insufficient iron uptake, since it can be corrected by iron supplementation. Moreover, PICALM-deficient cells are particularly sensitive to iron chelation. Taken together, these data reveal that PICALM plays a critical role in iron homeostasis, and offer new perspectives into the pathogenesis of PICALM-associated diseases.

  13. Acute loss of the hepatic endo-lysosomal system in vivo causes compensatory changes in iron homeostasis.

    Science.gov (United States)

    Metzendorf, Christoph; Zeigerer, Anja; Seifert, Sarah; Sparla, Richard; Najafi, Bahar; Canonne-Hergaux, François; Zerial, Marino; Muckenthaler, Martina U

    2017-06-22

    Liver cells communicate with the extracellular environment to take up nutrients via endocytosis. Iron uptake is essential for metabolic activities and cell homeostasis. Here, we investigated the role of the endocytic system for maintaining iron homeostasis. We specifically depleted the small GTPase Rab5 in the mouse liver, causing a transient loss of the entire endo-lysosomal system. Strikingly, endosome depletion led to a fast reduction of hepatic iron levels, which was preceded by an increased abundance of the iron exporter ferroportin. Compensatory changes in livers of Rab5-depleted mice include increased expression of transferrin receptor 1 as well as reduced expression of the iron-regulatory hormone hepcidin. Serum iron indices (serum iron, free iron binding capacity and total iron binding capacity) in Rab5-KD mice were increased, consistent with an elevated splenic and hepatic iron export. Our data emphasize the critical importance of the endosomal compartments in hepatocytes to maintain hepatic and systemic iron homeostasis in vivo. The short time period (between day four and five) upon which these changes occur underscore the fast dynamics of the liver iron pool.

  14. Involvement of the iron regulatory protein from Eisenia andrei earthworms in the regulation of cellular iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Petra Procházková

    Full Text Available Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs of the 5'- or 3'-untranslated regions (UTR of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP. The earthworm IRE site in 5'-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant.

  15. Involvement of the Iron Regulatory Protein from Eisenia andrei Earthworms in the Regulation of Cellular Iron Homeostasis

    Science.gov (United States)

    Procházková, Petra; Škanta, František; Roubalová, Radka; Šilerová, Marcela; Dvořák, Jiří; Bilej, Martin

    2014-01-01

    Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5′- or 3′-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5′-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant. PMID:25279857

  16. Homeostasis

    Directory of Open Access Journals (Sweden)

    Anna Negroni

    2015-01-01

    Full Text Available Intestinal epithelial cells (IECs form a physiochemical barrier that separates the intestinal lumen from the host’s internal milieu and is critical for electrolyte passage, nutrient absorption, and interaction with commensal microbiota. Moreover, IECs are strongly involved in the intestinal mucosal inflammatory response as well as in mucosal innate and adaptive immune responses. Cell death in the intestinal barrier is finely controlled, since alterations may lead to severe disorders, including inflammatory diseases. The emerging picture indicates that intestinal epithelial cell death is strictly related to the maintenance of tissue homeostasis. This review is focused on previous reports on different forms of cell death in intestinal epithelium.

  17. Loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis.

    Science.gov (United States)

    Patil, Vinay A; Fox, Jennifer L; Gohil, Vishal M; Winge, Dennis R; Greenberg, Miriam L

    2013-01-18

    Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays a critical role in mitochondrial bioenergetic functions. The importance of CL in human health is underscored by the observation that perturbation of CL biosynthesis causes the severe genetic disorder Barth syndrome. To fully understand the cellular response to the loss of CL, we carried out genome-wide expression profiling of the yeast CL mutant crd1Δ. Our results show that the loss of CL in this mutant leads to increased expression of iron uptake genes accompanied by elevated levels of mitochondrial iron and increased sensitivity to iron and hydrogen peroxide. Previous studies have shown that increased mitochondrial iron levels result from perturbations in iron-sulfur (Fe-S) cluster biogenesis. Consistent with an Fe-S defect, deletion of ISU1, one of two ISU genes that encode the mitochondrial Fe-S scaffolding protein essential for the synthesis of Fe-S clusters, led to synthetic growth defects with the crd1Δ mutant. We further show that crd1Δ cells have reduced activities of mitochondrial Fe-S enzymes (aconitase, succinate dehydrogenase, and ubiquinol-cytochrome c oxidoreductase), as well as cytosolic Fe-S enzymes (sulfite reductase and isopropylmalate isomerase). Increased expression of ATM1 or YAP1 did not rescue the Fe-S defects in crd1Δ. These findings show for the first time that CL is required for Fe-S biogenesis to maintain mitochondrial and cellular iron homeostasis.

  18. Molybdenum and iron mutually impact their homeostasis in cucumber (Cucumis sativus) plants.

    Science.gov (United States)

    Vigani, Gianpiero; Di Silvestre, Dario; Agresta, Anna Maria; Donnini, Silvia; Mauri, Pierluigi; Gehl, Christian; Bittner, Florian; Murgia, Irene

    2017-02-01

    Molybdenum (Mo) and iron (Fe) are essential micronutrients required for crucial enzyme activities in plant metabolism. Here we investigated the existence of a mutual control of Mo and Fe homeostasis in cucumber (Cucumis sativus). Plants were grown under single or combined Mo and Fe starvation. Physiological parameters were measured, the ionomes of tissues and the ionomes and proteomes of root mitochondria were profiled, and the activities of molybdo-enzymes and the synthesis of molybdenum cofactor (Moco) were evaluated. Fe and Mo were found to affect each other's total uptake and distribution within tissues and at the mitochondrial level, with Fe nutritional status dominating over Mo homeostasis and affecting Mo availability for molybdo-enzymes in the form of Moco. Fe starvation triggered Moco biosynthesis and affected the molybdo-enzymes, with its main impact on nitrate reductase and xanthine dehydrogenase, both being involved in nitrogen assimilation and mobilization, and on the mitochondrial amidoxime reducing component. These results, together with the identification of > 100 proteins differentially expressed in root mitochondria, highlight the central role of mitochondria in the coordination of Fe and Mo homeostasis and allow us to propose the first model of the molecular interactions connecting Mo and Fe homeostasis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Iron accumulation and dysregulation in the putamen in fragile X-associated tremor/ataxia syndrome.

    Science.gov (United States)

    Ariza, Jeanelle; Rogers, Hailee; Hartvigsen, Anna; Snell, Melissa; Dill, Michael; Judd, Derek; Hagerman, Paul; Martínez-Cerdeño, Verónica

    2017-04-01

    Fragile X-associated tremor/ataxia syndrome is an adult-onset disorder associated with premutation alleles of the FMR1 gene. This disorder is characterized by progressive action tremor, gait ataxia, and cognitive decline. Fragile X-associated tremor/ataxia syndrome pathology includes dystrophic white matter and intranuclear inclusions in neurons and astrocytes. We previously demonstrated that the transport of iron into the brain is altered in fragile X-associated tremor/ataxia syndrome; therefore, we also expect an alteration of iron metabolism in brain areas related to motor control. Iron is essential for cell metabolism, but uncomplexed iron leads to oxidative stress and contributes to the development of neurodegenerative diseases. We investigated a potential iron modification in the putamen - a structure that participates in motor learning and performance - in fragile X-associated tremor/ataxia syndrome. We used samples of putamen obtained from 9 fragile X-associated tremor/ataxia syndrome and 9 control cases to study iron localization using Perl's method, and iron-binding proteins using immunostaining. We found increased iron deposition in neuronal and glial cells in the putamen in fragile X-associated tremor/ataxia syndrome. We also found a generalized decrease in the amount of the iron-binding proteins transferrin and ceruloplasmin, and decreased number of neurons and glial cells that contained ceruloplasmin. However, we found increased levels of iron, transferrin, and ceruloplasmin in microglial cells, indicating an attempt by the immune system to remove the excess iron. Overall, found a deficit in proteins that eliminate extra iron from the cells with a concomitant increase in the deposit of cellular iron in the putamen in Fragile X-associated tremor/ataxia syndrome. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  20. A novel antibacterial peptide derived from Crocodylus siamensis haemoglobin hydrolysate induces membrane permeabilization causing iron dysregulation, oxidative stress and bacterial death.

    Science.gov (United States)

    Lueangsakulthai, J; Jangpromma, N; Temsiripong, T; McKendrick, J E; Khunkitti, W; Maddocks, S E; Klaynongsruang, S

    2017-10-01

    A novel antibacterial peptide from Crocodylus siamensis haemoglobin hydrolysate (CHH) was characterized for antimicrobial activity. CHHs were hydrolysed for 2 h (2 h-CHH), 4 h (4h-CHH), 6 h (6 h-CHH) and 8 h (8 h-CHH). The 8 h-CHH showed antibacterial activity against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa at concentrations of 20, 20, 20 and 10 mg ml -1 (w/v) respectively. Fluorescent microscopy revealed that the 8 h-CHH had bactericidal activity against E. coli and P. aeruginosa. β-galactosidase assay supported by RT-qPCR demonstrated that the 8 h-CHH resulted in differential expression of genes involved in iron homeostasis (ftnA and bfd) and oxidative stress (sodA, soxR and oxyR). Siderophore assay indicated that the 8 h-CHH also impaired siderophore production with diminished expression of pvdF. This pattern of gene expression suggests that the 8 h-CHH triggers the release of free ferric ions in the cytoplasm. However, decreased expression of genes associated with the SOS response (recA and lexA) in combination with neutral comet revealed that no DNA damage was caused by 8 h-CHH. Membrane permeabilization assay indicated that 8 h-CHH caused membrane leakage thought to mediate the antibacterial and iron-stress responses observed, due to loss of regulated iron transport. The novel active peptide from 8 h-CHH was determined as QAIIHNEKVQAHGKKVL (QL17), with 41% hydrophobicity and +2 net charge. The QAIIHNEKVQAHGKKVL fragment of C. siamensis haemoglobin is antibacterial via a mechanism that likely relies on iron dysregulation and oxidative stress which results in bacterial death. We have described for the first time, a novel peptide derived from C. siamensis haemoglobin hydrolysate that has the potential to be developed as a novel antimicrobial peptide. © 2017 The Society for Applied Microbiology.

  1. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    Science.gov (United States)

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  2. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis.

    Science.gov (United States)

    Yuan, Youxi; Wu, Huilan; Wang, Ning; Li, Jie; Zhao, Weina; Du, Juan; Wang, Daowen; Ling, Hong-Qing

    2008-03-01

    Iron is an essential element for plant growth and development. Iron homeostasis in plants is tightly regulated at both transcriptional and posttranscriptional level. Several bHLH transcription factors involved in iron homeostasis have been identified recently. However, their regulatory mechanisms remain unknown. In this work, we demonstrate that the transcription factor FIT interacted with AtbHLH38 and AtbHLH39 and directly conferred the expression regulation of iron uptake genes for iron homeostasis in Arabidopsis. Yeast two-hybrid analysis and transient expression in Arabidopsis protoplasts showed that AtbHLH38 or AtbHLH39 interacted with FIT, a central transcription factor involved in iron homeostasis in Arabidopsis. Expression of FIT/AtbHLH38 or FIT/AtbHLH39 in yeast cells activated GUS expression driven by ferric chelate reductase (FRO2) and ferrous transporter (IRT1) promoters. Overexpression of FIT with either AtbHLH38 or AtbHLH39 in plants converted the expression of the iron uptake genes FRO2 and IRT1 from induced to constitutive. Further analysis revealed that FRO2 and IRT1 were not regulated at the posttranscriptional level in these plants because IRT1 protein accumulation and high ferric chelate reductase activity were detected in the overexpression plants under both iron deficiency and iron sufficiency. The double overexpression plants accumulated more iron in their shoots than wild type or the plants overexpressing either AtbHLH38, AtbHLH39 or FIT. Our data support that ferric-chelate reductase FRO2 and ferrous-transporter IRT1 are the targets of the three transcription factors and the transcription of FRO2 and IRT1 is directly regulated by a complex of FIT/AtbHLH38 or FIT/AtbHLH39.

  3. Copper and Iron Homeostasis in Plants: The Challenges of Oxidative Stress

    Science.gov (United States)

    Pilon, Marinus

    2013-01-01

    Abstract Significance: Photosynthesis, the process that drives life on earth, relies on transition metal (e.g., Fe and Cu) containing proteins that participate in electron transfer in the chloroplast. However, the light reactions also generate high levels of reactive oxygen species (ROS), which makes metal use in plants a challenge. Recent Advances: Sophisticated regulatory networks govern Fe and Cu homeostasis in response to metal ion availability according to cellular needs and priorities. Molecular remodeling in response to Fe or Cu limitation leads to its economy to benefit photosynthesis. Fe toxicity is prevented by ferritin, a chloroplastic Fe-storage protein in plants. Recent studies on ferritin function and regulation revealed the interplay between iron homeostasis and the redox balance in the chloroplast. Critical Issues: Although the connections between metal excess and ROS in the chloroplast are established at the molecular level, the mechanistic details and physiological significance remain to be defined. The causality/effect relationship between transition metals, redox signals, and responses is difficult to establish. Future Directions: Integrated approaches have led to a comprehensive understanding of Cu homeostasis in plants. However, the biological functions of several major families of Cu proteins remain unclear. The cellular priorities for Fe use under deficiency remain largely to be determined. A number of transcription factors that function to regulate Cu and Fe homeostasis under deficiency have been characterized, but we have not identified regulators that mediate responses to excess. Importantly, details of metal sensing mechanisms and cross talk to ROS-sensing mechanisms are so far poorly documented in plants. Antioxid. Redox Signal. 19, 919–932. PMID:23199018

  4. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta.

    Science.gov (United States)

    Cabral, Wayne A; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N; Sargent, Brandi M; Weis, MaryAnn; Barnes, Aileen M; Webb, Emma A; Shaw, Nicholas J; Ala-Kokko, Leena; Lacbawan, Felicitas L; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S; Zimmerberg, Joshua; Eyre, David R; Yamada, Yoshihiko; Marini, Joan C

    2016-07-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes.

  5. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta.

    Directory of Open Access Journals (Sweden)

    Wayne A Cabral

    2016-07-01

    Full Text Available Recessive osteogenesis imperfecta (OI is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes.

  6. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Cabral, Wayne A.; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N.; Sargent, Brandi M.; Weis, MaryAnn; Barnes, Aileen M.; Webb, Emma A.; Shaw, Nicholas J.; Ala-Kokko, Leena; Lacbawan, Felicitas L.; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S.; Zimmerberg, Joshua; Eyre, David R.; Yamada, Yoshihiko; Marini, Joan C.

    2016-01-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. PMID:27441836

  7. Comparative analysis of iron homeostasis in sub-Saharan African children with sickle cell disease and their unaffected siblings

    Directory of Open Access Journals (Sweden)

    Selma eGomez

    2016-02-01

    Full Text Available Iron is an essential trace element subject to tight regulation to ensure adequate running of biological processes. In sub-Saharan Africa where hemoglobinopathies are common, iron homeostasis is likely to be impaired by these conditions. Here we assessed and compared key serum proteins associated with iron metabolism between sub-Saharan African children with sickle cell disease (SCD and their unaffected siblings. Complete blood counts and serum concentrations of four key proteins involved in iron regulation (ferritin, transferrin, sTfR and hepcidin were measured for 73 children with SCD and 68 healthy siblings in Benin, West Africa. We found significant differences in concentration of transferrin, sTfR and ferritin between the two groups. Hepcidin concentrations were found at unusually high concentrations but did not differ among the two groups. We found a significant negative correlation between hepcidin levels and both MCH and MCV in the SCD group and report that sTfR concentrations show a correlation with MCV and MHC in opposite directions in the two groups. These results highlight the unusually high levels of hepcidin in the Beninese population and the patterns of differential iron homeostasis taking place under sickle cell disease status. These results lay the foundation for a systematic evaluation of the underlying mechanisms deregulating iron homeostasis in populations with SCD or high prevalence of iron deficiency.

  8. Acquisition and Homeostasis of Iron in Higher Plants and Their Probable Role in Abiotic Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Durgesh K. Tripathi

    2018-02-01

    Full Text Available Iron (Fe is a micronutrient that plays an important role in agriculture worldwide because plants require a small amount of iron for its growth and development. All major functions in a plant's life from chlorophyll biosynthesis to energy transfer are performed by Fe (Brumbarova et al., 2008; Gill and Tuteja, 2011. Iron also acts as a major constituent of many plant proteins and enzymes. The acquisition of Fe in plants occurs through two strategies, i.e., strategy I and strategy II (Marschner and Römheld, 1994. Under various stress conditions, Nramp and the YSL gene families help in translocation of Fe, which further acts as a mineral regulatory element and defends plants against stresses. Iron plays an irreplaceable role in alleviating stress imposed by salinity, drought, and heavy metal stress. This is because it activates plant enzymatic antioxidants like catalase (CAT, peroxidase, and an isoform of superoxide dismutase (SOD that act as a scavenger of reactive oxygen species (ROS (Hellin et al., 1995. In addition to this, their deficiency as well as their excess amount can disturb the homeostasis of a plant's cell and result in declining of photosynthetic rate, respiration, and increased accumulation of Na+ and Ca− ions which culminate in an excessive formation of ROS. The short-range order hydrated Fe oxides and organic functional groups show affinities for metal ions. Iron plaque biofilm matrices could sequester a large amount of metals at the soil–root interface. Hence, it has attracted the attention of plant physiologists and agricultural scientists who are discovering more exciting and hidden applications of Fe and its potential in the development of bio-factories. This review looks into the recent progress made in putting forward the role of Fe in plant growth, development, and acclimation under major abiotic stresses, i.e., salinity, drought, and heavy metals.

  9. Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death.

    Science.gov (United States)

    Kirienko, Natalia V; Kirienko, Daniel R; Larkins-Ford, Jonah; Wählby, Carolina; Ruvkun, Gary; Ausubel, Frederick M

    2013-04-17

    The opportunistic pathogen Pseudomonas aeruginosa causes serious human infections, but effective treatments and the mechanisms mediating pathogenesis remain elusive. Caenorhabditis elegans shares innate immune pathways with humans, making it invaluable to investigate infection. To determine how P. aeruginosa disrupts host biology, we studied how P. aeruginosa kills C. elegans in a liquid-based pathogenesis model. We found that P. aeruginosa-mediated killing does not require quorum-sensing pathways or host colonization. A chemical genetic screen revealed that iron chelators alleviate P. aeruginosa-mediated killing. Consistent with a role for iron in P. aeruginosa pathogenesis, the bacterial siderophore pyoverdin was required for virulence and was sufficient to induce a hypoxic response and death in the absence of bacteria. Loss of the C. elegans hypoxia-inducing factor HIF-1, which regulates iron homeostasis, exacerbated P. aeruginosa pathogenesis, further linking hypoxia and killing. As pyoverdin is indispensable for virulence in mice, pyoverdin-mediated hypoxia is likely to be relevant in human pathogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Mathematical model reveals role of nucleotide signaling in airway surface liquid homeostasis and its dysregulation in cystic fibrosis.

    Science.gov (United States)

    Sandefur, Conner I; Boucher, Richard C; Elston, Timothy C

    2017-08-29

    Mucociliary clearance is composed of three components (i.e., mucin secretion, airway surface hydration, and ciliary-activity) which function coordinately to clear inhaled microbes and other foreign particles from airway surfaces. Airway surface hydration is maintained by water fluxes driven predominantly by active chloride and sodium ion transport. The ion channels that mediate electrogenic ion transport are regulated by extracellular purinergic signals that signal through G protein-coupled receptors. These purinoreceptors and the signaling pathways they activate have been identified as possible therapeutic targets for treating lung disease. A systems-level description of airway surface liquid (ASL) homeostasis could accelerate development of such therapies. Accordingly, we developed a mathematical model to describe the dynamic coupling of ion and water transport to extracellular purinergic signaling. We trained our model from steady-state and time-dependent experimental measurements made using normal and cystic fibrosis (CF) cultured human airway epithelium. To reproduce CF conditions, reduced chloride secretion, increased potassium secretion, and increased sodium absorption were required. The model accurately predicted ASL height under basal normal and CF conditions and the collapse of surface hydration due to the accelerated nucleotide metabolism associated with CF exacerbations. Finally, the model predicted a therapeutic strategy to deliver nucleotide receptor agonists to effectively rehydrate the ASL of CF airways.

  11. IL-7 dysregulation and loss of CD8+ T cell homeostasis in the monogenic human disease autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy.

    Science.gov (United States)

    Laakso, Sini M; Kekäläinen, Eliisa; Rossi, Laura H; Laurinolli, Tuisku-Tuulia; Mannerström, Helga; Heikkilä, Nelli; Lehtoviita, Anni; Perheentupa, Jaakko; Jarva, Hanna; Arstila, T Petteri

    2011-08-15

    Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic autoimmune disease that is caused by mutations in the AIRE gene. Murine studies have linked AIRE to thymocyte selection and peripheral deletional tolerance, but the pathogenesis of the human disease remains unclear. In this study, we show that APECED patients have elevated IL-7 levels and a drastically decreased expression of IL-7R on CD8(+) T cells. This is associated with increased proliferation and a decreased expression of the negative TCR regulator CD5 in the CD45RO(-) subset. The CD45RO(-) cells also display oligoclonal expansions, decreased expression of the lymph node homing factors CCR7 and CD62L, and increased expression of perforin, consistent with the accumulation of highly differentiated effector cells. The CD45RO(-)CCR7(+)CD8(+) population of cells with markers characteristic of naive phenotype is also skewed, as shown by decreased expression of CD5 and increased expression of perforin. The putative CD31(+) recent thymic emigrant population is likewise affected. These data are consistent with IL-7 dysregulation inducing a decreased threshold of TCR signaling and self-antigen-driven proliferation, probably in synergy with the failed thymic selection. The resultant loss of CD8(+) T cell homeostasis is likely to play a significant role in the pathogenesis of APECED. Our findings may also hold lessons for other diseases in which the IL-7-IL-7R pathway has emerged as a risk factor.

  12. Perchlorate exposure and association with iron homeostasis and other biological functions among NHANES 2005-2008 subjects

    Science.gov (United States)

    Perchlorate exposure and association with iron homeostasis and other biological functions among NHANES 2005-2008 subjects Schreinemachers DM, Ghio AJ, Cascio WE, Sobus JR. U.S. EPA, RTP, NC, USA Perchlorate (ClO4-), an environmental pollutant, is a known thyroid toxicant and...

  13. Iron homeostasis and H63D mutations in alcoholics with and without liver disease

    Science.gov (United States)

    Machado, Mariana Verdelho; Ravasco, Paula; Martins, Alexandra; Almeida, Maria Rosário; Camilo, Maria Ermelinda; Cortez-Pinto, Helena

    2009-01-01

    AIM: To evaluate the prevalence of HFE gene mutation and indices of disturbed iron homeostasis in alcoholics with and without liver disease. METHODS: One hundred and fifty-three heavy drinkers (defined as alcohol consumption > 80 g/d for at least 5 years) were included in the study. These comprised 78 patients with liver disease [liver disease alcoholics (LDA)] in whom the presence of liver disease was confirmed by liver biopsy or clinical evidence of hepatic decompensation, and 75 subjects with no evidence of liver disease, determined by normal liver tests on two occasions [non-liver disease alcoholics (NLDA)], were consecutively enrolled. Serum markers of iron status and HFE C282Y and H63D mutations were determined. HFE genotyping was compared with data obtained in healthy blood donors from the same geographical area. RESULTS: Gender ratio was similar in both study groups. LDA patients were older than NLDA patients (52 ± 10 years vs 48 ± 11 years, P = 0.03). One third and one fifth of the study population had serum transferrin saturation (TS) greater than 45% and 60% respectively. Serum iron levels were similar in both groups. However, LDA patients had higher TS (51 ± 27 vs 36 ± 13, P < 0.001) and ferritin levels (559 ± 607 ng/mL vs 159 ± 122 ng/mL, P < 0.001), and lower total iron binding capacity (TIBC) (241 ± 88 μg/dL vs 279 ± 40 μg/dL, P = 0.001). The odds ratio for having liver disease with TS greater than 45% was 2.20 (95% confidence interval (CI): 1.37-3.54). There was no difference in C282Y allelic frequency between the two groups. However, H63D was more frequent in LDA patients (0.25 vs 0.16, P = 0.03). LDA patients had a greater probability of carrying at least one HFE mutation than NLDA patients (49.5% vs 31.6%, P = 0.02). The odds ratio for LDA in patients with H63D mutation was 1.57 (95% CI: 1.02-2.40). CONCLUSION: The present study confirms the presence of iron overload in alcoholics, which was more severe in the subset of subjects with

  14. Increasing dissolved-oxygen disrupts iron homeostasis in production cultures of Escherichia coli.

    Science.gov (United States)

    Baez, Antonino; Shiloach, Joseph

    2017-01-01

    The damaging effect of high oxygen concentration on growth of Escherichia coli is well established. Over-oxygenation increases the intracellular concentration of reactive oxygen species (ROS), causing the destruction of the [4Fe-4S] cluster of dehydratases and limiting the biosynthesis of both branched-chain amino acids and nicotinamide adenine dinucleotide. A key enzyme that reduces the damaging effect of superoxide is superoxide dismutase (SOD). Its transcriptional regulation is controlled by global transcription regulators that respond to changes in oxygen and iron concentrations and pH. Production of biological compounds from E. coli is currently achieved using cultures grown to high cell densities which require oxygen-enriched air supply. It is, therefore, important to study the effect of over-oxygenation on E. coli metabolism and the bacterial protecting mechanism. The effect of over-oxygenation on the superoxide dismutase regulation system was evaluated in cultures grown in a bioreactor by increasing the oxygen concentration from 30 to 300 % air saturation. Following the change in the dissolved oxygen (DO), the expression of sodC, the periplasmic CuZn-containing SOD, and sodA, the cytosolic Mn-containing SOD, was higher in all the tested strains, while the expression of the sodB, the cytosolic Fe-containing SOD, was lower. The down-regulation of the sodB was found to be related to the activation of the small RNA RyhB. It was revealed that iron homeostasis, in particular ferric iron, was involved in the RyhB activation and in sodB regulation but not in sodA. Supplementation of amino acids to the culture medium reduced the intracellular ROS accumulation and reduced the activation of both SodA and SodC following the increase in the oxygen concentration. The study provides evidence that at conditions of over-oxygenation, sodA and sodC are strongly regulated by the amount of ROS, in particular superoxide; and sodB is regulated by iron availability through the

  15. c-Myc over-expression in Ramos Burkitt's lymphoma cell line predisposes to iron homeostasis disruption in vitro

    International Nuclear Information System (INIS)

    Habel, Marie-Eve; Jung, Daniel

    2006-01-01

    Burkitt's lymphoma is an aggressive B-cell neoplasm resulting from deregulated c-myc expression. We have previously shown that proliferation of Burkitt's lymphoma cell lines such as Ramos is markedly reduced by iron treatment. It has been shown that iron induces expression of c-myc which, owing to its transcriptional regulatory functions, regulates genes involved in iron metabolism. Transient enhancement of c-myc expression by iron could increase the expression of genes involved in iron incorporation, which could lead to an accumulation of intracellular free iron. Here, we have investigated whether cells with a high basal level of c-Myc were more likely to accumulate free iron. Our results suggest that the basal level of c-Myc in Ramos cells is twofold higher than what is seen in HL-60 cells. Moreover, in Ramos cells, where c-Myc is expressed at a high level, H-ferritin expression is down-regulated, transferrin receptor (CD71) expression is increased, and ferritin translation is inhibited. These modifications in iron metabolism, resulting from the strong basal expression of c-Myc, and amplified by iron addition, could lead to a disruption in homeostasis and consequently to growth arrest

  16. Hiperpigmentación cutánea y homeostasis del hierro: rol de la hepcidina Cutaneous hyperpigmentation and homeostasis of iron: role of the hepcidin

    Directory of Open Access Journals (Sweden)

    C. Wolf

    2007-06-01

    Full Text Available La hiperpigmentación cutánea por melanina en zonas expuestas al sol puede estar asociada a un desequilibrio en la homeostasis del hierro. La hepcidina es un péptido responsable de la regulación negativa de la absorción del hierro en el intestino delgado y de su liberación por los macrófagos. Posee capacidad antimicrobiana. Es sintetizada en el hígado, secretada al torrente circulatorio y excretada por la orina. La sobreexpresión causa anemia y su déficit, sobrecarga de hierro (acumulación en diferentes órganos y hemocromatosis hereditaria. Los antagonistas de la hepcidina podrían utilizarse en el tratamiento de la anemia resistente a eritropoyetina, asociada a procesos crónicos. Por su parte, los agonistas o sustancias que estimulen la producción de hepcidina, podrían constituir un tratamiento en enfermedades con sobrecarga de hierro (siderosis y por consiguiente, corregir la hiperpigmentación asociada.The cutaneous hyperpigmentation by melanin in zones of the skin exposed to the sun can be associated to an imbalance in the homeostasis of the iron. The hepcidin is a peptide responsible for the negative regulation of the absorption of the iron in the small intestine and of its liberation by the macrophages. It has, in addition, antimicrobial capacity. It is synthesized in the liver, secreted to the circulatory torrent and excreted by the urine. Its overexpression causes anemia and its deficit iron overload (accumulation in different organs and hereditary hemochromatosis, The antagonists of the hepcidin, could be used in the treatment of anemia resistant to erythropoyetin associated to chronic processes. On the other hand, the agonists or substances that stimulate the hepcidin production, could constitute a treatment in diseases with overload of iron (siderosis and therefore, to correct the associate.hyperpigmentation.

  17. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease.

    Science.gov (United States)

    Robert, Anne; Liu, Yan; Nguyen, Michel; Meunier, Bernard

    2015-05-19

    With the increase of life expectancy of humans in more than two-thirds of the countries in the World, aging diseases are becoming the frontline health problems. Alzheimer's disease (AD) is now one of the major challenges in drug discovery, since, with the exception of memantine in 2003, all clinical trials with drug candidates failed over the past decade. If we consider that the loss of neurons is due to a high level of oxidative stress produced by nonregulated redox active metal ions like copper linked to amyloids of different sizes, regulation of metal homeostasis is a key target. The difficulty for large copper-carrier proteins to directly extract copper ions from metalated amyloids might be considered as being at the origin of the rupture of the copper homeostasis regulation in AD brains. So, there is an urgent need for new specific metal chelators that should be able to regulate the homeostasis of metal ions, specially copper and iron, in AD brains. As a consequence of that concept, chelators promoting metal excretion from brain are not desired. One should favor ligands able to extract copper ions from sinks (amyloids being the major one) and to transfer these redox-active metal ions to copper-carrier proteins or copper-containing enzymes. Obviously, the affinity of these chelators for the metal ion should not be a sufficient criterion, but the metal specificity and the ability of the chelators to release the metal under specific biological conditions should be considered. Such an approach is still largely unexplored. The requirements for the chelators are very high (ability to cross the brain-blood barrier, lack of toxicity, etc.), few chemical series were proposed, and, among them, biochemical or biological data are scarce. As a matter of fact, the bioinorganic pharmacology of AD represents less than 1% of all articles dedicated to AD drug research. The major part of these articles deals with an old and rather toxic drug, clioquinol and related analogs, that

  18. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  19. OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.).

    Science.gov (United States)

    Xu, Yanxia; Zhang, Saina; Guo, Haipeng; Wang, Suikang; Xu, Ligen; Li, Chuanyou; Qian, Qian; Chen, Fan; Geisler, Markus; Qi, Yanhua; Jiang, De An

    2014-07-01

    Members of the ATP Binding Cassette B/Multidrug-Resistance/P-glyco-protein (ABCB/MDR/PGP) subfamily were shown to function primarily in Oryza sativa (rice) auxin transport; however, none of the rice ABCB transporters have been functionally characterized. Here, we describe that a knock-down of OsABCB14 confers decreased auxin concentrations and polar auxin transport rates, conferring insensitivity to 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetic acid (IAA). OsABCB14 displays enhanced specific auxin influx activity in yeast and protoplasts prepared from rice knock-down alleles. OsABCB14 is localized at the plasma membrane, pointing to an important directionality under physiological conditions. osabcb14 mutants were surprisingly found to be insensitive to iron deficiency treatment (-Fe). Their Fe concentration is higher and upregulation of Fe deficiency-responsive genes is lower in osabcb14 mutants than in wild-type rice (Nipponbare, NIP). Taken together, our results strongly support the role of OsABCB14 as an auxin influx transporter involved in Fe homeostasis. The functional characterization of OsABCB14 provides insights in monocot auxin transport and its relationship to Fe nutrition. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  20. Pathological changes in Sertoli cells and dysregulation of divalent metal transporter 1 with iron responsive element in the testes of idiopathic azoospermia patients.

    Science.gov (United States)

    Jing, T; Wang, P; Liu, Y; Zhao, J; Niu, X; Wang, X

    2018-03-01

    Iron is essential for rapidly dividing spermatocytes during normal mammalian spermatogenesis. Decreased transferrin and transferrin receptor levels were observed in seminal plasma from idiopathic azoospermia (IA) patients, suggesting disturbed iron metabolism in IA testes. However, how Sertoli cells (SCs) contribute to the iron homoeostasis in IA is still unclear. In this study, we analysed 30 IA and 30 age-matched obstructive azoospermia (OA) patients undergoing testicular sperm aspiration (TESA). SCs hyperplasia was indicated by higher SC density and Ki-67 labelling index in the IA TESA specimens. The attenuated expression of superoxide dismutase (SOD) suggested an impaired antioxidative capacity in IA testes. We further detected increased levels of iron importer divalent metal transporter 1 with iron responsive element (DMT1 + IRE) in IA testes, whereas the increasing trend of iron exporter ferroportin 1 (FPN1) was not statistically significant. Next, we demonstrated that iron regulatory protein 1 (IRP1) and hypoxia-inducible factor-1α (HIF-1α), which can potentially bind to the IRE and hypoxia-responsive element in the DMT1 + IRE mRNA, were both up-regulated in IA testes. Unexpectedly, HIF-2α was down-regulated in IA testes. These results indicate that there is a dysregulation of DMT1 + IRE in IA testes, which might due to the up-regulation of IRP1 and HIF-1α. © 2017 Blackwell Verlag GmbH.

  1. Ubiquitination-Related MdBT Scaffold Proteins Target a bHLH Transcription Factor for Iron Homeostasis1[OPEN

    Science.gov (United States)

    Zhao, Qiang; Wang, Qing-Jie; Wang, Xiao-Fei; You, Chun-Xiang

    2016-01-01

    Iron (Fe) homeostasis is crucial for plant growth and development. A network of basic helix-loop-helix (bHLH) transcription factors positively regulates Fe uptake during iron deficiency. However, their up-regulation or overexpression leads to Fe overload and reactive oxygen species generation, thereby damaging the plants. Here, we found that two BTB/TAZ proteins, MdBT1 and MdBT2, interact with the MbHLH104 protein in apple. In addition, the function of MdBT2 was characterized as a regulator of MdbHLH104 degradation via ubiquitination and the 26S proteasome pathway, thereby controlling the activity of plasma membrane H+-ATPases and the acquisition of iron. Furthermore, MdBT2 interacted with MdCUL3 proteins, which were required for the MdBT2-mediated ubiquitination modification of MdbHLH104 and its degradation. In sum, our findings demonstrate that MdBT proteins interact with MdCUL3 to bridge the formation of the MdBTsMdCUL3 complex, which negatively modulates the degradation of the MdbHLH104 protein in response to changes in Fe status to maintain iron homeostasis in plants. PMID:27660166

  2. Anaemia and Iron Homeostasis in a Cohort of HIV-Infected Patients: A Cross-Sectional Study in Ghana

    Directory of Open Access Journals (Sweden)

    Christian Obirikorang

    2016-01-01

    Full Text Available Aim. We determined the prevalence of anaemia and evaluated markers of iron homeostasis in a cohort of HIV patients. Methods. A comparative cross-sectional study on 319 participants was carried out at the Tamale Teaching Hospital from July 2013 to December 2013, 219 patients on HAART (designated On-HAART and 100 HAART-naive patients. Data gathered include sociodemography, clinical history, and selected laboratory assays. Results. Prevalence of anaemia was 23.8%. On-HAART participants had higher CD4/CD3 lymphocyte counts, Hb, HCT/PCV, MCV, MCH, iron, ferritin, and TSAT (P<0.05. Hb, iron, ferritin, and TSAT decreased from grade 1 to grade 3 anaemia and CD4/CD3 lymphocyte count was lowest in grade 3 anaemia (P<0.05. Iron (P=0.0072 decreased with disease severity whilst transferrin (P=0.0143 and TIBC (P=0.0143 increased with disease severity. Seventy-six (23.8% participants fulfilled the criteria for anaemia, 86 (26.9% for iron deficiency, 41 (12.8% for iron deficiency anaemia, and 17 (5.3% for iron overload. The frequency of anaemia was higher amongst participants not on HAART (OR 2.6 for grade 1 anaemia; OR 3.0 for grade 3 anaemia. Conclusion. In this study population, HIV-associated anaemia is common and is related to HAART status and disease progression. HIV itself is the most important cause of anaemia and treatment of HIV should be a priority compared to iron supplementation.

  3. Heme oxygenase activity correlates with serum indices of iron homeostasis in healthy nonsmokers

    Science.gov (United States)

    Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirm...

  4. High dose intravenous iron, mineral homeostasis and intact FGF23 in normal and uremic rats

    Science.gov (United States)

    2013-01-01

    Background High iron load might have a number of toxic effects in the organism. Recently intravenous (iv) iron has been proposed to induce elevation of fibroblast growth factor 23 (FGF23), hypophosphatemia and osteomalacia in iron deficient subjects. High levels of FGF23 are associated with increased mortality in the chronic kidney disease (CKD) population. CKD patients are often treated with iv iron therapy in order to maintain iron stores and erythropoietin responsiveness, also in the case of not being iron depleted. Therefore, the effect of a single high iv dose of two different iron preparations, iron isomaltoside 1000 (IIM) and ferric carboxymaltose (FCM), on plasma levels of FGF23 and phosphate was examined in normal and uremic iron repleted rats. Methods Iron was administered iv as a single high dose of 80 mg/kg bodyweight and the effects on plasma levels of iFGF23, phosphate, Ca2+, PTH, transferrin, ferritin and iron were examined in short and long term experiments (n = 99). Blood samples were obtained at time 0, 30, 60, 180 minutes, 24 and 48 hours and in a separate study after 1 week. Uremia was induced by 5/6-nephrectomy. Results Nephrectomized rats had significant uremia, hyperparathyroidism and elevated FGF23. Iron administration resulted in significant increases in plasma ferritin levels. No significant differences were seen in plasma levels of iFGF23, phosphate and PTH between the experimental groups at any time point within 48 hours or at 1 week after infusion of the iron compounds compared to vehicle. Conclusions In non-iron depleted normal and uremic rats a single high dose of either of two intravenous iron preparations, iron isomaltoside 1000, and ferric carboxymaltose, had no effect on plasma levels of iFGF23 and phosphate for up to seven days. PMID:24373521

  5. Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis

    NARCIS (Netherlands)

    Benyamin, Beben; Esko, Tonu; Ried, Janina S.; Radhakrishnan, Aparna; Vermeulen, Sita H.; Traglia, Michela; Goegele, Martin; Anderson, Denise; Broer, Linda; Podmore, Clara; Luan, Jian'an; Kutalik, Zoltan; Sanna, Serena; van der Meer, Peter; Tanaka, Toshiko; Wang, Fudi; Westra, Harm-Jan; Franke, Lude; Mihailov, Evelin; Milani, Lili; Haeldin, Jonas; Winkelmann, Juliane; Meitinger, Thomas; Thiery, Joachim; Peters, Annette; Waldenberger, Melanie; Rendon, Augusto; Jolley, Jennifer; Sambrook, Jennifer; Kiemeney, Lambertus A.; Sweep, Fred C.; Sala, Cinzia F.; Schwienbacher, Christine; Pichler, Irene; Hui, Jennie; Demirkan, Ayse; Isaacs, Aaron; Amin, Najaf; Steri, Maristella; Waeber, Gerard; Verweij, Niek; Powell, Joseph E.; Nyholt, Dale R.; Heath, Andrew C.; Madden, Pamela A. F.; Visscher, Peter M.; Wright, Margaret J.; Montgomery, Grant W.; Martin, Nicholas G.; Hernandez, Dena; Bandinelli, Stefania; van der Harst, Pim; Uda, Manuela; Vollenweider, Peter; Scott, Robert A.; Langenberg, Claudia; Wareham, Nicholas J.; van Duijn, Cornelia; Beilby, John; Pramstaller, Peter P.; Hicks, Andrew A.; Ouwehand, Willem H.; Oexle, Konrad; Gieger, Christian; Metspalu, Andres; Camaschella, Clara; Toniolo, Daniela; Swinkels, Dorine W.; Whitfield, John B.

    2014-01-01

    Variation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with replication in eight additional cohorts (total up to 48,972 subjects). We find

  6. Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis

    NARCIS (Netherlands)

    B. Benyamin (Beben); T. Esko (Tõnu); J.S. Ried (Janina); A. Radhakrishnan (Aparna); S.H.H.M. Vermeulen (Sita); M. Traglia (Michela); M. Gögele (Martin); D. Anderson (Denise); L. Broer (Linda); C. Podmore (Clara); J. Luan; Z. Kutalik (Zoltán); S. Sanna (Serena); P. van der Meer (Peter); T. Tanaka (Toshiko); F. Wang (Fudi); H.J. Westra (Harm-Jan); L. Franke (Lude); E. Mihailov (Evelin); L. Milani (Lili); J. Häldin (Jonas); B. Winkelmann; T. Meitinger (Thomas); J. Thiery (Joachim); A. Peters (Annette); M. Waldenberger (Melanie); A. Rendon (Augusto); G.J. Jolley (Jason); J.G. Sambrook (Jennifer); L.A.L.M. Kiemeney (Bart); F.C. Sweep (Fred); C. Sala (Cinzia); C. Schwienbacher (Christine); I. Pichler (Irene); J. Hui (Jennie); A. Demirkan (Ayşe); A. Isaacs (Aaron); N. Amin (Najaf); M. Steri (Maristella); G. Waeber (Gérard); N. Verweij (Niek); J.E. Powell (Joseph); A.S. Dimas (Antigone); A.C. Heath (Andrew); P.A. Madden (Pamela); P.M. Visscher (Peter); M.J. Wright (Margaret); G.W. Montgomery (Grant); N.G. Martin (Nicholas); D.G. Hernandez (Dena); S. Bandinelli (Stefania); P. van der Harst (Pim); M. Uda (Manuela); P. Vollenweider (Peter); R.A. Scott (Robert); C. Langenberg (Claudia); N.J. Wareham (Nick); C.M. van Duijn (Cornelia); J. Beilby (John); P.P. Pramstaller (Peter Paul); A.A. Hicks (Andrew); W.H. Ouwehand (Willem); K. Oexle (Konrad); C. Gieger (Christian); A. Metspalu (Andres); C. Camaschella (Clara); D. Toniolo (Daniela); D.W. Swinkels (Dorine); J. Whitfield (John)

    2014-01-01

    textabstractVariation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with replication in eight additional cohorts (total up to 48,972

  7. High dose intravenous iron, mineral homeostasis and intact FGF23 in normal and uremic rats

    DEFF Research Database (Denmark)

    Gravesen, Eva; Hofman-Bang, Jacob; Mace, Maria L.

    2013-01-01

    High iron load might have a number of toxic effects in the organism. Recently intravenous (iv) iron has been proposed to induce elevation of fibroblast growth factor 23 (FGF23), hypophosphatemia and osteomalacia in iron deficient subjects. High levels of FGF23 are associated with increased mortal...

