WorldWideScience

Sample records for dysprosium

  1. Dysprosium magneto-optical traps

    CERN Document Server

    Youn, Seo Ho; Ray, Ushnish; Lev, Benjamin L

    2010-01-01

    Magneto-optical traps (MOTs) of highly magnetic lanthanides open the door to explorations of novel phases of strongly correlated matter such as lattice supersolids and quantum liquid crystals. We recently reported the first MOTs of the five high abundance isotopes of the most magnetic atom, dysprosium. Described here are details of the experimental technique employed for repumper-free Dy MOTs containing up to half a billion atoms. Extensive characterization of the MOTs' properties---population, temperature, loading, metastable decay dynamics, trap dynamics---is provided.

  2. On polymorphism of dysprosium trichloride

    Energy Technology Data Exchange (ETDEWEB)

    Zakiryanova, Irina D.; Khokhlov, Vladimir A.; Salyulev, Alexander B.; Korzun, Iraida V. [RAS Ural Branch, Ekaterinburg (Russian Federation). Institute of High-Temperature Electrochemistry

    2015-07-01

    For the first time, the structure of crystalline DyCl{sub 3} over a wide temperature range from room temperature to melting point was studied by Raman spectroscopy. The phonon modes (cm{sup -1}) of dysprosium trichloride (monoclinic crystal lattice of AlCl{sub 3} type, Z = 4, CN = 6) at room temperature are 257 (A{sub 1g}), 201 (E{sub g}), 112 (E{sub g}), 88 (A{sub 1g}), and 63 (E{sub g}). The monoclinic structure of the crystalline DyCl{sub 3} C{sub 2h}{sup 3} symmetry was found to remain constant over the studied temperature range. No polymorphic transformation in the solid state was detected. Gravimetry, calorimetry, and mass spectrometry have been used in addition to support the conclusions made on the basis of Raman spectroscopic data.

  3. Resonance ionization spectroscopy in dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D., E-mail: dstuder@uni-mainz.de; Dyrauf, P.; Naubereit, P.; Heinke, R.; Wendt, K. [Johannes Gutenberg-Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    We report on resonance ionization spectroscopy (RIS) of high-lying energy levels in dysprosium. We developed efficient excitation schemes and re-determined the first ionization potential (IP) via analysis of Rydberg convergences. For this purpose both two- and three-step excitation ladders were investigated. An overall ionization efficiency of 25(4) % could be demonstrated in the RISIKO mass separator of Mainz University, using a three-step resonance ionization scheme. Moreover, an extensive analysis of the even-parity 6sns- and 6snd-Rydberg-series convergences, measured via two-step excitation was performed. To account for strong perturbations in the observed s-series, the approach of multichannel quantum defect theory (MQDT) was applied. Considering all individual series limits we extracted an IP-value of 47901.76(5) cm{sup −1}, which agrees with the current literature value of 47901.7(6) cm{sup −1}, but is one order of magnitude more precise.

  4. The dysprosium-tin phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Eremenko, V.N.; Bulanova, M.V.; Martsenjuk, P.S. (I.N. Frantsevich Inst. for Problems of Materials Science, Kiev (Ukraine))

    1992-12-07

    The dysprosium-tin phase diagram was established by means of differential thermal, X-ray and microscopic analyses of 22 alloys. Seven intermetallic compounds were found to exist in the system. Dy[sub 5]Sn[sub 3] melts congruently at 1870 degC, and undergoes a polymorphous transformation at 1823 [+-] 6 degC. The intermetallics Dy[sub 5]Sn[sub 4], Dy[sub 11]Sn[sub 10], DySn, Dy[sub 4]Sn[sub 5], DySn[sub 2], DySn[sub 3] are formed peritectically at 1712 [+-]11, 1605 [+-]12, 1208 [+-]3, 1166 [+-]7, 1138 [+-]3 and 747 [+-]6 degC respectively. DySn[sub 3] exists in a narrow temperature range, in two polymorphous modifications. The transformation [beta]-DySn[sub 3] [yields] [alpha]-DySn[sub 3] occurs at 608 [+-] 12 degC, and at 499 [+-]2 degC [alpha]-DySn[sub 3] decomposes to DySn[sub 2] and the tin-rich melt. The dysprosium-rich eutectic crystallizes at 1204 [+-]10 degC and contains 13 at.% tin. The solid-state solubility of tin in dysprosium is about 3 at.%, and that of dysprosium in tin is negligible.

  5. Towards a new measurement of parity violation in dysprosium

    CERN Document Server

    Leefer, N; Antypas, D; Budker, D

    2014-01-01

    The dysprosium parity violation experiment concluded nearly 17 years ago with an upper limit on weak interaction induced mixing of nearly degenerate, opposite parity states in atomic dysprosium. While that experiment was limited in sensitivity by statistics, a new apparatus constructed in the interim for radio-frequency spectroscopy is expected to provide significant improvements to the statistical sensitivity. Preliminary work from the new PV experiment in dysprosium is presented with a discussion of the current statistical sensitivity and outlook.

  6. Dysprosium Modification of Cobalt Ferrite Ionic Magnetic Fluids

    Institute of Scientific and Technical Information of China (English)

    JIANG Rong-li; LIU Yong-chao; GENG Quan-rong; ZHAO Wen-tao

    2005-01-01

    Dysprosium composite cobalt ferrite ionic magnetic fluids were prepared by precipitation in the presence of Tri-sodium citrate. Influence of dysprosium modification on magnetic property is studied. The result shows that magnetic response toward exterior magnetic field can be improved by adding Dy3+. Studies also show that the increase of reaction temperature may improve the modification effect of dysprosium. By adding dysprosium ions, the average diameter of the magnetic nanoparticles will be decreased evidently. It is clear that the particles appear as balls, Cobalt ferrite with sizes of 12-15 nm, rare earth composite cobalt ferrite with sizes of 6-8 nm.

  7. Can a dysprosium shortage threaten green energy technologies?

    NARCIS (Netherlands)

    Hoenderdaal, S.; Tercero Espinoza, L.; Marschneider-Weidemann, F.; Crijns - Graus, Wina

    2013-01-01

    Dysprosium, one of the various rare earth elements, is currently for more than 99% mined in China. As China is reducing its exports, new mining projects outside of China are needed to sustain supply and meet future demands. Dysprosium is mainly used in permanent magnets to retain the magnet's streng

  8. Phenalenyl-based mononuclear dysprosium complexes

    Directory of Open Access Journals (Sweden)

    Yanhua Lan

    2016-07-01

    Full Text Available The phenalenyl-based dysprosium complexes [Dy(PLN2(HPLNCl(EtOH] (1, [Dy(PLN3(HPLN]·[Dy(PLN3(EtOH]·2EtOH (2 and [Dy(PLN3(H2O2]·H2O (3, HPLN being 9-hydroxy-1H-phenalen-1-one, have been synthesized. All compounds were fully characterized by means of single crystal X-ray analysis, paramagnetic 1H NMR, MALDI-TOF mass spectrometry, UV–vis spectrophotometry and magnetic measurements. Both static (dc and dynamic (ac magnetic properties of these complexes have been investigated, showing slow relaxation of magnetization, indicative of single molecule magnet (SMM behavior. Attempts to synthesize sublimable phenalenyl-based dysprosium complexes have been made by implementing a synthetic strategy under anhydrous conditions. The sublimed species were characterized and their thermal stability was confirmed. This opens up the possibility to deposit phenalenyl-based lanthanides complexes by sublimation onto surfaces, an important prerequisite for ongoing studies in molecular spintronics.

  9. Anisotropy in the Interaction of Ultracold Dysprosium

    CERN Document Server

    Kotochigova, Svetlana

    2011-01-01

    The nature of the interaction between ultracold atoms with a large orbital and spin angular momentum has attracted considerable attention. It was suggested that such interactions can lead to the realization of exotic states of highly correlated matter. Here, we report on a theoretical study of the competing anisotropic dispersion, magnetic dipole-dipole, and electric quadrupole-quadrupole forces between two dysprosium atoms. Each dysprosium atom has an orbital angular momentum L=6 and magnetic moment $\\mu=10\\mu_B$. We show that the dispersion coefficients of the ground state adiabatic potentials lie between 1865 a.u. and 1890 a.u., creating a non-negligible anisotropy with a spread of 25 a.u. and that the electric quadrupole-quadrupole interaction is weak compared to the other interactions. We also find that for interatomic separations $R< 50\\,a_0$ both the anisotropic dispersion and magnetic dipole-dipole potential are larger than the atomic Zeeman splittings for external magnetic fields of order 10 G to ...

  10. First search for double $\\beta$ decay of dysprosium

    CERN Document Server

    Belli, P; Cappella, F; Cerulli, R; Danevich, F A; d'Angelo, S; Di Vacri, M L; Incicchitti, A; Laubenstein, M; Nagorny, S S; Nisi, S; Tolmachev, A V; Tretyak, V I; Yavetskiy, R P

    2011-01-01

    A search for double $\\beta$ decay of dysprosium was realized for the first time with the help of an ultra low-background HP Ge $\\gamma$ detector. After 2512 h of data taking with a 322 g sample of dysprosium oxide limits on double beta processes in $^{156}$Dy and $^{158}$Dy have been established on the level of $T_{1/2}\\geq 10^{14}-10^{16}$ yr. Possible resonant double electron captures in $^{156}$Dy and $^{158}$Dy were restricted on a similar level. As a by-product of the experiment we have measured the radioactive contamination of the Dy$_2$O$_3$ sample and set limits on the $\\alpha$ decay of dysprosium isotopes to the excited levels of daughter nuclei as $T_{1/2}\\geq 10^{15} - 10^{17}$ yr.

  11. Neutron resonance parameters of dysprosium isotopes using neutron capture yields

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kye, Y. U.; Cho, M. H. [POSTECH, Pohang (Korea, Republic of); Namkung, W. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Kim, G. N. [Kyungpook National University, Daegu (Korea, Republic of); Lee, M. W.; Kang, Y. R. [Dongnam Inst. Of Radiological and Medical Science, Busan (Korea, Republic of)

    2015-10-15

    Dysprosium is used in the field of nuclear reactor system because it has a very large thermal neutron absorption cross-section. The dysprosium alloyed with special stainless steels is attractive for control in nuclear reactor because of the ability to absorb neutrons readily without swelling or contracting over time and its high melting point. Dysprosium is also one of fission products from the thermal fission of {sup 234}U, {sup 233}U, and {sup 239}Pu. The fission products are accumulated in the reactor core by the burn-up of the nuclear fuel and the poison effect is increased. Therefore, it is required to understand how Dysprosium as both a poison and an absorbing material in the control rod has an effect on the neutron population in a nuclear reactor system over all energy regions. Neutron Capture experiments on Dy isotopes were performed at the electron linear accelerator (LINAC) facility of the Rensselear Polytechnic Institute (RPI) in the neutron energy region from 10 eV to 1 keV. Resonance parameters were extracted by fitting the neutron capture data using the SAMMY multilevel R-matrix Bayesian code.

  12. Properties of Polydisperse Tin-doped Dysprosium and Indium Oxides

    Directory of Open Access Journals (Sweden)

    Malinovskaya Tatyana

    2017-01-01

    Full Text Available The results of investigations of the complex permittivity, diffuse-reflectance, and characteristics of crystal lattices of tin-doped indium and dysprosium oxides are presented. Using the methods of spectroscopy and X-ray diffraction analysis, it is shown that doping of indium oxide with tin results in a significant increase of the components of the indium oxide complex permittivity and an appearance of the plasma resonance in its diffuse-reflectance spectra. This indicates the appearance of charge carriers with the concentration of more than 1021 cm−3 in the materials. On the other hand, doping of the dysprosium oxide with the same amount of tin has no effect on its optical and electromagnetic properties.

  13. Dysprosium titanate as an absorber material for control rods

    Science.gov (United States)

    Risovany, V. D.; Varlashova, E. E.; Suslov, D. N.

    2000-09-01

    Disprosium titanate is an attractive control rod material for the thermal neutron reactors. Its main advantages are: insignificant swelling, no out-gassing under neutron irradiation, rather high neutron efficiency, a high melting point (˜1870°C), non-interaction with the cladding at temperatures above 1000°C, simple fabrication and easily reprocessed non-radioactive waste. It can be used in control rods as pellets and powder. The disprosium titanate control rods have worked off in the MIR reactor for 17 years, in VVER-1000 - for 4 years without any operating problems. After post-irradiation examinations this type of control rod having high lifetime was recommended for the VVER and RBMK. The paper presents the examination results of absorber element dummies containing dysprosium titanate, irradiated in the SM reactor to the neutron fluence of 3.4×10 22 cm -2 ( E>0.1 MeV) and, also, the data on structure, thermal-physical properties of dysprosium titanate, efficiency of dysprosium titanate control rods.

  14. Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid

    Science.gov (United States)

    Berger, Claudia A.; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo

    2016-07-01

    The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important

  15. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    Science.gov (United States)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S.; Guallini, F.; Vallazza, E.; Prest, M.

    2014-09-01

    Radiotherapy treatments with high-energy (>8 MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the "in vivo" dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  16. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S. [Medical Physics - Sant' Anna Hospital, Como (Italy); Guallini, F. [EL.SE s.r.l. (Italy); Vallazza, E. [INFN, Trieste (Italy); Prest, M. [University of Insubria, Como (Italy)

    2014-09-21

    Radiotherapy treatments with high-energy (>8MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the “in vivo” dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  17. Low Field Magnetic and Thermal Hysteresis in Antiferromagnetic Dysprosium

    Directory of Open Access Journals (Sweden)

    Iuliia Liubimova

    2017-06-01

    Full Text Available Magnetic and thermal hysteresis (difference in magnetic properties on cooling and heating have been studied in polycrystalline Dy (dysprosium between 80 and 250 K using measurements of the reversible Villari effect and alternating current (AC susceptibility. We argue that measurement of the reversible Villari effect in the antiferromagnetic phase is a more sensitive method to detect magnetic hysteresis than the registration of conventional B(H loops. We found that the Villari point, recently reported in the antiferromagnetic phase of Dy at 166 K, controls the essential features of magnetic hysteresis and AC susceptibility on heating from the ferromagnetic state: (i thermal hysteresis in AC susceptibility and in the reversible Villari effect disappears abruptly at the temperature of the Villari point; (ii the imaginary part of AC susceptibility is strongly frequency dependent, but only up to the temperature of the Villari point; (iii the imaginary part of the susceptibility drops sharply also at the Villari point. We attribute these effects observed at the Villari point to the disappearance of the residual ferromagnetic phase. The strong influence of the Villari point on several magnetic properties allows this temperature to be ranked almost as important as the Curie and Néel temperatures in Dy and likely also for other rare earth elements and their alloys.

  18. A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier.

    Science.gov (United States)

    Pugh, Thomas; Chilton, Nicholas F; Layfield, Richard A

    2016-09-05

    The single-molecule magnet (SMM) properties of the isocarbonyl-ligated dysprosium metallocene [Cp*2 Dy{μ-(OC)2 FeCp}]2 (1Dy ), which contains a rhombus-shaped Dy2 Fe2 core, are described. Combining a strong axial [Cp*](-) ligand field with a weak equatorial field consisting of the isocarbonyl ligands leads to an anisotropy barrier of 662 cm(-1) in zero applied field. The dominant thermal relaxation pathways in 1Dy involves at least the fourth-excited Kramers doublet, thus demonstrating that prominent SMM behavior can be observed for dysprosium in low-symmetry environments.

  19. Malonate complexes of dysprosium: synthesis, characterization and application for LI-MOCVD of dysprosium containing thin films.

    Science.gov (United States)

    Milanov, Andrian P; Seidel, Rüdiger W; Barreca, Davide; Gasparotto, Alberto; Winter, Manuela; Feydt, Jürgen; Irsen, Stephan; Becker, Hans-Werner; Devi, Anjana

    2011-01-07

    A series of malonate complexes of dysprosium were synthesized as potential metalorganic precursors for Dy containing oxide thin films using chemical vapor deposition (CVD) related techniques. The steric bulkiness of the dialkylmalonato ligand employed was systematically varied and its influence on the resulting structural and physico-chemical properties that is relevant for MOCVD was studied. Single crystal X-ray diffraction analysis revealed that the five homoleptic tris-malonato Dy complexes (1-5) are dimers with distorted square-face bicapped trigonal-prismatic geometry and a coordination number of eight. In an attempt to decrease the nuclearity and increase the solubility of the complexes in various solvents, the focus was to react these dimeric complexes with Lewis bases such as 2,2'-biypridyl and pyridine (6-9). This resulted in monomeric tris-malonato mono Lewis base adduct complexes with improved thermal properties. Finally considering the ease of synthesis, the monomeric nature and promising thermal characteristics, the silymalonate adduct complex [Dy(dsml)(3)bipy] (8) was selected as single source precursor for growing DySi(x)O(y) thin films by liquid injection metalorganic chemical vapor deposition (LI-MOCVD) process. The as-deposited films were analyzed for their morphology and composition by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Rutherford backscattering (RBS) analysis and X-ray photoelectron spectroscopy.

  20. Exploration of dysprosium: the most critical element for Japan

    Science.gov (United States)

    Watanabe, Y.

    2012-04-01

    Dysprosium (Dy), one of the heavy rare earth elements, is used mainly as an additive for NdFeB permanent magnets which are installed in various modern industrial products such as voice coil motors in computers, factory automation machinery, hybrid and electric vehicles, home electronics, and wind turbine, to improve heat resistance of the magnets. Dy has been produced about 2,000t per year from the ores from ion adsorption type deposits in southern China. However, the produced amount of Dy was significantly reduced in 2011 in China due to reservation of heavy rare earth resources and protection of natural environment, resulting in soaring of Dy price in the world. In order to respond the increasing demand of Dy, unconventional supply sources are inevitably developed, in addition to heavy rare earth enriched ion adsorption type deposits outside China. Heavy rare earth elements including Dy are dominantly hosted in xenotime, fergusonite, zircon, eudialyte, keiviite, kainosite, iimoriite, etc. Concentration of xenotime is found in placer deposits in Malaysia and India, hydrothermal deposits associated with unconformity-type uranium mineralization (Athabasca basin in Canada, Western Australia), iron-oxide fluorite mineralization (South Africa) and Sn-bearing alkaline granite (Brazil). Zircon and fergusontie concentration is found as igneous and hydrothermal products in peralkaline syenite, alkaline granite and pegmatite (e.g., Nechalacho in Canada). Eudialyte concentration is found in some peralkaline syenite bodies in Greenland, Canada, Sweden and Russia. Among these sources, large Dy resources are estimated in the deposits hosted in peralkaline rocks (Nechalacho: 79,000t, Kvanefjeld: 49,000t, Norra Karr: 15,700t, etc.) compared to the present demand of Dy. Thus, Dy will be supplied from the deposits associated with peralkaline and alkaline deposits in future instead of ion adsorption type deposits in southern China.

  1. Long afterglow of trivalent dysprosium doped strontium aluminate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuan Ming, E-mail: dongshanisland@126.com [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); Ma, Qing-lan [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); School of Electronics and Information, Nantong University, Jiangsu 226019 (China)

    2015-04-15

    Trivalent dysprosium doped strontium aluminate (SrA1{sub 2}O{sub 4}:Dy{sup 3+}) was synthesized via the sol–gel combustion method to realize green afterglow in the absence of Eu{sup 2+} luminescent centers. The morphology, crystal structure, photoluminescence and long afterglow of the SrAl{sub 2}O{sub 4}:Dy{sup 3+} were characterized with scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and photoluminescence spectroscopy, respectively. The bluish-green photoluminescence of SrAl{sub 2}O{sub 4}:Dy{sup 3+} consists of a broad emission band centered at about 520 nm and two characteristic emissions of Dy{sup 3+} ions centered at 480 and 575 nm, respectively. The green afterglow of SrAl{sub 2}O{sub 4}:Dy{sup 3+} is a broad emission band centered at around 520 nm, and the lifetime extracted from afterglow decay is found to be 53 s. The mechanism on the green afterglow from SrAl{sub 2}O{sub 4}:Dy{sup 3+} is discussed in terms of the possible defect levels in the host. - Highlights: • Broad band long-lasting afterglow is observed in SrAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. • Characteristic emissions of Dy{sup 3+} ions are superimposed on the broad PL of phosphors. • Dy{sup 3+} ions can also act as luminescent centers in addition to electron traps. • A mechanism on long afterglow of SrAl{sub 2}O{sub 4}:Dy{sup 3+} is proposed without Eu{sup 2+} activator.

  2. Low temperature spin reorientation in dysprosium iron garnet

    Energy Technology Data Exchange (ETDEWEB)

    Lahoubi, M; Younsi, W; Soltani, M L [Department of Physics, Badji-Mokhtar University, BP-12 Annaba, 23000 (Algeria); Voiron, J; Schmitt, D, E-mail: mlahoubi@gmail.co [Louis Neel Laboratory, CNRS-UJF, BP-166, 38042 Grenoble Cedex 9 (France)

    2009-03-01

    The spin reorientation (SR) phase transition in dysprosium iron garnet (Dy{sub 3}Fe{sub 5}O{sub 12} or DyIG) have been studied by specific heat C{sub p}(T) and high field magnetisation measurements M{sub T}(H) and M{sub H}(T) on single crystals at low temperature. A first order SR is observed with a sharp jump at T{sub SR} = 14.5+-0.5 K in the C{sub p}(T) curve which corresponds to a spontaneous change from the high temperature (HT) easy direction (111) to an (uuw) angular low temperature (LT) phases. Above T{sub SR}, the magnetic structure is described by the irreducible representation (IR) A{sub 2g} of the rhombohedral space group R 3 c. Below T{sub SR}, the magnetic structure changes in the monoclinic the space group C2/c with the IR A{sub g}. When the field H is kept aligned along the hard symmetry directions (100) and (110), we obtain respectively the variation of the angular positions theta(T) and theta'(T) from the total spontaneous magnetisation down to 1.5 K (theta = 39.23 deg. and theta' = 30.14 deg.) and the results are in good agreement with the previous observations in low fields. When the sample is allowed to rotate freely on itself, the critical field H{sub c}(T) between the HT(111) and the LT(uuw) angular phases permits us to precise the transition line up to 15 T and 40 K between the so called canted field induced (FI) and the associated collinear magnetic phases. The experimental magnetic phase diagram (MPD) is precisely determined in the (H{sub c}-T) plane and the domains of the existence and the stability of the two magnetic phases are specified.

  3. Anisotropic magnetic properties of dysprosium iron garnet (DyIG)

    Energy Technology Data Exchange (ETDEWEB)

    Lahoubi, M; Younsi, W; Soltani, M-L [Department of Physics, Badji-Mokhtar University, BP 12 - 23000 Annaba (Algeria); Ouladdiaf, B, E-mail: mlahoubi@gmail.co [Institut Laue Langevin, BP 156 - 38042 Grenoble Cedex 9 (France)

    2010-01-01

    The magnetic properties of dysprosium iron garnet (DyIG) have been studied by performing high resolution powder neutron diffraction experiments and high dc fields magnetizations on single crystals. Among all the reflections (hkl) indexed in the nuclear cubic space group (CSG) Ia 3-bar d with h+k+l=2n and k=[000], the superstructure lines (hkl)* forbidden by the symmetry (222)* and (622)* are not observed in the patterns at all temperatures. The pattern at 130 K is well interpreted within the magnetic modes F belonging to the irreducible representation (IR) T{sub 1g} of the CSG and identified to the room temperature ferrimagnetic Neel model. The high magnetic field behavior of the spontaneous collinear magnetic structure (MS) along the easy axis (EA) <111> is isotropic. Below 130 K, the patterns exhibit additional magnetic superstructure lines. They are associated to the appearance of the spontaneous non collinear MS which is described in the subgroup of the CSG, R 3-bar c within the IR A{sub 2g}. A strong magnetization anisotropy (MA) is observed at 1.5 K in the low symmetry phases were the spin reorientation transition (SR) occur at T{sub RS}=14.5 K. The onset of MA is detected below two characteristic temperatures, Ta{sub 1}=125 K and Ta{sub 2}=75 K respectively to the hard axis (HA) <100> and <110>. Symmetry arguments are used in the framework of the theory of representation analysis (RA) applied to the subgroup of R 3-bar c, C2/c within the IR A{sub g}. It seems that this MA results essentially from the difference between the spontaneous non collinear MS and the field induced (FI) configurations. All results are discussed with previous neutrons studies.

  4. Dysprosium-containing layered double hydroxides nanoparticles intercalated with biologically active species as an approach for theranostic systems

    KAUST Repository

    Arratia-Quijada, Jenny

    2015-10-23

    A layered double hydroxide structure including dysprosium cations was prepared by co-precipitation. The nanoparticles showed a linear relationship with the reciprocal relaxation spin-lattice (T1) time of water protons which is reflected as contrast in aqueous suspensions analyzed by magnetic resonance imaging. The interlayer space of dysprosium containing LDH was successfully intercalated with folate, ibuprofen and gallate ions, which are key molecules for recognition of some cancer cells and treatment of diseases. The paramagnetic property of the dysprosium-containing LDH detected in this work beside the ability to transport drugs open up the opportunity to design theranostic materials in a single crystal phase with nanometric dimensions.

  5. Effects of Dysprosium Oxide Doping on Microstructure and Properties of Barium Titanate Ceramic

    Institute of Scientific and Technical Information of China (English)

    Pu Yongping; Ren Huijun; Chen Wei; Chen Shoutian

    2005-01-01

    Different amounts of dysprosium oxide were incorporated into barium titanate powders synthesized by hydrothermal method. Relations of substitution behaviors and lattice parameters with solid-solubility were studied. Furthermore, the influences of dysprosium oxide doping fraction on grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength, were investigated via scanning electron microscope, X-ray diffraction and electric property tester. The results show that dysprosium oxide can restrain abnormal grain growth during sintering and that fine-grained and high density of barium titanate ceramic can result in excellent dielectric properties. As mass fraction of dysprosium oxide is 0.6%, the lattice parameters of grain increase to the maximum because of the lowest vacancy concentration. The electric property parameters are cited as following: dielectric constant (25 ℃) reaches 4100, the change in relative dielectric constant with temperature is -10% to 10% within the range of -15~100 ℃, breakdown electric field strength (alternating current) achieves 3.2 kV·mm-1, which can be used in manufacturing high voltage ceramic capacitors.

  6. Sandwich-type tetrakis(phthalocyaninato) dysprosium-cadmium quadruple-decker SMM.

    Science.gov (United States)

    Wang, Hailong; Qian, Kang; Wang, Kang; Bian, Yongzhong; Jiang, Jianzhuang; Gao, Song

    2011-09-14

    Homoleptic tetrakis[2,3,9,10,16,17,23,24-octa(butyloxy)phthalocyaninato] dysprosium-cadmium quadruple-decker complex 1 was isolated in relatively good yield of 43% from a simple one-pot reaction. This compound represents the first sandwich-type tetrakis(phthalocyaninato) rare earth-cadmium quadruple-decker SMM that has been structurally characterized.

  7. In situ characterization of the nitridation of dysprosium during mechanochemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J.; Osterberg, Daniel D.; Alanko, Gordon A.; Tamrakar, Sumit; Smith, Cole R.; Hurley, Michael F.; Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu

    2015-01-15

    Highlights: • A nitridation reaction in a high energy planetary ball mill was monitored in situ. • Dysprosium mononitride was synthesized from Dy at low temperatures in short times. • Ideal gas law and in situ temperature and pressure used to assess reaction extent. • It is proposed that reaction rate is proportional to the creation of new surface. - Abstract: Processing of advanced nitride ceramics traditionally requires long durations at high temperatures and, in some cases, in hazardous atmospheres. In this study, dysprosium mononitride (DyN) was rapidly formed from elemental dysprosium in a closed system at ambient temperatures. An experimental procedure was developed to quantify the progress of the nitridation reaction during mechanochemical processing in a high energy planetary ball mill (HEBM) as a function of milling time and intensity using in situ temperature and pressure measurements, SEM, XRD, and particle size analysis. No intermediate phases were formed. It was found that the creation of fresh dysprosium surfaces dictates the rate of the nitridation reaction, which is a function of milling intensity and the number of milling media. These results show clearly that high purity nitrides can be synthesized with short processing times at low temperatures in a closed system requiring a relatively small processing footprint.

  8. Dysprosium complexes with the tetraphenylporphyrin macrocyclic ligand; Complejos de disprosio con el ligante macrociclico tetrafenilporfirina

    Energy Technology Data Exchange (ETDEWEB)

    Martinez M, V.; Padilla, J.; Ramirez, F.M

    1992-04-15

    In this report, the results obtained on the synthesis, characterization and study of the chemical behavior of dysprosium complex with the acetylacetone chelating agent (Hacac) and the tetraphenylporphyrin macrocyclic ligand (H{sub 2}TFP) are given. Based on the literature but according to our necessities and interest, the appropriate methodology settled down from the synthesis of prime matters until the obtaining and characterization of the products. The acetyl acetonate complex was obtained of mono hydrated dysprosium [Dy(acac){sub 3}. H{sub 2}0] and trihydrated [Dy(acac){sub 3} .3 H{sub 2}0], the mono tetra phenyl porphyrinate [Dy(TFP)(acac). 2 ac] the double sandwich of the dysprosium porphyrinate [Dy(TFP){sub 2}] and the triple sandwich of the dysprosium porphyrinate [Dy(TFP){sub 3}. 2 TCB] (TCB = trichlorobenzene). Its were characterized by their melting points, solubility, IR, UV, TGA and DTA both first and besides the techniques already mentioned for NMR'H, RPE and Magnetic susceptibility the three last complexes. From the spectroscopic point of view, IR and RPE its suggested the existence of a complex of inverse mixed valence [Dy(TFP){sup 2-} (TFP) {sup 1-}] for the Dy(TFP){sub 2} as a result of the existence of the free radical (TFP' {sup 1-} and that it was not in none of the other porphyrin compounds. In the NMR'H spectra of the compounds were not observed signals in the region from 0 to 10 ppm that which shows that the dysprosium complexes in special those of the porphyrin type are highly paramagnetic and its could be used as displacement reagents, creators of images and contrast agents of great utility in these days in studies of NMR, technique today by today used in medical diagnoses. (Author)

  9. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    Science.gov (United States)

    Chiriac, L. B.; Trandafir, D. L.; Turcu, R. V. F.; Todea, M.; Simon, S.

    2016-11-01

    The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, 29Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T1 and RARE-T2 protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T2-weighted MRI contrast properties.

  10. Dysprosium-containing layered double hydroxides nanoparticles intercalated with biologically active species as an approach for theranostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Arratia-Quijada, Jenny [Departamento de Ciencias de la Salud, Centro Universitario Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555, C.P. 48525, Tonalá, Jalisco (Mexico); Sánchez Jiménez, Cecilia [Departamento de Química, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Gurinov, Andrey [Research Resources Center for Magnetic Resonance, St. Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg (Russian Federation); NMR Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Pérez Centeno, Armando; Ceja Andrade, Israel [Departamento de Física, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Carbajal Arízaga, Gregorio Guadalupe, E-mail: gregoriocarbajal@yahoo.com.mx [Departamento de Química, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico)

    2016-01-15

    Graphical abstract: - Highlights: • LDH structure including dysprosium was prepared by co-precipitation. • LDH was capable to produce contrast in the T1 mode of MRI. • LDH were intercalated with folate, ibuprofen and gallate ions. - Abstract: A layered double hydroxide structure including dysprosium cations was prepared by co-precipitation. The nanoparticles showed a linear relationship with the reciprocal relaxation spin-lattice (T1) time of water protons which is reflected as contrast in aqueous suspensions analyzed by magnetic resonance imaging. The interlayer space of dysprosium containing LDH was successfully intercalated with folate, ibuprofen and gallate ions, which are key molecules for recognition of some cancer cells and treatment of diseases. The paramagnetic property of the dysprosium-containing LDH detected in this work beside the ability to transport drugs open up the opportunity to design theranostic materials in a single crystal phase with nanometric dimensions.

  11. Slow magnetic relaxation in a hydrogen-bonded 2D array of mononuclear dysprosium(III) oxamates.

    Science.gov (United States)

    Fortea-Pérez, Francisco R; Vallejo, Julia; Julve, Miguel; Lloret, Francesc; De Munno, Giovanni; Armentano, Donatella; Pardo, Emilio

    2013-05-01

    The reaction of N-(2,6-dimethylphenyl)oxamic acid with dysprosium(III) ions in a controlled basic media afforded the first example of a mononuclear lanthanide oxamate complex exhibiting a field-induced slow magnetic relaxation behavior typical of single-ion magnets (SIMs). The hydrogen-bond-mediated self-assembly of this new bifunctional dysprosium(III) SIM in the solid state provides a unique example of 2D hydrogen-bonded polymer with a herringbone net topology.

  12. Dysprosium-Catalyzed Growth of Single-Walled Carbon Nanotube Arrays on Substrates

    Directory of Open Access Journals (Sweden)

    Qian Yong

    2009-01-01

    Full Text Available Abstract In this letter, we report that dysprosium is an effective catalyst for single-walled carbon nanotubes (SWNTs growth via a chemical vapor deposition (CVD process for the first time. Horizontally superlong well-oriented SWNT arrays on SiO2/Si wafer can be fabricated by EtOH-CVD under suitable conditions. The structure and properties are characterized by scanning electron microscopy, transition electron microscopy, Raman spectroscopy and atomic force microscopy. The results show that the SWNTs from dysprosium have better structural uniformity and better conductivity with fewer defects. This rare earth metal provides not only an alternative catalyst for SWNTs growth, but also a possible method to generate high percentage of superlong semiconducting SWNT arrays for various applications of nanoelectronic device.

  13. Direct Search for keV Sterile Neutrino Dark Matter with a Stable Dysprosium Target

    CERN Document Server

    Lasserre, T; Cribier, M; Merle, A; Mertens, S; Vivier, M

    2016-01-01

    We investigate a new method to search for keV-scale sterile neutrinos that could account for Dark Matter. Neutrinos trapped in our galaxy could be captured on stable $^{163}$Dy if their mass is greater than 2.83~keV. Two experimental realizations are studied, an integral counting of $^{163}$Ho atoms in dysprosium-rich ores and a real-time measurement of the emerging electron spectrum in a dysprosium-based detector. The capture rates are compared to the solar neutrino and radioactive backgrounds. An integral counting experiment using several kilograms of $^{163}$Dy could reach a sensitivity for the sterile-to-active mixing angle $\\sin^2\\theta_{e4}$ of $10^{-5}$ significantly exceeding current laboratory limits. Mixing angles as low as $\\sin^2\\theta_{e4} \\sim 10^{-7}$ / $\\rm m_{^{163}\\rm Dy}\\rm{(ton)}$ could possibly be explored with a real-time experiment.

  14. Preparation of Dysprosium Ferrite/Polyacrylamide Magnetic Composite Microsphere and Its Characterization

    Institute of Scientific and Technical Information of China (English)

    Hidehiro Kumazawa; Wang Zhifeng; Zhou Lanxiang; Zhang Hong; Li Yourong; Zhang Ming

    2005-01-01

    Using the technique of microemulsion polymerization with nano-reactor, dysprosium ferrite/polyacrylamide magnetic composite microsphere was prepared by one-step method in a single inverse microemulsion. The structure, average particle size, morphology of composite microsphere were characterized by FTIR, XRD, TEM and TGA. The magnetic responsibility of composite microsphere was also investigated. The results indicate that the magnetic composite microsphere possess high magnetic responsibility and suspension stability.

  15. {Delta}I = 2 energy staggering in normal deformed dysprosium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M.A.; Brown, T.B.; Archer, D.E. [Florida State Univ., Tallahassee, FL (United States)] [and others

    1996-12-31

    Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.

  16. Poly[[[μ3-N′-(carboxymethylethylenediamine-N,N,N′-triacetato]dysprosium(III] trihydrate

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhuang

    2010-11-01

    Full Text Available In the title coordination polymer, {[Dy(C10H13N2O8]·3H2O}n, the dysprosium(III ion is coordinated by two N atoms and six O atoms from three different (carboxymethylethylenediaminetriacetate ligands in a distorted square-antiprismatic geometry. The ligands connect the metal atoms, forming layers parallel to the ab plane. O—H...O hydrogen bonds further assemble adjacent layers into a three-dimensional supramolecular network.

  17. Making two dysprosium atoms rotate - Einstein-de Haas effect revisited

    OpenAIRE

    Górecki, Wojciech; Rzążewski, Kazimierz

    2016-01-01

    We present a numerical study of the behaviour of two magnetic dipolar atoms trapped in a harmonic potential and exhibiting the standard Einstein-de Haas effect while subject to a time dependent homogeneous magnetic field. Using a simplified description of the short range interaction and the full expression for the dipole-dipole forces we show, that under experimentally realisable conditions two dysprosium atoms may be pumped to a high ($l>20$) value of the relative orbital angular momentum.

  18. Phosphor Dysprosium-Doped Layered Double Hydroxides Exchanged with Different Organic Functional Groups

    Directory of Open Access Journals (Sweden)

    David Ricardo Martínez Vargas

    2013-01-01

    Full Text Available The layers of a Zn/Al layered double hydroxide (LDH were doped with Dy3+ cations. Among some compositions, the Zn2+ : Al3+ : Dy3+ molar ratio equal to 30 : 9 : 1 presented a single crystalline phase. Organic anions with carboxylic, amino, sulfate, or phosphate functional groups were intercalated as single layers between LDH layers as confirmed by X-ray diffraction and infrared spectroscopy. Photoluminescence spectra of the nitrate intercalated LDH showed a wide emission band with strong intensity in the yellow region (around 574 nm, originated due to symmetry distortion of the octahedral coordination in dysprosium centers. Moreover, a broad red band emission was also detected apparently due to the presence of zinc oxide. The distorted symmetry of the dysprosium coordination environment, also confirmed by X-ray photoelectron spectroscopy analysis, was modified after the intercalation with phenyl phosphonate (PP, aspartate (Asp, adipate (Adip, and serinate (Ser anions; the emission as measured from PL spectra of these LDH was more intense in the blue region (ca. 486 nm, thus indicating an increase in symmetry of dysprosium octahedrons. The red emission band from zinc oxide kept the same intensity after intercalation of dodecyl sulfate (DDS. An additional emission of unknown origin at λ = 767 nm was present in all LDHs.

  19. Systematic study on surface and magnetostructural changes in Mn-substituted dysprosium ferrite by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Rekha, G. [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Tholkappiyan, R. [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Department of Physics, College of Science, UAE University, Al-Ain 15551 (United Arab Emirates); Vishista, K., E-mail: raovishista@gmail.com [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Hamed, Fathalla [Department of Physics, College of Science, UAE University, Al-Ain 15551 (United Arab Emirates)

    2016-11-01

    Highlights: • Garnet type Dy{sub 3}Fe{sub 5-x}Mn{sub x}O{sub 12} (x = 0–0.06) nanoparticles of 88.4–86.8 nm were synthesized by hydrothermal method. • The Dy, Mn, Fe and O elements in the ferrites were confirmed from XPS. • The multiple oxidation states of Fe and Mn ions, bonding energy and cationic distributions of the samples were examined by XPS. • The magnetic property shows ferromagnetic behavior from VSM technique. • The results from these studies are correlated with respect to Mn dopant. - Abstract: Dysprosium iron garnets are of scientific importance because of the wide range of magnetic properties that can be obtained in substituting dysprosium by a rare earth metal. In the present work, the effect of Mn substitution on magnetostructural changes in dysprosium ferrite nanoparticles is studied. Highly crystalline pure and Mn doped dysprosium ferrite nanoparticles were synthesized by hydrothermal method. The samples were calcined at 1100 °C for 2 h in air atmosphere which is followed by characterization using XRD, FT-IR analysis, SEM, XPS and VSM. The average crystallite size of synthesized samples were calculated by X-ray diffraction falls in the range of 88.4–86.8 nm and was found to be in cubic garnet structure. For further investigation of the structure and corresponding changes in the tetrahedral and octahedral stretching vibrational bonds, FT-IR was used. The synthesized samples consist of multiple oxidation (Fe{sup 3+} and Fe{sup 2+}) states for Fe ions and (Mn{sup 3+} and Mn{sup 2+}) Mn ions analyzed in three ways of Fe 2p and Mn 2p spectra from the XPS analysis. With respect to Mn dopant in Dy{sub 3}Fe{sub 5}O{sub 12}, the cationic distributions of elements were discussed from high resolution XPS spectra by peak position and shift, area, width. To find out the porous/void surface morphology of the sample, scanning electron microscopy was used. From XPS analysis, the presence of elements (Dy, Mn, Fe and O) and their composition in the

  20. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, L.B.; Trandafir, D.L. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Turcu, R.V.F. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Todea, M. [Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania)

    2016-11-01

    Highlights: • Dysprosium containing silica microparticles obtained by freeze and spray drying. • Higher structural units interconnection achieved in freeze vs. spray dried samples. • Dy occurance on the outermost layer of the microparticles evidenced by XPS. • Enhanced MRI contrast observed for freeze dried samples with 5% mol Dy{sub 2}O{sub 3}. - Abstract: The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, {sup 29}Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T{sub 1} and RARE-T{sub 2} protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T{sub 2}-weighted MRI contrast properties.

  1. Influence of exchange splitting on optical properties in gadolinium and dysprosium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, Yu.V.; Bolotin, G.A. (AN SSSR, Sverdlovsk. Inst. Fiziki Metallov)

    1984-12-01

    The temperature dependences of optical conductivity in gadolinium and dysprosium single crystals at the light wave vector polarization along a hexagonal axis and in the basis plane are considered. A substantial anisotropy of interzonal absorption has been found. The sample transition into magnetically ordered state is shown to be accompanied by the emergence of resonance absorption peaks in the near infrared spectral region. The manifestation of these peculiarities is associated with quantum electron transitions between the s-, d-f- interaction-split energy bands near the Fermi level. Main peculiarities of the experimental spectrum of gadolinium optical conductivity found their reflection in theoretically calculated dispersion dependence.

  2. Therapeutic application of dysprosium-165-FHMA in the treatment of rheumatoid knee effusions

    Energy Technology Data Exchange (ETDEWEB)

    English, R.J.; Zalutsky, M.; Venkatesan, P.; Sledge, C.B.

    1986-03-01

    Radiation synovectomy utilizing a variety of radionuclides has proven to be an effective technique in the treatment of rheumatoid arthritis. The recent introduction of the short-lived radionuclide, Dysprosium-165 (/sup 165/Dy), as a replacement for the longer-lived radiocolloids has reduced nontarget dosimetry caused by leakage of the agent from the articular cavity. A review of the methods and status of radiation synovectomy, and the application of /sup 165/Dy-ferric hydroxide macroaggregates (FHMA) as an alternative therapeutic agent is described.

  3. Properties of dysprosium-doped gallium lanthanum sulfide fiber amplifiers operating at 1.3 microm.

    Science.gov (United States)

    Samson, B N; Schweizer, T; Hewak, D W; Laming, R I

    1997-05-15

    In light of recent progress in the fabrication of gallium lanthanum sulfide (GaLaS) fibers, we have modeled the performance of dysprosium-doped GaLaS fiber amplifiers operating at 1.3 microm . Based on experimental data, we find that the incorporation of a codopant (terbium) in the fiber core significantly shortens the optimum amplifier length from >30 m to approximately 3 m . Such a device may be practical, given the fiber losses currently achieved in GaLaS fibers.

  4. Effect of dysprosium on the kinetics and structural transformations during the decomposition of the supersaturated solid solution in magnesium-samarium alloys

    Science.gov (United States)

    Rokhlin, L. L.; Luk'yanova, E. A.; Tabachkova, N. Yu.; Dobatkina, T. V.; Tarytina, I. E.; Korol'kova, I. G.

    2017-03-01

    The effect of dysprosium added in the amounts such that it does not form an individual phase in equilibrium with solid magnesium on the decomposition of the supersaturated magnesium solid solution in Mg-Sm alloys is studied. The presence of dysprosium in Mg-Sm alloys is found to retard the decomposition of the supersaturated magnesium solid solution and to increase the hardening effect upon aging. When these alloys are aged, dysprosium is partly retained in the magnesium solid solution and partly enters into the compositions of the phases that form during the decomposition of the solid solution and are characteristic of Mg-Sm alloys.

  5. Cyclic single-molecule magnets: from the odd-numbered heptanuclear to a dimer of heptanuclear dysprosium clusters.

    Science.gov (United States)

    Tian, Haiquan; Bao, Song-Song; Zheng, Li-Min

    2016-02-01

    A heptanuclear and a dimer of heptanuclear dysprosium clusters (Dy7 and Dy14) have been successfully synthesized by ingenious coalescence of the single and double pyrazinyl hydrazone as well as phosphonate ligands. The complexes feature the largest odd-numbered cyclic lanthanide clusters reported thus far. Both exhibit single molecule magnet behaviors at low temperature.

  6. A comparison of the effects of symmetry and magnetoanisotropy on paramagnetic relaxation in related dysprosium single ion magnets.

    Science.gov (United States)

    Williams, Ursula J; Mahoney, Brian D; DeGregorio, Patrick T; Carroll, Patrick J; Nakamaru-Ogiso, Eiko; Kikkawa, James M; Schelter, Eric J

    2012-06-07

    Dysprosium complexes of the tmtaa(2-) ligand were synthesized and characterized by X-band EPR and magnetism studies. Both complexes demonstrate magnetoanisotropy and slow paramagnetic relaxation. Comparison of these compounds with the seminal phthalocyanine complex [Dy(Pc)(2)](-) shows the azaannulide complexes are more susceptible to relaxation through non-thermal pathways.

  7. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P. [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Gurinov, Andrey [Research Resources Center for Magnetic Resonance, Saint Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg (Russian Federation); Ortiz, Genaro Gabriel [Laboratorio Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano de Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Carbajal Arízaga, Gregorio Guadalupe, E-mail: gregoriocarbajal@yahoo.com.mx [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico)

    2015-03-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488 nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. - Highlights: • Hydroxyapatite functionalized with glucuronic acid reduced oxidative stress in rats. • Functionalization with folic acid reduced oxidative stress in rats. • Dysprosium doping does not affect the crystalline structure of hydroxyapatite. • Dysprosium doped particles are visible in fluorescent microscope. • Dysprosium doped particles act as MRI contrast agents.

  8. Tuning Slow Magnetic Relaxation in a Two-Dimensional Dysprosium Layer Compound through Guest Molecules.

    Science.gov (United States)

    Chen, Qi; Li, Jian; Meng, Yin-Shan; Sun, Hao-Ling; Zhang, Yi-Quan; Sun, Jun-Liang; Gao, Song

    2016-08-15

    A novel two-dimensional dysprosium(III) complex, [Dy(L)(CH3COO)]·0.5DMF·H2O·2CH3OH (1), has been successfully synthesized from a new pyridine-N-oxide (PNO)-containing ligand, namely, N'-(2-hydroxy-3-methoxybenzylidene)pyridine-N-oxidecarbohydrazide (H2L). Single-crystal X-ray diffraction studies reveal that complex 1 is composed of a dinuclear dysprosium subunit, which is further extended by the PNO part of the ligand to form a two-dimensional layer. Magnetic studies indicate that complex 1 shows well-defined temperature- and frequency-dependent signals under a zero direct-current (dc) field, typical of slow magnetic relaxation with an effective energy barrier Ueff of 33.6 K under a zero dc field. Interestingly, powder X-ray diffraction and thermogravimetric analysis reveal that compound 1 undergoes a reversible phase transition that is induced by the desorption and absorption of methanol and water molecules. Moreover, the desolvated sample [Dy(L)(CH3COO)]·0.5DMF (1a) also exhibits slow magnetic relaxation but with a higher anisotropic barrier of 42.0 K, indicating the tuning effect of solvent molecules on slow magnetic relaxation.

  9. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2016-01-22

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  10. Luminescent properties of dysprosium(Ⅲ) ions in LaAlO3 nanocrystallites

    Institute of Scientific and Technical Information of China (English)

    K. Lema(n)ski; P.J. Dere(n)

    2011-01-01

    The absorption and emission spectra as well as decay time profile of Dy3+ ions in LaAlO3 nanocrystals were analyzed.The crystal structure of LaAlO3 was confirmed from XRD measurement.The emission peaks from blue to red came from main emitting level of dysprosium 4F9/2 to the ground and other excited levels of Dy3+ ions.Cross relaxation process led to non-radiative quenching of luminescence,so that the lifetime of the 4F9/2 energy level ions decreased with increasing amount of doped Dy3+ ions.The cross relaxation transfer rates were experimentally determined as a function of Dy3+ concentration.

  11. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    Science.gov (United States)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-04-01

    Magnetic ordering temperatures in heavy rare earth metal dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to a pressure of 69 GPa and a temperature of 10 K. Previous studies using magnetic susceptibility measurements at high pressures were able to track magnetic ordering temperature only till 7 GPa in the hexagonal close packed (hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. This is followed by a rapid increase in the magnetic ordering temperatures in the double hcp phase and finally leveling off in the distorted face centered cubic phase of Dy. Our studies reaffirm that 4f-shell remains localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.

  12. Electrochemical behaviour of dysprosium in the eutectic LiCl-KCl at W and Al electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Castrillejo, Y. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain)]. E-mail: ycastril@qa.uva.es; Bermejo, M.R. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Barrado, A.I. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Pardo, R. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Barrado, E. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Martinez, A.M. [Department of Materials Technology, Sem Saelands vei 6, 7491 Trondheim (Norway)

    2005-03-15

    The electrochemical behaviour of DyCl{sub 3} was studied in the eutectic LiCl-KCl at different temperatures. The cathodic reaction can be written:Dy(III)+3e-bar Dy(0)which can be divided in two very close cathodic steps:Dy(III)+1e-bar Dy(II)andDy(II)+2e-bar Dy(0)Transient electrochemical techniques, such as cyclic voltammetry, chronopotentiometry, and chronoamperometry were used in order to study the reaction mechanism and the transport parameters of electroactive species at a tungsten electrode. The results showed that in the eutectic LiCl-KCl, electrocrystallization of dysprosium seems to be the controlling electrochemical step. Chronoamperometric studies indicated instantaneous nucleation of dysprosium with three dimensional growth of the nuclei whatever the applied overpotential.Mass transport towards the electrode is a simple diffusion process, and the diffusion coefficient of the electroactive species, i.e. Dy(III), has been calculated. The validity of the Arrhenius law was also verified by plotting the variation of the logarithm of the diffusion coefficient versus 1/T.In addition, the electrode reactions of the LiCl-KCl-DyCl{sub 3} solutions at an Al wire were also investigated by cyclic voltammetry and open circuit chronopotentiometry. The redox potential of the Dy(III)/Dy couple at the Al electrode was observed at more positive potentials values than those at the inert electrode. This potential shift was thermodynamically analyzed by a lowering of activity of Dy in the metal phase due to the formation of intermetallic compounds.

  13. Structural, optical, thermal, mechanical and dielectric studies of Sulfamic acid single crystals: An influence of dysprosium (Dy3+) doping

    Science.gov (United States)

    Singh, Budhendra; Shkir, Mohd.; AlFaify, S.; Kaushal, Ajay; Nasani, Narendar; Bdikin, Igor; Shoukry, H.; Yahia, I. S.; Algarni, H.

    2016-09-01

    Sulfamic acid is a potential material that exhibits excellent optical properties. A good quality, pure and dysprosium (Dy3+) doped (2.5 and 5 mol %) Sulfamic acid (SA) single crystals were grown successfully by slow cooling method. Structural study revealed a slight change in its lattice parameters and volume, suggesting the successful incorporation of Dy3+ in crystal system. The existence of dysprosium in the system was also confirmed. Presence of various vibrational modes was confirmed. Optical transparency was found to have a significant effect with variation in the doping concentration. Furthermore, a marked enhancement in its mechanical parameters with doping was also identified by nanoindentation technique. Etching study was also performed on the grown crystals to study the etch-pit formation and growth mechanism. Effect of doping on the thermal stability was analysed. All the results were compared and discussed in detail to get insight of the effect of doping concentration on Sulfamic acid crystal.

  14. Optical trapping of ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities and van der Waals $C_6$ coefficients

    CERN Document Server

    Li, Hui; Dulieu, Olivier; Nascimbene, Sylvain; Lepers, Maxence

    2016-01-01

    The efficiency of optical trapping of ultracold atoms depend on the atomic dynamic dipole polarizability governing the atom-field interaction. In this article, we have calculated the real and imaginary parts of the dynamic dipole polarizability of dysprosium in the ground and first excited level. Due to the high electronic angular momentum of those two states, the polarizabilities possess scalar, vector and tensor contributions that we have computed, on a wide range of trapping wavelengths, using the sum-over-state formula. Using the same formalism, we have also calculated the $C_6$ coefficients characterizing the van der Waals interaction between two dysprosium atoms in the two lowest levels. We have computed the energies of excited states and the transition probabilities appearing in the sums, using a combination of \\textit{ab initio} and least-square-fitting techniques provided by the Cowan codes and extended in our group. Regarding the real part of the polarizability, for field frequencies far from atomic...

  15. Mixed (phthalocyaninato)(Schiff-base) di-dysprosium sandwich complexes. Effect of magnetic coupling on the SMM behavior.

    Science.gov (United States)

    Wang, Hailong; Liu, Chenxi; Liu, Tao; Zeng, Suyuan; Cao, Wei; Ma, Qi; Duan, Chunying; Dou, Jianmin; Jiang, Jianzhuang

    2013-11-21

    Reaction between Schiff-base ligand and half-sandwich complex M(Pc)(acac) led to the isolation of new sandwich-type mixed (phthalocyaninato)(Schiff-base) di-lanthanide compounds M2(Pc)2(L)H2O (M = Dy, Gd) (1, 2) [H2Pc = metal free phthalocyanine, Hacac = acetylacetone, H2L = N,N'-bis(3-methyloxysalicylidene)benzene-1,2-diamine] with the triple-decker molecular structure clearly revealed by single crystal X-ray diffraction analysis. For the comparative studies, sandwich triple-decker analogues with pure Schiff-base ligand M2(L)3H2O (M = Dy, Gd) (3, 4) were also prepared. Dynamic magnetic measurement result reveals the single-molecule magnet (SMM) nature of the di-dysprosium derivative 1, while the static magnetic investigation over both pure and the diamagnetic diluted samples of this compound discloses the interionic ferromagnetic coupling between the two dysprosium ions, which in turn effectively suppresses the QTM and enhances the energy barrier of this SMM. Nevertheless, comparative studies over the static magnetic properties of the di-dysprosium triple-decker complexes 1 and 3 indicate the stronger magnetic coupling between the two lanthanide ions in mixed (phthalocyaninato)(Schiff-base) species than in the pure Schiff-base triple-decker analogue, suggesting the special coordination sphere around the dysprosium ions in the former compound over the latter one on the more intense inter-ionic ferromagnetic coupling. As a very small step towards understanding the structure-property relationship, the present result will be surely helpful for the design and synthesis of the multinuclear lanthanide-based SMMs with good properties.

  16. Evaluating United States and world consumption of neodymium, dysprosium, terbium, and praseodymium in final products

    Science.gov (United States)

    Hart, Matthew

    This paper develops scenarios of future rare-earth-magnet metal (neodymium, dysprosium, terbium, and praseodymium) consumption in the permanent magnets used in wind turbines and hybrid electric vehicles. The scenarios start with naive base-case scenarios for growth in wind-turbine and hybrid-electric-vehicle sales over the period 2011 to 2020, using historical data for each good. These naive scenarios assume that future growth follows time trends in historical data and does not depend on any exogenous variable. Specifically, growth of each technological market follows historical time trends, and the amount of rare earths used per unit of technology remains fixed. The chosen reference year is 2010. Implied consumptions of the rare earth magnet metals are calculated from these scenarios. Assumptions are made for the material composition of permanent magnets, the market share of permanent-magnet wind turbines and vehicles, and magnet weight per unit of technology. Different scenarios estimate how changes in factors like the material composition of magnets, growth of the economy, and the price of a substitute could affect future consumption. Each scenario presents a different method for reducing rare earth consumption and could be interpreted as potential policy choices. In 2010, the consumption (metric tons, rare-earth-oxide equivalent) of each rare-earth-magnet metal was as follows. Total neodymium consumption in the world for both technologies was 995 tons; dysprosium consumption was 133 tons; terbium consumption was 50 tons; praseodymium consumption was zero tons. The base scenario for wind turbines shows there could be strong, exponential growth in the global wind turbine market. New U.S. sales of hybrid vehicles would decline (in line with the current economic recession) while non-U.S. sales increase through 2020. There would be an overall increase in the total amount of magnetic rare earths consumed in the world. Total consumption of each rare earth in the short

  17. Luminescence features of dysprosium and phosphorus oxide co-doped lithium magnesium borate glass

    Science.gov (United States)

    Hashim, S.; Mhareb, M. H. A.; Ghoshal, S. K.; Alajerami, Y. S. M.; Saripan, M. I.; Bradley, D. A.