  8. Rethinking Iron Regulation and Assessment in Iron Deficiency, Anemia of Chronic Disease, and Obesity: Introducing Hepcidin

    Science.gov (United States)

    Tussing-Humphreys, Lisa; Pustacioglu, Cenk; Nemeth, Elizabeta; Braunschweig, Carol

    2012-01-01

    Adequate iron availability is essential to human development and overall health. Iron is a key component of oxygen-carrying proteins, has a pivotal role in cellular metabolism, and is essential to cell growth and differentiation. Inadequate dietary iron intake, chronic and acute inflammatory conditions, and obesity are each associated with alterations in iron homeostasis. Tight regulation of iron is necessary because iron is highly toxic and human beings can only excrete small amounts through sweat, skin and enterocyte sloughing, and fecal and menstrual blood loss. Hepcidin, a small peptide hormone produced mainly by the liver, acts as the key regulator of systemic iron homeostasis. Hepcidin controls movement of iron into plasma by regulating the activity of the sole known iron exporter ferroportin-1. Downregulation of the ferroportin-1 exporter results in sequestration of iron within intestinal enterocytes, hepatocytes, and iron-storing macrophages reducing iron bioavailability. Hepcidin expression is increased by higher body iron levels and inflammation and decreased by anemia and hypoxia. Importantly, existing data illustrate that hepcidin may play a significant role in the development of several iron-related disorders, including the anemia of chronic disease and the iron dysregulation observed in obesity. Therefore, the purpose of this article is to discuss iron regulation, with specific emphasis on systemic regulation by hepcidin, and examine the role of hepcidin within several disease states, including iron deficiency, anemia of chronic disease, and obesity. The relationship between obesity and iron depletion and the clinical assessment of iron status will also be reviewed. PMID:22717199

  9. The Ferroportin Metal Efflux Proteins Function in Iron and Cobalt Homeostasis in Arabidopsis

    Science.gov (United States)

    Relatively little is known about how metals such as iron are effluxed from cells, a necessary step for transport from the root to the shoot. Ferroportin is the sole iron efflux transporter in animals, and there are two closely related orthologs in Arabidopsis, FPN1 and FPN2. FPN1 localizes to the pl...

  10. The role of hepatic transferrin receptor 2 in the regulation of iron homeostasis in the body.

    Directory of Open Access Journals (Sweden)

    Christal A Worthen

    2014-03-01

    Full Text Available Fine tuning of body iron is required to prevent diseases such as iron-overload and anemia. The putative iron-sensor, transferrin receptor 2 (TfR2, is expressed in the liver and mutations in this protein result in the iron-overload disease Type III hereditary hemochromatosis (HH. With the loss of functional TfR2, the liver produces about two-fold less of the peptide hormone hepcidin, which is responsible for negatively regulating iron uptake from the diet. This reduction in hepcidin expression leads to the slow accumulation of iron in the liver, heart, joints, and pancreas and subsequent cirrhosis, heart disease, arthritis, and diabetes. TfR2 can bind iron-loaded transferrin in the bloodstream, and hepatocytes treated with transferrin respond with a two-fold increase in hepcidin expression through stimulation of the BMP-signaling pathway. Loss of functional TfR2 or its binding partner, the original HH protein (HFE, results in a loss of this transferrin-sensitivity. While much is known about the trafficking and regulation of TfR2, the mechanism of its transferrin-sensitivity through the BMP-signaling pathway is still not known.

  11. The Abnormal Measures of Iron Homeostasis in Pediatric Obesity Are Associated with the Inflammation of Obesity

    Directory of Open Access Journals (Sweden)

    Visintainer PaulF

    2009-08-01

    Full Text Available Objectives. To determine if the low iron state described in obese children is associated with the chronic inflammatory state seen in obesity. Study Design. Obese children age from 2 to 19 years seen at a weight management clinic were studied prospectively. Data were collected on age, gender, BMI, BMI -score, serum iron, ferritin, transferrin saturation, free erythrocyte protoporphyrin, high sensitivity creactive protein (hs-crp, and hemoglobin concentration. Results. 107 subjects were studied. Hs-crp levels correlated positively with BMI and BMI -score and negatively with serum iron . 11.2% of subjects had low serum iron. Median serum iron was significantly lower for subjects with American Heart Association high risk hs-crp values (3 mg/L compared to those with low risk hs-crp (1 mg/L, (65 mcg/dL versus 96 mcg/dL, . After adjusting for age, gender, and BMI -score, serum iron was still negatively associated with hs-crp . Conclusions. We conclude that the chronic inflammation of obesity results in the low iron state previously reported in obese children, similar to what is seen in other inflammatory diseases.

  12. Anemia and iron homeostasis in a cohort of HIV-infected patients in Indonesia

    Directory of Open Access Journals (Sweden)

    Jusuf Hadi

    2011-08-01

    Full Text Available Abstract Background Anemia is a common clinical finding in HIV-infected patients and iron deficiency or redistribution may contribute to the development of low hemoglobin levels. Iron overload is associated with a poor prognosis in HIV and Hepatitis C virus infections. Iron redistribution may be caused by inflammation but possibly also by hepatitis C co-infection. We examined the prevalence of anemia and its relation to mortality in a cohort of HIV patients in a setting where injecting drug use (IDU is a main mode of HIV transmission, and measured serum ferritin and sTfR, in relation to anemia, inflammation, stage of HIV disease, ART and HCV infection. Methods Patient characteristics, ART history and iron parameters were recorded from adult HIV patients presenting between September 2007 and August 2009 in the referral hospital for West Java, Indonesia. Kaplan-Meier estimates and Cox's regression were used to assess factors affecting survival. Logistic regression was used to identity parameters associated with high ferritin concentrations. Results Anemia was found in 49.6% of 611 ART-naïve patients, with mild (Hb 10.5 - 12.99 g/dL for men; and 10.5 - 11.99 g/dL for women anemia in 62.0%, and moderate to severe anemia (Hb Conclusion HIV-associated anemia is common among HIV-infected patients in Indonesia and strongly related to mortality. High ferritin with low sTfR levels suggest that iron redistribution and low erythropoietic activity, rather than iron deficiency, contribute to anemia. Serum ferritin and sTfR should be used cautiously to assess iron status in patients with advanced HIV infection.

  13. Anemia and iron homeostasis in a cohort of HIV-infected patients in Indonesia.

    Science.gov (United States)

    Wisaksana, Rudi; Sumantri, Rachmat; Indrati, Agnes R; Zwitser, Aleta; Jusuf, Hadi; de Mast, Quirijn; van Crevel, Reinout; van der Ven, Andre

    2011-08-09

    Anemia is a common clinical finding in HIV-infected patients and iron deficiency or redistribution may contribute to the development of low hemoglobin levels. Iron overload is associated with a poor prognosis in HIV and Hepatitis C virus infections. Iron redistribution may be caused by inflammation but possibly also by hepatitis C co-infection. We examined the prevalence of anemia and its relation to mortality in a cohort of HIV patients in a setting where injecting drug use (IDU) is a main mode of HIV transmission, and measured serum ferritin and sTfR, in relation to anemia, inflammation, stage of HIV disease, ART and HCV infection. Patient characteristics, ART history and iron parameters were recorded from adult HIV patients presenting between September 2007 and August 2009 in the referral hospital for West Java, Indonesia. Kaplan-Meier estimates and Cox's regression were used to assess factors affecting survival. Logistic regression was used to identity parameters associated with high ferritin concentrations. Anemia was found in 49.6% of 611 ART-naïve patients, with mild (Hb 10.5 -12.99 g/dL for men; and 10.5-11.99 g/dL for women) anemia in 62.0%, and moderate to severe anemia (Hb < 10.5 g/dL) in 38.0%. Anemia remained an independent factor associated with death, also after adjustment for CD4 count and ART (p = 0.008). Seroprevalence of HCV did not differ in patients with (56.9%) or without anemia (59.6%). Serum ferritin concentrations were elevated, especially in patients with anemia (p = 0.07) and/or low CD4 counts (p < 0.001), and were not related to hsCRP or HCV infection. Soluble TfR concentrations were low and not related to Hb, CD4, hsCRP or ART. HIV-associated anemia is common among HIV-infected patients in Indonesia and strongly related to mortality. High ferritin with low sTfR levels suggest that iron redistribution and low erythropoietic activity, rather than iron deficiency, contribute to anemia. Serum ferritin and sTfR should be used cautiously to

  14. Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Jorge Amich

    Full Text Available Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen.

  15. Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus.

    Science.gov (United States)

    Amich, Jorge; Schafferer, Lukas; Haas, Hubertus; Krappmann, Sven

    2013-01-01

    Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen.

  16. Ascorbic Acid Modulation of Iron Homeostasis and Lysosomal Function in Trabecular Meshwork Cells

    Science.gov (United States)

    Xu, Ping; Lin, Yizhi; Porter, Kristine

    2014-01-01

    Abstract Purpose: To investigate the antioxidant properties and biological functions of ascorbic acid (AA) on trabecular meshwork (TM) cells. Methods: Primary cultures of porcine TM cells were supplemented for 10 days with increasing concentrations of AA. Antioxidant properties against cytotoxic effect of H2O2 were evaluated by monitoring cell viability. Redox-active iron was quantified using calcein-AM. Intracellular reactive oxygen species (iROS) production was quantified using H2DCFDA. Ferritin and cathepsin protein levels were analyzed by Western blot. Autophagy was evaluated by monitoring lipidation of LC3-I to LC3-II. Lysosomal proteolysis and cathepsins activities were quantified using specific fluorogenic substrates. Results: AA exerts a dual effect against oxidative stress in TM cells, acting as an anti-oxidant or a pro-oxidant, depending on the concentration used. The pro-oxidant effect of AA was mediated by free intracellular iron and correlated with increased protein levels of ferritin and elevated iROS. In contrast, antioxidant properties correlated with lower ferritin and basal iROS content. Ascorbic acid supplementation also caused induction of autophagy, as well as increased lysosomal proteolysis, with the latter resulting from higher proteolytic activation of lysosomal cathepsins in treated cultures. Conclusions: Our results suggest that the reported decrease of AA levels in plasma and aqueous humor can compromise lysosomal degradation in the outflow pathway cells with aging and contribute to the pathogenesis of glaucoma. Restoration of physiological levels of vitamin C inside the cells might improve their ability to degrade proteins within the lysosomal compartment and recover tissue function. PMID:24552277

  17. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis.

    Science.gov (United States)

    Alvarez, M Lucrecia; Khosroheidari, Mahdieh; Eddy, Elena; Done, Stefania C

    2015-10-01

    A strong risk factor for atherosclerosis- the leading cause of heart attacks and strokes- is the elevation of low-density lipoprotein cholesterol (LDL-C) in blood. The LDL receptor (LDLR) is the primary pathway for LDL-C removal from circulation, and their levels are increased by statins -the main treatment for high blood LDL-C. However, statins have low efficiency because they also increase PCSK9 which targets LDLR for degradation. Since microRNAs have recently emerged as key regulators of cholesterol homeostasis, our aim was to identify potential microRNA-based therapeutics to decrease blood LDL-C and prevent atherosclerosis. We over expressed and knocked down miR-27a in HepG2 cells to assess its effect on the expression of key players in the LDLR pathway using PCR Arrays, Elisas, and Western blots. We found that miR-27a decreases LDLR levels by 40% not only through a direct binding to its 3' untranslated region but also indirectly by inducing a 3-fold increase in PCSK9, which enhances LDLR degradation. Interestingly, miR-27a also directly decreases LRP6 and LDLRAP1, two other key players in the LDLR pathway that are required for efficient endocytosis of the LDLR-LDL-C complex in the liver. The inhibition of miR-27a using lock nucleic acids induced a 70% increase in LDLR levels and, therefore, it would be a more efficient treatment for hypercholesterolemia because of its desirable effects not only on LDLR but also on PCSK9. The results presented here provide evidence supporting the potential of miR-27a as a novel therapeutic target for the prevention of atherosclerosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species.

    Science.gov (United States)

    Lushchak, Oleh V; Piroddi, Marta; Galli, Francesco; Lushchak, Volodymyr I

    2014-01-01

    Aconitase, an enzyme possessing an iron-sulfur cluster that is sensitive to oxidation, is involved in the regulation of cellular metabolism. There are two isoenzymes of aconitase (Aco)--mitochondrial (mAco) and cytosolic (cAco) ones. The primary role of mAdco is believed to be to control cellular ATP production via regulation of intermediate flux in the Krebs cycle. The cytosolic Aco in its reduced form operates as an enzyme, whereas in the oxidized form it is involved in the control of iron homeostasis as iron regulatory protein 1 (IRP1). Reactive oxygen species (ROS) play a central role in regulation of Aco functions. Catalytic Aco activity is regulated by reversible oxidation of [4Fe-4S]²⁺ cluster and cysteine residues, so redox-dependent posttranslational modifications (PTMs) have gained increasing consideration as regards possible regulatory effects. These include modifications of cysteine residues by oxidation, nitrosylation and thiolation, as well as Tyr nitration and oxidation of Lys residues to carbonyls. Redox-independent PTMs such as phosphorylation and transamination also have been described. In the presence of a sustained ROS flux, redox-dependent PTMs may lead to enzyme damage and cell stress by impaired energy and iron metabolism. Aconitase has been identified as a protein that undergoes oxidative modification and inactivation in aging and certain oxidative stress-related disorders. Here we describe possible mechanisms of involvement of the two aconitase isoforms, cAco and mAco, in the control of cell metabolism and iron homeostasis, balancing the regulatory, and damaging effects of ROS.

  19. Obesity as an Emerging Risk Factor for Iron Deficiency

    Directory of Open Access Journals (Sweden)

    Elmar Aigner

    2014-09-01

    Full Text Available Iron homeostasis is affected by obesity and obesity-related insulin resistance in a many-facetted fashion. On one hand, iron deficiency and anemia are frequent findings in subjects with progressed stages of obesity. This phenomenon has been well studied in obese adolescents, women and subjects undergoing bariatric surgery. On the other hand, hyperferritinemia with normal or mildly elevated transferrin saturation is observed in approximately one-third of patients with metabolic syndrome (MetS or nonalcoholic fatty liver disease (NAFLD. This constellation has been named the “dysmetabolic iron overload syndrome (DIOS”. Both elevated body iron stores and iron deficiency are detrimental to health and to the course of obesity-related conditions. Iron deficiency and anemia may impair mitochondrial and cellular energy homeostasis and further increase inactivity and fatigue of obese subjects. Obesity-associated inflammation is tightly linked to iron deficiency and involves impaired duodenal iron absorption associated with low expression of duodenal ferroportin (FPN along with elevated hepcidin concentrations. This review summarizes the current understanding of the dysregulation of iron homeostasis in obesity.

  20. Iron homeostasis in Arabidopsis thaliana: transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks.

    Science.gov (United States)

    Mai, Hans-Jörg; Pateyron, Stéphanie; Bauer, Petra

    2016-10-03

    FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is the central regulator of iron uptake in Arabidopsis thaliana roots. We performed transcriptome analyses of six day-old seedlings and roots of six week-old plants using wild type, a fit knock-out mutant and a FIT over-expression line grown under iron-sufficient or iron-deficient conditions. We compared genes regulated in a FIT-dependent manner depending on the developmental stage of the plants. We assembled a high likelihood dataset which we used to perform co-expression and functional analysis of the most stably iron deficiency-induced genes. 448 genes were found FIT-regulated. Out of these, 34 genes were robustly FIT-regulated in root and seedling samples and included 13 novel FIT-dependent genes. Three hundred thirty-one genes showed differential regulation in response to the presence and absence of FIT only in the root samples, while this was the case for 83 genes in the seedling samples. We assembled a virtual dataset of iron-regulated genes based on a total of 14 transcriptomic analyses of iron-deficient and iron-sufficient wild-type plants to pinpoint the best marker genes for iron deficiency and analyzed this dataset in depth. Co-expression analysis of this dataset revealed 13 distinct regulons part of which predominantly contained functionally related genes. We could enlarge the list of FIT-dependent genes and discriminate between genes that are robustly FIT-regulated in roots and seedlings or only in one of those. FIT-regulated genes were mostly induced, few of them were repressed by FIT. With the analysis of a virtual dataset we could filter out and pinpoint new candidates among the most reliable marker genes for iron deficiency. Moreover, co-expression and functional analysis of this virtual dataset revealed iron deficiency-induced and functionally distinct regulons.

  1. Tucum-Do-Cerrado (Bactris setosa Mart.) Consumption Modulates Iron Homeostasis and Prevents Iron-Induced Oxidative Stress in the Rat Liver.

    Science.gov (United States)

    Fustinoni-Reis, Adriana M; Arruda, Sandra F; Dourado, Lívia P S; da Cunha, Marcela S B; Siqueira, Egle M A

    2016-02-17

    This study investigated the effect of tucum-do-cerrado consumption in the oxidative status of iron-supplemented rats. Four groups of rats were treated: Control (AIN-93G), Tuc (AIN-93G added of tucum-do-cerrado), Fe (AIN-93G iron-enriched), or TucFe (AIN-93G with tucum-do-cerrado and iron-enriched) diet, for 30 days. Iron-enriched diet increased serum, liver, spleen, and intestine iron levels; transferrin saturation; liver lipid oxidation; mRNA levels of hepatic Hamp and Bmp6, and Nrf2 in the intestine. Tucum-do-cerrado consumption reduced spleen lipid and protein oxidation; mRNA levels of hepatic Hamp and Ftl, and increased serum antioxidant capacity and hepatic mRNA levels of Bmp6, Hmox1, Nqo1, and Nrf2. TucFe diet consumption abrogated the liver Hamp iron-induced up-regulation, prevented intestinal iron accumulation; hepatic lipid peroxidation; splenic protein damage, and the increase of catalase, glutathione reductase, and glutathione peroxidase activity in some tissues. These results suggest that tucum-do-cerrado protects tissues against oxidative damage, by reducing iron availability in liver and consequently inhibiting liver Hamp expression.

  2. Tucum-Do-Cerrado (Bactris setosa Mart. Consumption Modulates Iron Homeostasis and Prevents Iron-Induced Oxidative Stress in the Rat Liver

    Directory of Open Access Journals (Sweden)

    Adriana M. Fustinoni-Reis

    2016-02-01

    Full Text Available This study investigated the effect of tucum-do-cerrado consumption in the oxidative status of iron-supplemented rats. Four groups of rats were treated: Control (AIN-93G, Tuc (AIN-93G added of tucum-do-cerrado, Fe (AIN-93G iron-enriched, or TucFe (AIN-93G with tucum-do-cerrado and iron-enriched diet, for 30 days. Iron-enriched diet increased serum, liver, spleen, and intestine iron levels; transferrin saturation; liver lipid oxidation; mRNA levels of hepatic Hamp and Bmp6, and Nrf2 in the intestine. Tucum-do-cerrado consumption reduced spleen lipid and protein oxidation; mRNA levels of hepatic Hamp and Ftl, and increased serum antioxidant capacity and hepatic mRNA levels of Bmp6, Hmox1, Nqo1, and Nrf2. TucFe diet consumption abrogated the liver Hamp iron-induced up-regulation, prevented intestinal iron accumulation; hepatic lipid peroxidation; splenic protein damage, and the increase of catalase, glutathione reductase, and glutathione peroxidase activity in some tissues. These results suggest that tucum-do-cerrado protects tissues against oxidative damage, by reducing iron availability in liver and consequently inhibiting liver Hamp expression.

  3. A Speciation Study on the Perturbing Effects of Iron Chelators on the Homeostasis of Essential Metal Ions.

    Science.gov (United States)

    Crisponi, Guido; Nurchi, Valeria Marina; Crespo-Alonso, Miriam; Sanna, Gavino; Zoroddu, Maria Antonietta; Alberti, Giancarla; Biesuz, Raffaela

    2015-01-01

    A number of reports have appeared in literature calling attention to the depletion of essential metal ions during chelation therapy on β-thalassaemia patients. We present a speciation study to determine how the iron chelators used in therapy interfere with the homeostatic equilibria of essential metal ions. This work includes a thorough analysis of the pharmacokinetic properties of the chelating agents currently in clinical use, of the amounts of iron, copper and zinc available in plasma for chelation, and of all the implied complex formation constants. The results of the study show that a significant amount of essential metal ions is complexed whenever the chelating agent concentration exceeds the amount necessary to coordinate all disposable iron--a frequently occurring situation during chelation therapy. On the contrary, copper and zinc do not interfere with iron chelation, except for a possible influence of copper on iron speciation during deferiprone treatment.

  4. Orm family proteins mediate sphingolipid homeostasis

    DEFF Research Database (Denmark)

    Breslow, David K; Collins, Sean R; Bodenmiller, Bernd

    2010-01-01

    or mutations to their phosphorylation sites cause dysregulation of sphingolipid metabolism. Our work identifies the Orm proteins as critical mediators of sphingolipid homeostasis and raises the possibility that sphingolipid misregulation contributes to the development of childhood asthma....

  5. Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis

    Science.gov (United States)

    Tamayo, Elisabeth; Benabdellah, Karim; Ferrol, Nuria

    2016-01-01

    Glutaredoxins (GRXs) are small ubiquitous oxidoreductases involved in the regulation of the redox state in living cells. In an attempt to identify the full complement of GRXs in the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis, three additional GRX homologs, besides the formerly characterized GintGRX1 (renamed here as RiGRX1), were identified. The three new GRXs (RiGRX4, RiGRX5 and RiGRX6) contain the CXXS domain of monothiol GRXs, but whereas RiGRX4 and RiGRX5 belong to class II GRXs, RiGRX6 belongs to class I together with RiGRX1. By using a yeast expression system, we observed that the newly identified homologs partially reverted sensitivity of the GRX deletion yeast strains to external oxidants. Furthermore, our results indicated that RiGRX4 and RiGRX5 play a role in iron homeostasis in yeast. Gene expression analyses revealed that RiGRX1 and RiGRX6 were more highly expressed in the intraradical (IRM) than in the extraradical mycelium (ERM). Exposure of the ERM to hydrogen peroxide induced up-regulation of RiGRX1, RiGRX4 and RiGRX5 gene expression. RiGRX4 expression was also up-regulated in the ERM when the fungus was grown in media supplemented with a high iron concentration. These data indicate the two monothiol class II GRXs, RiGRX4 and RiGRX5, might be involved in oxidative stress protection and in the regulation of fungal iron homeostasis. Increased expression of RiGRX1 and RiGRX6 in the IRM suggests that these GRXs should play a key role in oxidative stress protection of R. irregularis during its in planta phase. PMID:26900849

  6. Mechanistic and regulatory aspects of intestinal iron absorption

    Science.gov (United States)

    Gulec, Sukru; Anderson, Gregory J.

    2014-01-01

    Iron is an essential trace mineral that plays a number of important physiological roles in humans, including oxygen transport, energy metabolism, and neurotransmitter synthesis. Iron absorption by the proximal small bowel is a critical checkpoint in the maintenance of whole-body iron levels since, unlike most other essential nutrients, no regulated excretory systems exist for iron in humans. Maintaining proper iron levels is critical to avoid the adverse physiological consequences of either low or high tissue iron concentrations, as commonly occurs in iron-deficiency anemia and hereditary hemochromatosis, respectively. Exquisite regulatory mechanisms have thus evolved to modulate how much iron is acquired from the diet. Systemic sensing of iron levels is accomplished by a network of molecules that regulate transcription of the HAMP gene in hepatocytes, thus modulating levels of the serum-borne, iron-regulatory hormone hepcidin. Hepcidin decreases intestinal iron absorption by binding to the iron exporter ferroportin 1 on the basolateral surface of duodenal enterocytes, causing its internalization and degradation. Mucosal regulation of iron transport also occurs during low-iron states, via transcriptional (by hypoxia-inducible factor 2α) and posttranscriptional (by the iron-sensing iron-regulatory protein/iron-responsive element system) mechanisms. Recent studies demonstrated that these regulatory loops function in tandem to control expression or activity of key modulators of iron homeostasis. In health, body iron levels are maintained at appropriate levels; however, in several inherited disorders and in other pathophysiological states, iron sensing is perturbed and intestinal iron absorption is dysregulated. The iron-related phenotypes of these diseases exemplify the necessity of precisely regulating iron absorption to meet body demands. PMID:24994858

  7. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  8. Iron and Prochlorococcus

    Science.gov (United States)

    2009-06-01

    facilitate iron transport, store iron, regulate iron homeostasis , and enable acclimation to low iron availability (Andrews et al, 2003). In...Bacterial iron homeostasis . FEMS Microbiology Reviews 27: 215-237. Barbeau K (2006) Photochemistry of Organic Iron(III) Complexing Ligands in Oceanic...Microbiology 145: 1473-1484. Moore JK, Doney SC, Lindsay K (2004) Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional

  9. Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test

    Directory of Open Access Journals (Sweden)

    Barros Marcelo P

    2012-06-01

    Full Text Available Abstract Background Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20 g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1 ± 5.8 years old immediately before and 5 and 60 min after the exhaustive Wingate test. Results Maximum anaerobic power was improved by acute creatine supplementation (10.5 %, but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP, leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects. Conclusions Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent and inherent antioxidant activity of creatine.

  10. Overcoming Immune Dysregulation with Immunoengineered Nanobiomaterials.

    Science.gov (United States)

    Scott, Evan A; Karabin, Nicholas B; Augsornworawat, Punn

    2017-06-21

    The immune system is governed by an immensely complex network of cells and both intracellular and extracellular molecular factors. It must respond to an ever-growing number of biochemical and biophysical inputs by eliciting appropriate and specific responses in order to maintain homeostasis. But as with any complex system, a plethora of false positives and false negatives can occur to generate dysregulated responses. Dysregulated immune responses are essential components of diverse inflammation-driven pathologies, including cancer, heart disease, and autoimmune disorders. Nanoscale biomaterials (i.e., nanobiomaterials) have emerged as highly customizable platforms that can be engineered to interact with and direct immune responses, holding potential for the design of novel and targeted approaches to redirect or inhibit inflammation. Here, we present recent developments of nanobiomaterials that were rationally designed to target and modulate inflammatory cells and biochemical pathways for the treatment of immune dysregulation.

  11. Mild Maternal Iron Deficiency Anemia Induces Hearing Impairment Associated with Reduction of Ribbon Synapse Density and Dysregulation of VGLUT3, Myosin VIIa, and Prestin Expression in Young Guinea Pigs.

    Science.gov (United States)

    Yu, Fei; Hao, Shuai; Yang, Bo; Zhao, Yue; Zhang, Wenyue; Yang, Jun

    2016-05-01

    Mild maternal iron deficiency anemia (IDA) adversely affects the development of cochlear hair cells of the young offspring, but the mechanisms underlying the association are incompletely understood. The aim of this study was to evaluate whether mild maternal IDA in guinea pigs could interrupt inner hair cell (IHC) ribbon synapse density and outer hair cell motility of the offspring. Here, we established a dietary restriction model that allows us to study quantitative changes in the number of IHC ribbon synapses and hearing impairment in response to mild maternal IDA in young guinea pig. The offspring were weaned on postnatal day (PND) 9 and then were given the iron-sufficient diet. On PND 24, pups were examined the hearing function by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) measurements. Then, the cochleae were harvested for assessment of the number of IHC ribbon synapses by immunofluorescence, the morphology of cochlear hair cells, and spiral ganglion cells (SGCs) by scanning electron microscope and hematoxylin-eosin staining, the location, and expression of vesicular glutamate transporter (VGLUT) 3, myosin VIIa, and prestin by immunofluorescence and blotting. Here, we show that mild maternal IDA in guinea pigs induced elevated ABR threshold shifts, declined DPOAE level shifts, and reduced the number of ribbon synapses, impaired the morphology of cochlear hair cells and SGCs in offsprings. In addition, downregulation of VGLUT3 and myosin VIIa, and upregulation of prestin were observed in the cochlea of offsprings from mild maternal IDA in guinea pigs. These data indicate that mild maternal IDA in guinea pigs induced hearing impairment in offsprings, and this deficit may be attributed to the reduction of ribbon synapse density and dysregulation of VGLUT3, myosin VIIa, and prestin.

  12. Genome-wide and comparative analysis of bHLH38, bHLH39, bHLH100 and bHLH101 genes in Arabidopsis, tomato, rice, soybean and maize: insights into iron (Fe) homeostasis.

    Science.gov (United States)

    Kurt, Fırat; Filiz, Ertugrul

    2018-03-15

    Iron (Fe) is an essential element for plant life. Its deficiency impedes growth and development and excessive iron can cause the toxic effect via the Fenton reaction. Thus, plants have developed various mechanisms to acquire, distribute and utilize Fe for the maintenance of their iron homeostasis at cellular and systemic levels. A basic helix-loop-helix (bHLH) transcription factor family plays essential roles in many regulatory and development processes in plants. In this study, we aimed to understand the roles of bHLH38, bHLH39, bHLH100 and bHLH101 genes for Fe homeostasis in Arabidopsis, tomato, rice, soybean and maize species by using bioinformatics approaches. The gene/protein sequence analyses of these genes demonstrated that all bHLH proteins comprised helix-loop-helix DNA binding domain (PF00010) with varied exon numbers between 2 and 13. The phylogenetic analysis did not reveal a clear distinction between monocot and dicot plants. A total of 61 cis-elements were found in promotor sequences, including biotic and abiotic stress responsiveness, hormone responsiveness, and tissue specific expressions. The some structural divergences were identified in predicted 3D structures of bHLH proteins with different channels numbers. The co-expression network analysis demonstrated that bHLH39 and bHLH101 played more important roles in Fe regulation in Arabidopsis. The digital expression analysis showed various expression profiles of bHLH genes which were identified in developmental stages, anatomical parts, and perturbations. Particularly, bHLH39 and bHLH101 genes were found to be more active genes in Fe homeostasis. As a result, our findings can contribute to understanding of bHLH38, bHLH39, bHLH100 and bHLH101 genes in Fe homeostasis in plants.

  13. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  14. Altered B cell homeostasis and Toll-like receptor 9-driven response in patients affected by autoimmune polyglandular syndrome Type 1: Altered B cell phenotype and dysregulation of the B cell function in APECED patients.

    Science.gov (United States)

    Perri, Valentina; Gianchecchi, Elena; Scarpa, Riccardo; Valenzise, Mariella; Rosado, Maria Manuela; Giorda, Ezio; Crinò, Antonino; Cappa, Marco; Barollo, Susi; Garelli, Silvia; Betterle, Corrado; Fierabracci, Alessandra

    2017-02-01

    APECED is a T-cell mediated disease with increased frequencies of CD8+ effector and reduction of FoxP3+ T regulatory cells. Antibodies against affected organs and neutralizing to cytokines are found in the peripheral blood. The contribution of B cells to multiorgan autoimmunity in Aire-/- mice was reported opening perspectives on the utility of anti-B cell therapy. We aimed to analyse the B cell phenotype of APECED patients compared to age-matched controls. FACS analysis was conducted on PBMC in basal conditions and following CpG stimulation. Total B and switched memory (SM) B cells were reduced while IgM memory were increased in patients. In those having more than 15 years from the first clinical manifestation the defect included also mature and transitional B cells; total memory B cells were increased, while SM were unaffected. In patients with shorter disease duration, total B cells were unaltered while SM and IgM memory behaved as in the total group. A defective B cell proliferation was detected after 4day-stimulation. In conclusion APECED patients show, in addition to a significant alteration of the B cell phenotype, a dysregulation of the B cell function involving peripheral innate immune mechanisms particularly those with longer disease duration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Disruptive Mood Dysregulation Disorder (DMDD)

    Science.gov (United States)

    ... for Families Guide Facts for Families - Vietnamese Disruptive Mood Dysregulation Disorder (DMDD) No. 110; Updated May 2013 Disruptive Mood Dysregulation Disorder (DMDD) is a relatively new diagnosis ...

  16. Reconsidering Emotion Dysregulation.

    Science.gov (United States)

    D'Agostino, Alessandra; Covanti, Serena; Rossi Monti, Mario; Starcevic, Vladan

    2017-12-01

    This article aims to review the concept of emotion dysregulation, focusing on issues related to its definition, meanings and role in psychiatric disorders. Articles on emotion dysregulation published until May 2016 were identified through electronic database searches. Although there is no agreement about the definition of emotion dysregulation, the following five overlapping, not mutually exclusive dimensions of emotion dysregulation were identified: decreased emotional awareness, inadequate emotional reactivity, intense experience and expression of emotions, emotional rigidity and cognitive reappraisal difficulty. These dimensions characterise a number of psychiatric disorders in various proportions, with borderline personality disorder and eating disorders seemingly more affected than other conditions. The present review contributes to the literature by identifying the key components of emotion dysregulation and by showing how these permeate various forms of psychopathology. It also makes suggestions for improving research endeavours. Better understanding of the various dimensions of emotion dysregulation will have implications for clinical practice. Future research needs to address emotion dysregulation in all its multifaceted complexity so that it becomes clearer what the concept encompasses.

  17. Iron metabolism and toxicity

    International Nuclear Information System (INIS)

    Papanikolaou, G.; Pantopoulos, K.

    2005-01-01

    Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer

  18. Proteomic analysis of human bladder epithelial cells by 2D blue native SDS-PAGE reveals TCDD-induced alterations of calcium and iron homeostasis possibly mediated by nitric oxide.

    Science.gov (United States)

    Verma, Nisha; Pink, Mario; Petrat, Frank; Rettenmeier, Albert W; Schmitz-Spanke, Simone

    2015-01-02

    A proteomic analysis of the interaction among multiprotein complexes involved in 2,3,7,8-dibenzo-p-dioxin (TCDD)-mediated toxicity in urinary bladder epithelial RT4 cells was performed using two-dimensional blue native SDS-PAGE (2D BN/SDS-PAGE). To enrich the protein complexes, unexposed and TCDD-exposed cells were fractionated. BN/SDS-PAGE of the resulting fractions led to an effective separation of proteins and protein complexes of various origins, including cell membrane, mitochondria, and other intracellular compartments. Major differences between the proteome of control and exposed cells involved the alteration of many calcium-regulated proteins (calmodulin, protein S100-A2, annexin A5, annexin A10, gelsolin isoform b) and iron-regulated proteins (ferritin, heme-binding protein 2, transferrin). On the basis of these findings, the intracellular calcium concentration was determined, revealing a significant increase after 24 h of exposure to TCDD. Moreover, the concentration of the labile iron pool (LIP) was also significantly elevated in TCDD-exposed cells. This increase was strongly inhibited by the calmodulin (CaM) antagonist W-7, which pointed toward a possible interaction between iron and calcium signaling. Because nitric oxide (NO) production was significantly enhanced in TCDD-exposed cells and was also inhibited by W-7, we hypothesize that alterations in calcium and iron homeostasis upon exposure to TCDD may be linked through NO generated by CaM-activated nitric oxide synthase. In our model, we propose that NO produced upon TCDD exposure interacts with the iron centers of iron-regulatory proteins (IRPs) that modulate the alteration of ferritin and transferrin, resulting in an augmented cellular LIP and, hence, increased toxicity.

  19. Arbuscular mycorrhizal symbiosis alters the expression patterns of three key iron homeostasis genes, ZmNAS1, ZmNAS3 and ZmYS1, in S deprived maize plants

    Directory of Open Access Journals (Sweden)

    Styliani N. Chorianopoulou

    2015-04-01

    Full Text Available Nicotianamine is an essential molecule for Fe homeostasis in plants, its primary precursor is the S-containing compound methionine, and it is biosynthesized by the enzyme family of nicotianamine synthases. In maize, a graminaceous plant that follows Strategy II for Fe uptake, ZmNAS genes can be subgrouped into two classes, according to their roles and tissue specific expression profiles. In roots, the genes of class I provide NA for the production of deoxymugineic acid, which is secreted to the rhizosphere and chelates Fe(III. The Fe(III-DMA complex is then inserted to the root via a ZmYS1 transporter. The genes of class II provide NA for local translocation and detoxification of Fe in the leaves. Due to the connection between S and Fe homeostasis, S deficiency causes Fe deprivation responses to graminaceous plants and when S is supplied, these responses are inverted. In this study, maize plants were grown in pots with sterile river sand containing FePO4 and were inoculated with the mycorrhizal fungus Rhizophagus irregularis. The plants were grown under S deficient conditions until day 60 from sowing and on that day sulfate was provided to the plants. In order to assess the impact of AM symbiosis on Fe homeostasis, the expression patterns of ZmNAS1, ZmNAS3 (representatives of ZmNAS class I and class II and ZmYS1 were monitored before and after S supply by means of real time RT-PCR and they were used as indicators of the plant Fe status. In addition, total shoot Fe concentration was determined before and after S supply. AM symbiosis prevented Fe deprivation responses in the S deprived maize plants and iron was possibly provided directly to the mycorrhizal plants through the fungal network. Furthermore, sulfate possibly regulated the expression of all three genes revealing its potential role as signal molecule for Fe homeostasis.

  20. Hepcidin: an emerging biomarker for iron disorders, inflammatory diseases, and infections

    Science.gov (United States)

    Westerman, Mark E.; Olbina, Gordana; Ostland, Vaughn E.; Nemeth, Elizabeta; Ganz, Tomas

    2010-04-01

    The peptide hormone hepcidin, has emerged as the master regulator of iron homeostasis. Dysregulation of hepcidin is a principal or contributing factor in most genetic and acquired systemic iron disorders, including anemia of inflammation (anemia of chronic disease). Hepcidin maintains healthy blood iron levels by regulating dietary iron absorption and transport from body iron stores to plasma. High serum hepcidin levels observed in chronic and acute inflammatory conditions can cause anemia by limiting plasma iron available for erythropoiesis. Chronically low serum hepcidin levels cause iron-overload and ultimately, accumulation of iron in liver and heart. We recently validated the first immunoassay for serum hepcidin and established the normal ranges in adults. Hepcidin has excellent potential as a biomarker and has a known mechanism of action, good stability, and rapid response to iron stores, inflammatory stimuli, and bacterial infections. Hepcidin can be measured in blood, urine, and saliva, and is generally not measurable in iron deficient/anemic patients and highly elevated in inflammatory diseases and infections. Intrinsic LifeSciences (ILS) is developing second generation hepcidin immunoassays and lateral-flow POC devices for hepcidin, a well characterized multi-purpose biomarker with applications in global health security.

  1. Long-term perturbation of muscle iron homeostasis following hindlimb suspension in old rats is associated with high levels of oxidative stress and impaired recovery from atrophy

    Science.gov (United States)

    Xu, Jinze; Hwang, Judy C.Y.; Lees, Hazel A.; Wohlgemuth, Stephanie E.; Knutson, Mitchell D.; Judge, Andrew R.; Dupont-Versteegden, Esther E.; Marzetti, Emanuele; Leeuwenburgh, Christiaan

    2015-01-01

    In the present study, we investigated the effects of 7 and 14 days of re-loading following 14-day muscle unweighting (hindlimb suspension, HS) on iron transport, non-heme iron levels and oxidative damage in the gastrocnemius muscle of young (6 months) and old (32 months) male Fischer 344×Brown Norway rats. Our results demonstrated that old rats had lower muscle mass, higher levels of total non-heme iron and oxidative damage in skeletal muscle in comparison with young rats. Non-heme iron concentrations and total non-heme iron amounts were 3.4- and 2.3-fold higher in aged rats as compared with their young counterparts, respectively. Seven and 14 days of re-loading was associated with higher muscle weights in young animals as compared with age-matched HS rats, but there was no difference in muscle weights among aged HS, 7 and 14 days of re-loading rats, indicating that aged rats may have a lower adaptability to muscle disuse and a lower capacity to recover from muscle atrophy. Protein levels of cellular iron transporters, such as divalent metal transport-1 (DMT1), transferrin receptor-1 (TfR1), Zip14, and ferroportin (FPN), and their mRNA abundance were determined. TfR1 protein and mRNA levels were significantly lower in aged muscle. Seven and 14 days of re-loading were associated with higher TfR1 mRNA and protein levels in young animals in comparison with their age-matched HS counterparts, but there was no difference between cohorts in aged animals, suggesting adaptive responses in the old to cope with iron deregulation. The extremely low expression of FPN in skeletal muscle might lead to inefficient iron export in the presence of iron overload and play a critical role in age-related iron accumulation in skeletal muscle. Moreover, oxidative stress was much greater in the muscles of the older animals measured as 4-hydroxy-2-nonhenal (HNE)-modified proteins and 8-oxo-7,8-dihydroguanosine levels. These markers remained fairly constant with either HS or re-loading in

  2. Association Studies of HFE C282Y and H63D Variants with Oral Cancer Risk and Iron Homeostasis Among Whites and Blacks

    Directory of Open Access Journals (Sweden)

    Nathan R. Jones

    2015-12-01

    Full Text Available Background: Polymorphisms in the hemochromatosis (HFE gene are associated with excessive iron absorption from the diet, and pro-oxidant effects of iron accumulation are thought to be a risk factor for several types of cancer. Methods: The C282Y (rs1800562 and H63D (rs1799945 polymorphisms were genotyped in 301 oral cancer cases and 437 controls and analyzed in relation to oral cancer risk, and serum iron biomarker levels from a subset of 130 subjects. Results: Individuals with the C282Y allele had lower total iron binding capacity (TIBC (321.2 ± 37.2 µg/dL vs. 397.7 ± 89.0 µg/dL, p = 0.007 and higher percent transferrin saturation (22.0 ± 8.7 vs. 35.6 ± 22.9, p = 0.023 than wild type individuals. Iron and ferritin levels approached significantly higher levels for the C282Y allele (p = 0.0632 and p = 0.0588, respectively. Conclusions: Iron biomarker levels were elevated by the C282Y allele, but neither (rs1800562 nor (rs1799945 was associated with oral cancer risk in blacks and whites.

  3. Dysregulation and restoration of translational homeostasis in fragile X syndrome

    Science.gov (United States)

    Richter, Joel D.; Bassell, Gary J.; Klann, Eric

    2015-01-01

    Fragile X syndrome (FXS), the most-frequently inherited form of intellectual disability and the most-prevalent single-gene cause of autism, results from a lack of fragile X mental retardation protein (FMRP), an RNA-binding protein that acts, in most cases, to repress translation. Multiple pharmacological and genetic manipulations that target receptors, scaffolding proteins, kinases and translational control proteins can rescue neuronal morphology, synaptic function and behavioural phenotypes in FXS model mice, presumably by reducing excessive neuronal translation to normal levels. Such rescue strategies might also be explored in the future to identify the mRNAs that are critical for FXS pathophysiology. PMID:26350240

  4. Sleep homeostasis.

    Science.gov (United States)

    Porkka-Heiskanen, Tarja

    2013-10-01

    Research on sleep homeostasis aims to answer the question: how does the brain measure the duration and intensity of previous wakefulness in order to increase the duration and intensity of subsequent sleep? The search of regulatory factors has identified a number of potential molecules that increase their concentration in waking and decrease it during sleep. These factors regulate many physiological functions, including energy metabolism, neural plasticity and immune functions and one molecule may participate in the regulation of all these functions. The method to study regulation of sleep homeostasis is experimental prolongation of waking, which is used also to address the question of physiological purpose of sleep: prolonging wakefulness provokes symptoms that tell us what goes wrong during lack of sleep. The interpretation of the role of each identified factor in the regulation of sleep/sleep homeostasis reflects the theoretical background concept of the research. Presently three main concepts are being actively studied: the energy (depletion) hypothesis, the neural plasticity hypothesis and the (immune) defense hypothesis.

  5. Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Lenhof Hans-Peter

    2011-05-01

    Full Text Available Abstract Background High-throughput technologies have opened new avenues to study biological processes and pathways. The interpretation of the immense amount of data sets generated nowadays needs to be facilitated in order to enable biologists to identify complex gene networks and functional pathways. To cope with this task multiple computer-based programs have been developed. GeneTrail is a freely available online tool that screens comparative transcriptomic data for differentially regulated functional categories and biological pathways extracted from common data bases like KEGG, Gene Ontology (GO, TRANSPATH and TRANSFAC. Additionally, GeneTrail offers a feature that allows screening of individually defined biological categories that are relevant for the respective research topic. Results We have set up GeneTrail for the use of Arabidopsis thaliana. To test the functionality of this tool for plant analysis, we generated transcriptome data of root and leaf responses to Fe deficiency and the Arabidopsis metal homeostasis mutant nas4x-1. We performed Gene Set Enrichment Analysis (GSEA with eight meaningful pairwise comparisons of transcriptome data sets. We were able to uncover several functional pathways including metal homeostasis that were affected in our experimental situations. Representation of the differentially regulated functional categories in Venn diagrams uncovered regulatory networks at the level of whole functional pathways. Over-Representation Analysis (ORA of differentially regulated genes identified in pairwise comparisons revealed specific functional plant physiological categories as major targets upon Fe deficiency and in nas4x-1. Conclusion Here, we obtained supporting evidence, that the nas4x-1 mutant was defective in metal homeostasis. It was confirmed that nas4x-1 showed Fe deficiency in roots and signs of Fe deficiency and Fe sufficiency in leaves. Besides metal homeostasis, biotic stress, root carbohydrate, leaf

  6. Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity.