    2017-08-01

    Lithium magnesium borate (LMB) glass system co-doped with the oxides of dysprosium (Dy2O3) and phosphorus (P2O5) were synthesized using melt-quenching method. Prepared samples were characterized using various techniques to determine the effects of co-dopants concentration variation on their thermoluminescence (TL) and photoluminescence (PL) properties. TL glow curves of LMB:0.5Dy sample revealed a single prominent peak at Tm=190 °C, where TL intensity was enhanced by a factor of 2.5 with the increase of P2O5 concentration up to 1 mol%. This enhancement was accompanied by a shift in Tm towards higher temperature. Good linearity in the range of 1-100 Gy with linear correlation coefficient of 0.998 was achieved. PL spectra displayed two significant peaks centred at 481 nm and 573 nm. These attractive luminescence features of the proposed glass system may be useful for the development of radiation dosimetry.

  18. Single-molecule magnet behavior for an antiferromagnetically superexchange-coupled dinuclear dysprosium(III) complex.

    Science.gov (United States)

    Long, Jérôme; Habib, Fatemah; Lin, Po-Heng; Korobkov, Ilia; Enright, Gary; Ungur, Liviu; Wernsdorfer, Wolfgang; Chibotaru, Liviu F; Murugesu, Muralee

    2011-04-13

    A family of five dinuclear lanthanide complexes has been synthesized with general formula [Ln(III)(2)(valdien)(2)(NO(3))(2)] where (H(2)valdien = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine) and Ln(III) = Eu(III)1, Gd(III)2, Tb(III)3, Dy(III)4, and Ho(III)5. The magnetic investigations reveal that 4 exhibits single-molecule magnet (SMM) behavior with an anisotropic barrier U(eff) = 76 K. The step-like features in the hysteresis loops observed for 4 reveal an antiferromagnetic exchange coupling between the two dysprosium ions. Ab initio calculations confirm the weak antiferromagnetic interaction with an exchange constant J(Dy-Dy) = -0.21 cm(-1). The observed steps in the hysteresis loops correspond to a weakly coupled system similar to exchange-biased SMMs. The Dy(2) complex is an ideal candidate for the elucidation of slow relaxation of the magnetization mechanism seen in lanthanide systems.

  19. A comparative study of donor formation in dysprosium, holmium, and erbium implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Emtsev, V.V.; Emtsev, V.V. Jr.; Poloskin, D.S.; Shek, E.I.; Sobolev, N.A. [Division of Solid State Electronics, Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    1998-12-01

    Formation of donor centers in Czochralski grown silicon doped with dysprosium, holmium, and erbium is discussed. Donor states of three kinds are introduced in the implanted layers after annealing at T=700C. Shallow donor states with ionization energies between 20 and 40 meV are attributed to oxygen -related thermal donors. Other donor centers in the energy range of E{sub C}-(60...70) meV and E{sub C}-(100...120) meV appear to be dependent on dopants. After a 900C anneal strong changes in the donor formation are observed only in silicon doped with erbium. Instead of donors at E{sub C}-(118{+-}5) meV, new donor centres at E{sub C}-(145{+-}5) meV are formed. Reportedly, the latter ones are involved in the excitation process of the Er{sup 3+} ions with a characteristic luminescence line at {approx}1.54 {mu}m. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    Science.gov (United States)

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters.

  1. Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion

    Science.gov (United States)

    Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.

    2017-04-01

    The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.

  2. Isolation of {sup 163}Ho from dysprosium target material by HPLC for neutrino mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Veronika; Taylor, Wayne A.; Nortier, Francois M.; Engle, Jonathan W.; Pollington, Anthony D.; Kunde, Gerd J.; Rabin, Michael W.; Birnbaum, Eva R. [Los Alamos National Laboratory, Los Alamos, NM (United States). Chemistry Div.; Barnhart, Todd E.; Nickles, Robert J. [Univ. Wisconsinn, Madison, WI (United States). Dept. of Medical Physics

    2015-07-01

    The rare earth isotope {sup 163}Ho is of interest for neutrino mass measurements. This report describes the isolation of {sup 163}Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, {sup 163}Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm{sup -3} α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized by MC-ICP-MS to determine the {sup 163}Ho/{sup 165}Ho ratio, {sup 163}Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4 x 10{sup 5} for Dy. The isolated Ho fraction contained 24.8 ± 1.3 ng of {sup 163}Ho corresponding to holmium recovery of 72 ± 3%.

  3. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach.

    Science.gov (United States)

    Vukov, Oliver; Smith, D Scott; McGeer, James C

    2016-01-01

    The toxicological understanding of rare earth elements (REEs) in the aquatic environment is very limited but of increasing concern. The objective of this research is to compare the toxicological effect of the REE dysprosium to the freshwater invertebrates Daphnia pulex and Hyalella azteca and in the more sensitive organism, understand the toxicity modifying influence of Ca, Na, Mg, pH and dissolved organic matter (DOM). Standard methods (Environment Canada) were followed for testing and culture in media of intermediate hardness (60mg CaCO3 mg/L) at pH 7.8 with Ca at 0.5, Na 0.5, Mg 0.125 (mM) and 23°C. Acute toxicity tests were done with azteca and D. pulex revealed Hyalella to be 1.4 times more sensitive than Daphnia. Additions of Ca and Na but not Mg provided significant protection against Dy toxicity to Hyalella. Similarly, low pH was associated with reduction in toxicity. Exposures which were pH buffered with and without MOPS were significantly different and indicated that MOPS enhanced Dy toxicity. DOM also mitigated Dy toxicity. Biotic ligand based parameters (LogK values) were calculated based on free ion relationships as determined by geochemical equilibrium modeling software (WHAM ver. 7.02). The logK value for Dy(3+) toxicity to Hyalella was 7.75 while the protective influence of Ca and Na were 3.95 and 4.10, respectively. This study contributes data towards the development of site specific water quality guidelines and criteria for Dy and possibly REEs in general and offers insight into the complex bio-geochemical nature of this element.

  4. Optical trapping of ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities and van der Waals C 6 coefficients

    Science.gov (United States)

    Li, H.; Wyart, J.-F.; Dulieu, O.; Nascimbène, S.; Lepers, M.

    2017-01-01

    The efficiency of the optical trapping of ultracold atoms depends on the atomic dynamic dipole polarizability governing the atom-field interaction. In this article, we have calculated the real and imaginary parts of the dynamic dipole polarizability of dysprosium in the ground and first excited levels. Due to the high electronic angular momentum of those two states, the polarizabilities possess scalar, vector and tensor contributions that we have computed, on a wide range of trapping wavelengths, using the sum-over-state formula. Using the same formalism, we have also calculated the C 6 coefficients characterizing the van der Waals interaction between two dysprosium atoms in the two lowest levels. We have computed the energies of excited states and the transition probabilities appearing in the sums, using a combination of ab initio and least-square-fitting techniques provided by the Cowan codes and extended in our group. Regarding the real part of the polarizability, for field frequencies far from atomic resonances, the vector and tensor contributions are two-orders-of-magnitude smaller than the scalar contribution, whereas for the imaginary part, the vector and tensor contributions represent a noticeable fraction of the scalar contribution. Finally, our anisotropic C 6 coefficients are much smaller than those published in the literature.

  5. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach

    Energy Technology Data Exchange (ETDEWEB)

    Vukov, Oliver, E-mail: vuko3930@mylaurier.ca [Biology Department, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Smith, D. Scott [Chemistry Department, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); McGeer, James C. [Biology Department, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada)

    2016-01-15

    The toxicological understanding of rare earth elements (REEs) in the aquatic environment is very limited but of increasing concern. The objective of this research is to compare the toxicological effect of the REE dysprosium to the freshwater invertebrates Daphnia pulex and Hyalella azteca and in the more sensitive organism, understand the toxicity modifying influence of Ca, Na, Mg, pH and dissolved organic matter (DOM). Standard methods (Environment Canada) were followed for testing and culture in media of intermediate hardness (60 mg CaCO{sub 3} mg/L) at pH 7.8 with Ca at 0.5, Na 0.5, Mg 0.125 (mM) and 23 °C. Acute toxicity tests were done with <24 h old neonates for 48 h in the case of D. pulex and with 2–9 days old offspring for 96 h tests with Hyalella. The potential protective effect of cationic competition was tested with Ca (0.5–2.0 mM), Na (0.5–2.0 mM) and Mg (0.125–0.5 mM). The effect of pH (6.5–8.0) and Suwannee River DOM complexation (at dissolved organic carbon (DOC) concentrations of 9 and 13 mg C/L) were evaluated. Dissolved Dy concentrations were lower than total (unfiltered) indicating precipitation, particularly at higher concentrations. Acute toxicity of Dy to H. azteca and D. pulex revealed Hyalella to be 1.4 times more sensitive than Daphnia. Additions of Ca and Na but not Mg provided significant protection against Dy toxicity to Hyalella. Similarly, low pH was associated with reduction in toxicity. Exposures which were pH buffered with and without MOPS were significantly different and indicated that MOPS enhanced Dy toxicity. DOM also mitigated Dy toxicity. Biotic ligand based parameters (Log K values) were calculated based on free ion relationships as determined by geochemical equilibrium modeling software (WHAM ver. 7.02). The log K value for Dy{sup 3+} toxicity to Hyalella was 7.75 while the protective influence of Ca and Na were 3.95 and 4.10, respectively. This study contributes data towards the development of site specific

  6. White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses

    Science.gov (United States)

    Luewarasirikul, N.; Kim, H. J.; Meejitpaisan, P.; Kaewkhao, J.

    2017-04-01

    Lanthanum calcium phosphate oxide and oxyfluoride glasses doped with dysprosium oxide were prepared by melt-quenching technique with chemical composition 20La2O3:10CaO:69P2O5:1Dy2O3 and 20La2O3:10CaF2:69P2O5:1Dy2O3. The physical, optical and luminescence properties of the glass samples were studied to evaluate their potential to using as luminescence materials for solid-state lighting applications. The density, molar volume and refractive index of the glass samples were carried out. The optical and luminescence properties were studied by investigating absorption, excitation, and emission spectra of the glass samples. The absorption spectra were investigated in the UV-Vis-NIR region from 300 to 2000 nm. The excitation spectra observed under 574 nm emission wavelength showed the highest peak centered at 349 nm (6H15/2 → 6P7/2). The emission spectra, excited with 349 nm excitation wavelength showed two major peaks corresponding to 482 nm blue emission (4F9/2 → 6H15/2) and 574 nm yellow emission (4F9/2 → 6H13/2). The experimental lifetime were found to be 0.539 and 0.540 for oxide and oxyfluoride glass sample, respectively. The x,y color coordinates under 349 nm excitation wavelength were (0.38, 0.43) for both glass samples, that be plotted in white region of CIE 1931 chromaticity diagram. The CCT values obtained from the glass samples are 4204 K for oxide glass and 4228 K for oxyfluoride glass corresponding to the commercial cool white light (3100-4500 K). Judd-Ofelt theory had also been employed to obtain the J-O parameters (Ω2, Ω4 and Ω6), oscillator strength, radiative transition possibility, stimulated emission cross section and branching ratio. The Ω2 > Ω4 > Ω6 trend of J-O parameters of both glass samples may indicate the good quality of a glass host for using as optical device application. Temperature dependence of emission spectra was studied from 300 K to 10 K and found that the intensity of the emission peak was found to be increased with

  7. Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium.

    Science.gov (United States)

    Hohensee, M A; Leefer, N; Budker, D; Harabati, C; Dzuba, V A; Flambaum, V V

    2013-08-02

    We report a joint test of local Lorentz invariance and the Einstein equivalence principle for electrons, using long-term measurements of the transition frequency between two nearly degenerate states of atomic dysprosium. We present many-body calculations which demonstrate that the energy splitting of these states is particularly sensitive to violations of both special and general relativity. We limit Lorentz violation for electrons at the level of 10(-17), matching or improving the best laboratory and astrophysical limits by up to a factor of 10, and improve bounds on gravitational redshift anomalies for electrons by 2 orders of magnitude, to 10(-8). With some enhancements, our experiment may be sensitive to Lorentz violation at the level of 9 × 10(-20).

  8. Nonlinear optical properties of lutetium and dysprosium bisphthalocyanines at 1550 nm with femto- and nanosecond pulse excitation

    Science.gov (United States)

    Plekhanov, A. I.; Basova, T. V.; Parkhomenko, R. G.; Gürek, A. G.

    2017-02-01

    In this work, the nonlinear optical properties of unsubstituted lutetium (LuPc2) and dysprosium (DyPc2) bisphthalocyanines as well as octasubstituted Lu(PcR8)2 derivative with R=-S(C6H13) were studied at a wavelength of 1550 nm with 10 ns and 300 fs pulses. Based on Z-scan measurements the nonlinear absorption and refraction coefficient as well as the nature of nonlinear optical properties were analyzed for these materials. Open aperture Z-scan indicates strong two-photon absorption in all three bisphthalocyanines in nano- and femtosecond regimes. With good nonlinear optical coefficients, bisphthalocyanines of rare earth elements are expected to be promising materials for the creation of optical limiters.

  9. Spectroscopic data of the 1.8-, 2.9-, and 4.3- mu m transitions in dysprosium-doped gallium lanthanum sulfide glass

    Science.gov (United States)

    Schweizer, T.; Hewak, D. W.; Samson, B. N.; Payne, D. N.

    1996-10-01

    Infrared emission at 1.8, 2.9, and 4.3 mu m is measured in dysprosium-doped gallium lanthanum sulfide (Ga:La:S) glass excited at 815 nm. Emission cross sections were calculated by Judd-Ofelt analysis, the Fuchtbauer-Ladenburg equation, and the theory of McCumber. The sigma tau value for the 4.3- mu m transition is \\similar 4000 times larger in the Ga:La:S glass than in a dysprosium-doped LiYF4 crystal, which has lased on this transition. The large sigma tau value and the recently reported ability of Ga:La:S glass to be fabricated into fiber form show the potential for an efficient, low-threshold mid-infrared fiber laser. The fluorescence peak at 4.3 mu m coincides with the fundamental absorption of atmospheric carbon dioxide, making the glass a potential laser source for gas-sensing applications.

  10. Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass.

    Science.gov (United States)

    Schweizer, T; Hewak, D W; Samson, B N; Payne, D N

    1996-10-01

    Infrared emission at 1.8, 2.9, and 4.3 microm is measured in dysprosium-doped gallium lanthanum sulfide (Ga:La:S) glass excited at 815 nm. Emission cross sections were calculated by Judd-Ofelt analysis, the Füchtbauer- Ladenburg equation, and the theory of McCumber. The sigmatau value for the 4.3-microm transition is ~4000 times larger in the Ga:La:S glass than in a dysprosium-doped LiYF(4) crystal, which has lased on this transition. The large sigmatau value and the recently reported ability of Ga:La:S glass to be fabricated into fiber form show the potential for an efficient, low-threshold mid-infrared fiber laser. The f luorescence peak at 4.3 microm coincides with the fundamental absorption of atmospheric carbon dioxide, making the glass a potential laser source for gas-sensing applications.

  11. On-line complexation/cloud point preconcentration for the sensitive determination of dysprosium in urine by flow injection inductively coupled plasma-optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Claudia; Cerutti, Soledad; Silva, Maria F. [Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700, San Luis (Argentina); Olsina, Roberto A.; Martinez, Luis D. [Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700, San Luis (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Avda. Rivadavia 1917, CP C1033AAJJ, Buenos Aires (Argentina)

    2003-01-01

    An on-line dysprosium preconcentration and determination system based on the hyphenation of cloud point extraction (CPE) to flow injection analysis (FIA) associated with ICP-OES was studied. For the preconcentration of dysprosium, a Dy(III)-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex was formed on-line at pH 9.22 in the presence of nonionic micelles of PONPE-7.5. The micellar system containing the complex was thermostated at 30 C in order to promote phase separation, and the surfactant-rich phase was retained in a microcolumn packed with cotton at pH 9.2. The surfactant-rich phase was eluted with 4 mol L{sup -1} nitric acid at a flow rate of 1.5 mL min{sup -1}, directly in the nebulizer of the plasma. An enhancement factor of 50 was obtained for the preconcentration of 50 mL of sample solution. The detection limit value for the preconcentration of 50 mL of aqueous solution of Dy was 0.03 {mu}g L{sup -1}. The precision for 10 replicate determinations at the 2.0 {mu}g L{sup -1}Dy level was 2.2% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the preconcentration system for dysprosium was linear with a correlation coefficient of 0.9994 at levels near the detection limits up to at least 100 {mu}g L {sup -1}. The method was successfully applied to the determination of dysprosium in urine. (orig.)

  12. Synthesis and Crystal Structure of Tri-(2-mercaptopyridine N-oxide)bis(dimethyl sulfoxide) Dysprosium(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A range of rare earth metal complexes of 2-mercaptopyridine N-oxide (Hmpo) have been synthesized, and studied by elemental analysis and IR spectroscopic technique. Crystal structure of Dy(mpo)3(DMSO)2 (DMSO = dimethyl sulfoxide) has been determined. The complex crystallizes in the triclinic system, space group Pī with lattice parameters: a = 9.602(3), b = 9.803(3), c = 15.498(5)A, α= 89.51(1), β= 85.73(1), γ= 62.99(1)°, Dc = 1.787 g/cm3, C19H24N3O5S5Dy, Mr = 697.21, Z = 2, F(000) = 690, μ = 3.321mm-1, the final R = 0.0237 and wR = 0.0587 for 4116 reflections with I>σ2(I). The coordination number of dysprosium Ⅲ is eight, and its coordination geometry is a somewhat distorted square antiprism with O(3), O(4), O(5), S(3) and O(1), O(2), S(1), S(2) at the tetragonal bases (dihedral angle between their mean planes is 2.9(1)0). Around the Dy atom, three five-membered ring planes (Dy, O, N, C, S) make the dihedral angles of 74.42, 11.31 and 83.72, respectively.

  13. Photo-, cathodo- and thermoluminescent properties of dysprosium-doped HfO2 films deposited by ultrasonic spray pyrolysis.

    Science.gov (United States)

    Manríquez, R Reynoso; Góngora, J A I Díaz; Guzmán-Mendoza, J; Montalvo, T Rivera; Olguín, J C Guzmán; Ramírez, P V Cerón; García-Hipólito, M; Falcony, C

    2014-09-01

    In this work, the photoluminescent (PL), cathodoluminescent (CL) and thermoluminescent (TL) properties of hafnium oxide films doped with trivalent dysprosium ions are reported. The films were deposited on glass substrates at temperatures ranging from 300 to 600°C, using chlorides as precursor reagents. The surface morphology of films showed a veins shaped microstructure at low deposition temperatures, while at higher temperatures the formation of spherical particles was observed on the surface. X-ray diffraction showed the presence of HfO2 monoclinic phase in the films deposited at temperatures greater than 400°C. The PL and CL spectra of the doped films showed the highest emission band centered at 575nm corresponding to the transitions (4)F9/2→(6)H13/2, which is a characteristic transition of Dy(3+) ion. The greatest emission intensities were observed in samples doped with 1 atomic percent (at%) of DyCl3 in the precursor solution. Regarding the TL behavior, the glow curve of HfO2:Dy(+3) films exhibited spectrum with one broad band centered at about 150°C. The highest intensity TL response was observed on the films deposited at 500°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    Science.gov (United States)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  15. Ferroelectric properties of dysprosium-doped Bi4Ti3O12 thin films crystallized in various atmospheres

    Institute of Scientific and Technical Information of China (English)

    CHENG Chuan-pin; TANG Ming-hua; YE Zhi; ZHOU Yic-hun; ZHENG Xue-jun; ZHONG Xiang-li; HU Zeng-shun

    2006-01-01

    Dysprosium-doped Bi4Ti3O12 (Bi3.4Dy0.6Ti3O12,BDT) ferroelectric thin films were deposited on Pt(111)/Ti/SiO2/Si(111) substrates by chemical solution deposition (CSD) and crystallized in nitrogen,air and oxygen atmospheres,respectively. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to identify the crystal structure,the surface and cross-section morphology of the deposited ferroelectric films. The results show that the crystallization atmosphere has significant effect on determining the crystallization and ferroelectric properties of the BDT films. The film crystallized in nitrogen at a relatively low temperature of 650 ℃,exhibits excellent crystallinity and ferroelectricity with a remanent polarization of 2Pr = 24.9 μC/cm2 and a coercive field of 144.5 kV/cm. While the films annealed in air and oxygen at 650 ℃ do not show good crystallinity and ferroelectricity until they are annealed at 700 ℃. The structure evolution and ferroelectric properties of BDT thin films annealed under different temperatures (600-750 ℃) were also investigated. The crystallinity of the BDT films is improved and the average grain size increases when the annealing temperature increases from 600 ℃ to 750 ℃ at an interval of 50 ℃. However,the polarization of the films is not monotonous function of the annealing temperature.

  16. Sensitive search for the temporal variation of the fine structure constant using radio-frequency E1 transitions in atomic dysprosium

    CERN Document Server

    Nguyen, A T; Lamoreaux, S K; Torgerson, J R

    2003-01-01

    It has been proposed that the radio-frequency electric-dipole (E1) transition between two nearly degenerate opposite-parity states in atomic dysprosium should be highly sensitive to possible temporal variation of the fine structure constant ($\\alpha$) [V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. A {\\bf 59}, 230 (1999)]. We discuss here an experimental realization of the proposed search, which involves monitoring the E1 transition frequency over a period of time using direct frequency counting techniques. We estimate that a statistical sensitivity of $|\\adota| \\sim 10^{-18}$/yr may be achieved and discuss possible systematic effects in such a measurement.

  17. Dysprosium doping induced shape and magnetic anisotropy of Fe3-xDyxO4 (x=0.01-0.1) nanoparticles

    Science.gov (United States)

    Jain, Richa; Luthra, Vandna; Gokhale, Shubha

    2016-09-01

    The effect of dysprosium doping on evolution of structural and magnetic properties of magnetite (Fe3O4) nanoparticles is reported. A standard route of co-precipitation was used for the synthesis of undoped and doped magnetite nanoparticles Fe3-xDyxO4 (x=0.0-0.1). Transmission electron microscopy (TEM) shows formation of round shaped particles with diameter in the range of 8-14 nm for undoped sample. On doping beyond x=0.01, the formation of rod like structures is initiated along with the round shaped particles. The number of rods is found to increase with increasing doping concentration. Magnetic characterization using Vibrating Sample Magnetometer (VSM) revealed doping dependent magnetic properties which can be correlated with the crystallite size as determined from X-ray diffraction (XRD). Enhancement in the saturation magnetization in the initial stages of doping can be explained on the basis of incorporation of Dy3+ ions in the inverse spinel structure at the octahedral site in place of Fe3+ ions. Subsequent decrease in saturation magnetization observed beyond x=0.03 could be attributed to precipitation of excess Dy in form of dysprosium ferrite phase.

  18. Single-molecule magnet behavior in an octanuclear dysprosium(iii) aggregate inherited from helical triangular Dy3 SMM-building blocks.

    Science.gov (United States)

    Zhang, Li; Zhang, Peng; Zhao, Lang; Wu, Jianfeng; Guo, Mei; Tang, Jinkui

    2016-06-28

    An unprecedented octanuclear dysprosium(iii) cluster with the formula [Dy8L6(μ3-OH)4(μ2-CH3O)2(CH3OH)6(H2O)2]·6H2O·10CH3OH·2CH3CN () based on a nonlinearly tritopic aroylhydrazone ligand H3L has been isolated, realizing the successful linking of pairwise interesting triangular Dy3 SMMs. It is noteworthy that two enantiomers (Λ and Δ configurations) individually behaving as a coordination-induced chirality presented in the Dy3 helicate are connected in the meso Dy8 cluster. Remarkably, alternating-current magnetic susceptibility measurements revealed that the Dy8 cluster shows typical SMM behavior inherited from its Dy3 helical precursor. It is one of the rare polynuclear Lnn SMMs (n > 7) under zero dc field.

  19. Another challenge to paramagnetic relaxation theory: a study of paramagnetic proton NMR relaxation in closely related series of pyridine-derivatised dysprosium complexes.

    Science.gov (United States)

    Rogers, Nicola J; Finney, Katie-Louise N A; Senanayake, P Kanthi; Parker, David

    2016-02-14

    Measurements of the relaxation rate behaviour of two series of dysprosium complexes have been performed in solution, over the field range 1.0 to 16.5 Tesla. The field dependence has been modelled using Bloch-Redfield-Wangsness theory, allowing estimates of the electronic relaxation time, T1e, and the size of the magnetic susceptibility, μeff, to be made. Changes in relaxation rate of the order of 50% at higher fields were measured, following variation of the para-substituent in the single pyridine donor. The magnetic susceptibilities deviated unexpectedly from the free-ion values for certain derivatives in each series examined, in a manner that was independent of the electron-releasing/withdrawing ability of the pyridine substituent, suggesting that the polarisability of just one pyridine donor in octadenate ligands can play a significant role in defining the magnetic susceptibility anisotropy.

  20. Tuning the composition and magnetostructure of dysprosium iron garnets by Co-substitution: An XRD, FT-IR, XPS and VSM study

    Energy Technology Data Exchange (ETDEWEB)

    Tholkappiyan, R.; Vishista, K., E-mail: raovishista@gmail.com

    2015-10-01

    Graphical abstract: - Highlights: • Garnet type Dy{sub 3}Fe{sub 5−x}Co{sub x}O{sub 12} (x = 0–0.06) nanoparticles were synthesized by glycine assisted combustion method. • To investigate and confirm the phases in the synthesized ferrite nanoparticles by FT-IR and XRD analysis. • To investigate the compositional and oxidation state of the samples by X-ray photoelectron spectroscopy. • The detailed core level spectra of Dy 4d, Fe 2p, Co 2p and O 1s were analyzed using XPS. • The magnetic property was studied by VSM technique. - Abstract: We report the Co-substituting on the synthesis and properties of garnet type dysprosium ferrite nanoparticles by basic composition Dy{sub 3}Fe{sub 5−x}Co{sub x}O{sub 12} (x = 0–0.06) synthesized through glycine assisted combustion method. A possible formation mechanism of synthesized Dy{sub 3}Fe{sub 5−x}Co{sub x}O{sub 12} samples by controlling the synthesis process has been proposed. XRD, FT-IR, XPS and VSM studies were used to investigate the compositional and magnetostructural properties of the prepared nanoparticles. XRD results confirm that all the samples are single-phase cubic garnet structure with mean crystallite size of 97–105 nm obtained from Scherrer method and 95–102 nm from W–H method. FT-IR analysis shows the presence of three expected bands in the frequency limit of 450–600 cm{sup −1} attributed to metal–O stretching vibration in tetrahedral site of garnet structure. A typical survey spectrum from XPS results confirmed the presence of Dy, Fe, Co and O elements in the samples. This study also to characterize the different oxidation states of the samples by fitting the parameters of high resolution Dy 4d, Fe 2p, Co 2p and O 1s XPS spectra. The XPS data of Dy 4d spectrum show that Dy{sup 3+} ion occupy in dodecahedral (D) site. The XPS analysis of Fe 2p and Co 2p data suggests that (Fe{sup 3+} and Fe{sup 2+}), (Co{sup 3+} and Co{sup 2+}) are distributed in tetrahedral and octahedral sites

  1. A dysprosium-based metal-organic framework: Synthesis, characterization, crystal structure and interaction with calf thymus-DNA and bovine serum albumin

    Indian Academy of Sciences (India)

    Biplab Mondal; Buddhadeb Sen; Ennio Zangrando; Pabitra Chattopadhyay

    2014-07-01

    A dysprosium-based metallo-organic framework (MOF) containing calcium ions formulated as {Dy(pyda)3Ca1.5(H2O)6} · 5.5H2O (1) (H2pyda = pyridine-2,6-dicarboxylic acid) was solvothermally synthesized in ethanolic medium and characterized by physico-chemical and spectroscopic tools. A detailed structural analysis of the solid state structure of 1 by single crystal X-ray diffraction study showed a tricapped trigonal prism geometry for lanthanide in the [Dy(pyda)3]3− fragment. The mode of interaction of 1 with calf thymus- DNA and with protein bovine serum albumin (BSA) was investigated by using absorption and emission spectroscopic tools. The apparent association constant of complex 1 with CT-DNA was deduced from an absorption spectral study (b = 4.08 × 104 M-1). Spectral and viscosity measurements indicated a groove-binding mode of 1 with CT-DNA, and from spectroscopic study the formation of a metal complex-BSA adduct was assumed to be the result of the interaction of 1 with BSA.

  2. Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and in vivo application

    Science.gov (United States)

    Tegafaw, Tirusew; Xu, Wenlong; Wasi Ahmad, Md; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho

    2015-09-01

    A new type of dual-mode T1 and T2 magnetic resonance imaging (MRI) contrast agent based on mixed lanthanide oxide nanoparticles was synthesized. Gd3+ (8S7/2) plays an important role in T1 MRI contrast agents because of its large electron spin magnetic moment resulting from its seven unpaired 4f-electrons, and Dy3+ (6H15/2) has the potential to be used in T2 MRI contrast agents because of its very large total electron magnetic moment: among lanthanide oxide nanoparticles, Dy2O3 nanoparticles have the largest magnetic moments at room temperature. Using these properties of Gd3+ and Dy3+ and their oxide nanoparticles, ultrasmall mixed gadolinium-dysprosium oxide (GDO) nanoparticles were synthesized and their potential to act as a dual-mode T1 and T2 MRI contrast agent was investigated in vitro and in vivo. The D-glucuronic acid coated GDO nanoparticles (davg = 1.0 nm) showed large r1 and r2 values (r2/r1 ≈ 6.6) and as a result clear dose-dependent contrast enhancements in R1 and R2 map images. Finally, the dual-mode imaging capability of the nanoparticles was confirmed by obtaining in vivo T1 and T2 MR images.

  3. Experimental and molecular dynamics studies of dysprosium(III) salt solutions for a better representation of the microscopic features used within the binding mean spherical approximation theory.

    Science.gov (United States)

    Ruas, Alexandre; Guilbaud, Philippe; Den Auwer, Christophe; Moulin, Christophe; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe

    2006-10-19

    This work is aimed at a predictive description of the thermodynamic properties of actinide(III) salt solutions at high concentration and 25 degrees C. A new solution of the binding mean spherical approximation (BIMSA) theory, based on the Wertheim formalism, for taking into account 1:1 and also 1:2 complex formation, is used to reproduce, from a simple procedure, experimental osmotic coefficient variation with concentration for three binary salt solutions of the same lanthanide(III) cation: dysprosium(III) perchlorate, nitrate, and chloride. The relevance of the fitted parameters is discussed, and their values are compared with available literature values. UV-vis/near-IR, time-resolved laser-induced fluorescence spectroscopy experiments, and molecular dynamics (MD) calculations were conducted for dilute to concentrated solutions (ca. 3 mol.kg-1) for a study of the microscopic behavior of DyCl3 binary solutions. Coupling MD calculations and extended X-ray absorption fine structure led to the determination of reliable distances. The MD results were used for a discussion of the parameters used in the BIMSA.

  4. Experimental and molecular dynamics studies of dysprosium(III) salt solutions for a better representation of the microscopic features used within the binding mean spherical approximation theory

    Energy Technology Data Exchange (ETDEWEB)

    Ruas, Alexandre; Guilbaud, Philippe; Den Auwer, Christophe; Moulin, Christophe; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe [DEN/DRCP/SCPS, CEA-Valrho Marcoule, BP 17171, 30207 Bagnols-sur-Ceze Cedex, DEN/DPC/SECR/LSRM, CEA-Saclay, Bat 391, BP 91191 Gif sur Yvette, Cedex (France); Laboratoire LI2C (UMR 7612), Universite Pierre et Marie Curie-Paris 6, Boite No. 51, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2006-07-01

    This work is aimed at a predictive description of the thermodynamic properties of actinide (III) salt solutions at high concentration and 25 deg. C. A new solution of the binding mean spherical approximation (BIMSA) theory, based on the Wertheim formalism, for taking into account 1: 1 and also 1: 2 complex formation, is used to reproduce, from a simple procedure, experimental osmotic coefficient variation with concentration for three binary salt solutions of the same lanthanide (III) cation: dysprosium (III) perchlorate, nitrate, and chloride. The relevance of the fitted parameters is discussed, and their values are compared with available literature values. UV-vis/near-IR, time-resolved laser-induced fluorescence spectroscopy experiments, and molecular dynamics (MD) calculations were conducted for dilute to concentrated solutions (ca. 3 mol, kg{sup -1}) for a study of the microscopic behavior of DyCl{sub 3} binary solutions. Coupling MD calculations and extended X-ray absorption fine structure led to the determination of reliable distances. The MD results were used for a discussion of the parameters used in the BIMSA. (authors)

  5. Elucidation of Dual Magnetic Relaxation Processes in Dinuclear Dysprosium(III) Phthalocyaninato Triple-Decker Single-Molecule Magnets Depending on the Octacoordination Geometry.

    Science.gov (United States)

    Katoh, Keiichi; Aizawa, Yu; Morita, Takaumi; Breedlove, Brian K; Yamashita, Masahiro

    2017-08-07

    When applying single-molecule magnets (SMMs) to spintronic devices, control of the quantum tunneling of the magnetization (QTM) as well as a spin-lattice interactions are important. Attempts have been made to use not only coordination geometry but also magnetic interactions between SMMs as an exchange bias. In this manuscript, dinuclear dysprosium(III) (Dy(III) ) SMMs with the same octacoordination geometry undergo dual magnetic relaxation processes at low temperature. In the dinuclear Dy(III) phthalocyaninato (Pc(2-) ) triple-decker type complex [(Pc)Dy(ooPc)Dy(Pc)] (1) (ooPc(2-) =2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyaninato) with a square-antiprismatic (SAP) geometry, the ground state is divided by the Zeeman effect, and level intersection occurs when a magnetic field is applied. Due to the ground state properties of 1, since the Zeeman diagram where the levels intersect in an Hdc of 2500 Oe, two kinds of QTM and direct processes occur. However, dinuclear Dy(III) -Pc systems with C4 geometry, which have a twist angle (ϕ) of less than 45° do not undergo dual magnetic relaxation processes. From magnetic field and temperature dependences, the dual magnetic relaxation processes were clarified. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M; Nur-E-Alam, M; Alameh, K [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027 (Australia); Premchander, P; Lee, Y T [Department of Information and Communications, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712 (Korea, Republic of); Kotov, V A [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 11 Mohovaya St, Moscow, 125009 (Russian Federation); Lee, Y P, E-mail: m.vasiliev@ecu.edu.au [Quantum Photonic Science Research Center, Department of Physics, Hanyang University, 133-791 (Korea, Republic of)

    2011-02-23

    We investigate the magneto-optic properties, crystal structure and annealing behaviour of nano-composite media with record-high magneto-optic quality exceeding the levels reported so far in sputtered iron-garnet films. Bi-substituted dysprosium-gallium iron-garnet films having excess bismuth oxide content are deposited using RF co-sputtering, and a range of garnet materials are crystallized using conventional oven-annealing processes. We report, for the first time ever, the results of optimization of thermal processing regimes for various high-performance magneto-optic iron-garnet compositions synthesized and describe the evolution of the optical and magneto-optical properties of garnet-Bi-oxide composite-material films occurring during the annealing processes. The crystallization temperature boundaries of the system (BiDy){sub 3}(FeGa){sub 5}O{sub 12} : Bi{sub 2}O{sub 3} are presented. We also report the results of x-ray diffraction and energy-dispersive x-ray spectroscopy studies of this recently developed class of high-performance magneto-optic composites. Our hypothesis of iron oxides being the cause of excess optical absorption in sputtered Bi-iron-garnet films is confirmed experimentally.

  7. Global use structures of the magnetic materials neodymium and dysprosium. A scenario-based analysis of the effect of the diffusion of electromobility on the demand for rare earths; Globale Verwendungsstrukturen der Magnetwerkstoffe Neodym und Dysprosium. Eine szenariobasierte Analyse der Auswirkung der Diffusion der Elektromobilitaet auf den Bedarf an Seltenen Erden

    Energy Technology Data Exchange (ETDEWEB)

    Gloeser-Chahoud, Simon; Kuehn, Andre; Tercero Espinoza, Luis

    2016-06-15

    Neodymium-iron-boron magnets (NdFeB) have experienced a significant demand as the most powerful permanent magnet in recent years, especially for the manufacture of compact electric servomotors with high efficiency and high power density, especially for mobile applications in hybrid traction motors and electric vehicles or for electric bikes. However, NdFeB magnets are also increasingly being used in general mechanical engineering (conveying and pumping systems, tools, air conditioning systems, lift motors, etc.), in the small electric motors of conventional passenger cars or in the generators of large wind power plants with permanent magnetic direct drive. Nevertheless, there is still high uncertainty in the use structures of NdFeB magnets and the contained rare earth elements neodymium and dysprosium. An effective instrument for increasing the market transparency and the understanding of complex anthropogenic material cycles is the dynamic material flow modeling. In the present work paper, this instrument is used for an in-depth analysis of the use structures of NdFeB magnets and the contained rare earths on a global scale. The dynamic modeling of product usage cycles reveals today's usage structures and quantifies future magnetic quantities in obsolete product flows. It could be shown that the magnets in today's scrap volume are mainly contained in obsolete electronics applications such as hard disks (HDD), CD and DVD drives, which makes the recycling hardly seem to be economical due to the small magnets and the high material spread, but in the foreseeable future with larger magnetic quantities from synchronous servomotors and generators can be expected, which significantly increases the recycling potential. In a further step, the effect of the diffusion of alternative drives in the automotive market on the dysprosium requirement is analyzed using a system dynamics model and possible adaptation mechanisms in the form of different substitution effects in

  8. The role of dysprosium on the structural and magnetic properties of (Nd1-xDyx)2Fe14B nanoparticles

    Science.gov (United States)

    Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid

    2017-02-01

    In current work, Nd2Fe14B nanoparticles was synthesized by sol-gel method. Dysprosium powders were added into Nd2Fe14B nanoparticles by mechanical alloying process in order to enhancement of coercivity. The phase analysis, structure, and magnetic properties of annealed (Nd1-xDyx)2Fe14B nanoparticles with different Dy-content (x=0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were investigated by employing X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive spectroscopy, field emission scanning electron microscope, transmission electron microscope and vibrating sample magnetometer techniques. The results showed that with an increase in Dy amounts, the coercivity of particles increased from 2.9 kOe to 13.4 kOe and then decreased to 5.6 kOe. By adding an optimum amount of Dy (x=0.4), the coercivity was significantly increased from 2.9 kOe to 13.4 kOe. The average particle size of annealed (Nd1-xDyx)2Fe14B nanoparticles was below 10 nm. Magnetization reversal studies indicate that the coercivity of milled and annealed (Nd1-xDyx)2Fe14B nanoparticles is controlled by the nucleation of reversed magnetic domains. The experimental results in the angular dependence of coercivity for (Nd1-xDyx)2Fe14B permanent magnets showed that the normalized coercivity of the permanent magnets Hc(θ)/Hc(0) increases from 1 to about 1.2-1.5 with increasing θ from 0 to about π/3, for x=0.4-0.6.

  9. Dysprosium(III) complexes with a square-antiprism configuration featuring mononuclear single-molecule magnetic behaviours based on different β-diketonate ligands and auxiliary ligands.

    Science.gov (United States)

    Zhang, Sheng; Ke, Hongshan; Shi, Quan; Zhang, Jangwei; Yang, Qi; Wei, Qing; Xie, Gang; Wang, Wenyuan; Yang, Desuo; Chen, Sanping

    2016-03-28

    Three mononuclear dysprosium(III) complexes derived from three β-diketonate ligands, 4,4,4-trifluoro-1-(4-methylphenyl)-1,3-butanedione (tfmb), 4,4,4-trifluoro-1-(4-fluorophenyl)-1,3-butanedione (tffb) and 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione (tfnb) as well as auxiliary ligands, 5-nitro-1,10-phenanthroline (5-NO2-Phen), DMF and 2,2'-bipyridine (bpy) have been synthesized and structurally characterized, namely [Dy(5-NO2-Phen)(tfmb)3] (1), [Dy(DMF)2(tffb)3] (2) and [Dy(bpy)2(tfnb)3]·0.5(1,4-dioxane) (3). The metal ions in 1-3 adopt an approximately square-antiprismatic (SAP) coordination environment with D4d axial symmetry. The magnetic properties of 1-3 have been investigated, displaying weak out-of-phase AC signals under a zero-DC field. With an applied DC field of 1200 Oe, the quantum tunnelling of the magnetization was suppressed in 1-3 with the pre-exponential factor τ0 = 5.3 × 10(-7) s and the effective barrier ΔE/kB = 83 K for 1 as well as the pre-exponential factor τ0 = 3.09 × 10(-7) s and the effective barrier ΔE/kB = 39 K for 3. Interestingly, for the frequency dependence of the out-of-phase (χ'') of the AC susceptibility of 2, two slow relaxation of the magnetization processes occurred under the applied magnetic field of 1200 Oe, corresponding to the fast relaxation (FR) phase and slow relaxation (SR) phase, respectively. Arrhenius analysis gave the effective energy barrier (ΔE/kB) of 55 K and the pre-exponential factor (τ0) of 8.23 × 10(-12) for the SR. It is thus very likely that the FR process in complex 2 results from QTM enhanced by dipolar interactions between the Dy ions or the presence of the applied field. The structure-property relationship of some Dy(III) based mononuclear SMMs with the SAP configuration was further discussed.

  10. Magnetic Phase Transition of Nanocrystalline Bulk Metal Gadolinium and Dysprosium%纳米块体金属钆和镝的磁性相变分析

    Institute of Scientific and Technical Information of China (English)

    刘凤艳; 侯碧辉; 岳明; 王克军

    2011-01-01

    The magnetic properties of bulk nanocrystalline metal gadolinium (Gd) and dysprosium (Dy)samples were studied.The magnetization and Curie temperature TC of nanocrystalline Gd and Dy decreased usually as compared with the polycrystal.However,when the mean grain size was 10 nm, the Curie temperature Tc of nanocrystalline Dy increased to 100 K instead and there was an antiferromagnetic phase in nanocrystalline Gd.According to the calculation based on Ruderman-Kittel-Kasuya-Yosida exchange interaction, the exchange integral of the grain boundary atoms and crystalline surface atoms had its sign changed from plus to minus or vice versa, and there were three orderly phases in the steady state with the lowest energy, ferromagnetic phase, antiferromagnetic phase and fan phase.For the nanocrystals with mean grain size of 10 nm, the proportion of grain boundary to crystalline surface atoms was high, and as the result of superposition of the three phases, and there appeared a peak near the phase transition temperature for the nanocrystalline Gd.While for the Dy, the magnetization decreased gently with temperature, and showing a higher Curie temperature than in the case of the polycrystal.%对纳米晶钆(Gd)和镝(Dy)块体材料的磁性进行了研究.与多晶比较,通常纳米晶的磁化强度减小,居里温度TC降低,但平均粒径为10 nm的纳米晶Dy的居里温度TC反而升高到100 K,平均粒径为10 nm的纳米晶Gd中还存在明显的反铁磁相.通过RKKY交换作用的计算知道,晶面晶界处原子的交换积分会发生正负号的变化,能量最低的稳定状态对应三种有序相:铁磁相、反铁磁相和扇相,晶粒中在一定条件下出现三相共存.对于平均粒径为10 nm的纳米晶,晶面晶界处原子所占比例很大,三相叠加的结果,对于Gd,即是在相变点附近出现磁化强度尖峰;对于Dy,则是磁化强度随温度升高下降缓慢,表现为居里温度TC比多晶升高.

  11. Extension of the energy range of the experimental activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium up to 65 MeV

    CERN Document Server

    Tárkányi, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2016-01-01

    Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65 MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides $^{159}$Dy, $^{157}$Dy, $^{155}$Dy, $^{161}$Tb, $^{160}$Tb, $^{156}$Tb, $^{155}$Tb, $^{154m2}$Tb, $^{154m1}$Tb, $^{154g}$Tb, $^{153}$Tb, $^{152}$Tb and $^{151}$Tb are reported in the 36-65 MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013.

  12. Extension of the energy range of the experimental activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium up to 65MeV.

    Science.gov (United States)

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-04-01

    Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides (159)Dy, (157)Dy, (155)Dy, (161)Tb, (160)Tb, (156)Tb, (155)Tb, (154m2)Tb, (154m1)Tb, (154g)Tb, (153)Tb, (152)Tb and (151)Tb are reported in the 36-65MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013. Copyright © 2015. Published by Elsevier Ltd.

  13. Dysprosium selective potentiometric membrane sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Faridbod, Farnoush; Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-03-01

    A novel Dy(III) ion-selective PVC membrane sensor was made using a new synthesized organic compound, 3,4-diamino-N Prime -((pyridin-2-yl)methylene)benzohydrazide (L) as an excellent sensing element. The electrode showed a Nernstian slope of 19.8 {+-} 0.6 mV per decade in a wide concentration range of 1.0 Multiplication-Sign 10{sup -6}-1.0 Multiplication-Sign 10{sup -2} mol L{sup -1}, a detection limit of 5.5 Multiplication-Sign 10{sup -7} mol L{sup -1}, a short conditioning time, a fast response time (< 10 s), and high selectivity towards Dy(III) ion in contrast to other cations. The proposed sensor was successfully used as an indicator electrode in the potentiometric titration of Dy(III) ions with EDTA. The membrane sensor was also applied to the F{sup -} ion indirect determination of some mouth washing solutions and to the Dy{sup 3+} determination in binary mixtures. Highlights: Black-Right-Pointing-Pointer The novelty of this work is based on the high affinity of the ionophore toward the Dy{sup 3+} ions. Black-Right-Pointing-Pointer This technique is very simple, fast and inexpensive and it is not necessary to use sophisticated equipment. Black-Right-Pointing-Pointer The newly developed sensor is superior to the formerly reported Dy{sup 3+} sensors in terms of selectivity.

  14. The magnetocaloric effect in dysprosium

    Science.gov (United States)

    Benford, S. M.

    1979-01-01

    The magnetocaloric effect in polycrystalline Dy was measured in the 84-280-K range in measuring fields from 1 to 7 T. These adiabatic temperature changes reflect structural changes in Dy with applied field and temperature, and include the first magnetocaloric data for a helical antiferromagnet. Above the Neel point (179 K) a field increase always caused heating; below the Neel point fields less than about 2 T cause cooling for some values of initial temperature. The largest temperature increase with a 7 T field occurs at the Neel point and at fields below 2 T near the Curie point. For refrigeration purposes the optimal working region for a Dy cooling element is field dependent.

  15. Microstructure and dielectric properties of dysprosium-doped barium titanate ceramics Microestrutura e propriedades dielétricas de cerâmicas de titanato de bário dopado com disprósio

    Directory of Open Access Journals (Sweden)

    Y. Pu

    2005-09-01

    Full Text Available The substitution behavior and lattice parameter of barium titanate between solid_solubility with a dopant concentration in the range of 0.25 to 1.5 mol% are studied. The influences of dysprosium-doped fraction on the grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength, are investigated via scanning electronic microscopy, X-ray diffraction and electric property tester. The results show that, at a dysprosium concentration of 0.75 mol%, the abnormal grain growth is inhibited and the lattice parameters of grain rise up to the maximum because of the lowest vacancy concentration. In addition, the finegrain and high density of barium titanate ceramic result in its excellent dielectric properties. The relative dielectric constant (25 °C reaches to 4100. The temperature coefficient of the capacitance varies from -10 to 10% within the temperature range of -15 °C -100 °C, and the breakdown electric field strength (alternating current achieves 3.2 kV/mm. These data suggest that our barium titanate could be used in the manufacture of high voltage ceramic capacitors.Foram estudados o comportamento da substituição e o parâmetro de rede de titanato de bário da solubilidade sólida com uma concentração de dopante na faixa 0,25-1,5 mol%. As influências da fração do dopante disprósio no tamanho de grão e nas propriedades dielétricas da cerâmica de titanato de bário, incluindo constante dielétrica e rigidez dielétrica foram investigadas por meio de microscopia eletrônica de varredura, difração de raios X e teste de propriedades elétricas. Os resultados mostram que a uma concentração de disprósio de 0,75 mol% o crescimento anormal de grão é inibido e os parâmetros de rede aumentam até um máximo devido a menor concentração de vacâncias. Além disso, as cerâmicas de grãos pequenos e alta densidade resultam em excelentes propriedades dielétricas. A

  16. Neodymium Dysprosium Modified Starch- coated Magnetic Fluid Preparation of Ferrite%淀粉包覆镝钕改性铁氧体磁性液体的制备

    Institute of Scientific and Technical Information of China (English)

    林穗云; 周育辉

    2011-01-01

    In this paper, in order to obtain the ferrite magnetic fluids of higher saturation magnetic intensity with simple technology, nanometer magnetite ( Fe3O4 ) particles ware prepared by chemical co - precipitation. And to a certain proportion of Dysprosium Neodymium ferrite magnetic fluids on the modification, we selected starch prepara- tion for the relief of water - based coating of rare earth iron oxide magnetic fluid composites. We also investigated the amount of Nd - Dy, the amount of coating agent, reaction temperature, coating temperature on the performance of the products and the effects of particle size, and its preliminary characterization was also performed . Through experiment,we summed up, under n (Fe) : [ n ( Nd3+ ) + n ( Dy3+ ) ] = 30:1 and n ( Fe3 + ) : n ( Fe2 + ) = 1.70 ~ 1. 75, the ratio for use of dysprosium and neodymium is n(Dy3+ ) : n(Nd3+ ) =4:1, 25%NH3 · H2O(A. R. ) as precipitating agent and pH value conditioner; the reacting system temperature was controlled in 35 ℃, and the pH value was adjusted to 9 ~ 11 ; the best dosage of starch as the relief is O. 0050g each 6OraL magnetic fluids, the temperature of surfactant was controlled in 50℃ and the pH value was adjusted to 2 ~ 3. In such system under the conditions of a water - based rare - earth compound Nd Dy Fe Magnetic, fluid magnetic oxygen was higher than or- dinary water- based ferrite.%为制备工艺简单且饱和磁化强度高的磁流体,本文采用化学共沉淀法制得了纳米磁性Fe304粒子.然后以一定比例的镝钕对铁氧体磁流体改性,选择淀粉为包覆剂制备水基稀土复合铁氧磁流体.考察了镝钕的用量、包覆剂的用量、反应温度、包覆温度等因素对产物粒径及性能的影响,并对其进行了初步的性能表征.实验总结出适宜的条件:在n(Fe):[n(Nd3+)+n(Dy3+)]=30:1,n(Fe3+):n(Fe2+)=1.70~1.75

  17. 表面修饰对镝铁氧体纳米磁粒子的合成及其磁性能的影响%Effect of Surface Modification on Formation and Magnetic Property of Dysprosium Ferrite Nanomagnetic Particles

    Institute of Scientific and Technical Information of China (English)

    陈静; 张茂润; 邓真娟

    2011-01-01

    利用湿化学法制备镝铁氧体纳米磁粒子时,用适量的阴离子表面活性剂进行表面修饰,能够有效地控制磁粒子的粒径,同时避免干燥时产生硬团聚.文章介绍了用月桂酸、月桂酸钠、正十二烷基硫酸钠对磁粒子进行表面修饰的研究结果,探讨了三者及其用量对磁粒子的形成及磁性能的影响.借助X射线衍射仪(XRD)、透射电镜(TEM)、振动样品磁强计(VSM)、红外光谱仪(IR)对产物的性能进行了表征.结果表明,用月桂酸修饰后的产物具有Fe3O4磁粒子的晶型结构且结晶度高、磁性能优异、平均粒径约16nm;用月桂酸钠、正十二烷基硫酸钠修饰后的产物不具有Fe3O4磁粒子的晶型结构,结晶度低且磁性能差.%When wet chemical method are use to prepare dysprosium-doped ferrite magnetic nanoparticles, right a-mount of anionic surfactant were doped as surface modification, which can effectively control the size of magnetic particles, and avoid producing hard reunion when dry out. This paper introduces the research results of magnetic particle surface modification by using lauric acid, laurel acid sodium and lauryl sodium sulfate, discusses the effect of lauric acid, laurel acid sodium and lauryl sodium sulfate and their dosages on the formation of magnetic and its magnetic property. The properties of the product can be characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), infrared spectrometer (IR). The results showed that the product modified with lauric acid have a crystalline structure of Fe3O4 magnetic particles and high crystallin-ity, excellent magnetic properties. The average particle size is about 16 nm; the product modified with laurel acid sodium and lauryl sodium sulfate does not have the crystalline structure of Fe3O4 magnetic particles, with low crystal-linity and low magnetic property.

  18. Dysprosium-free melt-spun permanent magnets.

    Science.gov (United States)

    Brown, D N; Wu, Z; He, F; Miller, D J; Herchenroeder, J W

    2014-02-12

    Melt-spun NdFeB powders can be formed into a number of different types of permanent magnet for a variety of applications in electronics, automotive and clean technology industries. The melt-spinning process produces flake powder with a fine uniform array of nanoscale Nd2Fe14B grains. These powders can be net-shape formed into isotropic polymer-bonded magnets or hot formed into fully dense magnets. This paper discusses the influence of heavy rare earth elements and microstructure on the magnetic performance, thermal stability and material cost of NdFeB magnets. Evidence indicates that melt-spun nanocrystalline NdFeB magnets are less dependent on heavy rare earth elements for high-temperature performance than the alternative coarser-grained sintered NdFeB magnets. In particular, hot-pressed melt-spun magnets are an attractive low-cost solution for applications that require thermal stability up to 175-200 °C.

  19. Structural and magnetic study of dysprosium substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemaunt, E-mail: hvatsal@gmail.com [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Srivastava, R.C. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Pal Singh, Jitendra [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Negi, P. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Agrawal, H.M. [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Das, D. [UGC-DAE CSR Kolkata Centre, Kolkata 700098 (India); Hwa Chae, Keun [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of)

    2016-03-01

    The present work investigates the magnetic behavior of Dy{sup 3+} substituted cobalt ferrite nanoparticles. X-ray diffraction studies reveal presence of cubic spinel phases in these nanoparticles. Raman spectra of these nanoparticles show change in intensity of Raman bands, which reflects cation redistribution in cubic spinel lattice. Saturation magnetization and coercivity decrease with increase of Dy{sup 3+}concentration in these nanoparticles. Room temperature Mössbauer measurements show the cation redistribution in these nanoparticles and corroborates the results obtained from Raman Spectroscopic measurements. Decrease in magnetization of Dy{sup 3+} substituted cobalt ferrite is attributed to the reduction in the magnetic interaction and cation redistribution. - Highlights: • Slight decrease in crystallite size after Dy{sup 3+} doping. • Saturation magnetization and coercivity decrease after Dy{sup 3+} doping. • Mössbauer measurements show the cation redistribution in the samples.

  20. Dysprosium Acetylacetonato Single-Molecule Magnet Encapsulated in Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ryo Nakanishi

    2016-12-01

    Full Text Available Dy single-molecule magnets (SMMs, which have several potential uses in a variety of applications, such as quantum computing, were encapsulated in multi-walled carbon nanotubes (MWCNTs by using a capillary method. Encapsulation was confirmed by using transmission electron microscopy (TEM. In alternating current magnetic measurements, the magnetic susceptibilities of the Dy acetylacetonato complexes showed clear frequency dependence even inside the MWCNTs, meaning that this hybrid can be used as magnetic materials in devices.

  1. Microscopic study of neutron-rich dysprosium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Carlos E. [Universidad Veracruzana, Facultad de Fisica e Inteligencia Artificial, Xalapa (Mexico); Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Apartado Postal 70-542, Mexico D.F. (Mexico); Velazquez, Victor [Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Apartado Postal 70-542, Mexico D.F. (Mexico); Lerma, Sergio [Universidad Veracruzana, Facultad de Fisica e Inteligencia Artificial, Xalapa (Mexico)

    2013-01-15

    Microscopic studies in heavy nuclei are very scarce due to large valence spaces involved. This computational problem can be avoided by means of the use of symmetry-based models. Ground-state, {gamma} and {beta} bands, and their B(E2) transition strengths in {sup 160-168}Dy isotopes, are studied in the framework of the pseudo-SU(3) model which includes the preserving symmetry Q . Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized. Additionally, three rotor-like terms are considered, whose free parameters, fixed for all members of the chain, are used to fine tune the moment of inertia of rotational bands and the band head of {gamma} and {beta} bands. The model succesfully describes in a systematic way rotational features in these nuclei and allows to extrapolate toward the midshell nucleus {sup 170}Dy. The results presented show that it is possible to study a full chain of isotopes or isotones in the region with the present model. (orig.)