    Science.gov (United States)

    Hendricks, Matthew R; Lashua, Lauren P; Fischer, Douglas K; Flitter, Becca A; Eichinger, Katherine M; Durbin, Joan E; Sarkar, Saumendra N; Coyne, Carolyn B; Empey, Kerry M; Bomberger, Jennifer M

    2016-02-09

    Clinical observations link respiratory virus infection and Pseudomonas aeruginosa colonization in chronic lung disease, including cystic fibrosis (CF) and chronic obstructive pulmonary disease. The development of P. aeruginosa into highly antibiotic-resistant biofilm communities promotes airway colonization and accounts for disease progression in patients. Although clinical studies show a strong correlation between CF patients' acquisition of chronic P. aeruginosa infections and respiratory virus infection, little is known about the mechanism by which chronic P. aeruginosa infections are initiated in the host. Using a coculture model to study the formation of bacterial biofilm formation associated with the airway epithelium, we show that respiratory viral infections and the induction of antiviral interferons promote robust secondary P. aeruginosa biofilm formation. We report that the induction of antiviral IFN signaling in response to respiratory syncytial virus (RSV) infection induces bacterial biofilm formation through a mechanism of dysregulated iron homeostasis of the airway epithelium. Moreover, increased apical release of the host iron-binding protein transferrin during RSV infection promotes P. aeruginosa biofilm development in vitro and in vivo. Thus, nutritional immunity pathways that are disrupted during respiratory viral infection create an environment that favors secondary bacterial infection and may provide previously unidentified targets to combat bacterial biofilm formation.

  7. Growth of airway epithelial cells at an air-liquid interface changes both the response to particle exposure and iron homeostasis

    Science.gov (United States)

    We tested the hypothesis that 1) relative to submerged cells, airway epithelial cells grown at an air-liquid interface and allowed to differentiate would have an altered response to particle exposure and 2) that these differences would be associated with indices of iron homeostas...

  8. Iron metabolism in man.

    Science.gov (United States)

    von Drygalski, Annette; Adamson, John W

    2013-09-01

    Iron metabolism in man is a highly regulated process designed to provide iron for erythropoiesis, mitochondrial energy production, electron transport, and cell proliferation. The mechanisms of iron handling also protect cells from the deleterious effects of free iron, which can produce oxidative damage of membranes, proteins, and lipids. Over the past decade, several important molecules involved in iron homeostasis have been discovered, and their function has expanded our understanding of iron trafficking under normal and pathological conditions. Physiologic iron metabolism is strongly influenced by inflammation, which clinically leads to anemia. Although hepcidin, a small circulating peptide produced by the liver, has been found to be the key regulator of iron trafficking, molecular pathways of iron sensing that control iron metabolism and hepcidin production are still incompletely understood. With this review, we provide an overview of the current understanding of iron metabolism, the recently discovered regulators of iron trafficking, and a focus on the effects of inflammation on the process.

  9. Impacto da inflamação na regulação do ferro e deficiência funcional de ferro Importance of inflammation on iron homeostasis and functional iron deficiency

    Directory of Open Access Journals (Sweden)

    Maria Stella Figueiredo

    2010-06-01

    Full Text Available Deficiência funcional de ferro (Fe pode ser definida como o desbalanço entre a quantidade necessária de Fe para a síntese de hemoglobina e o seu suprimento. Ela ocorre na ausência de estoque de Fe, característica da anemia ferropênica (AF, e na presença de bloqueio da homeostasia do Fe, como na anemia da inflamação (AI. Na AI, citocinas e células do sistema retículo-endotelial induzem alterações que interferem em diferentes vias da eritropoese levando à anemia. O bloqueio na mobilização do Fe de estoque pela hepcidina, embora não único, é o mecanismo etiológico mais evidente da AI. A hepcidina, regulador negativo da entrada de Fe no plasma, atua ligando-se à ferroportina, induzindo sua internalização e degradação. Embora a diferenciação entre AF e AI seja relativamente tranquila, pacientes com AI podem cursar com deficiência de Fe associada. O diagnóstico diferencial entre AI e AI com deficiência de Fe tem evidente importância clínica, e novas técnicas laboratoriais têm sido sugeridas para auxiliar neste diagnóstico.Functional iron deficiency can be defined as an imbalance between the iron needs of the erythroid marrow and iron supply. Iron deficiency occurs in the absence of iron deposits, as in the case of iron deficiency anemia (IDA, or when there is an impaired iron mobilization, such as in anemia of inflammation (AI. Cytokines and cells of the reticuloendothelial system can induce changes in several pathways, interfering in erythropoiesis and causing anemia. The retention of iron within cells of the reticuloendothelial system is due to hepcidin. Although this is not the only mechanism evolved in AI, it is the most important. Hepcidin is a negative regulator of iron entry into the plasma. Hepcidin binds to ferroportin, inducing its internalization and degradation. Differentiation between IDA and AI is relatively easy, but patients with AI can have the association of true iron deficiency. The differential

  10. Metabolismo do ferro: uma revisão sobre os principais mecanismos envolvidos em sua homeostase Iron metabolism: an overview on the main mechanisms involved in its homeostasis

    Directory of Open Access Journals (Sweden)

    Helena Z. W. Grotto

    2008-10-01

    Full Text Available Um perfeito sincronismo entre absorção, utilização e estoque de ferro é essencial para a manutenção do equilíbrio desse metal no organismo. Alterações nesses processos podem levar tanto à deficiência como ao seu acúmulo de ferro, duas situações com repercussões clínicas e laboratoriais importantes para o paciente. Essa revisão aborda os diversos aspectos relacionados com a cinética do ferro, descrevendo as proteínas e mediadores nela envolvidos. Apresenta, ainda, como é feita a regulação intracelular e sistêmica do ferro que visa a manutenção de uma quantidade ótima de ferro para o metabolismo das células e, em especial, para uma perfeita hematopoiese.É discutido também o importante papel da hepcidina, como regulador da homeostase sistêmica. Será a apresenta da a relação entre a hepcidina e a resposta de fase aguda, e como as alterações na expressão da hepcidina podem contribuir com a fisiopatogênese da anemia de doença crônica.The perfect synchronism of intestinal absorption, use and storage of iron is critical for maintaining a balance in the organism. Disorders in these processes may lead either to iron deficiency or to iron overload, both of which have important clinical and laboratorial consequences for the patient. This review describes aspects related to iron metabolism and the participation of several proteins and mediators in these mechanisms. Moreover, intracellular and systemic regulation is responsible for providing the optimal iron concentration for cellular metabolism and, in particular, for adequate hematopoiesis. The relationship between hepcidin and acute phase response is presented and how changes in hepcidin expression may be related to the physiopathogenesis of anemia of chronic disease.

  11. Glutathione, Glutaredoxins, and Iron.

    Science.gov (United States)

    Berndt, Carsten; Lillig, Christopher Horst

    2017-11-20

    Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.

  12. Evidence for a role for interleukin-17, Th17 cells and iron homeostasis in protective immunity against tuberculosis in cynomolgus macaques.

    Science.gov (United States)

    Wareham, Alice S; Tree, Julia A; Marsh, Philip D; Butcher, Philip D; Dennis, Mike; Sharpe, Sally A

    2014-01-01

    Tuberculosis (TB) remains a major global public health problem. The only vaccine, BCG, gives variable protection, especially in adults, so several new vaccines are in clinical trials. There are no correlates of protective immunity to TB; therefore vaccines progress through lengthy and expensive pre-clinical assessments and human trials. Correlates of protection could act as early end-points during clinical trials, accelerating vaccine development and reducing costs. A genome-wide microarray was utilised to identify potential correlates of protection and biomarkers of disease induced post-BCG vaccination and post-Mycobacterium tuberculosis challenge in PPD-stimulated peripheral blood mononuclear cells from cynomolgus macaques where the outcome of infection was known. Gene expression post BCG-vaccination and post challenge was compared with gene expression when the animals were naïve. Differentially expressed genes were identified using a moderated T test with Benjamini Hochberg multiple testing correction. After BCG vaccination and six weeks post-M. tuberculosis challenge, up-regulation of genes related to a Th1 and Th17 response was observed in disease controllers. At post-mortem, RT-PCR revealed an up-regulation of iron regulatory genes in animals that developed TB and down-regulation of these genes in disease controllers, indicating the ability to successfully withhold iron may be important in the control of TB disease. The induction of a balanced Th1 and Th17 response, together with expression of effector cytokines, such as IFNG, IL2, IL17, IL21 and IL22, could be used as correlates of a protective host response.

  13. Evidence for a role for interleukin-17, Th17 cells and iron homeostasis in protective immunity against tuberculosis in cynomolgus macaques.

    Directory of Open Access Journals (Sweden)

    Alice S Wareham

    Full Text Available Tuberculosis (TB remains a major global public health problem. The only vaccine, BCG, gives variable protection, especially in adults, so several new vaccines are in clinical trials. There are no correlates of protective immunity to TB; therefore vaccines progress through lengthy and expensive pre-clinical assessments and human trials. Correlates of protection could act as early end-points during clinical trials, accelerating vaccine development and reducing costs. A genome-wide microarray was utilised to identify potential correlates of protection and biomarkers of disease induced post-BCG vaccination and post-Mycobacterium tuberculosis challenge in PPD-stimulated peripheral blood mononuclear cells from cynomolgus macaques where the outcome of infection was known. Gene expression post BCG-vaccination and post challenge was compared with gene expression when the animals were naïve. Differentially expressed genes were identified using a moderated T test with Benjamini Hochberg multiple testing correction. After BCG vaccination and six weeks post-M. tuberculosis challenge, up-regulation of genes related to a Th1 and Th17 response was observed in disease controllers. At post-mortem, RT-PCR revealed an up-regulation of iron regulatory genes in animals that developed TB and down-regulation of these genes in disease controllers, indicating the ability to successfully withhold iron may be important in the control of TB disease. The induction of a balanced Th1 and Th17 response, together with expression of effector cytokines, such as IFNG, IL2, IL17, IL21 and IL22, could be used as correlates of a protective host response.

  14. Iron refractory iron deficiency anemia

    Science.gov (United States)

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  15. The role of CDX2 in intestinal homeostasis and inflammation

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Troelsen, Jesper Thorvald; Nielsen, Ole Haagen

    2011-01-01

    a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors......, including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including...... of the intestinal homeostasis and further to reveal its potential role in inflammation....

  16. In Vivo MRI Mapping of Brain Iron Deposition across the Adult Lifespan.

    Science.gov (United States)

    Acosta-Cabronero, Julio; Betts, Matthew J; Cardenas-Blanco, Arturo; Yang, Shan; Nestor, Peter J

    2016-01-13

    Disruption of iron homeostasis as a consequence of aging is thought to cause iron levels to increase, potentially promoting oxidative cellular damage. Therefore, understanding how this process evolves through the lifespan could offer insights into both the aging process and the development of aging-related neurodegenerative brain diseases. This work aimed to map, in vivo for the first time with an unbiased whole-brain approach, age-related iron changes using quantitative susceptibility mapping (QSM)--a new postprocessed MRI contrast mechanism. To this end, a full QSM standardization routine was devised and a cohort of N = 116 healthy adults (20-79 years of age) was studied. The whole-brain and ROI analyses confirmed that the propensity of brain cells to accumulate excessive iron as a function of aging largely depends on their exact anatomical location. Whereas only patchy signs of iron scavenging were observed in white matter, strong, bilateral, and confluent QSM-age associations were identified in several deep-brain nuclei--chiefly the striatum and midbrain-and across motor, premotor, posterior insular, superior prefrontal, and cerebellar cortices. The validity of QSM as a suitable in vivo imaging technique with which to monitor iron dysregulation in the human brain was demonstrated by confirming age-related increases in several subcortical nuclei that are known to accumulate iron with age. The study indicated that, in addition to these structures, there is a predilection for iron accumulation in the frontal lobes, which when combined with the subcortical findings, suggests that iron accumulation with age predominantly affects brain regions concerned with motor/output functions. This study used a whole--brain imaging approach known as quantitative susceptibility mapping (QSM) to provide a novel insight into iron accumulation in the brain across the adult lifespan. Validity of the method was demonstrated by showing concordance with ROI analysis and prior knowledge

  17. Mammalian iron metabolism and its control by iron regulatory proteins☆

    Science.gov (United States)

    Anderson, Cole P.; Shen, Lacy; Eisenstein, Richard S.; Leibold, Elizabeth A.

    2013-01-01

    Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP–IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22610083

  18. Dysregulation in pediatric obsessive compulsive disorder.

    Science.gov (United States)

    McGuire, Joseph F; Small, Brent J; Lewin, Adam B; Murphy, Tanya K; De Nadai, Alessandro S; Phares, Vicky; Geffken, Gary; Storch, Eric A

    2013-10-30

    Although obsessive compulsive disorder (OCD) and common co-occurring conditions share deficits in self-regulatory abilities, there has been minimal examination of impaired self-regulation (dysregulation) in youth with OCD. This study examined the association of dysregulation with symptom severity, impairment, and treatment outcome in pediatric OCD. Clinicians assessed obsessive-compulsive severity, family accommodation and global severity in 144 youth with OCD. Youth completed self-report severity ratings of anxiety and depressive symptoms. Parents completed the Child Behavior Checklist (CBCL), and both children and parents completed parallel ratings of obsessive-compulsive impairment. Ninety-seven youth received cognitive behavioral therapy (CBT) and were re-assessed after treatment. Dysregulation was assessed using the CBCL-Dysregulation Profile. Before treatment, dysregulated youth exhibited greater obsessive-compulsive symptom severity, depressive mood, family accommodation, and impairment than non-dysregulated youth. The magnitude of dysregulation directly predicted child-rated impairment, parent-rated impairment, and family accommodation, beyond obsessive-compulsive severity. The magnitude of pretreatment dysregulation predicted treatment discontinuation but not treatment response. Obsessive-compulsive symptom severity and dysregulation level significantly decreased after CBT. Dysregulated youth with OCD presented as more clinically severe than their non-dysregulated counterparts, and may require more individualized interventions to reduce dysregulated behavior to prevent CBT attrition. For treatment completers, CBT was associated with a decrease in dysregulation level. © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments.

    Directory of Open Access Journals (Sweden)

    Kimberly B Zumbrennen-Bullough

    Full Text Available Iron Regulatory Protein 2 (Irp2, Ireb2 is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2-/- mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc, expression are increased and decreased, respectively, in the brain from Irp2-/- mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.

  20. Asthma as a disruption in iron homeostasis

    Science.gov (United States)

    Over several decades, asthma has evolved from being recognized as a single disease to include a diverse group of phenotypes with dissimilar natural histories, pathophysiologies, responses to treatment, and distinctive molecular pathways. With the application of Occam’s razor to ...

  1. Homeostasis Meets Motivation in the Battle to Control Food Intake

    OpenAIRE

    Ferrario, Carrie R.; Labouèbe, Gwenaël; Liu, Shuai; Nieh, Edward H.; Routh, Vanessa H.; Xu, Shengjin; O'Connor, Eoin C.

    2016-01-01

    Signals of energy homeostasis interact closely with neural circuits of motivation to control food intake. An emerging hypothesis is that the transition to maladaptive feeding behavior seen in eating disorders or obesity may arise from dysregulation of these interactions. Focusing on key brain regions involved in the control of food intake (ventral tegmental area, striatum, hypothalamus, and thalamus), we describe how activity of specific cell types embedded within these regions can influence ...

  2. Iron and iron-related proteins in asbestosis.

    Science.gov (United States)

    ABSTRACT: We tested the postulate that iron homeostasis is altered among patients diagnosed to have asbestosis. Lung tissue from six individuals diagnosed to have had asbestosis at autopsy was stained for iron, ferritin, divalent metal transporter 1 (DMT1), and ferroportin 1 (FP...

  3. Plant transporters involved in heavy metal homeostasis

    OpenAIRE

    Dorina Podar

    2010-01-01

    Transition metal ions (predominately manganese, iron, cobalt, nickel, copper and zinc) havean array of catalytic and regulatory roles in the growth and development of all living organisms.However, an excess of these metal ions can also be toxic to any life form and therefore every cell andwhole organism needs to maintain the concentration of these essential nutrient metals within a narrowrange: a process known as metal homeostasis. Heavy metal ions are taken up into cells by selectivetranspor...

  4. The Aging of Iron Man

    OpenAIRE

    Ashraf, Azhaar Ahmad; Clark, Maryam; So, Po-Wah

    2018-01-01

    Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with ageing which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration and neurobehavioral deficits. There is a great need to determine the mechanisms governin...

  5. Homeostasis Meets Motivation in the Battle to Control Food Intake.

    Science.gov (United States)

    Ferrario, Carrie R; Labouèbe, Gwenaël; Liu, Shuai; Nieh, Edward H; Routh, Vanessa H; Xu, Shengjin; O'Connor, Eoin C

    2016-11-09

    Signals of energy homeostasis interact closely with neural circuits of motivation to control food intake. An emerging hypothesis is that the transition to maladaptive feeding behavior seen in eating disorders or obesity may arise from dysregulation of these interactions. Focusing on key brain regions involved in the control of food intake (ventral tegmental area, striatum, hypothalamus, and thalamus), we describe how activity of specific cell types embedded within these regions can influence distinct components of motivated feeding behavior. We review how signals of energy homeostasis interact with these regions to influence motivated behavioral output and present evidence that experience-dependent neural adaptations in key feeding circuits may represent cellular correlates of impaired food intake control. Future research into mechanisms that restore the balance of control between signals of homeostasis and motivated feeding behavior may inspire new treatment options for eating disorders and obesity. Copyright © 2016 the authors 0270-6474/16/3611469-13$15.00/0.

  6. Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity

    NARCIS (Netherlands)

    Prawitt, Janne; Abdelkarim, Mouaadh; Stroeve, Johanna H. M.; Popescu, Iuliana; Duez, Helene; Velagapudi, Vidya R.; Dumont, Julie; Bouchaert, Emmanuel; van Dijk, Theo H.; Lucas, Anthony; Dorchies, Emilie; Daoudi, Mehdi; Lestavel, Sophie; Gonzalez, Frank J.; Oresic, Matej; Cariou, Bertrand; Kuipers, Folkert; Caron, Sandrine; Staels, Bart

    OBJECTIVE-Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose, and energy metabolism, which become dysregulated in obesity. However, the role

  7. Iron and Oxidative Stress in Parkinson's Disease: An Observational Study of Injury Biomarkers.

    Directory of Open Access Journals (Sweden)

    Marcio S Medeiros

    Full Text Available Parkinson's disease (PD is characterized by progressive motor impairment attributed to progressive loss of dopaminergic neurons in the substantia nigra (SN pars compacta. In addition to an accumulation of iron, there is also an increased production of reactive oxygen/nitrogen species (ROS/RNS and inflammatory markers. These observations suggest that iron dyshomeostasis may be playing a key role in neurodegeneration. However, the mechanisms underlying this metal-associated oxidative stress and neuronal damage have not been fully elucidated. To determine peripheral levels of iron, ferritin, and transferrin in PD patients and its possible relation with oxidative/nitrosative parameters, whilst attempting to identify a profile of peripheral biomarkers in this neurological condition. Forty PD patients and 46 controls were recruited to compare serum levels of iron, ferritin, transferrin, oxidative stress markers (superoxide dismutase (SOD, catalase (CAT, nitrosative stress marker (NOx, thiobarbituric acid reactive substances (TBARS, non-protein thiols (NPSH, advanced oxidation protein products (AOPP, ferric reducing ability of plasma (FRAP and vitamin C as well as inflammatory markers (NTPDases, ecto-5'-nucleotidase, adenosine deaminase (ADA, ischemic-modified albumin (IMA and myeloperoxidase. Iron levels were lower in PD patients, whereas there was no difference in ferritin and transferrin. Oxidative stress (TBARS and AOPP and inflammatory markers (NTPDases, IMA, and myeloperoxidase were significantly higher in PD, while antioxidants FRAP, vitamin C, and non-protein thiols were significantly lower in PD. The enzymes SOD, CAT, and ecto-5'-nucleotidase were not different among the groups, although NOx and ADA levels were significantly higher in the controls. Our data corroborate the idea that ROS/RNS production and neuroinflammation may dysregulate iron homeostasis and collaborate to reduce the periphery levels of this ion, contributing to alterations

  8. Iron Chelation

    Science.gov (United States)

    Skip to main content Menu Donate Treatments Therapies Iron Chelation Iron chelation therapy is the main treatment ... have iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you ...

  9. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  10. Dysregulated metabolism contributes to oncogenesis

    Science.gov (United States)

    Hirschey, Matthew D.; DeBerardinis, Ralph J.; Diehl, Anna Mae E.; Drew, Janice E.; Frezza, Christian; Green, Michelle F.; Jones, Lee W.; Ko, Young H.; Le, Anne; Lea, Michael A.; Locasale, Jason W.; Longo, Valter D.; Lyssiotis, Costas A.; McDonnell, Eoin; Mehrmohamadi, Mahya; Michelotti, Gregory; Muralidhar, Vinayak; Murphy, Michael P.; Pedersen, Peter L.; Poore, Brad; Raffaghello, Lizzia; Rathmell, Jeffrey C.; Sivanand, Sharanya; Vander Heiden, Matthew G.; Wellen, Kathryn E.

    2015-01-01

    Cancer is a disease characterized by unrestrained cellular proliferation. In order to sustain growth, cancer cells undergo a complex metabolic rearrangement characterized by changes in metabolic pathways involved in energy production and biosynthetic processes. The relevance of the metabolic transformation of cancer cells has been recently included in the updated version of the review “Hallmarks of Cancer”, where the dysregulation of cellular metabolism was included as an emerging hallmark. While several lines of evidence suggest that metabolic rewiring is orchestrated by the concerted action of oncogenes and tumor suppressor genes, in some circumstances altered metabolism can play a primary role in oncogenesis. Recently, mutations of cytosolic and mitochondrial enzymes involved in key metabolic pathways have been associated with hereditary and sporadic forms of cancer. Together, these results suggest that aberrant metabolism, once seen just as an epiphenomenon of oncogenic reprogramming, plays a key role in oncogenesis with the power to control both genetic and epigenetic events in cells. In this review, we discuss the relationship between metabolism and cancer, as part of a larger effort to identify a broad-spectrum of therapeutic approaches. We focus on major alterations in nutrient metabolism and the emerging link between metabolism and epigenetics. Finally, we discuss potential strategies to manipulate metabolism in cancer and tradeoffs that should be considered. More research on the suite of metabolic alterations in cancer holds the potential to discover novel approaches to treat it. PMID:26454069

  11. Genetic disorders with immune dysregulation.

    Science.gov (United States)

    Gambineri, Eleonora; Torgerson, Troy R

    2012-01-01

    We summarize the clinical presentation and molecular basis of a unique group of congenital immunodeficiency disorders in which defects in immune tolerance mechanisms result in severe autoimmunity. Patients with severe, familial forms of multi-organ autoimmunity have been recognized and clinically described for more than 40 years (Clin Exp Immunol 1: 119-128, 1966; Clin Exp Immunol 2: 19-30, 1967). Some are characterized primarily by autoimmunity and others by autoimmunity combined with susceptibility to specific infectious organisms. The first mechanistic understanding of these disorders began to emerge approximately 10 years ago with the initial identification of causative genes. As a result, our understanding of how immune tolerance is established and maintained in humans has expanded dramatically. Data generated over the last 3-4 years including identification of additional gene defects and functional characterization of each identified gene product in human and animal models have added clarity. This, in turn, has improved our ability to diagnose and effectively treat these severe, life-threatening disorders. Inherited disorders characterized by immune dysregulation have dramatically expanded our understanding of immune tolerance mechanisms in humans. Recognition and diagnosis of these disorders in the clinic allows timely initiation of life-saving therapies that may prevent death or irreversible damage to vital organs.

  12. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells

    International Nuclear Information System (INIS)

    Kim, Yongbae; Olivi, Luisa; Cheong, Jae Hoon; Maertens, Alex; Bressler, Joseph P.

    2007-01-01

    Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer's Disease, and findings of higher levels of iron in Alzheimer's disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in Brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin

  13. Epigenetic Control of Stem Cell Potential During Homeostasis, Aging, and Disease

    Science.gov (United States)

    Beerman, Isabel; Rossi, Derrick J.

    2015-01-01

    Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease. PMID:26046761

  14. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia

    Directory of Open Access Journals (Sweden)

    Nick D. Pokorzynski

    2017-09-01

    Full Text Available The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed “persistence.” This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.

  15. The role of gut microbiota in immune homeostasis and autoimmunity.

    Science.gov (United States)

    Wu, Hsin-Jung; Wu, Eric

    2012-01-01

    Keeping a delicate balance in the immune system by eliminating invading pathogens, while still maintaining self-tolerance to avoid autoimmunity, is critical for the body's health. The gut microbiota that resides in the gastrointestinal tract provides essential health benefits to its host, particularly by regulating immune homeostasis. Moreover, it has recently become obvious that alterations of these gut microbial communities can cause immune dysregulation, leading to autoimmune disorders. Here we review the advances in our understanding of how the gut microbiota regulates innate and adaptive immune homeostasis, which in turn can affect the development of not only intestinal but also systemic autoimmune diseases. Exploring the interaction of gut microbes and the host immune system will not only allow us to understand the pathogenesis of autoimmune diseases but will also provide us new foundations for the design of novel immuno- or microbe-based therapies.

  16. Iron decreases biological effects of ozone exposure

    Science.gov (United States)

    CONTEXT: Ozone (0(3)) exposure is associated with a disruption of iron homeostasis and increased availability of this metal which potentially contributes to an oxidative stress and biologicaleffects. OBJECTIVE: We tested the postulate that increased concentrations of iron in c...

  17. Robust gene dysregulation in Alzheimer's disease brains.

    Science.gov (United States)

    Feng, Xuemei; Bai, Zhouxian; Wang, Jiajia; Xie, Bin; Sun, Jiya; Han, Guangchun; Song, Fuhai; Crack, Peter J; Duan, Yong; Lei, Hongxing

    2014-01-01

    The brain transcriptome of Alzheimer's disease (AD) reflects the prevailing disease mechanism at the gene expression level. However, thousands of genes have been reported to be dysregulated in AD brains in existing studies, and the consistency or discrepancy among these studies has not been thoroughly examined. Toward this end, we conducted a comprehensive survey of the brain transcriptome datasets for AD and other neurological diseases. We first demonstrated that the frequency of observed dysregulation in AD was highly correlated with the reproducibility of the dysregulation. Based on this observation, we selected 100 genes with the highest frequency of dysregulation to illustrate the core perturbation in AD brains. The dysregulation of these genes was validated in several independent datasets for AD. We further identified 12 genes with strong correlation of gene expression with disease progression. The relevance of these genes to disease progression was also validated in an independent dataset. Interestingly, we found a transcriptional "cushion" for these 100 genes in the less vulnerable visual cortex region, which may be a critical component of the protection mechanism for less vulnerable brain regions. To facilitate the research in this field, we have provided the expression information of ~8000 relevant genes on a publicly accessible web server AlzBIG (http://alz.big.ac.cn).

  18. Metabogenic and Nutriceutical Approaches to Address Energy Dysregulation and Skeletal Muscle Wasting in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Rybalka, Emma; Timpani, Cara A; Stathis, Christos G; Hayes, Alan; Cooke, Matthew B

    2015-11-26

    Duchenne Muscular Dystrophy (DMD) is a fatal genetic muscle wasting disease with no current cure. A prominent, yet poorly treated feature of dystrophic muscle is the dysregulation of energy homeostasis which may be associated with intrinsic defects in key energy systems and promote muscle wasting. As such, supplementative nutriceuticals that target and augment the bioenergetical expansion of the metabolic pathways involved in cellular energy production have been widely investigated for their therapeutic efficacy in the treatment of DMD. We describe the metabolic nuances of dystrophin-deficient skeletal muscle and review the potential of various metabogenic and nutriceutical compounds to ameliorate the pathological and clinical progression of the disease.

  19. Metabogenic and Nutriceutical Approaches to Address Energy Dysregulation and Skeletal Muscle Wasting in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Emma Rybalka

    2015-11-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a fatal genetic muscle wasting disease with no current cure. A prominent, yet poorly treated feature of dystrophic muscle is the dysregulation of energy homeostasis which may be associated with intrinsic defects in key energy systems and promote muscle wasting. As such, supplementative nutriceuticals that target and augment the bioenergetical expansion of the metabolic pathways involved in cellular energy production have been widely investigated for their therapeutic efficacy in the treatment of DMD. We describe the metabolic nuances of dystrophin-deficient skeletal muscle and review the potential of various metabogenic and nutriceutical compounds to ameliorate the pathological and clinical progression of the disease.

  20. Iron accumulates in the lavage and explanted lungs of cystic fibrosis patients.

    Science.gov (United States)

    Abstract Oxidative stress participates in the pathophysiology of cystic fibrosis (CF). An underlying disruption in iron homeostasis can frequently be demonstrated in injuries and diseases associated with an oxidative stress. We tested the hypothesis that iron accumulation and ...

  1. Liver immunology and its role in inflammation and homeostasis.

    Science.gov (United States)

    Robinson, Mark W; Harmon, Cathal; O'Farrelly, Cliona

    2016-05-01

    The human liver is usually perceived as a non-immunological organ engaged primarily in metabolic, nutrient storage and detoxification activities. However, we now know that the healthy liver is also a site of complex immunological activity mediated by a diverse immune cell repertoire as well as non-hematopoietic cell populations. In the non-diseased liver, metabolic and tissue remodeling functions require elements of inflammation. This inflammation, in combination with regular exposure to dietary and microbial products, creates the potential for excessive immune activation. In this complex microenvironment, the hepatic immune system tolerates harmless molecules while at the same time remaining alert to possible infectious agents, malignant cells or tissue damage. Upon appropriate immune activation to challenge by pathogens or tissue damage, mechanisms to resolve inflammation are essential to maintain liver homeostasis. Failure to clear 'dangerous' stimuli or regulate appropriately activated immune mechanisms leads to pathological inflammation and disrupted tissue homeostasis characterized by the progressive development of fibrosis, cirrhosis and eventual liver failure. Hepatic inflammatory mechanisms therefore have a spectrum of roles in the healthy adult liver; they are essential to maintain tissue and organ homeostasis and, when dysregulated, are key drivers of the liver pathology associated with chronic infection, autoimmunity and malignancy. In this review, we explore the changing perception of inflammation and inflammatory mediators in normal liver homeostasis and propose targeting of liver-specific immune regulation pathways as a therapeutic approach to treat liver disease.

  2. The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network.

    Science.gov (United States)

    Thibault, Guillaume; Shui, Guanghou; Kim, Woong; McAlister, Graeme C; Ismail, Nurzian; Gygi, Steven P; Wenk, Markus R; Ng, Davis T W

    2012-10-12

    Lipid composition can differ widely among organelles and even between leaflets of a membrane. Lipid homeostasis is critical because disequilibrium can have disease outcomes. Despite their importance, mechanisms maintaining lipid homeostasis remain poorly understood. Here, we establish a model system to study the global effects of lipid imbalance. Quantitative lipid profiling was integral to monitor changes to lipid composition and for system validation. Applying global transcriptional and proteomic analyses, a dramatically altered biochemical landscape was revealed from adaptive cells. The resulting composite regulation we term the "membrane stress response" (MSR) confers compensation, not through restoration of lipid composition, but by remodeling the protein homeostasis network. To validate its physiological significance, we analyzed the unfolded protein response (UPR), one facet of the MSR and a key regulator of protein homeostasis. We demonstrate that the UPR maintains protein biogenesis, quality control, and membrane integrity-functions otherwise lethally compromised in lipid dysregulated cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms.

    Science.gov (United States)

    Enculescu, Mihaela; Metzendorf, Christoph; Sparla, Richard; Hahnel, Maximilian; Bode, Johannes; Muckenthaler, Martina U; Legewie, Stefan

    2017-01-01

    Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional

  4. Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding.

    Directory of Open Access Journals (Sweden)

    Nicole Speed

    Full Text Available The prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address "food-abuse" disorders. We demonstrate a molecular link between impairment of a central kinase (Akt involved in insulin signaling induced by exposure to a high-fat (HF diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT. Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake.We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia.Acquired disruption of brain insulin action may confer risk for and/or underlie "food-abuse" disorders and the recalcitrance of obesity. This molecular model, thus, explains how even short-term exposure to "the fast food

  5. Cp/Heph mutant mice have iron-induced neurodegeneration diminished by deferiprone

    Science.gov (United States)

    Zhao, Liangliang; Hadziahmetovic, Majda; Wang, Chenguang; Xu, Xueying; Song, Ying; Jinnah, H.A.; Wodzinska, Jolanta; Iacovelli, Jared; Wolkow, Natalie; Krajacic, Predrag; Weissberger, Alyssa Cwanger; Connelly, John; Spino, Michael; Lee, Michael K.; Connor, James; Giasson, Benoit; Harris, Z. Leah; Dunaief, Joshua L.

    2016-01-01

    Brain iron accumulates in several neurodegenerative diseases and can cause oxidative damage, but mechanisms of brain iron homeostasis are incompletely understood. Patients with mutations in the cellular iron-exporting ferroxidase ceruloplasmin (Cp) have brain iron accumulation causing neurodegeneration. Here, we assessed the brains of mice with combined mutation of Cp and its homolog hephaestin. Compared to single mutants, brain iron accumulation was accelerated in double mutants in the cerebellum, substantia nigra, and hippocampus. Iron accumulated within glia, while neurons were iron deficient. There was loss of both neurons and glia. Mice developed ataxia and tremor, and most died by 9 months. Treatment with the oral iron chelator deferiprone diminished brain iron levels, protected against neuron loss, and extended lifespan. Ferroxidases play important, partially overlapping roles in brain iron homeostasis by facilitating iron export from glia, making iron available to neurons. PMID:26303407

  6. Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis

    OpenAIRE

    Ling, Shuo-Chien; Polymenidou, Magdalini; Cleveland, Don W.

    2013-01-01

    Breakthrough discoveries identifying common genetic causes for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have transformed our view of these disorders. They share unexpectedly similar signatures, including dysregulation in common molecular players including TDP-43, FUS/TLS, ubiquilin-2, VCP, and expanded hexanucleotide repeats within the C9ORF72 gene. Dysfunction in RNA processing and protein homeostasis is an emerging theme. We present the case here that these two ...

  7. Amyloid and immune homeostasis.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2018-03-01

    Extracellular amyloid deposition defines a range of amyloidosis and amyloid-related disease. Addition to primary and secondary amyloidosis, amyloid-related disease can be observed in different tissue/organ that sharing the common pathogenesis based on the formation of amyloid deposition. Currently, both Alzheimer's disease and type 2 diabetes can be diagnosed with certainly only based on the autopsy results, by which amyloidosis of the associative tissue/organ is observed. Intriguingly, since it demonstrated that amyloid deposits trigger inflammatory reaction through the activation of cascaded immune response, wherein several lines of evidence implies a protective role of amyloid in preventing autoimmunity. Furthermore, attempts for preventing amyloid formation and/or removing amyloid deposits from the brain have caused meningoencephalitis and consequent deaths among the subjects. Hence, it is important to note that amyloid positively participates in maintaining immune homeostasis and contributes to irreversible inflammatory response. In this review, we will focus on the interactive relationship between amyloid and the immune system, discussing the potential functional roles of amyloid in immune tolerance and homeostasis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Homeostasis in anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Per eSodersten

    2014-08-01

    Full Text Available Brainstem and hypothalamic orexigenic/anorexigenic networks are thought to maintain body weight homeostasis in response to hormonal and metabolic feedback from peripheral sites. This approach has not been successful in managing over- and underweight patients. It is suggested that concept of homeostasis has been misinterpreted; rather than exerting control, the brain permits eating in proportion to the amount of physical activity necessary to obtain food. In support, animal experiments have shown that while a hypothalamic orexigen excites eating when food is abundant, it inhibits eating and stimulates foraging when food is in short supply. As the physical price of food approaches zero, eating and body weight increase without constraints. Conversely, in anorexia nervosa body weight is homeostatically regulated, the high level of physical activity in anorexia is displaced hoarding for food that keeps body weight constantly low. A treatment based on this point of view, providing patients with computerized mealtime support to re-establish normal eating behavior, has brought 75% of patients with eating disorders into remission, reduced the rate of relapse to 10%, and eliminated mortality.

  9. Ageing and water homeostasis

    Science.gov (United States)

    Robertson, David; Jordan, Jens; Jacob, Giris; Ketch, Terry; Shannon, John R.; Biaggioni, Italo

    2002-01-01

    This review outlines current knowledge concerning fluid intake and volume homeostasis in ageing. The physiology of vasopressin is summarized. Studies have been carried out to determine orthostatic changes in plasma volume and to assess the effect of water ingestion in normal subjects, elderly subjects, and patients with dysautonomias. About 14% of plasma volume shifts out of the vasculature within 30 minutes of upright posture. Oral ingestion of water raises blood pressure in individuals with impaired autonomic reflexes and is an important source of noise in blood pressure trials in the elderly. On the average, oral ingestion of 16 ounces (473ml) of water raises blood pressure 11 mmHg in elderly normal subjects. In patients with autonomic impairment, such as multiple system atrophy, strikingly exaggerated pressor effects of water have been seen with blood pressure elevations greater than 75 mmHg not at all uncommon. Ingestion of water is a major determinant of blood pressure in the elderly population. Volume homeostasis is importantly affected by posture and large changes in plasma volume may occur within 30 minutes when upright posture is assumed.

  10. Altered ubiquitin causes perturbed calcium homeostasis, hyperactivation of calpain, dysregulated differentiation, and cataract.

    Science.gov (United States)

    Liu, Ke; Lyu, Lei; Chin, David; Gao, Junyuan; Sun, Xiurong; Shang, Fu; Caceres, Andrea; Chang, Min-Lee; Rowan, Sheldon; Peng, Junmin; Mathias, Richard; Kasahara, Hideko; Jiang, Shuhong; Taylor, Allen

    2015-01-27

    Although the ocular lens shares many features with other tissues, it is unique in that it retains its cells throughout life, making it ideal for studies of differentiation/development. Precipitation of proteins results in lens opacification, or cataract, the major blinding disease. Lysines on ubiquitin (Ub) determine fates of Ub-protein substrates. Information regarding ubiquitin proteasome systems (UPSs), specifically of K6 in ubiquitin, is undeveloped. We expressed in the lens a mutant Ub containing a K6W substitution (K6W-Ub). Protein profiles of lenses that express wild-type ubiquitin (WT-Ub) or K6W-Ub differ by only ∼2%. Despite these quantitatively minor differences, in K6W-Ub lenses and multiple model systems we observed a fourfold Ca(2+) elevation and hyperactivation of calpain in the core of the lens, as well as calpain-associated fragmentation of critical lens proteins including Filensin, Fodrin, Vimentin, β-Crystallin, Caprin family member 2, and tudor domain containing 7. Truncations can be cataractogenic. Additionally, we observed accumulation of gap junction Connexin43, and diminished Connexin46 levels in vivo and in vitro. These findings suggest that mutation of Ub K6 alters UPS function, perturbs gap junction function, resulting in Ca(2+) elevation, hyperactivation of calpain, and associated cleavage of substrates, culminating in developmental defects and a cataractous lens. The data show previously unidentified connections between UPS and calpain-based degradative systems and advance our understanding of roles for Ub K6 in eye development. They also inform about new approaches to delay cataract and other protein precipitation diseases.

  11. Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae

    OpenAIRE

    Begg, Stephanie L.; Eijkelkamp, Bart A.; Luo, Zhenyao; Cou?ago, Rafael M.; Morey, Jacqueline R.; Maher, Megan J.; Ong, Cheryl-lynn Y.; McEwan, Alastair G.; Kobe, Bostjan; O?Mara, Megan L.; Paton, James C.; McDevitt, Christopher A.

    2015-01-01

    Cadmium is a transition metal ion that is highly toxic in biological systems. Although relatively rare in the Earth?s crust, anthropogenic release of cadmium since industrialization has increased biogeochemical cycling and the abundance of the ion in the biosphere. Despite this, the molecular basis of its toxicity remains unclear. Here we combine metal-accumulation assays, high-resolution structural data and biochemical analyses to show that cadmium toxicity, in Streptococcus pneumoniae, occu...

  12. Structural and functional studies of the iron storage protein ferritin from Pyrococcus furiosus

    NARCIS (Netherlands)

    Tatur, J.

    2007-01-01

    This research focuses on the iron storage protein ferritin. Ferritin is a protein involved in iron homeostasis by storing Fe(II) excess in the form of an Fe(III) mineral core in the presence of oxygen and by releasing iron during iron deficiency. Ferritins are vital for human health. Their

  13. The diagnosis of equine insulin dysregulation.

    Science.gov (United States)

    Bertin, F R; de Laat, M A

    2017-09-01

    Insulin dysregulation is the hallmark of equine metabolic syndrome and has received attention because of its direct association with laminitis. In the absence of an adequate treatment for laminitis, a focus on prophylaxis is needed, making early detection of individuals at risk of developing laminitis one of the main challenges in equine endocrinology. Recent studies have shown that insulin dysregulation goes beyond tissue insulin resistance and it is now demonstrated that the equine enteroinsular axis plays a major role in insulin secretion and equine hyperinsulinaemia. In this review, we discuss the different tests currently available to diagnose insulin dysregulation in horses: the ones investigating tissue insulin resistance and those investigating the enteroinsular axis, detailing their goals, practicalities and limitations. This review supports the contention that the diagnosis of equine insulin dysregulation should now be based on the investigation of both tissue insulin resistance and the equine enteroinsular axis. Regardless of the tests used many factors of variation, such as breed, diet, fasting state or season, have been identified and could potentially confound the results of a specific test. Therefore, careful interpretation of the results of a given test in each individual situation is required to optimise the detection of horses at risk of laminitis. © 2017 EVJ Ltd.

  14. Disruptive mood dysregulation disorder: current insights

    Directory of Open Access Journals (Sweden)

    Baweja R

    2016-08-01

    Full Text Available Raman Baweja, Susan D Mayes, Usman Hameed, James G Waxmonsky Department of Psychiatry, Penn State University College of Medicine, Hershey, PA, USA Abstract: Disruptive mood dysregulation disorder (DMDD was introduced as a new diagnostic entity under the category of depressive disorders in Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5. It was included in DSM-5 primarily to address concerns about the misdiagnosis and consequent overtreatment of bipolar disorder in children and adolescents. DMDD does provide a home for a large percentage of referred children with severe persistent irritability that did not fit well into any DSM, Fourth Edition (DSM-IV diagnostic category. However, it has been a controversial addition to the DSM-5 due to lack of published validity studies, leading to questions about its validity as a distinct disorder. In this article, the authors discuss the diagnostic criteria, assessment, epidemiology, criticism of the diagnosis, and pathophysiology, as well as treatment and future directions for DMDD. They also review the literature on severe mood dysregulation, as described by the National Institute of Mental Health, as the scientific support for DMDD is based primarily on studies of severe mood dysregulation. Keywords: disruptive mood dysregulation disorder, persistent irritability, temper outbursts 

  15. Modeling BAS Dysregulation in Bipolar Disorder

    NARCIS (Netherlands)

    Hamaker, E.L.; Grasman, R.P.P.P.; Kamphuis, J.H.

    Time series analysis is a technique that can be used to analyze the data from a single subject and has great potential to investigate clinically relevant processes like affect regulation. This article uses time series models to investigate the assumed dysregulation of affect that is associated with

  16. Investigating dysregulated pathways in cardiomyopathy from ...

    Indian Academy of Sciences (India)

    牛牛

    The risk of adverse effects and expensive treatment for RA patients have driven the seek for predictive signatures that can be used to detect and treat RA early. .... on the score values. Next, the top 5% of pathway interactions were selected to construct an informative PIN for RA to further identify dys-regulated pathways.

  17. Iron metabolism: microbes, mouse, and man.

    Science.gov (United States)

    Latunde-Dada, Gladys O

    2009-12-01

    Recent advances in research on iron metabolism have revealed the identity of a number of genes, signal transduction pathways, and proteins involved in iron regulation in mammals. The emerging paradigm is a coordination of homeostasis within a network of classical iron metabolic pathways and other cellular processes such as cell differentiation, growth, inflammation, immunity, and a host of physiologic and pathologic conditions. Iron, immunity, and infection are intricately linked and their regulation is fundamental to the survival of mammals. The mutual dependence on iron by the host and invading pathogenic organisms elicits competition for the element during infection. While the host maintains mechanisms to utilize iron for its own metabolism exclusively, pathogenic organisms are armed with a myriad of strategies to circumvent these measures. This review explores iron metabolism in mammalian host, defense mechanisms against pathogenic microbes and the competitive devices of microbes for access to iron.