  2. Photodissociation spectroscopy of the dysprosium monochloride molecular ion

    CERN Document Server

    Dunning, Alexander; Showalter, Steven J; Puri, Prateek; Kotochigova, Svetlana; Hudson, Eric R

    2015-01-01

    We have performed a combined experimental and theoretical study of the photodissociation cross section of the molecular ion DyCl$^+$. The cross section for the photon energy range 35,500 cm$^{-1}$ to 47,500 cm$^{-1}$ is measured using an integrated ion trap and time-of-flight mass spectrometer, and we observe a broad, asymmetric profile that is peaked near 43,000 cm$^{-1}$. The theoretical cross section is determined from electronic potentials and transition dipole moments calculated using the relativistic configuration-interaction valence-bond and coupled-cluster methods. The electronic structure of DyCl$^+$ is unprecedentedly complex due to the presence of multiple open electronic shells, including 4f$^{10}$ orbitals. The molecule has nine attractive potentials with ionically-bonded electrons and 99 repulsive potentials dissociating to a ground state Dy$^+$ ion and Cl atom. We explain the lack of symmetry in the cross section as due to multiple contributions from one-electron-dominated transitions between t...

  3. FTIR and Electrical Study of Dysprosium Doped Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hemaunt Kumar

    2014-01-01

    Full Text Available We have studied the role of Dy3+ doping on the XRD, TEM, FTIR, and dielectric and electrical properties of CoFe2O4 at room temperature. Cubic spinel phase of CoFe2−xDyxO4 (x = 0.00, 0.05, 0.10, and 0.15 was synthesized by using different sintering temperatures (300, 500, 700, and 900°C. The two absorption bands ν1 and ν2 are observed in Fourier transform infrared spectroscopy (FTIR spectra corresponding to the tetrahedral and octahedral sites, which show signature of spinel structure of the sample. For the sample sintered at 300°C, the dielectric constant is almost unchanged with the frequency at the particular concentrations of x = 0.00 and 0.05. Similar result is obtained for the sample sintered at 500°C (x = 0.10, 0.15, 700°C (x = 0.05, 0.10, and 0.15, and 900°C (x = 0.05, 0.10. An increase in the dielectric constant was observed for the undoped cobalt ferrite sintered at 500, 700, and 900°C. The values of electrical resistivity of the materials vary from ~105 to 109 Ω-cm.

  4. Adsorption of D113 Resin for Dysprosium(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The adsorption behavior and mechanism of D113 resin for Dy(Ⅲ) was investigated by using the method of resin adsorption. Experimental results show that the optimum medium pH of adsorption of D113 resin for Dy3+ is pH=6.00 in the HAc-NaAc medium. The static adsorption capacity of D113 resin for Dy3+chemical analysis and IR spectra.

  5. 1300-nm gain obtained with dysprosium-doped chloride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Page, R.H.; Schaffers, K.I.; Beach, R.J.; Payne, S.A.; Krupke, W.F.

    1996-03-01

    Dy{sup 3+} - doped chloride crystals have high 1300-nm emission quantum yields. Pump - probe experiments on La Cl{sub 3}:Dy{sup 3+} demonstrate optical gain consistent with predictions based on spectroscopic cross sections and lifetimes.

  6. Microscopic study of neutron-rich Dysprosium isotopes

    CERN Document Server

    Vargas, Carlos E; Lerma, Sergio; 10.1140/epja/i2013-13004-1

    2013-01-01

    Microscopic studies in heavy nuclei are very scarce due to large valence spaces involved. This computational problem can be avoided by means of the use of symmetry based models. Ground-state, gamma and beta-bands, and their B(E2) transition strengths in 160-168Dy isotopes, are studied in the framework of the pseudo-SU(3) model which includes the preserving symmetry Q.Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized. Additionally, three rotor-like terms are considered whose free parameters, fixed for all members of the chain are used to fine tune the moment of inertia of rotational bands and the band-head of gamma and beta-bands. The model succesfully describes in a systematic way rotational features in these nuclei and allows to extrapolate toward the midshell nucleus 170Dy. The results presented show that it is possible to study full chain of isotopes or isotones in the region with the present model.

  7. Visible luminescence of dysprosium ions in oxyhalide lead borate glasses

    Science.gov (United States)

    Pisarska, Joanna; Żur, Lidia; Pisarski, Wojciech A.

    2011-08-01

    Visible luminescence of Dy 3+ ions in oxyhalide lead borate glasses was examined. Luminescence spectra show two intense bands at 480 nm and 573 nm due to 4F 9/2 → 6H 15/2 (blue) and 4F 9/2 → 6H 13/2 (yellow) transitions of Dy 3+. Luminescence decays from 4F 9/2 state and yellow-to-blue luminescence intensity ratios (Y/B) were analysed with PbX 2 (X = F, Cl) content. An introduction of PbX 2 to the borate glass results in the increasing of 4F 9/2 lifetime and the decreasing of yellow-to-blue luminescence intensity ratio, which is due to reduction of covalency between Dy 3+ and O 2-/X - ions.

  8. MAGNETIC FIELD INDUCED FIRST-ORDER TRANSITIONS IN DYSPROSIUM ORTHOFERRITE

    OpenAIRE

    Eremenko, V.; Gnatchenko, S.; Kharchenko, N.; Lebedev, P.; Piotrowski, K; Szymczak, H.; Szymczak, R.

    1988-01-01

    New type of magnetic first-order phase transition induced by external magnetic field applied in the ab-plane in DyFeO3 is investigated using different magnetooptic techniques. The phenomenological model of this transition is proposed. The phase diagram in H-T plane has been obtained for various H orientation in the ab-plane.

  9. Luminescence of divalent europium activated spinels synthesized by combustion and the enhanced afterglow by dysprosium incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Haoyi, E-mail: manofchina@gmail.com; Jin, Yahong

    2016-05-01

    Herein we report a luminescent phenomenon of Eu{sup 2+} in the spinel MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} samples which are successfully synthesized via a combustion method. The XRD shows cubic spinel structure is obtained from the prepared samples. The mean crystal sizes estimated from XRD data are 30 and 10 nm for MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} respectively, and the large grain particles are the agglomeration of crystallites. The Eu{sup 2+} ions show a blue emission at around 480 nm and an afterglow phenomenon is observed after the removal of excitation. The afterglow spectrum of MgAl{sub 2}O{sub 4}: Eu{sup 2+}, Dy{sup 3+} shows two emissions at 480 and 520 nm while only one at 480 nm is observed in ZnAl{sub 2}O{sub 4}: Eu{sup 2+}, Dy{sup 3+}. The afterglow intensity and the persisting duration can be substantially enhanced by the Dy{sup 3+} incorporation because the trapping ability of the electron traps is reinforced. This is confirmed by the TL curves of the samples.

  10. Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass

    Science.gov (United States)

    Gomes, Laércio; Librantz, André Felipe Henriques; Jackson, Stuart D.

    2010-03-01

    The primary excited state decay processes relating to the H613/2→H615/2˜3 μm laser transition in singly Dy3+-doped fluoride (ZBLAN) glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the F69/2, H67/2 energy levels at 1125 nm and F611/2, H69/2 energy levels at 1358 nm established that the energy levels above the H611/2 level, excluding the F49/2 level, are entirely quenched by multiphonon emission in ZBLAN glass. The H611/2 and H613/2 energy levels emit luminescence with peaks at ˜1700 and ˜2880 nm, respectively, but at low quantum (luminescence) efficiencies. The quantum efficiency of the H611/2 level and H613/2 level is ˜9×10-5 and ˜1.3×10-2, respectively, for [Dy3+]=0.5 mol % based on calculations of the radiative lifetimes using the Judd-Ofelt theory. Excited state absorption (ESA) was detected by monitoring the rise time of the 1700 nm luminescence after tuning the probe wavelength across the spectral range from 1100 to 1400 nm. As a result of nonradiative decay of the higher excited states, ESA contributes to the heating of ˜3 μm fiber lasers based on Dy3+-doped fluoride glass. For [Dy3+] up to 4 mol %, we found no evidence of energy transfer processes between Dy3+ ions that influence the decay characteristics of the H611/2 and H613/2 energy levels.

  11. A naproxen complex of dysprosium intercalates into calf thymus DNA base pairs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mengsi; Jin, Jianhua; Xu, Guiqing [School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007 (China); Cui, Fengling, E-mail: fenglingcui@hotmail.com [School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007 (China); Luo, Hongxia [Department of Chemistry, Renmin University of China, Beijing 100872 (China)

    2014-01-15

    Highlights: • Binding mode to ctDNA was studied by various methods. • Intercalation is the most possible binding mode. • Dynamic and static quenching occurred simultaneously. • Hydrophobic force played a major role. • Binding characteristic of rare earth complexes to DNA are dependent on the element. - Abstract: The binding mode and mechanism of dysprosium–naproxen complex (Dy–NAP) with calf thymus deoxyribonucleic acid (ctDNA) were studied using UV–vis and fluorescence spectra in physiological buffer (pH 7.4). The results showed that more than one type of quenching process occurred and the binding mode between Dy–NAP with ctDNA might be intercalation. In addition, ionic strength, iodide quenching and fluorescence polarization experiments corroborated the intercalation binding mode between Dy–NAP and ctDNA. The calculated thermodynamic parameters ΔG, ΔH and ΔS at different temperature demonstrated that hydrophobic interaction force played a major role in the binding process.

  12. Connecting mononuclear dysprosium single-molecule magnets to form dinuclear complexes via in situ ligand oxidation.

    Science.gov (United States)

    Yutronkie, Nathan J; Kühne, Irina A; Korobkov, Ilia; Brusso, Jaclyn L; Murugesu, Muralee

    2016-01-14

    A Dy2 complex, exhibiting SMM behaviour, and its Y analogue were prepared via in situ oxidation of Py2TTA, a pincer type ligand, followed by dimerisation. This unique metal complexation and subsequent dimerization were followed by solution NMR studies.

  13. A Linear Tetranuclear Dysprosium(III) Compound Showing Single-Molecule Magnet Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Hongshan; Xu, Gong Feng; Guo, Yun-Nan; Gamez, Patrick; Beavers, Christine M; Teat, Simon J; Tang, Jinkui

    2010-04-20

    Although magnetic measurements reveal a single-relaxation time for a linear tetranuclear Dy(III) compound, the wide distribution of the relaxation time observed clearly suggests the presence of two slightly different anisotropic centres, therefore opening new avenues for investigating the relaxation dynamics of lanthanide aggregates.

  14. A Novel (4,6)-Connected Net Based on Dysprosium Benzenedicarboxylate, [Dy(OAc)(BDC)]n

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; LI Zhao-Ji; QIN Ye-Yan; CHENG Jian-Kai; YAO Yuan-Gen

    2008-01-01

    A new lanthanide coordination polymer, [Dy(OAc)(BDC)]n 1 (OAc= acetate, BDC = 1,4-benzenediacarboxylate), has been synthesized under hydrothermal conditions. Single-crystal X-ray diffraction analysis reveals that complex 1 has infinite zigzag Dy-OAc chains, which are further connected by BDC to form a 3D metal-organic framework. According to topology analysis, this framework can be characterized as (4,6)-connected (3.4.54)(32.4.56.66) net that has never been reported before. Crystal structure for 1: space group Pbca, a = 13.314(3), b = 8.0269(18), c = 20.275(5) A, V = 2166.8(9) A3, C10H7O6Dy, Mr= 385.66, Z = 8, Dc = 2.364 g/cm3, μ = 6.910 mm-1, F(000) = 1448, the final R = 0.0181 and wR = 0.0520.

  15. Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium

    Indian Academy of Sciences (India)

    K Madhukumar; H K Varma; Manoj Komath; T S Elias; V Padmanabhan; C M K Nair

    2007-10-01

    The suitability of calcium phosphate crystals for thermoluminescence dosimetry (TLD) applications is investigated, owing to their equivalence to bone mineral. The and phases of tricalcium phosphate (TCP) were synthesized through wet precipitation and high temperature solid state routes and doped with Dy and Eu. The photoluminescence and thermoluminescence studies of the phosphors have been carried out. The TL properties were found to be highly dependent on the method of preparation of the material. Eu doping gave good PL emission, whereas Dy doping was more efficient in TL emission. -TCP was found to be less TL sensitive than -TCP, yet it was identified as a better phosphor material owing to its better fading characteristics. The dependence of TL of -TCP : Dy on the energy and dose of radiation, and on the doping concentration were studied. The TL intensity was observed to fade exponentially during a storage period of 20 days, but it stabilized at 70% of the initial value after 30 days. The optimum doping concentration was found to be 0.5 mol%.

  16. Extraction liquide-solide de Dysprosium(III) par le charbon actif ferromagnétique

    OpenAIRE

    khiri, khaira

    2014-01-01

    L’extraction liquide-solide de Dy(III) a été faite par le charbon actif ferromagnétique, dans un milieu nitré. L’effet de pH initial, concentration initial en ion Dy(III), le temps de contact, la force ionique, la température, la masse et l’élution ont été étudiés. La capacité de sorption augmente avec l’augmentation de la concentration initiale en Dy(III), le pH et la température. L’isotherme de Freundlich décrit mieux le processus d’extraction, ainsi que le modèle cinétique de p...

  17. Geometric and electronic structure of dysprosium thin films on tungsten surfaces Structural and magnetic properties

    CERN Document Server

    Moslemzadeh, N

    2001-01-01

    The rare earth thin films are frequently the focus of investigators due to their unusual structural and magnetic properties. Despite the potential interest of Dy/W systems to the surface/rare earth community, they have been little studied. This study is the first try of growing Dy on W(100) and W(112) and W(110) in which almost a complete set of information about film morphology and electronic structure of the surface and interface have been achieved. A set of different experiments have been done for this purpose including LEED, XPS, UPS (with synchrotron radiation) and STM. The growth modes of Dy on different W substrates (W(100), W(112) and W(110)) at RT and at elevated temperatures have been determined by XPS of Dy 3d sub 3 sub / sub 2 and W 4f intensities. Crystallographic ordering and the epitaxial relationship between adsorbate Dy and different W substrates have been studied with LEED and the effect of annealing temperature on the resultant superstructures was investigated. As a complementary study to t...

  18. Cerium: an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets.

    Science.gov (United States)

    Pathak, Arjun K; Khan, Mahmud; Gschneidner, Karl A; McCallum, Ralph W; Zhou, Lin; Sun, Kewei; Dennis, Kevin W; Zhou, Chen; Pinkerton, Frederick E; Kramer, Matthew J; Pecharsky, Vitalij K

    2015-04-24

    Replacement of Dy and substitution of Nd in NdFeB-based permanent magnets by Ce, the most abundant and lowest cost rare earth element, is important because Dy and Nd are costly and critical rare earth elements. The Ce, Co co-doped alloys have excellent high-temperature magnetic properties with an intrinsic coercivity being the highest known for T ≥ 453 K.

  19. Studies on Preparation of Dysprosium - 165 Metallic Macroaggregates for the Treatment of Rheumatoid Arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Kim, Jae Rok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    1994-07-15

    Irradiation of 20 mg of natural Dy(NO{sub 3})3 in a neutron flux of 2 X10{sup 13} n/cm{sup 2} sec for 4 hours gave 5.76 Ci of {sup 165}Dy (specific activity, 610 mCi/mg Dy) with high radionuclidic purity (>99.9%). {sup 165}Dy-MA was prepared in a quantitative yield by reacting the aqueous solution of {sup 165}Dy(NO{sub 3})3 with sodium borohydride solution in 0.2N NaOH. Coulter particle analyzer exhibited mean particle size of 2.6 mum (range 1 approx 6 mum). Even though the {sup 165}Dy-MA suspension in saline was stored at 37 .deg. C for 24 hours of autoclaved at 121 .deg. C for 30 minutes, there was no significant change in particle size and leakage problem indicating the prepared {sup 165}Dy-MA is sufficiently stable. In-vivo retention studies were carried out by administering {sup 165}Dy-MA into the knee joint space of normal rabbits. Gamma camera analysis showed high retention in joint space of normal rabbits. Gamma camera analysis showed high retention in joining space even at 24 hours after administration (>99.9%) The ease with which the{sup 165}Dy-MA can be made in the narrow size range and their high in vitro and vivo stability make them attractive agents for radiation synovectomy.

  20. Dysprosium sorption by polymeric composite bead: robust parametric optimization using Taguchi method.

    Science.gov (United States)

    Yadav, Kartikey K; Dasgupta, Kinshuk; Singh, Dhruva K; Varshney, Lalit; Singh, Harvinderpal

    2015-03-06

    Polyethersulfone-based beads encapsulating di-2-ethylhexyl phosphoric acid have been synthesized and evaluated for the recovery of rare earth values from the aqueous media. Percentage recovery and the sorption behavior of Dy(III) have been investigated under wide range of experimental parameters using these beads. Taguchi method utilizing L-18 orthogonal array has been adopted to identify the most influential process parameters responsible for higher degree of recovery with enhanced sorption of Dy(III) from chloride medium. Analysis of variance indicated that the feed concentration of Dy(III) is the most influential factor for equilibrium sorption capacity, whereas aqueous phase acidity influences the percentage recovery most. The presence of polyvinyl alcohol and multiwalled carbon nanotube modified the internal structure of the composite beads and resulted in uniform distribution of organic extractant inside polymeric matrix. The experiment performed under optimum process conditions as predicted by Taguchi method resulted in enhanced Dy(III) recovery and sorption capacity by polymeric beads with minimum standard deviation.

  1. Dysprosium(III)-diethylenetriaminepentaacetate complexes of aminocyclodextrins as chiral NMR shift reagents.

    Science.gov (United States)

    Wenzel, T J; Miles, R D; Zomlefer, K; Frederique, D E; Roan, M A; Troughton, J S; Pond, B V; Colby, A L

    2000-01-01

    A metal chelating ligand is bonded to alpha-, beta-, and gamma-cyclodextrin by the reaction of diethylenetraminepentaacetic dianhydride with the corresponding 6-mono- and 2-mono(amine)cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives causes shifts in the (1)H-NMR spectra of substrates such as propranolol, tryptophan, aspartame, carbinoxamine, pheniramine, doxylamine, and 1-anilino-8-naphthalenesulfonate. The Dy(III)-induced shifts enhance the enantiomeric resolution in the NMR spectra of several substrates. Enhancements in enantiomeric resolution using cyclodextrin derivatives with the amine tether are compared to previously described compounds in which the chelating ligand is attached through an ethylenediamine tether. In general, the Dy(III) complex of the 6-beta-derivative with the amine tether is a more effective chiral resolving agent than the complex with the ethylenediamine tether. The opposite trend is observed with the 2-beta-derivatives. The presence of the chelating ligand in the 2-beta-derivative hinders certain substrates from entering the cavity. For cationic substrates, evidence suggests that a cooperative association involving inclusion in the cavity and association with the Dy(III) unit occurs. Enhancements in enantiomeric resolution in the spectrum of tryptophan are greater for the secondary alpha- and gamma-derivatives than the beta-derivative.

  2. The Separation of Dysprosium and Holmium for Production of n.c.a. Ho-166

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K. H.; Kim, J. B.; Park, U. J.; Nam, S. S.; Jang, K. D.; Yoo, K. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The uses of radiolanthanide series are increasing in these days because of target therapy which does not require surgery. Certain radiolanthanides is very useful since they have the ability of simultaneous diagnosis and therapeutic effect in nuclear medicine. But this conventional therapeutic method has often limited by specific activity which is important things to affect labeling yield such as radiommunoconjugation and peptide labeling. There are two approaches to produce radiolanthanide in nuclear reactor. One is direct method using (n, γ) reaction and the other is indirect method using (n, γ)β reaction. Among the radiolanthanides, Ho-166 can be produced with two methods. Some radiolanthanides show the good theranostic effect in that they have proper LET (Linear Energy Transfer) to induce apoptosis for cancer treatment and gamma ray to use as a tracer for cancer diagnosis. The aim of this project based on this view is to get the carrier free radioisotopes for applying the nuclear medicine.

  3. Thermal expansion in dysprosium tungstate Dy10W2O21

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The complex oxide Dy10W2O21 was synthesized by a solid-state reaction and isolated in cubic symmetry by an X-ray diffractometry (XRD) method. Differential scanning calorimetry (DSC) measurements show that the compound is thermodynamically stable. The intrinsic thermal expansion coefficients were determined by extra-power powder Xray diffractometry from room temperature to 1000 ℃: linear coefficient α = 1.07 × 10-5 ℃-1 and bulk coefficient β=3.20 × 10-5℃-1. Dilatometry was used to measure the extrinsic thermal expansion coefficient (9.2 × 10-6℃-1).

  4. Magnetic Properties of Some Gadolinium, Erbium, Dysprosium, Manganese Substituted Samarium-2 Cobalt-17 Intermetallic Compounds.

    Science.gov (United States)

    1979-08-01

    S K AREA B WORK UNIT NUMBERSElect ronic Materials Research Division 61102AUS Army Electronics Technology & Devices Laborator) 1-rrr~ -rrd2An47 02 031...permanent magnet materials having intrinsically temperature compensated magneti- zations. The properties investigated were saturation magnetization...that excellent temperature compensation could be achieved in these compounds in the teinper~ture (cont’d) ~‘ DD I ? ) 1Q3 L°’TI°M °’ INOV BI

  5. Recycling of waste Nd-Fe-B sintered magnets by doping with dysprosium hydride nanoparticles

    Institute of Scientific and Technical Information of China (English)

    刘卫强; 李超; ZAKOTNIK Miha; 岳明; 张东涛; 黄秀莲

    2015-01-01

    Recycling of waste sintered Nd-Fe-B permanent magnets by doping DyH3 nanoparticles was investigated. The effect of the DyH3 nanoparticles on the microstructure and magnetic properties of the recycled magnets was studied. As the DyH3 nanoparticles additive increased, the coercivity of recycled magnet increased gradually. The recycled magnets with DyH3 nanoparticle content be-tween 0.0 wt.% and 1.0 wt.% maintained the remanence (Br), but, with higher additions, theBr began to decrease rapidly. The best recycled magnet produced contained 1.0 wt.% of DyH3 nanoparticles when compared to the properties of the starting waste sintering magnet. TheHcj,Br and (BH)max values of 101.7%, 95.4%, and 88.58%, respectively, were recovered.

  6. Photo and cathodoluminescence characteristics of dysprosium doped yttrium oxide nanoparticles prepared by Polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Balderas-Xicohténcatl, R., E-mail: rbalderas@fis.cinvestav.mx [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07360, México, D.F. (Mexico); Martínez-Martínez, R. [Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Carretera a Acatlima Km. 2.5, Huajuapan de León, Oaxaca 69000 (Mexico); Rivera-Alvarez, Z.; Santoyo-Salazar, J.; Falcony, C. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07360, México, D.F. (Mexico)

    2014-02-15

    The luminescent characteristics of Dy{sup 3+}-doped Y{sub 2}O{sub 3} nanopowders synthesized using the polyol method are reported. The Y{sub 2}O{sub 3} nanoparticles presented a cubic phase crystalline structure of Y{sub 2}O{sub 3} after an annealing treatment in oxygen ambient at temperatures above 600 °C. The averaged crystallite size determined from the X-ray diffraction peaks width was in the 20–32 nm range depending on the annealing temperature. Scanning and transmission electron microscopy studies indicate the formation of nanoparticle aggregates up to 175 nm in diameter. Photoluminescence and cathodoluminescence measurements show a predominant emission at 573 nm, which is attributed to the {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} of the Dy{sup 3+} ion. The luminescence emission dependence with the dopant concentration and post-annealing temperatures is discussed. -- Highlights: • Nanoparticles of Y{sub 2}O{sub 3}:Dy{sup 3+} have been successfully synthesized by the polyol method. • XRD shows a grain size from 20 to 32 nm which is in agreement with SEM and TEM. • Electronic micrographs indicate the formation agglomerates of ∼175 nm. • The method used in the synthesis is industrial scalable and a low cost. • CL emission is observed at naked eye.

  7. Characterization of high-temperature oxide films on dysprosium-doped Fe-20Cr alloys by electrochemical techniques

    Institute of Scientific and Technical Information of China (English)

    GUO Pingyi; ZENG Chaoliu; SHAO Yong; QIN Zeshang

    2012-01-01

    The oxidation propegies of Fe-20Cr,Fe-20Cr-0.2Dy and Fe-20Cr-1Dy alloys were studied using gravimetric and electrochemical techniques.The high-temperature oxide films of Dy-doped Fe-20Cr alloys were prepared in air at 900 ℃ for 24,48 and 100 h,respectively.The electrochemical experiment was performed by a three-electrode electrochemical cell and in 0.1 mol/L Na2SO4 aqueous solution.Proper models were built for describing electrochemical impedance spectroscopy of the different oxide layers and the spectra were interpreted in terms of a two-layer model of the films.The results revealed that the oxide films of Dy-doped Fe-20Cr alloys became compacter than that of undoped alloys and retained their good protective ability for a relatively long time.With increasing content of Dy,the protection of the oxide films slightly decreased.Mott-Schottky curves indicated that all the oxides were n-type semi-conductors,and the Nd value of oxide film on Fe-20Cr was much larger than that of Dy-doped Fe-20Cr alloys.The results of kinetic curves and SEM were in agreement with electrochemical impedance spectroscopy and Mott-Schottky data.

  8. Reexamination of Nuclear Shape Transitions in Gadolinium and Dysprosium Isotopes Chains by Using the Geometric Collective Model

    Directory of Open Access Journals (Sweden)

    Khalaf A. M.

    2014-01-01

    Full Text Available The critical points of potential energy surface (PES’s of the limits of nuclear struc- ture harmonic oscillator, axially symmetric rotor and deformed -soft and discussed in framework of the general geometric collective model (GCM. Also the shape phase transitions linking the three dynamical symmetries are studied taking into account only three parameters in the PES’s. The model is tested for the case of 238 92 U , which shows a more prolate behavior. The optimized model parameters have been adjusted by fit- ting procedure using a simulated search program in order to reproduce the experimental excitation energies in the ground state band up to 6 + and the two neutron separation energies.

  9. Critical Rare Earths, National Security, and U.S.-China Interactions: A Portfolio Approach to Dysprosium Policy Design

    Science.gov (United States)

    2015-01-01

    yttrium are often used for pigmentation for consumer products such as paint and sunglasses. REE-based lasers are used for cosmetic, epidermal, and... bacterial cell walls (Takahashi 2005). In acidic solutions, from an initial concentration of 100 micrograms of an REE mixture per liter, the bacteria...Logistics Agency Justification Book , Research, Development, Test, and Evaluation, Defense-Wide,” U.S. Department of Defense, Washington, DC: 2013

  10. Influence of dysprosium addition on the structural, morphological, electrical and magnetic properties of nano-crystalline W-type hexaferrites

    Indian Academy of Sciences (India)

    Ali-Sharbati; Javad-Mola Verdi Khani; G R Amiri; R Mousarezaei

    2015-02-01

    Dysporium (Dy)-substituted W-type barium hexaferrites were prepared by the citrate sol–gel-method. Crystalline structure, morphology, magnetic properties, DC resistivity and microwave absorption properties of BaNi2DyFe16−O27 ( = 0-0.9) were studied using X-ray diffraction, transmission electron microscope (TEM), vibrating sample magnetometer and vector network analyzer and sensitive source meter, respectively. Single-phase W-type barium hexaferrites, with a chemical composition of BaNi2DyFe16−O27 ( = 0-0.9), were formed by being heated at 1250°C for 4 h in air. The magnetic properties such as saturation magnetization (s), and coercivity (c) were calculated from hysteresis loops. Hysteresis loop measurements show that the coercivity values lie in the range of 530–560 Oe with increasing Dy content. It was also observed that magnetization decreases with the increase of Dy content. The DC resistivity was observed to increase from 0.83 × 107 to 6.92 × 107 cm with increasing Dy contents due to the unavailability of Fe3+ ions. Microwave absorption properties of hexaferrite (70 wt%)–acrylic resin (30 wt%) composites were measured by the standing-wave-ratio (SWR) method in the range from 12 to 20 GHz. For sample with = 0.6, a minimum reflection loss of −40 dB was obtained at 16.2 GHz for a layer of 1.7 mm in thickness. Sample with = 0.9 had wide bandwidth absorption in the frequency range of 13.5–18 GHz with reflection losses less than −15 dB. Meanwhile the minimum reflection point shifts toward higher frequency with the increase of Dy content.

  11. L-Shell Ionization Cross Section Measurements of Dysprosium and Samarium by Low-Energy Electron Impact

    Institute of Scientific and Technical Information of China (English)

    GOU Cheng-Jun; WU Zhang-Wen; YANG Dai-Lun; HE Fu-Qing; PENG Xiu-Feng; AN Zhu; LUO Zheng-Ming

    2005-01-01

    @@ The Lα, Lβ and Lγ x-ray production cross sections of Dy and Sm by electron impact are measured at energies from near threshold to tens of keV. In the experiments, thin targets with thick substrates are used. Meanwhile,the electron transport bipartition model is used to eliminate the influence of electrons reflected from the thick substrates on measurements. The measured x-ray production cross sections are also compared with the theoretical predictions by Gryzinski and McGuire.

  12. Generation of White Light from Dysprosium-Doped Strontium Aluminate Phosphor by a Solid-State Reaction Method

    Science.gov (United States)

    Sahu, Ishwar Prasad; Bisen, D. P.; Brahme, N.; Tamrakar, Raunak Kumar

    2016-04-01

    A single-host lattice, white light-emitting SrAl2O4:Dy3+ phosphor was synthesized by a solid-state reaction method. The crystal structure of prepared SrAl2O4:Dy3+ phosphor was in a monoclinic phase with space group P21. The chemical composition of the sintered SrAl2O4:Dy3+ phosphor was confirmed by the energy dispersive x-ray spectroscopy technique. Under ultra-violet excitation, the characteristic emissions of Dy3+ are peaking at 475 nm, 573 nm and 660 nm, originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 →&!nbsp; 6H13/2 and 4F9/2 → 6H11/2 in the 4f9 configuration of Dy3+ ions. Commission International de I'Eclairage color coordinates of SrAl2O4:Dy3+ are suitable for white light-emitting phosphor. In order to investigate the suitability of the samples as white color light sources for industrial uses, correlated color temperature (CCT) and color rendering index (CRI) values were calculated. Values of CCT and CRI were found well within the defined acceptable range. Mechanoluminescence (ML) intensity of SrAl2O4:Dy3+ phosphor increased linearly with increasing impact velocity of the moving piston. Thus, the present investigation indicates piezo-electricity was responsible for producing ML in sintered SrAl2O4:Dy3+ phosphor. Decay rates of the exponential decaying period of the ML curves do not change significantly with impact velocity. The photoluminescence and ML results suggest that the synthesized SrAl2O4:Dy3+ phosphor was useful for the white light-emitting diodes and stress sensor respectively.

  13. Significant enhancement of energy barriers in dinuclear dysprosium single-molecule magnets through electron-withdrawing effects.

    Science.gov (United States)

    Habib, Fatemah; Brunet, Gabriel; Vieru, Veacheslav; Korobkov, Ilia; Chibotaru, Liviu F; Murugesu, Muralee

    2013-09-11

    The effect of electron-withdrawing ligands on the energy barriers of Single-Molecule Magnets (SMMs) is investigated. By introducing highly electron-withdrawing atoms on targeted ligands, the energy barrier was significantly enhanced. The structural and magnetic properties of five novel SMMs based on a dinuclear {Dy2} phenoxo-bridged motif are explored and compared with a previously studied {Dy2} SMM (1). All complexes share the formula [Dy2(valdien)2(L)2]·solvent, where H2valdien = N1,N3-bis(3-methoxysalicylidene) diethylenetriamine, the terminal ligand L = NO3(-) (1), CH3COO(-) (2), ClCH2COO(-) (3), Cl2CHCOO(-) (4), CH3COCHCOCH3(-) (5), CF3COCHCOCF3(-) (6), and solvent = 0.5 MeOH (4), 2 CH2Cl2 (5). Systematic increase of the barrier was observed for all complexes with the most drastic increase seen in 6 when the acac ligand of 5 was fluorinated resulting in a 7-fold enhancement of the anisotropic barrier. Ab initio calculations reveal more axial g tensors as well as higher energy first excited Kramers doublets in 4 and 6 leading to higher energy barriers for those complexes.

  14. Slow Magnetic Relaxation Observed in Dysprosium Compounds Containing Unsupported Near-Linear Hydroxo- and Fluoro-Bridges.

    Science.gov (United States)

    Brunet, Gabriel; Habib, Fatemah; Korobkov, Ilia; Murugesu, Muralee

    2015-07-06

    The encapsulating N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) ligand was employed to isolate two novel Dy(III) compounds which contain rare bridging pathways for lanthanide systems. Compound 1, [Na2Dy(III)2(valdien)2(μ-OH)(dbm)2(H2O)2][Na2Dy(III)2(valdien)2(μ-OH)(NO3)2(dbm)2], where dbm(-) is dibenzoylmethanido, and compound 2, [Na3Dy(III)2(valdien)2(μ-F)(μ3-F)2(Cl)2(MeOH)2]n·0.5(MeOH)·(H2O), both exhibit linear lone hydroxo- and fluoro-bridges, respectively, between the metal centers. The unit cell of 1 comprises two discrete dinuclear molecules, which differ slightly, forming a cation-anion pair, while 2 forms a coordination polymer. The magnetic investigations indicate that both compounds display ferromagnetic coupling between the Dy(III) ions. Magnetic susceptibility measurements in the temperature range 1.8-300 K reveal that the Dy(III) ions in 1 are weakly coupled, resulting in a mononuclear single-molecule magnet-like behavior under an applied field. In the case of 2, the stronger coupling arising from the fluoride-bridge, leads to zero-field single-molecule magnet (SMM) behavior with a non-negligible anisotropy barrier (Ueff) of 42 K.

  15. Effect of Ligand Field Tuning on the SMM Behavior for Three Related Alkoxide-Bridged Dysprosium Dimers.

    Science.gov (United States)

    Peng, Yan; Mereacre, Valeriu; Baniodeh, Amer; Lan, Yanhua; Schlageter, Martin; Kostakis, George E; Powell, Annie K

    2016-01-04

    The synthesis and characterization of three Dy2 compounds, [Dy2(HL1)2(NO3)4] (1), [Dy2(L2)2(NO3)4] (2), and [Dy2(HL3)2(NO3)4] (3), formed using related tripodal ligands with a central tertiary amine bearing picolyl and alkoxy arms, 2-[(2-hydroxy-ethyl)-pyridin-2-ylmethylamino]-ethanol (H2L1), 2-(bis-pyridin-2-ylmethylamino)-ethanol (HL2), and 2-(bis-pyridin-2-ylmethylamino)-propane-1,3-diol (H2L3), are reported. The compounds are rare examples of alkoxide-bridged {Dy2} complexes and display capped square antiprism coordination geometry around each Dy(III) ion. Changes in the ligand field environment around the Dy(III) ions brought about through variations in the ligand donors can be gauged from the magnetic properties, with compounds 1 and 2 showing antiparallel coupling between the Dy(III) ions and 3 showing parallel coupling. Furthermore, slow relaxation of the magnetization typical of SMM behavior could be observed for compounds 2 and 3, suggesting that small variations in the ligand field can have a significant influence on the slow relaxation processes responsible for SMM behavior of Dy(III)-based systems.

  16. Effects of magnetic annealing on structure and multiferroic properties of pure and dysprosium substituted BiFeO 3

    KAUST Repository

    Zhang, Shuxia

    2012-07-01

    In this work, the effects of magnetic annealing on crystal structure and multiferroic properties of BiFeO 3 and Bi 0.85Dy 0.15FeO 3 have been investigated. It is found that the X-ray diffraction patterns of pure BiFeO 3 samples are obviously broadened after magnetic annealing, whereas those of Bi 0.85Dy 0.15FeO 3 samples are almost unchanged. Magnetic field annealing did not affect the magnetic properties of these two kinds of samples much. However, ferroelectric properties of the two materials exhibited different behaviors after magnetic field annealing. For pure BiFeO 3 samples, the remnant polarizations (P r) are suppressed; in contrast, for Bi 0.85Dy 0.15FeO 3 samples, P r is greatly enhanced. Possible mechanisms for the effects of magnetic field annealing have been discussed. © 2012 Elsevier B.V. All rights reserved.

  17. Dielectric relaxation in double potassium yttrium orthophosphate K 3Y(PO 4) 2 doped by praseodymium and dysprosium ions

    Science.gov (United States)

    Szulia, S.; Kosmowska, M.; Kołodziej, H. A.; Mizer, D.; Czupińska, G.

    2011-12-01

    We report the paper presents the results of electric properties of double potassium yttrium orthophosphates doped by lanthanide ions K 3Y( 1-x)Ln x(PO 4) 2 ( x = 0.01, 0.05, Ln = Pr 3+, Dy 3+). Electric permittivity and dielectric loss measurements have been performed on polycrystalline samples in the temperature range -50-120 °C and frequency range 1 kHz-1 MHz by means of HP 4282A impedance meter. The frequency and temperature dependence of electric properties were analyzed by theoretical models of dielectric relaxation in order to obtain information abut molecular dynamic of our solids in external electric field.

  18. Dilution-induced slow magnetic relaxation and anomalous hysteresis in trigonal prismatic dysprosium(III) and uranium(III) complexes.

    Science.gov (United States)

    Meihaus, Katie R; Rinehart, Jeffrey D; Long, Jeffrey R

    2011-09-05

    Magnetically dilute samples of complexes Dy(H(2)BPz(Me2)(2))(3) (1) and U(H(2)BPz(2))(3) (3) were prepared through cocrystallization with diamagnetic Y(H(2)BPz(Me2)(2))(3) (2) and Y(H(2)BPz(2))(3). Alternating current (ac) susceptibility measurements performed on these samples reveal magnetic relaxation behavior drastically different from their concentrated counterparts. For concentrated 1, slow magnetic relaxation is not observed under zero or applied dc fields of several hundred Oersteds. However, a 1:65 (Dy:Y) molar dilution results in a nonzero out-of-phase component to the magnetic susceptibility under zero applied dc field, characteristic of a single-molecule magnet. The highest dilution of 3 (1:90, U:Y) yields a relaxation barrier U(eff) = 16 cm(-1), double that of the concentrated sample. These combined results highlight the impact of intermolecular interactions in mononuclear single-molecule magnets possessing a highly anisotropic metal center. Finally, dilution elucidates the previously observed secondary relaxation process for concentrated 3. This process is slowed down drastically upon a 1:1 molar dilution, leading to butterfly magnetic hysteresis at temperatures as high as 3 K. The disappearance of this process for higher dilutions reveals it to be relaxation dictated by short-range intermolecular interactions, and it stands as the first direct example of an intermolecular relaxation process competing with single-molecule-based slow magnetic relaxation.

  19. Challenging lanthanide relaxation theory: erbium and thulium complexes that show NMR relaxation rates faster than dysprosium and terbium analogues.

    Science.gov (United States)

    Funk, Alexander M; Harvey, Peter; Finney, Katie-Louise N A; Fox, Mark A; Kenwright, Alan M; Rogers, Nicola J; Senanayake, P Kanthi; Parker, David

    2015-07-07

    Measurements of the proton NMR paramagnetic relaxation rates for several series of isostructural lanthanide(III) complexes have been performed in aqueous solution over the field range 1.0 to 16.5 Tesla. The field dependence has been modeled using Bloch-Redfield-Wangsness theory, allowing values for the electronic relaxation time, Tle and the magnetic susceptibility, μeff, to be estimated. Anomalous relaxation rate profiles were obtained, notably for erbium and thulium complexes of low symmetry 8-coordinate aza-phosphinate complexes. Such behaviour challenges accepted theory and can be interpreted in terms of changes in Tle values that are a function of the transient ligand field induced by solvent collision and vary considerably between Ln(3+) ions, along with magnetic susceptibilities that deviate significantly from free-ion values.

  20. Distance determination from dysprosium induced relaxation enhancement: a case study on membrane-inserted WALP23 polypeptides

    NARCIS (Netherlands)

    Lueders, P.; Razzaghi, S.; Jäger, H.; Tschaggelar, R.; Hemminga, M.A.; Yulikov, M.; Jeschke, G.

    2013-01-01

    Membrane incorporated synthetic a-helical polypeptides labelled with Dy(III) chelate complexes and nitroxide radicals were studied by the inversion recovery (IR) technique and Dy(III)-nitroxide distances were obtained. A comparison of obtained distances with the previously reported Gd(III)-nitroxide

  1. Influence of dysprosium substitution on magnetic and mechanical properties of high intrinsic coercivity Nd-Fe-B magnets prepared by double-alloy powder mixed method

    Institute of Scientific and Technical Information of China (English)

    胡志华; 瞿海锦; 马冬威; 罗成; 王会杰

    2016-01-01

    The double-alloy powder mixed method is very proper for developing new small-mass products by changing the composi-tion of sintered Nd-Fe-B magnets, and there is little research on this aspect. The variation on magnetic and mechanical properties of high intrinsic coercivity Nd-Fe-B magnets prepared by double-alloy powder mixed method was discussed, which is a method blend-ing two-type main phase alloy powders with different components. The results showed that the intrinsic coercivity and density of sin-tered Nd-Fe-B magnets increased gradually with the increase in Dy content, and the double-alloy powder mixed method could obtain high intrinsic coercivity Nd-Fe-B magnets with good crystallographic alignment and microstructure. The bending strength of sintered Nd-Fe-B magnets declined, and the Rockwell hardness of sintered Nd-Fe-B magnets first declined, and then increased with the in-crease in Dy content. The microstructure showed that there existed the phenomenon that the Dy element diffused into main phase dur-ing sintering process, and the distribution of Dy content in main phase had some variation in homogeneity as a result of incomplete reaction between the double-alloy powder types.

  2. Effect of dysprosium substitution on electrical properties of SrBi{sub 4}Ti{sub 4}O{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Mamatha, B., E-mail: boinanemamatha@gmail.com; Sarah, P.

    2014-10-15

    SrBi{sub 4−x}Dy{sub x}Ti{sub 4}O{sub 15} (with x = 0.02, 0.04, 0.06 and 0.08) powders have been synthesized using the stoichiometric amounts of nitrates and oxides of the constituent materials through sol–gel method. The compound so formed is characterized using X-ray diffraction. The density and lattice parameters are calculated. The impedance and electrical conductivity properties are investigated. The imaginary part of impedance as a function of frequency shows Debye like relaxation. Impedance data presented in the Nyquist plot which is used to identify an equivalent circuit and the fundamental circuit parameters are determined at different temperatures. The results of bulk a.c. conductivity as a function of frequency at different temperatures are presented. The dielectric behavior was investigated. Permittivity was calculated based on the relaxation frequency using an alternative approach based on the variation of the imaginary impedance component as a function of reciprocal angular frequency. The frequency dependence of real and imaginary permittivities was also investigated. - Highlights: • SrBi{sub 4−x}Dy{sub x}Ti{sub 4}O{sub 15} (x = 0.02, 0.04, 0.06 and 0.08) powders are produced by sol–gel method. Phase formation is confirmed by XRD analysis. • Frequency dependent imaginary part of impedance shows distribution of relaxation in system. • Broadness of Z″ peak shows distribution of relaxation frequency. • Increase in peak width at ½ maxima of Z″ with increase of temperature shows increase of relaxation frequency distribution. • Cole–Cole plots are resolved into two different circles, ascribed to different mechanisms of polarization and relaxation phenomena.

  3. Hexanuclear, heterometallic, Ni₃Ln₃ complexes possessing O-capped homo- and heterometallic structural subunits: SMM behavior of the dysprosium analogue.

    Science.gov (United States)

    Goura, Joydeb; Guillaume, Rogez; Rivière, Eric; Chandrasekhar, Vadapalli

    2014-08-04

    The reaction of hetero donor chelating mannich base ligand 6,6'-{(2-(dimethylamino)ethylazanediyl)bis(methylene)}bis(2-methoxy-4-methylphenol) with Ni(ClO4)2·6H2O and lanthanide(III) salts [Dy(III) (1); Tb(III) (2); Gd (III) (3); Ho(III) (4); and Er(III) (5)] in the presence of triethylamine and pivalic acid afforded a series of heterometallic hexanuclear Ni(II)-Ln(III) coordination compounds, [Ni3Ln3(μ3-O)(μ3-OH)3(L)3(μ-OOCCMe3)3]·(ClO4)·wCH3CN·xCH2Cl2·yCH3OH·zH2O [for 1, w = 8, x = 3, y = 0, z = 5.5; for 2, w = 0, x = 5, y = 0, z = 6.5; for 3, w = 15, x = 18, y = 3, z = 7.5; for 4, w = 15, x = 20, y = 6, z = 9.5; and for 5, w = 0, x = 3, y = 2, z = 3]. The molecular structure of these complexes reveals the presence of a monocationic hexanuclear derivative containing one perchlorate counteranion. The asymmetric unit of each of the hexanuclear derivatives comprises the dinuclear motif [NiLn(L)(μ3-O)(μ3-OH)(μ-Piv)]. The cation contains three interlinked O-capped clusters: one Ln(III)3O and three Ni(II)Ln(III)2O. Each of the lanthanide centers is eight- coordinated (distorted trigonal-dodecahedron), while the nickel centers are hexacoordinate (distorted octahedral). The study of the magnetic properties of all compounds are reported and suggests single molecule magnet behavior for the Dy(III) derivative (1).

  4. Two-dimensional dysprosium(III triiodate(V dihydrate, Dy(IO33(H2O·H2O

    Directory of Open Access Journals (Sweden)

    Laishun Qin

    2009-08-01

    Full Text Available During our research into novel nonlinear optical materials using 1,10-phenanthroline as an appending ligand on lanthanide iodates, crystals of an infinite layered DyIII iodate compound, Dy(IO33(H2O·H2O, were obtained under hydrothermal conditions. The DyIII cation has a dicapped trigonal prismatic coordination environment consisting of one water O atom and seven other O atoms from seven iodate anions. These iodate anions bridge the DyIII cations into a two-dimensional structure. Through O—H...O hydrogen bonds, all of these layers stack along [111], giving a supramolecular channel, with the solvent water molecules filling the voids.

  5. Two-dimensional dysprosium(III) triiodate(V) dihydrate, Dy(IO3)3(H2O)·H2O

    Science.gov (United States)

    Chai, Wenxiang; Song, Li; Shi, Hongsheng; Qin, Laishun; Shu, Kangying

    2009-01-01

    During our research into novel nonlinear optical materials using 1,10-phenanthroline as an appending ligand on lanthanide iodates, crystals of an infinite layered DyIII iodate compound, Dy(IO3)3(H2O)·H2O, were obtained under hydro­thermal conditions. The DyIII cation has a dicapped trigonal prismatic coordination environment consisting of one water O atom and seven other O atoms from seven iodate anions. These iodate anions bridge the DyIII cations into a two-dimensional structure. Through O—H⋯O hydrogen bonds, all of these layers stack along [111], giving a supra­molecular channel, with the solvent water mol­ecules filling the voids. PMID:21583297

  6. 吡罗昔康镝配合物的合成与表征%Synthesis and characterization of the complex of piroxicam and dysprosium

    Institute of Scientific and Technical Information of China (English)

    张艳军; 石俊; 孙体健; 徐隋意; 曹晓峰

    2009-01-01

    利用热乙醇搅拌法合成吡罗昔康和稀土金属镝的配合物,通过紫外光谱、红外光谱、元素分析、电导率、差热-热重等方法对其进行表征,最后确定其组成为Dy(pir)2C2H5OHCl3·2H2O.

  7. Multicolor photoluminescence and energy transfer properties of dysprosium and europium-doped Gd{sub 2}O{sub 3} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanxia; Liu, Guixia, E-mail: liuguixia22@163.com; Wang, Jinxian; Dong, Xiangting; Yu, Wensheng

    2015-11-15

    In this study, a series of Gd{sub 2}O{sub 3}: Ln{sup 3+} (Ln = Dy, Eu) submicrospheres were successfully prepared by a hydrothermal method and a subsequent higher temperature pyrolysis. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectrometer (EDS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM) were utilized to characterize the as-prepared samples. The precursor sample thoroughly decomposed into Gd{sub 2}O{sub 3} submicrospheres with a diameter of about 550 nm after calcination. Under UV excitation, the samples exhibit multicolor emissions including yellow-green, yellow, red as well as white, moreover, the Dy{sup 3+} ions acted as donors can transfer the energy to Eu{sup 3+} served as acceptors in Gd{sub 2}O{sub 3}: Dy{sup 3+}, Eu{sup 3+} system. The interaction between Dy{sup 3+} ions and Eu{sup 3+} ions is verified to be phonon-assisted electric quadrupole–quadrupole interaction. Multicolor luminescence including white light emission can be obtained through varying the content of Eu{sup 3+} or adopting different excitation wavelengths in Dy{sup 3+} and Eu{sup 3+} co-doped Gd{sub 2}O{sub 3} system. The energy transfer efficiency reaches 88.2% when the doped concentration of Eu{sup 3+} is 0.035. The CIE chromaticity diagram directly reveals the variability of the hue of the as-prepared samples. Besides, the as-prepared samples exhibit paramagnetic properties at room temperature. This type of color-tunable luminescence phosphors has promising applications in the fields of photoelectronic devices and biomedical science. - Graphical abstract: Tunable multicolor emissions and energy transfer properties of lanthanides (Ln{sup 3+}, Ln{sup 3+} = Dy{sup 3+}, Eu{sup 3+}) doped cubic Gd{sub 2}O{sub 3} submicrospheres prepared by hydrothermal method and a subsequent calcination. - Highlights: • The as-prepared samples can exhibit multicolor emissions. • Dy{sup 3+} transfer energy to Eu{sup 3+} in Dy{sup 3+} and Eu{sup 3+} co-doped Gd{sub 2}O{sub 3}. • The as-prepared phosphor has promising applications in the fields of photoelectronic devices and biomedical science.

  8. Emission from Divalent Dysprosium (Dy2+ )in Crystalline Strontium Tetraborate%晶态四硼酸锶中二价镝的发射

    Institute of Scientific and Technical Information of China (English)

    许武; Peterson; J; R

    2001-01-01

    Emission spectra from SrB4O7 doped with Dy2O3 and heated in air have been recorded at room temperature. A change in oxidation state from Dy3+ to Dy2+ was observed. Optimum production of Dy2+ ion occurs when the sample is heated in air at about 650℃. Two broad emission bands centered in the vicinity of 550 and 660nm have been observed from the sample under the excitation of 457.9nm. It is suggested that these bands are due to Dy2 + ion emission from the 5d band into the ground state 4f level (5I8). Several conditions promoting the reduction of Dy3+ion in this matrix are discussed. To aid the reduction of Dy3+ ion, we have also prepared SrB4O7 doped with Dy2O3 in Ar/H2 (4 % ) atmosphere and compared the optical characteristics of Dy2 + ion in these samples with those from the samples prepared in air. The range of g-element reducibility and stabilization in SrB4O7 has been extended from Tm2+[ E0 (Tm3+/Tm2+) = -2.3V] to Dy2+ [E0(Dy3+/Dy2 +) = -2.6V] in the present work; however, the limit of this facile reduction process has not been determined yet.%在室温下测量了在空气中灼烧掺杂Dy2O3的SrB4O7的发射光谱.观测到了由Dy3+到Dy2+氧化态的变化.经优化,当在空气中灼烧温度为650℃时为产生Dy2+的最佳温度.在457.9nm的激发下测出了两个峰位分别位于550和660nm的宽发射带.我们认为这两个宽发射带是由Dy2+离子由5d态向4f基态能级(5I8)跃迁产生的.讨论了几个有益于在这种基质中还原Dy3+离子的条件.为了实现Dy3+离子的还原,我们还在Ar/H2(4%)气氛中制备了Dy2O3掺杂的SrB4O7,比较了这种样品和在空气中所制备的样品的光学特性.本文还对标志SrB4O7还原性和稳定性的g-因子由Tm2+的[Eo(Tm3+/Tm2+=-2.3V]推导出Dy2+的[E0(Dy3+/Dy2+)=-2.6V],但对这种还原过程的局限性尚未确定.

  9. CCDC 1402057: Experimental Crystal Structure Determination : pentakis(tetra-n-butylammonium) tetrakis(mu-oxalato)-dodecachloro-tetranitrosyl-ethanol-tetra-ruthenium-dysprosium sesquihydrate

    KAUST Repository

    Kuhn, Paul-Steffen

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  10. Activation of Small Molecules by DyI_2 and Dy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results The reactivities of dysprosium diiodide and metallic dysprosium toward small molecules are discussed.For instance,DyI2-induced silyl radical reactions are described.The combination of dysprosium diiodide and dichloromethane can serve as an effective methylene transfer reagent for cyclopropanation of unfunctionalized alkenes beyond that possible with other metal-dichloromethane systems.Furthermore,we report that the combination of chlorosilane and metallic Dy can also serve as an effective prom...

  11. Heterometallic octanuclear RE(III)3Ni(II)5 (RE = Dy(III), Gd(III) and Y(III)) clusters with slow magnetic relaxation for the dysprosium derivative.

    Science.gov (United States)

    Wang, Huiyu; Ke, Hongshan; Lin, Shuang-Yan; Guo, Yang; Zhao, Lang; Tang, Jinkui; Li, Yun-Hui

    2013-04-21

    Reactions of rare earth benzoate and nickel perchlorate with a Schiff-base ligand, 2-([(2-hydroxyphenyl)imino]methyl) phenol (H2L), in the presence of triethylamine yielded three heterobimetallic octanuclear clusters of general formula [RE3Ni5L5(PhCOO)3(μ3-OH)5(μ3-OCH3)(CH3OH)4(H2O)]·xCH3OH·yH2O (RE = Dy(III), x = 4, y = 4 (1), RE = Gd(III), x = 5, y = 4 (2), RE = Y(III), x = 5, y = 3 (3)). Single-crystal X-ray diffraction reveals that the metal core of each cluster consists of two distorted [RE2Ni2O4] cubane-like moieties and a heterobimetallic triangular [RE2NiO2] unit, with RE ions arranged in a typical triangular fashion. Variable-temperature solid state magnetic susceptibilities of these complexes were measured in the temperature range 2-300 K and the results indicate that an overall ferromagnetic interaction among the metal ions is operative for compounds 2 and 3. Under zero external field, the Dy3Ni5 compound shows a frequency dependence of the out-of-phase (χ'') signals, which indicates slow relaxation of the magnetization.

  12. Poly[(6-carboxypicolinato-κ3O2,N,O6(μ3-pyridine-2,6-dicarboxylato-κ5O2,N,O6:O2′:O6′dysprosium(III

    Directory of Open Access Journals (Sweden)

    Xu Li

    2009-11-01

    Full Text Available In the title complex, [Dy(C7H3NO4(C7H4NO4]n, one of the ligands is fully deprotonated while the second has lost only one H atom. Each DyIII ion is coordinated by six O atoms and two N atoms from two pyridine-2,6-dicarboxylate and two 6-carboxypicolinate ligands, displaying a bicapped trigonal-prismatic geometry. The average Dy—O bond distance is 2.40 Å, some 0.1Å longer than the corresponding Ho—O distance in the isotypic holmium complex. Adjacent DyIII ions are linked by the pyridine-2,6-dicarboxylate ligands, forming a layer in (100. These layers are further connected by π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.827 (3 Å] and C—H...O hydrogen-bonding interactions, assembling a three-dimensional supramolecular network. Within each layer, there are other π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.501 (2 Å] and O—H...O and C—H...O hydrogen-bonding interactions, which further stabilize the structure.

  13. 10 CFR Appendix B to Part 30 - Quantities 1 of Licensed Material Requiring Labeling

    Science.gov (United States)

    2010-01-01

    ... Cesium-135 10 Cesium-136 10 Cesium-137 10 Chlorine-36 10 Chlorine-38 10 Chromium-51 1,000 Cobalt-58m 10 Cobalt-58 10 Cobalt-60 1 Copper-64 100 Dysprosium-165 10 Dysprosium-166 100 Erbium-169 100 Erbium-171...

  14. 10 CFR 33.100 - Schedule A.

    Science.gov (United States)

    2010-01-01

    ... .1 Cesium-137 .1 .001 Chlorine-36 1 .01 Chlorine-38 100 1. Chromium-51 100 1. Cobalt-57 10 0.1 Cobalt-58m 100 1. Cobalt-58 1 .01 Cobalt-60 .1 .001 Copper-64 10 .1 Dysprosium-165 100 1. Dysprosium-166...

  15. Study on Magnetic Responsibility of Rare Earth Ferrite/Polyacrylamide Magnetic Microsphere

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Wang Zhifeng; Zhang Hong; Dai Shaojun; Qiu Guanming; Okamoto Hiroshi

    2005-01-01

    In inverse microemulsion, rare earth ferrite/polyacrylamide magnetic microsphere were prepared and their magnetic responsibility were studied by magnetic balance. Results indicate that the magnetic responsibility of microsphere relates to magnetic moment of rare earth ion, and it can be improved by the addition of dysprosium ion of high magnetic moment. Dysprosium content has an effect on magnetic responsibility of dysprosium ferrite/polyacrylamide magnetic microsphere. The microsphere displays strong magnetic responsibility when the molar ratio of Dy3+/iron is 0.20.

  16. Poly[hexaaquatri-μ-malonato-didysprosium(III

    Directory of Open Access Journals (Sweden)

    Mei Yang

    2008-07-01

    Full Text Available The title compound, [Dy2(C3H2O43(H2O6]n, forms a coordination polymeric structure comprising hydrated dysprosium ions and malonate ligands. In the asymmetric unit, there are one dysprosium ion, one and a half malonate ligands, and three water molecules. Each DyIII atom is coordinated by six O atoms from four malonate ligands and by three water molecules, and displays a tricapped trigonal–prismatic coordination geometry. The malonate ligands adopt two types of coordination mode, linking dysprosium centres to form a three-dimensional coordination polymer. The extensive network of hydrogen bonds in this polymer enhances the structural stability.

  17. A Thermally Actuated Flux Pump for Energizing YBCO Pucks

    Science.gov (United States)

    2016-05-01

    antiferromagnetic, so heat pulses that go above and below 85 K should create a wave of magnetism across the face of the YBCO puck. The YBCO and dysprosium...temperature sensors were located at the centre and the outer perimeter on the surface of the dysprosium closest to the cold head, and on the side of the YBCO...outer perimeter of the dysprosium, the edge of the YBCO and the coldhead. In the following figures various curves are removed to give a clear picture of

  18. Maximum Permissible Concentrations and Negligible Concentrations for Rare Earth Elements (REEs)

    NARCIS (Netherlands)

    Sneller FEC; Kalf DF; Weltje L; Wezel AP van; CSR

    2000-01-01

    In dit rapport worden maximaal toelaatbare risiconiveaus (MTR) en verwaarloosbare risiconiveaus (VR) afgeleid voor zeldzame aardmetalen (ZAM). De geselecteerde ZAMs zijn Yttrium (Y), Lanthanum (La), Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Samarium (Sm), Gadolinium (Gd), en Dysprosium (Dy

  19. Atomic physics: A strange kind of liquid

    Science.gov (United States)

    Laburthe-Tolra, Bruno

    2016-11-01

    Interactions between the magnetic dipoles of dysprosium atoms in an ultracold gas can produce a 'self-bound' droplet. This provides a useful isolated system for probing the quantum-mechanical properties of ultracold gases. See Letter p.259

  20. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Active demands from downstream industry drove the price rise of rare earth products in Chinese domestic marketrecently, particularly didymium and dysprosium products. Prices of other rare earth products remained stable.

  1. Luminescence investigation of Dy2O2S and Dy2O2SO4 obtained by thermal decomposition of sulfate hydrate

    Institute of Scientific and Technical Information of China (English)

    RV Rodrigues; L Marciniak; LU Khan; JR Matos; HF Brito; W Strk

    2016-01-01

    The yellow emitting dysprosium oxysulfide (Dy2O2S) and dysprosium oxysulfate (Dy2O2SO4) compounds were prepared from the thermal decomposition of hydrated dysprosium sulphate. The materials were characterized by using thermogravimetry (TG/DTG), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopies. The thermal stability temperatures at around 1151 and 1313 K were determined for the Dy2O2S and Dy2O2SO4 materials, respectively. The photolumines-cence properties of the dysprosium oxysulfide were investigated, showing narrow emission bands assigned to the 4F9/2→6HJ intracon-figurational transitions of the Dy3+ion. The yellow emission color of this phosphor suggests that the Dy2O2S is a promising material for applications in LEDs.

  2. Syntheses, structures, and magnetic properties of a family of tetranuclear hydroxido-bridged Ni(II)2Ln(III)2 (Ln = La, Gd, Tb, and Dy) complexes: display of slow magnetic relaxation by the zinc(II)-dysprosium(III) analogue.

    Science.gov (United States)

    Abtab, Sk Md Towsif; Maity, Manoranjan; Bhattacharya, Kisholoy; Sañudo, E Carolina; Chaudhury, Muktimoy

    2012-10-01

    A new family of [2 × 2] tetranuclear 3d-4f heterometallic complexes have been synthesized. These are [Zn(2)Dy(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2)(MeOH)(2)](NO(3))·2H(2)O·MeOH (3), [Ni(2)Dy(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2)(MeOH)(2)](NO(3))·MeOH (4), [Ni(2)La(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2)(MeOH)(2)](ClO(4))·H(2)O·2MeOH (5), [Ni(2)Tb(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2) (MeOH)(2)](NO(3))·MeOH (6), and [Ni(2)Gd(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2)(MeOH)(2)](NO(3))·MeOH (7), [H(2)L = N,N'-dimethyl-N,N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine and Hdbm = dibenzoylmethane] obtained through a single-pot synthesis using [Zn(HL)(dbm)] (for 3)/[Ni(HL)(dbm)]·2CH(3)OH (for 4, 5, 6, and 7) as 3d-metal ion precursors. Single-crystal X-ray diffraction analysis and electrospray ionization (ESI) mass spectroscopy have been used to establish their identities. Compounds are isostructural, in which the metal ions are all connected together by a bridging hydroxido ligand in a rare μ(4)-mode. In complexes 3-7, the metal ions are antiferromagnetically coupled. Taking a cue from the results of 3 and 5, precise estimations have been made for the antiferromagnetic Ni···Ni (J(Ni) = -50 cm(-1)), Ni···Gd (J(NiGd) = -4.65 cm(-1)), and Gd···Gd (J(Gd) = -0.02 cm(-1)) exchange interactions in 7, involving the gadolinium(III) ions. The Zn(II)(2)Dy(III)(2) compound 3 has shown the tail of an out-of-phase signal in alternating current (AC) susceptibility measurement, indicative of slow relaxation of magnetization. Interestingly, the Ni(II)(2)Dy(III)(2) compound 4 in which both the participating metal ions possess large single ion anisotropy, has failed to show up any slow magnetic relaxation.

  3. 镝与二甘醇酸的配位聚合物的水热合成、晶体结构及荧光性质%Hydrothermal Synthesis, Crystal Structure and Fluorescence Property of Dysprosium Coordination Polymer with Diglycolic Acid

    Institute of Scientific and Technical Information of China (English)

    张艳斌; 鞠艳玲; 李艳秋; 李夏

    2007-01-01

    A new lanthanide coordination polymer {[Dy2(dga)3(H2O)4]·2H2O}n was prepared by hydrothermal method with DyCl3·6H2O and diglycolic acid (H2dga), and structurally characterized by single-crystal X-ray diffraction technique. The complex crystallizes in Orthorhombic system, C2221 space group with a=1.773 5(11) nm, b =0.875 2(6) nm, c=1.504 3(9) nm, V=2.335 0(3) nm3, Dc=2.359 Mg·m-3, Z=4,μ=6.447 mm-1, F(000)=1 584.0, R=0.0507, wR=0.121 6. In the complex, there are two types of coordination environments for Dy3+ ion. One Dy1 ion is nine-coordinated by three diglycolato groups via six carboxyl oxygen atoms and three ether oxygen atoms. The Dy1 ion is in a distorted monocapped square-antiprism coordination geometry. Whereas the other Dy2 ion is eight-coordinated and the coordination sphere around each Dy2 ion consists of four carboxyl oxygen atoms from four diglycolato ligands and four oxygen atoms from four coordinated water molecules. The coordination polyhedron of Dy2 ion can be described as a distorted square-antiprism. Eight- and nine-coordinate Dy3+ ions are linked by diglycolato ligands to form a 2D network structure. The fluorescence spectral of the complex in solid state at room temperature shows that the diglycolic acid is suitable for the sensitization on the luminescence of Dy3+ ion. CCDC: 660435.%DyCl3·6H2O与二甘醇酸(H2dga)在水热条件下反应得到配位聚合物{[Dy2(dga)3(H2O)4]·2H2O}n,用X-射线衍射单晶结构分析方法确定了其晶体结构.该配合物的晶体属于正交晶系,C2221空间群.在配合物中,Dy3+离子存在两种类型的配位环境.九配位的Dy1离子与3个二甘醇酸根的6个羧基氧原子和3个醚氧原子配位,其配位多面体可描述为一个扭曲的单帽四方反棱柱;八配位的Dy2离子周围的8个配位氧原子形成一个扭曲的四方反棱柱配位多面体,其中4个氧原子来自4个二甘醇酸根,另外4个氧原子由4个配位水分子提供.二甘醇酸配体的2个羧基和其醚氧原子同时与Dy3+离子配位而形成2D网状结构.该配合物在室温下的固体荧光光谱显示了中心Dy3+离子的特征荧光,位于483 nm和574 nm的发射峰分别对应于Dy3+离子的4F9/2→6H15/2和4F9/2→6H13/2跃迁.

  4. 稀土金属 Dy 掺杂 TiO2光催化剂的制备及其对孔雀石绿降解性能的研究%Study on preparation of rare earth element dysprosium doped with TiO2 photocatalyst and its degradation property to malachite green

    Institute of Scientific and Technical Information of China (English)

    高航; 高梅; 李松田; 马威; 吴晓兵

    2015-01-01

    To improve the oxidation efficiency of heterogeneous photocatalysis,TiO2 doped by rare-earth elements was adopted. The results indicate that:there was red-shift adsorption spectra of synthetic product which could enhance malachite green oxidative decolorization effectively under the action of normal visible light. Due to Dy3 + -TiO2 doped photocatalyst,activation energy of photooxidation was decreased so that the efficiency of photolysis could be improved significantly. What’s more,the treatment of malachite green model wastewater with Dy3 + -TiO2 was studied and optimal conditions has been determined as follows:the concentration of malachite green is 20 mg / L,molar ratio of Dy-doping is 1. 5% . Under that reaction con-dition,after 150 min,the decolorization rates of malachite green will be over 60% .%采用稀土元素掺杂法制备改性的二氧化钛,以改善非均相光催化的氧化效率。研究结果表明,在掺杂镝元素之后,产物的吸收光谱发生了红移,在可见光作用下,可以有效地促进孔雀石绿的氧化脱色。引入掺杂型光催化剂 Dy3+-TiO2后,可降低光氧化体系所需的能量,提高光解效率。以孔雀石绿溶液作为模拟废水,考察了 Dy3+离子掺杂量、底物浓度等因素的影响,确定了优化的实验条件:在孔雀石绿的浓度为20 mg/ L,稀土元素 Dy 掺杂量为1.5%(摩尔比)时,反应150 min 后孔雀石绿脱色率达到60%以上。

  5. N-对甲苯磺酰β-丙氨酸镝配合物的合成、晶体结构及抑菌活性%Synthesis crystal structure and antibacterial activity of dysprosium complex with N-p-tolysulfonyl-β-Alanine

    Institute of Scientific and Technical Information of China (English)

    李森兰; 马录芳; 王利亚; 黄世稳; 韦启后; 梁福沛; 张漫波

    2005-01-01

    稀土由于其特殊的电子结构,容易与一些中性、酸性和碱性生物配体形成配合物。本文合成并测定了对甲苯磺酰β-丙氨酸与稀土镝配合物的晶体结构及抑菌活性。

  6. Bis[μ-2-(4-hydroxyphenylacetato]-κ3O,O′:O;κ3O:O,O′-bis{aqua(4,4′-bipyridine-κNbis[2-(4-hydroxyphenylacetato-κ2O,O′]dysprosium(III} monohydrate

    Directory of Open Access Journals (Sweden)

    Jia-Lu Liu

    2010-12-01

    Full Text Available In the title dinuclear complex, [Dy2(C8H7O36(C10H8N22(H2O2]·H2O, the DyIII atoms are coordinated by eight O atoms from four 2-(4-hydroxyphenylacetate (HPAA ligands and a water molecule, and one N atom from a 4,4′-bipyridine (bipy ligand in a distorted tricapped trigonal prismatic geometry. Whereas four HPAA ligands coordinate to just two DyIII atoms, the remaining two ligands bridge the two DyIII atoms. In the crystal, O—H...O and O—H...N hydrogen bonds link the molecules into a three-dimensional network.

  7. Poly[hexa-aqua-tri-μ-malonato-didysprosium(III)].

    Science.gov (United States)

    Fang, Zhan-Qiang; Zeng, Rong-Hua; Song, Zhao-Feng; Yang, Mei

    2008-06-07

    The title compound, [Dy(2)(C(3)H(2)O(4))(3)(H(2)O)(6)](n), forms a coordination polymeric structure comprising hydrated dysprosium ions and malonate ligands. In the asymmetric unit, there are one dysprosium ion, one and a half malonate ligands, and three water mol-ecules. Each Dy(III) atom is coordinated by six O atoms from four malonate ligands and by three water mol-ecules, and displays a tricapped trigonal-prismatic coordination geometry. The malonate ligands adopt two types of coordination mode, linking dysprosium centres to form a three-dimensional coordination polymer. The extensive network of hydrogen bonds in this polymer enhances the structural stability.

  8. Poly[hexa­aqua­tri-μ-malonato-didysprosium(III)

    Science.gov (United States)

    Fang, Zhan-Qiang; Zeng, Rong-Hua; Song, Zhao-Feng; Yang, Mei

    2008-01-01

    The title compound, [Dy2(C3H2O4)3(H2O)6]n, forms a coordination polymeric structure comprising hydrated dysprosium ions and malonate ligands. In the asymmetric unit, there are one dysprosium ion, one and a half malonate ligands, and three water mol­ecules. Each DyIII atom is coordinated by six O atoms from four malonate ligands and by three water mol­ecules, and displays a tricapped trigonal–prismatic coordination geometry. The malonate ligands adopt two types of coordination mode, linking dysprosium centres to form a three-dimensional coordination polymer. The extensive network of hydrogen bonds in this polymer enhances the structural stability. PMID:21202748

  9. Poly[hexa­aqua­tri-μ-malonato-didysprosium(III)

    OpenAIRE

    2008-01-01

    The title compound, [Dy2(C3H2O4)3(H2O)6]n, forms a coordination polymeric structure comprising hydrated dysprosium ions and malonate ligands. In the asymmetric unit, there are one dysprosium ion, one and a half malonate ligands, and three water molecules. Each DyIII atom is coordinated by six O atoms from four malonate ligands and by three water molecules, and displays a tricapped trigonal–prismatic coordination geometry. The malonate ligands adopt two types of coordination mode, linkin...

  10. Photoluminescence, trap states and thermoluminescence decay process study of Ca2MgSi2O7 : Eu2+, Dy3+ phosphor

    Indian Academy of Sciences (India)

    Ravi Shrivastava; Jagjeet Kaur; Vikas Dubey; Beena Jaykumar

    2014-06-01

    Europium and dysprosium-doped calcium magnesium silicate powder with different concentrations of dysprosium were synthesized using solid-state reaction. The Fourier transform infrared (FT–IR) spectra confirmed the proper preparation of the sample. The prepared phosphors were characterized using photoluminescence excitation and emission spectra. Prominent green colour emission was obtained under ultraviolet excitation. The thermoluminescence glow curves of the samples were measured at various delay times. With increased delay time, the intensity of the thermoluminescence peak decays and the position of the thermoluminescence peak shifts towards higher temperature, indicating the considerable retrapping associated with general order kinetics.

  11. Perovskite catalysts for oxidative coupling

    Science.gov (United States)

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  12. Rare Earths; The Fraternal Fifteen (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Gschneidner, Jr., Karl A. [Iowa State University; Ames Laboratory

    1966-01-01

    Rare earths are a set of 15 elements: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. They are not rare and not earths; they are metals and quite abundant. They are studied to develop commercial products which are beneficial to mankind, and because some rare earths are important to fission products.

  13. An organometallic sandwich lanthanide single-ion magnet with an unusual multiple relaxation mechanism.

    Science.gov (United States)

    Jeletic, Matthew; Lin, Po-Heng; Le Roy, Jennifer J; Korobkov, Ilia; Gorelsky, Serge I; Murugesu, Muralee

    2011-12-07

    A dysprosium(III) sandwich complex, [Dy(III)(COT″)(2)Li(THF)(DME)], was synthesized using 1,4-bis(trimethylsilyl)cyclooctatetraenyl dianion (COT″). The complex behaves as a single-ion magnet and demonstrates unusual multiple relaxation modes. The observed relaxation pathways strongly depend on the applied static dc fields.

  14. On the use of Liouville relaxation supermatrices in Mössbauer studies. III : Application to Mössbauer relaxation in superconductors

    OpenAIRE

    Hartmann-Boutron, F.

    1980-01-01

    Wagner et al. recently studied the Mössbauer relaxation of paramagnetic dysprosium as an impurity in superconducting thorium. In connection with this study, we have derived simple formulas for interpreting relaxation effects in 2+ 0+ Mössbauer transitions of rare earth ions in superconductors.

  15. High-pressure synthesis of {nu}-DyBO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Emme, H.; Huppertz, H. [Dept. Chemie und Biochemie, Ludwig-Maximilians-Univ. Muenchen, Muenchen (Germany)

    2004-12-01

    {nu}-Dysprosium borate ({nu}-DyBO{sub 3}) was synthesized under conditions of high temperature and pressure in a Walker-type multi-anvil apparatus at 3 GPa and 1323 K. The compound is isotypic with the already known {nu}-samarium and {nu}-europium orthoborates. (orig.)

  16. Note: Simple means for selective removal of the 365 nm line from the Hg spectrum using Dy

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Chorkendorff, Ib; Brock-Nannestad, T.

    2011-01-01

    The emission spectrum of mercury has a notable line at about 365 nm under both low and medium-high pressure conditions. A simple filter based on a solution of dysprosium ions, Dy3+, is shown to be very useful for applications of Hg-light sources where this line is unwanted. The presented filter i...

  17. Benzoxazole-based heterometallic dodecanuclear complex [Dy(III)4Cu(II)8] with single-molecule-magnet behavior.

    Science.gov (United States)

    Iasco, Olga; Novitchi, Ghenadie; Jeanneau, Erwann; Wernsdorfer, Wolfgang; Luneau, Dominique

    2011-08-15

    Three Cu-Ln (Ln = Dy, Gd, Y) dodecanuclear clusters assembled by a novel ligand of the benzoxazole type are reported. The dysprosium cluster exhibits a frequency dependence of the alternating-current susceptibility and hysteresis loop at low temperature, indicating single-molecule-magnet behavior.

  18. Market Review

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ RE Market Dec. 10-20 Price of Pr-Nd oxide and Pr-Nd mischrnetal kept on rising in domestic market recently due to the tight supply of RE carbonate. Short supply of ion adsorption clay in southern China did not affect the prices of dysprosium and terbium obviously.

  19. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    June 20-30, 2011 Prices of heavy rare earth products remained soaring. The same happened to dysprosium and its related products due to tight supply. Separation plants held tightly of europium oxide. Refining plants took a positive attitude toward the ma

  20. Market Review

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Rare earth market was inactive affected by sluggish demand for didymium mischmetal and dysprosium metal by NdFeB industry. Most enterprises were waiting to see what was going on with the industry. However, price of didymium oxide rose again and price of heavy rare earths kept strong. Price of Dy oxide and Yt oxide Kept on rising.

  1. Market Review

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ RE Market May 10-20 Learned from Inner Mongolia Rare Earth Association,domestic rare earth market was in good situation driven by high demand. Price of neodymium rose strongly. Dysprosium oxide and terbium oxide still hovered at the higher price level. Price of europia remained stable.

  2. Market Review RE Market April 20-30

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Driven by high demand, China rare earth market was in good situation. Dysprosium oxide and terbium oxide hovered at the higher price level. Price of Pr-Nd oxide kept upward.Price of SmEuGd rose on small extent.

  3. Infrared Transparent Selenide Glasses.

    Science.gov (United States)

    1997-03-14

    crystalline halides, silica and fluoride glasses, and chalcogenide glasses. Crystalline halides undergo plastic deformation and are hygroscopic...mainly for applications operating at wavelengths less than 3 microns. Silicate and fluoride glasses have been developed as optical fiber amplifiers...activity. Preferred rare earths includes praseodymium, neodymium, erbium, cerium , dysprosium, holmium, thulium, terbium, ytterbium or mixtures of

  4. Synthesis and structure of didysprosium complexes with a tetraketone

    Science.gov (United States)

    Yang, Luqin; Yang, Rudong

    1996-06-01

    Two novel didysprosium (Dy 2) complexes of 1,5-bis(1'-phenyl-3'-methyl-5'-pyrazolone-4')-1,5-pentanedione (H 2L), Dy 2L 3·2H 2O and Dy 2L 3·5DMF (DMF = dimethylformamide), have been synthesized. The crystal structure of Dy 2L 3·5DMF was determined by X-ray diffraction. Crystals are triclinic, space group P1¯, with a = 16.99(1), b = 17.970(9), c = 18.28(1) Å, α = 110.36(4), β = 101.47(6), γ = 111.11(5)°, V = 4533(9) Å 3, Mr = 2017.91, Z = 2, D x = 1.48 g cm -3, μ = 17.22 cm -1, F(000) = 2056, R = 0.074 with 3804 reflections used in the refinement. In the complex, each L bonds two dysprosium atoms with its two β-diketone groups. Two DMF solvent molecules bond to each dysprosium ion. The coordination number of the two dysprosium ions is eight. The eight oxygen atoms around the dysprosium ion make up a distorted square antiprism coordination polyhedron. The resonance structures of coordinated β-diketonates are also discussed. Different lanthanide ions may stabilize the specific structure.

  5. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    Science.gov (United States)

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  6. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach.

    Science.gov (United States)

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter; Dall, Ole; Wenzel, Henrik

    2014-10-21

    Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key rare earth elements (REEs), i.e., neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets, allowing for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of a secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, material flow analysis (MFA) has been carried out to perform the detailed mapping of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global levels by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products representing 18 various product types. The results show that the current amount of neodymium and dysprosium in NdFeB magnets present in the Danish waste stream is only 3 and 0.2 Mg, respectively. However, this number is estimated to increase to 175 Mg of neodymium and 11.4 Mg of dysprosium by 2035. Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge.

  7. Evidence for triaxial deformation near N=86 : Collective bands in Dy-152,Dy-153 and Ho-153

    NARCIS (Netherlands)

    Appelbe, DE; Twin, PJ; Beausang, CW; Cullen, DM; Curien, D; Duchene, G; Erturk, S; Finck, C; Haas, B; Paul, ES; Radford, DC; Rigollet, C; Smith, MB; Stezowski, O; Waddington, JC; Wilson, AN

    2002-01-01

    The N=86,87 isotopes of dysprosium and holmium have been investigated using the Eurogam II gamma-ray spectrometer. A new collective rotational band has been observed in Ho-153 and the previously observed nui(13/2) band in Dy-153 has been extended to much higher spin. Comparing these bands and

  8. Using T2-Exchange from Ln3+DOTA-Based Chelates for Contrast-Enhanced Molecular Imaging of Prostate Cancer with MRI

    Science.gov (United States)

    2016-04-01

    specific ana - tomic features or dynamic processes. The most widely used MRI contrast agents consist of various chelated forms of Gd3þ where the...Vymazal J, Holla M, Frank JA. Dysprosium-DOTA-PAMAM dendrimers as macromolecu- lar T2 contrast agents - preparation and relaxometry. Invest Radiol

  9. Preparation, Structure Characterization and Thermal Decomposition ...

    African Journals Online (AJOL)

    NJD

    The unit cell contains a dinuclear molecule of the title compound. ... The carboxylate groups are bonded to the dysprosium ions in two modes: chelating bidentate ..... 5 R.F. Wang, L.S. Li, L.P. Jin and S.Z. Lu,J. Rare Earths,1998,16, 149–152.

  10. Market Review

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Rare earth market went downward recently.Consumers worried about the continuous price falling in the following one month and were not active in the purchasing.Price of southern ion adsorption clay dropped as well,which consequently resulted in the falling of dysprosium and terbium.

  11. Material Flow Analysis of NdFeB magnets for Denmark: A comprehensive waste flow sampling and analysis approach

    DEFF Research Database (Denmark)

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter

    2014-01-01

    Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key Rare Earth Elements (REEs) i.e. neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets allowing for consider......Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key Rare Earth Elements (REEs) i.e. neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets allowing...... of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global level by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products...

  12. Magnetic Properties of the Dy1-xUxCo3 System

    Science.gov (United States)

    Lupşa, Ileana; Petrişor, T.; Balasz-Mureşan, I.

    The magnetic properties of Dy1-xUxCo3 system were investigated in the 4.3-1150 K temperature range and magnetic field up to 120 kOe. The crystalline structure is rhombohedral of PuNi3 type. For x≤0.8, the samples exhibit a ferrimagnetic behavior. The uranium substitution for dysprosium leads to the decreasing of the exchange field and the reducing of the magnetization and the transition temperatures. The Co mean moments (1.9μB/Co for x=0) opposite to the dysprosium ones and the mean effective Co moments (3.75μB/Co for x=0) are gradually decreasing as Dy is replaced by uranium.

  13. Tetraanionic biphenyl lanthanide complexes as single-molecule magnets.

    Science.gov (United States)

    Huang, Wenliang; Le Roy, Jennifer J; Khan, Saeed I; Ungur, Liviu; Murugesu, Muralee; Diaconescu, Paula L

    2015-03-02

    Inverse sandwich biphenyl complexes [(NN(TBS))Ln]2(μ-biphenyl)[K(solvent)]2 [NN(TBS) = 1,1'-fc(NSi(t)BuMe2)2; Ln = Gd, Dy, Er; solvent = Et2O, toluene; 18-crown-6], containing a quadruply reduced biphenyl ligand, were synthesized and their magnetic properties measured. One of the dysprosium biphenyl complexes was found to exhibit antiferromagnetic coupling and single-molecule-magnet behavior with Ueff of 34 K under zero applied field. The solvent coordinated to potassium affected drastically the nature of the magnetic interaction, with the other dysprosium complex showing ferromagnetic coupling. Ab initio calculations were performed to understand the nature of magnetic coupling between the two lanthanide ions bridged by the anionic arene ligand and the origin of single-molecule-magnet behavior.

  14. Spectroscopy of Neutron-Rich $^{168,170}$Dy: Yrast Band Evolution Close to the $N_{p}N_{n}$ Valence Maximum

    CERN Document Server

    Söderström, P A; Regan, P H; Algora, A; de Angelis, G; Ashley, S F; Aydin, S; Bazzacco, D; Casperson, R J; Catford, W N; Cederkäll, J; Chapman, R; Corradi, L; Fahlander, C; Farnea, E; Fioretto, E; Freeman, S J; Gadea, A; Gelletly, W; Gottardo, A; Grodner, E; He, C Y; Jones, G A; Keyes, K; Labiche, M; Liang, X; Liu, Z; Lunardi, S; Muarginean, N; Mason, P; Menegazzo, R; Mengoni, D; Montagnoli, G; Napoli, D; Ollier, J; Pietri, S; Podolyák, Z; Pollarolo, G; Recchia, F; Şahin, E; Scarlassara, F; Silvestri, R; Smith, J F; Spohr, K M; Steer, S J; Stefanini, A M; Szilner, S; Thompson, N J; Tveten, G M; Ur, C A; Valiente-Dobón, J J; Werner, V; Williams, S J; Xu, F R; Zhu, J Y

    2010-01-01

    The yrast sequence of the neutron-rich dysprosium isotope Dy-168 has been studied using multi-nucleon transfer reactions following the collision of a 460-MeV Se-82 beam and a Er-170 target. The reaction products were identified using the PRISMA magnetic spectrometer and the gamma rays detected using the CLARA HPGe-detector array. The 2+ and 4+ members of the previously measured ground state rotational band of Dy-168 was confirmed and the yrast band extended up to 10+. A tentative candidate for the 4+ to 2+ transition in Dy-170 was also identified. The data on this and lighter even-even dysprosium isotopes are interpreted in terms of Total Routhian Surface calculations and the evolution of collectivity approaching the proton-neutron valence product maximum is discussed.

  15. Development of a coprecipitation system for the speciation/preconcentration of chromium in tap waters

    Energy Technology Data Exchange (ETDEWEB)

    Karatepe, Aslihan, E-mail: karatepea@gmail.com [Nevsehir University, Faculty of Science and Arts, Department of Chemistry, 50000 Nevsehir (Turkey); Korkmaz, Esra [Bozok University, Faculty of Science and Arts, Department of Chemistry, Yozgat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey); Elci, Latif [Pamukkale University, Faculty of Science and Arts, Department of Chemistry, 20020 Denizli (Turkey)

    2010-01-15

    A method for the speciation of chromium(III), chromium(VI) and determination of total chromium based on coprecipitation of chromium(III) with dysprosium hydroxide has been investigated and applied to tap water samples. Chromium(III) was quantitatively recovered by the presented method, while the recovery values for chromium(VI) was below 10%. The influences of analytical parameters including amount of dysprosium(III), pH, centrifugation speed and sample volume for the quantitative precipitation were examined. No interferic effects were observed from alkali, earth alkali and some transition metals for the analyte ions. The detection limits (k = 3, N = 15) were 0.65 {mu}g/L for chromium(III) and 0.78 {mu}g/L for chromium(VI). The validation of the presented method was checked by the analysis of certified reference materials.

  16. Development of bulk metallic glasses based on the Dy-Al binary eutectic composition

    Institute of Scientific and Technical Information of China (English)

    LUO Lin; TIAN Rui; XIAO Xueshan

    2008-01-01

    A series of dysprosium-based ternary, quadruple, and quintuple bulk metallic glasses (BMGs) based on Dy-Al binary eutectic compo-sition were obtained with the partial substitution of Co, Gd, and Ni elements, for dysprosium. The results showed that the Dy31Gd25Co20Al24 alloy, which had the best glass forming ability (GFA), could be cast into an amorphous rod with a diameter of 5 mm. The GFA of alloys was evaluated on the basis of the supercooled liquid region width, γ parameter, the formation enthalpy, and the equivalent electronegativity difference of amor-phous alloys. It was found that the eutectic composition was closely correlated with the GFA of the Dy-based BMGs.

  17. Dysprosium carbide iodides Dy{sub 10}(C{sub 2}){sub 2}I{sub 18}, Dy{sub 4}(C{sub 2})I{sub 6} and Dy{sub 12}(C{sub 2}){sub 3}I{sub 17}; Dysprosiumcarbidiodide Dy{sub 10}(C{sub 2}){sub 2}I{sub 18}, Dy{sub 4}(C{sub 2})I{sub 6} und Dy{sub 12}(C{sub 2}){sub 3}I{sub 17}

    Energy Technology Data Exchange (ETDEWEB)

    Mattausch, H.; Hoch, C.; Simon, A. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2007-02-15

    The title compounds are formed by reaction of DyI{sub 3}, Dy metal and C in stoichiometric amounts in closed Ta ampoules, Dy{sub 10}(C{sub 2}){sub 2}I{sub 18} at 930 C for 7 days, Dy{sub 4}(C{sub 2})I{sub 6} at 950 C for 6 days and Dy{sub 12}(C{sub 2}){sub 3}I{sub 17} at 900 C for 11 days as pure samples according to X-ray powder diffraction. Dy{sub 10}(C{sub 2}){sub 2}I{sub 18} crystallizes in space group P2{sub 1}/c with a = 10.470(2), b = 17.152(3), c = 13.983(3) Aa and {beta} = 121.14(3) , Dy{sub 4}(C{sub 2})I{sub 6} in Pnnm with a = 13.622(3), b = 14.335(3) and c = 8.396(2) Aa, and Dy{sub 12}(C{sub 2}){sub 3}I{sub 17} in C2/c with a = 19.149(4), b = 12.069(2), c = 18.595(4) Aa, and {beta} = 90.54(3) . The crystal structure of Dy{sub 10}(C{sub 2}){sub 2}I{sub 18} is composed of Dy double octahedra centered by (C{sub 2}){sup 6-} groups (ethanide) with the iodide ions above the edges and the corners of the Dy{sub 10}(C{sub 2}){sub 2} units. In Dy{sub 4}(C{sub 2})I{sub 6} the Dy atoms form chains of trans-edge sharing octahedra with embedded (C{sub 2}) groups. In the structure of Dy{sub 12}(C{sub 2}){sub 3}I{sub 17} alternately cis-, trans-edge-condensed Dy{sub 6} octahedra centered by (C{sub 2}) groups occur. The iodine atoms surround the chains like in the M{sub 6}X{sub 12} cluster and interconnect neighboring chains. (orig.)

  18. Concepts for using trapped-flux bulk high-temperature superconductor in motors and generators

    Science.gov (United States)

    Hull, John R.; Strasik, Michael

    2010-12-01

    We review previous concepts for using bulk high-temperature superconductors (HTSs) in motors and generators and discuss methods for using trapped-flux (TF) HTSs in motors and generators that have been recently investigated in our laboratory. We examine the expected performance of a brushless motor/generator that uses TF bulk HTSs to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium for the stator and rotor cores.

  19. Concepts for using trapped-flux HTS in motors and generators

    Science.gov (United States)

    Hull, John R.; Strasik, Michael

    2013-01-01

    We examine the expected performance of a brushless motor/generator that uses trapped-flux (TF) bulk high-temperature superconductors (HTSs) to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium (Dy) for the stator and rotor cores. We also examine methods to energize TF in HTS for generators used in pulsed-power applications.

  20. Concepts for using trapped-flux bulk high-temperature superconductor in motors and generators

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R; Strasik, Michael [Boeing Research and Technology, PO Box 3707, MC 2T-50, Seattle, WA 98124-2207 (United States)

    2010-12-15

    We review previous concepts for using bulk high-temperature superconductors (HTSs) in motors and generators and discuss methods for using trapped-flux (TF) HTSs in motors and generators that have been recently investigated in our laboratory. We examine the expected performance of a brushless motor/generator that uses TF bulk HTSs to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium for the stator and rotor cores.

  1. Rare earth optogalvanic spectroscopy: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Destro, Marcelo G.; Neri, Jose W.; Rodrigues, Nicolau A.S.; Silveira, Carlos A.B.; Riva, Rudimar [Instituto de Estudos Avancados (IEAv/EFO), Sao Jose dos Campos, SP (Brazil). Div. de Fotonica]. E-mail: destro@ieav.cta.br; Victor, Alessandro R. [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2008-07-01

    The IEAv has special interest in the studies of rare earth isotope applications in laser medium and integrated optics as well as aerospace research. We are starting to work with Ytterbium, Erbium, Dysprosium and Neodymium laser selective photoionization research. This paper describes the preliminary results of emission and optogalvanic spectroscopy obtained from a Neodymium hollow cathode lamps. Furthermore these results were used to setup our laser systems to work to leads a Nd isotopes selective laser photoionization. (author)

  2. Rotating Magnetocaloric Effect in an Anisotropic Molecular Dimer.

    Science.gov (United States)

    Lorusso, Giulia; Roubeau, Olivier; Evangelisti, Marco

    2016-03-01

    In contrast to the mainstream research on molecular refrigerants that seeks magnetically isotropic molecules, we show that the magnetic anisotropy of dysprosium acetate tetrahydrate, [{Dy(OAc)3 (H2 O)2}2]⋅4 H2O (1), can be efficiently used for cooling below liquid-helium temperature. This is attained by rotating aligned single-crystal samples in a constant applied magnetic field. The envisioned advantages are fast cooling cycles and potentially compact refrigerators.

  3. Energy dependence of thermoluminescent response of CaSO{sub 4}:Dy, LiF:Mg and micro LiF:Mg,Ti in clinical beams of electrons by using different simulator objects; Dependencia energetica da resposta TL de dosimetros de CaSO{sub 4}:Dy, LiF:Mg e microLiF:Mg,Ti em feixes clinicos de eletrons utilizando diferentes objetos simuladores

    Energy Technology Data Exchange (ETDEWEB)

    Bravim, Amanda; Campos, Leticia Lucente, E-mail: abravin@ipen.b, E-mail: rsakuraba@einstein.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Sakuraba, Roberto K.; Cruz, Jose Carlos da, E-mail: rsakuraba@einstein.b, E-mail: josecarlosc@einstein.b [Hospital Israelita Albert Einstein (HIAE), Sao Paulo, SP (Brazil)

    2011-10-26

    Yet not so widely applied in radiotherapy, the calcium sulfate doped with dysprosium (CaSO{sub 4}:Dy) is used in radioprotection and studies has been demonstrated its great potential for the dosimetry in radiotherapy. This work evaluates the energy dependence of the thermoluminescent answer of the CaSO{sub 4}:D, LiF:Mg,Ti (TLD-100) and micro LiF:Mg,Ti in clinical beams of electrons by using water simulators, PMMA and solid water

  4. Surface analysis of model systems: From a metal-graphite interface to an intermetallic catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kwolek, Emma J. [Iowa State Univ., Ames, IA (United States)

    2016-10-25

    This thesis summarizes research completed on two different model systems. In the first system, we investigate the deposition of the elemental metal dysprosium on highly-oriented pyrolytic graphite (HOPG) and its resulting nucleation and growth. The goal of this research is to better understand the metal-carbon interactions that occur on HOPG and to apply those to an array of other carbon surfaces. This insight may prove beneficial to developing and using new materials for electronic applications, magnetic applications and catalysis.

  5. New Realities: Energy Security in the 2010s and Implications for the U.S. Military

    Science.gov (United States)

    2014-01-01

    of the main renewable energy technologies (RETs)—such as wind power or photovoltaics (PV)—used in electric power generation. Wind turbines , PV... turbines and e-vehicle motors, and neodymium is a light REE used in the same applications as dysprosium as well as in e-vehicle batteries. China supplies...energy sector. For example, supercomputing is a key component to seismic analysis; refineries are increasingly driven by Supervisory Control and Data

  6. Properties of strongly dipolar Bose gases beyond the Born approximation

    CERN Document Server

    Ołdziejewski, Rafał

    2016-01-01

    Strongly dipolar Bose gases can form liquid droplets stabilized by quantum fluctuations. In theoretical description of this phenomenon, low energy scattering amplitude is utilized as an effective potential. We show that for magnetic atoms corrections with respect to Born approximation arise, and derive modified pseudopotential using realistic interaction model. We discuss the resulting changes in collective mode frequencies and droplet stability diagram. Our results are relevant for recent experiments with erbium and dysprosium atoms.

  7. Thermokinetics of Liquid-Liquid Reaction of Dy(NO3)3 with Histidine

    Institute of Scientific and Technical Information of China (English)

    李仲谨; 陈三平; 房艳; 高胜利

    2003-01-01

    The thermokinetics of liquid-liquid reaction of dysprosium nitrate with histidine were studied using a microcalorimeter. On the basis of experimental and calculated results, three thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), the rate constant, three kinetic parameters (the activation energy, the pre-exponential constant and the reaction order) were obtained. On the basis of thermodynamics and kinetics, the formation reaction of the complex was discussed.

  8. China rare earth market review

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Rare earth market remained weak recently. Dealings of light and heavy rare earth products were sluggish. Demand for didymium and dysprosium related products was soft and purchasers were not interested in replenishing their stocks. The market of NdFeB magnetic materials and phosphors remained inactive. Meanwhile, ceramic, catalyst and polishing powder industries were weak. Affected by global economical recession, export market of rare earth remained weak.

  9. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    November 20-30.2011 Weak demand resulted in the slack rare market. Consumers did not intend to rep earth enish inventories yet and transactions of rare earth products were stagnant. The market of didymium-related products was in the doldrums. Demand for dysprosium-related products was sluggish. Inquiries for europium oxide (99.9%) were few and dealings of the product were difficult.

  10. High Density Ion Implanted Contiguous Disk Bubble Technology.

    Science.gov (United States)

    1985-09-01

    of 0.504pm. A second melt producing films of (Sm1 2Lu 1.7Tm0 . 1( FeGa )5O1 2) was also developed for sub- micron bubbles. Data from films typical of the...Dysprosium film composition was to be (Sm0 .3 Dyl.1 Gd 0 .4Lu0 .7( FeGa ) 50 2) which would have magnetostriction coefficients of -2.8x10 6 and a mismatch of

  11. Single molecule magnet behaviour in a rare trinuclear {Cr(III)Dy} methoxo-bridged complex.

    Science.gov (United States)

    Car, Pierre-Emmanuel; Favre, Annaïck; Caneschi, Andrea; Sessoli, Roberta

    2015-09-28

    The reaction of the chromium(iii) chloride tetrahydrofuran complex with the dipivaloylmethane ligand, the lanthanide alcoholic salt DyCl3·CH3OH and the 1,1,1-tris(hydroxymethyl)-ethane ligand resulted in the formation of a new trinuclear chromium-dysprosium complex. Magnetic investigations revealed that the new 3d-4f complex exhibits single molecule magnet behaviour.

  12. Glass microspheres for medical applications

    Science.gov (United States)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in 100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass

  13. Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Z., E-mail: Zahra_kr64@yahoo.com [Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of); Mohammadifar, Y.; Shokrollahi, H. [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Asl, Sh. Khameneh [Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of); Yousefi, Gh. [Center for Pharmaceutical Nanotechnology and Biomaterials, Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Karimi, L. [Materials Science and Engineering Department, Islamic Azad University Ahvaz Branch, Ahvaz (Iran, Islamic Republic of)

    2014-06-01

    Regarding the various applications of cobalt ferrite as a magnetic ceramic in various scientific and industrial categories, it is essential to modify and optimize its microstructural and magnetic features. Chemical composition (doped elements and their quantities) is a determining factor which has been studied in this research. For this purpose, cobalt-dysprosium ferrite ceramic nanoparticles with the chemical formula Co{sub 1−x}Dy{sub x}Fe{sub 2}O{sub 4} (x=0, 0.01, 0.03, 0.05, 0.1) were synthesized by the co-precipitation chemical method and then analyzed from the structural and magnetic perspectives. The desirable spinel phase formation was confirmed via x-ray diffractometry, and the other crystallographic parameters and cation distribution were calculated. The microscopic image of the samples showed 15 nm particles. The type and strength of the interionic bonds were determined by infrared spectroscopy. The hysteresis loop of the material was affected noticeably by doped elements as the room temperature saturation magnetization was decreased, but the residual magnetization and coercivity of ferrite were promoted by 50 and 150% after adding dysprosium, respectively. The maximum anisotropy constant, which is equal to 19.1 erg/g for undoped cobalt ferrite, was increased to 45.2 erg/g by doping 0.05 dysprosium. It is worth mentioning that introducing dopants into the lattice led to a great decrease in Curie temperature. - Highlights: • Magnetic and structural studies of Dy{sup 3+}–Co–ferrite are investigated. • Simple co-precipitation method involving less energy and low-cost is used. • The nanoparticles with high coercivity, magnetization and loop area are obtained. • The composition Co{sub 0.95}Dy{sub 0.05}Fe{sub 2}O{sub 4} has the maximum coercivity and high residual magnetization.

  14. Anisotropic expansion of a thermal dipolar Bose gas

    CERN Document Server

    Tang, Yijun; Burdick, Nathaniel Q; DiSciacca, Jack M; Petrov, Dmitry S; Lev, Benjamin L

    2016-01-01

    We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the post-expansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases, reducing error in expansion thermometry from tens of percent to only a few percent. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.

  15. Anisotropic Expansion of a Thermal Dipolar Bose Gas.

    Science.gov (United States)

    Tang, Y; Sykes, A G; Burdick, N Q; DiSciacca, J M; Petrov, D S; Lev, B L

    2016-10-07

    We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the postexpansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.

  16. Neutron-scattering study of the magnetic structure of DyFe4Al8 and HoFe4Al8

    DEFF Research Database (Denmark)

    Paixao, J.A.; Silva, M.R.; Sørensen, S.Aa.

    2000-01-01

    at a slightly higher temperature (similar to 80 K) than the dysprosium. At a lower temperature higher-order harmonics of the modulation develop. The magnetic structure of the rare-earth at low temperature is a bunched elliptical cycloid, following the modulation of the Fe sublattice. Although...... the antiferromagnetic coupling of the rare-earth magnetic moments has long-range order, giving sharp magnetic satellites in the diffraction patterns, a non-negligible fraction of the 4f moment does not contribute to these peaks but appears as diffuse scattering beneath the Bra,og peaks. This indicates the presence...

  17. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Drryl P. Butt; Brian Jaques

    2009-03-31

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  18. Diagnostics of the plasma parameters based on the K X-ray line positions for various 4d and 4f metals

    Directory of Open Access Journals (Sweden)

    Szymańska Ewa

    2016-12-01

    Full Text Available This paper shows the theoretical predictions of the outer-shell ionization effect on the positions of Kα1,2, Kβ1,3, and K β2 X-ray lines for some 4d-transition metals (molybdenum and palladium and 4f rare-earth elements (dysprosium and ytterbium. The ionization energy shifts have been evaluated using the multiconfiguration Dirac-Fock method, containing Breit interaction and quantum electrodynamic (QED corrections. The presented results are important for obtaining the information about some parameters of plasma generated by different sources, especially by pulsed power machine and short-pulse lasers.

  19. Polyethylene terephthalate thin films; a luminescence study

    Science.gov (United States)

    Carmona-Téllez, S.; Alarcón-Flores, G.; Meza-Rocha, A.; Zaleta-Alejandre, E.; Aguilar-Futis, M.; Murrieta S, H.; Falcony, C.

    2015-04-01

    Polyethylene Terephthalate (PET) films doped with Rare Earths (RE3+) have been deposited on glass by spray pyrolysis technique at 240 °C, using recycled PET and (RE3+) chlorides as precursors. Cerium, terbium, dysprosium and europium were used as dopants materials, these dopants normally produce luminescent emissions at 450, 545, 573 and 612 nm respectively; the doped films also have light emissions at blue, green, yellow and red respectively. All RE3+ characteristic emissions were observed at naked eyes. Every deposited films show a high transmission in the visible range (close 80% T), films surfaces are pretty soft and homogeneous. Films thickness is around 3 μm.

  20. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  1. China rare earth market review

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Rare earth market remained stagnant recently. The buyers did not show willingness to replenish raw materials affected by weak demand. Most persons in rare earth circle were not confident with the short-term rare earth market. Demand for didymium mischmetal was soft recently. The market of dysprosium related products was quiet and NdFeB magnet producers were inactive in the purchase. Phosphor market was stagnant as well. Buyers were cautious on replenishing the material. There were few inquiries for europium oxide (99.9%) in spot market and transactions were difficult.

  2. Optical characterization of CdSe/Dy3+-doped silica matrices

    Indian Academy of Sciences (India)

    P V Jyothy; P R Rejikumar; Thomas Vinoy; S Kartika; N V Unnikrishnan

    2010-11-01

    Cadmium selenide nanocrystals along with dysprosium ions are doped in silica matrices through sol–gel route. The optical bandgap and size of the CdSe nanocrystals are calculated from the absorption spectrum. The size of the CdSe nanocrystallites is also evaluated from the TEM measurements. The fluorescence intensities are compared for SiO2–Dy3+ and CdSe-doped SiO2–Dy3+. The fluorescence intensity of Dy3+ is considerably increased in the presence of CdSe nanocrystals.

  3. Anisotropic Expansion of a Thermal Dipolar Bose Gas

    Science.gov (United States)

    Tang, Y.; Sykes, A. G.; Burdick, N. Q.; DiSciacca, J. M.; Petrov, D. S.; Lev, B. L.

    2016-10-01

    We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the postexpansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.

  4. Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet.

    Science.gov (United States)

    von Reppert, A; Pudell, J; Koc, A; Reinhardt, M; Leitenberger, W; Dumesnil, K; Zamponi, F; Bargheer, M

    2016-09-01

    We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the Néel temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost.

  5. Microscopic Calculation of IBM Parameters by Potential Energy Surface Mapping

    CERN Document Server

    Bentley, I

    2011-01-01

    A coherent state technique is used to generate an Interacting Boson Model (IBM) Hamiltonian energy surface that simulates a mean field energy surface. The method presented here has some significant advantages over previous work. Specifically, that this can be a completely predictive requiring no a priori knowledge of the IBM parameters. The technique allows for the prediction of the low lying energy spectra and electromagnetic transition rates which are of astrophysical interest. Results and comparison with experiment are included for krypton, molybdenum, palladium, cadmium, gadolinium, dysprosium and erbium nuclei.

  6. The magnetostriction of Tb, Dy and Ho revisited

    Energy Technology Data Exchange (ETDEWEB)

    Benito, L; Arnaudas, J I; Ciria, M; Fuente, C de la; Moral, A del [Departamento de Magnetismo de Solidos, Departamento de FIsica de la Materia Condensada-ICMA, Universidad de Zaragoza-CSIC, 50071 Zaragoza (Spain)

    2004-10-06

    In this paper we present re-analyses of magnetostriction measurements earlier performed in terbium, dysprosium and holmium single crystals. In the framework of the standard theory of single-ion crystal-electric-field and two-ion exchange magnetostrictions, we explain the thermal variation of the anisotropic saturation magnetostriction within the basal plane by considering high-order terms in the magnetoelastic energy. Using complementary basal-plane magnetic anisotropy measurements, we have been able to obtain the second- and fourth-order magnetoelastic coupling parameters associated with the orthorhombic distortion of the hexagonal plane for the above-mentioned three heavy rare earths.

  7. Thermokinetics on the reaction of formation of Dy[(C5H8NS2)3(C12H8N2)

    Institute of Scientific and Technical Information of China (English)

    GAO Shengli; CHEN Sanping; JIAO Baojuan; SHUAI Qi; SHI Qizhen

    2005-01-01

    The enthalpy change of formation of the reaction of hydrous dysprosium chloride meter. Thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), rate constant and kinetics parameters (the apparent activation energy, the pre-exponential constant and the reaction order) of the reaction have also been calculated. The enthalpy change of the solid-phase reaction at 298.15 K has been obtained as (53.59 ± 0.29)liquid-phase and solid-phase reaction indicated that the complex could only be synthesized in liquid-phase reaction.

  8. Magnetocaloric properties of rare-earth substituted DyCrO3

    Science.gov (United States)

    McDannald, A.; Jain, M.

    2015-07-01

    Recently, there has been a focus on the need for efficient refrigeration technology without the use of expensive or harmful working fluids, especially at temperatures below 30 K. Solid state refrigeration, based on the magnetocaloric effect, provides a possible solution to this problem. The rare-earth chromites (RCrO3), especially DyCrO3, with its large magnetic moment dysprosium ion, are potential candidates for such an application. The Dy3+ ordering transition at low temperatures (cooling power of 237 J/kg at 40 kOe and 5 K) indicates that this material system is well suited for low temperature (<30 K) solid state refrigeration applications.

  9. Heavy rotation – evolution of quadrupole collectivity centred at the neutron-rich doubly mid-shell nucleus {sup 170}Dy

    Energy Technology Data Exchange (ETDEWEB)

    Söderström, P.-A., E-mail: pasoder@ribf.riken.jp; Doornenbal, P.; Nishimura, S.; Baba, H.; Fukuda, N.; Inabe, N.; Isobe, T.; Kubo, T.; Kubono, S.; Suzuki, H.; Takeda, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Regan, P. H. [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); National Physical Laboratory, Teddington, Middlesex, TW11 0LW (United Kingdom); Walker, P. M.; Carroll, R.; Lalkovski, S.; Lotay, G.; Patel, Z.; Podolyák, Zs.; Shand, C. M. [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Watanabe, H. [IRCNPC, Beihang University, Beijing 100191 (China); School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); and others

    2015-10-15

    In this contribution the low-excitation structural properties of the doubly mid-shell nucleus {sup 170}Dy are discussed, with a special empasis on the evolution of the ground state rotational band within the dysprosium isotopic chain. Recent results from an experiment with the EURICA setup at RIKEN are shown in the context of previous measurements at the PRISMA+CLARA as well as the PRISMA+AGATA setups at Laboratori Nazionali di Legnaro. A brief outlook on future planned measurements is also given.

  10. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    August 20-31, 2011 Rare earth market did not show the sign of picking-up and remained stagnant recently. Most suppliers continued to decrease their quoted price, but leading producers in northern and southern China did not adjust their quoted price. Most rare earth plants in southern China had not yet resumed production. Quoted price of didymium products swung and the quoted prices of dysprosium-related products were slipping affected by weak demand. Inquiries for europium oxide were decreasing affected by the slow phosphor market.

  11. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Rare earth market remained sluggish and quiet holistically recently. Didymium-related market was quiet and the consumers were hesitating in replenishing their inventories. Inquiries for dysprosium-related products were few and the transactions were inactive, Demand for europium oxide (99.99%) was weak and the trade was far from brisk. Baogang Rare Earth suspended production, which has a positive effect in stabilizing the whole rare earth market. But prices of rare earth products did not go up rapidly. This means there were still large inventories in the market.

  12. Holmium-161 produced using 11.6 MeV protons: A practical source of narrow-band X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Bryan J., E-mail: bryan.j.stephens@vanderbilt.ed [Department of Physics, Vanderbilt University, 6301 Stevenson Center, P.O. Box 351807 Station B, Nashville, TN 37235 (United States); Mendenhall, Marcus H., E-mail: marcus.h.mendenhall@vanderbilt.ed [Department of Electrical Engineering, Vandberbilt University, P.O. Box 351824 Station B, Nashville, TN 37235-1824 (United States)

    2010-10-15

    We present a novel technique to produce narrow-band X-rays by preparing {sup 161}Ho from the bombardment of dysprosium foil by 11.6 MeV protons. The activated foil produces predominantly 45-55 keV X-rays, which are suitable for activating iodinated radio-sensitizing agents (e.g. IUdR) for oncological therapy. We demonstrate that clinically useful quantities of the nuclide are easily produced with a medical cyclotron which is far from the current state of the art.

  13. Thermoluminescent characteristics of nano-structure hydroxyapatite:Dy

    Energy Technology Data Exchange (ETDEWEB)

    Ziaie, F. [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Moein, N. Farhadi [Islamic Azad Univ. (Iran, Islamic Republic of). Central Tehran Branch; Shafaei, M. [Islamic Azad Univ. (Iran, Islamic Republic of). Science and Research Branch

    2014-12-15

    The thermoluminescence response of Dysprosium doped hydroxyapatite samples with different mol percentage of 0.5, 1 and 2 were studied and compared with the pure hydroxyapatite. The samples were objected to {sup 60}Co gamma rays irradiation with doses of 100 mGy to 10 Gy. The main peak in the sample glow curves were obtained at 310 C. The sensitivity of the 1 mol% Dy doped hydroxyapatite samples show the highest thermoluminescence response. Fading behavior of the irradiated samples was also studied. The experimental results show that the synthetic Dy-doped hydroxyapatite obtained by the hydrolysis method may be used in gamma radiation dosimetry.

  14. On the specific electrophysical properties of n-InSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Abdinov, A. Sh., E-mail: abdinov-axmed@yahoo.com [Baku State University (Azerbaijan); Babaeva, R. F., E-mail: babaeva-rena@yandex.ru; Rzaev, R. M., E-mail: abdinov-axmed@yandex.ru [Azerbaijan State Economic University (Azerbaijan); Ragimova, N. A.; Amirova, S. I. [Baku State University (Azerbaijan)

    2016-01-15

    The temperature dependences of physical parameters (the conductivity and the Hall constant) are experimentally investigated for pure indium-selenide (n-InSe) crystals and those lightly doped with rareearth elements (gadolinium, holmium, and dysprosium). It is established that the obtained results depend on the origin of the samples under investigation and prove to be contradictory for different samples. The obtained experimental results are treated taking into account the presence of chaotic large-scale defects and drift barriers caused by them in these samples.