  18. Staphylococcal enterotoxins stimulate lymphoma-associated immune dysregulation

    DEFF Research Database (Denmark)

    Krejsgaard, Thorbjørn Frej; Willerslev-Olsen, Andreas; Lindahl, Lise Maria

    2014-01-01

    dysregulation and severe immunodeficiency that characteristically develops in CTCL patients. The present findings thereby establish a novel link between SEs and immune dysregulation in CTCL strengthening the rationale for antibiotic treatment of colonized patients with severe or progressive disease....

  19. Wood smoke particle sequesters cell iron to impact a biological effect.

    Science.gov (United States)

    The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We te...

  20. Iron diminishes the in vitro biological effect of vanadium.

    Science.gov (United States)

    Mechanistic pathways underlying inflammatory injury following exposures to vanadium-containing compounds are not defined. We tested the postulate that the in vitro biological effect of vanadium results from its impact on iron homeostasis. Human bronchial epithelial (HBE) cells ex...

  1. A Physiologist's View of Homeostasis

    Science.gov (United States)

    Modell, Harold; Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann

    2015-01-01

    Homeostasis is a core concept necessary for understanding the many regulatory mechanisms in physiology. Claude Bernard originally proposed the concept of the constancy of the "milieu interieur," but his discussion was rather abstract. Walter Cannon introduced the term "homeostasis" and expanded Bernard's notion of…

  2. Homeostasis and its disruption in the lung microbiome.

    Science.gov (United States)

    Dickson, Robert P; Erb-Downward, John R; Huffnagle, Gary B

    2015-11-15

    The disciplines of physiology and ecology are united by the shared centrality of the concept of homeostasis: the stability of a complex system via internal mechanisms of self-regulation, resilient to external perturbation. In the past decade, these fields of study have been bridged by the discovery of the lung microbiome. The respiratory tract, long considered sterile, is in fact a dynamic ecosystem of microbiota, intimately associated with the host inflammatory response, altered in disease states. If the microbiome is a "newly discovered organ," ecology is the language we use to explain how it establishes, maintains, and loses homeostasis. In this essay, we review recent insights into the feedback mechanisms by which the lung microbiome and the host response are regulated in health and dysregulated in acute and chronic lung disease. We propose three explanatory models supported by recent studies: the adapted island model of lung biogeography, nutritional homeostasis at the host-microbiome interface, and interkingdom signaling and the community stress response. Copyright © 2015 the American Physiological Society.

  3. Homeostasis and its disruption in the lung microbiome

    Science.gov (United States)

    Erb-Downward, John R.; Huffnagle, Gary B.

    2015-01-01

    The disciplines of physiology and ecology are united by the shared centrality of the concept of homeostasis: the stability of a complex system via internal mechanisms of self-regulation, resilient to external perturbation. In the past decade, these fields of study have been bridged by the discovery of the lung microbiome. The respiratory tract, long considered sterile, is in fact a dynamic ecosystem of microbiota, intimately associated with the host inflammatory response, altered in disease states. If the microbiome is a “newly discovered organ,” ecology is the language we use to explain how it establishes, maintains, and loses homeostasis. In this essay, we review recent insights into the feedback mechanisms by which the lung microbiome and the host response are regulated in health and dysregulated in acute and chronic lung disease. We propose three explanatory models supported by recent studies: the adapted island model of lung biogeography, nutritional homeostasis at the host-microbiome interface, and interkingdom signaling and the community stress response. PMID:26432870

  4. The concept of multiple hormonal dysregulation

    Science.gov (United States)

    Maggio, Marcello; Cattabiani, Chiara; Lauretani, Fulvio; Ferrucci, Luigi; Luci, Michele; Valenti, Giorgio; Ceda, Gianpaolo

    2016-01-01

    Aging process is accompanied by hormonal changes characterized by an imbalance between catabolic hormones that remain stable and anabolic hormones (testosterone, insulin like growth factor-1 (IGF-1) and dehydroepiandrosterone sulphate (DHEAS), that decrease with age. Despite the multiple hormonal dysregulation occurring with age, the prevalent line of research in the last decades has tried to explain many age-related phenomena as consequence of one single hormonal derangement with disappointing results. In this review we will list the relationship between hormonal anabolic deficiency and frailty and mortality in older population, providing evidence to the notion that multiple hormonal dysregulation rather than change in single anabolic hormone is a powerful marker of poor health status and mortality. (www.actabiomedica.it) PMID:20518188

  5. The concept of multiple hormonal dysregulation.

    Science.gov (United States)

    Maggio, Marcello; Cattabiani, Chiara; Lauretani, Fulvio; Ferrucci, Luigi; Luci, Michele; Valenti, Giorgio; Ceda, Gianpaolo

    2010-01-01

    Aging process is accompanied by hormonal changes characterized by an imbalance between catabolic hormones that remain stable and anabolic hormones (testosterone, insulin like growth factor-1 (IGF-1) and dehydroepiandrosterone sulphate (DHEAS), that decrease with age. Despite the multiple hormonal dysregulation occurring with age, the prevalent line of research in the last decades has tried to explain many age-related phenomena as consequence of one single hormonal derangement with disappointing results. In this review we will list the relationship between hormonal anabolic deficiency and frailty and mortality in older population, providing evidence to the notion that multiple hormonal dysregulation rather than change in single anabolic hormone is a powerful marker of poor health status and mortality.

  6. The concept of multiple hormonal dysregulation

    OpenAIRE

    Maggio, Marcello; Cattabiani, Chiara; Lauretani, Fulvio; Ferrucci, Luigi; Luci, Michele; Valenti, Giorgio; Ceda, Gianpaolo

    2010-01-01

    Aging process is accompanied by hormonal changes characterized by an imbalance between catabolic hormones that remain stable and anabolic hormones (testosterone, insulin like growth factor-1 (IGF-1) and dehydroepiandrosterone sulphate (DHEAS), that decrease with age. Despite the multiple hormonal dysregulation occurring with age, the prevalent line of research in the last decades has tried to explain many age-related phenomena as consequence of one single hormonal derangement with disappointi...

  7. Endocrine Dysregulation in Anorexia Nervosa Update

    Science.gov (United States)

    2011-01-01

    Context: Anorexia nervosa is a primary psychiatric disorder with serious endocrine consequences, including dysregulation of the gonadal, adrenal, and GH axes, and severe bone loss. This Update reviews recent advances in the understanding of the endocrine dysregulation observed in this state of chronic starvation, as well as the mechanisms underlying the disease itself. Evidence Acquisition: Findings of this update are based on a PubMed search and the author's knowledge of this field. Evidence Synthesis: Recent studies have provided insights into the mechanisms underlying endocrine dysregulation in states of chronic starvation as well as the etiology of anorexia nervosa itself. This includes a more complex understanding of the pathophysiologic bases of hypogonadism, hypercortisolemia, GH resistance, appetite regulation, and bone loss. Nevertheless, the etiology of the disease remains largely unknown, and effective therapies for the endocrine complications and for the disease itself are lacking. Conclusions: Despite significant progress in the field, further research is needed to elucidate the mechanisms underlying the development of anorexia nervosa and its endocrine complications. Such investigations promise to yield important advances in the therapeutic approach to this disease as well as to the understanding of the regulation of endocrine function, skeletal biology, and appetite regulation. PMID:21976742

  8. INTRACELLULAR Ca2+ HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Shahdevi Nandar Kurniawan

    2015-01-01

    Full Text Available Ca2+ signaling functions to regulate many cellular processes. Dynamics of Ca2+ signaling or homeostasis is regulated by the interaction between ON and OFF reactions that control Ca2+ flux in both the plasma membrane and internal organelles such as the endoplasmic reticulum (ER and mitochondria. External stimuli activate the ON reactions, which include Ca2+ into the cytoplasm either through channels in the plasma membrane or from internal storage like in ER. Most of the cells utilize both channels/sources, butthere area few cells using an external or internal source to control certain processes. Most of the Ca2+ entering the cytoplasm adsorbed to the buffer, while a smaller part activate effect or to stimulate cellular processes. Reaction OFF is pumping of cytoplasmic Ca2+ using a combination mechanism of mitochondrial and others. Changes in Ca2+ signal has been detected in various tissues isolated from animals induced into diabetes as well as patients with diabetes. Ca2+ signal interference is also found in sensory neurons of experimental animals with diabetes. Ca2+ signaling is one of the main signaling systems in the cell.

  9. of Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Xian Liu

    2015-01-01

    Full Text Available Sex differences exist in the complex regulation of energy homeostasis that utilizes central and peripheral systems. It is widely accepted that sex steroids, especially estrogens, are important physiological and pathological components in this sex-specific regulation. Estrogens exert their biological functions via estrogen receptors (ERs. ERα, a classic nuclear receptor, contributes to metabolic regulation and sexual behavior more than other ER subtypes. Physiological and molecular studies have identified multiple ERα-rich nuclei in the hypothalamus of the central nervous system (CNS as sites of actions that mediate effects of estrogens. Much of our understanding of ERα regulation has been obtained using transgenic models such as ERα global or nuclei-specific knockout mice. A fundamental question concerning how ERα is regulated in wild-type animals, including humans, in response to alterations in steroid hormone levels, due to experimental manipulation (i.e., castration and hormone replacement or physiological stages (i.e., puberty, pregnancy, and menopause, lacks consistent answers. This review discusses how different sex hormones affect ERα expression in the hypothalamus. This information will contribute to the knowledge of estrogen action in the CNS, further our understanding of discrepancies in correlation of altered sex hormone levels with metabolic disturbances when comparing both sexes, and improve health issues in postmenopausal women.

  10. The Aging of Iron Man.

    Science.gov (United States)

    Ashraf, Azhaar; Clark, Maryam; So, Po-Wah

    2018-01-01

    Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases.

  11. Why Homeodynamics, Not Homeostasis?

    Directory of Open Access Journals (Sweden)

    David Lloyd

    2001-01-01

    Full Text Available Ideas of homeostasis derive from the concept of the organism as an open system. These ideas can be traced back to Heraclitus. Hopkins, Bernard, Hill, Cannon, Weiner and von Bertalanffy developed further the mechanistic basis of turnover of biological components, and Schoenheimer and Rittenberg were pioneers of experimental approaches to the problems of measuring pool sizes and dynamic fluxes. From the second half of the twentieth century, a biophysical theory mainly founded on self-organisation and Dynamic Systems Theory allowed us to approach the quantitative and qualitative analysis of the organised complexity that characterises living systems. This combination of theoretical framework and more refined experimental techniques revealed that feedback control of steady states is a mode of operation that, although providing stability, is only one of many modes and may be the exception rather than the rule. The concept of homeodynamics that we introduce here offers a radically new and all-embracing concept that departs from the classical homeostatic idea that emphasises the stability of the internal milieu toward perturbation. Indeed, biological systems are homeody- namic because of their ability to dynamically self-organise at bifurcation points of their behaviour where they lose stability. Consequently, they exhibit diverse behaviour; in addition to monotonic stationary states, living systems display complex behaviour with all its emergent characteristics, i.e., bistable switches, thresholds, waves, gradients, mutual entrainment, and periodic as well as chaotic behaviour, as evidenced in cellular phenomena such as dynamic (supramolecular organisation and flux coordination. These processes may proceed on different spatial scales, as well as across time scales, from the very rapid processes within and between molecules in membranes to the slow time scales of evolutionary change. It is dynamic organisation under homeodynamic conditions that make

  12. Why homeodynamics, not homeostasis?

    Science.gov (United States)

    Lloyd, D; Aon, M A; Cortassa, S

    2001-04-04

    Ideas of homeostasis derive from the concept of the organism as an open system. These ideas can be traced back to Heraclitus. Hopkins, Bernard, Hill, Cannon, Weiner and von Bertalanffy developed further the mechanistic basis of turnover of biological components, and Schoenheimer and Rittenberg were pioneers of experimental approaches to the problems of measuring pool sizes and dynamic fluxes. From the second half of the twentieth century, a biophysical theory mainly founded on self-organisation and Dynamic Systems Theory allowed us to approach the quantitative and qualitative analysis of the organised complexity that characterises living systems. This combination of theoretical framework and more refined experimental techniques revealed that feedback control of steady states is a mode of operation that, although providing stability, is only one of many modes and may be the exception rather than the rule. The concept of homeodynamics that we introduce here offers a radically new and all-embracing concept that departs from the classical homeostatic idea that emphasises the stability of the internal milieu toward perturbation. Indeed, biological systems are homeodynamic because of their ability to dynamically self-organise at bifurcation points of their behaviour where they lose stability. Consequently, they exhibit diverse behaviour; in addition to monotonic stationary states, living systems display complex behaviour with all its emergent characteristics, i.e., bistable switches, thresholds, waves, gradients, mutual entrainment, and periodic as well as chaotic behaviour, as evidenced in cellular phenomena such as dynamic (supra)molecular organisation and flux coordination. These processes may proceed on different spatial scales, as well as across time scales, from the very rapid processes within and between molecules in membranes to the slow time scales of evolutionary change. It is dynamic organisation under homeodynamic conditions that make possible the organised

  13. Exposure of aconitase to smoking-related oxidants results in iron loss and increased iron response protein-1 activity: potential mechanisms for iron accumulation in human arterial cells

    DEFF Research Database (Denmark)

    Talib, Jihan; Davies, Michael Jonathan

    2016-01-01

    of the cytosolic isoform to iron response protein-1, which regulates intracellular iron levels. We show that exposure of isolated aconitase to increasing concentrations of HOSCN releases iron from the aconitase [Fe-S]4 cluster, and decreases enzyme activity. This is associated with protein thiol loss...... and modification of specific Cys residues in, and around, the [Fe-S]4 cluster. Exposure of HCAEC to HOSCN resulted in increased intracellular levels of chelatable iron, loss of aconitase activity and increased iron response protein-1 (IRP-1) activity. These data indicate HOSCN, an oxidant associated with oxidative...... stress in smokers, can induce aconitase dysfunction in human endothelial cells via Cys oxidation, damage to the [Fe-S]4 cluster, iron release and generation of IRP-1 activity, which modulates ferritin protein levels and results in dysregulation of iron metabolism. These data may rationalise, in part...

  14. Correlation Between Iron and alpha and pi Glutathione-S-Transferase Levels in Humans

    Science.gov (United States)

    2012-09-01

    disease states affiliated with altered iron homeostasis. There are many effectors of cellular iron concentration such as diet, malabsorption, Helicobacter ... pylori infection, drug interference, and hemorrhage.14 Variants of hepcidin, considered the main regulator of iron homeostasis, as well as its...Researchers did not have access to medical history data, only age/gender of each sample. The limited demographic information is presented in Table 1

  15. Adipocyte iron regulates leptin and food intake.

    Science.gov (United States)

    Gao, Yan; Li, Zhonggang; Gabrielsen, J Scott; Simcox, Judith A; Lee, Soh-hyun; Jones, Deborah; Cooksey, Bob; Stoddard, Gregory; Cefalu, William T; McClain, Donald A

    2015-09-01

    Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression.

  16. Snapshot of iron response in Shewanella oneidensis by gene network reconstruction

    OpenAIRE

    Harris, Daniel P.

    2009-01-01

    Background: Iron homeostasis of Shewanella oneidensis, a gamma-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, we integrate physiological, transcriptomics and genetic approaches to delineate the iron response of S. oneidensis. Results: We show that the iron response in S. oneidensis i...

  17. The hepcidin-ferroportin system as a therapeutic target in anemias and iron overload disorders.

    Science.gov (United States)

    Ganz, Tomas; Nemeth, Elizabeta

    2011-01-01

    The review summarizes the current understanding of the role of hepcidin and ferroportin in normal iron homeostasis and its disorders. The various approaches to therapeutic targeting of hepcidin and ferroportin in iron-overload disorders (mainly hereditary hemochromatosis and β-thalassemia) and iron-restrictive anemias (anemias associated with infections, inflammatory disorders, and certain malignancies, anemia of chronic kidney diseases, and iron-refractory iron-deficiency anemia) are also discussed.

  18. High-fat diet causes iron deficiency via hepcidin-independent reduction of duodenal iron absorption.

    Science.gov (United States)

    Sonnweber, Thomas; Ress, Claudia; Nairz, Manfred; Theurl, Igor; Schroll, Andrea; Murphy, Anthony T; Wroblewski, Victor; Witcher, Derrick R; Moser, Patrizia; Ebenbichler, Christoph F; Kaser, Susanne; Weiss, Günter

    2012-12-01

    Obesity is often associated with disorders of iron homeostasis; however, the underlying mechanisms are not fully understood. Hepcidin is a key regulator of iron metabolism and may be responsible for obesity-driven iron deficiency. Herein, we used an animal model of diet-induced obesity to study high-fat-diet-induced changes in iron homeostasis. C57BL/6 mice were fed a standard (SD) or high-fat diet (HFD) for 8 weeks, and in addition, half of the mice received high dietary iron (Fe+) for the last 2 weeks. Surprisingly, HFD led to systemic iron deficiency which was traced back to reduced duodenal iron absorption. The mRNA and protein expressions of the duodenal iron transporters Dmt1 and Tfr1 were significantly higher in HFD- than in SD-fed mice, indicating enterocyte iron deficiency, whereas the mRNA levels of the duodenal iron oxidoreductases Dcytb and hephaestin were lower in HFD-fed mice. Neither hepatic and adipose tissue nor serum hepcidin concentrations differed significantly between SD- and HFD-fed mice, whereas dietary iron supplementation resulted in increased hepatic hepcidin mRNA expression and serum hepcidin levels in SD as compared to HFD mice. Our study suggests that HFD results in iron deficiency which is neither due to intake of energy-dense nutrient poor food nor due to increased sequestration in the reticulo-endothelial system but is the consequence of diminished intestinal iron uptake. We found that impaired iron absorption is independent of hepcidin but rather results from reduced metal uptake into the mucosa and discordant oxidoreductases expressions despite enterocyte iron deficiency. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The Child Behavior Checklist Dysregulation Profile in Preschool Children: A Broad Dysregulation Syndrome

    NARCIS (Netherlands)

    Geeraerts, S.B.; Deutz, M.H.F.; Dekovic, M.; Bunte, T.; Schoemaker, K.; Espy, K.A.; Prinzie, P.; van Baar, A.; Matthys, W.

    2015-01-01

    Objective Children with concurrent impairments in regulating affect, behavior, and cognition can be identified with the Anxious/Depressed, Aggressive Behavior, and Attention Problems scales (or AAA scales) of the Child Behavior Checklist (CBCL). Jointly, these scales form the Dysregulation Profile

  20. The Child Behavior Checklist Dysregulation Profile in Preschool Children: A Broad Dysregulation Syndrome

    NARCIS (Netherlands)

    Geeraerts, S.B.|info:eu-repo/dai/nl/412527146; Deutz, M.H.F.|info:eu-repo/dai/nl/372536115; Dekovic, M.|info:eu-repo/dai/nl/088030563; Bunte, T.; Schoemaker, K; Espy, K.A.; Prinzie, P.|info:eu-repo/dai/nl/26906110X; van Baar, A.L.|info:eu-repo/dai/nl/08504749X; Matthys, W.C.H.J.|info:eu-repo/dai/nl/074826484

    Objective Children with concurrent impairments in regulating affect, behavior, and cognition can be identified with the Anxious/Depressed, Aggressive Behavior, and Attention Problems scales (or AAA scales) of the Child Behavior Checklist (CBCL). Jointly, these scales form the Dysregulation Profile

  1. Iron and zinc levels in breath-holding spells

    OpenAIRE

    DEDA, Gülhis; AKAR, M. Nejat; CİN, Şükrü; GENÇGÖNÜL, Handan

    2002-01-01

    Breath-Holding spells are a dramatic and commonly observed clinical phenomenon in childhood. The underlyingpathophysiologic mechanisms in breath-holding spells are result from autonomic nervous system dysregulation.Cerebral anoxia is the ultimate factor responsible for the loss of consciousness observed in the severe forms of breath-holding spells.It’s known that, there is relationbetween breath-holding spells and iron-deficiency anemia, and the spells resolve after oral iron supplemantation....

  2. Concept analysis of family homeostasis.

    Science.gov (United States)

    Kim, Heejung; Rose, Karen M

    2014-11-01

    To report a concept analysis of family homeostasis. As family members are a majority of informal caregivers, negative consequences from caregiving duty create a vicious cycle in the family unit resulting in ongoing health crises and care challenges. Concept analysis. Forty empirical studies published from 1956-2012 were selected by searching five electronic bibliographical databases and by a manual search conducted from 2012-2013. Search terms included 'family homeostasis', 'homeostasis in family', 'homeostatic care' and 'family equilibrium'. Clinical experiences in nursing practice were used for constructing cases and clinical implications. Walker and Avant's method guided this analysis. Family homeostasis is defined as the capacity and mechanisms by which equilibrium is re-established in the family after a change occurs. Five critical attributes are identified: (1) predetermined setpoint; (2) self-appraised antecedents; (3) interdependence; (4) tendency to stability; and (5) feedback mechanisms. Antecedents include any type of causative change beyond the tolerable limit, while consequences encompass intermediate and long-term outcomes as well as equilibrium itself. Family homeostasis provides a conceptual rationale of family caregiving. While care recipients remain the primary beneficiaries of healthcare provision, homeostatic mechanisms are required to support the family caregiver's valuable contribution in the caring process to enhance family well-being. Further study should expand the definition and settings of family to reflect healthcare needs of diverse types of families and from the perspectives of different healthcare providers. © 2014 John Wiley & Sons Ltd.

  3. [Peritoneal fluid iron levels in women with endometriosis].

    Science.gov (United States)

    Polak, Grzegorz; Wertel, Iwona; Tarkowski, Rafał; Kotarski, Jan

    2010-01-01

    Endometriosis is characterized by a cyclic hemorrhage within the peritoneal cavity. Accumulating data suggests that iron homeostasis in the peritoneal cavity may be disrupted by endometriosis. The aim of our study was to evaluate iron levels in peritoneal fluid (PF) of women with and without endometriosis. Seventy-five women were studied: 50 women with endometriosis and, as a reference group, 25 patients with functional follicle ovarian cysts. Iron concentrations in the PF were measured using a commercially available colorimetric assay kit. Iron concentrations were significantly higher in PF from women with endometriosis as compared to the reference group. Patients with stages III/IV endometriosis had significantly higher PF iron concentrations than women with stages I/II of the disease. Disrupted iron homeostasis in the peritoneal cavity of women with endometriosis plays a role in the pathogenesis of the disease.

  4. Age-Related Hypercholesterolemia and HMG-CoA Reductase Dysregulation: Sex Does Matter (A Gender Perspective

    Directory of Open Access Journals (Sweden)

    Laura Trapani

    2010-01-01

    Full Text Available Although cardiovascular diseases are less prevalent in premenopausal women than in men, their occurrence in women increases at the onset of menopause, and the loss of female sex hormones contributes to the striking increase in cardiovascular morbidity and mortality in postmenopausal women. We present here a description of age-related disruption of lipid homeostasis, which particularly affects 3-hydroxy 3-methylglutaryl Coenzyme A reductase, the key rate-limiting enzyme in the cholesterol biosynthetic pathway. We further discuss the age- and gender-related dysregulation of this enzyme, providing new evidence for the different mechanisms driving dyslipidemia in elderly men and women. In addition, we introduce pharmacological methods of regulating HMGR and maintaining cholesterol homeostasis.

  5. Complications of TNF-α antagonists and iron homeostasis

    Science.gov (United States)

    TNF-α is a central regulator of inflammation and its blockade downregulates other proinflammatory cytokines, chemokines, and growth factors. Subsequently, TNF-α antagonists are currently used in treatment regimens directed toward several inflammatory diseases. Despite a beneficia...

  6. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    , a situation unique in the Solar System. In such a world, iron metal is unstable and, as we all know, oxidizes to the ferric iron compounds we call 'rust'. If we require iron metal it must be produced at high temperatures by reacting iron ore, usually a mixture of ferrous (Fe2+) and ferric (Fe3+) oxides (Fe2O3......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost...... unique examples of iron metal, otherwise called 'native iron' or 'telluric iron', occur naturally....

  7. Parkinson's Disease: The Mitochondria-Iron Link

    Science.gov (United States)

    Carrasco, Carlos M.; Núñez, Marco T.

    2016-01-01

    Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinson's disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation and hydroxyl radical-mediated damage. These three occurrences—mitochondrial dysfunction, iron accumulation, and oxidative damage—generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and genetic cases of Parkinson's disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation—by decreasing iron-associated oxidative damage and by inducing cell survival and cell-rescue pathways—is a viable therapy for retarding this cycle. PMID:27293957

  8. Diseases of Pulmonary Surfactant Homeostasis

    Science.gov (United States)

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  9. Integrating themes, evidence gaps, and research needs identified by workshop on iron screening and supplementation in iron-replete pregnant women and young children.

    Science.gov (United States)

    Brannon, Patsy M; Stover, Patrick J; Taylor, Christine L

    2017-12-01

    This report addresses the evidence and the uncertainties, knowledge gaps, and research needs identified by participants at the NIH workshop related to iron screening and routine iron supplementation of largely iron-replete pregnant women and young children (6-24 mo) in developed countries. The workshop presentations and panel discussions focused on current understanding and knowledge gaps related to iron homeostasis, measurement of and evidence for iron status, and emerging concerns about supplementing iron-replete members of these vulnerable populations. Four integrating themes emerged across workshop presentations and discussion and centered on 1 ) physiologic or developmental adaptations of iron homeostasis to pregnancy and early infancy, respectively, and their implications, 2 ) improvement of the assessment of iron status across the full continuum from iron deficiency anemia to iron deficiency to iron replete to iron excess, 3 ) the linkage of iron status with health outcomes beyond hematologic outcomes, and 4 ) the balance of benefit and harm of iron supplementation of iron-replete pregnant women and young children. Research that addresses these themes in the context of the full continuum of iron status is needed to inform approaches to the balancing of benefits and harms of screening and routine supplementation. © 2017 American Society for Nutrition.

  10. Dysregulation of mitochondrial bioenergetics and quality control by HIV-1 Tat in cardiomyocytes.

    Science.gov (United States)

    Tahrir, Farzaneh G; Shanmughapriya, Santhanam; Ahooyi, Taha Mohseni; Knezevic, Tijana; Gupta, Manish K; Kontos, Christopher D; McClung, Joseph M; Madesh, Muniswamy; Gordon, Jennifer; Feldman, Arthur M; Cheung, Joseph Y; Khalili, Kamel

    2018-02-01

    Cardiovascular disease remains a leading cause of morbidity and mortality in HIV-positive patients, even in those whose viral loads are well controlled with antiretroviral therapy. However, the underlying molecular events responsible for the development of cardiac disease in the setting of HIV remain unknown. The HIV-encoded Tat protein plays a critical role in the activation of HIV gene expression and profoundly impacts homeostasis in both HIV-infected cells and uninfected cells that have taken up released Tat via a bystander effect. Since cardiomyocyte function, including excitation-contraction coupling, greatly depends on energy provided by the mitochondria, in this study, we performed a series of experiments to assess the impact of Tat on mitochondrial function and bioenergetics pathways in a primary cell culture model derived from neonatal rat ventricular cardiomyocytes (NRVCs). Our results show that the presence of Tat in cardiomyocytes is accompanied by a decrease in oxidative phosphorylation, a decline in the levels of ATP, and an accumulation of reactive oxygen species (ROS). Tat impairs the uptake of mitochondrial Ca 2+ ([Ca 2+ ] m ) and the electrophysiological activity of cardiomyocytes. Tat also affects the protein clearance pathway and autophagy in cardiomyocytes under stress due to hypoxia-reoxygenation conditions. A reduction in the level of ubiquitin along with dysregulated degradation of autophagy proteins including SQSTM1/p62 and a reduction of LC3 II were detected in cardiomyocytes harboring Tat. These results suggest that, by targeting mitochondria and protein quality control, Tat significantly impacts bioenergetics and autophagy resulting in dysregulation of cardiomyocyte health and homeostasis. © 2017 Wiley Periodicals, Inc.

  11. Emotion Dysregulation and Risky Sexual Behavior in Revictimization

    Science.gov (United States)

    Messman-Moore, Terri L.; Walsh, Kate L.; DiLillo, David

    2010-01-01

    Objective: The current study examined emotion dysregulation as a mechanism underlying risky sexual behavior and sexual revictimization among adult victims of child sexual abuse (CSA) and child physical abuse (CPA). Methods: Participants were 752 college women. Victimization history, emotion dysregulation, and risky sexual behavior were assessed…

  12. Emotion Dysregulation and Adolescent Psychopathology: A Prospective Study

    Science.gov (United States)

    Hatzenbuehler, Mark L.; Nolen-Hoeksema, Susan

    2011-01-01

    Background Emotion regulation deficits have been consistently linked to psychopathology in cross-sectional studies. However, the direction of the relationship between emotion regulation and psychopathology is unclear. This study examined the longitudinal and reciprocal relationships between emotion regulation deficits and psychopathology in adolescents. Methods Emotion dysregulation and symptomatology (depression, anxiety, aggressive behavior, and eating pathology) were assessed in a large, diverse sample of adolescents (N = 1,065) at two time points separated by seven months. Structural equation modeling was used to examine the longitudinal and reciprocal relationships between emotion dysregulation and symptoms of psychopathology. Results The three distinct emotion processes examined here (emotional understanding, dysregulated expression of sadness and anger, and ruminative responses to distress) formed a unitary latent emotion dysregulation factor. Emotion dysregulation predicted increases in anxiety symptoms, aggressive behavior, and eating pathology after controlling for baseline symptoms but did not predict depressive symptoms. In contrast, none of the four types of psychopathology predicted increases in emotion dysregulation after controlling for baseline emotion dysregulation. Conclusions Emotion dysregulation appears to be an important transdiagnostic factor that increases risk for a wide range of psychopathology outcomes in adolescence. These results suggest targets for preventive interventions during this developmental period of risk. PMID:21718967

  13. MicroRNA Dysregulation in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Omar ede Faria Jr.

    2013-01-01

    Full Text Available Multiple Sclerosis (MS is a chronic inflammatory disease characterized by central nervous system (CNS demyelination and axonal degeneration. Although the cause of MS is still unknown, it is widely accepted that novel drug targets need to focus on both decreasing inflammation and promoting CNS repair. In MS and experimental autoimmune encephalomyelitis (EAE non-coding small microRNAs (miRNAs are dysregulated in the immune and central nervous systems. Since individual miRNAs are able to downregulate multiple targeted mRNA transcripts, even minor changes in miRNA expression may lead to significant alterations in post-transcriptional gene expression. Herein, we review miRNA signatures reported in CNS tissue and immune cells of MS patients and consider how altered miRNA expression may influence MS pathology.

  14. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-08-27

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pretreatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pretreatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pretreatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from an M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Finally, nanotoxicology screening

  15. Siderophore-mediated iron trafficking in humans is regulated by iron

    Science.gov (United States)

    Liu, Zhuoming; Lanford, Robert; Mueller, Sebastian; Gerhard, Glenn S.; Luscieti, Sara; Sanchez, Mayka; Devireddy, L.

    2013-01-01

    Siderophores are best known as small iron binding molecules that facilitate microbial iron transport. In our previous study we identified a siderophore-like molecule in mammalian cells and found that its biogenesis is evolutionarily conserved. A member of the short chain dehydrogenase family of reductases, 3-OH butyrate dehydrogenase (BDH2) catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore. We have shown that depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of cellular iron and mitochondrial iron deficiency. These observations suggest that the mammalian siderophore is a critical regulator of cellular iron homeostasis and facilitates mitochondrial iron import. By utilizing bioinformatics, we identified an iron-responsive element (IRE; a stem-loop structure that regulates genes expression post-transcriptionally upon binding to iron regulatory proteins or IRPs) in the 3′-untranslated region (3′-UTR) of the human BDH2 (hBDH2) gene. In cultured cells as well as in patient samples we now demonstrate that the IRE confers iron-dependent regulation on hBDH2 and binds IRPs in RNA electrophoretic mobility shift assays. In addition, we show that the hBDH2 IRE associates with IRPs in cells and that abrogation of IRPs by RNAi eliminates the iron-dependent regulation of hBDH2 mRNA. The key physiologic implication is that iron-mediated post-transcriptional regulation of hBDH2 controls mitochondrial iron homeostasis in human cells. These observations provide a new and an unanticipated mechanism by which iron regulates its intracellular trafficking. PMID:22527885

  16. Iron and genome stability: An update

    International Nuclear Information System (INIS)

    Prá, Daniel; Franke, Silvia Isabel Rech; Henriques, João Antonio Pêgas; Fenech, Michael

    2012-01-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40–45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  17. Iron and genome stability: An update

    Energy Technology Data Exchange (ETDEWEB)

    Pra, Daniel, E-mail: daniel_pra@yahoo.com [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); PPG em Saude e Comportamento, Universidade Catolica de Pelotas, Pelotas, RS (Brazil); Franke, Silvia Isabel Rech [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); Henriques, Joao Antonio Pegas [Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Fenech, Michael [CSIRO Food and Nutritional Sciences, Adelaide, SA (Australia)

    2012-05-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40-45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  18. Arginine homeostasis in allergic asthma

    NARCIS (Netherlands)

    Maarsingh, Harm; Zaagsma, Johan; Meurs, Herman

    2008-01-01

    Allergic asthma is a chronic disease characterized by early and late asthmatic reactions, airway hyperresponsiveness, airway inflammation and airway remodelling. Changes in L-arginine homeostasis may contribute to all these features of asthma by decreased nitric oxide (NO) production and increased

  19. Ferritin, cellular iron storage and regulation.

    Science.gov (United States)

    Arosio, Paolo; Elia, Leonardo; Poli, Maura

    2017-06-01

    Ferritin is considered the major iron storage protein which maintains a large iron core in its cavity and has ferroxidase activity. There are many types of ferritin particularly in prokaryotes that include the canonical 24-mer FTN molecules, the heme-containing BFR, the smaller 12-mer DPS and the newly recognized EncFtn of encapsulin that forms a very large iron storage compartment. Recent studies show that ferritin function is more dynamic than previous depicted and new mechanisms of ferritin iron recycling are emerging. They participate to the regulation of cellular iron homeostasis as those of ferritin biosynthesis, cooperating also with the iron-dependent mechanism of cellular iron secretion. Some of these basic processes are in common between unicellular and animal cells, and this review aims at discussing the findings on the connections between iron storage, cellular iron regulation and ferritin iron recycling that have been explored in unicellular organisms and in animals. © 2017 IUBMB Life, 69(6):414-422, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  20. Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation.

    Science.gov (United States)

    Paula Neto, Heitor A; Ausina, Priscila; Gomez, Lilian S; Leandro, João G B; Zancan, Patricia; Sola-Penna, Mauro

    2017-01-01

    Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney) or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of "lean homeostasis" and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited.

  1. Modern iron replacement therapy: clinical and pathophysiological insights.

    Science.gov (United States)

    Girelli, Domenico; Ugolini, Sara; Busti, Fabiana; Marchi, Giacomo; Castagna, Annalisa

    2018-01-01

    Iron deficiency, with or without anemia, is extremely frequent worldwide, representing a major public health problem. Iron replacement therapy dates back to the seventeenth century, and has progressed relatively slowly until recently. Both oral and intravenous traditional iron formulations are known to be far from ideal, mainly because of tolerability and safety issues, respectively. At the beginning of this century, the discovery of hepcidin/ferroportin axis has represented a turning point in the knowledge of the pathophysiology of iron metabolism disorders, ushering a new era. In the meantime, advances in the pharmaceutical technologies are producing newer iron formulations aimed at minimizing the problems inherent with traditional approaches. The pharmacokinetic of oral and parenteral iron is substantially different, and diversities have become even clearer in light of the hepcidin master role in regulating systemic iron homeostasis. Here we review how iron therapy is changing because of such important advances in both pathophysiology and pharmacology.

  2. An innately dangerous balancing act: intestinal homeostasis, inflammation, and colitis-associated cancer

    Science.gov (United States)

    2010-01-01

    Inflammatory bowel disease (IBD) is characterized by dysregulated immune responses to the intestinal microbiota, and by chronic intestinal inflammation. Several recent studies demonstrate the importance of innate microbial recognition by immune and nonimmune cells in the gut. Paradoxically, either diminished or exacerbated innate immune signaling may trigger the breakdown of intestinal homeostasis, leading to IBD and colitis-associated cancer (CAC). This dichotomy may reflect divergent functional roles for immune sensing in intestinal epithelial cells and leukocytes, which may vary with distinct disease mechanisms. PMID:20679404

  3. Cyclooxygenase-2-dependent prostacyclin formation and blood pressure homeostasis: targeted exchange of cyclooxygenase isoforms in mice

    DEFF Research Database (Denmark)

    Yu, Ying; Stubbe, Jane; Ibrahim, Salam

    2010-01-01

    pressure. OBJECTIVE: To elucidate the role of COX-2 in blood pressure homeostasis using COX-1>COX-2 mice, in which the COX-1 expression is controlled by COX-2 regulatory elements. METHODS AND RESULTS: COX-1>COX-2 mice developed systolic hypertension relative to wild types (WTs) on a high-salt diet (HSD...... and again the increase in formation of PGI(2) observed in WTs was suppressed in cells derived from both mutants. Intramedullary infusion of the PGI(2) receptor agonist increased urine volume and sodium excretion in mice. CONCLUSIONS: These studies suggest that dysregulated expression of the COX-2 dependent...

  4. Duodenal Cytochrome b (DCYTB in Iron Metabolism: An Update on Function and Regulation

    Directory of Open Access Journals (Sweden)

    Darius J. R. Lane

    2015-03-01

    Full Text Available Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally; both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake; rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut; ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities; intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes; namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron on the opposite side of the membrane. One member of this family; duodenal cytochrome b (DCYTB; may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis; the emergent “IRP1-HIF2α axis”; DCYTB and ascorbate in relation to iron metabolism.

  5. The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings

    International Nuclear Information System (INIS)

    Wang, Lin-Shu; Ma, Peizheng

    2016-01-01

    Highlights: • Architectural homeostatic buildings (AHBs) make sense because of the laws of physics. • However, high efficiency can be obtained only with AHBs and equipment considered as systems. • Mechanical homeostasis facilitates AHB-equipment system synergy with heat extraction. • Entropically speaking a building needs neither energy nor a fixed amount of heat, but its homeostatic existence. • Homeostatic buildings can reduce building energy consumption from 80% to 90%. - Abstract: We already know, for energy-saving potential, the necessary architectural features in well-designed buildings: high performance building envelope, sufficient interior thermal mass, and hydronic-network activated radiant surfaces for cooling and heating. Buildings with these features may be referred to as architecturally homeostatic buildings (AHBs); such a building-system is thermally semi-autonomous in the sense that its temperature variation stays within a certain range even without conditioning equipment, and, with conditioning equipment in operation, its thermal regulation is handled by its hydronic heat-distribution-network for controlling the temperature level of the building. At the present time conventional HVAC equipment is used for maintaining the heat-distribution-network: this arrangement, however, has resulted in great energy saving only for AHBs with accessible natural water bodies. In operation of general AHBs, a case is made here for a new kind of mechanical equipment having the attribute of mechanical homeostasis (MH). MH is a new energy transformation concept in a triadic framework. Superlative energy efficiency is predicted as a result of combined improvements in higher triadCOPs and lower total (inducted + removed) heat rates—evincing existence of synergy in architectural and mechanical homeostasis, which together will be referred to as the homeostasis solution.

  6. Diurnal variations in iron concentrations and expression of genes involved in iron absorption and metabolism in pigs.

    Science.gov (United States)

    Zhang, Yiming; Wan, Dan; Zhou, Xihong; Long, Ciming; Wu, Xin; Li, Lan; He, Liuqin; Huang, Pan; Chen, Shuai; Tan, Bie; Yin, Yulong

    2017-09-02

    Diurnal variations in serum iron levels have been well documented in clinical studies, and serum iron is an important diagnostic index for iron-deficiency anemia. However, the underlying mechanism of dynamic iron regulation in response to the circadian rhythm is still unclear. In this study, we investigated daily variations in iron status in the plasma and liver of pigs. The transcripts encoding key factors involved in iron uptake and homeostasis were evaluated. The results showed that iron levels in the plasma and liver exhibited diurnal rhythms. Diurnal variations were also observed in transcript levels of divalent metal transporter 1 (DMT1), membrane-associated ferric reductase 1 (DCYTB), and transferrin receptor (TfR) in the duodenum and jejunum, as well as hepcidin (HAMP) and TfR in the liver. Moreover, the results showed a network in which diurnal variations in systemic iron levels were tightly regulated by hepcidin and Tf/TfR via DCYTB and DMT1. These findings provide new insights into circadian iron homeostasis regulation. The diurnal variations in serum iron levels may also have pathophysiological implications for clinical diagnostics related to iron deficiency anemia in pigs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Altered expression of iron regulatory proteins with aging is associated with transient hepatic iron accumulation after environmental heat stress.

    Science.gov (United States)

    Bloomer, Steven A; Han, Okhee; Kregel, Kevin C; Brown, Kyle E

    2014-01-01

    An increasing body of evidence suggests that dysregulation of iron metabolism contributes to age-related pathologies. We have previously observed increased hepatic iron with aging, and that environmental heat stress stimulates a further increase in iron and oxidative liver injury in old rats. The purpose of this study was to determine a mechanism for the increase in hepatic iron in old rats after heat stress. Young (6 mo) and old (24 mo) Fischer 344 rats were exposed to two heating bouts separated by 24 h. Livers were harvested after the second heat stress, and protein levels of the iron import protein, transferrin receptor-1 (TFR1), and the iron export protein, ferroportin (Fpn) were determined by immunoblot. In the nonheated condition, old rats had lower TFR1 expression, and higher Fpn expression. After heat stress, TFR1 declined in the old rats, and iron chelation studies demonstrated that this decline was dependent on a hyperthermia-induced increase in iron. TFR1 did not change in the young rats after heat stress. Since TFR1 is inversely regulated by iron, our results suggest that the increase in intracellular iron with aging and heat stress lower TFR1 expression. Fpn expression increased in both age groups after heat stress, but this response was delayed in old rats. This delay in the induction of an iron exporter suggests a mechanism for the increase in hepatic iron and oxidative injury after heat stress in aged organisms. © 2013.

  8. Viral (hepatitis C virus, hepatitis B virus, HIV) persistence and immune homeostasis

    Science.gov (United States)

    Zhou, Yun; Zhang, Ying; Moorman, Jonathan P; Yao, Zhi Q; Jia, Zhan S

    2014-01-01

    Immune homeostasis is a host characteristic that maintains biological balance within a host. Humans have evolved many host defence mechanisms that ensure the survival of individuals upon encountering a pathogenic infection, with recovery or persistence from a viral infection being determined by both viral factors and host immunity. Chronic viral infections, such as hepatitis B virus, hepatitis C virus and HIV, often result in chronic fluctuating viraemia in the face of host cellular and humoral immune responses, which are dysregulated by multi-faceted mechanisms that are incompletely understood. This review attempts to illuminate the mechanisms involved in this process, focusing on immune homeostasis in the setting of persistent viral infection from the aspects of host defence mechanism, including interferon-stimulated genes, apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3), autophagy and interactions of various immune cells, cytokines and regulatory molecules. PMID:24965611

  9. Dysregulation of the Bmi-1/p16Ink4a pathway provokes an aging-associated decline of submandibular gland function

    Science.gov (United States)

    Yamakoshi, Kimi; Katano, Satoshi; Iida, Mayu; Kimura, Hiromi; Okuma, Atsushi; Ikemoto-Uezumi, Madoka; Ohtani, Naoko; Hara, Eiji; Maruyama, Mitsuo

    2015-01-01

    Bmi-1 prevents stem cell aging, at least partly, by blocking expression of the cyclin-dependent kinase inhibitor p16Ink4a. Therefore, dysregulation of the Bmi-1/p16Ink4a pathway is considered key to the loss of tissue homeostasis and development of associated degenerative diseases during aging. However, because Bmi-1 knockout (KO) mice die within 20 weeks after birth, it is difficult to determine exactly where and when dysregulation of the Bmi-1/p16Ink4a pathway occurs during aging in vivo. Using real-time in vivo imaging of p16Ink4a expression in Bmi-1-KO mice, we uncovered a novel function of the Bmi-1/p16Ink4a pathway in controlling homeostasis of the submandibular glands (SMGs), which secrete saliva into the oral cavity. This pathway is dysregulated during aging in vivo, leading to induction of p16Ink4a expression and subsequent declined SMG function. These findings will advance our understanding of the molecular mechanisms underlying the aging-related decline of SMG function and associated salivary gland hypofunction, which is particularly problematic among the elderly. PMID:25832744

  10. Microbial Community Composition Impacts Pathogen Iron Availability during Polymicrobial Infection.

    Directory of Open Access Journals (Sweden)

    Apollo Stacy

    2016-12-01

    Full Text Available Iron is an essential nutrient for bacterial pathogenesis, but in the host, iron is tightly sequestered, limiting its availability for bacterial growth. Although this is an important arm of host immunity, most studies examine how bacteria respond to iron restriction in laboratory rather than host settings, where the microbiome can potentially alter pathogen strategies for acquiring iron. One of the most important transcriptional regulators controlling bacterial iron homeostasis is Fur. Here we used a combination of RNA-seq and chromatin immunoprecipitation (ChIP-seq to characterize the iron-restricted and Fur regulons of the biofilm-forming opportunistic pathogen Aggregatibacter actinomycetemcomitans. We discovered that iron restriction and Fur regulate 4% and 3.5% of the genome, respectively. While most genes in these regulons were related to iron uptake and metabolism, we found that Fur also directly regulates the biofilm-dispersing enzyme Dispersin B, allowing A. actinomycetemcomitans to escape from iron-scarce environments. We then leveraged these datasets to assess the availability of iron to A. actinomycetemcomitans in its primary infection sites, abscesses and the oral cavity. We found that A. actinomycetemcomitans is not restricted for iron in a murine abscess mono-infection, but becomes restricted for iron upon co-infection with the oral commensal Streptococcus gordonii. Furthermore, in the transition from health to disease in human gum infection, A. actinomycetemcomitans also becomes restricted for iron. These results suggest that host iron availability is heterogeneous and dependent on the infecting bacterial community.