  15. LiDy(PO34

    Directory of Open Access Journals (Sweden)

    Fathia Chehimi-Moumen

    2008-07-01

    Full Text Available Single crystals of lithium dysprosium polyphosphate, LiDy(PO34, were prepared by the flux method. The atomic arrangement is built up by infinite (PO3n chains extending along the b axis. Dy3+ and Li+ cations alternate in the middle of four such chains, with Dy...Li distances of 3.54 (1 and 3.48 (1 Å. The DyO8 dodecahedra and LiO4 tetrahedra deviate significantly from the ideal geometry. Both Dy and Li occupy special positions (Wyckoff position 4e, site symmetry 2.

  16. Luminescence behavior of Dy 3+ ions in lead borate glasses

    Science.gov (United States)

    Pisarska, Joanna

    2009-10-01

    Dy-doped lead borate glasses were studied. The luminescence spectra showed two characteristic bands at 480 and 573 nm due to 4F 9/2- 6H 15/2 (blue) and 4F 9/2- 6H 13/2 (yellow) transitions of Dy 3+. The yellow/blue luminescence of trivalent dysprosium was analyzed as a function of the B 2O 3/PbO ratios, the activator (Dy 3+) and the PbX 2 (X = F, Cl, Br) content.

  17. SPECTROSCOPIC PROPERTIES OF THE Ln-Ge COMPLEXES WITH DIETHYLENETRIAMINEPENTAACETIC ACID

    Directory of Open Access Journals (Sweden)

    Sergiy Smola

    2007-06-01

    Full Text Available Four new heteronuclear lanthanide complexes with general formula [Ge(OH(μ-HDTPALnGe(OH (μ-DTPA] (Ln = Sm – Dy were synthesized and subsequently characterized by different physico- chemical methods. The structures of new compounds have been proposed. In considered complexes the 4f-luminescence of three-charged ions of samarium, europium, terbium and dysprosium is realized at UV-excitation. It is noteworthy that it is the first observation of 4f-luminescence in water solutions of heteronuclear f-p-complexes. The comparison of luminescent characteristics of hetero- and homonuclear landthanide complexes is described and discussed as well.

  18. Mesoporous tertiary oxides via a novel amphiphilic approach

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Natasha; Hall, Simon R., E-mail: simon.hall@bristol.ac.uk, E-mail: Annela.Seddon@bristol.ac.uk [Bristol Centre for Functional Nanomaterials, Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom and Complex Functional Materials Group, School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Seddon, Annela M., E-mail: simon.hall@bristol.ac.uk, E-mail: Annela.Seddon@bristol.ac.uk; Hallett, James E. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Kockelmann, Winfried [STFC Rutherford Appleton Laboratory, Chilton OX11 0QX (United Kingdom); Ting, Valeska P. [Department of Chemical Engineering, University of Bath, Bath BA2 7AY (United Kingdom); Sadasivan, Sajanikumari; Tooze, Robert P. [Sasol Technology (UK) Ltd, Purdie Building, North Haugh, St Andrews, Fife KY16 9ST (United Kingdom)

    2016-01-01

    We report a facile biomimetic sol-gel synthesis using the sponge phase formed by the lipid monoolein as a structure-directing template, resulting in high phase purity, mesoporous dysprosium- and gadolinium titanates. The stability of monoolein in a 1,4-butanediol and water mixture complements the use of a simple sol-gel metal oxide synthesis route. By judicious control of the lipid/solvent concentration, the sponge phase of monoolein can be directly realised in the pyrochlore material, leading to a porous metal oxide network with an average pore diameter of 10 nm.

  19. Exploring Rare Earths supply constraints for the emerging clean energy technologies and the role of recycling

    DEFF Research Database (Denmark)

    Habib, Komal; Wenzel, Henrik

    The dependency on critical resources like Rare Earth Elements (REEs) has been pronounced as a potential barrier to a broader implementation of emerging renewable energy technologies. This study explores the dependency of such technologies especially wind turbines and electric vehicles along...... with other background end-uses on two key REEs, i.e. neodymium (Nd) and dysprosium (Dy). Our study reveals that a highly accelerated rate of REEs mining is unavoidable in order to keep up with the pace of increasing demand from new technologies required in a renewable energy strategy for meeting the climate...

  20. Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet

    Directory of Open Access Journals (Sweden)

    A. von Reppert

    2016-09-01

    Full Text Available We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the Néel temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost.

  1. Photothermal Mirror Method for the Study of Thermal Diffusivity and Thermo-Elastic Properties of Opaque Solid Materials

    Science.gov (United States)

    Marcano, Aristides; Gwanmesia, Gabriel; Workie, Bizenuh

    2017-09-01

    We have carried out the theoretical and experimental time evolution and amplitude study of the photothermal mirror signal generated by focusing a laser beam on the surface of a suite of solid samples. Based on a theoretical model that resolves the thermal diffusivity equation and the equation for thermo-elastic deformations simultaneously, we have calculated the transient time evolution and amplitude of the signal. We observe the same time evolution pattern for samples as diverse as glass, quartz, metals, and synthetic ceramic oxides. The data have yielded a linear dependence between the time build-up of the thermal mirror and the inverse of the thermal diffusivity for all the samples. For moderate power levels, we also observe a linear behavior between the stationary value of the signal and the thermally induced phase shift value. From the calibration curves, we have determined the thermally induced phase and the thermal diffusivity coefficients of two prospective nuclear reactor control rod materials, dysprosium titanate (Dy2TiO5) and dysprosium dititanate (Dy2Ti2O7) to be D = (7.0 ± 0.4) × 10^{-7} m^{2\\cdot s^{-1}}.

  2. Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling.

    Science.gov (United States)

    Rademaker, Jelle H; Kleijn, René; Yang, Yongxiang

    2013-09-17

    End-of-life recycling is promoted by OECD countries as a promising strategy in the current global supply crisis surrounding rare earth elements (REEs) so that dependence on China, the dominant supplier, can be decreased. So far the feasibility and potential yield of REE recycling has not been systematically evaluated. This paper estimates the annual waste flows of neodymium and dysprosium from permanent magnets, the main deployment of these critical REEs, during the 2011-2030 period. The estimates focus on three key permanent magnet waste flows: wind turbines, hybrid and electric vehicles, and hard disk drives (HDDs) in personal computers (PCs). This is a good indication of the end-of-life recycling of neodymium and dysprosium maximum potential yield. Results show that for some time to come, waste flows from permanent magnets will remain small relative to the rapidly growing global REE demand. Policymakers therefore need to be aware that during the next decade recycling is unlikely to substantially contribute to global REE supply security. In the long term, waste flows will increase sharply and will meet a substantial part of the total demand for these metals. Future REE recycling efforts should, therefore, focus on the development of recycling technology and infrastructure.

  3. Magnetic alignment study of rare-earth-containing liquid crystals.

    Science.gov (United States)

    Galyametdinov, Yury G; Haase, Wolfgang; Goderis, Bart; Moors, Dries; Driesen, Kris; Van Deun, Rik; Binnemans, Koen

    2007-12-20

    The liquid-crystalline rare-earth complexes of the type [Ln(LH)3(DOS)3]-where Ln is Tb, Dy, Ho, Er, Tm, or Yb; LH is the Schiff base N-octadecyl-4-tetradecyloxysalicylaldimine; and DOS is dodecylsulfate-exhibit a smectic A phase. Because of the presence of rare-earth ions with a large magnetic anisotropy, the smectic A phase of these liquid crystals can be easier aligned in an external magnetic field than smectic A phases of conventional liquid crystals. The magnetic anisotropy of the [Ln(LH)3(DOS)3] complexes was determined by measurement of the temperature-dependence of the magnetic susceptibility using a Faraday balance. The highest value for the magnetic anisotropy was found for the dysprosium(III) complex. The magnetic alignment of these liquid crystals was studied by time-resolved synchrotron small-angle X-ray scattering experiments. Depending on the sign of the magnetic anisotropy, the director of the liquid-crystalline molecules was aligned parallel or perpendicular to the magnetic field lines. A positive value of the magnetic anisotropy (and parallel alignment) was found for the thulium(III) and the ytterbium(III) complexes, whereas a negative value of the magnetic anisotropy (and perpendicular alignment) was observed for the terbium(III) and dysprosium(III) complexes.

  4. Thermal, optical and structural properties of Dy3+ doped sodium aluminophosphate glasses

    Science.gov (United States)

    Kaur, Manpreet; Singh, Anupinder; Thakur, Vanita; Singh, Lakhwant

    2016-03-01

    Trivalent Dysprosium doped sodium aluminophosphate glasses with composition 50P2O5-10Al2O3-(20-x)Na2O-20CaO-xDy2O3 (x varying from 0 to 5 mol%) were prepared by melt quench technique. The density of the prepared samples was measured using Archimedes principle and various physical properties like molar volume, rare earth ion concentration, polaron radius, inter nuclear distance and field strength were calculated using different formulae. The differential scanning calorimetry (DSC) was carried out to study the thermal stability of prepared glasses. The UV Visible absorption spectra of the dysprosium doped glasses were found to be comprised of ten absorption bands which correspond to transitions from ground state 6H15/2 to various excited states. The indirect optical band gap energy of the samples was calculated by Tauc's plot and the optical energy was found to be attenuated with Dy3+ ions. The photoluminescence spectrum revealed that Dy3+ doped aluminophosphate glasses have strong emission bands in the visible region. A blue emission band centred at 486 nm, a bright yellow band centred at 575 nm and a weak red band centred at 668 nm were observed in the emission spectrum due to excitation at 352 nm wavelength. Both FTIR and Raman spectra assert slight structural changes induced in the host glass network with Dy3+ ions.

  5. High-pressure syntheses and crystal structures of orthorhombic DyGaO{sub 3} and trigonal GaBO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Vitzthum, Daniela; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie; Hering, Stefanie A. [Stolmar and Partner, Muenchen (Germany); Perfler, Lukas [Innsbruck Univ. (Austria). Inst. fuer Mineralogie und Petrographie

    2015-07-01

    Orthorhombic dysprosium orthogallate DyGaO{sub 3} and trigonal gallium orthoborate GaBO{sub 3} were synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 8.5 GPa/1350 C and 8 GPa/700 C, respectively. Both crystal structures could be determined by single-crystal X-ray diffraction data collected at room temperature. The orthorhombic dysprosium orthogallate crystallizes in the space group Pnma (Z = 4) with the parameters a = 552.6(2), b = 754.5(2), c = 527.7(2) pm, V = 0.22002(8) nm{sup 3}, R1 = 0.0309, and wR2 = 0.0662 (all data) and the trigonal compound GaBO{sub 3} in the space group R anti 3c (Z = 6) with the parameters a = 457.10(6), c = 1419.2(3) pm, V = 0.25681(7) nm{sup 3}, R1 = 0.0147, and wR2 = 0.0356 (all data).

  6. Dy3+/Tb3+-codoped tunable warm light-emitting fluorogermanate glass phosphor

    Science.gov (United States)

    Alves, Rafaela T.; Trindade, Camyla M.; Santos, Weslley Q.; Gouveia-Neto, Artur S.; Bueno, Luciano A.; Mathias, Caio F.; Nalin, Marcelo

    2016-11-01

    Polychromatic tunable visible light emission in the region of the low correlated color temperature range using Dy3+/Tb3+ codoped PbGeO3:PbF2:CdF2 glass phosphor under UV-blue LED light excitation is presented. The glass phosphor was synthesized and the light emission feature was examined under UV-blue (353, 375, 385, and 405 nm) excitation. Emission around 484, 573, 663, and 754 nm due to dysprosium, and 488, 545, 585, 620, and 690 nm owing to terbium ions, was observed and analyzed as a function of the dysprosium and terbium contents and excitation wavelength. The excitation spectrum was examined and showed resonance peaks around 385 nm for the 573-nm emission of Dy3+, and 375 nm for the 545 nm of Tb3+. Energy-transfer process from Dy3+(F) to Tb3+(D) was also observed. Results indicated that the polychromatic visible light emitter herein reported produced light possessing tunable color tone via excitation wavelength and ions' mass ratio. The tint of the tunable overall emission resided in the warm region of the white-light boundary of the CIE-1931 chromaticity diagram.

  7. Probing Dy{sup 3+} magnetic moments in multiferroic perovskite DyMnO{sub 3} by optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kashchenko, M.A. [Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Dolgoprudnyi (Russian Federation); Klimin, S.A.; Popova, M.N. [Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow (Russian Federation); Balbashov, A.M. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation)

    2016-06-15

    We present a detailed temperature-dependent (4-300 K) spectroscopic study of DyMnO{sub 3} single crystals with distorted perovskite structure. Energies of 36 crystal-field levels of Dy{sup 3+} in paramagnetic DyMnO{sub 3} were determined. The Dy{sup 3+} ground Kramers doublet does not split at T{sub N}{sup Mn} = 39 K and splits below T{sub lock} = 18 K. The splitting grows fast at temperatures near T{sub N}{sup Dy} = 6.5 K and reaches Δ{sub 0} ∼ 11 ± 2 cm{sup -1} at 4 K. Using the experimental temperature dependence Δ{sub 0}(T), we calculate the dysprosium magnetic moment m{sub Dy}(T) and the dysprosium contribution into specific heat and magnetic susceptibility. Analysing all the experimental data, we conclude that the Dy-Mn interaction is of the Dzyaloshinskii-Moriya type. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Development of Nanomaterials for Nuclear Energetics

    Science.gov (United States)

    Petrunin, V. F.

    Structure and properties peculiarities of the nanocrystalline powders give the opportunity to design new and to develop a modernization of nuclear energy industry materials. It was shown experimentally, that addition of 5-10% uranium dioxide nanocrystalline powder to traditional coarse powder allows to decrease the sintering temperature or to increase the fuel tablets size of grain. Similar perspectives for the technology of neutron absorbing tablets of control-rod modernization are shown by nanopowder of dysprosium hafnate changing instead now using boron carbide. It is powders in nanocrystalline state get an opportunity to sinter them and to receive compact tablet with 8,2-8,4 g/cm2 density for automatic defence system of nuclear reactor. Resource of dysprosium hafnate ceramics can be 18-20 years instead 4-5 years for boron carbide. To step up the radiation-damage stability of fuel element jacket material was suggested to strengthen a heat-resistant ferrite-martensite steel by Y2O3 nanocrystalline powder addition. Nanopowder with size of particles 560 nm and crystallite size 9 nm was prepeared by chemical coprecipitation method. To make lighter the container for transport and provisional disposal of exposed fuel from nuclear reactor a new boron-aluminium alloy called as boral was developed. This composite armed with nanopowders of boron-containing materials and heavy metals oxides can replace succesburnt-up corrosion-resistant steels.

  9. A long-lived spin-orbit-coupled degenerate dipolar Fermi gas

    CERN Document Server

    Burdick, Nathaniel Q; Lev, Benjamin L

    2016-01-01

    We describe the creation of a long-lived spin-orbit-coupled gas of quantum degenerate atoms using the most magnetic fermionic element, dysprosium. Spin-orbit-coupling arises from a synthetic gauge field created by the adiabatic following of degenerate dressed states comprised of optically coupled components of an atomic spin. Because of dysprosium's large electronic orbital angular momentum and large magnetic moment, the lifetime of the gas is limited not by spontaneous emission from the light-matter coupling, as for gases of alkali-metal atoms, but by dipolar relaxation of the spin. This relaxation is suppressed at large magnetic fields due to Fermi statistics. We observe lifetimes up to 400 ms, which exceeds that of spin-orbit-coupled fermionic alkali atoms by a factor of 10-100, and is close to the value obtained from a theoretical model. Elastic dipolar interactions are also observed to influence the Rabi evolution of the spin, revealing an interacting fermionic system. The long lifetime of this weakly in...

  10. Magnetization dynamics in rare earth doped NiFe films

    Energy Technology Data Exchange (ETDEWEB)

    Kiessling, Matthias; Woltersdorf, Georg; Back, Christian [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, D- 93040 Regensburg (Germany); Thiele, Jan-Ulrich; Schabes, Manfred [Hitachi Global Storage Technologies, 3403 Yerba Buena Road, San Jose, CA 95135 (United States)

    2007-07-01

    The influence of rare earth dopants on the damping parameter and the resulting possibility to control this parameter were investigated. In our experiments NiFe films were doped with Dysprosium, Holmium, Terbium, and Gadolinium. The magnetization dynamics of these rare earth doped films was mainly studied by means of ferromagnetic resonance (FMR) and network-analyzer ferromagnetic resonance. It is demonstrated that the doping of a NiFe film by a small amount of rare earth elements (Holmium, Terbium and Dysprosium) greatly effects its magnetic relaxation rate. This additional damping is proportional to the doping level. Compared to the pure NiFe film it is possible to increase the damping parameter of the magnetic film by two orders of magnitude. On the other hand Gadolinium as a dopant has no influence on the damping parameter. For small dopant concentrations the in and out-of-plane FMR measurements at various frequencies can be well described by the same damping parameter. This is expected for the Gilbert damping term in the equation of motion. Therefore the increased damping can be attributed to an increased rate of transfer of angular momentum from the spin system to the lattice.

  11. Luminescent characteristics of CaSO{sub 4}:Dy films obtained by spray pyrolysis method

    Energy Technology Data Exchange (ETDEWEB)

    Roman, J., E-mail: holand_jeos@hotmail.com [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria-IPN, Av. Legaria 694, Col. Irrigacion, Mexico, D.F. 11500 (Mexico); Rivera, T.; Lozano, I.B. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria-IPN, Av. Legaria 694, Col. Irrigacion, Mexico, D.F. 11500 (Mexico); Sosa, R. [Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco186, Col. Vicentina, Mexico, D.F., 09340 (Mexico); Alarcon, G. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria-IPN, Av. Legaria 694, Col. Irrigacion, Mexico, D.F. 11500 (Mexico)

    2012-07-15

    The present paper reports the experimental results of dysprosium doped calcium sulphate (CaSO{sub 4}:Dy) films deposited by spray pyrolysis method. CaSO{sub 4}:Dy films were deposited on three different surfaces: glass, aluminum and quartz substrates at temperatures in the range from 450 to 600 Degree-Sign C. Structural and morphological characteristics of CaSO{sub 4}:Dy films were observed. Thermoluminescent characteristics of films were determined by irradiating ultraviolet energy region. Thermoluminescent glow curve of CaSO{sub 4}:Dy films with glass and aluminum substrates showed a peak under environmental irradiation. Both TL response glow shape and intensity of CaSO{sub 4}:Dy films UV irradiated as a function of substrates were studied. - Highlights: Black-Right-Pointing-Pointer We carried out the preparation of calcium sulfate films doped with dysprosium (CaSO{sub 4}:Dy) by spray paralysis method. Black-Right-Pointing-Pointer SEM and EDS techniques were applied to study the surface topography and chemical composition of the CaSO{sub 4}:Dy films. Black-Right-Pointing-Pointer Thermoluminescent characteristics of films were determined by irradiating ultraviolet energy region. Black-Right-Pointing-Pointer The thermoluminescent response of CaSO{sub 4}:Dy films as a function of substrate was analyzed.

  12. Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 The purpose of this test method is to define a general procedure for determining an unknown thermal-neutron fluence rate by neutron activation techniques. It is not practicable to describe completely a technique applicable to the large number of experimental situations that require the measurement of a thermal-neutron fluence rate. Therefore, this method is presented so that the user may adapt to his particular situation the fundamental procedures of the following techniques. 1.1.1 Radiometric counting technique using pure cobalt, pure gold, pure indium, cobalt-aluminum, alloy, gold-aluminum alloy, or indium-aluminum alloy. 1.1.2 Standard comparison technique using pure gold, or gold-aluminum alloy, and 1.1.3 Secondary standard comparison techniques using pure indium, indium-aluminum alloy, pure dysprosium, or dysprosium-aluminum alloy. 1.2 The techniques presented are limited to measurements at room temperatures. However, special problems when making thermal-neutron fluence rate measurements in high-...

  13. Couples Magnetic and Structural Transitions in High-Purity Dy and Gd5SbxGe4-x

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshov, Alexander S. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Magnetic materials exhibiting magnetic phase transitions simultaneously with structural rearrangements of their crystal lattices hold a promise for numerous applications including magnetic refrigeration, magnetomechanical devices and sensors. We undertook a detailed study of a single crystal of dysprosium metal, which is a classical example of a system where magnetic and crystallographic sublattices can be either coupled or decoupled from one another. Magnetocaloric effect, magnetization, ac magnetic susceptibility, and heat capacity of high purity single crystals of dysprosium have been investigated over broad temperature and magnetic field intervals with the magnetic field vector parallel to either the a- or c-axes of the crystal. Notable differences in the behavior of the physical properties when compared to Dy samples studied in the past have been observed between 110 K and 125 K, and between 178 K and ~210 K. A plausible mechanism based on the formation of antiferromagnetic clusters in the impure Dy has been suggested in order to explain the reduction of the magnetocaloric effect in the vicinity of the Neel point. Experimental and theoretical investigations of the influence of commensurability effects on the magnetic phase diagram and the value of the magnetocaloric effect have been conducted. The presence of newly found anomalies in the physical properties has been considered as evidence of previously unreported states of Dy. The refined magnetic phase diagram of dysprosium with the magnetic field vector parallel to the a-axis of a crystal has been constructed and discussed. The magnetic and crystallographic properties of Gd5SbxGe4-x pseudo-binary system were studied by x-ray diffraction (at room temperature), heat capacity, ac-magnetic susceptibility, and magnetization in the temperature interval 5-320 K in magnetic fields up to 100 kOe. The magnetic properties of three composition (x = 0.5, 1,2) were examined in detail. The

  14. Lifetimes of superdeformed nuclei in the mass region A {approx}150 with the Eurogam multidetector array; Durees de vie de noyaux superdeformes de la region de masse A {approx}150 mesurees avec le multicompteur Eurogam

    Energy Technology Data Exchange (ETDEWEB)

    Savajols, H.

    1996-05-13

    This work concerns the study of the nuclear superdeformation phenomenon in the rare earth region (A {approx} 150). The superdeformed (SD) states in Gadolinium and Dysprosium isotopes were produced via heavy-ion induced reactions and studied with the (EUROGAM EUROpean GAmma-ray Microscope) gamma multidetector array. Precise level attenuation method (DSAM). From the derived quadrupole moments, we find large differences in deformation between the yrast bands in neighbour nuclei explained in terms of the case of nuclei corresponding to an axis ratio of 2:1, the shell gaps are not fixed at a specific particle number and deformation. Furthermore the present results indicate that the deformations associated with identical bands are different supporting the picture that mass and deformation changes tend to compensate in SB bands with the same moments of inertia. (author). 114 refs.

  15. Growth,Thermal and Optical Properties of DyxY1-xAl3(BO3)4 Crystal

    Institute of Scientific and Technical Information of China (English)

    李静; 王继扬; 程绣凤; 张怀金

    2004-01-01

    Single crystal of dysprosium-doped yttrium aluminum tetraborate Dy:YAl3(BO3)4(Dy:YAB) was grown by the flux method. The room-temperature absorption spectrum and low-temperature fluorescence spectrum of Dy3+:YAl3(BO3)4 crystal were measured. The yellow emission transitions(4F9/2→6H13/2)at 575 nm is more intense than other transitions. The specific heat and thermal expansion were measured. The specific heat is 0.93 J·g-1·℃-1 at room temperature. The maximum of the thermal expansion occurs in the direction parallel to the c-axis and the minimum occurs in the direction parallel to the a-axis. The thermal expansion coefficient along c-axis is almost 6.5 times larger than that along a-axis.

  16. Electronic and vibrational spectra of some rare earth trifluoromethanesulfonates crystals

    Science.gov (United States)

    Paul, P.; Ghosh, M.; Neogy, D.; Mallick, P. K.

    2011-01-01

    The Raman and infrared spectra of some rare earth (dysprosium and terbium) trifluoromethanesulfonates crystals have been analyzed. Different vibrational frequencies of trifluoromethanesulfonate ions (CF 3SO 3-) are identified and assigned to different vibrations of the SO 3 and CF 3 groups. Electronic transitions of R 3+ ions (R = Dy, Tb) in these salts have been assigned to transitions from the ground to different energy levels of the ground multiplet. The electronic energy levels of the rare earth ions are also determined theoretically with the help of single electron crystal field theory. They are found to yield results not only in good agreement with the observed spectral data but also in good conformity with those obtained previously from magnetic measurements.

  17. Concepts for using trapped-flux HTS in motors and generators

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R., E-mail: john.r.hull2@boeing.com [Boeing Research and Technology, PO Box 3707, Seattle, WA 98124 (United States); Strasik, Michael [Boeing Research and Technology, PO Box 3707, Seattle, WA 98124 (United States)

    2013-01-15

    Highlights: ► Use of Dy for core material increases t in situ magnetization of trapped-flux HTS. ► Hysteresis loss in Dy needs to be reduced. ► Bootstrap in situ magnetization can be done with two pulsed-power generators. -- Abstract: We examine the expected performance of a brushless motor/generator that uses trapped-flux (TF) bulk high-temperature superconductors (HTSs) to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium (Dy) for the stator and rotor cores. We also examine methods to energize TF in HTS for generators used in pulsed-power applications.

  18. Can Dark Matter Induce Cosmological Evolution of the Fundamental Constants of Nature?

    Science.gov (United States)

    Stadnik, Y V; Flambaum, V V

    2015-11-13

    We demonstrate that massive fields, such as dark matter, can directly produce a cosmological evolution of the fundamental constants of nature. We show that a scalar or pseudoscalar (axionlike) dark matter field ϕ, which forms a coherently oscillating classical field and interacts with standard model particles via quadratic couplings in ϕ, produces "slow" cosmological evolution and oscillating variations of the fundamental constants. We derive limits on the quadratic interactions of ϕ with the photon, electron, and light quarks from measurements of the primordial (4)He abundance produced during big bang nucleosynthesis and recent atomic dysprosium spectroscopy measurements. These limits improve on existing constraints by up to 15 orders of magnitude. We also derive limits on the previously unconstrained linear and quadratic interactions of ϕ with the massive vector bosons from measurements of the primordial (4)He abundance.

  19. Effects of Dy on cyclic oxidation resistance of NiAl alloy

    Institute of Scientific and Technical Information of China (English)

    GUO Hong-bo; WANG Xiao-yan; LI Ji; WANG Shi-xing; GONG Sheng-kai

    2009-01-01

    The NiAl alloys modified by reactive element(RE), dysprosium(Dy), were produced by arc melting. The microstructures of the modified alloys were investigated by field emission-scanning electron microscope(FE-SEM) equipped with energy dispersive spectroscope(EDS) and back scatter detector. Cyclic oxidation tests at 1 200 ℃ were conducted to assess the cyclic oxidation performance of the alloys. The Dy dopant prevents the surface rumpling of the oxide scale and the formation of cavities beneath the oxide scale. The pegs consisting of Dy-rich oxide inclusion core and an outer alumina sheath develop deeply in the alloy and improve the oxide scale adhesion. 0.05%-0.1% (molar fraction) Dy dramatically improves the cyclic oxidation resistance of the NiAl alloy. Too high concentration of Dy is deleterious because of the fast oxidation rate caused by severe internal oxidation.

  20. Predictive model for ionic liquid extraction solvents for rare earth elements

    Science.gov (United States)

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Eckert, Franck; Shibata, Etsuro; Nakamura, Takashi

    2015-12-01

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF3-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids' ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF3 were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  1. Hybrid nanomaterials: anchoring magnetic molecules on naked gold nanocrystals.

    Science.gov (United States)

    Holmberg, Rebecca J; Hutchings, Amy-Jayne; Habib, Fatemah; Korobkov, Ilia; Scaiano, Juan C; Murugesu, Muralee

    2013-12-16

    The pairing of molecular magnets and nanomaterials couples top-down and bottom-up approaches to nanotechnology; facilitating a unique methodology to the controlled study of interfacial magnetic properties. Attaching Single-Molecule Magnets (SMMs) to "naked" gold nanoparticles is a novel method of exploring various avenues of magnetic nanotechnology, such as drug delivery, information storage, catalysis, and assembly of magnetic-nanostructural motifs. Herein we report the successful capping of laser ablation synthesized "naked" gold nanoparticles with a dinuclear dysprosium complex, while introducing new information regarding the changes in molecular magnetic properties upon surface attachment. We anticipate that this methodology in producing these magneto-plasmonic nanostructures not only provides answers to fundamental questions but also has the potential to provide new avenues to applications including information storage, multimodal imaging, biomedicine, and optoelectronics.

  2. Ionization energy shift of characteristic K x-ray lines from high-Z materials for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Słabkowska, K.; Szymańska, E.; Polasik, M. [Faculty of Chemistry, Nicholas Copernicus University, 87-100 Toruń (Poland); Pereira, N. R. [Ecopulse, Inc., 7844 Vervain Ct, Springfield, Virginia 22152 (United States); Rzadkiewicz, J. [National Centre for Nuclear Research, 05-400 Otwock (Poland); Seely, J. F. [Artep, Inc., 2922 Excelsior Springs Ct, Ellicott, Maryland 21042 (United States); Weber, B. V.; Schumer, J. W. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-03-15

    The energy of the characteristic x-rays emitted by high atomic number atoms in a plasma that contains energetic electrons depends on the atom's ionization. For tungsten, the ionization energy shift of the L-lines has recently been used to diagnose the plasma's ionization; the change in energy of a K-line has been measured for iridium and observed for ytterbium. Here, we present detailed computations of the ionization energy shift to K-lines of these and an additional element, dysprosium; for these atoms, some K-lines nearly coincide in energy with K-edges of slightly lower Z atoms so that a change in transmission behind a K-edge filter betrays a change in energy. The ionization energy shift of such high-energy K-lines may enable a unique diagnostic when the plasma is inside an otherwise opaque enclosure such as hohlraums used on the National Ignition Facility.

  3. Precision Measurements: Testing the Time Variation of the Fine Structure Constant

    Science.gov (United States)

    Lamoreaux, Steve

    2004-05-01

    Often, precision measurements from diverse fields can be used to learn new facts about the universe. The usual definition of "precision" is based on improvements over previous measurements. A review of the present state of knowledge regarding the possible time variation of the fine structure constant α will be presented; "precise" data from natural phenomena, which include an apparent shift in the red-shift-scaled fine structure in the absorption spectra of quasar light, and the isotopic abundances in the fission products of a prehistoric natural reactor in Oklo, Gabon. Prospects to improve the accuracy for the constancy of α with laboratory experiments will be discussed. Our two experimental investigations currently being developed are based on optical spectroscopy of trapped ions and on radiofrequency spectroscopy of an atomic dysprosium beam. A sensitivity of dotα/α≈ 10-18/yr is anticipated. Because this accuracy exceeds that by which the second is defined, these measurements will necessarily be differential.

  4. Analyses of crystal field and exchange interaction of Dy3Ga5O12 under extreme conditions

    Institute of Scientific and Technical Information of China (English)

    Wang Wei; Qi Xin; Yue Yuan

    2011-01-01

    This paper theoretically investigates the effects of crystal field and exchange interaction field on magnetic properties in dysprosium gallium garnet under extreme conditions (low temperatures and high magnetic fields) based on quantum theory. Here, five sets of crystal field parameters are discussed and compared. It demonstrates that, only considering the crystal field effect, the experiments can not be successfully explained. Thus, referring to the molecular field theory,an effective exchange field associated with the Dy-Dy exchange interaction is further taken into account. Under special consideration of crystal field and the exchange interaction field, it obtains an excellent agreement between the theoretical results and experiments, and further confirms that the exchange interaction field between rare-earth ions has great importance to magnetic properties in paramagnetic rare-earth gallium garnets.

  5. Switching the conductance of Dy nanocontacts by magnetostriction.

    Science.gov (United States)

    Müller, Marc; Montbrun, Richard; Marz, Michael; Fritsch, Veronika; Sürgers, Christoph; v Löhneysen, Hilbert

    2011-02-09

    The electrical conductance G of mechanical break-junctions fabricated from the rare-earth metal dysprosium has been investigated at 4.2 K where Dy is in the ferromagnetic state. In addition to the usual variation of the conductance while breaking the wire mechanically, the conductance can be changed reproducibly by variation of the magnetic field H, due to the large magnetostriction of Dy. For a number of contacts, we observe discrete changes in G(H) in the range of several G(0) = 2e(2)/h. The behavior of G(H) and its angular dependence can be quantitatively understood by taking into account the magnetostrictive properties of Dy. This realization of a magnetostrictive few-atom switch demonstrates the possibility of reproducibly tuning the conductance of magnetic nanocontacts by a magnetic field.

  6. Preparation and structural characterization of the thermoluminescent material CaSO{sub 4}: Dy; Preparacion y caracterizacion estructural del material termoluminiscente CaSO{sub 4}: Dy

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez R, A.; Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico); Gonzalez M, P.R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Rivera, T. [CICATA-IPN, Legaria 694, 11500 Mexico D.F. (Mexico)

    2005-07-01

    The grade of crystallinity of a material is important so that the one is presented the thermoluminescence phenomenon; for what is necessary to study those structural characteristic of a TL material and to correlate them with its TL response when being irradiated with ionizing radiation. The calcium sulfate activated with Dysprosium (CaSO{sub 4}: Dy) it is a material that has demonstrated its efficiency in the dosimetry of the ionizing radiation for the thermoluminescence method. In this work the structural characterization of this prepared material for the recrystallization method by means of the evaporation of the solvent and their relationship with their TL response is presented. The results showed that the best material to be used in thermoluminescent dosimetry presents a crystalline structure in orthorhombic phase and a particle size in the interval of 80 {mu}m to 200 {mu}m. (Author)

  7. Growth of fcc(111) Dy multi-height islands on 6H-SiC(0001) graphene.

    Science.gov (United States)

    Hershberger, M T; Hupalo, M; Thiel, P A; Tringides, M C

    2013-06-05

    Graphene based spintronic devices require an understanding of the growth of magnetic metals. Rare earth metals have large bulk magnetic moments so they are good candidates for such applications, and it is important to identify their growth mode. Dysprosium was deposited on epitaxial graphene, prepared by thermally annealing 6H-SiC(0001). The majority of the grown islands have triangular instead of hexagonal shapes. This is observed both for single layer islands nucleating at the top of incomplete islands and for fully completed multi-height islands. We analyze the island shape distribution and stacking sequence of successively grown islands to deduce that the Dy islands have fcc(111) structure, and that the triangular shapes result from asymmetric barriers to corner crossing.

  8. Radioisotopic synovectomy using ferric hydroxide macroaggregated for chronic arthritis treatment; Sinovectomia radioisotopica atraves do macroagregado de hidroxido ferrico para tratamento da artrite cronica

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Carla Flavia; Campos, Tarcisio P.R. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Ciencias e Tecnicas Nucleares] E-mail: campos@nuclear.ufmg.br

    2002-07-01

    Synovectomy radioisotopic is an arthritis treatment used in specific clinical conditions whose main goal is to sterilized the synovia. This treatment has specific and precise indications and it is considered to have an adequate response. The present work presents a modeling of an articulation (joint) based on its real geometric anatomy and chemical constitution. The internal dosimetry is evaluated by the Monte Carlo Code. The majority of the radionuclides were considered in the simulations. The syntheses of the ferric hydroxide macroaggregates with dysprosium and samarium have been prepared (Dy{sup 165}-MHF and Sm{sup 153}-MHF). Obtaining the cintilographic images of rabbits in which Dy{sup 165}-MHF is injected is in progress. Biodistribution studies in addition with the internal dosimetry will certify the dose in the membrane of the synovia. (author)

  9. Rare earth elements: end use and recyclability

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  10. Predictive model for ionic liquid extraction solvents for rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Grabda, Mariusz; Oleszek, Sylwia [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2,1-Katahira, 2-Chome, 980-8577 Sendai (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, ul. M. Sklodowskiej-Curie 34, 41-819, Zabrze (Poland); Panigrahi, Mrutyunjay; Kozak, Dmytro; Shibata, Etsuro; Nakamura, Takashi [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2,1-Katahira, 2-Chome, 980-8577 Sendai (Japan); Eckert, Franck [COSMOlogic GmbH & Co KG, Imbacher Weg 46, 50379 Leverkusen (Germany)

    2015-12-31

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  11. Magnetic anisotropy in surface-supported single-ion lanthanide complexes

    CERN Document Server

    Stoll, Paul; Rolf, Daniela; Nickel, Fabian; Xu, Qingyu; Hartmann, Claudia; Umbach, Tobias R; Kopprasch, Jens; Ladenthin, Janina N; Schierle, Enrico; Weschke, Eugen; Czekelius, Constantin; Kuch, Wolfgang; Franke, Katharina J

    2016-01-01

    Single-ion lanthanide-organic complexes can provide stable magnetic moments with well-defined orientation for spintronic applications on the atomic level. Here, we show by a combined experimental approach of scanning tunneling microscopy and X-ray absorption spectroscopy that dysprosium-tris(1,1,1-trifluoro-4-(2-thienyl)-2,4butanedionate) (Dy(tta)$_3$) complexes deposited on a Au(111) surface undergo a molecular distortion, resulting in distinct crystal field symmetry imposed on the Dy ion. This leads to an easy-axis magnetization direction in the ligand plane. Furthermore, we show that tunneling electrons hardly couple to the spin excitations, which we ascribe to the shielded nature of the $4f$ electrons.

  12. Imitators of plutonium and americium in a mixed uranium- plutonium nitride fuel

    Science.gov (United States)

    Nikitin, S. N.; Shornikov, D. P.; Tarasov, B. A.; Baranov, V. G.; Burlakova, M. A.

    2016-04-01

    Uranium nitride and mix uranium nitride (U-Pu)N is most popular nuclear fuel for Russian Fast Breeder Reactor. The works in hot cells associated with the radiation exposure of personnel and methodological difficulties. To know the main physical-chemical properties of uranium-plutonium nitride it necessary research to hot cells. In this paper, based on an assessment of physicochemical and thermodynamic properties of selected simulators Pu and Am. Analogues of Pu is are Ce and Y, and analogues Am - Dy. The technique of obtaining a model nitride fuel based on lanthanides nitrides and UN. Hydrogenation-dehydrogenation- nitration method of derived powders nitrides uranium, cerium, yttrium and dysprosium, held their mixing, pressing and sintering, the samples obtained model nitride fuel with plutonium and americium imitation. According to the results of structural studies have shown that all the samples are solid solution nitrides rare earth (REE) elements in UN.

  13. Cold neutron microprobe for materials analysis using tapered capillary optics

    Science.gov (United States)

    Sharov, V. A.; Xiao, Q.-F.; Ponomarev, I. Yu.; Mildner, D. F. R.; Chen-Mayer, H. H.

    2000-09-01

    A prototype monolithic capillary lens for focusing neutrons produced by thermally drawing straight multicapillary bundles has been characterized with cold neutrons, and gives an intensity gain of a factor of 25 at a focal distance of 8 mm, over the focal spot area of width 87 μm. This is over an order of magnitude smaller in area than for the multifiber capillary lens. The spatial resolution available with the lens has been tested with prompt gamma measurements on slivers of dysprosium. Background problems that can affect the spatial resolution of measurements taken at the focal position of the lens are addressed. The boron glass of the tapered monolithic lens provides good shielding from unfocused neutrons in the vicinity of the lens focus.

  14. Evaluation of the thermoluminescent detector answers of CaSO{sub 4}:Dy, LiF:Mg,Ti and micro LiF:Mg,Ti in photon clinical beams dosimetry using water simulator; Avaliacao da resposta de detectores termoluminescentes de CaSO4:Dy, LiF:Mg,Ti e microLiF:Mg,Ti na dosimetria de feixes clinicos de fotons utilizando simulador de agua

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Luciana C.; Veneziani, Glauco R.; Campos, Leticia L., E-mail: lmatsushima@usp.b, E-mail: veneziani@ipen.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (GMR/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Metrologia das Radiacoes; Sakuraba, Roberto K.; Cruz, Jose C. da, E-mail: rsakuraba@einstein.b, E-mail: jccruz@einstein.b [Sociedade Beneficente Israelita Brasileira, Sao Paulo, SP (Brazil). Hospital Albert Einstein (HAE)

    2011-10-26

    This paper perform the comparative study of thermoluminescent answer of calcium sulfate dosemeter doped with dysprosium (DaSO{sub 4}:Dy) produced by the IPEN, Sao Paulo, with answer of lithium fluoride dosemeters doped with magnesium and titanium (LiF:Mg, Ti) in the dosimetry of clinical beams of photons (6 and 15 MV) by using water simulator object. Dose-answer curves were obtained for gamma radiation of cobalt-60 in the air and in conditions of electronic equilibrium (plate of PMMA), and clinical photons of CLINAC model 2100C accelerators of the two evaluated hospitals: Hospital das Clinicas of the Faculty of Medicine of Sao Paulo university and Hospital Albert Einstein. It was also evaluated the sensitivity and reproduction of the three dosemeters

  15. Analysis of thermal demagnetization behavior of Nd–Fe–B sintered magnets using magnetic domain observation

    Directory of Open Access Journals (Sweden)

    Masaaki Takezawa

    2016-05-01

    Full Text Available We used magnetic domain observation to statistically observe the thermal demagnetization behavior of Nd–Fe–B sintered magnets at elevated temperatures up to 150 °C. Simultaneous magnetization reversal in a hundred adjacent grains occurred at 90 °C because of the magnetic interaction among the grains beyond grain boundaries in the Dysprosium (Dy-free low-coercivity magnet. Conversely, simultaneous magnetization reversal in a hundred grains did not occur in the Dy-added high-coercivity magnets, and the demagnetizing ratio steadily increased with temperature. Furthermore, the addition of Dy induced high thermal stability by eliminating the simultaneous thermal demagnetization, which was caused by the magnetic interaction among the grains.

  16. History and Present Situation and Developing Tendency of Rare Earth Applied in Agriculture

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@History of rare earth applied in agriculture Concept of rare earth Rare earth(RE for short)is a general designation of 17 elements,including 15 elements of lanthanum system,they are lanthanum (La),cerium (Ce),praseodymium (Pr),neodymium (Nd),promethium(Pm),samarium(Sm),europium(Eu),gadolinium(Gd),terbium(Tb),dysprosium(Dy),holmium(Ho),erbium(Er),thulium(Tm),ytterbium(Yb),lutetium(Lu)),and 2 elements of the same clan with lanthanum system: scandium (Se)and yttrium (Y) in the periodic table of elements.Rare earth look like earth or soil,and their quantity which may be separated from ore are very rare or few,so scientists call them rare earth elements.

  17. Synthesis of ZnO:Dy Nanopowder and Photoluminescence of Dy3+ in ZnO

    Institute of Scientific and Technical Information of China (English)

    Zhang Linli; Guo Changxin; Zhao Junjing; Hu Juntao

    2005-01-01

    A type of dysprosium-doped ZnO (ZnO:Dy) nanopowder was synthesized by high temperature calcinations. XRD was used to analyze the structure. Photoluminescence spectra were used to study the optical characteristic. PL of ZnO:Dy shows two different spectra which are broad band resulted from the defect of Dy in ZnO and sharp lines from the 4f→4f transition of isolated Dy3+ luminescence center. The emission and excitation spectra depend on the excitation wavelength and the concentration of Dy3+. The broad bands with peaks at 600 and 760 nm are attributed to the recombination from an electron of the defect Dy in ZnO to a hole in VB.

  18. Collisional effects in the dynamics of a dipolar gas

    Science.gov (United States)

    Sykes, Andrew

    2016-05-01

    In this talk, we discuss the role of collisions in dipolar gases which are far from equilibrium. We compare and contrast collisional mechanisms with mean-field effects. We consider several cases of dynamical behaviour. We begin with cross-dimensional relaxation, where the time-scale of equilibration is studied following a quench in the trap parameters. We also discuss the damping of monopole and quadrupole excitations. Finally we discuss time-of-flight expansion dynamics. Our results demonstrate that collisions can play a significant role. We use these results to extract an estimate of the deca-heptuplet s-partial-wave scattering length of bosonic dysprosium, and to improve the accuracy of experimental time-of-flight expansion imaging. Financial support from the Marie Sklodowska-Curie H2020 framework program.

  19. Optical properties of Langmuir-Blodgett film of hemicyanine containing the rare earth complex anion Dy(BPMPHD) (-2)

    Science.gov (United States)

    Wang, Kezhi; Huang, Chunhui; Xu, Guangxian; Zhao, Xinsheng; Xia, Xiaohua; Wu, Nianzu; Xu, Lingge; Li, Tiankai

    1994-12-01

    (E)-N-hexadecyl-4-(2-(4-dimethylaminophnyl) ethenyl) pyridinium bis(1,6-bis (1'-phenyl-3'-methyl-5'-pyrazolone-4') hexanedio-nato-(1,5)) dysprosium(III) was synthesized. The monolayers formed on a pure water subphase (pH 5.6,C) were transferred onto hydrophilic quartz, calcium fluoride, and glass substrates successively with a transfer ratio of around unity. From second-harmonic generation (SHG) experiments, the second-order molecular hyperpolarizability beta was evaluated to be about 4.8 x 10(exp -48) C cu m/sq V. The results of UV-visible, IR and X-ray photoelectron spectroscopy of the Langmuir-Blodgett films are also reported.

  20. Rare earth doped glass-ceramics containing NaLaF4 nanocrystals

    Science.gov (United States)

    Elsts, E.; Krieke, G.; Rogulis, U.; Smits, K.; Zolotarjovs, A.; Jansons, J.; Sarakovskis, A.; Kundzins, K.

    2016-09-01

    Oxyfluoride glasses 16Na2O-9NaF-5LaF3-7Al2O3-63SiO2 (mol%) activated with 3% terbium, dysprosium, praseodymium and neodymium fluorides have been prepared and studied by differential thermal analysis, cathodoluminescence, X-ray induced luminescence, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. We found out that the presence of crystalline phase enhances the X-ray induced luminescence intensity. X-ray induced luminescence is the most intense for the sample activated with terbium and treated at 700 °C, whereas the praseodymium and neodymium activated samples have the fastest decay times.

  1. Dielectric behaviour of (Ba0.77Ca0.23(Ti0.98Dy0.02O3 ceramics

    Directory of Open Access Journals (Sweden)

    Abdul Moquim

    2015-06-01

    Full Text Available In this study, BaTiO3 is modified with Ca2+ and in addition doped with Dy3+ at the B site lattice. The main idea is to search for new lead-free ferroelectric material and improve their properties. For this purpose, the barium calcium titanate (BCT as a host and the rare earth element Dy3+ as an activator were used to fabricate a multifunctional material. The obtained ceramics was found to be homogeneous, dense and a single phase material with no evidence of secondary phases. The dielectric study showed that TC increases with the addition of dopants and the obtained ceramics behaves like a relaxor ferroelectric. Some important structural parameters and dielectric properties of dysprosium modified barium (calcium titanate ceramics are presented.

  2. Nano preparation of Dy{sup 3+} substituted ceria via urea-formaldehyde gel combustion route

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Mridula; Bandyopadhyay, Siddhartha [CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2013-10-15

    Nanocrystalline ceria powders have been synthesised via the gel combustion route, using for the first time urea formaldehyde as fuel for doping of dysprosium oxide. This synthesis route can produce well-crystallised powder within a one step combustion process, eliminating the need for further calcinations. The formation sequences have been described through differential scanning calorimetry-thermo gravimetric analysis study and the crystallinity of the powder was examined using X-ray diffraction, selected area electron diffraction and high resolution patterns. Lattice parameter was found to increase with doping concentration. Very fine grains in the size range of 3-5 nm are found to occur in the form of large and soft agglomerates (50-130 nm). The optical band gap suggests that those powders with low dopant concentration may have useful applications in UV-shielding and in transparent conducting film. (orig.)

  3. Quantum filaments in dipolar Bose-Einstein condensates

    Science.gov (United States)

    Wächtler, F.; Santos, L.

    2016-06-01

    Collapse in dipolar Bose-Einstein condensates may be arrested by quantum fluctuations. Due to the anisotropy of the dipole-dipole interactions, the dipole-driven collapse induced by soft excitations is compensated by the repulsive Lee-Huang-Yang contribution resulting from quantum fluctuations of hard excitations, in a similar mechanism as that recently proposed for Bose-Bose mixtures. The arrested collapse results in self-bound filamentlike droplets, providing an explanation for the intriguing results of recent dysprosium experiments. Arrested instability and droplet formation are general features directly linked to the nature of the dipole-dipole interactions, and should hence play an important role in all future experiments with strongly dipolar gases.

  4. Spin relaxation in antiferromagnetic Fe–Fe dimers slowed down by anisotropic DyIII ions

    Directory of Open Access Journals (Sweden)

    Valeriu Mereacre

    2013-11-01

    Full Text Available By using Mössbauer spectroscopy in combination with susceptibility measurements it was possible to identify the supertransferred hyperfine field through the oxygen bridges between DyIII and FeIII in a {Fe4Dy2} coordination cluster. The presence of the dysprosium ions provides enough magnetic anisotropy to “block” the hyperfine field that is experienced by the iron nuclei. This has resulted in magnetic spectra with internal hyperfine fields of the iron nuclei of about 23 T. The set of data permitted us to conclude that the direction of the anisotropy in lanthanide nanosize molecular clusters is associated with the single ion and crystal field contributions and 57Fe Mössbauer spectroscopy may be informative with regard to the the anisotropy not only of the studied isotope, but also of elements interacting with this isotope.

  5. Growth and Characterization of Ge100-xDyx(x≤2 Nanowires

    Directory of Open Access Journals (Sweden)

    K. B. Paul

    2010-01-01

    Full Text Available Novel semiconducting Germanium-Dysprosium nanowires are fabricated by a combined two-step method, which consists of initial arc-melting of the elemental constituents into a pellet and its heat treatment, followed by thermal vapor transport of the powdered pellet in a tube reactor for fabrication of the nanowires. The nanomaterials are fabricated on gold nucleation seeds on Si/SiO2 substrates. The thermodynamic conditions in the reactor are carefully chosen to produce wires with diameters in a narrow, specific range. This nanofabrication method ensures high phase purity and crystallinity of nanowires. Based on the results and theoretical work, it is concluded that the fabricated Ge98Dy2 materials are in a glassy state below 20 K.

  6. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    Science.gov (United States)

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  7. Vibrational and excited electronic states of six-coordinate rare earth complexes with 2,6-lutidine n-oxide: [Ln(C 7H 9NO) 6](ClO 4) 3·H 2O (Ln=Pr,Nd,Sm,Eu,Gd,Dy)

    Science.gov (United States)

    Ban-Oganowska, H.; Godlewska, P.; Macalik, L.; Hanuza, J.; Oganowski, W.; Hermanowicz, K.

    2002-09-01

    A series of six-coordinate complexes of 2,6-lutidine N-oxide (C 7H 9NO) with praseodymium, neodymium, samarium, europium, gadolinium and dysprosium has been synthesised and chemically characterised. FT-IR and FT-Raman spectra in the range 80-4000 cm -1 as well as electronic absorption and emission spectra in the range 4000-50,000 cm -1 have been measured. The Lorenzian deconvolution of the vibrational contour in the 100-300 cm -1 region has been used in the discussion of the molecular and site symmetries of the Ln 3+ ion situated in the oxygen polyhedron. The sequence of the electronic levels for all RE ions has been obtained and assigned to the respective transitions.

  8. Controlling interactions between highly-magnetic atoms with Feshbach resonances

    CERN Document Server

    Kotochigova, Svetlana

    2014-01-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic $^7$S$_3$ chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on Dysprosium and Erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  9. Lanthanide Doping Effects on Properties of Sr2Bi4 Ti5O18 Ceramics

    Institute of Scientific and Technical Information of China (English)

    Qiang Feng; Zhu Jun; Chen Xiaobing

    2004-01-01

    Ceramic samples of samarium, dysprosium and lanthanum doped Sr2 Bi4Ti5 O18 (SBTi) were prepared by solid-state reaction. The remnant polarization (2Pr) increases at first, then decreases with the increase of doping content.The 2Pr for Sm and Dy doped SBTi reached a maximum value of 18.2μC·cm-2 and 20.1μC·m-2, respectively,when doping content was 0.01. La doped SBTi has maximum 2Pr value of 18.4μC·m-2 with doping content of 0.05. The variation of ferroelectric properties of Sr2Bi4-xLnxTi5O18 (Ln = Sm, Dy and La) should be determined by the competition of the decrease of oxygen vacancy concentration and the relief of structural distortion.

  10. Preparation of Dy-Bi alloy films by electrodeposition in organic bath

    Institute of Scientific and Technical Information of China (English)

    LI Gaoren; TONG Yexiang; LIU Guankun

    2004-01-01

    The cyclic voltammetry and potentiostatic electrolysis were used to investigate the preparing of Dy-Bi alloy films in LiCl-DMSO (dimethylsulfoxide) system. The effects of several factors including the potential of deposition, concentrations of main salts, and the concentration ratio of DyCl3 to Bi(NO3)3 were studied. Dy-Bi alloy films containing 4.82%-80.62% (mass fraction) dysprosium were prepared in DyCl3-Bi(NO3)3-LiCl-DMSO system by controlling the system composition and deposition conditions. The films are gray, uniform, metallic luster and adhere firmly to the copper substrates analyzed by SEM (scanning electron microscope), EDS (X-ray energy dispersive analysis), and XRD (X-ray diffraction). After heat treatment at 718 K for l h, the alloy phase of Dy-Bi was found in XRD patterns.

  11. Short-wavelength emission analysis in Dy:ZBLAN glasses

    Science.gov (United States)

    Piramidowicz, R.; Klimczak, M.; Malinowski, M.

    2008-01-01

    In this work we examine short-wavelength (blue, yellow and red) emission properties of dysprosium activated fluorozirconate ZBLAN glass. On the basis of the measured broad band absorption spectrum the intensity parameters Ωi were calculated using Judd-Ofelt formalism, yielding values of transition probabilities and radiative lifetimes. The basic spectroscopic characterization of Dy:ZBLAN was also performed, including visible emission and fluorescence decay measurements under pulsed, direct and two-photon up-conversion excitation. The theoretically predicted properties, specifically concerning the fluorescence lifetimes, were found to be in a rough agreement with experimentally determined values which was improved by isolation of magnetic dipole and impurity contributions to absorption spectrum.

  12. High temperature luminescence of Dy3+ in crystalline silicon in the optical communication and eye-safe spectral regions.

    Science.gov (United States)

    Lourenço, M A; Mustafa, Z; Ludurczak, W; Wong, L; Gwilliam, R M; Homewood, K P

    2013-09-15

    We report on photoluminescence in the 1.3 and 1.7 μm spectral ranges in silicon doped with dysprosium. This is attributed to the Dy3+ internal transitions between the second Dy3+ excited state and the ground state, and between the third Dy3+ excited state and the ground state. Luminescence is achieved by Dy implantation into Si substrates codoped with boron, to form dislocation loops, and show a strong dependence on fabrication process. The spectra consist of several sharp lines with the strongest emission at 1736 nm, observed up to 200 K. No Dy3+ luminescence is observed in samples without B codoping, showing the paramount importance of dislocation loops to enable the Dy emission.

  13. Critical resources in clean energy technologies and waste flows

    DEFF Research Database (Denmark)

    Habib, Komal

    A broader implementation of clean energy technologies in future is a widely motivated scenario for meeting the climate change goals as well as to reduce our dependency on the non‐renewable fossil fuels. However, the transition from the current fossil‐based society to a future low‐carbon society...... constraints for the emerging clean energy technologies in future, along with an insight into the resource criticality assessment methodologies, detailed material flow analysis (MFA) of critical resources, and recovery of critical resources from the waste streams. The key findings of this PhD study were......:  The demand of neodymium and dysprosium, driven by the clean energy technologies is estimated to be 10 times higher by 2050 compared to the present primary supply (mining). This implies that either a highly accelerated rate of mining is required to meet the future demand or a radical change in current...

  14. Some Rare Earth Metallic Organohydrides with Biindenyl as the Ligand

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Introduction It is well known that organometallic hydrides of rare earth metals are the catalysts and reducing reagents for the catalysis polymerization of alkenes and the catalysis hydrogenation of alkenoalkynes. There are four methods for the syntheses of organometallic hydrides of rare earth metals: (1) the thermal atomization of metals, I. E. , the interaction of a rare earth metal with alkenes with a terminal alkyne; (2) the Ln-C σ bond is broken with H2; (3) metallic hydride replacement[1], I. E., NaBH4, LiA1H4 and Na can be used to react with organometallic compounds of rare earth metals; (4) the elimination ofβ-H, I. E. , in the presence of LiC1, the elimination of theβ-H of the alkyl compounds of rare earth metals gives the target product. The organohydrides of biindenyl samarium, biindenyl gadolinium and biin denyl dysprosium were obtained with NaH reduction method.

  15. Synthesis of Dy2O3 nanoparticles via hydroxide precipitation:effect of calcination temperature

    Institute of Scientific and Technical Information of China (English)

    Bahaa M. Abu-Zied; Abdullah M. Asiri

    2014-01-01

    This work described the preparation of dysprosium oxide, Dy2O3, nanoparticles using the homogeneous precipitation method. Dy3+ions were precipitated using NaOH solution. The obtained product was filtered, dried, and then calcined for 1 h at the temperature range of 300-700 °C in static air. The calcination temperature of the Dy-precursor was chosen based on its decomposi-tion as indicated by the TGA analysis. The crystalline structure and surface morphology of the calcined solids were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray pho-toelectron spectroscopy (XPS). The obtained results revealed that Dy2O3 with crystallites size of 11-21 nm was formed at 500 °C. Such value increased to 25-37 nm for the sample calcined at 700 °C.

  16. Smashing magnets

    Science.gov (United States)

    Ferrier-Barbut, Igor

    2016-11-01

    Understanding or designing phases of matter relies in the first place on the knowledge at the microscopic level of the interactions taking place between the constituents. In quantum gases, a renewed interest is rising about the interaction between two dipoles, owing to its anisotropic and long-range character. In a new paper, Burdick et al (2016 New J. Phys. 18 113004) demonstrate experimentally the angular-dependence of collisions between two dysprosium atoms, an atomic species that carries a magnetic dipole moment among the largest in the periodic table. This is realized by colliding two 164Dy Bose-Einstein condensates, and the experiments are backed by a theoretical analysis to connect these results with the two-body scattering cross-section. This represents a further step on the way to the full control of dipole-interacting many-body systems.

  17. Luminescent properties in films of ZrO{sub 2}: Dy; Propiedades luminiscentes en peliculas de ZrO{sub 2}: Dy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, R. C.; Guzman, J.; Rivera, T.; Ceron, P.; Montes, E.; Guzman, D. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Garcia H, M. [UNAM, Instituto de Investigaciones en Materiales, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Falcony, C. [IPN, Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, 07000 Mexico D. F. (Mexico); Azorin, J., E-mail: rodmarolm@yahoo.com [Universidad Autonoma Metropolitana, Unidad Iztapala, Av. San Rafael Atlixco 186, 09340 Mexico D. F. (Mexico)

    2014-08-15

    In this work the luminescent characterization of zirconium oxide (ZrO{sub 2}) films impure with dysprosium (Dy{sup +3}) is reported, obtained by means of the ultrasonics spray pyrolysis technique. The films were deposited on glass substrates (Corning), in a temperatures interval of 400 to 550 grades C, using as precursor elements Zirconium oxide chloride octahydrate (ZrOCl{sub 2}·8H{sub 2}O) and Dysprosium tri-chloride (DyCl{sub 3}), dissolved in deionized water, varying the concentration of the contaminated from the 1 to 20 atomic % with relationship to the zirconium in solution. The luminescent characterization was analyzed by means of photoluminescence and thermoluminescence. The photoluminescence results showed a spectrum with three maxima which correspond to the electronic transitions {sup 4}F{sub 9/2} - {sup 6}H{sub 15/2}, {sup 4}F{sub 9/2} - {sup 6}H{sub 13/2} and {sup 4}F{sub 9/2} - {sup 6}H{sub 11/2} characteristics of the Dy{sup 3+} ion. The thermoluminescence (Tl) response when being exposed to a monochrome UV beam in 240 nm showed a wide curve that exhibits a maxim centered in 200 grades C. The Tl response of ZrO{sub 2}:Dy in function of the dose was shown lineal in the interval of 24 mJ/cm{sup 2} to 432 mJ/cm{sup 2}. A study of the repeatability and dissipation of the ZrO{sub 2}:Dy Tl response is included. Considering the shown previous results we can conclude that the ZrO{sub 2} in film form obtained by spray pyrolysis has luminescent properties in 240 nm. (Author)

  18. Blue-yellow photoluminescence from Ce{sup 3+} {yields} Dy{sup 3+} energy transfer in HfO{sub 2}:Ce{sup 3+}:Dy{sup 3+} films deposited by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Martinez, R. [Instituto de Fisica y Matematicas, Universidad Tecnologica de la Mixteca, Carretera a Acatlima Km. 2.5, Huajuapan de Leon, Oaxaca 69000 (Mexico); Lira, A.C. [Unidad Academica Profesional Nezahualcoyotl, Universidad Autonoma del Estado de Mexico, Av. Bordo de Xochiaca s/n, Nezahualcoyotl, Estado de Mexico 57000 (Mexico); Speghini, A. [DiSTeMeV, Universita di Verona, and INSTM, UdR Verona, Via Della Pieve 70, I-37029 San Floriano (Verona) (Italy); Falcony, C. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, Mexico, D.F. 09340 (Mexico); Caldino, U., E-mail: cald@xanum.uam.mx [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, Mexico, D.F. 09340 (Mexico)

    2011-02-10

    Research highlights: > A blue-yellow emission phosphor excited with UV radiation can be manufactured with CeCl{sub 3} and DyCl{sub 3} doped HfO{sub 2} films deposited at 300 deg. C by the ultrasonic spray pyrolysis technique. > The addition of DyCl{sub 3} in the HfO{sub 2}:CeCl{sub 3} film leads to a non-radiative energy transfer from Ce{sup 3+} to Dy{sup 3+} under Ce{sup 3+} excitation at 280 nm. > The efficiency of this transfer increases up to 86 {+-} 3% for the film with the highest Dy{sup 3+} content. > The possibility of achieving the coordinates of ideal white light with increasing the concentration of dysprosium is demonstrated. - Abstract: HfO{sub 2} films codoped with Ce{sup 3+} and several concentrations of Dy{sup 3+} have been processed by the ultrasonic spray pyrolysis technique. Emissions from Dy{sup 3+} ions centred at 480 and 575 nm associated with the {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 15/2} and {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 13/2} transitions, respectively, have been observed upon UV excitation via a non-radiative energy transfer from Ce{sup 3+} to Dy{sup 3+} ions. Such energy transfer via an electric dipole-quadrupole interaction appears to be the most probable transfer mechanism. The efficiency of this transfer increases up to 86 {+-} 3% for the film with the highest Dy{sup 3+} content (1.9 {+-} 0.1 at.% as measured from EDS). The possibility of achieving the coordinates of ideal white light with increasing the concentration of dysprosium is demonstrated.

  19. Environmental impacts of rare earth mining and separation based on Eudialyte. A new European way

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, Andrea; Marx, Josefine; Zapp, Petra; Hake, Juergen Friedrich [Forschungszentrum Juelich (Germany). Inst. of Energy and Climate Research - Systems Analysis and Technology Evaluation (IKE-STE); Vossenkaul, Daniel; Friedrich, Bernd [RWTH Aachen (Germany). Inst. of Process Metallurgy and Metal Recycling

    2016-07-01

    Neodymium and dysprosium are two rare earth elements (REEs), out of a group of 17 elements with similar chemical properties. Due to their unique properties, REEs gained increasing importance in many new technologies like wind turbines, batteries, lighting, and medical technique. However, the production of REEs requires high material and energy consumption and is associated with considerably environmental burdens e.g. radioactive loaded dust and tailings. Due to the Chinese hegemony regarding REE production and the strong dependency of European industry on Chinese REE exports this paper presents a possible European production chain of REEs based on the mineral Eudialyte found in Norra Karr (Sweden). Because almost 90% of the total mines production of 109,000 t REO equivalents in 2013 [USGS, 2013] occurred in China, the European production is compared to the Chinese route. Bayan Obo is the largest REE deposit in China located near Baotou in Inner Mongolia. Using the Life Cycle Assessment method (LCA), the environmental impacts of both production lines are assessed. Although LCA is a well-known methodology to determine environmental aspects from cradle-to-grave, there are only a few LCA studies available considering REE production, almost all based on process information gathered in the 1990s. This study presents newly estimated data of a possible European Eudialyte based production route collected in a corporate 4-year project together with Siemens AG, RWTH Aachen University and Forschungszentrum Julich. The results for the new European process route show reduced environmental burdens although the total REE content in Eudialyte is much smaller than in the Chinese deposit. Especially, the results for dysprosium from Eudialyte outreach those for Bayan Obo, due to the higher content of heavy rare earth elements (HREEs).

  20. Influence of the rare earth concentration on the crystallization process of Fe-Dy-B amorphous alloys. Study of Fe74Dy6B20 and Fe70Dy10B20 alloys

    Science.gov (United States)

    Ravach, G.; Machizaud, F.; Teillet, J.; LeBreton, J. M.; Fnidiki, A.

    2000-04-01

    The crystallization behaviour of Fe74 Dy6 B20 and Fe70 Dy10 B20 amorphous alloys was carefully investigated by differential scanning calorimetry, Mössbauer spectrometry and x-ray diffraction up to 800 °C. Calorimetric studies were performed in limited temperature ranges that were progressively extended. For Fe74 Dy6 B20 , after partial crystallization into the tetragonal Fe3 B compound, the remaining amorphous part segregates into two amorphous `phases', respectively enriched and impoverished in dysprosium. Tetragonal Fe3 B further transforms into orthorhombic Fe3 B. Metastable Dy3 Fe62 B14 compound then forms from the Dy-impoverished amorphous fraction, and subsequent crystallization of the Dy1 + icons/Journals/Common/varepsilon" ALT="varepsilon" ALIGN="MIDDLE"/> Fe4 B4 phase occurs in the Dy-enriched fraction. Finally, Dy3 Fe62 B14 decomposes into bcc iron, Dy1 + icons/Journals/Common/varepsilon" ALT="varepsilon" ALIGN="MIDDLE"/> Fe4 B4 and iron borides. The nature of the first crystallization product suggests the existence of local environments of t-Fe3 B type for this Dy concentration. The crystallization process of Fe70 Dy10 B20 strongly differs from that of Fe74 Dy6 B20 . Segregation phenomena occur in the amorphous state prior to any crystallization. If the nature of the first crystallization product is assumed to be correlated with short-range order in the amorphous state, our results suggest that the local environments differ from those of Fe74 Dy6 B20 , as they probably involve dysprosium atoms. This behaviour would agree with a previous Mössbauer study performed on the as-quenched amorphous alloys, providing evidence for a structural modification of the iron environments in the rare earth concentration range 8-9 at.%.

  1. A new paramagnetically shifted imaging probe for MRI

    Science.gov (United States)

    Senanayake, P. Kanthi; Rogers, Nicola J.; Finney, Katie‐Louise N.A.; Harvey, Peter; Funk, Alexander M.; Wilson, J. Ian; O'Hogain, Dara; Maxwell, Ross; Parker, David

    2016-01-01

    Purpose To develop and characterize a new paramagnetic contrast agent for molecular imaging by MRI. Methods A contrast agent was developed for direct MRI detection through the paramagnetically shifted proton magnetic resonances of two chemically equivalent tert‐butyl reporter groups within a dysprosium(III) complex. The complex was characterized in phantoms and imaged in physiologically intact mice at 7 Tesla (T) using three‐dimensional (3D) gradient echo and spectroscopic imaging (MRSI) sequences to measure spatial distribution and signal frequency. Results The reporter protons reside ∼6.5 Å from the paramagnetic center, resulting in fast T 1 relaxation (T 1 = 8 ms) and a large paramagnetic frequency shift exceeding 60 ppm. Fast relaxation allowed short scan repetition times with high excitation flip angle, resulting in high sensitivity. The large dipolar shift allowed direct frequency selective excitation and acquisition of the dysprosium(III) complex, independent of the tissue water signal. The biokinetics of the complex were followed in vivo with a temporal resolution of 62 s following a single, low‐dose intravenous injection. The lower concentration limit for detection was ∼23 μM. Through MRSI, the temperature dependence of the paramagnetic shift (0.28 ppm.K−1) was exploited to examine tissue temperature variation. Conclusions These data demonstrate a new MRI agent with the potential for physiological monitoring by MRI. Magn Reson Med 77:1307–1317, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26922918

  2. Investigation of Pt-Dy co-doping effects on isothermal oxidation behavior of (Co,Ni)-based alloy

    Institute of Scientific and Technical Information of China (English)

    LAN Hao; ZHANG Weigang; YANG Zhigang

    2012-01-01

    A Co32Ni21Cr8A10.6Y (wt.%) alloy with and without doping 3 wt.% platinum,or co-doping 3 wt.% platinum and 0.1 wt.% dysprosium was produced by arc melting.The hardness of both base alloy and composition-modified alloy was measured by using a Vickers hardness tester.Isothermal oxidation tests at 1000 ℃ in static air atmosphere were conducted to assess the isothermal oxidation behavior of the alloys.The microstructure and composition of the tested alloys before and after oxidation were investigated by means of X-ray diffraction (XRD),field emission-scanning electron microscopy (FE-SEM) equipped with energy dispersive spectroscopy (EDS) and back scatter detector.Results showed that platinum had significant influence on microstructure of the tested alloy by the formation of β-(Ni,Pt)Al phase.Addition of 3 wt.% platinum could slightly increase the hardness of the tested alloy.Platinum accelerated phase transformation of alumina from metastable θ-Al2O3 to stable α-Al2O3 and suppressed the consumption of β-phase.Co-doping both 3 wt.% platinum and 0.1 wt.% dysprosium induced the fastest transformation of θ- to α- alumina and the formation of a fine-grained oxide scales.The most effective reduction of oxidation rate was achieved by the Pt-Dy co-doping effects.

  3. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  4. Two new dysprosium–organic frameworks contaning rigid dicarboxylate ligands: Synthesis and effect of solvents on the luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijie; Fan, Ruiqing, E-mail: fanruiqing@hit.edu.cn; Chen, Wei; Zheng, Xubin; Li, Kai; Wang, Ping; Yang, Yulin

    2013-11-15

    Two new two–dimensional (2D) dysprosium coordination polymers [Dy(2,4′-bpdc)(DMF){sub 2}(NO{sub 3})]{sub n} (1) and {[Dy(2,4′–bpdc)(1,4-BDC)_0_._5(DMF)(H_2O)]·1.5H_2O}{sub n} (2) (2,4′-H{sub 2}bpdc=2,4′–biphenyldicarboxylic acid, 1,4-H{sub 2}BDC=1,4–benzenedicarboxylic acid, DMF=N,N′-dimethylformamide) were synthesized under solvothermal condition and stucturally characterized by means of single-crystal X-ray diffraction, IR spectroscopy, and elemental analysis. Single-crystal X-ray analysis revealed that the two coordination polymers possess two types of 2D layered structures. From the viewpoint of network topology, the structures of 1 and 2 can be simplified as (4,4) network. We discuss the effect of solvents and temperature on luminescence properties. The fluorescence spectra of 1 at room temperature and 77 K in the solid-state are almost the same, except the stronger emission intensities derived from ligand–centered at 77 K. It is because the quenching by O3H oscillators was protected at low temperature. Coordination polymer 2 displays characteristic Dy{sup 3+} ion yellow–green luminescence under 290 nm excitation in DMSO (dimethyl sulfoxide), CH{sub 3}CN, and CH{sub 3}OH solvents. The fluorescence intensities of 2 increased in the order of DMSO>CH{sub 3}CN>CH{sub 3}OH. We also studied the fluorescence lifetimes of 1 and 2, and the results revealed that the lifetime in DMSO solvent at room temperature reached to 9.53 μs. Compared with the dysprosium coordination polymers, coordination polymer 2 presents a longer lifetime. Additionally, we calculate the triplet state T{sub 1} datum from the emission spectrum of the Gd{sup 3+} coordination polymer and discuss the energy transfer mechanisms. The energy transfer process from the lowest triplet state energy level of 2,4′-H{sub 2}bpdc ligand to the {sup 4}F{sub 9/2} state energy level of Dy{sup 3+} ion is inefficient for both 1 and 2. The energy transfer process is effective after we

  5. Oxide fluoride sulfides of the lanthanoids with the formula M{sub 3}OF{sub 5}S (M = Nd, Sm, Gd-Ho); Oxidfluoridsulfide der Lanthanoide vom Formeltyp M{sub 3}OF{sub 5}S (M = Nd, Sm, Gd-Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Grossholz, Hagen; Janka, Oliver; Schleid, Thomas [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2011-03-15

    First attempts to synthesize a lanthanoid(III) oxide fluoride sulfide were successful by reacting DyF{sub 3} and Dy{sub 2}O{sub 3} with dysprosium and sulfur in a 2: 5: 1: 3 molar ratio at 850 C in tightly sealed tantalum ampoules. In analogy to the dysprosium compound Dy{sub 3}OF{sub 5}S, the other representatives of the M{sub 3}OF{sub 5}S series with M = Nd, Sm, Gd-Ho could be prepared as well. Almost phase-pure samples were obtained under similar flux-assisted (NaCl) conditions according to 2M + 5MF{sub 3} + M{sub 2}O{sub 3} + 3S {yields} 3M{sub 3}OF{sub 5}S. In the hexagonal crystal structure (space group: P6{sub 3}/m; a {approx} 961-939 pm, c {approx} 378-367 pm; c/a {approx} 0.39, V{sub m} {approx} 91-84 cm{sup 3}mol{sup -1}, Z = 2), the M{sup 3+} cations reside in ninefold anionic coordination realized as tricapped trigonal prisms formed by seven light (O{sup 2-}/F{sup -}) and two heavier S{sup 2-} anions. One light-anion position exhibits the exclusive character of F{sup -} in trigonal non-planar coordination (CN = 3), while the other position with a tetrahedral cationic environment (CN = 4) is mixed occupied by F{sup -} and O{sup 2-} in a 2: 1 ratio. The S{sup 2-} anions are coordinated in a trigonal prismatic way by six M{sup 3+} cations. From the data of single-crystal X-ray structure analyses, no indication of any ordering for the O{sup 2-} and F{sup -} anions could be obtained, but bond-valence and MAPLE calculations confirmed the results of electron-beam microanalyses carried out earlier to reveal ordered models for Dy{sub 3}OF{sub 5}S. (orig.)

  6. Evaluation of doses from radiodiagnostic procedures performed in veterinary medicine and assessing of the doses of secondary radiation in the medical staff and animal owners; Avaliacao das doses resultantes de procedimentos radiodiagnosticos realizados em medicina veterinaria e avaliacao das doses secundarias de radiacao espalhada no corpo clinico e nos proprietarios dos animais

    Energy Technology Data Exchange (ETDEWEB)

    Veneziani, Glauco Rogerio

    2012-07-01

    The primary goal in veterinary radiography is to produce radiographs of diagnostic quality on the first attempt. This goal serves three purposes: (1) to decrease radiation exposure to the patient and veterinary personnel; (2) to decrease the cost of the study for the client; and (3) to produce diagnostic data for rapid interpretation and treatment of the patient. This work aimed to determine the doses in dogs submitted to chest and abdomen X rays using the technique of thermoluminescence (TL) dosimetry. The radiation doses were assessed using thermoluminescent dosimeters of calcium sulphate doped with dysprosium (CaSO{sub 4}:Dy) and lithium fluoride doped with magnesium and titanium (LiF:Mg,Ti). The obtained results indicate that is extremely important the assessment of radiation doses involved in veterinary diagnostic radiology procedures, to evaluate the delivered doses to the animals, to be used as a parameter in the individual monitoring of pet's owners, who assist the animal positioning, and to protect occupationally exposed workers at the Veterinary Radiology Clinics. (author)

  7. Thermoluminescent characteristics of CaSO{sub 4}:Dy+PTFE irradiated with high energy electron beams; Caracteristicas termoluminiscentes del CaSO{sub 4}:Dy+PTFE irradiado con haces de electrones de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, R.; Rivera, T.; Calderon, J. A.; Jimenez, Y. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Rodriguez, J. [Hospital General de Mexico, Dr. Balmis 148, Col. Doctores, 06726 Mexico D. F. (Mexico); Oviedo, O. [Centro Medico ABC, Sur 136 No. 116, Col. Las Americas, 01120 Mexico D. F. (Mexico); Azorin, J., E-mail: chagua@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, 09340 Mexico D. F. (Mexico)

    2011-10-15

    In the present work thermoluminescent response of dysprosium doped calcium sulfate embedded in polytetrafluorethylene (CaSO{sub 4}:Dy+PTFE) under high electron beam irradiations from linear accelerator for clinical applications was investigated. The irradiations were carried out using high electron beams (6 to 18 MeV) from a linear accelerator Varian, C linac 2300C/D, for clinical practice purpose. The electron irradiations were obtained by using the water solid in order to guarantee electronic equilibrium conditions. Field shaping for electron beams was obtained with electron cones. Glow curve and other thermoluminescent characteristics of CaSO{sub 4}:Dy+PTFE were conducted under high electron beams irradiations. The thermoluminescent response of the pellets showed and intensity peak centered at around 235 C. Thermoluminescent response of CaSO{sub 4}:Dy+PTFE as a function of high electron absorbed dose showed a linearity in a wide range. To obtain reproducibility characteristic, a set of pellets were exposed repeatedly for the same electron absorbed dose. The results obtained in this study can suggest the applicability of CaSO{sub 4}:Dy+PTFE pellets for high electron beam dosimetry, provided fading is correctly accounted for. (Author)

  8. Preparation of CaF{sub 2}:Dy chips as thermoluminescent dosimeters for environmental measurements using a Harshaw 2080 TL picoprocessor

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika; Leite, Barbara Eliodora [Centro Tecnologico da Marinha em Sao Paulo (CTMSP/CEA), Ipero, SP (Brazil). Centro Experimental Aramar; Nunes, Maira Goes [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work presents the necessary steps to prepare the dosimeters for application in environmental measurements. The material used was calcium fluoride doped with dysprosium (CaF{sub 2}: Dy), commercially supplied by Harshaw as TLD-200. It were carried out four initial irradiations (Co-60 source gamma - 0.8 mGy from Dosimetric Material Laboratory LMD/GMP) in a new batch of TLD-200 dosimeters to achieve a stable response and four more irradiations to separate them, according to their response range. A batch of pre-selected 197 dosimeters from 263 was used to finally obtained two batches of 99 (9.2{+-}0.7nC) and 93 (10.5{+-}0.6nC) dosimeters. A calibration curve was prepared relating the thermoluminescent response of the phosphor and the radiation exposure (0 to 600{mu}Gy), obtained by irradiation with Co-60 source of 4P geometry and measurements using a Harshaw Picoprocessor 2080 TL equipment. Repeatability of the measurements was determined for 100{mu}Gy (CV= 5.09%) and 300{mu}Gy (CV=4.18%) and the minimum detectable dose was evaluated as 2{mu}Gy. The fading was determined by irradiating the dosimeters with 0.8 mGy and reading then after 1, 5, 7, 8, 15, 29, 50, 70 and 90 days. (author)

  9. Thermoluminescence in films of HfO{sub 2}:Dy{sup +3}; Termoluminiscencia en peliculas de HfO{sub 2}:Dy{sup +3}

    Energy Technology Data Exchange (ETDEWEB)

    Ceron, P.; Rivera, T.; Guzman, J.; Montes, E.; Pelaez, A.; Rojas, B.; Guzman, D. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Azorin, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Paredes, L., E-mail: victceronr@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    In this work the thermoluminescence (TL) response of films of hafnium oxide polluted with dysprosium (HfO{sub 2}:Dy{sup +3}) that were irradiated in the near UV (200 nm - 400 nm). The films were deposited by means of the ultrasonics spray pyrolysis technique on a glass substrate, using different deposit temperatures (300 grades C - 600 grades C). The best TL emission corresponded to the prepared film to 450 grades C that was exposed to a spectral irradiation of 80 μJ/(cm{sup 2}-s) with a wave longitude of 240 nm. The TL response in function of the spectral irradiation was lineal in the studied interval (24 to 288 mJ/cm{sup 2}), several kinetic parameters were also calculated of the shine curve as depth of the trap (E), frequency factor (s) and order to the kinetics (b). The obtained results show that the films of HfO{sub 2}:Dy{sup +3} could be used as radiation monitor in the region of the near UV. (Author)

  10. Cryogenic Field Measurement of Pr2Fe14B Undulator and Performance Enhancement Options at the NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, T.; Chubar, O.; Harder, David A.; Lehecka, Michael; Rank, James; Rakowsky, George; Spataro, Charles

    2009-09-27

    Short period (14.5mm) hybrid undulator arrays composed of Praseodymium Iron Boron (Pr{sub 2}Fe{sub 14}B) magnets (CR53, NEOMAX, Inc.) and vanadium permendur poles have been fabricated at Brookhaven National Laboratory. Unlike Neodymium Iron Boron (Nd{sub 2}Fe{sub 14}B) magnets which exhibit spin reorientation at temperatures below 150K, PrFeB arrays monotonically increase performance with lower operating temperature. It opens up the posibility for use in operating a cryo-permanent magnet undulator (CPMU) in the range of 40K to 60K where very efficient cryocoolers are available. Magnetic flux density profiles were measured at various temperature ranges from room temperature down to liquid helium (LHe) using the Vertical Testing Facility (VTF) at the National Snchrotron Light Source-II (NSLS-II). Temperature variations of phase error have been characterized. In addition, we examined the use of textured Dysprosium (Dy) poles to replace permendur poles to obtain further improvement in performance.

  11. Ternary germanides RERhGe2 (RE = Y, Gd-Ho) - New representatives of the YIrGe2 type

    Science.gov (United States)

    Voßwinkel, Daniel; Heletta, Lukas; Hoffmann, Rolf-Dieter; Pöttgen, Rainer

    2016-11-01

    The YIrGe2 type ternary germanides RERhGe2 (RE = Y, Gd-Ho) were synthesized from the elements by arc-melting and characterized by powder X-ray diffraction. The structure of DyRhGe2 was refined from single crystal X-ray diffractometer data: Immm, a = 426.49(9), b = 885.0(2), c = 1577.4(3) pm, wR2 = 0.0533, 637 F2 values, 30 variables (300 K data). The structure contains two crystallographically independent dysprosium atoms in pentagonal prismatic and hexagonal prismatic coordination. The three-dimensional [RhGe2] polyanion is stabilized through covalent Rh-Ge (243-261 pm) and Ge-Ge (245-251 pm) bonding. The close structural relationship with the slightly rhodium-poorer germanides RE5Rh4Ge10 (≡ RERh0.8Ge2) is discussed. Temperature-dependent magnetic susceptibility measurements reveal Pauli paramagnetism for YRhGe2 and Curie-Weiss paramagnetism for RERhGe2 with RE = Gd, Tb, Dy and Ho. These germanides order antiferromagnetically at TN = 7.2(5), 10.6(5), 8.1(5), and 6.4(5) K, respectively.

  12. Effects of the presence of heavy rare earths on the stabilization of the zirconia ceramics - Yttria; Efeito da presenca de terras raras pesadas na estabilizacao das fases de ceramicas de zirconia - itria

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, D.R.R.; Fancio, E.; Menezes, C.A.B.; Ussui, V.; Bressiani, A.H.A.; Lima, N.B.; Paschoal, J.O.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: drlazar@net.ipen.br

    2000-07-01

    The use of Yttria concentrates has been proposed to substitute the high purity Yttria in the zirconia stabilization. The elements terbium, dysprosium, holmium, erbium and ytterbium, classified as heavy rare earths, are the main impurities in these concentrates, due to their presence in yttrium ores. Besides that, the chemical similarities of these elements need the utilization of complex purification techniques. Considering the importance of the employed dopant on zirconia crystallization, this work shows the quantitative phases analysis of powders and ceramics of stabilized zirconia doped with 3 and 9 mol % of high purity Yttria and with a 85 wt % Yttria concentrate. This determination was performed using the Rietveld refinement of the X-ray diffraction data. The powders were synthesized by the hydroxides coprecipitation route, which includes treatments with ethanol and butanol, drying, calcination at 800 deg C for 1 hour and milling in a ball mill and in an attrition mill. The ceramics pellets were pressed uniaxially and sintered at 1550 deg C for 1 hour. The powders and sintered pellets were also characterized by X-ray fluorescence analysis, laser diffraction, gas adsorption (B.E.T.), scanning electron microscopy and determination of apparent density by the Archimedes method. The results showed the same stabilization behavior when it was employed high purity Yttria and a concentrate of this oxide. It was also observed the predominating formation of tetragonal and cubic phases when the dopant concentration is 3 and 9 mol %, respectively. (author)

  13. Thermoluminescence of LaAlO{sub 3}; Termoluminescencia de LaAlO{sub 3}:Dy

    Energy Technology Data Exchange (ETDEWEB)

    Morales H, A.; Zarate M, J. [Universidad Michoacana de San Nicolas de Hidalgo, Instituto de Investigacion en Metalurgia y Materiales, Ciudad Universitaria, Edif. U, 58060 Morelia, Michoacan (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico); Azorin N, J., E-mail: feyo_yo@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2015-10-15

    In this paper the thermoluminescent properties of doped lanthanum aluminate (LaAlO{sub 3}) with dysprosium ion (Dy) were studied. The thermoluminescence characteristics in the samples were obtained using an ultraviolet radiation of 220 nm. The LaAlO{sub 3}:Dy samples were prepared by the modified Pechini method (Spray Dryer). The structural and morphological characterization was obtained by X-ray diffraction (XRD) and scanning electron microscopy (Sem) techniques respectively. The size particle composing the agglomerate was determined by Sem, agglomerated particles composed size of 2μm were observed. The thermoluminescence response of LaAlO{sub 3}:Dy was compared with that obtained with the undoped sample. Thermoluminescence brightness curves of LaAlO{sub 3}:Dy showed a peak centered at 185 grades C. Sensitivity of doped sample was greater, about 100 times compared with the undoped sample. Thermoluminescence response in function of the wavelength showed a maximum at 220 nm. Also the fading in thermoluminescence response was studied. (Author)

  14. Spectroscopic investigation of Dy3+:Lu2Si2O7 single crystal: A potential 589 nm laser medium

    Science.gov (United States)

    Huang, Jianhui; Chen, Yujin; Huang, Jianhua; Gong, Xinghong; Lin, Yanfu; Luo, Zundu; Huang, Yidong

    2017-10-01

    A trivalent dysprosium-doped Lu2Si2O7 single crystal was grown by the Czochralski method. Segregation coefficient of Dy3+ ion in the crystal is about 0.56. Spectroscopic properties of the crystal were investigated at room temperature. In particular, the polarized absorption spectra were analyzed using the Judd-Ofelt theory and the intensity parameters were determined. Then the spontaneous transition probabilities, branching ratios, and radiative lifetime related to the 4F9/2 multiplet were calculated. Emission cross-section for the 4F9/2 → 6H13/2 transition at 589 nm is up to 1.27 × 10-21 cm2 for E//Y polarization. Thermal conductivity of the crystal was measured to be 9.46 Wm-1K-1 at room temperature. The experimental results show that the Dy3+:Lu2Si2O7 crystal is a promising gain medium for solid state 589 nm laser.

  15. Water Exchange on [Ln(DO3A)(H2O)2] and [Ln(DTTA-Me)(H2O)2](-) Studied by Variable Temperature, Pressure, and Magnetic Field NMR.

    Science.gov (United States)

    Karimi, Shima; Helm, Lothar

    2016-05-02

    Water exchange kinetics of [Ln(L)(H2O)2](x) complexes (Ln = Pr, Nd, Dy, Tm, and Yb; L = DO3A and DTTA-Me) were studied by (17)O NMR spectroscopy as a function of temperature, pressure, and frequency and by (1)H nuclear magnetic relaxation dispersion. Water exchange rate constants of both complexes show a maximum at dysprosium. Water exchange on negatively charged complexes of the acyclic DTTA-Me ligand is much faster than on the neutral complexes of the macrocyclic DO3A. Small activation volumes |ΔV(⧧)| studied. In the case of [Ln(DTTA-Me)(H2O)2](-), a change in mechanism is detected from a dissociative mechanism (D, ΔV(⧧) = 7 cm(3) mol(-1)) for complexes with larger ions (Pr to Gd) to an interchange mechanism (Id, I; ΔV(⧧) = +1.8 and +0.4 cm(3) mol(-1)) for complexes with smaller ions (Dy and Tm).

  16. Clinical trial of {sup 166}Ho-CHICO in the treatment of rheumatoid knee synovitis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Yoo, D. H.; Bae, S. C.; Lee, I. H.; Jung, S. S.; Jun, J. B.; Kim, T. H.; Kim, S. S. [Hanyang Univ., Seoul (Korea)

    2000-03-01

    The untreated, chronic synovial inflammation leads to pannus formation and eventual destruction of the articular cartilage. In cases where medical therapy was unsuccessful, surgical of radiation synovectomy over surgical synovectomy are (1) greater destruction of diseased synovium, (2) reduced Potential for blood clots and infection, (3) no requirement for anesthesia, and (4) less costly and less time consuming. Recently KAERI developed Dy-165 HMA, which was characterized by the absence of iron and a higher concentration of dysprosium. And then more recently KAERI also developed {sup 16H}o-CHICO, which was characterized by relatively longer half-life (26.8 hr), more biological due to organic nature of chitosan, more even spatial distribution due to colloidal solution, and more absorbable to synovium than Dy-165 HMA. These long-term follow-up results indicate that the {sup 166}Ho-CHICO is an effective and safe agent for radiation synovectomy for knee synovitis in patients with rheumatoid arthritis as well as the other chronic arthritides. But further large scaled and controlled study are required. 16 refs. (Author)

  17. Dose profile for electron beams obtained with CaSO{sub 4}:Ce,Eu thermoluminescent dosimeters; Perfil de dose de feixes de eletrons obtidos com dosimetros termoluminescentes de CaSO{sub 4}:Ce,Eu

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Maira G.; Rodrigues, Leticia L.C., E-mail: mgnunes@ipen.br [Instituto de Pesquisas Energerticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-12-15

    The calcium sulphate activated with cerium and europium (CaSO{sub 4}:Ce,Eu) thermoluminescent dosimeters (TLD) recently developed at Nuclear and Energy Research Institute as well as the calcium sulphate activated with dysprosium (CaSO{sub 4}: Dy) and lithium fluoride activated with magnesium and titanium, (LiF:Mg,Ti; TLD-100) TLDs, with long term applications in dosimetry and considered as standards, were used to obtain the dose profile for 3.43, 5.48, 8.27 and 11.67 MeV electron beams generated by a linear accelerator Clinac 2100-C (Varian) in the reference conditions defined by the TRS-398 code of practice. The routine dosimetry of the electron beams, performed with a calibrated ionization chamber, ensures that the electron beams fulfill the requirements of flatness and symmetry established in this code of practice. Thus, as the TRS-398 Code of Practice requirements are fulfilled by the measurements performed with the new TLD type, CaSO{sub 4}:Ce,Eu may be applied in clinical dosimetry of high energy electron beams. (author)

  18. Spectroscopic, luminescence and in vitro biological studies of solid ketoprofen of heavier trivalent lanthanides and yttrium(III).

    Science.gov (United States)

    Gálico, D A; Lahoud, M G; Davolos, M R; Frem, R C G; Fraga-Silva, T F C; Venturini, J; Arruda, M S P; Bannach, G

    2014-11-01

    Solid-state compounds of the general formulae [ML3] (M=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y; L=ketoprofen) were synthesized and characterized using infrared, diffuse reflectance and luminescence spectroscopies. IR data suggested that the carboxylate group in ketoprofen is coordinated to the metals as a bidentate ligand. The triplet state energy level was determined using the Gd(3+) complex, which exhibited a ketoprofen blue luminescence when excited in the UV region. The compound containing Tb(3+) ion was sensitized by the ligand and emitted in the green region of the visible spectrum. On the other hand, for the analogous species containing the dysprosium ion, a competition for luminescence between the Dy(3+) and the ligand levels was observed. Finally, Tm(3+) complex exhibits only ligand luminescence. These optical behaviors are discussed based on rare earth energy diagrams. In addition, the compounds were evaluated for their anti-inflammatory activities. All the compounds showed a higher production of H2O2 and IL-10 than the ketoprofen, suggesting that the compounds exhibited an immunomodulatory effect and this opens up new perspectives for immunotherapeutic approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Effect of Jahn-Teller Mn/sup 3 +/ ion on magnetic properties and spin-reorientation transitions in rare-earth orthoferrites

    Energy Technology Data Exchange (ETDEWEB)

    Kadomtseva, A.M.; Bostrem, I.G.; Krynetskij, I.B.; Moskvin, A.S.; Ovchinnikova, T.L.; Terziev, V.G. (Ural' skij Gosudarstvennyj Univ., Sverdlovsk (USSR))

    1982-08-01

    A magnetic behavior of manganese-substituted orthoferrites of dysprosium and erbium, for which various types of spin-reorientation transitions (Gsub(x)Fsub(z) ..-->.. Gsub(z)Fsub(x), Gsub(z) Fsub(x) ..-->.. Gsub(y), Gsub(x)Fsub(z) ..-->.. Gsub(y)) were observed, has been studied in the temperature range from 2 up to 600 K. The microscopic theoretical analysis of manganese-substituted orthoferrites has been carried out taking into account peculiarities of the Jahn-Teller effect for the impurity Mn/sup 3 +/ ion. It has been shown that the appearance of reorientation transitions from a weak-ferromagnetic state and antiferromagnetic one (the Morine type transition), observed during the replacement of a part of Fe/sup 3 +/ ions on Mn/sup 3 +/ ions, is connected with the fact, that one-ion anisotropy of Mn/sup 3 +/ stabilizes antiferromagnetic spin structure of Gy. In the (ac)-plane the one-ion Mn/sup 3 +/ anisotropy changes in the orthoferrite series stabilizing Gsub(x)Fsub(z) at the beginning of the series and Gsub(z)Fsub(x) at the end of it. The phase diagram of temperature reorientation as a function of Mn/sup 3 +/ ion concentration has been built up.

  20. Light assisted collisions in ultra cold Tm atom

    Science.gov (United States)

    Akimov, Alexey; Cojocaru, Ivan; Pyatchenkov, Sergey; Snigirev, Stepan; Luchnokov, Ilia; Sukachev, Denis; Kalganova, Elena; Sorokin, Vadim

    2016-05-01

    Recently laser cooled rare earth elements attracted considerable attention due to the high orbital and magnetic moments. Such a systems allow low-field Feshabach resonances enabling tunable in wide range interactions. In particular, thulium atom has one hole in 4f shell therefore having orbital moment of 3 in the ground state, magnetic moment of 4 Bohr magnetons in ground state. While magnetic moment of the thulium atom is less than that of Erbium or Dysprosium simpler level structure, possibility to capture thulium atoms and the dipole trap at 532 nm make thulium atom an extremely attractive subject for quantum simulations. Nevertheless collisional properties of thulium atom are not yet explored in details, in particular light assisted collision of thulium atom were not yet investigated. In this contribution, we performed studies of light assisted collisions near in Magneto optical trap operating on narrow 530.7 nm transition. We found, that light assisted inelastic binary collisions losses rate is around β ~10-9cm3cm3s s . Possible mechanism of losses from the trap are discussed

  1. Synthesis and photoluminescent characteristics of Dy3+ doped Gd2O3 phosphors

    Science.gov (United States)

    Jeena, T. R.; Ezhil Raj, A. Moses; Bououdina, M.

    2017-02-01

    Pure and dysprosium doped gadolinium oxide nanoparticles for three different concentrations (2, 5 and 10 mol.%) were synthesized by auto-combustion method using citric acid as fuel. The nanoparticles obtained were characterized using powder x-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), UV–vis–NIR spectroscopy and photoluminescence (PL) spectroscopy techniques. XRD pattern revealed the crystalline cubic phase with space group Ia3 (Space Group: 206) for both the pure and doped Gd2O3 nanoparticles. The metal oxide phase formation and purity of Gd2O3 nanoparticles were further confirmed from the FTIR spectra. Morphology of the pure Gd2O3 powder is loosely dispersed clusters of tiny particles with microscopic pores, whereas for the doped samples aggregates were broken to form small clusters. Optical absorption measurements were recorded in the UV–vis–NIR wavelength region and the optical band gap variations with dopant concentration were discussed. The PL spectra of pure and Dy3+ doped Gd2O3 nanoparticles have been studied and the effect of emitted light on the yellow-to-blue intensity ratio (Y/B) of Dy3+ emission was demonstrated.

  2. The use of selected neutron absorption resonance filters to suppress spurious events on hot neutron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Lançon, D., E-mail: diane.lancon@epfl.ch [Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Institut Laue-Langevin, BP156, 38042 Grenoble Cedex (France); Ewings, R.A.; Stewart, J.R. [ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Jiménez-Ruiz, M. [Institut Laue-Langevin, BP156, 38042 Grenoble Cedex (France); Rønnow, H.M. [Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2015-04-21

    Resonant absorption can be used as a filter for high energy neutron spectroscopy. Here we report the transmission of eight thin foil filters: erbium, indium, iridium, dysprosium, hafnium, gadolinium, cadmium and samarium, measured using neutron time-of-flight techniques over a range of energies (1 meV to 10 eV). Measured transmission is converted into energy-dependent absorption cross-section which compares closely to tabulated values. Each resonance is characterized from 91 meV (samarium) to 2815 meV (gadolinium) by Lorentzian fits. Possibilities for the use of neutron filters depending on the type of spurious background are discussed and the performance is simulated for a specific example of a hot neutron triple axis spectrometer experiment. - Highlights: • We measured neutron transmission for eight absorption filters using time of flight. • Resonance energies, their selectivity and efficiency are extracted for each filter. • We detail how to choose and optimize filter use in neutron scattering experiments. • Such filtering can be efficiently used to reduce background and spurious signals.

  3. Magnetocaloric properties of rare-earth substituted DyCrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    McDannald, A. [Material Science and Engineering Department, University of Connecticut, Storrs, Connecticut 06269 (United States); Jain, M., E-mail: menka.jain@uconn.edu [Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2015-07-28

    Recently, there has been a focus on the need for efficient refrigeration technology without the use of expensive or harmful working fluids, especially at temperatures below 30 K. Solid state refrigeration, based on the magnetocaloric effect, provides a possible solution to this problem. The rare-earth chromites (RCrO{sub 3}), especially DyCrO{sub 3}, with its large magnetic moment dysprosium ion, are potential candidates for such an application. The Dy{sup 3+} ordering transition at low temperatures (<10 K) likely causes a large magnetocaloric response in this material. This study investigates the possibility of tuning the magnetocaloric properties through the use of rare-earth substitution. Both Y{sup 3+} and Ho{sup 3+} substitutions were found to decrease the magnetocaloric response by disrupting the R{sup 3+} ordering. Whereas Er{sup 3+} substitution was found to increase the magnetocaloric response, likely due to an increase in the R{sup 3+} ordering temperature. The large magnetocaloric entropy change of Er{sup 3+} substituted DyCrO{sub 3} (10.92 J/kg K with a relative cooling power of 237 J/kg at 40 kOe and 5 K) indicates that this material system is well suited for low temperature (<30 K) solid state refrigeration applications.

  4. Magnetocaloric properties of TbN, DyN and HoN nanopowders prepared by the plasma arc discharge method.

    Science.gov (United States)

    Shinde, K P; Jang, S H; Kim, J W; Kim, D S; Ranot, M; Chung, K C

    2015-12-21

    We report for the first time the synthesis of nanopowders of TbN, DyN and HoN crystallized in a cubic structure by the plasma arc discharge (PAD) method and investigate their magnetocaloric properties for magnetic refrigeration applications. The nitridization of terbium, dysprosium and holmium was obtained using a mixture of nitrogen and argon gas inside a discharge chamber with 4 kPa pressure. The structural and microstructural properties of these rare earth nitrides were investigated by using X-ray diffraction and transmission electron microscopy. The studied nitrides undergo a second-order ferromagnetic to paramagnetic phase transition at Curie temperatures of 35.7, 19.9 and 14.2 K for TbN, DyN and HoN, respectively. The magnetocaloric effects were estimated by calculating the magnetic entropy changes from the magnetization data sets measured at the different applied magnetic fields and temperatures. The changes in entropy -ΔSM were found to be 12.0, 13.6 and 24.5 J kg(-1) K(-1) at an applied magnetic field of 5 T.

  5. Investigation on the magnetomechanical behavior of trilayered GM actuator

    Institute of Scientific and Technical Information of China (English)

    Heung-Shik Lee; Chongdu Cho

    2008-01-01

    In this article, it was suggested a TbFe/Co/Dy trilayered GM (Giant Magnetostrictive) film type actuator and investigated the magnetomechanical characteristics of the actuator for micro application. The trilayered films were fabricated at different thickness ratios to get an optimized structure. TbFe had positive GM properties, and cobalt, dysprosium layers made the magnetostriction property of composite film increase in low magnetic field. To fabricate the Si based microactuator with trilayered film, micromachining processes including RIE (Reactive Ion Etching) and selective DC magnetron sputtering techniques were combined. The deposited film thicknesses were measured by X-ray diffraction (XRD). As a result, the magnetization of the film on the fabricated actuator was observed to characterize the magnetic properties of the TbFe/Co/Dy film using VSM (Vibrating Sample Magnetometer). The magnetostriction of the actuator was determined by measuring the differences of curvature of the film coated silicon substrates using the optical cantilever method, and the deflections were also estimated under the external magnetic field lower than 0.5T for micro-system applications.

  6. Production of Medical Radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for Cancer Treatment and Arterial Restenosis Therapy after PTCA

    Science.gov (United States)

    Knapp, F. F. Jr.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  7. Enhanced in-field critical currents of YBCO second-generation (2G) wire by Dy additions

    Energy Technology Data Exchange (ETDEWEB)

    Long, N [Industrial Research Ltd, PO Box 31-310, Lower Hutt (New Zealand); Strickland, N [Industrial Research Ltd, PO Box 31-310, Lower Hutt (New Zealand); Chapman, B [Industrial Research Ltd, PO Box 31-310, Lower Hutt (New Zealand); Ross, N [Industrial Research Ltd, PO Box 31-310, Lower Hutt (New Zealand); Xia, J [Industrial Research Ltd, PO Box 31-310, Lower Hutt (New Zealand); Li, X [American Superconductor Corporation, Westborough, MA 01581 (United States); Zhang, W [American Superconductor Corporation, Westborough, MA 01581 (United States); Kodenkandath, T [American Superconductor Corporation, Westborough, MA 01581 (United States); Huang, Y [American Superconductor Corporation, Westborough, MA 01581 (United States); Rupich, M [American Superconductor Corporation, Westborough, MA 01581 (United States)

    2005-12-15

    The addition of dysprosium oxide nanoparticles is shown to improve the critical current in perpendicular magnetic fields for second-generation (2G) wire formed by metal-organic deposition (MOD). Typical enhancements in J{sub c} are from 0.17 MA cm{sup -2} to over 0.33 MA cm{sup -2} at 77 K and B{sub perp} = 1.5 T. TEM analysis shows that we are introducing (Y,Dy){sub 2}O{sub 3} nanoparticles with dimensions of 10-50 nm. A simple theoretical analysis shows that the maximum pinning effect for additions is expected at excess concentrations of approximately 70% DyO{sub 1.5}, i.e. for YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}+0.7DyO{sub 1.5} if the added nanoparticles are randomly dispersed and a strong pinning model is valid. An interesting feature is that the critical current in parallel field is reduced in these samples. We present evidence that shows this may be due to reduced planar defects in the YBCO.

  8. On the photo-luminescence properties of sol–gel derived undoped and Dy{sup 3+} ion doped nanocrystalline Scheelite type AMoO{sub 4} (A = Ca, Sr and Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Paramananda [Department of Physics, Pondicherry University, Pondicherry 605014 (India); Gupta, Santosh K., E-mail: santufrnd@gmail.com [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Natarajan, V. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Padmaraj, O. [Department of Physics, Pondicherry University, Pondicherry 605014 (India); Satyanarayana, N., E-mail: nallanis2011@gmail.com [Department of Physics, Pondicherry University, Pondicherry 605014 (India); Venkateswarlu, M. [R & D Amara Raja Batteries Ltd., Karakambadi 517501, AP (India)

    2015-04-15

    Nanocrystalline Scheelite type Dy doped AMoO{sub 4} [where A = Ba, Sr and Ca] samples were prepared by acrylamide assisted sol–gel process and characterized by XRD, FT-Raman, FTIR, SEM and photoluminescence (PL). PL of undoped sample shows blue/green emission in CaMoO{sub 4} and SrMoO{sub 4} but multicolour visible emission leading to near white light in BaMoO{sub 4} nanoparticles; the origin of which is explained. It was observed that on doping 0.5 mol% of Dy{sup 3+} in molybdate samples complete energy transfer takes place in case of SrMoO{sub 4} and BaMoO{sub 4}, but host contributed substantially in Dy doped BaMoO{sub 4} sample, resulting in biexponential decay. It was also observed that symmetry around Dy{sup 3+} decreases as the size of alkaline earth ion increases. Due to combined blue, yellow and red colour emission in dysprosium doped sample; all samples showed near white light emission under UV and near UV excitation.

  9. Studies of heavy-ion reactions and transuranic nuclei. Progress report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W.U.

    1993-08-01

    This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in {sup 32}S + {sup 118,124}Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction {sup 197}Au+{sup 208}Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction {sup 209}Bi+{sup 136}Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral {sup 209}Bi+{sup 136}Xe Collisions at E{sub lab}/A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray {mu}{sup {minus}} with a Muon Telescope.

  10. Spectroscopic and photoluminescence characterization of Dy(3+) in Sr0.5Ca0.5TiO3 phosphor.

    Science.gov (United States)

    Vidyadharan, Viji; Sreeja, E; Jose, Saritha K; Joseph, Cyriac; Unnikrishnan, N V; Biju, P R

    2016-02-01

    The spectroscopic and photoluminescence characteristics of trivalent dysprosium (Dy(3+))-doped Sr0.5Ca0.5TiO3 phosphor materials synthesized via solid-state reaction method were studied. The X-ray diffraction profile confirmed the orthorhombic perovskite structure of the prepared samples. Judd-Ofelt analysis was carried out to obtain the intensity parameters and predicted radiative properties of Sr0.5Ca0.5TiO3:2wt%Dy(3+). The photoluminescence spectrum of Dy(3+)-doped Sr0.5Ca0.5TiO3 showed three emission peaks at 481, 574 and 638 nm corresponding to (4)F9/2 →(6)H15/2, (4)F9/2 →(6)H13/2 and (4)F9/2 →(6)H11/2 transitions respectively. The variation of luminescence intensity with different excitation wavelengths and Dy(3+) concentrations is discussed. The decay profiles of (4)F9/2 excited levels of Dy(3+) ions show bi-exponential behaviour and also a decrease in average lifetime with increase in Dy(3+) concentration. Yellow to blue luminescence intensity ratio, CIE chromaticity co-ordinates and correlated color temperature were also calculated for different concentrations of Dy(3+)-doped Sr0.5Ca0.5TiO3 phosphor at different λex. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Lanthanide triangles sandwiched by tetranuclear copper complexes afford a family of hendecanuclear heterometallic complexes [Ln(III)3Cu(II)8] (Ln = La-Lu): synthesis and magnetostructural studies.

    Science.gov (United States)

    Iasco, Olga; Novitchi, Ghenadie; Jeanneau, Erwann; Luneau, Dominique

    2013-08-05

    Reaction in ethanol of 3-hydroxymethylen-5-methylsalicylaldoxime (H3L) with CuCl2·2H2O and LnCl3·xH2O [Ln = La (1), Ce (2), Pr (3), Nd (4), Eu (5), Gd (6), Tb (7), Dy (8), Er (9), Yb (10), Lu (11), Ho (12)] allowed the synthesis of a family of hendecanuclear heterometallic copper(II)-lanthanide(III) clusters with general formula [Ln(III)3Cu(II)8(HL)6(μ4-O)2Cl6(H2O)8]Cl3 (1-12). According to the single-crystal X-ray diffraction investigation, the complexes are isomorphous and crystallize in the trigonal R32 group. The hendecanuclear cluster is formed by two tetrahedral μ4-oxo {Cu4} clusters assembled by three lanthanide ions sandwiched in between. Along the family, the separation between the {Cu4} moieties increases linearly from Lu to La in good correlation with ionic radius of the lanthanide ions. A comparative analysis of the magnetic data for the lanthanum (1) and lutetium (11) compounds shows the presence of ferromagnetic and antiferromagnetic interactions within the μ4-oxo {Cu4} moieties. For the gadolinium (6) and terbium (7) compounds, the magnetic interactions between the lanthanide and the copper ions are found to be ferromagnetic. The dysprosium (8) compound exhibits single-molecule magnet behavior.

  12. Dy3+ doped Lithium Sodium Bismuth Borate Glasses for Yellow Luminescent Photonic Applications

    Directory of Open Access Journals (Sweden)

    M. Parandamaiah,

    2015-08-01

    Full Text Available Lithium sodium bismuth borate glasses-doped with trivalent dysprosium (Dy3+ ions (LSBiB have been prepared by conventional melt-quenching technique and characterized by structural, thermal and spectroscopic measurements. XRD pattern of the host glass confirms its amorphous nature. Morphological and elemental analysis has also been carried out for Dy3+doped LSBiB glass matrix. FTIR spectral analysis confirms the glass formation of the host glass. Optical absorption spectral analysis has been carried out for 0.8 mol% Dy3+ doped LSBiB glass sample. Well defined optical absorption bands are assigned with corresponding electronic transitions. Photoluminescence spectra shows two prominent emission bands centered at 482 nm and 575 nm corresponds to the 4 F9/2 → 6H15/2 and 4 F9/2 → 6H13/2 respectively under the excitation of 452 nm. Among all the concentrations of Dy3+ ions, at 0.8 mol% Dy3+ contained glass sample exhibits prominent yellow emission at 575 nm. Lifetime decay dynamics have been systematically analyzed for all the glasses, higher lifetime is found to be 0.47 ms for 0.8 mol% Dy3+ ions doped glass. From the photoluminescence analysis, Dy3+ contained glass samples could be suggested as potential yellow luminescent glass matrix for several photonic device applications.

  13. Dosimetric study of thermoluminescent detectors in clinical photon beams using liquid water and PMMA phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Luciana C., E-mail: lmatsushima@ipen.br [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Veneziani, Glauco R. [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Sakuraba, Roberto K. [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Sociedade Beneficente Israelita Brasileira - Hospital Albert Einstein (HAE), Avenida Albert Einstein, 665, Morumbi, CEP: 05652-000, Sao Paulo, SP (Brazil); Cruz, Jose C. da [Sociedade Beneficente Israelita Brasileira - Hospital Albert Einstein (HAE), Avenida Albert Einstein, 665, Morumbi, CEP: 05652-000, Sao Paulo, SP (Brazil)

    2012-07-15

    The purpose of this study was the dosimetric evaluation of thermoluminescent detectors of calcium sulphate doped with dysprosium (CaSO{sub 4}:Dy) produced by IPEN compared to the TL response of lithium fluoride doped with magnesium and titanium (LiF:Mg,Ti) dosimeters and microdosimeters produced by Harshaw Chemical Company to clinical photon beams dosimetry (6 and 15 MV) using liquid water and PMMA phantoms. - Highlights: Black-Right-Pointing-Pointer Dosimetric study of thermoluminescent detectors of CaSO{sub 4}:Dy, LiF:Mg,Ti and {mu}LiF:Mg,Ti. Black-Right-Pointing-Pointer Clinical (6 and 15 MV) photon beams dosimetry using liquid water and PMMA phantom. Black-Right-Pointing-Pointer Linear behavior to the dose range (0.1 to 5 Gy). Black-Right-Pointing-Pointer TL response reproducibility better than {+-}4.34%. Black-Right-Pointing-Pointer CaSO{sub 4}:Dy represent a cheaper alternative to the TLD-100.

  14. Construction of Polynuclear Lanthanide (Ln = Dy(III), Tb(III), and Nd(III)) Cage Complexes Using Pyridine-Pyrazole-Based Ligands: Versatile Molecular Topologies and SMM Behavior.

    Science.gov (United States)

    Bala, Sukhen; Sen Bishwas, Mousumi; Pramanik, Bhaskar; Khanra, Sumit; Fromm, Katharina M; Poddar, Pankaj; Mondal, Raju

    2015-09-08

    Employment of two different pyridyl-pyrazolyl-based ligands afforded three octanuclear lanthanide(III) (Ln = Dy, Tb) cage compounds and one hexanuclear neodymium(III) coordination cage, exhibiting versatile molecular architectures including a butterfly core. Relatively less common semirigid pyridyl-pyrazolyl-based asymmetric ligand systems show an interesting trend of forming polynuclear lanthanide cage complexes with different coordination environments around the metal centers. It is noteworthy here that construction of lanthanide complex itself is a challenging task in a ligand system as soft N-donor rich as pyridyl-pyrazol. We report herein some lanthanide complexes using ligand containing only one or two O-donors compare to five N-coordinating sites. The resultant multinuclear lanthanide complexes show interesting magnetic and spectroscopic features originating from different spatial arrangements of the metal ions. Alternating current (ac) susceptibility measurements of the two dysprosium complexes display frequency- and temperature-dependent out-of-phase signals in zero and 0.5 T direct current field, a typical characteristic feature of single-molecule magnet (SMM) behavior, indicating different energy reversal barriers due to different molecular topologies. Another aspect of this work is the occurrence of the not-so-common SMM behavior of the terbium complex, further confirmed by ac susceptibility measurement.