  11. Dual Role of ROS as Signal and Stress Agents: Iron Tips the Balance in favor of Toxic Effects.

    Science.gov (United States)

    Gammella, Elena; Recalcati, Stefania; Cairo, Gaetano

    2016-01-01

    Iron is essential for life, while also being potentially harmful. Therefore, its level is strictly monitored and complex pathways have evolved to keep iron safely bound to transport or storage proteins, thereby maintaining homeostasis at the cellular and systemic levels. These sequestration mechanisms ensure that mildly reactive oxygen species like anion superoxide and hydrogen peroxide, which are continuously generated in cells living under aerobic conditions, keep their physiologic role in cell signaling while escaping iron-catalyzed transformation in the highly toxic hydroxyl radical. In this review, we describe the multifaceted systems regulating cellular and body iron homeostasis and discuss how altered iron balance may lead to oxidative damage in some pathophysiological settings.

  12. The Child Behavior Checklist Dysregulation Profile in Preschool Children: A Broad Dysregulation Syndrome.

    Science.gov (United States)

    Geeraerts, Sanne Barbara; Deutz, Marike Hester Francisca; Deković, Maja; Bunte, Tessa; Schoemaker, Kim; Espy, Kimberly Andrews; Prinzie, Peter; van Baar, Anneloes; Matthys, Walter

    2015-07-01

    Children with concurrent impairments in regulating affect, behavior, and cognition can be identified with the Anxious/Depressed, Aggressive Behavior, and Attention Problems scales (or AAA scales) of the Child Behavior Checklist (CBCL). Jointly, these scales form the Dysregulation Profile (DP). Despite persuasive evidence that DP is a marker for severe developmental problems, no consensus exists on the preferred conceptualization and operationalization of DP in preschool years. We addressed this concern by testing and validating the factor structure of DP in a group of predominantly clinically referred preschool children. Participants were 247 children (195 boys and 52 girls), aged 3.5 to 5.5 years. Children were assessed at baseline and 18 months later, using parent and teacher reports, a clinical interview with parents, behavioral observations, and neuropsychological tasks. Confirmatory factor analysis showed that a bifactor model, with a general DP factor and 3 specific factors representing the AAA scales, fitted the data better than a second-order model and a one-factor model for both parent-reported and teacher-reported child problem behavior. Criterion validity analyses showed that the DP factor was concurrently and longitudinally associated with markers of dysregulation and clinically relevant criteria, whereas the specific factors representing the AAA scales were more differentially related to those criteria. DP is best conceptualized as a broad syndrome of dysregulation that exists in addition to the specific syndromes as represented by the AAA scales. Implications for researchers and clinicians are discussed. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis

    Directory of Open Access Journals (Sweden)

    Jonathon eTelianidis

    2013-08-01

    Full Text Available Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-Type ATPases (copper-ATPases, ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.

  14. Redox Dysregulation in the Pathophysiology of Schizophrenia and Bipolar Disorder

    DEFF Research Database (Denmark)

    Kulak, Anita; Steullet, Pascal; Cabungcal, Jan-Harry

    2013-01-01

    Abstract Significance: Schizophrenia (SZ) and bipolar disorder (BD) are classified as two distinct diseases. However, accumulating evidence shows that both disorders share genetic, pathological, and epidemiological characteristics. Based on genetic and functional findings, redox dysregulation due...

  15. Gender moderates the relationship between attachment insecurities and emotion dysregulation

    NARCIS (Netherlands)

    Velotti, P.; D’Aguanno, M.; de Campora, G.; di Francescantonio, S.; Garofalo, C.; Giromini, L.; Petrocchi, C.; Terrasi, M.; Zavattini, G.C.

    2016-01-01

    The relation between attachment styles and emotion regulation is well documented, and emotion dysregulation is considered characteristic of individuals with insecure attachment styles. Although gender differences in emotion regulation have often been reported, it is not clear whether the association

  16. Serum hepcidin is significantly associated with iron absorption from food and supplemental sources in healthy young woman

    Science.gov (United States)

    Hepcidin is a key regulator of iron homeostasis, but to date no studies have examined the effect of hepcidin on iron absorption in humans. Our objective was to assess relations between both serum hepcidin and serum prohepcidin with nonheme-iron absorption in the presence and absence of food with the...

  17. Decreased serum hepcidin, inflammation, and improved functional iron status six-months post-restrictive bariatric surgery.

    Science.gov (United States)

    Excess adiposity is associated with low-grade inflammation and decreased iron status. Iron depletion (ID) in obesity is thought to be mediated by an inflammation-induced increase in the body’s main regulator of iron homeostasis, hepcidin. Elevated hepcidin can result in ID as it prevents the release...

  18. Dysregulated behaviors in bulimia nervosa: a case-control study

    OpenAIRE

    Gonçalves, Sónia; Machado, Bárbara Freire Brito César; Martins, C.; Brandão, Isabel; Torres, António Roma; Machado, Paulo P. P.

    2014-01-01

    Background: Bulimia nervosa (BN) is often related to self-control difficulties and to dysregulated behaviours. This study aimed to evaluate the frequency of self-injurious behaviour, suicide attempts, and other dysregulated behaviours in BN, using two control groups (a healthy group and a general psychiatric group), and also to examine the association between these behaviours and alleged sexual abuse in BN.Method: Women (N = 233) aged between 13 and 38 years old were evaluated using a semi-st...

  19. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  20. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    International Nuclear Information System (INIS)

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max

    2005-01-01

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1α). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  1. The Relationship Between Iron and Nitrogen Fixation in Trichodesmium spp.

    Science.gov (United States)

    2009-06-01

    Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem Cy 18: ARTN GB4028. Moutin, T., Van Den...IMS101) to evaluate the potential Fe stress response in the genus. A list of IMS101 genes predicted to be involved in Fe transport and homeostasis ...3.5 EXPERIMENTAL PROCEDURES 3.5.1 Genomic Database Searching. Genes associated with the Fe scavenging and control of Fe homeostasis systems in

  2. Dysregulation of Sleep Behavioral States in Narcolepsy.

    Science.gov (United States)

    Schoch, Sarah F; Werth, Esther; Poryazova, Rositsa; Scammell, Thomas E; Baumann, Christian R; Imbach, Lukas L

    2017-12-01

    Patients with narcolepsy experience poor maintenance of wakefulness and fragmented night sleep, but the underlying mechanism of sleep boundary dysregulation remains little understood. The goal of this study was to quantify abnormal sleep-wake regulation in narcolepsy patients. Using a model-based approach (state space analysis), we analyzed overnight electroencephalography recordings in 10 patients with narcolepsy type 1 and age- and gender-matched healthy control subjects. We analyzed consolidated sleep states using cluster analysis in state space and transitional sleep periods as trajectories between stable clusters. Patients with narcolepsy showed a dislocation of rapid eye movement (REM) sleep in state space and overlap of REM and WAKE behavioral states. Narcolepsy patients had more trajectories between the REM and the WAKE clusters and also between the non-rapid eye movement (NREM) and WAKE clusters. Point density analysis showed more transitional periods between WAKE and REM in narcolepsy, less consolidated NREM sleep, and higher velocities between WAKE and NREM in patients. Conventional sleep analysis revealed increased NREM1 and decreased NREM2 sleep and reduced REM latency in narcolepsy patients. This study provides further evidence for narcolepsy as a disorder of state boundaries including but not limited to REM sleep and wakefulness. In particular, the increase in transitional periods between REM and WAKE but also between NREM and WAKE indicates abnormal state dynamics in narcolepsy. This pattern may be a consequence of disrupted sleep/wake stabilizing mechanisms due to loss of hypocretin/orexin neurons in the hypothalamus. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  3. Salinomycin kills cancer stem cells by sequestering iron in lysosomes

    Science.gov (United States)

    Mai, Trang Thi; Hamaï, Ahmed; Hienzsch, Antje; Cañeque, Tatiana; Müller, Sebastian; Wicinski, Julien; Cabaud, Olivier; Leroy, Christine; David, Amandine; Acevedo, Verónica; Ryo, Akihide; Ginestier, Christophe; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle; Codogno, Patrice; Mehrpour, Maryam; Rodriguez, Raphaël

    2017-10-01

    Cancer stem cells (CSCs) represent a subset of cells within tumours that exhibit self-renewal properties and the capacity to seed tumours. CSCs are typically refractory to conventional treatments and have been associated to metastasis and relapse. Salinomycin operates as a selective agent against CSCs through mechanisms that remain elusive. Here, we provide evidence that a synthetic derivative of salinomycin, which we named ironomycin (AM5), exhibits a more potent and selective activity against breast CSCs in vitro and in vivo, by accumulating and sequestering iron in lysosomes. In response to the ensuing cytoplasmic depletion of iron, cells triggered the degradation of ferritin in lysosomes, leading to further iron loading in this organelle. Iron-mediated production of reactive oxygen species promoted lysosomal membrane permeabilization, activating a cell death pathway consistent with ferroptosis. These findings reveal the prevalence of iron homeostasis in breast CSCs, pointing towards iron and iron-mediated processes as potential targets against these cells.

  4. Serotonergic Control of Metabolic Homeostasis

    Directory of Open Access Journals (Sweden)

    Steven C. Wyler

    2017-09-01

    Full Text Available New treatments are urgently needed to address the current epidemic of obesity and diabetes. Recent studies have highlighted multiple pathways whereby serotonin (5-HT modulates energy homeostasis, leading to a renewed interest in the identification of 5-HT-based therapies for metabolic disease. This review aims to synthesize pharmacological and genetic studies that have found diverse functions of both central and peripheral 5-HT in the control of food intake, thermogenesis, and glucose and lipid metabolism. We also discuss the potential benefits of targeting the 5-HT system to combat metabolic disease.

  5. Schema Therapy for Emotional Dysregulation: Theoretical Implication and Clinical Applications

    Science.gov (United States)

    Dadomo, Harold; Grecucci, Alessandro; Giardini, Irene; Ugolini, Erika; Carmelita, Alessandro; Panzeri, Marta

    2016-01-01

    The term emotional dysregulation refers to an impaired ability to regulate unwanted emotional states. Scientific evidence supports the idea that emotional dysregulation underlies several psychological disorders as, for example: personality disorders, bipolar disorder type II, interpersonal trauma, anxiety disorders, mood disorders and post-traumatic stress disorder. Emotional dysregulation may derive from early interpersonal traumas in childhood. These early traumatic events create a persistent sensitization of the central nervous system in relation to early life stressing events. For this reason, some authors suggest a common endophenotypical origin across psychopathologies. In the last 20 years, cognitive behavioral therapy has increasingly adopted an interactive-ontogenetic view to explain the development of disorders associated to emotional dysregulation. Unfortunately, standard Cognitive Behavior Therapy (CBT) methods are not useful in treating emotional dysregulation. A CBT-derived new approach called Schema Therapy (ST), that integrates theory and techniques from psychodynamic and emotion focused therapy, holds the promise to fill this gap in cognitive literature. In this model, psychopathology is viewed as the interaction between the innate temperament of the child and the early experiences of deprivation or frustration of the subject’s basic needs. This deprivation may lead to develop early maladaptive schemas (EMS), and maladaptive Modes. In the present paper we point out that EMSs and Modes are associated with either dysregulated emotions or with dysregulatory strategies that produce and maintain problematic emotional responses. Thanks to a special focus on the therapeutic relationship and emotion focused-experiential techniques, this approach successfully treats severe emotional dysregulation. In this paper, we make several comparisons between the main ideas of ST and the science of emotion regulation, and we present how to conceptualize pathological

  6. Emotion dysregulation and social competence: stability, change and predictive power.

    Science.gov (United States)

    Berkovits, L D; Baker, B L

    2014-08-01

    Social difficulties are closely linked to emotion dysregulation among children with typical development (TD). Children with developmental delays (DD) are at risk for poor social outcomes, but the relationship between social and emotional development within this population is not well understood. The current study examines the extent to which emotion dysregulation is related to social problems across middle childhood among children with TD or DD. Children with TD (IQ ≥ 85, n = 113) and children with DD (IQ ≤ 75, n = 61) participated in a longitudinal study. Annual assessments were completed at ages 7, 8 and 9 years. At each assessment, mothers reported on children's emotion dysregulation, and both mothers and teachers reported on children's social difficulties. Children with DD had higher levels of emotion dysregulation and social problems at each age than those with TD. Emotion dysregulation and social problems were significantly positively correlated within both TD and DD groups using mother report of social problems, and within the TD group using teacher report of social problems. Among children with TD, emotion dysregulation consistently predicted change in social problems from one year to the next. However, among children with DD, emotion dysregulation offered no unique prediction value above and beyond current social problems. Results suggested that the influence of emotion regulation abilities on social development may be a less salient pathway for children with DD. These children may have more influences, beyond emotion regulation, on their social behaviour, highlighting the importance of directly targeting social skill deficits among children with DD in order to ameliorate their social difficulties. © 2013 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  7. Bacterial ferrous iron transport: the Feo system.

    Science.gov (United States)

    Lau, Cheryl K Y; Krewulak, Karla D; Vogel, Hans J

    2016-03-01

    To maintain iron homeostasis within the cell, bacteria have evolved various types of iron acquisition systems. Ferric iron (Fe(3+)) is the dominant species in an oxygenated environment, while ferrous iron (Fe(2+)) is more abundant under anaerobic conditions or at low pH. For organisms that must combat oxygen limitation for their everyday survival, pathways for the uptake of ferrous iron are essential. Several bacterial ferrous iron transport systems have been described; however, only the Feo system appears to be widely distributed and is exclusively dedicated to the transport of iron. In recent years, many studies have explored the role of the FeoB and FeoA proteins in ferrous iron transport and their contribution toward bacterial virulence. The three-dimensional structures for the Feo proteins have recently been determined and provide insight into the molecular details of the transport system. A highly select group of bacteria also express the FeoC protein from the same operon. This review will provide a comprehensive look at the structural and functional aspects of the Feo system. In addition, bioinformatics analyses of the feo operon and the Feo proteins have been performed to complement our understanding of this ubiquitous bacterial uptake system, providing a new outlook for future studies. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Glycogen autophagy in glucose homeostasis.

    Science.gov (United States)

    Kotoulas, O B; Kalamidas, S A; Kondomerkos, D J

    2006-01-01

    Glycogen autophagy, the sequestration and degradation of cell glycogen in the autophagic vacuoles, is a selective, hormonally controlled and highly regulated process, representing a mechanism of glucose homeostasis under conditions of demand for the production of this sugar. In the newborn animals, this process is induced by glucagon secreted during the postnatal hypoglycemia and inhibited by insulin and parenteral glucose, which abolishes glucagon secretion. Hormonal action is mediated by the cAMP/protein kinase A (induction) and phosphoinositides/mTOR (inhibition) pathways that converge on common targets, such as the protein phosphatase 2A to regulate autophgosomal glycogen-hydrolyzing acid glucosidase and glycogen autophagy. Intralysosomal phosphate exchange reactions, which are affected by changes in the calcium levels and acid mannose 6- and acid glucose 6-phosphatase activities, can modify the intralysosomal composition in phosphorylated and nonphosphorylated glucose and promote the exit of free glucose through the lysosomal membrane. Glycogen autophagy-derived nonphosphorylated glucose assists the hyaloplasmic glycogen degradation-derived glucose 6-phosphate to combat postnatal hypoglycemia and participates in other metabolic pathways to secure the fine tuning of glucose homeostasis during the neonatal period.

  9. The Impact of Age-Related Dysregulation of the Angiotensin System on Mitochondrial Redox Balance

    Directory of Open Access Journals (Sweden)

    Ramya eVajapey

    2014-11-01

    Full Text Available Aging is associated with the accumulation of various deleterious changes in cells. According to the free radical and mitochondrial theory of aging, mitochondria initiate most of the deleterious changes in aging and govern life span. The failure of mitochondrial reduction-oxidation (redox homeostasis and the formation of excessive free radicals are tightly linked to dysregulation in the Renin Angiotensin System (RAS. A main rate-controlling step in RAS is renin, an enzyme that hydrolyzes angiotensinogen to generate angiotensin I. Angiotensin I is further converted to Angiotensin II (Ang II by angiotensin-converting enzyme (ACE. Ang II binds with equal affinity to two main angiotensin receptors—type 1 (AT1R and type 2 (AT2R. The binding of Ang II to AT1R activates NADPH oxidase, which leads to increased generation of cytoplasmic reactive oxygen species (ROS. This Ang II-AT1R–NADPH-ROS signal triggers the opening of mitochondrial KATP channels and mitochondrial ROS production in a positive feedback loop. Furthermore, RAS has been implicated in the decrease of many of ROS scavenging enzymes, thereby leading to detrimental levels of free radicals in the cell.AT2R is less understood, but evidence supports an anti-oxidative and mitochondria-protective function for AT2R. The overlap between age related changes in RAS and mitochondria, and the consequences of this overlap on age-related diseases are quite complex. RAS dysregulation has been implicated in many pathological conditions due to its contribution to mitochondrial dysfunction. Decreased age-related, renal and cardiac mitochondrial dysfunction was seen in patients treated with angiotensin receptor blockers. The aim of this review is to: (a report the most recent information elucidating the role of RAS in mitochondrial redox hemostasis and (b discuss the effect of age-related activation of RAS on generation of free radicals.

  10. Emotion dysregulation and negative affect: association with psychiatric symptoms.

    Science.gov (United States)

    Bradley, Bekh; DeFife, Jared A; Guarnaccia, Clifford; Phifer, Justine; Fani, Negar; Ressler, Kerry J; Westen, Drew

    2011-05-01

    A growing body of research focuses on the development and correlates of emotion dysregulation, or deficits in the ability to regulate intense and shifting emotional states. Current models of psychopathology have incorporated the construct of emotion dysregulation, suggesting its unique and interactive contributions, along with childhood disruptive experiences and negative affect, in producing symptomatic distress. Some researchers have suggested that emotion dysregulation is simply a variant of high negative affect. The aim of this study was to assess the construct and incremental validity of self-reported emotion dysregulation over and above childhood trauma and negative affect in predicting a range of psychopathology. Five hundred thirty individuals aged 18 to 77 years (62% female) were recruited from the waiting areas of the general medical and obstetric/gynecologic clinics in an urban public hospital in Atlanta, Georgia. Participants completed a battery of self-report measures obtained by interview, including the Childhood Trauma Questionnaire, the Positive and Negative Affect Schedule, and the Emotion Dysregulation Scale. Regression analyses examined the unique and incremental associations of these self-report measurements of childhood traumatic experiences, negative affect, and emotion dysregulation with concurrent structured interview-based measurements of psychiatric distress and history of self-destructive behaviors. These measures included the Clinician-Administered PTSD Scale, the Alcohol Use Disorders Identification Test, the Short Drug Abuse Screening Test, the Beck Depression Inventory, and the Global Adaptive Functioning Scale from the Longitudinal Interval Follow-Up Evaluation. The presented data were collected between 2005 and 2009. Regression models including age, gender, childhood trauma, negative affect, and emotion dysregulation were significantly (P ≤ .001) associated with each of the study's criterion variables, accounting for large

  11. Dysregulated sexuality and high sexual desire: distinct constructs?

    Science.gov (United States)

    Winters, Jason; Christoff, Kalina; Gorzalka, Boris B

    2010-10-01

    The literature on dysregulated sexuality, whether theoretical, clinical or empirical, has failed to differentiate the construct from high sexual desire. In this study, we tested three hypotheses which addressed this issue. A sample of 6458 men and 7938 women, some of whom had sought treatment for sexual compulsivity, addiction or impulsivity, completed an online survey comprised of various sexuality measures. Men and women who reported having sought treatment scored significantly higher on measures of dysregulated sexuality and sexual desire. For men, women, and those who had sought treatment, dysregulated sexuality was associated with increased sexual desire. Confirmatory factor analysis supported a one-factor model, indicating that, in both male and female participants, dysregulated sexuality and sexual desire variables loaded onto a single underlying factor. The results of this study suggest that dysregulated sexuality, as currently conceptualized, labelled, and measured, may simply be a marker of high sexual desire and the distress associated with managing a high degree of sexual thoughts, feelings, and needs.

  12. Biochemical and biophysical methods for studying mitochondrial iron metabolism.

    Science.gov (United States)

    Holmes-Hampton, Gregory P; Tong, Wing-Hang; Rouault, Tracey A

    2014-01-01

    Iron is a heavily utilized element in organisms and numerous mechanisms accordingly regulate the trafficking, metabolism, and storage of iron. Despite the high regulation of iron homeostasis, several diseases and mutations can lead to the misregulation and often accumulation of iron in the cytosol or mitochondria of tissues. To understand the genesis of iron overload, it is necessary to employ various techniques to quantify iron in organisms and mitochondria. This chapter discusses techniques for determining the total iron content of tissue samples, ranging from colorimetric determination of iron concentrations, atomic absorption spectroscopy, inductively coupled plasma-optical emission spectroscopy, and inductively coupled plasma-mass spectrometry. In addition, we discuss in situ techniques for analyzing iron including electron microscopic nonheme iron histochemistry, electron energy loss spectroscopy, synchrotron X-ray fluorescence imaging, and confocal Raman microscopy. Finally, we discuss biophysical methods for studying iron in isolated mitochondria, including ultraviolet-visible, electron paramagnetic resonance, X-ray absorbance, and Mössbauer spectroscopies. This chapter should aid researchers to select and interpret mitochondrial iron quantifications.

  13. Dysregulation in children: Origins and implications from age 5 to age 28.

    Science.gov (United States)

    McQuillan, Maureen E; Kultur, Ebru C; Bates, John E; O'Reilly, Lauren M; Dodge, Kenneth A; Lansford, Jennifer E; Pettit, Gregory S

    2017-11-20

    Research shows that childhood dysregulation is associated with later psychiatric disorders. It does not yet resolve discrepancies in the operationalization of dysregulation. It is also far from settled on the origins and implications of individual differences in dysregulation. This study tested several operational definitions of dysregulation using Achenbach attention, anxious/depressed, and aggression subscales. Individual growth curves of dysregulation were computed, and predictors of growth differences were considered. The study also compared the predictive utility of the dysregulation indexes to standard externalizing and internalizing indexes. Dysregulation was indexed annually for 24 years in a community sample (n = 585). Hierarchical linear models considered changes in dysregulation in relation to possible influences from parenting, family stress, child temperament, language, and peer relations. In a test of the meaning of dysregulation, it was related to functional and psychiatric outcomes in adulthood. Dysregulation predictions were further compared to those of the more standard internalizing and externalizing indexes. Growth curve analyses showed strong stability of dysregulation. Initial levels of dysregulation were predicted by temperamental resistance to control, and change in dysregulation was predicted by poor language ability and peer relations. Dysregulation and externalizing problems were associated with negative adult outcomes to a similar extent.

  14. Iron status in obese women.

    Science.gov (United States)

    Stankowiak-Kulpa, Hanna; Kargulewicz, Angelika; Styszyński, Arkadiusz; Swora-Cwynar, Ewelina; Grzymisławski, Marian

    2017-12-23

    A decreased concentration of iron, and consecutively haemoglobin, ferritin and decreased level of saturated transferrin, were observed in obese individuals more often than in healthy subjects. The purpose of this study was to determine whether iron, ferritin, transferrin saturation are significantly diminished in obese female patients compared to non-obese counterparts, and whether excess adiposity and inflammation were associated with depleted iron. Female patients (n=48) diagnosed with obesity (BMI > 30 kg/m2), aged 18-40 were accepted for the study. A control group (n=30) encompassed normal weight women, aged 18-30. All obese women obtained an individually adjusted dietary plan with an energy content of 1,500 kcal. Blood glucose, insulin, lipids, ferritin, TIBC and iron concentrations were assayed in serum twice, initially and after 8 weeks of dieting. The obese women at the initial evaluation, in comparison to non-obese control women, were characterized by a significantly lower mean red blood cell volume (MCV; 84.2±12.4 vs. 91.3±9.3 fL; piron level (92.6±42.4 vs. 119.8±44.0 μg/dL; piron homeostasis. Weight loss leads to decrease in the CRP level, but it does not change haematologic parameters in the period of 8 weeks.

  15. Calcium dysregulation via L-type voltage-dependent calcium channels and ryanodine receptors underlies memory deficits and synaptic dysfunction during chronic neuroinflammation.

    Science.gov (United States)

    Hopp, Sarah C; D'Angelo, Heather M; Royer, Sarah E; Kaercher, Roxanne M; Crockett, Alexis M; Adzovic, Linda; Wenk, Gary L

    2015-03-25

    Chronic neuroinflammation and calcium (Ca(+2)) dysregulation are both components of Alzheimer's disease. Prolonged neuroinflammation produces elevation of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal Ca(+2) homeostasis via L-type voltage-dependent Ca(+2) channels (L-VDCCs) and ryanodine receptors (RyRs). Chronic neuroinflammation also leads to deficits in spatial memory, which may be related to Ca(+2) dysregulation. The studies herein use an in vivo model of chronic neuroinflammation: rats were infused intraventricularly with a continuous small dose of lipopolysaccharide (LPS) or artificial cerebrospinal fluid (aCSF) for 28 days. The rats were treated with the L-VDCC antagonist nimodipine or the RyR antagonist dantrolene. LPS-infused rats had significant memory deficits in the Morris water maze, and this deficit was ameliorated by treatment with nimodipine. Synaptosomes from LPS-infused rats had increased Ca(+2) uptake, which was reduced by a blockade of L-VDCCs either in vivo or ex vivo. Taken together, these data indicate that Ca(+2) dysregulation during chronic neuroinflammation is partially dependent on increases in L-VDCC function. However, blockade of the RyRs also slightly improved spatial memory of the LPS-infused rats, demonstrating that other Ca(+2) channels are dysregulated during chronic neuroinflammation. Ca(+2)-dependent immediate early gene expression was reduced in LPS-infused rats treated with dantrolene or nimodipine, indicating normalized synaptic function that may underlie improvements in spatial memory. Pro-inflammatory markers are also reduced in LPS-infused rats treated with either drug. Overall, these data suggest that Ca(+2) dysregulation via L-VDCCs and RyRs play a crucial role in memory deficits resulting from chronic neuroinflammation.

  16. Introduction to workshop on iron screening and supplementation in iron-replete pregnant women and young children.

    Science.gov (United States)

    Taylor, Christine L; Brannon, Patsy M

    2017-12-01

    The NIH Office of Dietary Supplements convened a public workshop on iron screening and supplementation in iron-replete pregnant women and young children in 2016 in Bethesda, Maryland. The starting point for the workshop was the recent reports from the US Preventive Services Task Force concluding that there was insufficient evidence to evaluate the benefits and harms associated with iron screening and routine supplementation among asymptomatic pregnant women and young children (6-24 mo old) in the United States. The goal of the workshop was to explore and refine understanding about the existing knowledge gaps and research needs associated with these preventive services for these groups. Given the focus on the United States, planning for the workshop took into account the higher iron status in the United States compared with developing countries and, in turn, included a focus on iron-replete individuals consistent with the U-shaped risk curve for nutrient-health relations. Topic areas included adaptations in iron homeostasis associated with pregnancy and young childhood, the impact of inflammation, measurement of iron status, current estimates of iron status for pregnant women and young children in the United States and in Europe, and emerging evidence suggesting adverse effects associated with iron supplementation of iron-replete individuals. A crosscutting dialogue conducted at the close of the workshop formed the basis for a workshop summary that specified evidence gaps and research needs in a range of areas centered on the relation of these adaptations of iron homeostasis with the response to and risk from iron supplementation as well as the need for indicators informative of the full continuum of iron status and based on health outcomes, not just erythropoiesis. © 2017 American Society for Nutrition.

  17. Experimental oral iron administration: Histological investigations and expressions of iron handling proteins in rat retina with aging.

    Science.gov (United States)

    Kumar, Pankaj; Nag, Tapas Chandra; Jha, Kumar Abhiram; Dey, Sanjay Kumar; Kathpalia, Poorti; Maurya, Meenakshi; Gupta, Chandan Lal; Bhatia, Jagriti; Roy, Tara Sankar; Wadhwa, Shashi

    2017-12-01

    Iron is implicated in age-related macular degeneration (AMD). The aim of this study was to see if long-term, experimental iron administration with aging modifies retinal and choroidal structures and expressions of iron handling proteins, to understand some aspects of iron homeostasis. Male Wistar rats were fed with ferrous sulphate heptahydrate (500mg/kg body weight/week, oral; elemental iron availability: 20%) from 2 months of age onward until they were 19.5 month-old. At 8, 14 and 20 months of age, they were sacrificed and serum and retinal iron levels were detected by HPLC. Oxidative stress was analyzed by TBARS method. The retinas were examined for cell death (TUNEL), histology (electron microscopy) and the expressions of transferrin, transferrin receptor-1 [TFR-1], H- and L-ferritin. In control animals, at any age, there was no difference in the serum and retinal iron levels, but the latter increased significantly in 14- and 20 month-old iron-fed rats, indicating that retinal iron accumulation proceeds with progression of aging (>14 months). The serum and retinal TBARS levels increased significantly with progression of aging in experimental but not in control rats. There was significant damage to choriocapillaris, accumulation of phagosomes in retinal pigment epithelium and increased incidence of TUNEL+ cells in outer nuclear layer and vacuolation in inner nuclear layer (INL) of 20 month-aged experimental rats, compared to those in age-matched controls. Vacuolations in INL could indicate a long-term effect of iron accumulation in the inner retina. These events paralleled the increased expression of ferritins and transferrin and a decrease in the expression of TFR-1 in iron-fed rats with aging, thereby maintaining iron homeostasis in the retina. As some of these changes mimic with those happening in eyes with AMD, this model can be utilized to understand iron-induced pathophysiological changes in AMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Ginkgo biloba induced mood dysregulation: a case report.

    Science.gov (United States)

    Rho, Seung Sun; Woo, Young Sup; Bahk, Won-Myong

    2018-01-15

    Impairment of cognitive function as well as negative symptom is the major factor causing the decline of a patient's functioning in chronic stages of schizophrenia. However, until now, there were no definite treatment options that could effectively reduce the impairment. We report a case of mood dysregulation associated with use of Ginkgo biloba in a patient with schizophrenia. After Ginkgo biloba was given, the patient experienced cluster symptoms of mood dysregulation including irritability, difficulty in controlling anger, agitation and restlessness. We estimated the possibility as "probable" according to Naranjo scale considering circumstantial evidence. This case suggests that Ginkgo biloba may have caused mood dysregulation in this patient. Although it is generally accepted as safe, more attention should be given to the adverse effect when treating with Ginkgo biloba.

  19. Pacemaker Placement in Patients with Stroke-Mediated Autonomic Dysregulation

    Directory of Open Access Journals (Sweden)

    Ali A. Alsaad

    2017-01-01

    Full Text Available Lateral medullary syndrome (LMS is an ischemic disease of the medulla oblongata, which involves the territory of the posterior inferior cerebellar artery. Lateral medullary syndrome is often missed as the cause of autonomic dysregulation in patients with recent brain stem stroke. Due to the location of the baroreceptor regulatory center in the lateral medulla oblongata, patients with LMS occasionally have autonomic dysregulation-associated clinical manifestations. We report a case of LMS-associated autonomic dysregulation. The case presented as sinus arrest and syncope, requiring permanent pacemaker placement. A dual-chamber pacemaker was placed, after failure of conservative measures to alleviate the patient’s symptoms. Our case shows the importance of recognizing LMS as a potential cause for life-threatening arrhythmias, heart block, and symptomatic bradycardia. Placement of permanent pacemaker may be necessary in some patients with LMS presenting with syncope, secondary to sinus arrest.

  20. Copper homeostasis in Mycobacterium tuberculosis.

    Science.gov (United States)

    Shi, Xiaoshan; Darwin, K Heran

    2015-06-01

    Copper (Cu) is a trace element essential for the growth and development of almost all organisms, including bacteria. However, Cu overload in most systems is toxic. Studies show Cu accumulates in macrophage phagosomes infected with bacteria, suggesting Cu provides an innate immune mechanism to combat invading pathogens. To counteract the host-supplied Cu, increasing evidence suggests that bacteria have evolved Cu resistance mechanisms to facilitate their pathogenesis. In particular, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has evolved multiple pathways to respond to Cu. Here, we summarize what is currently known about Cu homeostasis in Mtb and discuss potential sources of Cu encountered by this and other pathogens in a mammalian host.

  1. [Bone homeostasis and Mechano biology.

    Science.gov (United States)

    Nakashima, Tomoki

    The weight-bearing exercises help to build bones and to maintain them strength. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. During bone remodeling, resorption by osteoclasts precedes bone formation by osteoblasts. Based on the osteocyte location within the bone matrix and the cellular morphology, it is proposed that osteocytes potentially contribute to the regulation of bone remodeling in response to mechanical and endocrine stimuli.

  2. Effect of body mass index reduction on serum hepcidin levels and iron status in obese children.

    NARCIS (Netherlands)

    Amato, A.; Santoro, N.; Calabro, P.; Grandone, A.; Swinkels, D.W.; Perrone, L.; Giudice, E.M. del

    2010-01-01

    Iron deficiency has been linked to obesity. Hepcidin is the main regulator of iron homeostasis and is higher in obese children compared to controls. To gain insight into the link between obesity and hepcidin, we performed an intervention study in 15 obese children. These children were subjected to a

  3. Iron biology, immunology, aging and obesity: four fields connected by the small peptide hormone, hepcidin

    Science.gov (United States)

    It is well-known that obesity and aging have a negative impact on iron status and immune response, but little is known about the additional impact that obesity may have on iron homeostasis and immunity in the elderly. This question is relevant given the rising numbers of elderly obese individuals a...

  4. Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Esther R Berko

    Full Text Available DNA mutational events are increasingly being identified in autism spectrum disorder (ASD, but the potential additional role of dysregulation of the epigenome in the pathogenesis of the condition remains unclear. The epigenome is of interest as a possible mediator of environmental effects during development, encoding a cellular memory reflected by altered function of progeny cells. Advanced maternal age (AMA is associated with an increased risk of having a child with ASD for reasons that are not understood. To explore whether AMA involves covert aneuploidy or epigenetic dysregulation leading to ASD in the offspring, we tested a homogeneous ectodermal cell type from 47 individuals with ASD compared with 48 typically developing (TD controls born to mothers of ≥35 years, using a quantitative genome-wide DNA methylation assay. We show that DNA methylation patterns are dysregulated in ectodermal cells in these individuals, having accounted for confounding effects due to subject age, sex and ancestral haplotype. We did not find mosaic aneuploidy or copy number variability to occur at differentially-methylated regions in these subjects. Of note, the loci with distinctive DNA methylation were found at genes expressed in the brain and encoding protein products significantly enriched for interactions with those produced by known ASD-causing genes, representing a perturbation by epigenomic dysregulation of the same networks compromised by DNA mutational mechanisms. The results indicate the presence of a mosaic subpopulation of epigenetically-dysregulated, ectodermally-derived cells in subjects with ASD. The epigenetic dysregulation observed in these ASD subjects born to older mothers may be associated with aging parental gametes, environmental influences during embryogenesis or could be the consequence of mutations of the chromatin regulatory genes increasingly implicated in ASD. The results indicate that epigenetic dysregulatory mechanisms may complement

  5. Osmotic homeostasis and NKLy lymphoma cells radiosensitivity

    International Nuclear Information System (INIS)

    Tishchenko, V.V.; Magda, I.N.

    1992-01-01

    In experiments with cells of ascites NKLy lymphoma differing in ploidy and position in the cell cycle, a study was made of the radiosensitivity, osmotic homeostasis peculiarities and thermoradiation changes in potassium content. It was shown that the resistance of osmotic homeostasis of NKLy cells to thermoradiation correlated with their radioresistance

  6. Short communication: high cellular iron levels are associated with increased HIV infection and replication.

    Science.gov (United States)

    Chang, Hsiang-Chun; Bayeva, Marina; Taiwo, Babafemi; Palella, Frank J; Hope, Thomas J; Ardehali, Hossein

    2015-03-01

    HIV is a pandemic disease, and many cellular and systemic factors are known to alter its infectivity and replication. Earlier studies had suggested that anemia is common in HIV-infected patients; however, higher iron was also observed in AIDS patients prior to the introduction of antiretroviral therapy (ART). Therefore, the relationship between iron and viral infection is not well delineated. To address this issue, we altered the levels of cellular iron in primary CD4(+) T cells and showed that higher iron is associated with increased HIV infection and replication. In addition, HIV infection alone leads to increased cellular iron, and several ART drugs increase cellular iron independent of HIV infection. Finally, HIV infection is associated with increased serum iron in HIV-positive patients regardless of treatment with ART. These results establish a relationship between iron and HIV infection and suggest that iron homeostasis may be a viable therapeutic target for HIV.

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron in your body causes iron-deficiency anemia. Lack of iron usually is due to blood loss, ... can help prevent overdosing in children. Because recent research supports concerns that iron deficiency during infancy and ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, ... is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, you lose iron. ... other conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ... of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ...

  11. Iron-Deficiency Anemia

    Science.gov (United States)

    ... Home / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... bleeding Consuming less than recommended daily amounts of iron Iron-deficiency anemia can be caused by getting ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... drawings also can cause iron-deficiency anemia. Poor Diet The best sources of iron are meat, poultry, ... more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat the ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... The best sources of iron are meat, poultry, fish, and iron-fortified foods (foods that have iron ... you: Follow a diet that excludes meat and fish, which are the best sources of iron. However, ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... good nonmeat sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ... good nonmeat sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to moderate iron-deficiency anemia, or red blood cell transfusion for severe iron-deficiency anemia. You may ... body needs iron to make healthy red blood cells. Iron-deficiency anemia usually develops over time because ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... re more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat ... which are the best sources of iron. However, vegetarian diets can provide enough iron if you eat ...

  19. Iron-Deficiency Anemia

    Science.gov (United States)

    ... re more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat ... which are the best sources of iron. However, vegetarian diets can provide enough iron if you eat ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... can provide enough iron if you eat the right foods. For example, good nonmeat sources of iron ... can provide enough iron if you eat the right foods. For example, good nonmeat sources of iron ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia may require treatment in a hospital, blood transfusions , iron injections, or intravenous iron therapy. ... Treatment may need to be done in a hospital. The goals of treating iron-deficiency anemia are ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... develop new therapies for conditions that affect the balance of iron in the body and lead to ... Disease Control and Prevention) Iron - Health Professional Fact Sheet (NIH) Iron Dietary Supplement Fact Sheet (NIH) Iron- ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat sources ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other ... sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... enough iron-rich foods, such as meat and fish, may result in you getting less than the ... pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron added. ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for your body to absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, ... iron deficiency. Endurance athletes lose iron through their gastrointestinal tracts. They also lose iron through the breakdown of ...

  8. Computational modeling and analysis of iron release from macrophages.

    Directory of Open Access Journals (Sweden)

    Alka A Potdar

    2014-07-01

    Full Text Available A major process of iron homeostasis in whole-body iron metabolism is the release of iron from the macrophages of the reticuloendothelial system. Macrophages recognize and phagocytose senescent or damaged erythrocytes. Then, they process the heme iron, which is returned to the circulation for reutilization by red blood cell precursors during erythropoiesis. The amount of iron released, compared to the amount shunted for storage as ferritin, is greater during iron deficiency. A currently accepted model of iron release assumes a passive-gradient with free diffusion of intracellular labile iron (Fe2+ through ferroportin (FPN, the transporter on the plasma membrane. Outside the cell, a multi-copper ferroxidase, ceruloplasmin (Cp, oxidizes ferrous to ferric ion. Apo-transferrin (Tf, the primary carrier of soluble iron in the plasma, binds ferric ion to form mono-ferric and di-ferric transferrin. According to the passive-gradient model, the removal of ferrous ion from the site of release sustains the gradient that maintains the iron release. Subcellular localization of FPN, however, indicates that the role of FPN may be more complex. By experiments and mathematical modeling, we have investigated the detailed mechanism of iron release from macrophages focusing on the roles of the Cp, FPN and apo-Tf. The passive-gradient model is quantitatively analyzed using a mathematical model for the first time. A comparison of experimental data with model simulations shows that the passive-gradient model cannot explain macrophage iron release. However, a facilitated-transport model associated with FPN can explain the iron release mechanism. According to the facilitated-transport model, intracellular FPN carries labile iron to the macrophage membrane. Extracellular Cp accelerates the oxidation of ferrous ion bound to FPN. Apo-Tf in the extracellular environment binds to the oxidized ferrous ion, completing the release process. Facilitated-transport model can

  9. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  10. Multi-Copper Oxidases and Human Iron Metabolism

    Science.gov (United States)

    Vashchenko, Ganna; MacGillivray, Ross T. A.

    2013-01-01

    Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans—ceruloplasmin, hephaestin and zyklopen. Each of these enzymes has a high specificity towards iron with the resulting ferroxidase activity being associated with ferroportin, the only known iron exporter protein in humans. Ferroportin exports iron as Fe2+, but transferrin, the major iron transporter protein of blood, can bind only Fe3+ effectively. Iron oxidation in enterocytes is mediated mainly by hephaestin thus allowing dietary iron to enter the bloodstream. Zyklopen is involved in iron efflux from placental trophoblasts during iron transfer from mother to fetus. Release of iron from the liver relies on ferroportin and the ferroxidase activity of ceruloplasmin which is found in blood in a soluble form. Ceruloplasmin, hephaestin and zyklopen show distinctive expression patterns and have unique mechanisms for regulating their expression. These features of human multi-copper ferroxidases can serve as a basis for the precise control of iron efflux in different tissues. In this manuscript, we review the biochemical and biological properties of the three human MCOs and discuss their potential roles in human iron homeostasis. PMID:23807651

  11. Regulating Subcellular Metal Homeostasis: the Key to Crop Improvement

    Directory of Open Access Journals (Sweden)

    Khurram Bashir

    2016-08-01

    Full Text Available Iron (Fe, zinc (Zn manganese (Mn, and copper (Cu are essential micronutrient mineral elements for living organisms, as they regulate essential cellular processes, such as chlorophyll synthesis and photosynthesis (Fe, Cu, and Mn, respiration (Fe and Cu, and transcription (Zn. The storage and distribution of these minerals in various cellular organelles is strictly regulated to ensure optimal metabolic rates. Alteration of the balance in uptake, distribution, and/or storage of these minerals severely impairs cellular metabolism and significantly affects plant growth and development. Thus, any change in the metal profile of a cellular compartment significantly affects metabolism. Different subcellular compartments are suggested to be linked through complex retrograde signaling networks to regulate cellular metal homeostasis. Various genes regulating cellular and subcellular metal distribution have been identified and characterized. Understanding the role of these transporters is extremely important to elaborate the signaling between various subcellular compartments. Moreover, modulation of the proteins involved in cellular metal homeostasis may help in the regulation of metabolism, adaptability to a diverse range of environmental conditions, and biofortification. Here, we review progress in the understanding of different subcellular metal transport components in plants and discuss the prospects of regulating cellular metabolism and strategies to develop biofortified crop plants.

  12. Urinary Hepcidin Levels in Iron-Deficient and Iron-Supplemented Piglets Correlate with Hepcidin Hepatic mRNA and Serum Levels and with Body Iron Status.