  15. Evaluation of the exchange interaction and crystal fields in a prototype Dy2 SMM

    Science.gov (United States)

    Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Pineda, Eufemio; McInnes, Eric

    In order to gain an understanding of the INS and magnetization data obtained for Dy2, the simplest member of a newly synthesized family of dysprosium-based molecular magnets, we report on calculations of the magnetic behavior of a Dy2 cluster with the formula [hqH2][Dy2(hq)4(NO3)3].MeOH. The molecular complex contains one high symmetry Dy(III) ion and one low symmetry Dy(III) ion. Our calculations suggest that exchange coupling between the two ions controls the behavior of the magnetization at low temperature, while the crystal field of the low symmetry Dy(III) ion controls the behavior at higher temperature. A point charge electrostatic model, based on crystallographic coordinates, provides a starting point for the determination of the crystal field. Parameters in these calculations are adjusted to provide best fits to inelastic neutron scattering data (INS) and low temperature magnetometry: the INS measurements access crystal field energies and low temperature magnetization probes the Dy-Dy exchange interaction. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).

  16. Analysis of dosimetric peaks of MgB4O7:Dy (40% Teflon versus LiF:Mg,Ti TL detectors

    Directory of Open Access Journals (Sweden)

    Paluch-Ferszt Monika

    2016-03-01

    Full Text Available Magnesium tetraborate doped with dysprosium (MgB4O7:Dy is known as a good thermoluminophor for personal dosimetry of gamma ray and X-ray radiation because of its high sensitivity and close tissue equivalence. This material can be produced by different routes. The sintered pastilles of magnesium tetraborate mixed with Teflon (40% used in this work were manufactured at the Federal University of Sergipe, Department of Physics by the solid-state synthesis. Magnesium tetraborate was already used for high-dose dosimetry, exhibiting linearity for a wide range of doses. In this work, the authors examined its main characteristics prior to potential use of detectors in everyday dosimetry, comparing this material to a widely used LiF:Mg,Ti phosphor. The following tests influencing dosimetric peaks of MgB4O7:Dy were presented: (1 the shape of the glow curves, (2 annealing conditions and post-irradiation annealing and its influence for background of the detectors, (3 the choice of the heating rates at the read-out and (4 the threshold dose, that is, the lowest possible dose to be measured. Similar tests were performed with LiF:Mg,Ti detectors, produced and widely used in Poland. The results were compared and discussed.

  17. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies.

    Science.gov (United States)

    Alonso, Elisa; Sherman, Andrew M; Wallington, Timothy J; Everson, Mark P; Field, Frank R; Roth, Richard; Kirchain, Randolph E

    2012-03-20

    The future availability of rare earth elements (REEs) is of concern due to monopolistic supply conditions, environmentally unsustainable mining practices, and rapid demand growth. We present an evaluation of potential future demand scenarios for REEs with a focus on the issue of comining. Many assumptions were made to simplify the analysis, but the scenarios identify some key variables that could affect future rare earth markets and market behavior. Increased use of wind energy and electric vehicles are key elements of a more sustainable future. However, since present technologies for electric vehicles and wind turbines rely heavily on dysprosium (Dy) and neodymium (Nd), in rare-earth magnets, future adoption of these technologies may result in large and disproportionate increases in the demand for these two elements. For this study, upper and lower bound usage projections for REE in these applications were developed to evaluate the state of future REE supply availability. In the absence of efficient reuse and recycling or the development of technologies which use lower amounts of Dy and Nd, following a path consistent with stabilization of atmospheric CO(2) at 450 ppm may lead to an increase of more than 700% and 2600% for Nd and Dy, respectively, over the next 25 years if the present REE needs in automotive and wind applications are representative of future needs.

  18. Preparation of Reactive Bright Blue Rare Earth Dyestuffs and Their Spectra Properties

    Institute of Scientific and Technical Information of China (English)

    Liu Xiaozhen; Sang Wenbin

    2004-01-01

    Reactive bright blue rare earth dyestuffs were prepared by using reactive bright blue and lanthanum oxide,praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, dysprosium oxide, erbium oxide, lutetium oxide, yttrium oxide respectively for dyeing silk cloth.The degree of dyeing of reactive bright blue praseodymium and the degree of fixation of reactive bright blue gadolinium are the biggest, and 22.9% and 7 %are increased with that of reactive bright blue respectively.The spectra of reactive bright blue rare earth and reactive bright blue were studied by UV-VIS.In 200.00 ~ 800.00 nm, reactive bright blue has four absorption peaks, reactive bright blue rare earth has three absorption peaks; in 420.00 ~ 760.00 nm, reactive bright blue has two absorption peaks at 661.50 nm and 625.50 nm, respectively, and λmax is 661.50 nm; reactive bright blue rare earth has one absorption peak at 620.50, 618.00, 622.00, 623.00, 622.50, 619.50, 619.00, 621.00, 624.00, 620.00 nm adding La3+ ,Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, Er3+, Lu3+, Y3+respectively.

  19. Eu2+,Dy3+ codoped SrAl2O4 nanocrystalline phosphor for latent fingerprint detection in forensic applications

    Science.gov (United States)

    Sharma, Vishal; Das, Amrita; Kumar, Vinay

    2016-01-01

    In this work, europium and dysprosium doped strontium aluminate (SrAl2O4:Eu2+,Dy3+) nanophosphor is synthesized and its novel application for the detection of latent fingerprints on various contact surfaces is reported. The SrAl2O4:Eu2+,Dy3+ is synthesized using a combustion method and shows long-lasting afterglow luminescence. The powder particles are characterized using field emission scanning electron microscopy (FE-SEM), SEM-energy dispersive x-ray analysis, x-ray diffraction and photoluminescence spectrophotometry. The FE-SEM image analysis reveals that the nanoparticles are mostly 8-15 nm in size with an irregular spherical shape. This nano-structured powder was applied to fresh and aged fingerprints deposited on porous, semi-porous and non-porous contact surfaces, such as ordinary colored paper, glossy paper, glass, aluminum foil, a yellow foil chocolate wrapper, a soft drink can, a PET bottle, a compact disc and a computer mouse. The results are reproducible and show great sensitivity and high contrast in the developed fingermark regions on these surfaces. These nanophosphor particles also show a strong and long-lasting afterglow property, making them a suitable candidate for use as a fingerprint developing agent on luminescent and highly patterned surfaces. These kinds of powders have shown that they can remove the interference from background luminescence, which is not possible using ordinary luminescent fingerprinting powders.

  20. Rare earth complexes with a novel ligand N-(naphthalen-2-yl)- N-phenyl-2-(quinolin-8-yloxy)acetamide: Preparation and spectroscopic studies

    Science.gov (United States)

    Wu, Wei-Na; Tang, Ning; Yan, Lan

    2008-12-01

    Six complexes of rare earth nitrates (Ln = La, Sm, Eu, Gd, Tb, Dy) with a new amide type ligand, N-(naphthalen-2-yl)- N-phenyl-2-(quinolin-8-yloxy)acetamide (L) have been prepared and characterized by elemental analysis, conductivity measurements, IR and and 1H NMR spectra. Under excitation, Eu(III) and Sm(III) complexes exhibited strong red emissions. And the luminescence intensity of Sm(III) complex is higher than that of Eu(III) complex. Thus the Eu(III) and Sm(III) complexes are the potential light conversion agent. However, the Tb(III) and Dy(III) complexes cannot exhibit characteristic emissions of terbium and dysprosium ions, respectively. The results of phosphorescence spectrum show that the triplet-state energy level of the ligand matches better to the resonance level of Eu(III) than Tb(III) ion. In addition, the luminescence of the Eu(III) complex is also relatively strong in highly diluted tetrahydrofuran solution (2 × 10 -4 mol/L) compared with the powder. This is not only due to the solvate effects but also to the changes of the structure of the Eu(III) complex after being dissolved into the solvents. Furthermore, owing to the co-luminescence effect, the proper La(III) or Gd(III) doped Eu(III) complexes show stronger luminescence than the pure Eu(III) complex.

  1. Critical Minerals and Energy–Impacts and Limitations of Moving to Unconventional Resources

    Directory of Open Access Journals (Sweden)

    Benjamin C. McLellan

    2016-05-01

    Full Text Available The nexus of minerals and energy becomes ever more important as the economic growth and development of countries in the global South accelerates and the needs of new energy technologies expand, while at the same time various important minerals are declining in grade and available reserves from conventional mining. Unconventional resources in the form of deep ocean deposits and urban ores are being widely examined, although exploitation is still limited. This paper examines some of the implications of the transition towards cleaner energy futures in parallel with the shifts through conventional ore decline and the uptake of unconventional mineral resources. Three energy scenarios, each with three levels of uptake of renewable energy, are assessed for the potential of critical minerals to restrict growth under 12 alternative mineral supply patterns. Under steady material intensities per unit of capacity, the study indicates that selenium, indium and tellurium could be barriers in the expansion of thin-film photovoltaics, while neodymium and dysprosium may delay the propagation of wind power. For fuel cells, no restrictions are observed.

  2. Sol-gel-derived hybrid materials multi-doped with rare-earth metal ions

    Science.gov (United States)

    Zelazowska, E.; Rysiakiewicz-Pasek, E.; Borczuch-Laczka, M.; Cholewa-Kowalska, K.

    2012-06-01

    Four different hybrid organic-inorganic materials based on TiO2-SiO2 matrices with organic additives and doped with rare-earth metal ions (III) from the group of europium, cerium, terbium, neodymium, dysprosium and samarium, were synthesized by sol-gel method. Tetraethyl orthosilicate, titanium (IV) isopropoxide and organic compounds, such as butyl acrylate, butyl methacrylate, ethyl acetoacetate, ethylene glycol dimethacrylate, ethyl acetate, propylene carbonate, organic solvents and certain inorganic salts were used in the synthesis. The inorganic part of the sols, which were used in the synthesis of all the hybrid materials, was prepared separately and then the organic parts were added. The materials obtained were aged for three weeks at room temperature and then heated in an electric oven for three hours at temperatures of 80 °C-150 °C. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDX); X-ray diffraction (XRD); Fourier transform infrared spectroscopy (KBr technique); 29Si magic-angle spinning nuclear magnetic resonance; and fluorescence spectroscopy were used for the examination of morphology, microstructure and luminescence properties, respectively. Photoluminescence properties with relatively intense narrow emission lines of Tb, Eu, Dy, Nd, Sm respectively to the RE-ions doping, were observed for all the hybrid materials.

  3. Current Status on Resource and Recycling Technology for Rare Earths

    Science.gov (United States)

    Takeda, Osamu; Okabe, Toru H.

    2014-06-01

    The development of recycling technologies for rare earths is essential for resource security and supply stability because high-quality rare earth mines are concentrated in China and the demand for rare earth metals such as neodymium and dysprosium, used as raw materials in permanent magnets (neodymium magnet), is expected to increase rapidly in the near future. It is also important to establish a recycling-based society from the perspective of the conservation of finite and valuable mineral resources and the reduction of the environmental load associated with mining and smelting. In this article, the current status of rare earth resource as well as that of recycling technology for the magnets is reviewed. The importance of establishing an efficient recycling process for rare earths is discussed from the characteristics of supply chain of rare earths, and the technological bases of the recycling processes for the magnet are introduced. Further, some fundamental researches on the development of new recycling processes based on pyrometallurgical process are introduced, and the features of the recycling processes are evaluated.

  4. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.

    Science.gov (United States)

    Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R

    2015-08-18

    The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  5. Effect of surface deposited rare earth oxide gel characteristics on cyclic oxidation behavior of Fe20-Cr alloys

    Directory of Open Access Journals (Sweden)

    Stela Maria Cristina Fernandes

    2006-06-01

    Full Text Available Rare earths have been used to increase high temperature oxidation resistance of many chromium dioxide and alumina forming alloys. These rare earths can be added as elements (or as oxide dispersions to the alloys or applied as an oxide coating to the alloy surface. The sol-gel technique is considered to be very efficient to apply fine oxide particle coatings. Oxide gel coatings of various rare earths such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, dysprosium, yttrium, erbium and ytterbium have been applied to an iron-chromium alloy to determine their influence on the cyclic oxidation behavior (RT-900 °C of the alloy. The morphology and coverage of the rare earth oxide gels varied with the type of rare earth. The cyclic oxidation resistance of the alloy increased with increase in time at temperature required to reach a specific chromium dioxide layer thickness and this in turn was influenced by the rare earth ion radius and characteristics of the rare earth oxide coating such as morphology, stability, coverage, resistance to thermal stresses and consequently adhesion.

  6. Magnetostrictive Vibration Damper and Energy Harvester for Rotating Machinery

    Science.gov (United States)

    Deng, Zhangxian; Asnani, Vivake M.; Dapino, Marcelo J.

    2015-01-01

    Vibrations generated by machine driveline components can cause excessive noise and structural damage. Magnetostrictive materials, including Galfenol (iron-gallium alloys) and Terfenol-D (terbium-iron-dysprosium alloys), are able to convert mechanical energy to magnetic energy. A magnetostrictive vibration ring is proposed, which generates electrical energy and dampens vibration, when installed in a machine driveline. A 2D axisymmetric finite element (FE) model incorporating magnetic, mechanical, and electrical dynamics is constructed in COMSOL Multiphysics. Based on the model, a parametric study considering magnetostrictive material geometry, pickup coil size, bias magnet strength, flux path design, and electrical load is conducted to maximize loss factor and average electrical output power. By connecting various resistive loads to the pickup coil, the maximum loss factors for Galfenol and Terfenol-D due to electrical energy loss are identified as 0.14 and 0.34, respectively. The maximum average electrical output power for Galfenol and Terfenol-D is 0.21 W and 0.58 W, respectively. The loss factors for Galfenol and Terfenol-D are increased to 0.59 and 1.83, respectively, by using an L-C resonant circuit.

  7. Enhancement of the mechanoluminescence properties on Ca2MgSi2O7:Dy3+ phosphor by co-doping of charge compensator ions

    Science.gov (United States)

    Sahu, Ishwar Prasad

    2016-08-01

    In the present article, effect of charge compensator ions (R+ = Li+, Na+ and K+) on dysprosium-doped di-calcium magnesium di-silicate (Ca2MgSi2O7:Dy3+) phosphors were investigated. The Ca2MgSi2O7:Dy3+ and Ca2MgSi2O7:Dy3+, R+ phosphors, were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The peaks of mechanoluminescence (ML) intensity were increased linearly with increasing impact velocity of the moving piston. Thus, present investigation indicates that the piezoelectricity was responsible to produce ML in prepared phosphors. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity. Addition of charge compensator ions enhances the luminescence intensity of prepared Ca2MgSi2O7:Dy3+ phosphors, because they neutralize the charge generated by Dy3+ substitution for Ca2+ ions. The role of Li+ ions among all charge compensator ions (Na+ or K+) used was found to be most effective for enhanced Dy3+ ion emission. These ML materials can be used in the devices such as stress sensor, fracture sensor, impact sensor, damage sensors, safety management monitoring system and fuse system for army warheads.

  8. Production of medical radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for cancer treatment and arterial restenosis therapy after PTCA

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Alexander, C.W.; Hobbs, R.L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  9. A Moessbauer spectroscopy and magnetometry study of magnetic multilayers and oxides

    CERN Document Server

    Bland, J

    2002-01-01

    A study of the magnetic properties of thin films, multilayers and oxides has been performed using Moessbauer spectroscopy and SQUID magnetometry. The systems studied are DyFe sub 2 , HoFe sub 2 and YFe sub 2 cubic Laves Phase thin films, DyFe sub 2 /Dy and DyFe sub 2 /YFe sub 2 multilayers; Ce/Fe and U/Fe multilayers; and iron oxide powders and thin films. CEMS results at room temperature show a low symmetry magnetic easy axis for all of the Laves Phase samples studied. Analysis of the dipolar and contact hyperfine fields show that this axis is close to the [2-bar41] and [3-bar51] directions but cannot be fully determined. The spin moments lie out of plane in all samples by approximately 22 deg, indicating a significant magneto-elastic anisotropy. 2.5 kG inplane applied field measurements indicate a much larger magnitude of magnetocrystalline anisotropy in the DyFe sub 2 system than in the YFe sub 2 system. In the DyFe sub 2 /YFe sub 2 multilayer samples the anisotropy is dominated by the dysprosium single-io...

  10. 3D reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography.

    Science.gov (United States)

    Arkill, Kenton P; Neal, Chris R; Mantell, Judith M; Michel, Charles C; Qvortrup, Klaus; Rostgaard, Jørgen; Bates, Dave O; Knupp, Carlo; Squire, John M

    2012-05-01

    Visualising the molecular strands making up the glycocalyx in the lumen of small blood vessels has proved to be difficult using conventional transmission electron microscopy techniques. Images obtained from tissue stained in a variety of ways have revealed a regularity in the organisation of the proteoglycan components of the glycocalyx layer (fundamental spacing about 20 nm), but require a large sample number. Attempts to visualise the glycocalyx face-on (i.e. in a direction perpendicular to the endothelial cell layer in the lumen and directly applicable for permeability modelling) has had limited success (e.g. freeze fracture). A new approach is therefore needed. Here we demonstrate the effectiveness of using the relatively novel electron microscopy technique of 3D electron tomography on two differently stained glycocalyx preparations. A tannic acid staining method and a novel staining technique using Lanthanum Dysprosium Glycosamino Glycan adhesion (the LaDy GAGa method). 3D electron tomography reveals details of the architecture of the glycocalyx just above the endothelial cell layer. The LaDy GAGa method visually appears to show more complete coverage and more depth than the Tannic Acid staining method. The tomographic reconstructions show a potentially significant improvement in determining glycocalyx structure over standard transmission electron microscopy. © 2012 John Wiley & Sons Ltd.

  11. Optical cooling and trapping of highly magnetic atoms: the benefits of a spontaneous spin polarization

    Science.gov (United States)

    Dreon, Davide; Sidorenkov, Leonid A.; Bouazza, Chayma; Maineult, Wilfried; Dalibard, Jean; Nascimbene, Sylvain

    2017-03-01

    From the study of long-range-interacting systems to the simulation of gauge fields, open-shell lanthanide atoms with their large magnetic moment and narrow optical transitions open novel directions in the field of ultracold quantum gases. As for other atomic species, the magneto-optical trap (MOT) is the working horse of experiments but its operation is challenging, due to the large electronic spin of the atoms. Here we present an experimental study of narrow-line dysprosium MOTs. We show that the combination of radiation pressure and gravitational forces leads to a spontaneous polarization of the electronic spin. The spin composition is measured using a Stern–Gerlach separation of spin levels, revealing that the gas becomes almost fully spin-polarized for large laser frequency detunings. In this regime, we reach the optimal operation of the MOT, with samples of typically 3× {10}8 atoms at a temperature of 15 μK. The spin polarization reduces the complexity of the radiative cooling description, which allows for a simple model accounting for our measurements. We also measure the rate of density-dependent atom losses, finding good agreement with a model based on light-induced Van der Waals forces. A minimal two-body loss rate β ∼ 2× {10}-11 cm3 s–1 is reached in the spin-polarized regime. Our results constitute a benchmark for the experimental study of ultracold gases of magnetic lanthanide atoms.

  12. Economic Assessment for Recycling Critical Metals From Hard Disk Drives Using a Comprehensive Recovery Process

    Science.gov (United States)

    Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; Lister, Tedd E.

    2017-09-01

    Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally in an attempt to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. Nevertheless, current processes for recycling electronic waste only focus on certain metals as a result of feedstock and metal price uncertainties. In addition, there is a perception that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from U.S. HDDs, this article combines techno-economic information of an electro-hydrometallurgical process with end-of-life HDD availability in a simulation model. The results showed that adding REE recovery to an HDD base and precious metal recovery process was profitable given current prices. Recovered REEs from U.S. HDDs could meet up to 5.2% rest-of-world (excluding China) neodymium magnet demand. Feedstock, aluminum, and gold prices are key factors to recycling profitability. REEs contributed 13% to the co-recycling profit.

  13. Thermoluminescence measurements of entrance surface skin dose in exams of dog's chest in veterinary radiology

    Energy Technology Data Exchange (ETDEWEB)

    Veneziani, G.R. [Instituto de Biociencias (IBB-UNESP), Distrito de Rubiao Junior, Botucatu SP (Brazil); Matsushima, L.C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Avenida Professor Lineu Prestes 2242, Sao Paulo SP (Brazil); Fernandez, R.M. [Instituto de Biociencias (IBB-UNESP), Distrito de Rubiao Junior, Botucatu SP (Brazil); Rodrigues, L.L., E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Avenida Professor Lineu Prestes 2242, Sao Paulo SP (Brazil)

    2010-03-15

    This study aims to determine the entrance surface skin doses in dogs (with suspected pulmonary metastasis) submitted to chest X-rays using the technique of thermoluminescence (TL) dosimetry. Twenty seven radiologic exams of dogs of different breed and sizes were performed. The radiation doses were assessed using thermoluminescent dosimeters of calcium sulphate doped with dysprosium (CaSO{sub 4}:Dy) produced at Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN). The entrance surface skin dose range evaluated in this type of procedure was between 0.43 mGy to small size dogs and 4.22 mGy to big size dogs with repeated exams. The obtained results indicate that is extremely important the assessment of radiation doses involved in veterinary diagnostic radiology procedures, to evaluate the delivered doses to the animals, to be used as a parameter in the individual monitoring of pet's owners, who assist the animal positioning, and to protect occupationally exposed workers at the Veterinary Radiology Clinics.

  14. Ultrafast x-ray diffraction thermometry measures the influence of spin excitations on the heat transport through nanolayers

    Science.gov (United States)

    Koc, A.; Reinhardt, M.; von Reppert, A.; Rössle, M.; Leitenberger, W.; Dumesnil, K.; Gaal, P.; Zamponi, F.; Bargheer, M.

    2017-07-01

    We investigate the heat transport through a rare earth multilayer system composed of yttrium (Y), dysprosium (Dy), and niobium (Nb) by ultrafast x-ray diffraction. This is an example of a complex heat flow problem on the nanoscale, where several different quasiparticles carry the heat and conserve a nonequilibrium for more than 10 ns. The Bragg peak positions of each layer represent layer-specific thermometers that measure the energy flow through the sample after excitation of the Y top layer with fs-laser pulses. In an experiment-based analytic solution to the nonequilibrium heat transport problem, we derive the individual contributions of the spins and the coupled electron-lattice system to the heat conduction. The full characterization of the spatiotemporal energy flow at different starting temperatures reveals that the spin excitations of antiferromagnetic Dy speed up the heat transport into the Dy layer at low temperatures, whereas the heat transport through this layer and further into the Y and Nb layers underneath is slowed down. The experimental findings are compared to the solution of the heat equation using macroscopic temperature-dependent material parameters without separation of spin and phonon contributions to the heat. We explain why the simulated energy density matches our experiment-based derivation of the heat transport, although the simulated thermoelastic strain in this simulation is not even in qualitative agreement.

  15. White light generation from Dy3+-doped ZnO-B2O3-P2O5 glasses

    Science.gov (United States)

    Jayasimhadri, M.; Jang, Kiwan; Lee, Ho Sueb; Chen, Baojiu; Yi, Soung-Soo; Jeong, Jung-Hyun

    2009-07-01

    Dysprosium doped ZnO-B2O3-P2O5 (ZBP) glasses were prepared by a conventional melt quenching technique in order to study the luminescent properties and their utility for white light emitting diodes (LEDs). X-ray diffraction spectra revealed the amorphous nature of the glass sample. The present glasses were characterized by infrared and Raman spectra to evaluate the vibrational features of the samples. The emission and excitation spectra were reported for the ZBP glasses. Strong blue (484 nm) and yellow (574 nm) emission bands were observed upon various excitations. These two emissions correspond to the F49/2→H615/2 and F49/2→H613/2 transitions of Dy3+ ions, respectively. Combination of these blue and yellow bands gives white light to the naked eye. First time, it was found that ZnO-B2O3-P2O5 glasses efficiently emit white light under 400 and 454 nm excitations, which are nearly match with the emissions of commercial GaN blue LEDs and InGaN LED, respectively. CIE chromaticity coordinates also calculated for Dy3+: ZBP glasses to evaluate the white light emission.

  16. Liquid quantum droplets of ultracold magnetic atoms

    CERN Document Server

    Ferrier-Barbut, Igor; Wenzel, Matthias; Kadau, Holger; Pfau, Tilman

    2016-01-01

    The simultaneous presence of two competing inter-particle interactions can lead to the emergence of new phenomena in a many-body system. Among others, such effects are expected in dipolar Bose-Einstein condensates, subject to dipole-dipole interaction and short-range repulsion. Magnetic quantum gases and in particular Dysprosium gases, offering a comparable short-range contact and a long-range dipolar interaction energy, remarkably exhibit such emergent phenomena. In addition an effective cancellation of mean-field effects of the two interactions results in a pronounced importance of quantum-mechanical beyond mean-field effects. For a weakly-dominant dipolar interaction the striking consequence is the existence of a new state of matter equilibrated by the balance between weak mean-field attraction and beyond mean-field repulsion. Though exemplified here in the case of dipolar Bose gases, this state of matter should appear also with other microscopic interactions types, provided a competition results in an eff...

  17. Liquid quantum droplets of ultracold magnetic atoms

    Science.gov (United States)

    Ferrier-Barbut, Igor; Schmitt, Matthias; Wenzel, Matthias; Kadau, Holger; Pfau, Tilman

    2016-11-01

    The simultaneous presence of two competing inter-particle interactions can lead to the emergence of new phenomena in a many-body system. Among others, such effects are expected in dipolar Bose-Einstein condensates, subject to dipole-dipole interaction and short-range repulsion. Magnetic quantum gases and in particular Dysprosium gases, offering a comparable short-range contact and a long-range dipolar interaction energy, remarkably exhibit such emergent phenomena. In addition an effective cancellation of mean-field effects of the two interactions results in a pronounced importance of quantum-mechanical beyond mean-field effects. For a weakly dominant dipolar interaction the striking consequence is the existence of a new state of matter equilibrated by the balance between weak mean-field attraction and beyond mean-field repulsion. Though exemplified here in the case of dipolar Bose gases, this state of matter should appear also with other microscopic interactions types, provided a competition results in an effective cancellation of the total mean-field. The macroscopic state takes the form of so-called quantum droplets. We present the effects of a long-range dipolar interaction between these droplets.

  18. Constraining and Tuning the Coordination Geometry of a Lanthanide Ion in Metal-Organic Frameworks: Approach toward a Single-Molecule Magnet.

    Science.gov (United States)

    Liu, Ke; Li, Huanhuan; Zhang, Xuejing; Shi, Wei; Cheng, Peng

    2015-11-01

    It is available to constrain and tune the coordination geometries around lanthanide ions in metal-organic frameworks (MOFs) for the study of single-molecule-magnet (SMM) behavior. A series of Dy(III)-MOFs are synthesized via a solvothermal method by using furan-2,5-dicarboxylic acid (H2FDA) as the ligand. {[Dy2(FDA)3(DMF)2]·1.5DMF}n (1) and [Dy2(FDA)3(DMF)2(CH3OH)]n (2) show similar three-dimensional structures, but the coordination geometries around the dysprosium(III) ions in 1 and 2 exhibit different deviations from ideal square antiprism (D4d symmetry) because of the coordinated solvent molecules. Slow relaxation of the magnetization can be observed for both complexes, indicative of SMM behavior. The effective energy barriers for 1 and 2 can be obtained from alternating-current susceptibility measurements by applying an external 2000 Oe direct-current field. MOF 2 possesses a less distorted D4d coordination sphere and gives a higher effective energy barrier (Ueff) than that of MOF 1. Their diamagnetic Y(III)-diluted samples 1@Y and 2@Y exhibit similar relationships between the geometries and Ueff values, demonstrating that the magnetization relaxation is mainly from the symmetry-related single-ion behavior.

  19. Cubic Phases in the Gd2O3-ZrO2 and Dy2O3-TiO2 Systems for Nuclear Industry Applications

    Directory of Open Access Journals (Sweden)

    Maria Teresa Malachevsky

    2015-01-01

    Full Text Available Neutron absorbers are elements with a high neutron capture cross section that are employed at nuclear reactors to control excess fuel reactivity. If these absorbers are converted into materials of relatively low absorption cross section as the result of neutron absorption, they consume during the reactor core life and so are called burnable. These elements can be distributed inside an oxide ceramic that is stable under irradiation and thus called inert. Cubic zirconium oxide is one of the preferred materials to be used as inert matrix. It is stable under irradiation, experiments very low swelling, and is isomorphic to uranium oxide. The cubic phase is stabilized by adding small amounts of dopants like Dy2O3 and Gd2O3. As both dysprosium and gadolinium have a high neutron cross section, they are good candidates to prepare burnable neutron absorbers. Pyrochlores, like Gd2Zr2O7 and Dy2Ti2O7, allow the solid solution of a large quantity of elements besides being stable under irradiation. These characteristics make them also useful for safe storage of nuclear wastes. We present a preliminary study of the thermal analysis of different compositions in the systems Gd2O3-ZrO2 and Dy2O3-TiO2, investigating the feasibility to obtain oxide ceramics useful for the nuclear industry.

  20. Applications of bauxite residue: A mini-review.

    Science.gov (United States)

    Verma, Ajay S; Suri, Narendra M; Kant, Suman

    2017-09-01

    Bauxite residue is the waste generated during alumina production by Bayer's process. The amount of bauxite residue (40-50 wt%) generated depends on the quality of bauxite ore used for the processing. High alkalinity and high caustic content in bauxite residue causes environmental risk for fertile soil and ground water contamination. The caustic (NaOH) content in bauxite residue leads to human health risks, like dermal problems and irritation to eyes. Moreover, disposal of bauxite residue requires a large area; such problems can only be minimised by utilising bauxite residue effectively. For two decades, bauxite residue has been used as a binder in cement industries and filler/reinforcement for composite materials in the automobile industry. Valuable metals and oxides, like alumina (Al2O3), titanium oxide (TiO2) and iron oxide Fe2O3, were extracted from bauxite residue to reduce waste. Bauxite residue was utilised in construction and structure industries to make geopolymers. It was also used in the making of glass-ceramics and a coating material. Recently bauxite residue has been utilised to extract rare earth elements like scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd) and dysprosium (Dy). In this review article, the mineralogical characteristics of bauxite residue are summarised and current progresses on utilisation of bauxite residue in different fields of science and engineering are presented in detail.

  1. Ionic charge, radius, and potential control root/soil concentration ratios of fifty cationic elements in the organic horizon of a beech (Fagus sylvatica) forest podzol.

    Science.gov (United States)

    Tyler, Germund

    2004-08-15

    The root/organic soil concentration ratio; R/S) of 50 cationic mineral elements was related to their ionic properties, including ionic radius (r), ionic charge (z), and ionic potential (z/r or z2/r). The materials studied were ectomycorrhizal beech (Fagus sylvatica L.) roots and their almost purely organic soil substrate, the O-horizon (mor; raw humus) of a Podzol in South Sweden, developed in a site which has been untouched by forestry or other mechanical disturbance since at least 50 years and located in an area with no local sources of pollution. Elements determined by ICP-AES were aluminium, barium, calcium, iron, potassium, magnesium, manganese, sodium and strontium. Determined by ICP-MS were silver, beryllium, bismuth, cadmium, cerium, cobalt, chromium, caesium, copper, dysprosium, erbium, europium, gallium, gadolinium, hafnium, mercury, holmium, indium, lanthanum, lithium, lutetium, niobium, neodymium, nickel, lead, praseodymium, rubidium, scandium, samarium, tin, terbium, thorium, titanium, thallium, thulium, uranium, vanadium, yttrium, ytterbium, zinc and zirconium. The R/S ratios were most clearly related to the ionic potential of the cationic elements studied, which accounted for approximately 60% of the variability in R/S among elements. The ionic charge of an element was more important than the ionic radius. Elements with high ionic charge had low R/S ratios and vice versa. No clear differences in R/S between essential and non-essential plant nutrients were observed, especially when ions of similar charge were compared.

  2. Characterization and adjustment of the neutron radiography facility of the RP-10 nuclear reactor

    CERN Document Server

    Ravello-R, Y R

    2001-01-01

    The main aim of this work was to characterize and adjust the neutron radiography facility of the RP-10 nuclear reactor, and therefore be able to offer with this technique services to the industry and research centers in general. This technique will be complemented with others such as x-rays and gamma radiography. First, the shielding capacity of the facility was analyzed, proving that it complies with the radiological safety requirements established by the radiological safety code. Then gamma filtration tests were conducted in order to implement the direct method for image formation, optical density curves were built according to the thickness of the gamma filter, the type of film and the type of irradiation. Also, the indirect method for image formation was implemented for two types of converters: indium and dysprosium. Growth curves for optical density were also made according to contact time between converter-film, for different types of films. The resolution of the facility was also analyzed using two met...

  3. Synthesis and Structural Characterization of a Novel 2D Supramolecular Complex {[Dy2Zn(dinic)4(H2O)8]·H2O}n (H2dinic=2,5-Pyridinedicaboxylic Acid)

    Institute of Scientific and Technical Information of China (English)

    HU De-Xin; XUE Lin; CHE Yun-Xia

    2006-01-01

    A new dysprosium-zinc coordination polymer {[Dy2Zn(dinic)4(H2O)8]·H2O}n 1(H2dinic = 2,5-pyridinedicaboxylic acid) has been synthesized and structurally characterized by X-ray analysis. The complex (C28H30Dy2N4O25Zn, Mr = 1212.94) crystallizes in triclinic, space group P-1 with a = 7.8911(16), b = 9.3177(19), c = 13.029(3)(A), α = 75.29(3), β = 75.04(3), γ =79.00(3)°, V = 887.1(3)(A)3, Z = 1, Dc=2.236 g/cm3,μ(MoKα) = 4.947 mm-1, F(000) = 570, the final R = 0.0345 and wR = 0.0903 for 3644 observed reflections with I> 2σ(I). A two-dimensional supramolecular structure is formed in 1, which was characterized by elemental analysis, IR, TG analysis, and single-crystal X-ray diffraction.

  4. Thermal history sensors for non-destructive temperature measurements in harsh environments

    Science.gov (United States)

    Pilgrim, C. C.; Heyes, A. L.; Feist, J. P.

    2014-02-01

    The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature information can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.

  5. Whole-tract digesta kinetics and comparison of techniques for the estimation of fecal output in steers fed coastal bermudagrass hay at four levels of intake.

    Science.gov (United States)

    Luginbuhl, J M; Pond, K R; Burns, J C

    1994-01-01

    Coastal bermudagrass (Cynodon dactylon [L.] Pers) hay was fed to four ruminally cannulated steers (380 +/- 14 kg BW) of evaluate the effects of intake level on digesta flow kinetics in a 4 x 4 Latin square design. Forage intakes represented 50, 70, 88, and 99% of feed voluntarily consumed per animal during a pre-experimental period. Masticated boli and wet-sieved masticated leaves (ML) and stems (MS) retained by a 4.0-mm sieve and feces retained by a .063-mm sieve were mordanted with chromium or marked with erbium, ytterbium, or dysprosium, respectively. Particle markers and a solution of Co-EDTA were pulse-dosed via the ruminal cannula. A continuous infusion of Co-EDTA was later delivered with peristaltic pumps. Intake level had no effect (P > .10) on fluid and particle passage rate (PR; percentage/hour) of any fractions marked. For all particle fractions, increasing intake level caused linear decreases in mean retention time (MRT; P infusion of Co-EDTA did not differ. Kinetic estimates differed in magnitude according to the characteristics of the particle fractions marked. Marked feces gave the shortest estimate of MRT and the smallest estimate of FILL and FO. Kinetics of ML and MS also differed (P < .001), the former having faster PR, shorter MRT, and smaller FILL and FO. Use of representative samples of ingested feed should give more realistic estimates of digesta kinetics than estimates derived from ingesta fractions because kinetics of separated leaf and stem fractions differed.

  6. A study on the direct use of spent PWR fuel in CANDU reactors -Fuel management and safety analysis-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Boh Wook; Choi, Hang Bok; Lee, Yung Wook; Cho, Jae Sun; Huh, Chang Wook [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The reference DUPIC fuel composition was determined based on the reactor safety, thermal-hydraulics, economics, and refabrication aspects. The center pin of the reference DUPIC fuel bundle is poisoned with natural dysprosium. The worst LOCA analysis has shown that the transient power and heat deposition of the reference DUPIC core are the same as those of natural uranium CANDU core. The intra-code comparison has shown that the accuracy of DUPIC physics code system is comparable to the current CANDU core design code system. The sensitivity studies were performed for the refuelling schemes of DUPIC core and the 2-bundle shift refuelling scheme was selected as the standard refuelling scheme of the DUPIC core. The application of 4-bundle shift refuelling scheme will be studied in parallel as the auto-refuelling method is improved and the reference core parameters of the heterogeneous DUPIC core are defined. The heterogeneity effect was analyzed in a preliminary fashion using 33 fuel types and the random loading strategy. The refuelling simulation has shown that the DUPIC core satisfies the current CANDU 6 operating limits of channel and bundle power regardless of the fuel composition heterogeneity. The 33 fuel types used in the heterogeneity analysis was determined based on the initial enrichment and discharge burnup of the PWR fuel. 90 figs, 62 tabs, 63 refs. (Author).

  7. Hetero-seed and hetero-feed single crystal growth of SmxDy1-xFeO3 perovskites based on optical floating zone method

    Science.gov (United States)

    Xu, Kai; Zhao, Weiyao; Xing, Juanjuan; Gu, Hui; Ren, Wei; Zhang, Jincang; Cao, Shixun

    2017-06-01

    We studied samarium-dysprosium rare-earth orthoferrites SmxDy1-xFeO3 (SDFO, x = 0-1, interval 0.1) with 11 different x concentration values. All of the SDFO single crystals were successfully grown by a hetero-seed and hetero-feed optical-floating-zone technique in flowing air. The XRD powder patterns illustrate that the lattice mismatch of two samples with Δx = 0.1 is about 0.1-0.2% in ac plane, which is considered appropriate for our hetero-seed and hetero-feed crystal growth. Thus, we could successfully grow the series of SDFO single crystals continuously, for example, the x = 0.8 single crystal was grown on the x = 0.7 seed rod. X-ray back-reflection Laue photographs indicate good quality of all the as-grown SDFO single crystals. Composition analysis of SDFO single crystals were conducted by scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS), which demonstrate the accurate cation stoichiometry for each crystal. Moreover, we show that such crystal system possesses particular anisotropic magnetic property. The hetero-seed growth method and hetero-feed single crystal relay growth based on optical-floating-zone technique will be useful in high-throughput crystal materials growth.

  8. A simple route utilizing surfactant-assisted templating sol-gel process for synthesis of mesoporous Dy2O3 nanocrystal.

    Science.gov (United States)

    Sreethawong, Thammanoon; Chavadej, Sumaeth; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2006-08-01

    A simple route of combined sol-gel process with surfactant-assisted templating technique was successfully employed for the first time to synthesize nanocrystalline mesoporous Dy(2)O(3) with narrow monomodal pore size distribution under mild conditions. The nanocrystalline Dy(2)O(3) with monomodal mesoporous characteristic was ultimately achieved by controlling the hydrolysis and condensation steps of dysprosium n-butoxide modified with acetylacetone in the presence of laurylamine hydrochloride surfactant aqueous solution. The synthesized material was methodically characterized by thermogravimetry and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), N(2) adsorption-desorption, Brunauer-Emmett-Teller (BET) surface area analysis, and Barrett-Joyner-Halenda (BJH) pore size distribution analysis. The particle size of the synthesized Dy(2)O(3) in nanosized range obtained from the SEM and HRTEM micrographs was in good accordance with the crystallite size estimated from the XRD result. The N(2) adsorption-desorption result exhibited hysteresis pattern with single loop, indicating the existence of monomodal mesopore. The extremely narrow pore size distribution with mean pore diameter in the mesopore region of the synthesized Dy(2)O(3) was also confirmed by the BJH result.

  9. A concept for a magnetic field detector underpinned by the nonlinear dynamics of coupled multiferroic devices

    Science.gov (United States)

    Beninato, A.; Emery, T.; Baglio, S.; Andò, B.; Bulsara, A. R.; Jenkins, C.; Palkar, V.

    2013-12-01

    Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi0.7Dy0.3FeO3 shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi0.7Dy0.3FeO3, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a "blueprint" for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or "target" B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.

  10. Superconducting composite with multilayer patterns and multiple buffer layers

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    An article of manufacture including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superco n FIELD OF THE INVENTION The present invention relates to the field of superconducting articles having two distinct regions of superconductive material with differing in-plane orientations whereby the conductivity across the boundary between the two regions can be tailored. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  11. Structural Effects of Lanthanide Dopants on Alumina

    Science.gov (United States)

    Patel, Ketan; Blair, Victoria; Douglas, Justin; Dai, Qilin; Liu, Yaohua; Ren, Shenqiang; Brennan, Raymond

    2017-01-01

    Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.

  12. Structural Effects of Lanthanide Dopants on Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Ketan; Blair, Victoria; Douglas, Justin; Dai, Qilin; Liu, Yaohua; Ren, Shenqiang; Brennan, Raymond

    2017-01-06

    Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.

  13. Clinical trial of {sup 165}Dy-HMA and {sup 166}Ho-CHICO in the treatment of Rheumatoid knee synovitis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Yoo, D. H.; Bae, S. C.; Jun, J. B. [Hanyang University, Seoul (Korea, Republic of); Lim, S. M.; Hong, S. W.; Lee, S. Y.; Cheon, D. G.; Kim, S. J. [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1997-07-01

    The untreated, chronic synovial inflammation leads to pannus formation and eventual destruction of the articular cartilage. In cases where medical therapy was unsuccessful, surgical or radiation synovectomy is necessary especially in the knee joints. The advantages of radiation synovectomy over surgical synovectomy are (1) greater destruction of diseased synovium, (2) reduced potential for blood clots and infection, (3) no requirement for anesthesia, and (4) less costly and less time consuming. Recently KAERI developed Dy-165 HMA, which was characterized by the absence of iron and a higher concentration of dysprosium. And then more recently KAERI also developed {sup 166}Ho-CHICO, which was characterized by relatively longer half-life(26.8 hr), more biological due to organic nature of chitosan, more even spatial distribution due to colloidal solution and more absorbable to synovium than Dy-165 HMA. We studied to evaluate the efficacy and safety of radiation synovectomy with Dy-165 HMA and {sup 166}Ho-CHICO in chronic rheumatoid synovitis with knee. The present study indicates that the Dy-165 HMA and {sup 166}Ho-CHICO are an effective and safe agent for radiation synovectomy. But further large scaled long-term follow up study and controlled study with steroid only are required. 15 refs. (author)

  14. Nanocrystalline MgB{sub 4}O{sub 7}:Dy for high dose measurement of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lochab, S.P. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi-110067 (India); Pandey, A. [Department of Physics, Sri Venkateswara College, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi-110021 (India); Sahare, P.D.; Ranjan, Ranju [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Chauhan, R.S. [Department of Physics, RBS College, B. R. Ambedkar University, Agra-282002 (India); Salah, Numan [Department of Physics, Faculty of Applied Sciences, Thamar University, Thamar (Yemen)

    2007-07-15

    Magnesium borate activated by dysprosium (MgB{sub 4}O{sub 7}:Dy) is a low-Z{sub eff}, tissue-equivalent material that is commonly used for medical dosimetry of ionizing radiations such as gamma and X-rays using the thermoluminescence (TL) technique. Nanocrystals of the same material are produced and their TL characteristics are studied. It is found that the nanocrystalline MgB{sub 4}O{sub 7}:Dy with a dopant concentration of 1000 ppm is the most sensitive amongst varying dopant concentrations, with its sensitivity equal to 0.025 times that of the standard phosphor CaSO{sub 4}:Dy. The glow curve has two peaks at 154 C and 221 C. The nanophosphor has very poor sensitivity for low doses up to 10 Gy but beyond this dose the phosphor exhibits a linear response up to 5000 Gy. On increasing the dose further the response first becomes supralinear and then sublinear, finally resulting into saturation. Considering also its low fading particularly under post-irradiation annealing and excellent reusability features, this nanophosphor may be used for high dose (10-5000 Gy) measurements of ionizing radiations. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Structural, spectral, dielectric and magnetic properties of Tb-Dy doped Li-Ni nano-ferrites synthesized via micro-emulsion route

    Science.gov (United States)

    Junaid, Muhammad; Khan, Muhammad Azhar; Iqbal, F.; Murtaza, Ghulam; Akhtar, Majid Niaz; Ahmad, Mukhtar; Shakir, Imran; Warsi, Muhammad Farooq

    2016-12-01

    Terbium (Tb) and dysprosium (Dy) doped lithium-nickel nano-sized ferrites (Li0.2Ni0.8Tb0.5xDy0.5xFe2-xO4 where x=0.00-0.08) were prepared by micro-emulsion technique. The X-ray diffraction (XRD) patterns confirmed the single phase cubic spinel structure. The lattice constant was increased due to larger ionic radii of Tb3+ and Dy3+ cations. The crystallite size was found in the range 30-42 nm. The FTIR (Fourier transform infrared spectroscopy) spectra revealed two significant absorption bands (~400-600 cm-1) which indicate the formation of cubic spinel structure. The peaking behavior of dielectric parameters was observed beyond 1.5 GHz. The dielectric constant and dielectric loss were found to decrease by the increase of Tb-Dy contents and frequency. The doping of Tb and Dy in Li-Ni ferrites led to increase the coercive field (120-156 Oe). The smaller magnetic and dielectric parameters suggested the possible utility of these nano-materials in switching and microwave devices applications.

  16. Fracture assessment of magnetostrictive materials

    Directory of Open Access Journals (Sweden)

    M. Peron

    2017-10-01

    Full Text Available Giant magnetostrictive materials are gaining interest in the field of smart material, especially the commercially known Terfenol-D, that is an alloy made out of iron, terbium and dysprosium (Tb0.3Dy0.7Fe1.9. Since these smart materials are subjected to both mechanical loads and magnetic field during their industrial applications, an extensive characterization on the influence of a magnetic field and of defects on their fracture behavior is needed. Very few works can be found in literature about this topic and, thus, the purpose of this work is to partially fill this lack by means of three-point bending tests on single-edge pre-cracked Terfenol-D specimens. Failure loads have been measured at different loading rates and under magnetic fields of various intensities. Since giant magnetostrictive materials are very brittle, the strain energy density (SED approach has been exploited by means of couplefield finite element analyses. SED has revealed itself as a robust parameters in the assessment of the magnetic field and loading rate effects on fracture resistance, allowing also to propose a relationship between the radius of the control volume and the loading-rate

  17. Evaluation of thermoluminescent dosimeters using water equivalent phantoms for application in clinical electrons beams dosimetry; Avaliacao de dosimetros termoluminescentes empregando objetos simuladores equivalentes a agua para aplicacao na dosimetria de feixes clinicos de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Bravim, Amanda

    2010-07-01

    The dosimetry in Radiotherapy provides the calibration of the radiation beam as well as the quality control of the dose in the clinical routine. Its main objective is to determine with greater accuracy the dose absorbed by the tumor. This study aimed to evaluate the behavior of three thermoluminescent dosimeters for the clinical electron beam dosimetry. The performance of the calcium sulfate detector doped with dysprosium (CaSO{sub 4}: Dy) produced by IPEN was compared with two dosimeters commercially available by Harshaw. Both are named TLD-100, however they differ in their dimensions. The dosimeters were evaluated using water, solid water (RMI-457) and PMMA phantoms in different exposure fields for 4, 6, 9, 12 and 16 MeV electron beam energies. It was also performed measurements in photon beams of 6 and 15 MV (2 and 5 MeV) only for comparison. The dose-response curves were obtained for the {sup 60}Co gamma radiation in air and under conditions of electronic equilibrium, both for clinical beam of photons and electrons in maximum dose depths. The sensitivity, reproducibility, intrinsic efficiency and energy dependence response of dosimeters were studied. The CaSO{sub 4}: Dy showed the same behavior of TLD-100, demonstrating only an advantage in the sensitivity to the beams and radiation doses studied. Thus, the dosimeter produced by IPEN can be considered a new alternative for dosimetry in Radiotherapy departments. (author)

  18. Evidence of waste electrical and electronic equipment (WEEE) relevant substances in polymeric food-contact articles sold on the European market.

    Science.gov (United States)

    Puype, Franky; Samsonek, Jiří; Knoop, Jan; Egelkraut-Holtus, Marion; Ortlieb, Markus

    2015-01-01

    In order to confirm the possibility that recycled fractions from the waste electrical and electronic equipment (WEEE) stream were illegally entering the European market in black polymeric food-contact articles (FCAs), bromine quantification, brominated flame retardant (BFR) identification combined with WEEE-relevant elemental analysis and polymer impurity analysis were performed. From the 10 selected FCAs, seven samples contained a bromine level ranging from 57 to 5975 mg kg(-)(1), which is lower than expected to achieve flame retardancy. The BFRs that were present were tetrabromobisphenol A (TBBPA), decabromodiphenylether (decaBDE), decabromodiphenylethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE). Typical elements used in electronic equipment and present in WEEE were detected either at trace level or at elevated concentrations. In all cases when bromine was detected at higher concentrations, concurrently antimony was also detected, which confirms the synergetic use of antimony in combination with BFRs. This study describes also the measurement of rare earth elements where combinations of cerium, dysprosium, lanthanum, neodymium, praseodymium and yttrium were detected in four of the seven BFR-positive samples. Additionally, polymer purity was investigated where in all cases foreign polymer fractions were detected. Despite the fact that this study was carried out on a very small amount of samples, there is a significant likelihood that WEEE has been used for the production of FCAs.

  19. Rare earths as burnable poison for extended cycles control in electricity generation reactors; Etude des terres rares en tant que poison consommable pour le controle des cycles allonges pour les reacteurs electrogenes

    Energy Technology Data Exchange (ETDEWEB)

    Asou, M.

    1995-05-12

    The search of an optimization of the French electronuclear network operations leads to a necessary optimization of the core performances. All the economic studies performed by the utilities had shown that there is a real gain to minimize shut down periods for refueling. So, increasing the cycle length from 12 to 18 months will present a gain of shut down for a three years operation period. The theoretical burnable absorber will be a fuel admixed material bringing the required initial negative reactivity with a burn-up kinetic well suited to the fuel and allowing the lowest residual penalty as possible. The residual penalty us defined in this case by the non complete burn up of the poison, by the low of fissile material and by the accumulate of residual isotopes or nuclides. Because of the well known use of gadolinium as burnable absorber for BWR`s and PWR`s operations, the search for the best compromise to optimize all the above stress is pointed towards the rare earths. In the nuclides family, considering criteria such as cross sections, natural abundance and availability only five nuclides can play the role as burnable absorbers, namely: gadolinium, samarium, dysprosium, europium and erbium. The study presented here will show that only gadolinium and erbium will be considered to control the reactivity of the PWR`s. (author). 58 refs., 65 figs., 47 tabs.

  20. Testing the sampling efficiency of a nuclear power station stack monitor

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, L.H. [Instrumentinvest, Nykoeping (Sweden)

    1997-08-01

    The test method comprises the injection of known amounts of monodisperse particles in the stack air stream, at a suitable point upstream of the sampling installation. To find a suitable injection polls, the gas flow was mapped by means of a tracer gas, released in various points in the stack base. The resulting concentration distributions at the stack sampler level were observed by means of an array of gas detectors. An injection point that produced symmetrical distribution over the stack area, and low concentrations at the stack walls was selected for the particle tests. Monodisperse particles of 6, 10, and 19 {mu}m aerodynamic diameter, tagged with dysprosium, were dispersed in the selected injection point. Particle concentration at the sampler level was measured. The losses to the stack walls were found to be less than 10 %. The particle concentrations at the four sampler inlets were calculated from the observed gas distribution. The amount calculated to be aspirated into the sampler piping was compared with the quantity collected by the sampling train ordinary filter, to obtain the sampling line transmission efficiency. 1 ref., 2 figs.

  1. Optical cooling and trapping highly magnetic atoms: The benefits of a spontaneous spin polarization

    CERN Document Server

    Dreon, Davide; Bouazza, Chayma; Maineult, Wilfried; Dalibard, Jean; Nascimbene, Sylvain

    2016-01-01

    From the study of long-range-interacting systems to the simulation of gauge fields, open-shell Lanthanide atoms with their large magnetic moment and narrow optical transitions open novel directions in the field of ultracold quantum gases. As for other atomic species, the magneto-optical trap (MOT) is the working horse of experiments but its operation is challenging, due to the large electronic spin of the atoms. Here we present an experimental study of narrow-line Dysprosium MOTs. We show that the combination of radiation pressure and gravitational forces leads to a spontaneous polarization of the electronic spin. The spin composition is measured using a Stern-Gerlach separation of spin levels, revealing that the gas becomes almost fully spin-polarized for large laser frequency detunings. In this regime, we reach the optimal operation of the MOT, with samples of typically $3\\times 10^8$ atoms at a temperature of 20$\\,\\mu$K. The spin polarization reduces the complexity of the radiative cooling description, whi...

  2. Probing on green long persistent Eu{sup 2+}/Dy{sup 3+} doped Sr{sub 3}SiAl{sub 4}O{sub 11} emerging phosphor for security applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Bipin Kumar, E-mail: bipinbhu@yahoo.com [CSIR—National Physical Laboratory, Dr K S Krishnan Road, New Delhi 110012 (India); Kumar, Arun [CSIR—National Physical Laboratory, Dr K S Krishnan Road, New Delhi 110012 (India); Amity Institute of Applied Science, Amity University, Noida, Uttar Pradesh 201303 (India); Kumar, Pawan; Dwivedi, Jaya [CSIR—National Physical Laboratory, Dr K S Krishnan Road, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR–National Physical Laboratory campus, New Delhi–110012 (India); Pandey, G. N. [Amity Institute of Applied Science, Amity University, Noida, Uttar Pradesh 201303 (India); Kedawat, Garima [Department of Physics, Kalindi College, University of Delhi, New Delhi, 110008 (India)

    2015-06-28

    Herein, a novel green emitting long-persistent Sr{sub 3}SiAl{sub 4}O{sub 11}:Eu{sup 2+}/Dy{sup 3+} phosphor was synthesized in a single phase form using facile solid state reaction method under the reducing atmosphere of 10% H{sub 2} and 90% N{sub 2}. The resulting phosphor exhibits hyper-sensitive strong broad green emission, peaking at 510 nm upon 340 nm excitation wavelength, which is attributed to the 4f{sup 6}5d{sup 1}-4f{sup 7} transitions of emission center of europium (Eu{sup 2+}) ions. Moreover, the incorporation of dysprosium (Dy{sup 3+}) ions, which act as effective hole trap centers with appropriate depth, largely enhances the photoluminescence characteristics and greatly improves the persistent intense luminescence behavior of Sr{sub 3}SiAl{sub 4}O{sub 11}:Eu{sup 2+}/Dy{sup 3+} phosphor under ultraviolet (UV) excitation. In addition, with the optimum doping concentration and sufficient UV excitation time period, the as-synthesized phosphor can be persisted afterglow for time duration ∼4 h with maximum luminescence intensity. Thus, these results suggest that this phosphor could be expected as an ultimate choice for next generation advanced luminescent materials in security applications such as latent finger-marks detection, photo-masking induced phosphorescent images, and security code detection.