    Directory of Open Access Journals (Sweden)

    Robert Staroń

    Full Text Available Among livestock, domestic pig (Sus scrofa is a species, in which iron metabolism has been most intensively examined during last decade. The obvious reason for studying the regulation of iron homeostasis especially in young pigs is neonatal iron deficiency anemia commonly occurring in these animals. Moreover, supplementation of essentially all commercially reared piglets with iron entails a need for monitoring the efficacy of this routine practice followed in the swine industry for several decades. Since the discovery of hepcidin many studies confirmed its role as key regulator of iron metabolism and pointed out the assessment of its concentrations in biological fluids as diagnostic tool for iron-related disorder. Here we demonstrate that urine hepcidin-25 levels measured by a combination of weak cation exchange chromatography and time-of-flight mass spectrometry (WCX-TOF MS are highly correlated with mRNA hepcidin expression in the liver and plasma hepcidin-25 concentrations in anemic and iron-supplemented 28-day old piglets. We also found a high correlation between urine hepcidin level and hepatic non-heme iron content. Our results show that similarly to previously described transgenic mouse models of iron disorders, young pigs constitute a convenient animal model to explore accuracy and relationship between indicators for assessing systemic iron status.

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  14. Identification of two genes potentially associated in iron-heme ...

    Indian Academy of Sciences (India)

    Classic characteristics are poor predictors of the risk of thromboembolism. Thus, better markers for the carotid atheroma plaque formation and symptom causing are needed. Our objective was to study by microarray analysis gene expression of genes involved in homeostasis of iron and heme in carotid atheroma plaque ...

  15. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux

    OpenAIRE

    Harris, Z. Leah; Durley, Alison P.; Man, Tsz Kwong; Gitlin, Jonathan D.

    1999-01-01

    Aceruloplasminemia is an autosomal recessive disorder of iron metabolism. Affected individuals evidence iron accumulation in tissue parenchyma in association with absent serum ceruloplasmin. Genetic studies of such patients reveal inherited mutations in the ceruloplasmin gene. To elucidate the role of ceruloplasmin in iron homeostasis, we created an animal model of aceruloplasminemia by disrupting the murine ceruloplasmin (Cp) gene. Although normal at birth, Cp−/− mice demonstrate progressive...

  16. Emotion dysregulation and interpersonal problems : The role of defensiveness

    NARCIS (Netherlands)

    Garofalo, C.; Velotti, Patrizia; Zavattini, Giulio Cesare; Kosson, D.S.

    2017-01-01

    Despite evidence that individual differences in defensiveness (typically measured with social desirability scales) may affect associations among self-report measures, little is known about the impact of defensiveness in the well-established relations between self-report emotion dysregulation and

  17. DEGAS: de novo discovery of dysregulated pathways in human diseases.

    Directory of Open Access Journals (Sweden)

    Igor Ulitsky

    Full Text Available BACKGROUND: Molecular studies of the human disease transcriptome typically involve a search for genes whose expression is significantly dysregulated in sick individuals compared to healthy controls. Recent studies have found that only a small number of the genes in human disease-related pathways show consistent dysregulation in sick individuals. However, those studies found that some pathway genes are affected in most sick individuals, but genes can differ among individuals. While a pathway is usually defined as a set of genes known to share a specific function, pathway boundaries are frequently difficult to assign, and methods that rely on such definition cannot discover novel pathways. Protein interaction networks can potentially be used to overcome these problems. METHODOLOGY/PRINCIPAL FINDINGS: We present DEGAS (DysrEgulated Gene set Analysis via Subnetworks, a method for identifying connected gene subnetworks significantly enriched for genes that are dysregulated in specimens of a disease. We applied DEGAS to seven human diseases and obtained statistically significant results that appear to home in on compact pathways enriched with hallmarks of the diseases. In Parkinson's disease, we provide novel evidence for involvement of mRNA splicing, cell proliferation, and the 14-3-3 complex in the disease progression. DEGAS is available as part of the MATISSE software package (http://acgt.cs.tau.ac.il/matisse. CONCLUSIONS/SIGNIFICANCE: The subnetworks identified by DEGAS can provide a signature of the disease potentially useful for diagnosis, pinpoint possible pathways affected by the disease, and suggest targets for drug intervention.

  18. The role of epitranscriptome and translational dysregulation in cancer

    International Development Research Centre (IDRC) Digital Library (Canada)

    The role of epitranscriptome and translational dysregulation in cancer. Proteins represent the final product of genes and are implicated in governing most cellular functions. Production of proteins from genes is referred to as gene expression. Genes are first transcribed into messenger ribonucleic acid (mRNA). This is ...

  19. Metabolic dysregulation and late-life depression: a prospective study.

    Science.gov (United States)

    Marijnissen, R M; Vogelzangs, N; Mulder, M E; van den Brink, R H S; Comijs, H C; Oude Voshaar, R C

    2017-04-01

    Depression is associated with the metabolic syndrome (MS). We examined whether metabolic dysregulation predicted the 2-year course of clinical depression. A total of 285 older persons (⩾60 years) suffering from depressive disorder according to DSM-IV-TR criteria was followed up for 2 years. Severity of depression was assessed with the Inventory of Depressive Symptomatology (IDS) at 6-month intervals. Metabolic syndrome was defined according the National Cholesterol Education Programme (NCEP-ATP III). We applied logistic regression and linear mixed models adjusted for age, sex, years of education, smoking, alcohol use, physical activity, somatic co-morbidity, cognitive functioning and drug use (antidepressants, anti-inflammatory drugs) and severity of depression at baseline. MS predicted non-remission at 2 years (odds ratioper component = 1.26, 95% confidence interval 1.00-1.58), p = 0.047), which was driven by the waist circumference and HDL cholesterol. MS was not associated with IDS sum score. Subsequent analyses on its subscales, however, identified an association with the somatic symptom subscale score over time (interaction time × somatic subscale, p = 0.005), driven by higher waist circumference and elevated fasting glucose level. Metabolic dysregulation predicts a poor course of late-life depression. This finding supports the concept of 'metabolic depression', recently proposed on population-based findings of a protracted course of depressive symptoms in the presence of metabolic dysregulation. Our findings seem to be driven by abdominal obesity (as indicated by the waist circumference) and HDL cholesterol dysregulation.

  20. Metabolic dysregulation and late-life depression: a prospective study

    NARCIS (Netherlands)

    Marijnissen, R.M.; Vogelzangs, N.; Mulder, M.E.; Brink, R.H. van den; Comijs, H.C.; Oude Voshaar, R.C.

    2017-01-01

    BACKGROUND: Depression is associated with the metabolic syndrome (MS). We examined whether metabolic dysregulation predicted the 2-year course of clinical depression. METHOD: A total of 285 older persons (60 years) suffering from depressive disorder according to DSM-IV-TR criteria was followed up

  1. Metabolic dysregulation and late-life depression : a prospective study

    NARCIS (Netherlands)

    Marijnissen, R. M.; Vogelzangs, N.; Mulder, M.E.; van den Brink, R. H. S.; Comijs, H. C.; Oude Voshaar, Richard

    Background. Depression is associated with the metabolic syndrome (MS). We examined whether metabolic dysregulation predicted the 2-year course of clinical depression. Method. A total of 285 older persons (>= 60 years) suffering from depressive disorder according to DSM-IV-TR criteria was followed up

  2. Immune system dysregulation in first-onset postpartum psychosis

    NARCIS (Netherlands)

    Bergink, V.; Burgerhout, K.M.; Weigelt, K.; Pop, V.J.M.; de Wit, H.; Drexhage, R.C.; Kushner, S.A.; Drexhage, H.A.

    2013-01-01

    Background Accumulating evidence suggests that dysregulation of the immune system represents an important vulnerability factor for mood disorders. Postpartum psychosis (PP) is a severe mood disorder occurring within 4 weeks after delivery, a period of heightened immune responsiveness and an altered

  3. Emotion dysregulation and hypersexuality : Review and clinical implications

    NARCIS (Netherlands)

    Garofalo, C.; Velotti, P.; Zavattini, G.C.

    2016-01-01

    There is a long and varied history of research on hypersexuality, but no consensus on either etiology or therapeutic interventions. In an effort to advance understanding of hypersexuality, we review the largely separate literatures on hypersexuality and emotion dysregulation, which has recently been

  4. Allicin Induces Calcium and Mitochondrial Dysregulation Causing Necrotic Death in Leishmania.

    Directory of Open Access Journals (Sweden)

    María J Corral

    2016-03-01

    Full Text Available Allicin has shown antileishmanial activity in vitro and in vivo. However the mechanism of action underlying its antiproliferative effect against Leishmania has been virtually unexplored. In this paper, we present the results obtained in L.infantum and a mechanistic basis is proposed.Exposure of the parasites to allicin led to high Ca2+ levels and mitochondrial reactive oxygen species (ROS, collapse of the mitochondrial membrane potential, reduced production of ATP and elevation of cytosolic ROS. The incubation of the promastigotes with SYTOX Green revealed that decrease of ATP was not associated with plasma membrane permeabilization. Annexin V and propidium iodide (PI staining indicated that allicin did not induce phospholipids exposure on the plasma membrane. Moreover, DNA agarose gel electrophoresis and TUNEL analysis demonstrated that allicin did not provoke DNA fragmentation. Analysis of the cell cycle with PI staining showed that allicin induced cell cycle arrest in the G2/M phase.We conclude that allicin induces dysregulation of calcium homeostasis and oxidative stress, uncontrolled by the antioxidant defense of the cell, which leads to mitochondrial dysfunction and a bioenergetic catastrophe leading to cell necrosis and cell cycle arrest in the premitotic phase.

  5. Pattern-recognition receptors: signaling pathways and dysregulation in canine chronic enteropathies-brief review.

    Science.gov (United States)

    Heilmann, Romy M; Allenspach, Karin

    2017-11-01

    Pattern-recognition receptors (PRRs) are expressed by innate immune cells and recognize pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular pattern (DAMP) molecules. With a large potential for synergism or convergence between their signaling pathways, PRRs orchestrate a complex interplay of cellular mediators and transcription factors, and thus play a central role in homeostasis and host defense. Aberrant activation of PRR signaling, mutations of the receptors and/or their downstream signaling molecules, and/or DAMP/PAMP complex-mediated receptor signaling can potentially lead to chronic auto-inflammatory diseases or development of cancer. PRR signaling pathways appear to also present an interesting new avenue for the modulation of inflammatory responses and to serve as potential novel therapeutic targets. Evidence for a dysregulation of the PRR toll-like receptor (TLR)2, TLR4, TLR5, and TLR9, nucleotide-binding oligomerization domain-containing protein (NOD)2, and the receptor of advanced glycation end products (RAGE) exists in dogs with chronic enteropathies. We describe the TLR, NOD2, and RAGE signaling pathways and evaluate the current veterinary literature-in comparison to human medicine-to determine the role of TLRs, NOD2, and RAGE in canine chronic enteropathies.

  6. IRON DOME

    African Journals Online (AJOL)

    Automated precise guided missile defence has been around for some years, and is a modern-day mechanism used frequently since 2011 to defend against rocket attacks penetrating national airspace. Israel's automated Iron Dome. Missile Defence System has intercepted over 1 000 rockets during two recent.

  7. The Mediating Role of Cognitive Flexibility, Shame and Emotion Dysregulation Between Neuroticism and Depression

    Directory of Open Access Journals (Sweden)

    Majid Zarei

    2018-03-01

    Discussion: These findings suggest that for student depression, emotion dysregulation might be important and future intervention works can examine the effects of targeting emotion dysregulation among university students with high levels of neuroticism and/or depression.

  8. Iron and iron derived radicals

    International Nuclear Information System (INIS)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fast! Think small! In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab

  9. Protein synthesis controls phosphate homeostasis.

    Science.gov (United States)

    Pontes, Mauricio H; Groisman, Eduardo A

    2018-01-01

    Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium , this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg 2+ ), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg 2+ promotes an uptake in Mg 2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature. © 2018 Pontes and Groisman; Published by Cold Spring Harbor Laboratory Press.

  10. Genetic dissection of sleep homeostasis.

    Science.gov (United States)

    Mang, Géraldine M; Franken, Paul

    2015-01-01

    Sleep is a complex behavior both in its manifestation and regulation, that is common to almost all animal species studied thus far. Sleep is not a unitary behavior and has many different aspects, each of which is tightly regulated and influenced by both genetic and environmental factors. Despite its essential role for performance, health, and well-being, genetic mechanisms underlying this complex behavior remain poorly understood. One important aspect of sleep concerns its homeostatic regulation, which ensures that levels of sleep need are kept within a range still allowing optimal functioning during wakefulness. Uncovering the genetic pathways underlying the homeostatic aspect of sleep is of particular importance because it could lead to insights concerning sleep's still elusive function and is therefore a main focus of current sleep research. In this chapter, we first give a definition of sleep homeostasis and describe the molecular genetics techniques that are used to examine it. We then provide a conceptual discussion on the problem of assessing a sleep homeostatic phenotype in various animal models. We finally highlight some of the studies with a focus on clock genes and adenosine signaling molecules.

  11. Iron bioavailability from commercially available iron supplements.

    Science.gov (United States)

    Christides, Tatiana; Wray, David; McBride, Richard; Fairweather, Rose; Sharp, Paul

    2015-12-01

    Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including three liquid-based supplements. Iron bioavailability was measured using Caco-2 cells with ferritin formation as a surrogate marker for iron uptake. Statistical analysis was performed using one-way ANOVA followed by either Dunnett's or Tukey's multiple comparisons tests. Spatone Apple(®) (a naturally iron-rich mineral water with added ascorbate) and Iron Vital F(®) (a synthetic liquid iron supplement) had the highest iron bioavailability. There was no statistical difference between iron uptake from ferrous sulphate tablets, Spatone(®) (naturally iron-rich mineral water alone) and Pregnacare Original(®) (a multimineral/multivitamin tablet). In our in vitro model, naturally iron-rich mineral waters and synthetic liquid iron formulations have equivalent or better bioavailability compared with ferrous iron sulphate tablets. If these results are confirmed in vivo, this would mean that at-risk groups of IDA could be offered a greater choice of more bioavailable and potentially better tolerated iron preparations.

  12. Tau causes synapse loss without disrupting calcium homeostasis in the rTg4510 model of tauopathy.

    Directory of Open Access Journals (Sweden)

    Katherine J Kopeikina

    Full Text Available Neurofibrillary tangles (NFTs of tau are one of the defining hallmarks of Alzheimer's disease (AD, and are closely associated with neuronal degeneration. Although it has been suggested that calcium dysregulation is important to AD pathogenesis, few studies have probed the link between calcium homeostasis, synapse loss and pathological changes in tau. Here we test the hypothesis that pathological changes in tau are associated with changes in calcium by utilizing in vivo calcium imaging in adult rTg4510 mice that exhibit severe tau pathology due to over-expression of human mutant P301L tau. We observe prominent dendritic spine loss without disruptions in calcium homeostasis, indicating that tangles do not disrupt this fundamental feature of neuronal health, and that tau likely induces spine loss in a calcium-independent manner.

  13. Responses of Saccharomyces cerevisiae Strains from Different Origins to Elevated Iron Concentrations.

    Science.gov (United States)

    Martínez-Garay, Carlos Andrés; de Llanos, Rosa; Romero, Antonia María; Martínez-Pastor, María Teresa; Puig, Sergi

    2016-01-15

    Iron is an essential micronutrient for all eukaryotic organisms. However, the low solubility of ferric iron has tremendously increased the prevalence of iron deficiency anemia, especially in women and children, with dramatic consequences. Baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, a fermentative microorganism, and a feed supplement. In this report, we explore the genetic diversity of 123 wild and domestic strains of S. cerevisiae isolated from different geographical origins and sources to characterize how yeast cells respond to elevated iron concentrations in the environment. By using two different forms of iron, we selected and characterized both iron-sensitive and iron-resistant yeast strains. We observed that when the iron concentration in the medium increases, iron-sensitive strains accumulate iron more rapidly than iron-resistant isolates. We observed that, consistent with excess iron leading to oxidative stress, the redox state of iron-sensitive strains was more oxidized than that of iron-resistant strains. Growth assays in the presence of different oxidative reagents ruled out that this phenotype was due to alterations in the general oxidative stress protection machinery. It was noteworthy that iron-resistant strains were more sensitive to iron deficiency conditions than iron-sensitive strains, which suggests that adaptation to either high or low iron is detrimental for the opposite condition. An initial gene expression analysis suggested that alterations in iron homeostasis genes could contribute to the different responses of distant iron-sensitive and iron-resistant yeast strains to elevated environmental iron levels. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Responses of Saccharomyces cerevisiae Strains from Different Origins to Elevated Iron Concentrations

    Science.gov (United States)

    Martínez-Garay, Carlos Andrés; de Llanos, Rosa; Romero, Antonia María; Martínez-Pastor, María Teresa

    2016-01-01

    Iron is an essential micronutrient for all eukaryotic organisms. However, the low solubility of ferric iron has tremendously increased the prevalence of iron deficiency anemia, especially in women and children, with dramatic consequences. Baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, a fermentative microorganism, and a feed supplement. In this report, we explore the genetic diversity of 123 wild and domestic strains of S. cerevisiae isolated from different geographical origins and sources to characterize how yeast cells respond to elevated iron concentrations in the environment. By using two different forms of iron, we selected and characterized both iron-sensitive and iron-resistant yeast strains. We observed that when the iron concentration in the medium increases, iron-sensitive strains accumulate iron more rapidly than iron-resistant isolates. We observed that, consistent with excess iron leading to oxidative stress, the redox state of iron-sensitive strains was more oxidized than that of iron-resistant strains. Growth assays in the presence of different oxidative reagents ruled out that this phenotype was due to alterations in the general oxidative stress protection machinery. It was noteworthy that iron-resistant strains were more sensitive to iron deficiency conditions than iron-sensitive strains, which suggests that adaptation to either high or low iron is detrimental for the opposite condition. An initial gene expression analysis suggested that alterations in iron homeostasis genes could contribute to the different responses of distant iron-sensitive and iron-resistant yeast strains to elevated environmental iron levels. PMID:26773083

  15. Dysregulation of the Autonomic Nervous System Predicts the Development of the Metabolic Syndrome

    NARCIS (Netherlands)

    Licht, Carmilla M. M.; de Geus, Eco J. C.; Penninx, Brenda W. J. H.

    Context: Stress is suggested to lead to metabolic dysregulations as clustered in the metabolic syndrome. Although dysregulation of the autonomic nervous system is found to associate with the metabolic syndrome and its dysregulations, no longitudinal study has been performed to date to examine the

  16. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Tina eSkjørringe

    2012-09-01

    Full Text Available Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers i.e. the blood-brain barrier (BBB and the blood-cerebrospinal fluid (CSF barrier (BCB have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain-iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1 is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1 and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters

  17. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  18. Does microbiota composition affect thyroid homeostasis?

    Science.gov (United States)

    Virili, Camilla; Centanni, Marco

    2015-08-01

    The intestinal microbiota is essential for the host to ensure digestive and immunologic homeostasis. When microbiota homeostasis is impaired and dysbiosis occurs, the malfunction of epithelial barrier leads to intestinal and systemic disorders, chiefly immunologic and metabolic. The role of the intestinal tract is crucial in the metabolism of nutrients, drugs, and hormones, including exogenous and endogenous iodothyronines as well as micronutrients involved in thyroid homeostasis. However, the link between thyroid homeostasis and microbiota composition is not yet completely ascertained. A pathogenetic link with dysbiosis has been described in different autoimmune disorders but not yet fully elucidated in autoimmune thyroid disease which represents the most frequent of them. Anyway, it has been suggested that intestinal dysbiosis may trigger autoimmune thyroiditis. Furthermore, hypo- and hyper-thyroidism, often of autoimmune origin, were respectively associated to small intestinal bacterial overgrowth and to changes in microbiota composition. Whether some steps of this thyroid network may be affected by intestinal microbiota composition is briefly discussed below.

  19. Gut Homeostasis, Microbial Dysbiosis, and Opioids.

    Science.gov (United States)

    Wang, Fuyuan; Roy, Sabita

    2017-01-01

    Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases.

  20. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics.

    Science.gov (United States)

    Colvin, Robert A; Lai, Barry; Holmes, William R; Lee, Daewoo

    2015-07-01

    The purpose of this study was to demonstrate how single cell quantitative and subcellular metallomics inform us about both the spatial distribution and cellular mechanisms of metal buffering and homeostasis in primary cultured neurons from embryonic rat brain, which are often used as models of human disease involving metal dyshomeostasis. The present studies utilized synchrotron radiation X-ray fluorescence (SRXRF) and focused primarily on zinc and iron, two abundant metals in neurons that have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Total single cell contents for calcium, iron, zinc, copper, manganese, and nickel were determined. Resting steady state zinc showed a diffuse distribution in both soma and processes, best defined by the mass profile of the neuron with an enrichment in the nucleus compared with the cytoplasm. Zinc buffering and homeostasis was studied using two modes of cellular zinc loading - transporter and ionophore (pyrithione) mediated. Single neuron zinc contents were shown to statistically significantly increase by either loading method - ionophore: 160 million to 7 billion; transporter 160 million to 280 million atoms per neuronal soma. The newly acquired and buffered zinc still showed a diffuse distribution. Soma and processes have about equal abilities to take up zinc via transporter mediated pathways. Copper levels are distributed diffusely as well, but are relatively higher in the processes relative to zinc levels. Prior studies have observed iron puncta in certain cell types, but others have not. In the present study, iron puncta were characterized in several primary neuronal types. The results show that iron puncta could be found in all neuronal types studied and can account for up to 50% of the total steady state content of iron in neuronal soma. Although other metals can be present in iron puncta, they are predominantly iron containing and do not appear to be

  1. Iron bioavailability from commercially available iron supplements

    OpenAIRE

    Christides, Tatiana; Wray, David; McBride, Richard; Fairweather, Rose; Sharp, Paul

    2015-01-01

    Purpose: Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including thre...

  2. Persistent hepatitis virus infection and immune homeostasis

    OpenAIRE

    ZHOU Yun

    2014-01-01

    Homeostasis between the host and viruses is naturally maintained. On the one hand, the immune system activates the immune response to kill or eliminate viruses; on the other hand, the immune system controls the immune response to maintain immune homeostasis. The cause of persistent infections with hepatitis viruses such as HBV and HCV is that viral molecules damage the immune system of the host and their variants escape immune clearance. Long-term coexistence of the host and viruses is the pr...

  3. Neuroimmune regulation during intestinal development and homeostasis.

    Science.gov (United States)

    Veiga-Fernandes, Henrique; Pachnis, Vassilis

    2017-02-01

    Interactions between the nervous system and immune system are required for organ function and homeostasis. Evidence suggests that enteric neurons and intestinal immune cells share common regulatory mechanisms and can coordinate their responses to developmental challenges and environmental aggressions. These discoveries shed light on the physiology of system interactions and open novel perspectives for therapy designs that target underappreciated neurological-immunological commonalities. Here we highlight findings that address the importance of neuroimmune cell units (NICUs) in intestinal development, homeostasis and disease.

  4. Homeostasis in defined genotypes of Matthiola incana.

    Science.gov (United States)

    Seyffert, W

    1983-02-01

    Based on 256 defined genotypes of the Brassicaceae Matthiola incana the influence of the alleles at four different loci and of their combinations on homeostasis was investigated against an isogenic background. The measured character was the anthocyanin content of the flowers. There are significant maternal and paternal influences on homeostasis. Moreover the extent of heterozygosity as well as the number of wildtype alleles, summarized over all loci, are positively correlated with the increase of homeostasis. The analysis of individual gene effects shows distinct graduations between the contributions of the particular loci. In principle, the wild-type allele proved to be more homeostatic when compared to the mutant; in some cases monogenic heterosis was indicated. Nonallelic interactions of first and second order do considerably modify the degree of expression of homeostasis; they are neither strongly correlated with the individual gene effects nor with the interactions of lower order, and hence they are not predictable. This means also that it is not possible to formulate a general hypothesis as to the causes of homeostasis. We have to assume rather that homeostasis depends on specific gene combinations which enable the organism to stabilize its phenotype by means of certain physiological conditions.

  5. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation.

    Science.gov (United States)

    Yabas, Mehmet; Elliott, Hannah; Hoyne, Gerard F

    2015-12-22

    Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system.

  6. Protein homeostasis in models of aging and age-related conformational disease.

    Science.gov (United States)

    Kikis, Elise A; Gidalevitz, Tali; Morimoto, Richard I

    2010-01-01

    The stability of the proteome is crucial to the health of the cell, and contributes significantly to the lifespan of the organism. Aging and many age-related diseases have in common the expression of misfolded and damaged proteins. The chronic expression of damaged proteins during disease can have devastating consequences on protein homeostasis (proteostasis), resulting in disruption ofnumerous biological processes. This chapter discusses our current understanding of the various contributors to protein misfolding, and the mechanisms by which misfolding, and accompanied aggregation/toxicity, is accelerated by stress and aging. Invertebrate models have been instrumental in studying the processes related to aggregation and toxicity of disease-associated proteins and how dysregulation ofproteostasis leads to neurodegenerative diseases of aging.

  7. Pediatric Obesity-Related Asthma: The Role of Metabolic Dysregulation.

    Science.gov (United States)

    Vijayakanthi, Nandini; Greally, John M; Rastogi, Deepa

    2016-05-01

    The burden of obesity-related asthma among children, particularly among ethnic minorities, necessitates an improved understanding of the underlying disease mechanisms. Although obesity is an independent risk factor for asthma, not all obese children develop asthma. Several recent studies have elucidated mechanisms, including the role of diet, sedentary lifestyle, mechanical fat load, and adiposity-mediated inflammation that may underlie the obese asthma pathophysiology. Here, we review these recent studies and emerging scientific evidence that suggest metabolic dysregulation may play a role in pediatric obesity-related asthma. We also review the genetic and epigenetic factors that may underlie susceptibility to metabolic dysregulation and associated pulmonary morbidity among children. Lastly, we identify knowledge gaps that need further exploration to better define pathways that will allow development of primary preventive strategies for obesity-related asthma in children. Copyright © 2016 by the American Academy of Pediatrics.

  8. Mood dysregulation and stabilization: perspectives from emotional cognitive neuroscience.

    Science.gov (United States)

    Yamawaki, Shigeto; Okada, Go; Okamoto, Yasumasa; Liberzon, Israel

    2012-06-01

    Mood is conceptualized as a long-lasting emotional state, which can have profound implications for mental and physical health. The development of neuroimaging methods has enabled significant advances towards elucidating the mechanisms underlying regulation of mood and emotion; however, our understanding of mood and emotion dysregulation in stress-related psychiatric disorders is still largely lacking. From the cognitive-affective neuroscience perspective, achieving deeper, more mechanistic understanding of mood disorders necessitates detailed understanding of specific components of neural systems involved in mood dysregulation and stabilization. In this review, we provide an overview of neural systems implicated in the development of a long-term negative mood state, as well as those related to emotion and emotion regulation, and discuss their proposed involvement in mood and anxiety disorders.

  9. Iron and iron derived radicals

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  10. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas

    Science.gov (United States)

    Pandey, Sheo Shankar; Patnana, Pradeep Kumar; Lomada, Santosh Kumar; Tomar, Archana; Chatterjee, Subhadeep

    2016-01-01

    Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named X anthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon’s involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Leer en español What Is Iron-deficiency anemia ... cases, surgery may be advised. Treatments for Severe Iron-Deficiency Anemia Blood Transfusion If your iron-deficiency anemia is ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  13. Timing of birth: Parsimony favors strategic over dysregulated parturition.

    Science.gov (United States)

    Catalano, Ralph; Goodman, Julia; Margerison-Zilko, Claire; Falconi, April; Gemmill, Alison; Karasek, Deborah; Anderson, Elizabeth

    2016-01-01

    The "dysregulated parturition" narrative posits that the human stress response includes a cascade of hormones that "dysregulates" and accelerates parturition but provides questionable utility as a guide to understand or prevent preterm birth. We offer and test a "strategic parturition" narrative that not only predicts the excess preterm births that dysregulated parturition predicts but also makes testable, sex-specific predictions of the effect of stressful environments on the timing of birth among term pregnancies. We use interrupted time-series modeling of cohorts conceived over 101 months to test for lengthening of early term male gestations in stressed population. We use an event widely reported to have stressed Americans and to have increased the incidence of low birth weight and fetal death across the country-the terrorist attacks of September 2001. We tested the hypothesis that the odds of male infants conceived in December 2000 (i.e., at term in September 2001) being born early as opposed to full term fell below the value expected from those conceived in the 50 prior and 50 following months. We found that term male gestations exposed to the terrorist attacks exhibited 4% lower likelihood of early, as opposed to full or late, term birth. Strategic parturition explains observed data for which the dysregulated parturition narrative offers no prediction-the timing of birth among gestations stressed at term. Our narrative may help explain why findings from studies examining associations between population- and/or individual-level stressors and preterm birth are generally mixed. © 2015 Wiley Periodicals, Inc.

  14. The primary vascular dysregulation syndrome: implications for eye diseases

    Science.gov (United States)

    2013-01-01

    Vascular dysregulation refers to the regulation of blood flow that is not adapted to the needs of the respective tissue. We distinguish primary vascular dysregulation (PVD, formerly called vasospastic syndrome) and secondary vascular dysregulation (SVD). Subjects with PVD tend to have cold extremities, low blood pressure, reduced feeling of thirst, altered drug sensitivity, increased pain sensitivity, prolonged sleep onset time, altered gene expression in the lymphocytes, signs of oxidative stress, slightly increased endothelin-1 plasma level, low body mass index and often diffuse and fluctuating visual field defects. Coldness, emotional or mechanical stress and starving can provoke symptoms. Virtually all organs, particularly the eye, can be involved. In subjects with PVD, retinal vessels are stiffer and more irregular, and both neurovascular coupling and autoregulation capacity are reduced while retinal venous pressure is often increased. Subjects with PVD have increased risk for normal-tension glaucoma, optic nerve compartment syndrome, central serous choroidopathy, Susac syndrome, retinal artery and vein occlusions and anterior ischaemic neuropathy without atherosclerosis. Further characteristics are their weaker blood–brain and blood-retinal barriers and the higher prevalence of optic disc haemorrhages and activated astrocytes. Subjects with PVD tend to suffer more often from tinnitus, muscle cramps, migraine with aura and silent myocardial ischaemic and are at greater risk for altitude sickness. While the main cause of vascular dysregulation is vascular endotheliopathy, dysfunction of the autonomic nervous system is also involved. In contrast, SVD occurs in the context of other diseases such as multiple sclerosis, retrobulbar neuritis, rheumatoid arthritis, fibromyalgia and giant cell arteritis. Taking into consideration the high prevalence of PVD in the population and potentially linked pathologies, in the current article, the authors provide

  15. Behavioral evidence of emotion dysregulation in binge eaters.

    Science.gov (United States)

    Eichen, Dawn M; Chen, Eunice; Boutelle, Kerri N; McCloskey, Michael S

    2017-04-01

    Binge eating is the most common disordered eating symptom and can lead to the development of obesity. Previous self-report research has supported the hypothesis that individuals who binge eat report greater levels of general emotion dysregulation, which may facilitate binge-eating behavior. However, to date, no study has experimentally tested the relation between binge eating history and in-vivo emotion dysregulation. To do this, a sample of female college students who either endorsed binge eating (n = 40) or denied the presence of any eating pathology (n = 47) completed the Difficulties with Emotion Regulation Scale (DERS) and a behavioral distress tolerance task (the Paced Auditory Serial Addition Task-Computer: PASAT-C) known to induce negative affect and distress. The binge eating group was 2.96 times more likely to quit the PASAT-C early (χ 2  = 5.04, p = 0.025) and reported greater irritability (F(1,84) = 7.09 p = 0.009) and frustration (F(1,84) = 5.00, p = 0.028) after completing the PASAT-C than controls, controlling for initial levels of these emotions. Furthermore, across the entire sample, quitting early was associated with greater emotion dysregulation on the DERS (r pb  = 0.342, p < 0.01). This study is the first to demonstrate that individuals who binge eat show in-vivo emotional dysregulation on a laboratory task. Future studies should examine the PASAT-C to determine its potential clinical utility for individuals with or at risk of developing binge eating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Thiol Starvation induces redox-mediated dysregulation ofEscherichia colibiofilm components.

    Science.gov (United States)

    Hufnagel, David A; Price, Janet E; Stephenson, Rachel E; Kelley, Jesse; Benoit, Matthew F; Chapman, Matthew R

    2017-10-16

    A hallmark of bacterial biofilms is the production of an e xtra c ellular m atrix (ECM) that encases and protects the community from environmental stressors. Biofilm formation is an integral portion of the u ro p athogenic E scherichia c oli (UPEC) lifecycle. Approximately 2% of UPEC are cysteine auxotrophs. Here, we investigated how cysteine homeostasis impacted UPEC UTI89 strain biofilm formation and, specifically, the production of the ECM components curli and cellulose. Cysteine auxotrophs produced less cellulose and slightly more curli compared to wildtype (WT) strains, and cysteine auxotrophs formed smooth, non-rugose colonies. Cellulose production was restored in cysteine auxotrophs when YfiR was inactivated. YfiR is a redox-sensitive regulator of the diguanylate cyclase, YfiN. Curli production, a temperature-regulated appendage, was independent of temperature in UTI89 cysteine auxotrophs. In a screen of UPEC isolates, we found that ∼60% of UPEC cysteine auxotrophs produced curli at 37°C, but only ∼2% of cysteine prototrophic UPEC produced curli at 37°C. Interestingly, sub-lethal concentrations of mecillinam and trimethoprim/sulfamethoxazole inhibited curli production, whereas strains auxotrophic for cysteine continued to produce curli even in the presence of mecillinam and trimethoprim/sulfamethoxazole. The dysregulation of ECM components and resistance to mecillinam in cysteine auxotrophs may be linked to hyper-oxidation, since the addition of exogenous cysteine or glutathione restored WT biofilm phenotypes to strains unable to produce cysteine and glutathione. Importance Uropathogenic Escherichia coli (UPEC) are the predominant causative agent of urinary tract infections (UTIs). UTIs account for billions of dollars of financial burden to the healthcare industry in the United States annually. Biofilms are an important aspect of the UPEC pathogenesis cascade and for the establishment of chronic infections. Approximately 2% of UPEC strains isolated

  17. Matrix Metalloproteinase-2 Dysregulation in Type 1 Diabetes

    Science.gov (United States)

    Thrailkill, Kathryn M.; Bunn, Robert C.; Moreau, Cynthia S.; Cockrell, Gael E.; Simpson, Pippa M.; Coleman, Hannah N.; Frindik, J. Paul; Kemp, Stephen F.; Fowlkes, John L.

    2008-01-01

    OBJECTIVE Dysregulation of matrix metalloproteinase (MMP)-2 may contribute pathologically to the development of diabetes complications, including diabetic retinopathy and coronary and peripheral arterial disease. Our objective was to explore whether systemic MMP-2 dysregulation could be demonstrated in type 1 diabetes and to determine how MMP-2 concentration relates to disease status. RESEARCH DESIGN AND METHODS In this cross-sectional study, MMP-2 concentrations and MMP-2 activity were measured in plasma and limed urine samples from 93 type 1 diabetic and 50 healthy control subjects, aged 14–40 years. Relationships between MMP-2 concentrations in these biological fluids and subject characteristics (sex, age, and duration of type 1 diabetes), indexes of glycemic control (A1C, fasting plasma glucose, and continuous glucose monitoring system average daily glucose), and measurements of renal function (urinary albumin excretion and glomerular filtration rate} were examined. RESULTS Urine and plasma MMP-2 concentrations and plasma MMP-2 activity were all significantly elevated in type 1 diabetic subjects compared with those in control subjects. Urine MMP-2 concentrations, in particular, were correlated with several clinical parameters that infer increased risk for diabetic comorbidity and specifically for diabetic nephropathy, including higher A1C, longer duration of disease, evidence of renal hyperfiltration, and the presence of microalbuminuria. CONCLUSIONS Urine and plasma MMP-2 concentrations are dysregulated in type 1 diabetes; urinary excretion of MMP-2, in particular, might provide a unique biomarker of diabetes-induced intrarenal pathologic processes. PMID:17563344

  18. Microglial Dysregulation in OCD, Tourette Syndrome, and PANDAS

    Directory of Open Access Journals (Sweden)

    Luciana Frick

    2016-01-01

    Full Text Available There is accumulating evidence that immune dysregulation contributes to the pathophysiology of obsessive-compulsive disorder (OCD, Tourette syndrome, and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS. The mechanistic details of this pathophysiology, however, remain unclear. Here we focus on one particular component of the immune system: microglia, the brain’s resident immune cells. The role of microglia in neurodegenerative diseases has been understood in terms of classic, inflammatory activation, which may be both a consequence and a cause of neuronal damage. In OCD and Tourette syndrome, which are not characterized by frank neural degeneration, the potential role of microglial dysregulation is much less clear. Here we review the evidence for a neuroinflammatory etiology and microglial dysregulation in OCD, Tourette syndrome, and PANDAS. We also explore new hypotheses as to the potential contributions of microglial abnormalities to pathophysiology, beyond neuroinflammation, including failures in neuroprotection, lack of support for neuronal survival, and abnormalities in synaptic pruning. Recent advances in neuroimaging and animal model work are creating new opportunities to elucidate these issues.

  19. Testosterone alters iron metabolism and stimulates red blood cell production independently of dihydrotestosterone.

    Science.gov (United States)

    Beggs, Luke A; Yarrow, Joshua F; Conover, Christine F; Meuleman, John R; Beck, Darren T; Morrow, Matthew; Zou, Baiming; Shuster, Jonathan J; Borst, Stephen E

    2014-09-01

    Testosterone (T) stimulates erythropoiesis and regulates iron homeostasis. However, it remains unknown whether the (type II) 5α-reduction of T to dihydrotestosterone (DHT) mediates these androgenic effects, as it does in some other tissues. Our purpose was to determine whether inhibition of type II 5α-reductase (via finasteride) alters red blood cell (RBC) production and serum markers of iron homeostasis subsequent to testosterone-enanthate (TE) administration in older hypogonadal men. Sixty men aged ≥60 yr with serum T <300 ng/dl or bioavailable T <70 ng/dl received treatment with TE (125 mg/wk) vs. vehicle paired with finasteride (5 mg/day) vs. placebo using a 2 × 2 factorial design. Over the course of 12 mo, TE increased RBC count 9%, hematocrit 4%, and hemoglobin 8% while suppressing serum hepcidin 57% (P < 0.001 for all measurements). Most of the aforementioned changes occurred in the first 3 mo of treatment, and finasteride coadministration did not significantly alter any of these effects. TE also reduced serum ferritin 32% (P = 0.002) within 3 mo of treatment initiation without altering iron, transferrin, or transferrin saturation. We conclude that TE stimulates erythropoiesis and alters iron homeostasis independently of the type II 5α-reductase enzyme. These results demonstrate that elevated DHT is not required for androgen-mediated erythropoiesis or for alterations in iron homeostasis that would appear to support iron incorporation into RBCs.

  20. Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Martínez-Pastor, María Teresa; Perea-García, Ana; Puig, Sergi

    2017-04-01

    Iron is a redox active element that functions as an essential cofactor in multiple metabolic pathways, including respiration, DNA synthesis and translation. While indispensable for eukaryotic life, excess iron can lead to oxidative damage of macromolecules. Therefore, living organisms have developed sophisticated strategies to optimally regulate iron acquisition, storage and utilization in response to fluctuations in environmental iron bioavailability. In the yeast Saccharomyces cerevisiae, transcription factors Aft1/Aft2 and Yap5 regulate iron metabolism in response to low and high iron levels, respectively. In addition to producing and assembling iron cofactors, mitochondrial iron-sulfur (Fe/S) cluster biogenesis has emerged as a central player in iron sensing. A mitochondrial signal derived from Fe/S synthesis is exported and converted into an Fe/S cluster that interacts directly with Aft1/Aft2 and Yap5 proteins to regulate their transcriptional function. Various conserved proteins, such as ABC mitochondrial transporter Atm1 and, for Aft1/Aft2, monothiol glutaredoxins Grx3 and Grx4 are implicated in this iron-signaling pathway. The analysis of a wide range of S. cerevisiae strains of different geographical origins and sources has shown that yeast strains adapted to high iron display growth defects under iron-deficient conditions, and highlighted connections that exist in the response to both opposite conditions. Changes in iron accumulation and gene expression profiles suggest differences in the regulation of iron homeostasis genes.

  1. Candida albicans Hap43 Domains Are Required under Iron Starvation but Not Excess

    Directory of Open Access Journals (Sweden)

    Volha Skrahina

    2017-12-01

    Full Text Available Iron availability is a central factor in infections, since iron is a critical micronutrient for all living organisms. The host employs both iron limitation and toxicity strategies to control microbial growth, and successful pathogens are able to tightly coordinate iron homeostasis in response to changing iron levels. As a commensal and opportunistic pathogen, Candida albicans copes with both iron deficiency and excess via the precise regulation of iron acquisition, consumption and storage. The C. albicans transcription factor Hap43 is known to be required for the iron starvation response, while specific domains of its ortholog, HapX, in Aspergillus fumigatus, were recently shown to regulate iron uptake and consumptions genes under both low and high iron levels. Therefore, we investigated the contribution of C. albicans Hap43 domains in response to changing iron levels. We found the C-terminus of Hap43 to be essential for the activation of iron uptake genes during iron starvation, whereas, in contrast to A. fumigatus, Hap43 was not required in mediating adaptation to iron resistance. These data indicate that the generally conserved metal acquisition systems in fungal pathogens can show individual adaptations to the host environment.

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type ... or an inability to absorb enough iron from food. Blood Loss When you lose blood, you lose ...

  3. Taking iron supplements

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007478.htm Taking iron supplements To use the sharing features on this page, ... levels. You may also need to take iron supplements as well to rebuild iron stores in your ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... breastfeeding women older than 18 need 9 mg. Problems absorbing iron Even if you consume the recommended ... life when more iron is needed, such as childhood and pregnancy. Good sources of iron are meat, ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... making new blood cells. Visit our Aplastic Anemia Health Topic to learn more. ... recommend that you take iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... fruits, eggs, lean red meat, salmon, iron-fortified breads and cereals, peas, tofu, dried fruits, and dark ... choose nonmeat sources of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the body. Iron-deficiency anemia usually develops over time if your body doesn't have enough iron ... because your need for iron increases during these times of growth and development. Inability To Absorb Enough ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Heavy Menstrual Bleeding (Centers for Disease Control and Prevention) Iron - Health Professional Fact Sheet (NIH) Iron Dietary Supplement Fact Sheet (NIH) Iron-Deficiency Anemia (National Library ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... starch. Restless legs syndrome Shortness of breath Weakness Complications Undiagnosed or untreated iron-deficiency anemia may cause ... as complete blood count and iron studies. Prevent complications over your lifetime To prevent complications from iron- ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... heart failure . Increased risk of infections Motor or cognitive development delays in children Pregnancy complications, such as ... iron-deficiency anemia may require intravenous (IV) iron therapy or a blood transfusion . Iron supplements Your doctor ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for iron-deficiency anemia. Lifestyle habits Certain lifestyle habits may increase your risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... taking an overdose of iron. Iron supplements can cause side effects, such as dark stools, stomach irritation, and heartburn. Iron also can cause constipation, so your doctor may suggest that you ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron in your body causes iron-deficiency anemia. Lack of iron usually is due to blood loss, ... preventing, diagnosing, and treating heart, lung, blood, and sleep disorders. Learn more about participating in a clinical ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... have iron-deficiency anemia, you'll have a high level of transferrin that has no iron. Other ... may include dietary changes and supplements, medicines, and surgery. Severe iron-deficiency anemia may require a blood ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and paler than normal when viewed under a microscope. Different tests help your doctor diagnose iron-deficiency ... if you have iron-deficiency anemia or another type of anemia. You may be diagnosed with iron- ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... also may help treat iron-deficiency anemia. Medical History Your doctor will ask about your signs and ... much of the transferrin in your blood isn't carrying iron. If you have iron-deficiency anemia, ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ... Anemia in Chronic Kidney Disease (National Institute of Diabetes and Digestive and Kidney Diseases) Avoiding Anemia (National ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... breastfeeding. Recommended daily iron intake for children and adults. The table lists the recommended amounts of iron, ... increased need for iron during growth spurts. Older adults, especially those over age 65. Unhealthy environments Children ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... foods that are high in iron. It is important to know that increasing your intake of iron may not be enough to replace the iron your body normally stores but has used up. Increase your intake of ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... ESAs are usually used with iron therapy or IV iron, or when iron therapy alone is not enough. Look for Living With will discuss what your doctor may recommend, including lifelong lifestyle changes ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron ... Anemia Restless Legs Syndrome Von Willebrand Disease Other Resources NHLBI resources Your Guide to Anemia [PDF, 1. ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... may experience vomiting, headache, or other side effects right after the IV iron, but these usually go ... iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron- ... and lifestyle changes to avoid complications. Follow your treatment plan Do not stop taking your prescribed iron ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... is low in iron. For this and other reasons, cow's milk isn't recommended for babies in ... iron in your body is low. For this reason, other iron tests also are done. Serum ferritin. ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Hemolysis, in this case, is caused by strong muscle contractions and the impact of feet repeatedly striking ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of red blood cells, hemoglobin, and iron. Dietary Changes and Supplements Iron You may need iron supplements ... are improving. At your checkups, your doctor may change your medicines or supplements. He or she also ...

  7. Iron Deprivation Affects Drug Susceptibilities of Mycobacteria Targeting Membrane Integrity

    Directory of Open Access Journals (Sweden)

    Rahul Pal

    2015-01-01

    Full Text Available Multidrug resistance (MDR acquired by Mycobacterium tuberculosis (MTB through continuous deployment of antitubercular drugs warrants immediate search for novel targets and mechanisms. The ability of MTB to sense and become accustomed to changes in the host is essential for survival and confers the basis of infection. A crucial condition that MTB must surmount is iron limitation, during the establishment of infection, since iron is required by both bacteria and humans. This study focuses on how iron deprivation affects drug susceptibilities of known anti-TB drugs in Mycobacterium smegmatis, a “surrogate of MTB.” We showed that iron deprivation leads to enhanced potency of most commonly used first line anti-TB drugs that could be reverted upon iron supplementation. We explored that membrane homeostasis is disrupted upon iron deprivation as revealed by enhanced membrane permeability and hypersensitivity to membrane perturbing agent leading to increased passive diffusion of drug and TEM images showing detectable differences in cell envelope thickness. Furthermore, iron seems to be indispensable to sustain genotoxic stress suggesting its possible role in DNA repair machinery. Taken together, we for the first time established a link between cellular iron and drug susceptibility of mycobacteria suggesting iron as novel determinant to combat MDR.

  8. The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation.

    Science.gov (United States)

    Martins, Telma S; Pereira, Clara; Canadell, David; Vilaça, Rita; Teixeira, Vítor; Moradas-Ferreira, Pedro; de Nadal, Eulàlia; Posas, Francesc; Costa, Vítor

    2018-01-01

    Iron acquisition systems have to be tightly regulated to assure a continuous supply of iron, since it is essential for survival, but simultaneously to prevent iron overload that is toxic to the cells. In budding yeast, the low‑iron sensing transcription factor Aft1p is a master regulator of the iron regulon. Our previous work revealed that bioactive sphingolipids modulate iron homeostasis as yeast cells lacking the sphingomyelinase Isc1p exhibit an upregulation of the iron regulon. In this study, we show that Isc1p impacts on iron accumulation and localization. Notably, Aft1p is activated in isc1Δ cells due to a decrease in its phosphorylation and an increase in its nuclear levels. Consistently, the expression of a phosphomimetic version of Aft1p-S210/S224 that favours its nuclear export abolished iron accumulation in isc1Δ cells. Notably, the Hog1p kinase, homologue of mammalian p38, interacts with and directly phosphorylates Aft1p at residues S210 and S224. However, Hog1p-Aft1p interaction decreases in isc1Δ cells, which likely contributes to Aft1p dephosphorylation and consequently to Aft1p activation and iron overload in isc1Δ cells. These results suggest that alterations in sphingolipid composition in isc1Δ cells may impact on iron homeostasis by disturbing the regulation of Aft1p by Hog1p. To our knowledge, Hog1p is the first kinase reported to directly regulate Aft1p, impacting on iron homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Characterization of the Shewanella oneidensis Fur gene: roles in iron and acid tolerance response

    Science.gov (United States)

    Yang, Yunfeng; Harris, Daniel P; Luo, Feng; Wu, Liyou; Parsons, Andrea B; Palumbo, Anthony V; Zhou, Jizhong

    2008-01-01

    Background Iron homeostasis is a key metabolism for most organisms. In many bacterial species, coordinate regulation of iron homeostasis depends on the protein product of a Fur gene. Fur also plays roles in virulence, acid tolerance, redox-stress responses, flagella chemotaxis and metabolic pathways. Results We conducted physiological and transcriptomic studies to characterize Fur in Shewanella oneidensis, with regard to its roles in iron and acid tolerance response. A S. oneidensisfur deletion mutant was defective in growth under iron-abundant or acidic environment. However, it coped with iron depletion better than the wild-type strain MR-1. Further gene expression studies by microarray of the fur mutant confirmed previous findings that iron uptake genes were highly de-repressed in the mutant. Intriguingly, a large number of genes involved in energy metabolism were iron-responsive but Fur-independent, suggesting an intimate relationship of energy metabolism to iron response, but not to Fur. Further characterization of these genes in energy metabolism suggested that they might be controlled by transcriptional factor Crp, as shown by an enriched motif searching algorithm in the corresponding cluster of a gene co-expression network. Conclusion This work demonstrates that S. oneidensis Fur is involved in iron acquisition and acid tolerance response. In addition, analyzing genome-wide transcriptional profiles provides useful information for the characterization of Fur and iron response in S. oneidensis. PMID:18366600

  10. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia Iron-refractory iron deficiency anemia Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  11. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth...

  12. Iron deficiency anemia refractory to iron preparations.

    Science.gov (United States)

    Suzuki, Takahiro

    2016-01-01

    Most patients with iron deficiency anemia are treated effectively with oral iron preparations. However, a small number of these patients are refractory to such treatments, even when the pathologic condition underlying the anemia is concurrently treated. The pathological basis for this refractoriness can be explained by several factors, including malabsorption of iron, e.g. atrophic gastritis, deficiency of other hematopoietic vitamins or minerals, e.g. vitamin B12 or zinc, other undiagnosed anemic disorders, e.g. renal anemia or hematopoietic diseases, as well as certain hereditary disorders of iron metabolism, e.g. iron refractory iron deficiency anemia (IRIDA) caused by genetic mutation of the TMPRSS6 gene. This review focuses on the diagnosis and pathoetiology of iron deficiency anemia that is refractory to conventional oral iron preparations.

  13. Hepatic iron overload following liver transplantation of a C282y homozygous allograft: a case report and literature review.

    LENUS (Irish Health Repository)

    Dwyer, Jeremy P

    2011-11-01

    Hereditary haemochromatosis is a common genetic disease associated with progressive iron overload and parenchymal organ damage including liver, pancreas and heart. We report a case of inadvertent transplantation of a liver from a haemochromatosis donor to a 56-year-old Asian female. Progressive iron overload occurred over a 2 year follow up as assessed by liver biopsy and iron studies in the absence of a secondary cause of iron overload, supporting a primary role of liver rather than small intestine in the regulation of iron homeostasis in hereditary haemochromatosis.

  14. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead...... involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells...

  15. THE ICET-A RECOMMENDATIONS FOR THE DIAGNOSIS AND MANAGEMENT OF DISTURBANCES OF GLUCOSE HOMEOSTASIS IN THALASSEMIA MAJOR PATIENTS

    Directory of Open Access Journals (Sweden)

    Vincenzo De Sanctis

    2016-10-01

    Full Text Available Iron overload in patients with thalassemia major (TM affects glucose regulation, and is mediated by several mechanisms. These include the oxidative damage inflicted by iron on the pancreatic ß -cells and liver cells leading to pancreatic and hepatic dysfunction and insulin resistance. These disturbances have been identified by oral glucose tolerance test (OGTT, euglycemic insulin clamp, homeostatic model assessment (HOMA, intravenous glucose tolerance test (IVGT and continuous glucose monitoring system (CGMS. A group of endocrinologists, hematologists and paediatricians, members of the International Network of Clinicians for Endocrinopathies in Thalassemia and Adolescence Medicine (ICET-A convened to formulate recommendations for the diagnosis and management of abnormalities of glucose homeostasis in thalassemia major patients on the basis of available evidence from clinical and laboratory data and consensus practice. The results of their work and discussions are described in this article. Key words: Thalassemia major; Glucose homeostasis; Diagnosis; Management; Guidelines

  16. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  17. A risk reduction model for late-onset preeclampsia: a theory for using low-intensity exercises to enhance cardiac homeostasis in nursing research and practice.

    Science.gov (United States)

    Yeo, SeonAe

    2011-01-01

    Viewing late-onset preeclampsia as an autonomic dysregulation is a new approach. It is one that will provide nurses and other clinicians with theory-based prenatal care choices that focus on enhancing homeostasis rather than prediction. The dominant prediction model manages the disease based on one biomedical pathway even though the disease is believed to be heterogeneous. Unlike early-onset preeclampsia, which involves severe placental pathophysiology and thus should be left for medical research, late-onset preeclampsia--intact placenta with maternal cardiovascular dysregulation--may be prevented with a lifestyle intervention, in particular, low-intensity exercise. This article discusses a nursing approach to promote health and reduce risks even when the etiology of the disease remains unknown.

  18. Humoral Dysregulation Associated with Increased Systemic Inflammation among Injection Heroin Users.

    Directory of Open Access Journals (Sweden)

    Michael S Piepenbrink

    Full Text Available Injection drug use is a growing major public health concern. Injection drug users (IDUs have a higher incidence of co-morbidities including HIV, Hepatitis, and other infections. An effective humoral response is critical for optimal homeostasis and protection from infection; however, the impact of injection heroin use on humoral immunity is poorly understood. We hypothesized that IDUs have altered B cell and antibody profiles.A comprehensive systems biology-based cross-sectional assessment of 130 peripheral blood B cell flow cytometry- and plasma- based features was performed on HIV-/Hepatitis C-, active heroin IDUs who participated in a syringe exchange program (n = 19 and healthy control subjects (n = 19. The IDU group had substantial polydrug use, with 89% reporting cocaine injection within the preceding month. IDUs exhibited a significant, 2-fold increase in total B cells compared to healthy subjects, which was associated with increased activated B cell subsets. Although plasma total IgG titers were similar between groups, IDUs had significantly higher IgG3 and IgG4, suggestive of chronic B cell activation. Total IgM was also increased in IDUs, as well as HIV Envelope-specific IgM, suggestive of increased HIV exposure. IDUs exhibited numerous features suggestive of systemic inflammation, including significantly increased plasma sCD40L, TNF-α, TGF-α, IL-8, and ceramide metabolites. Machine learning multivariate analysis distilled a set of 10 features that classified samples based on group with absolute accuracy.These results demonstrate broad alterations in the steady-state humoral profile of IDUs that are associated with increased systemic inflammation. Such dysregulation may impact the ability of IDUs to generate optimal responses to vaccination and infection, or lead to increased risk for inflammation-related co-morbidities, and should be considered when developing immune-based interventions for this growing population.

  19. Persistent polar depletion of stratospheric ozone and emergent mechanisms of ultraviolet radiation-mediated health dysregulation.

    Science.gov (United States)

    Dugo, Mark A; Han, Fengxiang; Tchounwou, Paul B

    2012-01-01

    -mediated dysregulations of rhythmicity and homeostasis among animals, including humans.

  20. SRC-2 orchestrates polygenic inputs for fine-tuning glucose homeostasis

    Science.gov (United States)

    Fleet, Tiffany; Zhang, Bin; Lin, Fumin; Zhu, Bokai; Dasgupta, Subhamoy; Stashi, Erin; Tackett, Bryan; Thevananther, Sundararajah; Rajapakshe, Kimal I.; Gonzales, Naomi; Dean, Adam; Mao, Jianqiang; Timchenko, Nikolai; Malovannaya, Anna; Qin, Jun; Coarfa, Cristian; DeMayo, Francesco; Dacso, Clifford C.; Foulds, Charles E.; O’Malley, Bert W.; York, Brian

    2015-01-01

    Despite extensive efforts to understand the monogenic contributions to perturbed glucose homeostasis, the complexity of genetic events that fractionally contribute to the spectrum of this pathology remain poorly understood. Proper maintenance of glucose homeostasis is the central feature of a constellation of comorbidities that define the metabolic syndrome. The ability of the liver to balance carbohydrate uptake and release during the feeding-to-fasting transition is essential to the regulation of peripheral glucose availability. The liver coordinates the expression of gene programs that control glucose absorption, storage, and secretion. Herein, we demonstrate that Steroid Receptor Coactivator 2 (SRC-2) orchestrates a hierarchy of nutritionally responsive transcriptional complexes to precisely modulate plasma glucose availability. Using DNA pull-down technology coupled with mass spectrometry, we have identified SRC-2 as an indispensable integrator of transcriptional complexes that control the rate-limiting steps of hepatic glucose release and accretion. Collectively, these findings position SRC-2 as a major regulator of polygenic inputs to metabolic gene regulation and perhaps identify a previously unappreciated model that helps to explain the clinical spectrum of glucose dysregulation. PMID:26487680

  1. Anatomical localization of commensal bacteria in immune cell homeostasis and disease.

    Science.gov (United States)

    Fung, Thomas C; Artis, David; Sonnenberg, Gregory F

    2014-07-01

    The mammalian gastrointestinal (GI) tract is colonized by trillions of beneficial commensal bacteria that are essential for promoting normal intestinal physiology. While the majority of commensal bacteria are found in the intestinal lumen, many species have also adapted to colonize different anatomical locations in the intestine, including the surface of intestinal epithelial cells (IECs) and the interior of gut-associated lymphoid tissues. These distinct tissue localization patterns permit unique interactions with the mammalian immune system and collectively influence intestinal immune cell homeostasis. Conversely, dysregulated localization of commensal bacteria can lead to inappropriate activation of the immune system and is associated with numerous chronic infectious, inflammatory, and metabolic diseases. Therefore, regulatory mechanisms that control proper anatomical containment of commensal bacteria are essential to maintain tissue homeostasis and limit pathology. In this review, we propose that commensal bacteria associated with the mammalian GI tract can be anatomically defined as (i) luminal, (ii) epithelial-associated, or (iii) lymphoid tissue-resident, and we discuss the role and regulation of these microbial populations in health and disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. The Unfolded Protein Response in Homeostasis and Modulation of Mammalian Immune Cells.

    Science.gov (United States)

    Martins, Ana Sofia; Alves, Inês; Helguero, Luisa; Domingues, Maria Rosário; Neves, Bruno Miguel

    2016-11-01

    The endoplasmic reticulum (ER) plays important roles in eukaryotic protein folding and lipid biosynthesis. Several exogenous and endogenous cellular sources of stress can perturb ER homeostasis leading to the accumulation of unfolded proteins in the lumen. Unfolded protein accumulation triggers a signal-transduction cascade known as the unfolded protein response (UPR), an adaptive mechanism which aims to protect cells from protein aggregates and to restore ER functions. Further to this protective mechanism, in immune cells, UPR molecular effectors have been shown to participate in a wide range of biological processes such as cell differentiation, survival and immunoglobulin and cytokine production. Recent findings also highlight the involvement of the UPR machinery in the maturational program and antigen presentation capacities of dendritic cells. UPR is therefore a key element in immune system homeostasis with direct implications on both adaptive and innate immune responses. The present review summarizes the knowledge on the emerging roles of UPR signaling cascades in mammalian immune cells as well as the consequences of their dysregulation in relation to the pathogenesis of several diseases.

  3. Hepatocyte nuclear factor 4 alpha is a key factor related to depression and physiological homeostasis in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Kyosuke Yamanishi

    Full Text Available Major depressive disorder (MDD is a common psychiatric disorder that involves marked disabilities in global functioning, anorexia, and severe medical comorbidities. MDD is associated with not only psychological and sociocultural problems, but also pervasive physical dysfunctions such as metabolic, neurobiological and immunological abnormalities. Nevertheless, the mechanisms underlying the interactions between these factors have yet to be determined in detail. The aim of the present study was to identify the molecular mechanisms responsible for the interactions between MDD and dysregulation of physiological homeostasis, including immunological function as well as lipid metabolism, coagulation, and hormonal activity in the brain. We generated depression-like behavior in mice using chronic mild stress (CMS as a model of depression. We compared the gene expression profiles in the prefrontal cortex (PFC of CMS and control mice using microarrays. We subsequently categorized genes using two web-based bioinformatics applications: Ingenuity Pathway Analysis and The Database for Annotation, Visualization, and Integrated Discovery. We then confirmed significant group-differences by analyzing mRNA and protein expression levels not only in the PFC, but also in the thalamus and hippocampus. These web tools revealed that hepatocyte nuclear factor 4 alpha (Hnf4a may exert direct effects on various genes specifically associated with amine synthesis, such as genes involved in serotonin metabolism and related immunological functions. Moreover, these genes may influence lipid metabolism, coagulation, and hormonal activity. We also confirmed the significant effects of Hnf4a on both mRNA and protein expression levels in the brain. These results suggest that Hnf4a may have a critical influence on physiological homeostasis under depressive states, and may be associated with the mechanisms responsible for the interactions between MDD and the dysregulation of

  4. Iron storage disease (hemochromatosis) and hepcidin response to iron load in two species of pteropodid fruit bats relative to the common vampire bat.

    Science.gov (United States)

    Stasiak, Iga M; Smith, Dale A; Ganz, Tomas; Crawshaw, Graham J; Hammermueller, Jutta D; Bienzle, Dorothee; Lillie, Brandon N

    2018-03-29

    Hepcidin is the key regulator of iron homeostasis in the body. Iron storage disease (hemochromatosis) is a frequent cause of liver disease and mortality in captive Egyptian fruit bats (Rousettus aegyptiacus), but reasons underlying this condition are unknown. Hereditary hemochromatosis in humans is due to deficiency of hepcidin or resistance to the action of hepcidin. Here, we investigated the role of hepcidin in iron metabolism in one species of pteropodid bat that is prone to iron storage disease [Egyptian fruit bat (with and without hemochromatosis)], one species of pteropodid bat where iron storage disease is rare [straw-colored fruit bat (Eidolon helvum)], and one species of bat with a natural diet very high in iron, in which iron storage disease is not reported [common vampire bat (Desmodus rotundus)]. Iron challenge via intramuscular injection of iron dextran resulted in significantly increased liver iron content and histologic iron scores in all three species, and increased plasma iron in Egyptian fruit bats and straw-colored fruit bats. Hepcidin mRNA expression increased in response to iron administration in healthy Egyptian fruit bats and common vampire bats, but not in straw-colored fruit bats or Egyptian fruit bats with hemochromatosis. Hepcidin gene expression significantly correlated with liver iron content in Egyptian fruit bats and common vampire bats, and with transferrin saturation and plasma ferritin concentration in Egyptian fruit bats. Induction of hepcidin gene expression in response to iron challenge is absent in straw-colored fruit bats and in Egyptian fruit bats with hemochromatosis and, relative to common vampire bats and healthy humans, is low in Egyptain fruit bats without hemochromatosis. Limited hepcidin response to iron challenge may contribute to the increased susceptibility of Egyptian fruit bats to iron storage disease.

  5. A Positive Affective Neuroendocrinology (PANE Approach to Reward and Behavioral Dysregulation

    Directory of Open Access Journals (Sweden)

    Keith eWelker

    2015-07-01

    Full Text Available Emerging lines of research suggest that both testosterone and maladaptive reward processing can modulate behavioral dysregulation. Yet to date, no integrative account has been provided that systematically explains neuroendocrine function, dysregulation of reward, and behavioral dysregulation in a unified perspective. This is particularly important given specific neuroendocrine systems are potential mechanisms underlying and giving rise to reward-relevant behaviors. In this review, we propose a forward thinking approach to study the mechanisms of reward and behavioral dysregulation from a positive affective neuroendocrinology (PANE perspective. This approach holds that testosterone increases reward processing, which increases the likelihood of behavioral dysregulation. Additionally, the PANE framework holds that reward processing mediates the effects of testosterone on behavioral dysregulation. We also explore sources of potential sex differences and the roles of age, cortisol, and individual differences within the PANE framework. Finally, we discuss future prospects for research questions and methodology in the emerging field of affective neuroendocrinology.

  6. Dysregulation of Ubiquitin-Proteasome System in Neurodegenerative Diseases

    Science.gov (United States)

    Zheng, Qiuyang; Huang, Timothy; Zhang, Lishan; Zhou, Ying; Luo, Hong; Xu, Huaxi; Wang, Xin

    2016-01-01

    The ubiquitin-proteasome system (UPS) is one of the major protein degradation pathways, where abnormal UPS function has been observed in cancer and neurological diseases. Many neurodegenerative diseases share a common pathological feature, namely intracellular ubiquitin-positive inclusions formed by aggregate-prone neurotoxic proteins. This suggests that dysfunction of the UPS in neurodegenerative diseases contributes to the accumulation of neurotoxic proteins and to instigate neurodegeneration. Here, we review recent findings describing various aspects of UPS dysregulation in neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. PMID:28018215

  7. Influence of welding fume on systemic iron status.

    Science.gov (United States)

    Casjens, Swaantje; Henry, Jana; Rihs, Hans-Peter; Lehnert, Martin; Raulf-Heimsoth, Monika; Welge, Peter; Lotz, Anne; Gelder, Rainer Van; Hahn, Jens-Uwe; Stiegler, Hugo; Eisele, Lewin; Weiss, Tobias; Hartwig, Andrea; Brüning, Thomas; Pesch, Beate

    2014-11-01

    Iron is the major metal found in welding fumes, and although it is an essential trace element, its overload causes toxicity due to Fenton reactions. To avoid oxidative damage, excess iron is bound to ferritin, and as a result, serum ferritin (SF) is a recognized biomarker for iron stores, with high concentrations linked to inflammation and potentially also cancer. However, little is known about iron overload in welders. Within this study, we assessed the iron status and quantitative associations between airborne iron, body iron stores, and iron homeostasis in 192 welders not wearing dust masks. Welders were equipped with personal samplers in order to determine the levels of respirable iron in the breathing zone during a working shift. SF, prohepcidin and other markers of iron status were determined in blood samples collected after shift. The impact of iron exposure and other factors on SF and prohepcidin were estimated using multiple regression models. Our results indicate that respirable iron is a significant predictor of SF and prohepcidin. Concentrations of SF varied according to the welding technique and respiratory protection used, with a median of 103 μg l(-1) in tungsten inert gas welders, 125 μg l(-1) in those wearing air-purifying respirators, and 161 μg l(-1) in other welders. Compared to welders with low iron stores (SF < 25 μg l(-1)), those with excess body iron (SF ≥ 400 μg l(-1)) worked under a higher median concentration of airborne iron (60 μg m(-3) versus 148 μg m(-3)). Even though air concentrations of respirable iron and manganese were highly correlated, and low iron stores have been reported to increase manganese uptake in the gastrointestinal tract, no correlation was seen between SF and manganese in blood. In conclusion, monitoring SF may be a reasonable method for health surveillance of welders. Respiratory protection with air-purifying respirators can decrease iron exposure and avoid chronically higher SF in welders working with

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... term but can't take iron supplements by mouth. This therapy also is given to people who need immediate treatment for iron-deficiency anemia. Living With If you have iron-deficiency anemia, get ongoing care to make sure your iron levels are improving. ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... bleeding Consuming less than recommended daily amounts of iron Iron-deficiency anemia can be caused by getting ...

  10. Serum iron test

    Science.gov (United States)

    Fe+2; Ferric ion; Fe++; Ferrous ion; Iron - serum; Anemia - serum iron; Hemochromatosis - serum iron ... A blood sample is needed. Iron levels are highest in the morning. Your health care provider will likely have you do this test in the morning.

  11. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  12. Special thermite cast irons

    OpenAIRE

    Yu. Zhiguts; I. Kurytnik

    2008-01-01

    The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... of growth and development. Inability To Absorb Enough Iron Even if you have enough iron in your ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... other conditions to prevent you from developing iron-deficiency anemia. Foods that are good sources of iron include dried ... patterns. Increase your daily intake of iron-rich foods to help treat your iron-deficiency anemia. See Prevention strategies to learn about foods ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron added). If you don't eat these foods regularly, or if you don't take an iron supplement, you're more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... levels of red blood cells, hemoglobin, and iron. Dietary Changes and Supplements Iron You may need iron supplements to build ... Syndrome Other Resources Non-NHLBI Resources Anemia (MedlinePlus) "Dietary Supplement Fact Sheet: Iron" (Office of Dietary Supplements, National ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... if you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... for iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  18. Iron and Your Child

    Science.gov (United States)

    ... 15 milligrams. (Adolescence is a time of rapid growth and teen girls need additional iron to replace what they ... make up the difference. Iron deficiency can affect growth and may lead to ... Enough Iron? Kids and teens should know that iron is an important part ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... prescribes. Keep iron supplements out of reach from children. This will prevent them from taking an overdose of iron. Iron supplements can cause side effects, such as dark stools, stomach irritation, and heartburn. Iron also can cause constipation, so your doctor may suggest that you use ...

  20. Iron deficiency anemia

    Science.gov (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  1. Pharmacological modulation of mitochondrial calcium homeostasis.

    Science.gov (United States)

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  2. Gut commensal flora: tolerance and homeostasis

    OpenAIRE

    Rescigno, Maria

    2009-01-01

    Commensal microorganisms are not ignored by the intestinal immune system. Recent evidence shows that commensals actively participate in maintaining intestinal immune homeostasis by interacting with intestinal epithelial cells and delivering tolerogenic signals that are transmitted to the underlying cells of the immune system.

  3. Calcium homeostasis in fly photoreceptor cells

    NARCIS (Netherlands)

    Oberwinkler, J

    2002-01-01

    In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange.Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and

  4. The UPS and downs of cholesterol homeostasis

    NARCIS (Netherlands)

    Sharpe, Laura J.; Cook, Emma C. L.; Zelcer, Noam; Brown, Andrew J.

    2014-01-01

    An emerging theme in the regulation of cholesterol homeostasis is the role of the ubiquitin proteasome system (UPS), through which proteins are ubiquitylated and then degraded in response to specific signals. The UPS controls all aspects of cholesterol metabolism including its synthesis, uptake, and

  5. Redox Homeostasis in Pancreatic beta Cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Dlasková, Andrea; Plecitá-Hlavatá, Lydie

    2012-01-01

    Roč. 2012, č. 2012 (2012), s. 932838 ISSN 1942-0900 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204 Institutional support: RVO:67985823 Keywords : beta cells * reactive oxygen species homeostasis * mitochondria Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.393, year: 2012

  6. Sensing the environment: regulation of local and global homeostasis by the skin's neuroendocrine system.

    Science.gov (United States)

    Slominski, Andrzej T; Zmijewski, Michal A; Skobowiat, Cezary; Zbytek, Blazej; Slominski, Radomir M; Steketee, Jeffery D

    2012-01-01

    Skin, the body's largest organ, is strategically located at the interface with the external environment where it detects, integrates, and responds to a diverse range of stressors including solar radiation. It has already been established that the skin is an important peripheral neuro-endocrine-immune organ that is tightly networked to central regulatory systems. These capabilities contribute to the maintenance of peripheral homeostasis. Specifically, epidermal and dermal cells produce and respond to classical stress neurotransmitters, neuropeptides, and hormones. Such production is stimulated by ultraviolet radiation (UVR), biological factors (infectious and noninfectious), and other physical and chemical agents. Examples of local biologically active products are cytokines, biogenic amines (catecholamines, histamine, serotonin, and N-acetyl-serotonin), melatonin, acetylocholine, neuropeptides including pituitary (proopiomelanocortin-derived ACTH, beta-endorphin or MSH peptides, thyroid-stimulating hormone) and hypothalamic (corticotropin-releasing factor and related urocortins, thyroid-releasing hormone) hormones as well as enkephalins and dynorphins, thyroid hormones, steroids (glucocorticoids, mineralocorticoids, sex hormones, 7-delta steroids), secosteroids, opioids, and endocannabinoids. The production of these molecules is hierarchical, organized along the algorithms of classical neuroendocrine axes such as hypothalamic-pituitary-adrenal axis (HPA), hypothalamic-thyroid axis (HPT), serotoninergic, melatoninergic, catecholaminergic, cholinergic, steroid/secosteroidogenic, opioid, and endocannbinoid systems. Dysregulation of these axes or of communication between them may lead to skin and/ or systemic diseases. These local neuroendocrine networks are also addressed at restricting maximally the effect of noxious environmental agents to preserve local and consequently global homeostasis. Moreover, the skin-derived factors/systems can also activate cutaneous nerve

  7. Growth differentiation factor 15 in anaemia of chronic disease, iron deficiency anaemia and mixed type anaemia.

    Science.gov (United States)

    Theurl, Igor; Finkenstedt, Armin; Schroll, Andrea; Nairz, Manfred; Sonnweber, Thomas; Bellmann-Weiler, Rosa; Theurl, Milan; Seifert, Markus; Wroblewski, Victor J; Murphy, Anthony T; Witcher, Derrick; Zoller, Heinz; Weiss, Günter

    2010-02-01

    Recently, the iron and erythropoiesis-controlled growth differentiation factor 15 (GDF15) has been shown to inhibit the expression of hepcidin in beta-thalassaemia patients, thereby increasing iron absorption despite iron overload. To access the diagnostic and pathogenic impact of GDF15 in inflammatory anaemia the association of GDF15 expression with serum iron parameters and hepcidin was studied in patients suffering from iron deficiency anaemia (IDA), anaemia of chronic disease (ACD) and ACD subjects with true iron deficiency (ACD/IDA). GDF15 was significantly increased in both ACD and ACD/IDA, but not in IDA subjects as compared to controls. In contrast, hepcidin levels were significantly lower in IDA and ACD/IDA subjects than in ACD patients. IDA and ACD/IDA, but not ACD, showed an association between GDF15 and soluble transferrin receptor, an indicator of iron requirement for erythropoiesis. However, GDF15 did not correlate to hepcidin in either patient group. While GDF15 levels were linked to the needs for erythropoiesis and iron homeostasis in IDA, the immunity-driven increase of GDF15 may not primarily affect iron homeostasis and hepcidin expression. This indicates that other ACD-related factors may overcome the regulatory effects of GDF15 on hepcidin expression during inflammation.

  8. Expression profiling of FSHD-1 and FSHD-2 cells during myogenic differentiation evidences common and distinctive gene dysregulation patterns.

    Directory of Open Access Journals (Sweden)

    Stefania Cheli

    Full Text Available BACKGROUND: Determine global gene dysregulation affecting 4q-linked (FSHD-1 and non 4q-linked (FSHD-2 cells during early stages of myogenic differentiation. This approach has been never applied to FSHD pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: By in vitro differentiation of FSHD-1 and FSHD-2 myoblasts and gene chip analysis we derived that gene expression profile is altered only in FSHD-1 myoblasts and FSHD-2 myotubes. The changes seen in FSHD-1 regarded a general defect in cell cycle progression, probably due to the upregulation of myogenic markers PAX3 and MYOD1, and a deficit of factors (SUV39H1 and HMGB2 involved in D4Z4 chromatin conformation. On the other hand, FSHD-2 mytubes were characterized by a general defect in RNA metabolism, protein synthesis and degradation and, to a lesser extent, in cell cycle. Common dysregulations regarded genes involved in response to oxidative stress and in sterol biosynthetic process. Interestingly, our results also suggest that miRNAs might be implied in both FSHD-1 and FSHD-2 gene dysregulation. Finally, in both cell differentiation systems, we did not observe a gradient of altered gene expression throughout the 4q35 chromosome. CONCLUSIONS/SIGNIFICANCE: FSHD-1 and FSHD-2 cells showed, in different steps of myogenic differentiation, a global deregulation of gene expression rather than an alteration of expression of 4q35 specific genes. In general, FSHD-1 and FSHD-2 global gene deregulation interested common and distinctive biological processes. In this regard, defects of cell cycle progression (FSHD-1 and to a lesser extent FSHD-2, protein synthesis and degradation (FSHD-2, response to oxidative stress (FSHD-1 and FSHD-2, and cholesterol homeostasis (FSHD-1 and FSHD-2 may in general impair a correct myogenesis. Taken together our results recapitulate previously reported defects of FSHD-1, and add new insights into the gene deregulation characterizing both FSHD-1 and FSHD-2, in which miRNAs may play a

  9. Transcriptional dysregulation in NIPBL and cohesin mutant human cells.

    Directory of Open Access Journals (Sweden)

    Jinglan Liu

    2009-05-01

    Full Text Available Cohesin regulates sister chromatid cohesion during the mitotic cell cycle with Nipped-B-Like (NIPBL facilitating its loading and unloading. In addition to this canonical role, cohesin has also been demonstrated to play a critical role in regulation of gene expression in nondividing cells. Heterozygous mutations in the cohesin regulator NIPBL or cohesin structural components SMC1A and SMC3 result in the multisystem developmental disorder Cornelia de Lange Syndrome (CdLS. Genome-wide assessment of transcription in 16 mutant cell lines from severely affected CdLS probands has identified a unique profile of dysregulated gene expression that was validated in an additional 101 samples and correlates with phenotypic severity. This profile could serve as a diagnostic and classification tool. Cohesin binding analysis demonstrates a preference for intergenic regions suggesting a cis-regulatory function mimicking that of a boundary/insulator interacting protein. However, the binding sites are enriched within the promoter regions of the dysregulated genes and are significantly decreased in CdLS proband, indicating an alternative role of cohesin as a transcription factor.

  10. Targeting emotion dysregulation in the treatment of self-injury.

    Science.gov (United States)

    Gratz, Kim L

    2007-11-01

    Clinically useful definitions of emotion regulation with respect to deliberate self-harm (referred to here as self-injury) focus on adaptive ways of responding to emotional distress rather than on the control of emotions or dampening of emotional arousal. According to one such definition, emotion regulation is a multifaceted construct involving a) the awareness, understanding, and acceptance of emotions; b) ability to engage in goal-directed behaviors, and inhibit impulsive behaviors, when experiencing negative emotions; c) the flexible use of situationally appropriate strategies to modulate the intensity and/or duration of emotional responses rather than to eliminate emotions entirely; and d) willingness to experience negative emotions as part of pursuing meaningful activities in life (Gratz & Roemer, 2004). This article addresses the role of emotion dysregulation in self-injury and discusses two treatments for self-injury that explicitly focus on increasing emotion regulation. These treatments are based on the premise that the reduction of emotion dysregulation will decrease the need for maladaptive behaviors that function to regulate emotions, such as self-injury. A case illustration describing how one of these treatments (an acceptance-based, emotion regulation group therapy) is used to treat self-injury is provided.

  11. Peripheral endocannabinoid system dysregulation in first-episode psychosis.

    Science.gov (United States)

    Bioque, Miquel; García-Bueno, Borja; Macdowell, Karina S; Meseguer, Ana; Saiz, Pilar A; Parellada, Mara; Gonzalez-Pinto, Ana; Rodriguez-Jimenez, Roberto; Lobo, Antonio; Leza, Juan C; Bernardo, Miguel

    2013-12-01

    Several hypotheses involving alterations of the immune system have been proposed among etiological explanations for psychotic disorders. The endocannabinoid system (ECS) has a homeostatic role as an endogenous neuroprotective and anti-inflammatory system. Alterations of this system have been associated with psychosis. Cannabis use is a robust risk factor for these disorders that could alter the ECS signalling. In this study, 95 patients with a first episode of psychosis (FEP) and 90 healthy controls were recruited. Protein expression of cannabinoid receptor 2 (CB2), the protein levels of the main endocannabinoid synthesizing enzymes N-acyl phosphatidylethanolamine phospholipase (NAPE) and diacylglycerol lipase (DAGL), and of degradation enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) were determined by western blot analysis in peripheral blood mononuclear cells (PBMCs). Patients with a FEP showed a decreased expression of CB2 and of both endocannabinoids synthesizing enzymes (NAPE and DAGL) in comparison to healthy controls. After controlling for age, gender, body mass index, and cannabis use, NAPE and DAGL expression remained significantly decreased, whereas FAAH and MAGL expression were increased. On the other hand, FEP subjects with history of severe cannabis use showed a larger ECS dysregulation compared with healthy controls. These results indicate an ECS dysregulation in PBMC of FEP patients. The alteration of the ECS presented at the initial phases of psychosis could be contributing to the pathophysiology of the disease and constitutes a possible biomarker of psychotic disorders and an interesting pharmacological target to take into account for therapeutic purposes.

  12. Inhibition of SREBP transcriptional activity by a boron-containing compound improves lipid homeostasis in diet-induced obesity.

    Science.gov (United States)

    Zhao, Xiaoping; Xiaoli; Zong, Haihong; Abdulla, Arian; Yang, Ellen S T; Wang, Qun; Ji, Jun-Yuan; Pessin, Jeffrey E; Das, Bhaskar C; Yang, Fajun

    2014-07-01

    Dysregulation of lipid homeostasis is intimately associated with obesity, type 2 diabetes, and cardiovascular diseases. Sterol regulatory-element binding proteins (SREBPs) are the master regulators of lipid biosynthesis. Previous studies have shown that the conserved transcriptional cofactor Mediator complex is critically required for the SREBP transcriptional activity, and recruitment of the Mediator complex to the SREBP transactivation domains (TADs) is through the MED15-KIX domain. Recently, we have synthesized several boron-containing small molecules. Among these novel compounds, BF175 can specifically block the binding of MED15-KIX to SREBP1a-TAD in vitro, resulting in an inhibition of the SREBP transcriptional activity and a decrease of SREBP target gene expression in cultured hepatocytes. Furthermore, BF175 can improve lipid homeostasis in the mouse model of diet-induced obesity. Compared with the control, BF175 treatment decreased the expression of SREBP target genes in mouse livers and decreased hepatic and blood levels of lipids. These results suggest that blocking the interaction between SREBP-TADs and the Mediator complex by small molecules may represent a novel approach for treating diseases with aberrant lipid homeostasis. © 2014 by the American Diabetes Association.

  13. Expression profiling reveals an unexpected growth-stimulating effect of surplus iron on the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Du, Yang; Cheng, Wang; Li, Wei-Fang

    2012-08-01

    Iron homeostasis plays a crucial role in growth and division of cells in all kingdoms of life. Although yeast iron metabolism has been extensively studied, little is known about the molecular mechanism of response to surplus iron. In this study, expression profiling of Saccharomyces cerevisiae in the presence of surplus iron revealed a dual effect at 1 and 4 h. A cluster of stress-responsive genes was upregulated via activation of the stress-resistance transcription factor Msn4, which indicated the stress effect of surplus iron on yeast metabolism. Genes involved in aerobic metabolism and several anabolic pathways are also upregulated in iron-surplus conditions, which could significantly accelerate yeast growth. This dual effect suggested that surplus iron might participate in a more complex metabolic network, in addition to serving as a stress inducer. These findings contribute to our understanding of the global response of yeast to the fluctuating availability of iron in the environment.

  14. Combined use of X-ray fluorescence microscopy, phase contrast imaging for high resolution quantitative iron mapping in inflamed cells

    Science.gov (United States)

    Gramaccioni, C.; Procopio, A.; Farruggia, G.; Malucelli, E.; Iotti, S.; Notargiacomo, A.; Fratini, M.; Yang, Y.; Pacureanu, A.; Cloetens, P.; Bohic, S.; Massimi, L.; Cutone, A.; Valenti, P.; Rosa, L.; Berlutti, F.; Lagomarsino, S.

    2017-06-01

    X-ray fluorescence microscopy (XRFM) is a powerful technique to detect and localize elements in cells. To derive information useful for biology and medicine, it is essential not only to localize, but also to map quantitatively the element concentration. Here we applied quantitative XRFM to iron in phagocytic cells. Iron, a primary component of living cells, can become toxic when present in excess. In human fluids, free iron is maintained at 10-18 M concentration thanks to iron binding proteins as lactoferrin (Lf). The iron homeostasis, involving the physiological ratio of iron between tissues/secretions and blood, is strictly regulated by ferroportin, the sole protein able to export iron from cells to blood. Inflammatory processes induced by lipopolysaccharide (LPS) or bacterial pathoge inhibit ferroportin synthesis in epithelial and phagocytic cells thus hindering iron export, increasing intracellular iron and bacterial multiplication. In this respect, Lf is emerging as an important regulator of both iron and inflammatory homeostasis. Here we studied phagocytic cells inflamed by bacterial LPS and untreated or treated with milk derived bovine Lf. Quantitative mapping of iron concentration and mass fraction at high spatial resolution is obtained combining X-ray fluorescence microscopy, atomic force microscopy and synchrotron phase contrast imaging.

  15. Iron absorption in relation to iron status

    International Nuclear Information System (INIS)

    Magnusson, B.; Bjoern-Rasmussen, E.; Hallberg, L.; Rossander, L.

    1981-01-01

    The absorption from a 3 mg dose of ferrous iron was measured in 250 male subjects. The absorption was related to the log concentration of serum ferritin in 186 subjects of whom 99 were regular blood donors (r= -0.76), and to bone marrow haemosiderin grading in 52 subjects with varying iron status. The purpose was to try and establish a percentage absorption from such a dose that is representative of subjects who are borderline iron deficient. This information is necessary for food iron absorption studies in order (1) to calculate the absorption of iron from the diet at a given iron status and (2) compare the absorption of iron from different meals studied in different groups of subjects by different investigarors. The results suggest that an absorption of about 40% of a 3 mg reference dose of ferrous iron is given in a fasting state, roughly corresponds to the absorption in borderline-iron-deficient subjects. The results indicate that this 40% absorption value corresponds to a serum ferritin level of 30 μg/l and that food iron absorption in a group of subjects should be expressed preferably as the absorption corresponding to a reference-dose absorption of 45%, or possibly a serum ferritin level of 30 μg/l. (author)

  16. Manganese acquisition and homeostasis at the host-pathogen interface.

    Science.gov (United States)

    Lisher, John P; Giedroc, David P

    2013-01-01

    Pathogenic bacteria acquire transition metals for cell viability and persistence of infection in competition with host nutritional defenses. The human host employs a variety of mechanisms to stress the invading pathogen with both cytotoxic metal ions and oxidative and nitrosative insults while withholding essential transition metals from the bacterium. For example, the S100 family protein calprotectin (CP) found in neutrophils is a calcium-activated chelator of extracellular Mn and Zn and is found in tissue abscesses at sites of infection by Staphylococcus aureus. In an adaptive response, bacteria have evolved systems to acquire the metals in the face of this competition while effluxing excess or toxic metals to maintain a bioavailability of transition metals that is consistent with a particular inorganic "fingerprint" under the prevailing conditions. This review highlights recent biological, chemical and structural studies focused on manganese (Mn) acquisition and homeostasis and connects this process to oxidative stress resistance and iron (Fe) availability that operates at the human host-pathogen interface.

  17. Manganese acquisition and homeostasis at the host-pathogen interface

    Directory of Open Access Journals (Sweden)

    John P Lisher

    2013-12-01

    Full Text Available Pathogenic bacteria acquire transition metals for cell viability and persistence of infection in competition with host nutritional defenses. The human host employs a variety of mechanisms to stress the invading pathogen with both cytotoxic metal ions and oxidative and nitrosative insults while withholding essential transition metals from the bacterium. For example, the S100 family protein calprotectin (CP found in neutrophils is a calcium-activated chelator of extracellular Mn and Zn and is found in tissue abscesses at sites of infection by Staphylococcus aureus. In an adaptive response, bacteria have evolved systems to acquire the metals in the face of this competition while effluxing excess or toxic metals to maintain a bioavailability of transition metals that is consistent with a particular inorganic fingerprint under the prevailing conditions. This review highlights recent biological, chemical and structural studies focused on manganese (Mn acquisition and homeostasis and connects this process to oxidative stress resistance and iron (Fe availability that operates at the human host-pathogen interface.

  18. Metformin regulates glycemic homeostasis in patients with type 2 diabetes mellitus as an NO donor

    Directory of Open Access Journals (Sweden)

    Ivan Sergeevich Kuznetsov

    2013-11-01

    Full Text Available Aim. To evaluate the influence of metformin on nitric oxide bioavailability in patients with type 2 diabetes mellitus (T2DM regarding glycemic homeostasis, and to investigate a correlation between metformin dosage and NO levels in vivo.Materials and Methods. Two groups – primary and control – were assembled for the clinical section of this study. Patients with newly diagnosed T2DM on metformin therapy were included to the primary group, while drug-naïve T2DM patients were enrolled as control subjects. Glycemic parameters and NO bioavailability was tested in both groups prior to and after the follow-up period. Experimental section was dedicated to the elucidation of potential dose-dependent effects of metformin on NO bioavailability. Mice were intraperitoneally infused with metformin at 0.5; 1.1; 5.6 mg per subject. Tissue detection of NO was performed with diethyldithiocarbamate (DETC iron complexes to form mononitrosyl iron compounds (MIC with paramagnetic properties. Control rodents were intraperitoneally infused with metformin without spin trapping.Results. We found nitrite and methaemoglobin (a marker for NO bioavailability to increase in parallel along with glycemic compensation in the primary but not control group. In vivo rodent models showed linear correlation between accumulation of DETC/MIC and dose of metformin, as well as formation of dinitrosyl iron complexes, known as endogenous NO transporters.Conclusion. Our data suggests that metformin benefits glycemic homeostasis in T2DM as an NO donor via formation of dinitrosyl iron complexes.

  19. Magnetic resonance imaging of reconstructed ferritin as an iron-induced pathological model system

    Energy Technology Data Exchange (ETDEWEB)

    Balejcikova, Lucia [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia); Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Strbak, Oliver [Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin (Slovakia); Baciak, Ladislav [Faculty of Chemical and Food Technology STU, Radlinskeho 9, 812 37 Bratislava (Slovakia); Kovac, Jozef [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia); Masarova, Marta; Krafcik, Andrej; Frollo, Ivan [Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Dobrota, Dusan [Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin (Slovakia); Kopcansky, Peter [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia)

    2017-04-01

    Iron, an essential element of the human body, is a significant risk factor, particularly in the case of its concentration increasing above the specific limit. Therefore, iron is stored in the non-toxic form of the globular protein, ferritin, consisting of an apoferritin shell and iron core. Numerous studies confirmed the disruption of homeostasis and accumulation of iron in patients with various diseases (e.g. cancer, cardiovascular or neurological conditions), which is closely related to ferritin metabolism. Such iron imbalance enables the use of magnetic resonance imaging (MRI) as a sensitive technique for the detection of iron-based aggregates through changes in the relaxation times, followed by the change in the inherent image contrast. For our in vitrostudy, modified ferritins with different iron loadings were prepared by chemical reconstruction of the iron core in an apoferritin shell as pathological model systems. The magnetic properties of samples were studied using SQUID magnetometry, while the size distribution was detected via dynamic light scattering. We have shown that MRI could represent the most advantageous method for distinguishing native ferritin from reconstructed ferritin which, after future standardisation, could then be suitable for the diagnostics of diseases associated with iron accumulation. - Highlights: • MRI is the sensitive technique for detecting iron-based aggregates. • Reconstructed Ferritin is suitable model system of iron-related disorders. • MRI allow distinguish of native ferritin from reconstructed ferritin. • MRI could be useful for diagnostics of diseases associated with iron accumulation.

  20. Iron transport: emerging roles in health and disease.

    Science.gov (United States)

    Goswami, Tapasree; Rolfs, Andreas; Hediger, Matthias A

    2002-01-01

    In the theater of cellular life, iron plays an ambiguous and yet undoubted lead role. Iron is a ubiquitous core element of the earth and plays a central role in countless biochemical pathways. It is integral to the catalysis of the redox reactions of oxidative phosphorylation in the respiratory chain, and it provides a specific binding site for oxygen in the heme binding moiety of hemoglobin, which allows oxygen transport in the blood. Its biological utility depends upon its ability to readily accept or donate electrons, interconverting between its ferric (Fe3+) and ferrous (Fe2+) forms. In contrast to these beneficial features, free iron can assume a dangerous aspect catalyzing the formation of highly reactive compounds such as cytotoxic hydroxyl radicals that cause damage to the macromolecular components of cells, including DNA and proteins, and thereby cellular destruction. The handling of iron in the body must therefore be very carefully regulated. Most environmental iron is in the Fe3+ state, which is almost insoluble at neutral pH. To overcome the virtual insolubility and potential toxicity of iron, a myriad of specialized transport systems and associated proteins have evolved to mediate regulated acquisition, transport, and storage of iron in a soluble, biologically useful, non-toxic form. We are gradually beginning to understand how these proteins individually and in concert serve to maintain cellular and whole body homeostasis of this crucial yet potentially harmful metal ion. Furthermore, studies are increasingly implicating iron and its associated transport in specific pathologies of many organs. Investigation of the transport proteins and their functions is beginning to unravel the detailed mechanisms underlying the diseases associated with iron deficiency, iron overload, and other dysfunctions of iron metabolism.

  1. Iron-binding and anti-Fenton properties of baicalein and baicalin

    OpenAIRE

    Perez, Carlos A.; Wei, Yibin; Guo, Maolin

    2008-01-01

    Baicalein and baicalin, the major bioactive compounds found in the Chinese herb Scutellaria baicalensis, have been shown to be effective against cancer, bacterial infections and oxidative stress diseases. However, little is known about their mechanisms of action. To probe whether iron homeostasis modulation may play a role in their bioactivity, we have investigated their iron binding characteristics under physiologically relevant conditions. A 2:1 baicalein-ferrous complex was readily formed ...

  2. Reduced IRE1α mediates apoptotic cell death by disrupting calcium homeostasis via the InsP3 receptor.

    Science.gov (United States)

    Son, S M; Byun, J; Roh, S-E; Kim, S J; Mook-Jung, I

    2014-04-17

    The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca(2+). Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer's and Parkinson diseases. One key regulator that underlies cell survival and Ca(2+) homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca(2+) dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca(2+) concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca(2+) through the InsP3 receptor (InsP3R). The Ca(2+) efflux in IRE1α-deficient cells correlates with dissociation of the Ca(2+)-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α-TRAF2-ASK1 complex. The increased cytosolic concentration of Ca(2+) induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca(2+) dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca(2+) influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca(2+) homeostasis and cell survival during ER stress and reveal a previously unknown Ca(2+)-mediated cell death signaling between the IRE1α-InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.

  3. [Iron and pregnancy].

    Science.gov (United States)

    Beaufrère, B; Bresson, J L; Briend, A; Farriaux, J P; Ghisolfi, J; Navarro, J; Rey, J; Ricour, C; Rieu, D; Vidailhet, M

    1995-12-01

    Infants, young children, and childbearing aged women are particularly exposed to iron deficiency. Pregnancy further increases iron requirements. Nevertheless the consequences of anemia and/or iron deficiency on pregnancy outcome, development of the foetus and postnatal iron status of the infant, remain to be determined. There is a 3-fold increase of premature deliveries in iron deficient anemic pregnant women whose anemia is discovered in early pregnancy: however this increased risk of premature delivery is not observed when iron deficiency anemia is discovered in late pregnancy. Iron supplementation during pregnancy improves the maternal hematological parameters but it is still unclear whether it also improves the maternal health and the pre and postnatal development of the child. Based on our actual knowledge, iron supplementation during pregnancy is to be recommended in risk groups only (ie mainly adolescents, low income women, women with multiple pregnancies), using ferrous iron at a dosage of 30 mg per day.

  4. Impact of gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) on glucose and lipid homeostasis

    DEFF Research Database (Denmark)

    Foer, D; Zhu, M; Cardone, R L

    2017-01-01

    to impaired glucose and lipid metabolism, we hypothesized that individuals with an HBM-causing mutation in LRP5 would exhibit improved glucose and lipid homeostasis. Since studies in animal models have suggested that Wnt signaling augments insulin secretion, we also examined the effect of Wnt signaling......LRP5 loss-of-function mutations have been shown to cause profound osteoporosis and have been associated with impaired insulin sensitivity and dysregulated lipid metabolism. We hypothesized that gain-of-function mutations in LRP5 would also affect these parameters. We therefore studied individuals...... potentially represents a target for drug discovery in type 2 diabetes and hyperlipidemia. Studies in animal models suggest a physiologic link between LRP5 and glucose and lipid homeostasis; however, whether it plays a similar role in humans is unclear. As current literature links loss-of-function LRP5...

  5. Dual Role of ROS as Signal and Stress Agents: Iron Tips the Balance in favor of Toxic Effects

    Directory of Open Access Journals (Sweden)

    Elena Gammella

    2016-01-01

    Full Text Available Iron is essential for life, while also being potentially harmful. Therefore, its level is strictly monitored and complex pathways have evolved to keep iron safely bound to transport or storage proteins, thereby maintaining homeostasis at the cellular and systemic levels. These sequestration mechanisms ensure that mildly reactive oxygen species like anion superoxide and hydrogen peroxide, which are continuously generated in cells living under aerobic conditions, keep their physiologic role in cell signaling while escaping iron-catalyzed transformation in the highly toxic hydroxyl radical. In this review, we describe the multifaceted systems regulating cellular and body iron homeostasis and discuss how altered iron balance may lead to oxidative damage in some pathophysiological settings.

  6. Fungal Iron Availability during Deep Seated Candidiasis Is Defined by a Complex Interplay Involving Systemic and Local Events

    Science.gov (United States)

    Potrykus, Joanna; Stead, David; MacCallum, Donna M.; Urgast, Dagmar S.; Raab, Andrea; van Rooijen, Nico; Feldmann, Jörg; Brown, Alistair J. P.

    2013-01-01

    Nutritional immunity – the withholding of nutrients by the host – has long been recognised as an important factor that shapes bacterial-host interactions. However, the dynamics of nutrient availability within local host niches during fungal infection are poorly defined. We have combined laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS), MALDI imaging and immunohistochemistry with microtranscriptomics to examine iron homeostasis in the host and pathogen in the murine model of systemic candidiasis. Dramatic changes in the renal iron landscape occur during disease progression. The infection perturbs global iron homeostasis in the host leading to iron accumulation in the renal medulla. Paradoxically, this is accompanied by nutritional immunity in the renal cortex as iron exclusion zones emerge locally around fungal lesions. These exclusion zones correlate with immune infiltrates and haem oxygenase 1-expressing host cells. This local nutritional immunity decreases iron availability, leading to a switch in iron acquisition mechanisms within mature fungal lesions, as revealed by laser capture microdissection and qRT-PCR analyses. Therefore, a complex interplay of systemic and local events influences iron homeostasis and pathogen-host dynamics during disease progression. PMID:24146619

  7. Fungal iron availability during deep seated candidiasis is defined by a complex interplay involving systemic and local events.

    Directory of Open Access Journals (Sweden)

    Joanna Potrykus

    Full Text Available Nutritional immunity--the withholding of nutrients by the host--has long been recognised as an important factor that shapes bacterial-host interactions. However, the dynamics of nutrient availability within local host niches during fungal infection are poorly defined. We have combined laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS, MALDI imaging and immunohistochemistry with microtranscriptomics to examine iron homeostasis in the host and pathogen in the murine model of systemic candidiasis. Dramatic changes in the renal iron landscape occur during disease progression. The infection perturbs global iron homeostasis in the host leading to iron accumulation in the renal medulla. Paradoxically, this is accompanied by nutritional immunity in the renal cortex as iron exclusion zones emerge locally around fungal lesions. These exclusion zones correlate with immune infiltrates and haem oxygenase 1-expressing host cells. This local nutritional immunity decreases iron availability, leading to a switch in iron acquisition mechanisms within mature fungal lesions, as revealed by laser capture microdissection and qRT-PCR analyses. Therefore, a complex interplay of systemic and local events influences iron homeostasis and pathogen-host dynamics during disease progression.

  8. Thiol/disulfide homeostasis in postmenopausal osteoporosis.

    Science.gov (United States)

    Korkmaz, V; Kurdoglu, Z; Alisik, M; Turgut, E; Sezgın, O O; Korkmaz, H; Ergun, Y; Erel, O

    2017-04-01

    To evaluate the impact of postmenopausal osteoporosis on thiol/disulfide homeostasis. A total of 75 participants were divided into two groups: Group 1 (n = 40) was composed of healthy postmenopausal women, and group 2 (n = 35) was composed of women with postmenopausal osteoporosis. Clinical findings and thiol/disulfide homeostasis were compared between the two groups. The disulfide/native thiol ratio was 8.6% ± 3.6 in group 1 and 12.7% ± 8.4 in group 2 (p = 0.04). The disulfide/native thiol percent ratio was significantly higher in group 2 after adjustment for the years since menopause and age (p menopause and age (p menopause in postmenopausal osteoporosis.

  9. Neutrophils in Homeostasis, Immunity, and Cancer.

    Science.gov (United States)

    Nicolás-Ávila, José Ángel; Adrover, José M; Hidalgo, Andrés

    2017-01-17

    Neutrophils were among the first leukocytes described and visualized by early immunologists. Prominent effector functions during infection and sterile inflammation classically placed them low in the immune tree as rapid, mindless aggressors with poor regulatory functions. This view is currently under reassessment as we uncover new aspects of their life cycle and identify transcriptional and phenotypic diversity that endows them with regulatory properties that extend beyond their lifetime in the circulation. These properties are revealing unanticipated roles for neutrophils in supporting homeostasis, as well as complex disease states such as cancer. We focus this review on these emerging functions in order to define the true roles of neutrophils in homeostasis, immunity, and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Imbalanced immune homeostasis in immune thrombocytopenia.

    Science.gov (United States)

    Yazdanbakhsh, Karina

    2016-04-01

    Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder resulting from low platelet counts caused by inadequate production as well as increased destruction by autoimmune mechanisms. As with other autoimmune disorders, chronic ITP is characterized by perturbations of immune homeostasis with hyperactivated effector cells as well as defective regulatory arm of the adaptive immune system, which will be reviewed here. Interestingly, some ITP treatments are associated with restoring the regulatory imbalance, although it remains unclear whether the immune system is redirected to a state of tolerance once treatment is discontinued. Understanding the mechanisms that result in breakdown of immune homeostasis in ITP will help to identify novel pathways for restoring tolerance and inhibiting effector cell responses. This information can then be translated into developing therapies for averting autoimmunity not only in ITP but also many autoimmune disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Homeostasis as the Mechanism of Evolution

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2015-09-01

    Full Text Available Homeostasis is conventionally thought of merely as a synchronic (same time servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology.

  12. The role of iron in neurodegenerative disorders: insights and opportunities with synchrotron light

    Directory of Open Access Journals (Sweden)

    Joanna Frances Collingwood

    2014-08-01

    Full Text Available There is evidence for iron dysregulation in many forms of disease, including a broad spectrum of neurodegenerative disorders. In order to advance our understanding of the pathophysiological role of iron, it is helpful to be able to determine in detail the distribution of iron as it relates to metabolites, proteins, cells, and tissues, the chemical state and local environment of iron, and its relationship with other metal elements. Synchrotron light sources, providing primarily X-ray beams accompanied by access to longer wavelengths such as infra-red, are an outstanding tool for multi-modal non-destructive analysis of iron in these systems. The micro- and nano-focused X-ray beams that are generated at synchrotron facilities enable measurement of iron and other transition metal elements to be performed with outstanding analytic sensitivity and specificity. Recent developments have increased the scope for methods such as X-ray fluorescence mapping to be used quantitatively rather than semi-quantitatively. Burgeoning interest, coupled with technical advances and beamline development at synchrotron facilities, has led to substantial improvements in resources and methodologies in the field over the past decade. In this paper we will consider how the field has evolved with regard to the study of iron in proteins, cells, and brain tissue, and identify challenges in sample preparation and analysis. Selected examples will be used to illustrate the contribution, and future potential, of synchrotron X-ray analysis for the characterization of iron in model systems exhibiting iron dysregulation, and for human cases of neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, Friedreich’s ataxia and Amyotrophic Lateral Sclerosis.

  13. The role of iron in neurodegenerative disorders: insights and opportunities with synchrotron light.

    Science.gov (United States)

    Collingwood, Joanna F; Davidson, Mark R

    2014-01-01

    There is evidence for iron dysregulation in many forms of disease, including a broad spectrum of neurodegenerative disorders. In order to advance our understanding of the pathophysiological role of iron, it is helpful to be able to determine in detail the distribution of iron as it relates to metabolites, proteins, cells, and tissues, the chemical state and local environment of iron, and its relationship with other metal elements. Synchrotron light sources, providing primarily X-ray beams accompanied by access to longer wavelengths such as infra-red, are an outstanding tool for multi-modal non-destructive analysis of iron in these systems. The micro- and nano-focused X-ray beams that are generated at synchrotron facilities enable measurement of iron and other transition metal elements to be performed with outstanding analytic sensitivity and specificity. Recent developments have increased the scope for methods such as X-ray fluorescence mapping to be used quantitatively rather than semi-quantitatively. Burgeoning interest, coupled with technical advances and beamline development at synchrotron facilities, has led to substantial improvements in resources and methodologies in the field over the past decade. In this paper we will consider how the field has evolved with regard to the study of iron in proteins, cells, and brain tissue, and identify challenges in sample preparation and analysis. Selected examples will be used to illustrate the contribution, and future potential, of synchrotron X-ray analysis for the characterization of iron in model systems exhibiting iron dysregulation, and for human cases of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Friedreich's ataxia, and amyotrophic lateral sclerosis.

  14. Lifetime Sexual Victimization and Poor Risk Perception: Does Emotion Dysregulation Account for the Links?

    Science.gov (United States)

    Walsh, Kate; DiLillo, David; Messman-Moore, Terri L.

    2012-01-01

    The present study examined whether and which facets of emotion dysregulation serve an intervening role in the association between prior victimization and risk perception in an analogue sexual assault vignette. Participants were 714 university women who completed self-report measures of sexual victimization, emotion dysregulation, and a…

  15. The Commensal Microbiota Drives Immune Homeostasis

    OpenAIRE

    Arrieta, Marie-Claire; Finlay, Barton Brett

    2012-01-01

    For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use t...

  16. MicroRNAs and Periodontal Homeostasis.

    Science.gov (United States)

    Luan, X; Zhou, X; Trombetta-eSilva, J; Francis, M; Gaharwar, A K; Atsawasuwan, P; Diekwisch, T G H

    2017-05-01

    MicroRNAs (miRNAs) are a group of small RNAs that control gene expression in all aspects of eukaryotic life, primarily through RNA silencing mechanisms. The purpose of the present review is to introduce key miRNAs involved in periodontal homeostasis, summarize the mechanisms by which they affect downstream genes and tissues, and provide an introduction into the therapeutic potential of periodontal miRNAs. In general, miRNAs function synergistically to fine-tune the regulation of biological processes and to remove expression noise rather than by causing drastic changes in expression levels. In the periodontium, miRNAs play key roles in development and periodontal homeostasis and during the loss of periodontal tissue integrity as a result of periodontal disease. As part of the anabolic phase of periodontal homeostasis and periodontal development, miRNAs direct periodontal fibroblasts toward alveolar bone lineage differentiation and new bone formation through WNT, bone morphogenetic protein, and Notch signaling pathways. miRNAs contribute equally to the catabolic aspect of periodontal homeostasis as they affect osteoclastogenesis and osteoclast function, either by directly promoting osteoclast activity or by inhibiting osteoclast signaling intermediaries or through negative feedback loops. Their small size and ability to target multiple regulatory networks of related sets of genes have predisposed miRNAs to become ideal candidates for drug delivery and tissue regeneration. To address the immense therapeutic potential of miRNAs and their antagomirs, an ever growing number of delivery approaches toward clinical applications have been developed, including nanoparticle carriers and secondary structure interference inhibitor systems. However, only a fraction of the miRNAs involved in periodontal health and disease are known today. It is anticipated that continued research will lead to a more comprehensive understanding of the periodontal miRNA world, and a systematic

  17. THE WORLD VIEW, IDENTITY AND SOCIOCULTUR HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Marina Yur’evna Neronova

    2016-02-01

    Full Text Available The paper presents the relationship between the phenomenon of world view and sociocultural identity both individuals and the community as a whole. The research is being carried out in the context of current crisis of world view accepted in so-called art Nouveau era. This paper also presents the identity crisis typical for modern civilized societies. A new notion of sociocultural homeostasis is introduced in connection with analyzable phenomena and their mutual relations.Purpose. Study of the relationship between the phenomenon of the world view and sociocultural identity as a structural and functional mechanism.Methodology. Phenomenological and systematic methods with the elements of historical method were employed. Cultural analysis is based on using both axiological and phenomenological approach, and also the elements of semiotic approach.Results. The dependence of identity on the world view is revealed (or is being revealed?, the phenomenon of sociocultural homeostasis is singled out (or is being singled out in the capacity of the mechanism setting up the correspondence in the contradictory unity between the world view as a subjective image and concrete reality as an objective part of this contradictory. The analysis of sociocultural homeostasis is carried out (or is being carried out and the conclusion is being drown that instability of the latter leads to serious problems in the identification of both individuals and communities as a whole. Besides, (moreover the relationship between the legitimacy level of the world view and stability of sociocultural homeostasis is established. (is being established.Practical implications: the system of education.

  18. Guest editor's introduction: Energy homeostasis in context.

    Science.gov (United States)

    Schneider, Jill E

    2014-06-01

    This article is part of a Special Issue "Energy Balance". Energy homeostasis is achieved through neuroendocrine and metabolic control of energy intake, storage, and expenditure. Traditionally, these controls have been studied in an unrealistic and narrow context. The appetite for food, for example, is most often assumed to be independent of other motivations, such as sexual desire, fearfulness, and competition. Furthermore, our understanding of all aspects of energy homeostasis is based on studying males of only a few species. The baseline control subjects are most often housed in enclosed spaces, with continuous, unlimited access to food. In the last century, this approach has generated useful information, but all the while, the global prevalence of obesity has increased and remains at unprecedented levels (Ogden et al., 2013, 2014). It is likely, however, that the mechanisms that control ingestive behavior were molded by evolutionary forces, and that few, if any vertebrate species evolved in the presence of a limitless food supply, in an enclosed 0.5 × 1 ft space, and exposed to a constant ambient temperature of 22+2 °C. This special issue of Hormones and Behavior therefore contains 9 review articles and 7 data articles that consider energy homeostasis within the context of other motivations and physiological processes, such as early development, sexual differentiation, sexual motivation, reproduction, seasonality, hibernation, and migration. Each article is focused on a different species or on a set of species, and most vertebrate classes are represented. Energy homeostasis is viewed in the context of the selection pressures that simultaneously molded multiple aspects of energy intake, storage, and expenditure. This approach yields surprising conclusions regarding the function of those traits and their underlying neuroendocrine mechanisms. Copyright © 2014. Published by Elsevier Inc.

  19. Iron Reduces M1 Macrophage Polarization in RAW264.7 Macrophages Associated with Inhibition of STAT1

    Directory of Open Access Journals (Sweden)

    Zhen-Shun Gan

    2017-01-01

    Full Text Available Iron metabolism in inflammation has been mostly characterized in macrophages exposed to pathogens or inflammatory conditions. The aim of this study is to investigate the cross-regulatory interactions between M1 macrophage polarization and iron metabolism. Firstly, we characterized the transcription of genes related to iron homeostasis in M1 RAW264.7 macrophages stimulated by IFN-γ. The molecular signature of M1 macrophages showed high levels of iron storage (ferritin, a low level of iron export (ferroportin, and changes of iron regulators (hepcidin and transferrin receptors, which favour iron sequestration in the reticuloendothelial system and are benefit for inflammatory disorders. Then, we evaluated the effect of iron on M1 macrophage polarization. Iron significantly reduced mRNA levels of IL-6, IL-1β, TNF-α, and iNOS produced by IFN-γ-polarized M1 macrophages. Immunofluorescence analysis showed that iron also reduced iNOS production. However, iron did not compromise but enhanced the ability of M1-polarized macrophages to phagocytose FITC-dextran. Moreover, we demonstrated that STAT1 inhibition was required for reduction of iNOS and M1-related cytokines production by the present of iron. Together, these findings indicated that iron decreased polarization of M1 macrophages and inhibited the production of the proinflammatory cytokines. The results expanded our knowledge about the role of iron in macrophage polarization.

  20. Pseudomonas aeruginosa Trent and zinc homeostasis.

    Science.gov (United States)

    Davies, Corey B; Harrison, Mark D; Huygens, Flavia

    2017-09-01

    Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Impact of intermittent fasting on glucose homeostasis.

    Science.gov (United States)

    Varady, Krista A

    2016-07-01

    This article provides an overview of the most recent human trials that have examined the impact of intermittent fasting on glucose homeostasis. Our literature search retrieved one human trial of alternate day fasting, and three trials of Ramadan fasting published in the past 12 months. Current evidence suggests that 8 weeks of alternate day fasting that produces mild weight loss (4% from baseline) has no effect on glucose homeostasis. As for Ramadan fasting, decreases in fasting glucose, insulin, and insulin resistance have been noted after 4 weeks in healthy normal weight individuals with mild weight loss (1-2% from baseline). However, Ramadan fasting may have little impact on glucoregulatory parameters in women with polycystic ovarian syndrome who failed to observe weight loss. Whether intermittent fasting is an effective means of regulating glucose homeostasis remains unclear because of the scarcity of studies in this area. Large-scale, longer-term randomized controlled trials will be required before the use of fasting can be recommended for the prevention and treatment of metabolic diseases.

  2. Regulation of energy homeostasis via GPR120

    Directory of Open Access Journals (Sweden)

    Atsuhiko eIchimura

    2014-07-01

    Full Text Available Free fatty acids (FFAs are fundamental units of key nutrients. FFAs exert various biological functions, depending on the chain length and degree of desaturation. Recent studies have shown that several FFAs act as ligands of G-protein-coupled receptors (GPCRs, activate intracellular signaling and exert physiological functions via these GPCRs. GPR120 (also known as free fatty acid receptor 4, FFAR4 is activated by unsaturated medium- to long-chain FFAs and has a critical role in various physiological homeostasis mechanisms such as incretin hormone secretion, food preference, anti-inflammation and adipogenesis. Recent studies showed that a lipid sensor GPR120 has a key role in sensing dietary fat in white adipose tissue and regulates the whole body energy homeostasis in both humans and rodents. Genetic study in human identified the loss-of-functional mutation of GPR120 associated with obesity and insulin resistance. In addition, dysfunction of GPR120 has been linked as a novel risk factor for diet-induced obesity. This review aims to provide evidence from the recent development in physiological function of GPR120 and discusses its functional roles in regulation of energy homeostasis and its potential as drug targets.

  3. Impact of metal ion homeostasis of genetically modified Escherichia coli Nissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract.

    Science.gov (United States)

    Kupz, Andreas; Fischer, André; Nies, Dietrich H; Grass, Gregor; Göbel, Ulf B; Bereswill, Stefan; Heimesaat, Markus M

    2013-09-01

    Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract.

  4. Global profiling strategies for mapping dysregulated metabolic pathways in cancer.

    Science.gov (United States)

    Benjamin, Daniel I; Cravatt, Benjamin F; Nomura, Daniel K

    2012-11-07

    Cancer cells possess fundamentally altered metabolism that provides a foundation to support tumorigenicity and malignancy. Our understanding of the biochemical underpinnings of cancer has benefited from the integrated utilization of large-scale profiling platforms (e.g., genomics, proteomics, and metabolomics), which, together, can provide a global assessment of how enzymes and their parent metabolic networks become altered in cancer to fuel tumor growth. This review presents several examples of how these integrated platforms have yielded fundamental insights into dysregulated metabolism in cancer. We will also discuss questions and challenges that must be addressed to more completely describe, and eventually control, the diverse metabolic pathways that support tumorigenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Understanding periviable birth: A microeconomic alternative to the dysregulation narrative.

    Science.gov (United States)

    Catalano, Ralph; Bruckner, Tim; Avalos, Lyndsay A; Stewart, Holly; Karasek, Deborah; Kariv, Shachar; Gemmill, Alison; Saxton, Katherine; Casey, Joan

    2017-12-12

    Periviable infants (i.e., those born in the 20th through 26th weeks of gestation) suffer much morbidity and approximately half die in the first year of life. Attempts to explain and predict these births disproportionately invoke a "dysregulation" narrative. Research inspired by this narrative has not led to efficacious interventions. The clinical community has, therefore, urged novel approaches to the problem. We aim to provoke debate by offering the theory, inferred from microeconomics, that risk tolerant women carry, without cognitive involvement, high risk fetuses farther into pregnancy than do other women. These extended high-risk pregnancies historically ended in stillbirth but modern obstetric practices now convert a fraction to periviable births. We argue that this theory deserves testing because it suggests inexpensive and noninvasive screening for pregnancies that might benefit from the costly and invasive interventions clinical research will likely devise. Copyright © 2017. Published by Elsevier Ltd.

  6. Cardiometabolic dysregulation and cognitive decline: potential role of depressive symptoms.

    Science.gov (United States)

    Schmitz, Norbert; Deschênes, Sonya S; Burns, Rachel J; Danna, Sofia M; Franco, Oscar H; Ikram, M Arfan; Kivimäki, Mika; Singh-Manoux, Archana; Tiemeier, Henning

    2018-02-01

    Previous studies have examined associations of cardiometabolic factors with depression and cognition separately. Aims To determine if depressive symptoms mediate the association between cardiometabolic factors and cognitive decline in two community studies. Data for the analyses were drawn from the Rotterdam Study, the Netherlands (n = 2940) and the Whitehall II study, UK (n = 4469). Mediation analyses suggested a direct association between cardiometabolic factors and cognitive decline and an indirect association through depression: poorer cardiometabolic status at time 1 was associated with a higher level of depressive symptoms at time 2 (standardised regression coefficient 0.07 and 0.06, respectively), which, in turn, was associated with greater cognitive decline between time 2 and time 3 (standardised regression coefficient of -0.15 and -0.41, respectively). Evidence from two independent cohort studies suggest an association between cardiometabolic dysregulation and cognitive decline and that depressive symptoms tend to precede this decline. Declaration of interest None.

  7. Psychosocial Adjustment Throughout University: A Longitudinal Investigation of the Roles of Sleep Quality and Emotion Dysregulation.

    Science.gov (United States)

    Semplonius, Thalia; Willoughby, Teena

    2018-02-23

    Sleep problems and emotion dysregulation are associated with depressive symptoms and alcohol use but little research has examined the long-term associations and the direction of effects between these factors. We examined these relationships with 1132 undergraduates (70.5% female) over 5 years. Sleep problems and emotion dysregulation, sleep problems and depressive symptoms, and emotion dysregulation and depressive symptoms were all related bidirectionally. Tests of indirect effects indicated that sleep problems predicted depressive symptoms over time (and vice versa) via emotion dysregulation and emotion dysregulation predicted depressive symptoms over time (and vice versa) via sleep problems. The results highlight the need to assess direction of effects, given that many factors that are typically seen as "predictors" also can be framed as "outcomes".

  8. The impact of attachment security and emotion dysregulation on anxiety in children and adolescents

    DEFF Research Database (Denmark)

    Bender, Patrick K.; Sømhovd, Mikael; Pons, Francisco

    2015-01-01

    Theoretical views and empirical findings suggest interrelations among attachment security, emotion dysregulation and anxiety in childhood and adolescence. However, the associations among the three constructs have rarely been investigated in children, and no study has yet addressed these associati......Theoretical views and empirical findings suggest interrelations among attachment security, emotion dysregulation and anxiety in childhood and adolescence. However, the associations among the three constructs have rarely been investigated in children, and no study has yet addressed...... to anxiety and that emotion dysregulation would help explain the association between attachment security and anxiety. Results showed that more securely attached youths reported less emotion dysregulation and that youths who had fewer emotion regulation difficulties experienced less anxiety. The association...... between attachment security and anxiety was mediated by emotion dysregulation. The model was confirmed for both children and adolescents. Findings are discussed with respect to theoretical implications, as well as future directions....

  9. Scavenging Iron: A Novel Mechanism of Plant Immunity Activation by Microbial Siderophores1[C][W

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W.G.; Rigault, Martine; Riache, Nassima; Joseph, Delphine; Desmaële, Didier; Mouille, Grégory; Boutet, Stéphanie; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Thomine, Sébastien; Expert, Dominique; Dellagi, Alia

    2014-01-01

    Siderophores are specific ferric iron chelators synthesized by virtually all microorganisms in response to iron deficiency. We have previously shown that they promote infection by the phytopathogenic enterobacteria Dickeya dadantii and Erwinia amylovora. Siderophores also have the ability to activate plant immunity. We have used complete Arabidopsis transcriptome microarrays to investigate the global transcriptional modifications in roots and leaves of Arabidopsis (Arabidopsis thaliana) plants after leaf treatment with the siderophore deferrioxamine (DFO). Physiological relevance of these transcriptional modifications was validated experimentally. Immunity and heavy-metal homeostasis were the major processes affected by DFO. These two physiological responses could be activated by a synthetic iron chelator ethylenediamine-di(o-hydroxyphenylacetic) acid, indicating that siderophores eliciting activities rely on their strong iron-chelating capacity. DFO was able to protect Arabidopsis against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. Siderophore treatment caused local modifications of iron distribution in leaf cells visible by ferrocyanide and diaminobenzidine-H2O2 staining. Metal quantifications showed that DFO causes a transient iron and zinc uptake at the root level, which is presumably mediated by the metal transporter iron regulated transporter1 (IRT1). Defense gene expression and callose deposition in response to DFO were compromised in an irt1 mutant. Consistently, plant susceptibility to D. dadantii was increased in the irt1 mutant. Our work shows that iron scavenging is a unique mechanism of immunity activation in plants. It highlights the strong relationship between heavy-metal homeostasis and immunity. PMID:24501001

  10. Iron starvation-induced proteomic changes in Anabaena (Nostoc) sp. PCC 7120: exploring survival strategy.

    Science.gov (United States)

    Narayan, Om Prakash; Kumari, Nidhi; Rai, Lal Chand

    2011-02-01

    This study provides first-hand proteomic data on the survival strategy of Anabaena sp. PCC 7120 when subjected to long-term iron-starvation conditions. 2D-gel electrophoresis followed by MALDI-TOF/MS analysis of iron-deficient Anabaena revealed significant and reproducible alterations in ten proteins, of which six are associated with photosynthesis and respiration, three with the antioxidative defense system, and the last, hypothetical protein all1861, conceivably connected with iron homeostasis. Iron-starved Anabaena registered a reduction in growth, photosynthetic pigments, PSI, PSII, whole-chain electron transport, carbon and nitrogen fixation, and ATP and NADPH content. The kinetics of hypothetical protein all1861 expression, with no change in expression until day 3, maximum expression on the 7th day, and a decline in expression from the 15th day onward, coupled with in silico analysis, suggested its role in iron sequestration and homeostasis. Interestingly, the up-regulated FBP-aldolase, Mn/Fe-SOD, and all1861 all appear to assist the survival of Anabeana subjected to iron-starvation conditions. Furthermore, the N2-fixation capabilities of the iron-starved Anabaena encourage us to recommend its application as a biofertilizer, particularly in iron-limited paddy soils.

  11. The effect of psychological stress on iron absorption in rats

    Directory of Open Access Journals (Sweden)

    Zhao Min

    2009-11-01

    Full Text Available Abstract Background Psychological stress (PS is recognized as an important pathogenic factor which leads to metabolism disorder in many diseases. Previous studies have shown that systemic iron homeostasis in mammalians was changed under specific stress conditions. Methods In present study, we used communication box to create psychological stress model and investigated the iron apparent absorption, iron accumulation in the apical poles of villous enterocytes and protein expressions of ferroportin 1 (FPN1, ferritin, divalent metal transporter 1 (DMT1. Results Our study showed that iron apparent absorption decreased and iron significantly accumulated in the apical poles of villous enterocytes in 3 d and 7 d PS groups. The expression of intestinal FPN1 in 3 d and 7 d PS groups was lower than that of control, while the change of intestinal ferritin was opposite. However, the expression of DMT1 did not change. Conclusion These results demonstrate that PS can decrease iron absorption in rats, which might be related to regulation expression of iron transporters.

  12. Interplay between Misplaced Müllerian-Derived Stem Cells and Peritoneal Immune Dysregulation in the Pathogenesis of Endometriosis

    Directory of Open Access Journals (Sweden)

    Antonio Simone Laganà

    2013-01-01

    Full Text Available In the genetic regulation of Müllerian structures development, a key role is played by Hoxa and Wnt clusters, because they lead the transcription of different genes according to the different phases of the organogenesis, addressing correctly cell-to-cell interactions, allowing, finally, the physiologic morphogenesis. Accumulating evidence is suggesting that dysregulation of Wnt and/or Hox genes may affect cell migration during organogenesis and differentiation of Müllerian structures of the female reproductive tract, with possible dislocation and dissemination of primordial endometrial stem cells in ectopic regions, which have high plasticity to differentiation. We hypothesize that during postpubertal age, under the influence of different stimuli, these misplaced and quiescent ectopic endometrial cells could acquire new phenotype, biological functions, and immunogenicity. So, these kinds of cells may differentiate, specializing in epithelium, glands, and stroma to form a functional ectopic endometrial tissue. This may provoke a breakdown in the peritoneal cavity homeostasis, with the consequent processes of immune alteration, documented by peripheral mononuclear cells recruitment and secretion of inflammatory cytokines in early phases and of angiogenic and fibrogenic cytokines in the late stages of the disease.

  13. Interplay between Misplaced Müllerian-Derived Stem Cells and Peritoneal Immune Dysregulation in the Pathogenesis of Endometriosis

    Science.gov (United States)

    Sturlese, Emanuele; Retto, Giovanni; Sofo, Vincenza; Triolo, Onofrio

    2013-01-01

    In the genetic regulation of Müllerian structures development, a key role is played by Hoxa and Wnt clusters, because they lead the transcription of different genes according to the different phases of the organogenesis, addressing correctly cell-to-cell interactions, allowing, finally, the physiologic morphogenesis. Accumulating evidence is suggesting that dysregulation of Wnt and/or Hox genes may affect cell migration during organogenesis and differentiation of Müllerian structures of the female reproductive tract, with possible dislocation and dissemination of primordial endometrial stem cells in ectopic regions, which have high plasticity to differentiation. We hypothesize that during postpubertal age, under the influence of different stimuli, these misplaced and quiescent ectopic endometrial cells could acquire new phenotype, biological functions, and immunogenicity. So, these kinds of cells may differentiate, specializing in epithelium, glands, and stroma to form a functional ectopic endometrial tissue. This may provoke a breakdown in the peritoneal cavity homeostasis, with the consequent processes of immune alteration, documented by peripheral mononuclear cells recruitment and secretion of inflammatory cytokines in early phases and of angiogenic and fibrogenic cytokines in the late stages of the disease. PMID:23843796

  14. GRAVIDARY HOMEOSTASIS IN PREGNANT WOMEN WITH UNDERWEIGHT

    Directory of Open Access Journals (Sweden)

    Елена Владимировна Рудаева

    2017-08-01

    Full Text Available In recent years considerable success has been achieved in reducing obstetric and perinatal complications in various pathological conditions during pregnancy and childbirth. However, many aspects of obstetrics, theoretical and practical, remain unresolved. A promising direction are the new methodological approaches to clinical research methods of physiological and complicated pregnancy. One of such directions is the study of the gravidary homeostasis. The study of the gravidary homeostasis in pregnant women with underweight opens up fundamentally new ways to reduce the obstetric and perinatal complications. The aim – was to study the gravidar homeostasis in pregnant women with a body weight deficit. Materials and methods. A survey of 50 pregnant women with a deficit of body weight and their fetuses (the main group. The comparison group consisted of 50 pregnant women with normal body weight and their fruits. Neurovegetative regulation of the heart rhythm of the mother and fetus was studied by the method of spectral and mathematical analysis of the variability of the heart rhythm. Results. When registering the initial profile of the heart rhythm, only 16 % of women with body weight deficit of the cardiothoracic wave SPM were within the conditional norm (92 %; p < 0,001. An increase in the SPM waves of cardiac rhythm (hyperadaptive state due to VLF and LF-components of the spectrum was recorded in 48 % of women (6 %; p < 0,001. In 36 % of pregnant SPM waves, cardiac rhythm was characterized by a general depression of the spectrum (2 %; p < 0,001. In carrying out the functional loading test (hyperventilation, hyperadaptive stress responses (10 %; p < 0,001 prevailed in 50 % of cases. During the recovery period, 60 % of pregnant women showed a decrease in the adaptive mechanisms of the mother's body (12 %; p < 0,001. The indices of the cardiac rhythm wave fetal wave in a mother with a body weight deficit in 60 % were characterized

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... at 1 year of age. Women and Girls Women of childbearing age may be tested for iron-deficiency anemia, especially if they have: A history of iron-deficiency anemia Heavy blood loss during ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... condition. Women Women of childbearing age are at higher risk for iron-deficiency anemia because of blood ... iron-deficiency anemia. Pregnant women also are at higher risk for the condition because they need twice ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Look for Treatment will discuss medicines and eating pattern changes that your doctors may recommend if you ... iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such as ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of iron include: Iron-fortified breads and cereals Peas; lentils; white, red, and baked beans; soybeans; and ... and juices usually have more vitamin C than canned ones. If you're taking medicines, ask your ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia early in life affects later behavior, thinking, and mood during adolescence. Treating anemia in ... and is recruiting by invitation only. View more information about Donor Iron Deficiency Study - Red Blood Cells ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... may require intravenous (IV) iron therapy or a blood transfusion . Iron supplements Your doctor may recommend that you ... Anemia Aplastic Anemia Arrhythmia Blood Donation Blood Tests Blood Transfusion Heart-Healthy Lifestyle Changes Heart Failure Hemolytic Anemia ...

  1. Iron in diet

    Science.gov (United States)

    Diet - iron; Ferric acid; Ferrous acid; Ferritin ... The human body needs iron to make the oxygen-carrying proteins hemoglobin and myoglobin. Hemoglobin is found in red blood cells and myoglobin is found ...

  2. Iron supplements (image)

    Science.gov (United States)

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  3. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... vegan eating patterns. Not eating enough iron-rich foods, such as meat and fish, may result in ... be hard to get the recommended amount from food alone. Pregnant women need more iron to support ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... infancy and childhood can have long-lasting, negative effects on brain health, the American Academy of Pediatrics ... overdose of iron. Iron supplements can cause side effects, such as dark stools, stomach irritation, and heartburn. ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... carry oxygen throughout your body. A reticulocyte count shows whether your bone marrow is making red blood ... Tests to measure iron levels. These tests can show how much iron has been used from your ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and young children and women are the two groups at highest risk for iron-deficiency anemia. Outlook Doctors usually can successfully treat iron-deficiency anemia. Treatment ... ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you don't have enough iron in your body. Low iron levels usually are due to blood ... remove carbon dioxide (a waste product) from your body. Anemia also can occur if your red blood ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to improve health through research and scientific discovery. Improving health with current research Learn about the following ... donors for low iron stores. Reliable point-of-care testing may help identify iron deficiency before potentially ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... apply to all types of anemia . Signs and Symptoms of Anemia The most common symptom of all ... growth and development, and behavioral problems. Signs and Symptoms of Iron Deficiency Signs and symptoms of iron ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... For this treatment, iron is injected into a muscle or an IV line in one of your ... body can damage your organs. You may have fatigue (tiredness) and other symptoms of iron-deficiency anemia ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from absorbing enough iron. Certain eating patterns or habits may put you at higher risk for iron- ... preventing, diagnosing, and treating heart, lung, blood, and sleep disorders. Are you a frequent blood donor living ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... chronic conditions such as kidney disease or celiac disease may be more likely to receive IV iron. You may experience vomiting, headache, or other side effects right after the IV iron, but these usually ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... risk for the condition. Women Women of childbearing age are at higher risk for iron-deficiency anemia ... periods. About 1 in 5 women of childbearing age has iron-deficiency anemia. Pregnant women also are ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... need for iron increases during these periods of growth and development, and it may be hard to get the ... iron-deficiency anemia, red blood cells will be small in size with an MCV of less than ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia can lead to heart problems, infections, problems with growth and development in children, and ... of the mouth, an enlarged spleen, and frequent infections. People who have iron-deficiency anemia may have ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... lead in their blood from their environment or water. Lead interferes with the body’s ability to make ... drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron- ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Not eating enough iron-rich foods, such as meat and fish, may result in you getting less ... include dried beans, dried fruits, eggs, lean red meat, salmon, iron-fortified breads and cereals, peas, tofu, ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... muh-glow-bin). Hemoglobin is an iron-rich protein that carries oxygen from the lungs to the ... hemoglobin than normal. Hemoglobin is an iron-rich protein in red blood cells. It helps red blood ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... in infants and small children Heavy menstrual periods Injury or surgery Urinary tract bleeding Consuming less than recommended daily amounts of iron Iron-deficiency anemia can be caused by getting less than the recommended daily ...