  3. Synthesis and characterization of CaF{sub 2}:Dy nanophosphor for dosimetric application

    Energy Technology Data Exchange (ETDEWEB)

    Bhadane, Mahesh S.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune-411007 (India); Patil, B. J. [Department of Physics, Abasaheb Garware College, Pune-411004 (India); Kulkarni, M. S. [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Bhatt, B. C. [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2015-06-24

    In this work, nanoparticles (NPs) of dysprosium doped calcium fluoride (CaF{sub 2}:Dy) 1 mol % has been prepared using simple chemical co-precipitation method and its thermoluminescence (TL) dosimetric properties were studied. The synthesized nanoparticle sample was characterized by X-ray diffraction (XRD) and the particle size of face centered cubic phase NPs was found around 30 nm. The shape, morphology and size were also observed by scanning electron microscopy (SEM). From gamma irradiated CaF{sub 2}:Dy TL curves, it was observed that the total areas of all the glow peak intensities are dramatically changed with increase in annealing temperature. Further, TL glow curve of the CaF{sub 2}:Dy at 183 °C annealed at 400 °C, showed very sharp linear response in the dose range from 1 Gy to 750 Gy. This linear response of CaF{sub 2}:Dy nanophosphor as a function of gamma dose is very useful from radiation dosimetric point of view.

  4. In Vivo Uptake of Rare Earth Metals by Triple-Negative Breast Cancer Cells.

    Science.gov (United States)

    Roncati, Luca; Gatti, Antonietta Morena; Barbolini, Giuseppe; Piscioli, Francesco; Pusiol, Teresa; Maiorana, Antonio

    2017-02-09

    Rare earth metals (REM) are a group of 17 chemical elements in the periodic table, namely scandium (Sc), yttrium (Y) and the lanthanides. In relation to atomic volume and geological behavior, the lanthanides are further subdivided into light, medium and heavy REM. They find many applications in the technological field; however, their impact on the human health is still conflicting and, for many aspects, unknown. During a research program carried on 113 cases of female breast cancer, immunohistochemically categorized in Her2-positive (29 cases), Her2-negative (57 cases) and triple negative (27 cases), aimed to evaluate the role of environmental particulate in carcinogenesis by elemental microanalysis, for the first time in literature we have detected a REM uptake, in detail europium (Eu), dysprosium (Dy) and praseodymium (Pr), inside the neoplastic cells belonging to a single triple negative breast cancer. Curiously, the woman affected by this form of malignancy had worked in the ceramic industry, a well-known source of REM, during her life, and she was the one and only patient of our series to be dedicated to this activity. The medical repercussions of our findings are here discussed: in fact, a REM detection in only 1 of 113 examined cases seems to exclude active roles in breast carcinogenesis and discloses new possibilities for therapeutic developments in triple negative breast cancer.

  5. Rare earth silicide nanowires on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Martina

    2008-11-10

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti {gamma} point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi{sub 2}-monolayer and the Dy{sub 3}Si{sub 5}-multilayer on the Si(111) surface are investigated in comparison to the known ErSi{sub 2}/Si(111) and Er{sub 3}Si{sub 5}/Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the (vector)k {sub parallel} space is elliptical at the anti M points, while the hole pocket at the anti {gamma} point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas

  6. Optimizing white light luminescence in Dy{sup 3+}-doped Lu{sub 3}Ga{sub 5}O{sub 12} nano-garnets

    Energy Technology Data Exchange (ETDEWEB)

    Haritha, P.; Linganna, K.; Venkatramu, V., E-mail: vvramuphd@gmail.com [Department of Physics, Yogi Vemana University, Kadapa - 516 003 (India); Martín, I. R.; Monteseguro, V.; Rodríguez-Mendoza, U. R. [Department of Physics, and MALTA Consolider Team, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Instituto Universitario de Materiales y Nanotecnología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Babu, P. [Department of Physics, Government Degree College, Satyavedu - 517 588 (India); León-Luis, S. F. [Department of Physics, and MALTA Consolider Team, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Jayasankar, C. K. [Department of Physics, Sri Venkateswara University, Tirupati - 517 502 (India); Lavín, V. [Department of Physics, and MALTA Consolider Team, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Instituto Universitario de Estudios Avanzados en Atómica, Molecular y Fotónica, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain)

    2014-11-07

    Trivalent dysprosium-doped Lu{sub 3}Ga{sub 5}O{sub 12} nano-garnets have been prepared by sol-gel method and characterized by X-ray powder diffraction, high-resolution transmission electron microscopy, dynamic light scattering, and laser excited spectroscopy. Under a cw 457 nm laser excitation, the white luminescence properties of Lu{sub 3}Ga{sub 5}O{sub 12} nano-garnets have been studied as a function of the optically active Dy{sup 3+} ion concentration and at low temperature. Decay curves for the {sup 4}F{sub 9/2} level of Dy{sup 3+} ion exhibit non-exponential nature for all the Dy{sup 3+} concentrations, which have been well-fitted to a generalized energy transfer model for a quadrupole-quadrupole interaction between Dy{sup 3+} ions without diffusion. From these data, a simple rate-equations model can be applied to predict that intense white luminescence could be obtained from 1.8 mol% Dy{sup 3+} ions-doped nano-garnets, which is in good agreement with experimental results. Chromaticity color coordinates and correlated color temperatures have been determined as a function of temperature and are found to be within the white light region for all Dy{sup 3+} concentrations. These results indicate that 2.0 mol% Dy{sup 3+} ions doped nano-garnet could be useful for white light emitting device applications.

  7. Structural, spectral, dielectric and magnetic properties of Tb–Dy doped Li-Ni nano-ferrites synthesized via micro-emulsion route

    Energy Technology Data Exchange (ETDEWEB)

    Junaid, Muhammad, E-mail: junaid.malik95@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Iqbal, F. [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, Government College University, Lahore 54000 (Pakistan); Akhtar, Majid Niaz; Ahmad, Mukhtar [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Shakir, Imran [Deanship of scientific research, College of Engineering, King Saud University, PO Box 800, Riyadh 11421 (Saudi Arabia); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2016-12-01

    Terbium (Tb) and dysprosium (Dy) doped lithium-nickel nano-sized ferrites (Li{sub 0.2}Ni{sub 0.8}Tb{sub 0.5x}Dy{sub 0.5x}Fe{sub 2−x}O{sub 4} where x=0.00−0.08) were prepared by micro-emulsion technique. The X-ray diffraction (XRD) patterns confirmed the single phase cubic spinel structure. The lattice constant was increased due to larger ionic radii of Tb{sup 3+} and Dy{sup 3+} cations. The crystallite size was found in the range 30–42 nm. The FTIR (Fourier transform infrared spectroscopy) spectra revealed two significant absorption bands (~400–600 cm{sup −1}) which indicate the formation of cubic spinel structure. The peaking behavior of dielectric parameters was observed beyond 1.5 GHz. The dielectric constant and dielectric loss were found to decrease by the increase of Tb–Dy contents and frequency. The doping of Tb and Dy in Li–Ni ferrites led to increase the coercive field (120–156 Oe). The smaller magnetic and dielectric parameters suggested the possible utility of these nano-materials in switching and microwave devices applications. - Highlights: • Li{sub 0.2}Ni{sub 0.8}Tb{sub 0.5x}Dy{sub 0.5x}Fe{sub 2-x}O{sub 4} ferrites were synthesized by micro-emulsion route. • Tb and Dy addition improves coercivity while decreased saturation magnetization. • These nanomaterials can be useful in microwave and switching devices applications.

  8. Domestic wastewater treatment using Pt,Ni-RE (rare earth electrodes

    Directory of Open Access Journals (Sweden)

    Eurico Moutinho

    2016-11-01

    Full Text Available Electrochemical technologies can be used for the treatment of domestic wastewaters, by eliminating their organic pollutants. They have advantages over conventional methods, such as environmental compatibility, versatility, energy efficiency, safety and cost. The organic compounds degradation process is based on the production of OH radicals, formed during water electrolysis, which oxidize the organic molecules to CO2. At the same time, hydrogen (H2 is produced through reduction of the water in the effluent, which can be later used in a fuel cell. Present study seeks to find effective electrocatalysts to produce H2 by electrolysis, using domestic wastewaters as the hydrogen source, with or without the addition of supporting electrolyte. Herein KOH is used as the supporting electrolyte, as the extra hydroxide can be used to degrade the organic matter. Nine different electrode materials are evaluated as cathodes for the hydrogen evolution reaction (HER in a domestic wastewater. The tested materials include platinum (Pt and platinum-rare earth (Pt-RE binary alloys, and nickel (Ni and Ni-RE alloys, with the REs being cerium (Ce, samarium (Sm, dysprosium (Dy, and holmium (Ho. Linear scan voltammetry measurements are conducted at temperatures ranging from 25 to 85 ºC. Several kinetic parameters are calculated, such as the Tafel slopes, charge transfer coefficients and exchange current densities. The data obtained at the different electrode materials is compared and it is clear that Pt-RE alloys show superior activity for the HER. It is also noticeable that the wastewater effluent containing the supporting electrolyte leads to significantly better HER performances.

  9. Dramatic influence of Dy{sup 3+} doping on strain and domain structure in lead-free piezoelectric 0.935(Na{sub 1/2}Bi{sub 1/2})TiO{sub 3}−0.065BaTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Li, C. Q.; Zhang, J. Z.; Hu, Z. G., E-mail: zghu@ee.ecnu.edu.cn; Chu, J. H. [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Yao, Q. R.; Wang, F. F.; Liu, A. Y.; Shi, W. Z. [Department of Physics, Shanghai Normal University, Shanghai 200234 (China)

    2015-12-15

    An electric-field induced giant strain response and doping level dependent domain structural variations have been studied in the dysprosium (Dy{sup 3+})-modified 0.935(Na{sub 1/2}Bi{sub 1/2})TiO{sub 3}-0.065BaTiO{sub 3}(xDy : NBBT) ceramics with the doping levels of 0%, 0.5%, 1%, and 2%. X-ray diffraction and Raman spectroscopy analyses not only demonstrates the change in ionic configurations induced by Dy{sup 3+} doping, but also shows the local crystal symmetry for x ≥ 0.5% doping levels to deviate from the idealized cubic structure. Piezoresponse force microscopy measurement exhibits the presence of an intermediate phase with orthorhombic symmetry at the critical Dy{sup 3+} doping level of 2%. Moreover, at this doping level, a giant recoverable nonlinear strain of ∼0.44% can be observed with high normalized strain (S{sub max}/E{sub max}) of 728 pm/V. At the same applied field, the strain exhibits a 175% increase than that of NBBT ceramic. Such a large strain stems from the varying coherence lengths of polar nanoregions (PNRs) and an unusual reversible 90° domain switching caused by the symmetry conforming property of point defects, where the restoring force is provided by unswitchable defects. The mechanism reveals a new possibility to achieve large electric-field strain effect for a wide range of ferroelectric systems, which can lead to applications in novel “on-off” actuators.

  10. Infrared spectroscopic and electron paramagnetic resonance studies on Dy substituted magnesium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Bamzai, K.K., E-mail: kkbamz@yahoo.com [Crystal Growth and Materials Research Laboratory, Department of Physics and Electronics, University of Jammu, Jammu (India); Kour, Gurbinder; Kaur, Balwinder [Crystal Growth and Materials Research Laboratory, Department of Physics and Electronics, University of Jammu, Jammu (India); Arora, Manju; Pant, R.P. [National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi (India)

    2013-11-15

    Dysprosium substituted magnesium ferrite with composition MgDy{sub x}Fe{sub 2−x}O{sub 4} with 0.00≤x≤0.07 synthesized by the solid state reaction technique was subjected to Fourier transform infrared spectroscopy and electron paramagnetic resonance studies. Infrared spectrum analysis were carried out to confirm the spinel phase formation and to ascertain the cation distribution in the ferrite phase. The absorption spectra show two significant absorption bands between 400 and 1000 cm{sup −1} which are attributed to tetrahedral (A) and octahedral (B) sites of the spinel phase. The positions of bands were found to be composition dependent. Splitting of bands as well as appearance of shoulders shows the presence of Fe{sup 2+} ions in the system. The force constants for tetrahedral and octahedral sites were calculated and found to vary with Dy{sup 3+} ions content. Electron paramagnetic resonance spectra of these samples exhibit broad, asymmetric resonance signal due to Fe{sup 3+}/Dy{sup 3+} ions present in the host lattice. The spectra become broader with Dy{sup 3+} ions substitution in pure Mg-ferrite and this broadening is attributed to surface spin disorder (spin frustration) possibly coming from mainly antiferromagnetic interactions between the neighbouring spins in the magnetic grains. The weak superexchange interactions results in the broadening of the resonance line width and large g-value as compared to the free electron value. - Highlights: • Absorption bands between 400 and 1000 cm{sup −1} reveal the formation of spinel phase. • The force constant on tetrahedral and octahedral site is used to explain the bond length. • Electron paramagnetic resonance spectra exhibit broad, asymmetric resonance peaks. • Spin frustration in spinel ferrites is explained by the broadening of line width.

  11. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment.

    Science.gov (United States)

    Lixandru, A; Venkatesan, P; Jönsson, C; Poenaru, I; Hall, B; Yang, Y; Walton, A; Güth, K; Gauß, R; Gutfleisch, O

    2017-10-01

    Nd-Fe-B permanent magnets are a strategic material for a number of emerging technologies. They are a key component in the most energy efficient electric motors and generators, thus, they are vital for energy technologies, industrial applications and automation, and future forms of mobility. Rare earth elements (REEs) such as neodymium, dysprosium and praseodymium are also found in waste electrical and electronic equipment (WEEE) in volumes that grow with the technological evolution, and are marked as critical elements by the European Commission due to their high economic importance combined with significant supply risks. Recycling could be a good approach to compensate for the lack of rare earths (REs) on the market. However, less than 1% of REs are currently being recycled, mainly because of non-existing collection logistics, lack of information about the quantity of RE materials available for recycling and recycling-unfriendly product designs. To improve these lack of information, different waste streams of electrical and electronic equipment from an industrial recycling plant were analyzed in order to localize, identify and collect RE permanent magnets of the Nd-Fe-B type. This particular type of magnets were mainly found in hard disk drives (HDDs) from laptops and desktop computers, as well as in loudspeakers from compact products such as flat screen TVs, PC screens, and laptops. Since HDDs have been investigated thoroughly by many authors, this study focusses on other potential Nd-Fe-B resources in electronic waste. The study includes a systematic survey of the chemical composition of the Nd-Fe-B magnets found in the selected waste streams, which illustrates the evolution of the Nd-Fe-B alloys over the years. The study also provides an overview over the types of magnets integrated in different waste electric and electronic equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Production of thermoluminescent dosemeters based on MgB{sub 4}O{sub 7}: Dy and MgB{sub 4}O{sub 7}: Tm; Producao de dosimetros termoluminescentes a base de MgB{sub 4}O{sub 7}: Dy e MgB{sub 4}O{sub 7}: Tm

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiza Freire de; Souza, Divanizia N., E-mail: luizaf25@hotmail.com, E-mail: divanizi@ufs.br [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Programa de Pos-Graduacao em Fisica

    2013-07-01

    The thermoluminescent dosimetry (TL) is a well-established technique for the detection of ionizing radiation in hospitals, clinics, and industrial establishments where there is the need to quantify the radiation. For this practice is require the use phosphors which are sensitive to radiation. Some phosphors are already commonly used in this practice, for example, TLD-100 (LiF: Mg, Ti), CaSO{sub 4}:Tm and CaSO{sub 4}:Dy. A compound that was most recently introduced in dosimetry and has many advantageous features to detect neutrons, electrons and gamma is the magnesium tetraborate (MgB{sub 4}O{sub 7}), but the undoped material is not good for dosimetry, since signal does not show satisfactory thermoluminescence. The present work presents the analysis of the compound MgB{sub 4}O{sub 7} when doped with rare earth elements, thulium (Tm) and dysprosium (Dy). The production of MgB{sub 4}O{sub 7}: Dy and MgB{sub 4}O{sub 7}: Tm occurred under acidic conditions. Following the process of crystal growth, several tests were made on phosphors produced to verify the quality of materials as TL dosimeter. Initially, was made the identification of the crystalline phases found in the material, using the technique of X-ray diffractometry, and then were evaluated and compared the TL emission curves of the crystals with two different types of dopants, to this, the samples were irradiated with different radiation sources: {sup 137}Cs (0,66 MeV), {sup 60}Co (1.25 MeV) and X-rays (0.41 MeV) and based on the results was evaluated the energy dependence of phosphors. Another characteristic analyzed, was the decay of TL signal for the material (fading). The results show that the material can be an excellent TL dosimeter when doped with rare earth elements Dy and Tm. (author)

  13. Production of medical radioisotopes in the ORNL high flux isotope reactor (HFIR) for cancer treatment and arterial restenosis therapy after PICA

    Science.gov (United States)

    Knapp, F. F.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1999-01-01

    The High Flux Isotope Reactor ( HFIR) at the Oak Ridge National Laboratory ( ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. First beginning operation in 1965, the high thermal neutron flux (2.5×1015 neutrons/cm2/sec at 85 MW) and versatile target irradiation and handling facilities provide the opportunity for production of a wide variety of neutron-rich medical radioisotopes of current interest for therapy. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117 m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube ( HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle (22-24 days) and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions ( PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117 m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  14. Enhanced charge transport and photovoltaic performance induced by incorporating rare-earth phosphor into organic-inorganic hybrid solar cells.

    Science.gov (United States)

    Chen, Zihan; Li, Qinghua; Chen, Chuyang; Du, Jiaxing; Tong, Jifeng; Jin, Xiao; Li, Yue; Yuan, Yongbiao; Qin, Yuancheng; Wei, Taihuei; Sun, Weifu

    2014-11-28

    In this work, dysprosium ion decorated yttrium oxide (Dy(3+):Y2O3) nanocrystal phosphors were incorporated into TiO2 acceptor thin film in a bid to enhance the light harvest, charge separation and transfer in the hybrid solar cells. The results show that the energy level offset between the donor (P3HT) and the acceptor (Dy(3+):Y2O3-TiO2) has been narrowed down, thus leading to the enhanced electron and hole transports, and also photovoltaic performances as compared to pure TiO2 without incorporating Dy(3+):Y2O3. By applying femtosecond transient optical spectroscopy, after the incorporation of dopant Dy(3+):Y2O3 into TiO2 at 6 wt%, both the hot electron and hole transfer lifetimes have been shortened, that is, from 30.2 ps and 6.94 ns to 25.1 ps and 1.26 ns, respectively, and an enhanced efficiency approaching 3% was achieved as compared to 2.0% without doping, indicating that the energetic charges are captured more efficiently benefitting a higher power conversion efficiency. Moreover, these results reveal that both the conduction band (CB) and valence band (VB) edges of the acceptor were elevated by 0.57 and 0.32 eV, respectively, after incorporating 6 wt% Dy(3+):Y2O3. This work demonstrates that distinct energy level alignment engineered by Dy(3+):Y2O3 phosphor has an important role in pursuing efficient future solar cells and underscores the promising potential of rare-earth phosphor in solar applications.

  15. Thermochemistry of Ternary Complex Dy(Et2dtc)3(phen)

    Institute of Scientific and Technical Information of China (English)

    朱丽; 焦宝娟; 杨旭武; 帅琪; 高胜利; 史启祯

    2004-01-01

    The ternary solid complex was synthesized with sodium diethyldithiocarbamate (NaEt2dtc), 1,10-phenanthroline (phen) and low hydrated dysprosium chloride in absolute ethanol by improved method of reference. The title complex was identified as the general formula of Dy(Et2dtc)3(phen) by chemical and elemental analyses. IR spectrum of the complex shows that the Dy3+ coordinated with six sulfur atoms of three NaEt2dtc and two nitrogen atoms of phen. It is assumed that the coordination number of Dy3+ is eight.The enthalpy change of liquid-phase reaction of formation, ΔrHθm(l), is determined as (-19.091±0.015) kJ·mol-1 at 298.15 K by a microcalorimeter, and the enthalpy change of the solid-phase reaction of formation, ΔrHθm(s), is calculated as (139.641±0.482) kJ·mol-1 on the basis of a thermochemical cycle. The thermodynamic of reaction of formation was studied by changing the temperature of liquid-phase reaction. The constant-volume combustion energy of the complex, ΔcU, is determined as (-16730.21±9.25) kJ·mol-1 by a precise rotating-bomb calorimeter at 298.15 K. Its standard enthalpies of combustion, ΔcHθm, and standard enthalpies of formation, ΔfHθm, are calculated as (-16749.42±9.25) kJ·mol-1 and (-2019.68±10.19) kJ·mol-1, respectively.

  16. Enhanced luminescence and white light emission from Eu(3+) -co-doped K3 Ca2 (SO4 )3 Cl:Dy(3+) phosphor with near visible ultraviolet excitation for white LEDs.

    Science.gov (United States)

    Baig, N; Dhoble, N S; Park, K; Kokode, N S; Dhoble, S J

    2015-06-01

    The luminescent properties of europium (Eu)- and dysprosium (Dy)-co-doped K3 Ca2 (SO4 )3 Cl halosulfate phosphors were analyzed. This paper reports the photoluminescence (PL) properties of K3 Ca2 (SO4 )3 Cl microphosphor doped with Eu and Dy and synthesized using a cost-effective wet chemical method. The phosphors were characterized by X-ray diffraction and scanning electron microscopy. The CIE coordinates were calculated to display the color of the phosphor. PL emission of the prepared samples show peaks at 484 nm (blue), 575 nm (yellow), 594 nm (orange) and 617 nm (red). The emission color of the Eu,Dy-co-doped K3 Ca2 (SO4 )3 Cl halophosphor depends on the doping concentration and excitation wavelength. The addition of Eu in K3 Ca2 (SO4 )3 Cl:Dy greatly enhances the intensity of the blue and yellow peaks, which corresponds to the (4)  F9/2  → (6) H15/2 and (4)  F9/2  → (6) H13/2 transitions of Dy(3+) ions (under 351 nm excitation). The Eu(3+) /Dy(3+) co-doping also produces white light emission for 1 mol% of Eu(3+) , 1 mol% of Dy(3+) in the K3 Ca2 (SO4 )3 Cl lattice under 396 nm excitation, for which the calculated chromaticity coordinates are (0.35, 0.31). Thus, K3 Ca2 (SO4 )3 Cl co-doped with Eu/Dy is a suitable candidate for NUV based white light-emitting phosphors technology. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Dy{sup 3+}-doped germanate glasses for waveguide-typed irradiation light sources

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.Y.; Shen, L.F. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Pun, E.Y.B. [Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Lin, H., E-mail: lhai8686@yahoo.com [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-10-15

    Intense orange-yellow luminescence was achieved in trivalent dysprosium ion (Dy{sup 3+}) doped waveguide-adaptive sodium magnesium aluminium germanate (NMAG) glasses under ultraviolet (UV) radiation. The dominant 482.5 nm (blue) and 574.5 nm (yellow) peaks correspond to {sup 4}F{sub 9/2} → {sup 6}H{sub 15/2} and {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2} transitions, respectively. The internal quantum efficiency for the {sup 4}F{sub 9/2} level of Dy{sup 3+} and the total external quantum yield for the four visible emissions were calculated to be 70.88% and 8.90%, respectively. Slab and channel waveguides were attempted by K{sup +}-Na{sup +} ion-exchange processes and the effective diffusion coefficient D{sub e} was derived to be 0.085 μm{sup 2}/min, indicating that thermal ion exchange was feasible to fabricate Dy{sup 3+}-doped NMAG glasses waveguide. The efficient visible emissions in Dy{sup 3+}-doped NMAG glasses demonstrate the potential in developing waveguide-typed irradiation light sources for minimally invasive photodynamic therapy. - Highlights: • Dy{sup 3+}-doped germanate glass was confirmed suitable for K{sup +}-Na{sup +} ion exchange for waveguide devices. • Orange-yellow luminescence dominated by {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2} yellow emission was recorded. • High quantum efficiency of 70.88% was identified for {sup 4}F{sub 9/2} level of Dy{sup 3+} in germanate glasses. • Total quantum yield of four emissions in visible spectral region was derived to be 8.90%.

  18. R5T4 compounds - unique multifunctional intermetallics for basic research and applications

    Energy Technology Data Exchange (ETDEWEB)

    Mudryk, Yaroslav

    2016-10-01

    The unique properties of the rare-earth elements and their alloys have brought them from relative obscurity to high profile use in common high-tech applications. The broad technological impact of these remarkable materials may have never been known by the general public if not for the supply concerns that placed the rare-earth materials on the front page of newspapers and magazines. Neodymium and dysprosium, two essential components of Nd2Fe14B-based high-performance permanent magnets, have drawn much attention and have been deemed critical materials for many energy-related applications. Ironically, the notoriety of rare-earth elements and their alloys is the result of a global movement to reduce their use in industrial applications and, thus, ease concerns about their supply and ultimately to reduce their position in high-tech supply chains. Research into the applications of lanthanide alloys has been de-emphasized recently due to the perception that industry is moving away from the use of rare-earth elements in new products. While lanthanide supply challenges justify efforts to diversify the supply chain, a strategy to completely replace the materials overlooks the reasons rare earths became important in the first place -- their unique properties are too beneficial to ignore. Rare-earth alloys and compounds possess truly exciting potential for basic science exploration and application development such as solid-state caloric cooling. In this brief review, we touch upon several promising systems containing lanthanide elements that show important and interesting magnetism-related phenomena.

  19. From a Dy(III) single molecule magnet (SMM) to a ferromagnetic [Mn(II)Dy(III)Mn(II)] trinuclear complex.

    Science.gov (United States)

    Bhunia, Asamanjoy; Gamer, Michael T; Ungur, Liviu; Chibotaru, Liviu F; Powell, Annie K; Lan, Yanhua; Roesky, Peter W; Menges, Fabian; Riehn, Christoph; Niedner-Schatteburg, Gereon

    2012-09-17

    The Schiff base compound 2,2'-{[(2-aminoethyl)imino]bis[2,1-ethanediyl-nitriloethylidyne]}bis-2-hydroxy-benzoic acid (H(4)L) as a proligand was prepared in situ. This proligand has three potential coordination pockets which make it possible to accommodate from one to three metal ions allowing for the possible formation of mono-, di-, and trinuclear complexes. Reaction of in situ prepared H(4)L with Dy(NO(3))(3)·5H(2)O resulted in the formation of a mononuclear complex [Dy(H(3)L)(2)](NO(3))·(EtOH)·8(H(2)O) (1), which shows SMM behavior. In contrast, reaction of in situ prepared H(4)L with Mn(ClO(4))(2)·6H(2)O and Dy(NO(3))(3)·5H(2)O in the presence of a base resulted in a trinuclear mixed 3d-4f complex (NHEt(3))(2)[Dy{Mn(L)}(2)](ClO(4))·2(H(2)O) (2). At low temperatures, compound 2 is a weak ferromagnet. Thus, the SMM behavior of compound 1 can be switched off by incorporating two Mn(II) ions in close proximity either side of the Dy(III). This quenching behavior is ascribed to the presence of the weak ferromagnetic interactions between the Mn(II) and Dy(III) ions, which at T > 2 K act as a fluctuating field causing the reversal of magnetization on the dysprosium ion. Mass spectrometric ion signals related to compounds 1 and 2 were both detected in positive and negative ion modes via electrospray ionization mass spectrometry. Hydrogen/deuterium exchange (HDX) reactions with ND(3) were performed in a FT-ICR Penning-trap mass spectrometer.

  20. Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni0.4Co0.6Fe2O4) ferrites

    Science.gov (United States)

    Ditta, Allah; Khan, Muhammad Azhar; Junaid, Muhammad; Khalil, R. M. Arif; Warsi, Muhammad Farooq

    2017-02-01

    Gadolinium (Gd) and Dysprosium (Dy) co-doped Ni-Co (Ni0.4Co0.6Fe2O4) ferrites were prepared by micro-emulsion route. X-ray diffraction (XRD) analysis indicated the development of cubic spinel structure. The lattice parameter and X-ray density were found to increase from 8.24 to 8.31 Å and 5.57 to 5.91 (gm/cm3) respectively as the Gd-Dy contents increased in nickel-cobalt ferrites. The crystallite size calculated from the Scherrer's formula exhibited the formation of nanocrystalline ferrites (13-26 nm). Two foremost absorption bands observed in FTIR spectra within 400 cm-1 (υ2) to 600 cm-1 (υ1) which correspond to stretching vibrations of tetrahedral and octahedral complexes respectively. The dielectric constant (ε) and dielectric loss (tanδ) were decreased by the optimization of frequency and abrupt decrease in the low frequency region and higher values in the high frequency region were observed. The dielectric dispersion was due to rapid decrease of dielectric constant in the low frequency region. This variation of dielectric dispersion was explicated in the light of space charge polarization model of Maxwell-Wagner. The dielectric loss occurs in these ferrites due to electron hopping and defects in the dipoles. The electron hopping was possible at low frequency range but at higher frequency the dielectric loss was decreased with the decrease of electron hopping. Magnetic properties were observed by measuring M-H loops. Due to low dielectric loss and dielectric constant these materials were appropriate in the fabrication of switching and memory storage devices.

  1. Synthesis, Crystal Structure and Characterization of Two Rare Earth Substituted Keggin-Type Germanotungstates

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Two germanotungstates based on the dysprosium cations and monovacant Keggin anions [GeW11O39]8-,[(CH3)4N]105H3.5[Dy(H2O)2(GeW11O39)]*1.5H2O(1) and [Cu(Hen)(en)]2[Cu(H20)3]0.5{[Cu(H2en)(Hen)]-[Cu(H2O)3]0.5[Dy(GeW11O39)2]}·1.25H2O(2), have been synthesized and characterized by elemental analysis, in-ductively coupled plasma (ICP) analysis, IR spectroscopy, thermal analysis, and single-crystal X-ray diffraction.Crystal data for 1: monoclinic, space group C2/c with cell dimensions of a:2.8201(5) nm, b:2.2885(3) nm, c=2.4033(4) nm, β=123.875(2)°, V=12.878(4) nm3, Z=8,μ=21.239 mm-1; and for 2: monoclinic, space group P21/n with cell dimensions of a=2.12808(5) nm, b=1.63834(4) nm, c=3.18074(4) nm, β=93.760(2)°, V=11.0658(5) nm3, Z=4,μ=24.803 mm-1. The Dy3+/[GeW11O39]8- ratio of compound 1 is 1:1, and it displays an interesting one dimensional chainlike arrangement. And the Dy3+/[GeW11O39]8- ratio of compound 2 is 1:2, and it shows a typical dimeric structure.

  2. Radioactivity measurements using storage phosphor technology

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Y.T. [NeuTek, Darnestown, MD (United States); Hwang, J. [Advanced Technologies and Labs. International, Rockville, MD (United States); Hutchinson, M.R. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1995-10-01

    We propose to apply a recently developed charged particle radiation imaging concept in bio-medical research for fast, cost-effective characterization of radionuclides in contaminated sites and environmental samples. This concept utilizes sensors with storage photostimulable phosphor (SPP) technology as radiation detectors. They exhibit high sensitivity for all types of radiation and the response is linear over a wide dynamic range (>10{sup 5}), essential for quantitative analysis. These new sensors have an Active area of up to 35 cm x 43 cm in size and a spatial resolution as fine as 50 {mu}m. They offer considerable promise as large area detectors for fast characterization of radionuclides with an added ability to locate and identify hot spots. Tests with SPP sensors have found that a single alpha particle effect can be observed and an alpha field of 100 dpm/100 cm{sup 2} or a beta activity of 0.1 dpm/mm{sup 2} or gamma radiation of few {mu}R/hr can all be measured in minutes. Radioactive isotopes can further be identified by energy discrimination which is accomplished by placing different thicknesses of filter material in front of the sensor plate. For areas with possible neutron contamination, the sensors can be coupled to a neutron to charged particle converter screen, such as dysprosium foil to detect neutrons. Our study has shown that this approach can detect a neutron flux of 1 n/cm{sup 2}s or lower, again with only minutes of exposure time. The utilization of these new sensors can significantly reduce the time and cost required for many site characterization and environmental monitoring tasks. The {open_quotes}exposure{close_quotes} time for mapping radioactivity in an environmental sample may be in terms of minutes and offer a positional resolution not obtainable with presently used counting equipment. The resultant digital image will lend itself to ready analysis.

  3. Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: A 2H-, 23Na-NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkiss, R.S.; Song, S.K.; Ling, C.S.; Ackerman, J.J.; Karl, I.E. (Washington Univ. School of Medicine, St. Louis (USA))

    1990-01-01

    The effects of sepsis on intracellular Na+ concentration ((Na+)i) and glucose metabolism were examined in rat red blood cells (RBCs) by using 23Na- and 2H-nuclear magnetic resonance (NMR) spectroscopy. Sepsis was induced in 15 halothane-anesthetized female Sprague-Dawley rats by using the cecal ligation and perforation technique; 14 control rats underwent cecal manipulation without ligation. The animals were fasted for 36 h, but allowed free access to water. At 36 h postsurgery, RBCs were examined by 23Na-NMR by using dysprosium tripolyphosphate as a chemical shift reagent. Human RBCs from 17 critically ill nonseptic patients and from 7 patients who were diagnosed as septic were also examined for (Na+)i. Five rat RBC specimens had (Na+)i determined by both 23Na-NMR and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For glucose metabolism studies, RBCs from septic and control rats were suspended in modified Krebs-Henseleit buffer containing (6,6-2H2)glucose and examined by 2H-NMR. No significant differences in (Na+)i or glucose utilization were found in RBCs from control or septic rats. There were no differences in (Na+)i in the two groups of patients. The (Na+)i determined by NMR spectroscopy agreed closely with measurements using ICP-AES and establish that 100% of the (Na+)i of the RBC is visible by NMR. Glucose measurements determined by 2H-NMR correlated closely (correlation coefficient = 0.93) with enzymatic analysis. These studies showed no evidence that sepsis disturbed RBC membrane function or metabolism.

  4. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    Science.gov (United States)

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents.

  5. Syntheses and Structures of Two Mixed Ligands Lanthanide Complexes with N,N'-Substituted Adipamide

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Crystal structures of neodymium (Ⅲ) and dysprosium (Ⅲ) nitrate complexes with the new ligand N, N'-dimethyl-N, N'-diphenyladipamide (mpaa) has been determined. Both complexes are triclinic with space group Pi ,formula [C22H30N5NdO12S]2 1 [C42H54N7DyO14S 2]Mr = 1465.62[1075.48], a = 8.541(1)[9.711(2)], b = 11.915(1)[16.017(3)], c = 15.906(1)[16.686(3)] A,α =107.22(1)[109.600(1)],β = 98.12(1)[92.50(1)], γ = 99.78(1) [96.22(1)]° ,μ=0.71073cn-1; R=0.0261 [0.0364], wR=0.0611 [0.0857] reflections with I>2 σ (Ⅰ). Complex (1)is dinuclear, in which two Nd(Ⅲ) ions are double-bridged by two mpaa ligands. And Dy(mpaa)2(dmso)(NO3)3 (2) (dmso= dimethylsulfoxide) is a mononuclear complex, in which one of the two C=O groups in MPAA is uncoordinated. In the two above complexes, each Ln(Ⅲ)ion is nine-coordinated including three bidenate nitrates, one dmso molecule and two carbonyl oxygens from two different mpaa ligands. Neutral monodentate dmso enters the coordination in diamides of the type (R1R2NCO)2(CH2)n was increased, the ligand prefers to act as a bridging reagent rather than a chelate.

  6. A Market Model for Evaluating Technologies That Impact Critical-Material Intensity

    Science.gov (United States)

    Iyer, Ananth V.; Vedantam, Aditya

    2016-07-01

    A recent Critical Materials Strategy report highlighted the supply chain risk associated with neodymium and dysprosium, which are used in the manufacturing of neodymium-iron-boron permanent magnets (PM). In response, the Critical Materials Institute is developing innovative strategies to increase and diversify primary production, develop substitutes, reduce material intensity and recycle critical materials. Our goal in this paper is to propose an economic model to quantify the impact of one of these strategies, material intensity reduction. Technologies that reduce material intensity impact the economics of magnet manufacturing in multiple ways because of: (1) the lower quantity of critical material required per unit PM, (2) more efficient use of limited supply, and (3) the potential impact on manufacturing cost. However, the net benefit of these technologies to a magnet manufacturer is an outcome of an internal production decision subject to market demand characteristics, availability and resource constraints. Our contribution in this paper shows how a manufacturer's production economics moves from a region of being supply-constrained, to a region enabling the market optimal production quantity, to a region being constrained by resources other than critical materials, as the critical material intensity changes. Key insights for engineers and material scientists are: (1) material intensity reduction can have a significant market impact, (2) benefits to manufacturers are non-linear in the material intensity reduction, (3) there exists a threshold value for material intensity reduction that can be calculated for any target PM application, and (4) there is value for new intellectual property (IP) when existing manufacturing technology is IP-protected.

  7. Production of stable isotopes utilizing the plasma separation process

    Science.gov (United States)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  8. Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}) ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ditta, Allah [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Junaid, Muhammad, E-mail: junaid.malik95@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khalil, R.M. Arif [Department of Physics, Sahiwal Sub-Campus Bahauddin Zakariya University, Sahiwal (Pakistan); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2017-02-15

    Gadolinium (Gd) and Dysprosium (Dy) co-doped Ni-Co (Ni{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}) ferrites were prepared by micro-emulsion route. X-ray diffraction (XRD) analysis indicated the development of cubic spinel structure. The lattice parameter and X-ray density were found to increase from 8.24 to 8.31 Å and 5.57 to 5.91 (gm/cm{sup 3}) respectively as the Gd-Dy contents increased in nickel-cobalt ferrites. The crystallite size calculated from the Scherrer's formula exhibited the formation of nanocrystalline ferrites (13–26 nm). Two foremost absorption bands observed in FTIR spectra within 400 cm{sup −1} (υ{sub 2}) to 600 cm{sup −1} (υ{sub 1}) which correspond to stretching vibrations of tetrahedral and octahedral complexes respectively. The dielectric constant (ε) and dielectric loss (tanδ) were decreased by the optimization of frequency and abrupt decrease in the low frequency region and higher values in the high frequency region were observed. The dielectric dispersion was due to rapid decrease of dielectric constant in the low frequency region. This variation of dielectric dispersion was explicated in the light of space charge polarization model of Maxwell-Wagner. The dielectric loss occurs in these ferrites due to electron hopping and defects in the dipoles. The electron hopping was possible at low frequency range but at higher frequency the dielectric loss was decreased with the decrease of electron hopping. Magnetic properties were observed by measuring M-H loops. Due to low dielectric loss and dielectric constant these materials were appropriate in the fabrication of switching and memory storage devices.

  9. Uptake and Effects of Six Rare Earth Elements (REEs) on Selected Native and Crop Species Growing in Contaminated Soils

    Science.gov (United States)

    Carpenter, David; Boutin, Céline; Allison, Jane E.; Parsons, Jessica L.; Ellis, Deanna M.

    2015-01-01

    Rare earth elements (REEs) have become increasingly important metals used in modern technology. Processes including mining, oil refining, discarding of obsolete equipment containing REEs, and the use of REE-containing phosphate fertilizers may increase the likelihood of environmental contamination. However, there is a scarcity of information on the toxicity and accumulation of these metals to terrestrial primary producers in contaminated soils. The objective of this work was to assess the phytotoxicity and uptake from contaminated soil of six REEs (chloride forms of praseodymium, neodymium, samarium, terbium, dysprosium, and erbium) on three native plants (Asclepias syriaca L., Desmodium canadense (L.) DC., Panicum virgatum L.) and two crop species (Raphanus sativus L., Solanum lycopersicum L.) in separate dose-response experiments under growth chamber conditions. Limited effects of REEs were found on seed germination and speed of germination. Effects on aboveground and belowground biomass were more pronounced, especially for the three native species, which were always more sensitive than the crop species tested. Inhibition concentrations (IC25 and IC50) causing 25 or 50% reductions in plant biomass respectively, were measured. For the native species, the majority of aboveground biomass IC25s (11 out of 18) fell within 100 to 300 mg REE/kg dry soil. In comparison to the native species, IC25s for the crops were always greater than 400 mg REE/kg, with the majority of results (seven out of 12) falling above 700 mg REE/kg. IC50s were often not detected for the crops. Root biomass of native species was also affected at lower doses than in crops. REE uptake by plants was higher in the belowground parts than in the above-ground plant tissues. Results also revealed that chloride may have contributed to the sensitivity of the native species, Desmodium canadense, one of the most sensitive species studied. Nevertheless, these results demonstrated that phytotoxicity may be a

  10. Uptake and Effects of Six Rare Earth Elements (REEs on Selected Native and Crop Species Growing in Contaminated Soils.

    Directory of Open Access Journals (Sweden)

    David Carpenter

    Full Text Available Rare earth elements (REEs have become increasingly important metals used in modern technology. Processes including mining, oil refining, discarding of obsolete equipment containing REEs, and the use of REE-containing phosphate fertilizers may increase the likelihood of environmental contamination. However, there is a scarcity of information on the toxicity and accumulation of these metals to terrestrial primary producers in contaminated soils. The objective of this work was to assess the phytotoxicity and uptake from contaminated soil of six REEs (chloride forms of praseodymium, neodymium, samarium, terbium, dysprosium, and erbium on three native plants (Asclepias syriaca L., Desmodium canadense (L. DC., Panicum virgatum L. and two crop species (Raphanus sativus L., Solanum lycopersicum L. in separate dose-response experiments under growth chamber conditions. Limited effects of REEs were found on seed germination and speed of germination. Effects on aboveground and belowground biomass were more pronounced, especially for the three native species, which were always more sensitive than the crop species tested. Inhibition concentrations (IC25 and IC50 causing 25 or 50% reductions in plant biomass respectively, were measured. For the native species, the majority of aboveground biomass IC25s (11 out of 18 fell within 100 to 300 mg REE/kg dry soil. In comparison to the native species, IC25s for the crops were always greater than 400 mg REE/kg, with the majority of results (seven out of 12 falling above 700 mg REE/kg. IC50s were often not detected for the crops. Root biomass of native species was also affected at lower doses than in crops. REE uptake by plants was higher in the belowground parts than in the above-ground plant tissues. Results also revealed that chloride may have contributed to the sensitivity of the native species, Desmodium canadense, one of the most sensitive species studied. Nevertheless, these results demonstrated that

  11. Recovery and separation of rare Earth elements using salmon milt.

    Directory of Open Access Journals (Sweden)

    Yoshio Takahashi

    Full Text Available Recycling rare earth elements (REEs used in advanced materials such as Nd magnets is important for the efficient use of REE resources when the supply of several REEs is limited. In this work, the feasibility of using salmon milt for REE recovery and separation was examined, along with the identification of the binding site of REEs in salmon milt. Results showed that (i salmon milt has a sufficiently high affinity to adsorb REEs and (ii the adsorption capacity of the milt is 1.04 mEq/g, which is comparable with that of commercial cation exchange resin. Heavier REEs have higher affinity for milt. A comparison of stability constants and adsorption patterns of REEs discussed in the literature suggests that the phosphate is responsible for the adsorption of REE in milt. The results were supported by dysprosium (Dy and lutetium (Lu LIII-edge extended x-ray absorption fine structure (EXAFS spectroscopy. The REE-P shell was identified for the second neighboring atom, which shows the importance of the phosphate site as REE binding sites. The comparison of REE adsorption pattern and EXAFS results between the milt system and other adsorbent systems (cellulose phosphate, Ln-resin, bacteria, and DNA-filter hybrid revealed that the coordination number of phosphate is correlated with the slope of the REE pattern. The separation column loaded with milt was tested to separate REE for the practical use of salmon milt for the recovery and separation of REE. However, water did not flow through the column possibly because of the hydrophobicity of the milt. Thus, sequential adsorption-desorption approach using a batch-type method was applied for the separation of REE. As an example of the practical applications of REE separation, Nd and Fe(III were successfully separated from a synthetic solution of Nd magnet waste by a batch-type method using salmon milt.

  12. Development of Li2O-SrO-GdF3-B2O3 oxyfluoride glass for white light LED application

    Science.gov (United States)

    Shamshad, L.; Rooh, G.; Kirdsiri, K.; Srisittipokakun, N.; Kim, H. J.; Kaewkhao, J.

    2016-12-01

    Dysprosium doped Li2O-SrO-GdF3-B2O3 (LSGB) glasses were prepared by the conventional melt quenching technique in order to study the luminescence properties and their utility for white light emitting diodes (LEDs). The glass structure was studied by X-ray diffraction (XRD) and Fourier transform infra-red (FT-IR) spectroscopy. XRD confirmed the amorphous structure of the glass samples. The FT-IR spectra revealed the presence of BO3, BO4 and non-bridging oxygen's. The optical absorption measurement were carried out in UV-VIS-NIR region. The PL emission and excitation spectra for the LSGB glasses were investigated. From the excitation and the emission spectra the highest Dy3+ excitation and emission intensities was observed for 0.5 mol% Dy3+-doped oxyfluoride glass. Strong blue (482 nm) and yellow (575 nm) emission bands were observed upon various excitations. These two emissions corresponds to the (4F9/2 → 6H15/2) and (4F9/2 → 6H13/2) transitions of Dy3+ ions, respectively. The blending of these blue and yellow bands gives white light. The CIE 1931 chromaticity coordinates for all the as made glass samples under various excitation wavelengths lies right in white region. The calculated correlated color temperature (CCT) values for the present oxyfluoride glasses were found in the range of 4336-4299 K. These were slightly more than warm CCT (i.e., CCTwhite light generation.

  13. White light emitting LaGdSiO5:Dy3+ nanophosphors for solid state lighting applications

    Science.gov (United States)

    Ogugua, Simon N.; Swart, Hendrik C.; Ntwaeaborwa, Odireleng M.

    2016-01-01

    Powdered dysprosium (Dy3+) doped Lanthanum gadolinium oxyorthosilicate (LaGdSiO5) mixed phosphors were synthesized using urea-assisted solution combustion method. The X-ray diffractometer analysis showed that the samples crystalized in the pure monoclinic mixed phase of LaGdSiO5. The crystallite size and the lattice strain calculated from the X-ray diffraction peaks using Williamson-Hall equation varied from 12 nm to 16 nm and 1.6 ×10-2 to 2.43 ×10-2 respectively. The photoluminescence (PL) emission spectra recorded using 425, 454 and 475 nm excitation wavelengths exhibit characteristic similar to the YAG:Ce phosphor pumped InGaN LED system, by absorbing portion of the excitation energy and re-emitting it. The emission spectra were characterized by radiative recombination at 425, 454, 475, 485 and 575 nm depending on the excitation wavelength. These emission line are ascribed to the f→f transitions of Dy3+. The peak intensity and hence the color of the emitted visible light were dependent on the concentration of Dy3+. The International Commission on Illumination (CIE) color coordinates of (0.336, 0.313) and (0.359, 0.361) were obtained for Dy3+ molar concentration of 0.05 and 3.0 mol% when the emission was monitored using 454 nm and 475 nm respectively. The band gap measured from the reflectance curve using Tauc plot initially decreased with increasing Dy3+ concentration, but at higher concentration, it started to increase. These materials were evaluated for solid state lighting application.

  14. Measurements of X-ray spectral opacity of dense plasma at Iskra-5 laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Annenkov, V.I.; Bel' kov, S.A.; Bessarab, A.V.; Bondarenko, S.V.; Garanin, R.V.; Kochemasov, G.G.; Kovalenko, V.P.; Pinegin, A.V.; Suslov, N.A.; Zhidkov, N.V. [Russian Federal Nuclear Centre - VNIIEF, Sarov (Russian Federation)

    2006-06-15

    The powerful iodine ISKRA-5 laser facility has been upgraded and now operates on the second harmonic. Experiments were performed to measure the X-ray spectral opacity of dense plasma of different materials. Sample of Al and Au material under study was fabricated as a thin plate with the 0.1-0.15 {mu}m thickness and was heated by the soft X-rays generated by irradiation of a thin film gold converter by one beam of the ISKRA-5 laser facility. Typical laser intensity on the converter was (1-5).10{sup 13} W/cm{sup 2} and laser pulse duration was 0.5-0.6 ns. The effective temperature of sample under experimental conditions did not exceed 30-40 eV. The sample was tempered by about 1 {mu}m plastic layers on both sides to avoid its rarefaction during heating and to obtain a quasi-stationary layer of a dense plasma prepared to be probed by a back-lighter. The back-lighter was aluminum or dysprosium film irradiated by another beam of the ISKRA-5 laser facility with an intensity of 10{sup 14}-10{sup 15} W/cm{sup 2}. Probe X-rays were registered by a Bragg spectrometer with spatial resolution. Comparison between experimental data and simulations is discussed. In the case of Al sample, 3 absorption lines corresponding to 1s-2p transition of the Al{sup +4}-Al{sup +6} ions are recorded. The absorption of the Au sample is very close to the absorption of the cold material. The theoretical simulations show that the temperature of the heated Al sample is about 20-25 eV, substantial amount of the Au sample remains unheated at a solid density.

  15. The Dy-Zn phase diagram

    Science.gov (United States)

    Saccone, A.; Cardinale, A. M.; Delfino, S.; Ferro, R.

    2003-03-01

    The dysprosium-zinc phase diagram has been investigated over its entire composition range by using differential thermal analysis, (DTA) metallographic analysis, X-ray powder diffraction, and electron probe microanalysis (EPMA). Seven intermetallic phases have been found and their structures confirmed. DyZn, DyZn2, Dy13Zn58, and Dy2Zn17 melt congruently at 1095 °C, 1050 °C, 930 °C, and 930 °C, respectively. DyZn3, Dy3Zn11, and DyZn12 form through peritectic reactions at 895 °C, about 900 °C and 685 °C, respectively. Four eutectic reactions occur at 850 °C and 30.0 at pct Zn (between (Dy) and DyZn), 990 °C and 60.0 at pct Zn (between DyZn and DyZn2), 885 °C and 76.0 at pct Zn (between DyZn3 and Dy3Zn11), and 875 °C and 85.0 at pct Zn (involving Dy13Zn58 and Dy2Zn17). The Dy-rich end presents a catatectic equilibrium; a degenerate invariant effect has been found in the Zn-rich region. The phase equilibria of the Dy-Zn alloys are discussed and compared with those of the other known RE-Zn systems (RE=rare earth metal) in view of the regular change in the relative stabilities of the phases across the lanthanide series

  16. Hydrolytic synthesis of novel lanthanide(III) complexes with pyridine-2,6-dicarboxylic acid: Characterization of the structure and the physical properties

    Science.gov (United States)

    Hojnik, Nuša; Kristl, Matjaž; Golobič, Amalija; Jagličić, Zvonko; Drofenik, Miha

    2015-01-01

    The coordination compounds of pyridine-2,6-dicarboxylic acid and two lanthanide(III) ions, Ho3+ and Dy3+, were hydrolytically synthesized in aqueous solutions at a slightly basic pH, and then characterized by thermogravimetric analysis, IR spectroscopy, magnetic measurements as well as X-ray powder and single-crystal diffraction analysis. The elemental analyses were performed to check the purity of the compounds. The formula for these compounds is identified as Na3[Ln(Pydc)3]ṡ14H2O (Ln = Ho, 1; Ln = Dy, 2) in agreement with the X-ray structural analysis and all the other experimental data. The absence of the 1709 cm-1 band corresponding to ν(C dbnd O) in the IR spectra of the compounds evidences the deprotonating of the carboxyl group. The very strong inductive effect of the metal ion that is readily coordinated by the carboxylate group of the zwitterionic ligand is responsible for the formation of the product. The single-crystal X-ray structural analysis revealed that compounds 1 and 2 are isostructural. Their structure can be described as interchanging layers of complex anions [Ln(Pydc)3]3 (Ln = Ho and Dy for 1 and 2, respectively) and layers of hydrated sodium cations. In complex anions the holmium and dysprosium atoms are coordinated by three crystallographically independent pyridinedicarboxylate ligands in tridentate-chelate mode, via one O atom of both carboxylate groups and the ring N atom. The coordination number is nine and the coordination polyhedron is a tricapped trigonal prism with O atoms at the corners.

  17. Separation device of radio lanthanides (DISER); Dispositivo de separacion de radiolantanidos (DISER)

    Energy Technology Data Exchange (ETDEWEB)

    Vera T, A.L. [FES-Zaragoza, UNAM, 09000 Mexico D.F. (Mexico); Monroy G, F.; Vazquez M, J.C.; Jimenez B, F. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: veratrevino@hotmail.com

    2008-07-01

    At the present time the cancer is one of the main causes of mortality in our country, therefore, its prevention, diagnostic and treatment is of vital importance for those health systems. The treatment of the cancer and other illnesses, starting from monoclonal antibodies, peptides, macro aggregates or marked aminoacids with beta particles emitting radioisotopes, it is an extremely promising field. The radioactive lanthanides: Promethium 149, Terbium 161, Holmium 166 and Lutetium 177 are beta emitting ({beta}), which possess nuclear and chemical properties that have shown their feasibility like radioisotopes of radiotherapeutic use. However, these radioisotopes are not commercially available; to this respect, the Radioactive Materials Research Laboratory (LIMR) of the National Institute of Nuclear Research (ININ), it has developed the methodology of production of these radioisotopes and based on these works, there is designed, built and mounted the Radio lanthanides Separation Device (DISER) able to carry out the radioisotopes production in a routine way. This device is content in a cell that has an auxiliary air service, an extraction system and it is protected with a lead armor-plating of 10 cm. The DISER it is manual and easy of managing. The main function of this equipment is the radio lanthanides separation starting from the extractive chromatography by means of packed columns with a commercial resin (LnSPS) and recovered in the superior and inferior part by fiber glass. The DISER is composed by a main carrousel where the separation columns and the elution recipients are mounted. Also counts with an opening system of irradiation vials, port samples for columns and glass material. The present work presents a detailed description of the DISER, as well as its handling that allows to produce the radioisotopes Promethium-149, Terbium-161, Holmium-166 and Lutetium-177 starting from the separation of its parent elements Neodymium-149, Gadolinium-161, Dysprosium-166

  18. Synthesis of CaF{sub 2}: dy for thermoluminescent dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Yamato, M.E.P.; Vasconcelos, D.A.A. de; Asfora, V.K.; Khoury, H.J.; Santos, R.A.; Barros, V.S.M., E-mail: mepyamato@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2015-07-01

    Calcium Fluoride doped with dysprosium is a known thermoluminescent material for applications that require highly sensitive dosimeters. Research in novel methods such as Combustion Synthesis (CS) has been ongoing for several years at the University of Pernambuco. The method uses the heat of the oxi-redox reaction a between nitrate and a fuel. This work presents results of CaF{sub 2}:Dy produced by combustion synthesis under different fabrication conditions. Samples were prepared by mixing stoichiometric amounts of calcium nitrate, urea and ammonium nitrate in a beaker under vigorous stirring. The resulting gel was transferred to a pre-heated muffle furnace were the combustion reaction occurred after a few minutes. For comparison, a variation of the production method with the same amounts of nitrate, ammonium fluoride and dopant, but without using the fuel was prepared. For both methods the resulting powder was pelleted and irradiated with Co-60 gamma radiation. The reproducibility and sensitivity for gamma dose irradiation was tested and results showed that optimum TL sample reproducibility was without the urea as fuel. Samples were then prepared with 0.05, 0.10, 0.15 and 0.20 mol% Dy concentration. The highest TL sensitivity was found for samples with 0.15 mol% Dy and sintered at 400 deg C for 3.5 h in air. The TL emission spectra, obtained using a Hammamatsu optical spectrometer, was comparable with commercial CaF{sub 2}:Dy. Thermoluminescence was measured in a Harshaw-Bicron 3500 TL Reader. The glow curve showed stable dosimetric peaks at around 200, 235 and 300 deg C were a linear dose response curve was obtained for the range 100 mGy to 1000 mGy. (author)

  19. Experimental measurement and theoretical assessment of fast lanthanide electronic relaxation in solution with four series of isostructural complexes.

    Science.gov (United States)

    Funk, Alexander M; Fries, Pascal H; Harvey, Peter; Kenwright, Alan M; Parker, David

    2013-02-07

    The rates of longitudinal relaxation for ligand nuclei in four isostructural series of lanthanide(III) complexes have been measured by solution state NMR at 295 K at five magnetic fields in the range 4.7-16.5 T. The electronic relaxation time T(le) is a function of both the lanthanide ion and the local ligand field. It needs to be considered when relaxation probes for magnetic resonance applications are devised because it affects the nuclear relaxation, especially over the field range 0.5 to 4.7 T. Analysis of the data, based on Bloch-Redfield-Wangsness theory describing the paramagnetic enhancement of the nuclear relaxation rate has allowed reliable estimates of electronic relaxation times, T(1e), to be obtained using global minimization methods. Values were found in the range 0.10-0.63 ps, consistent with fluctuations in the transient ligand field induced by solvent collision. A refined theoretical model for lanthanide electronic relaxation beyond the Redfield approximation is introduced, which accounts for the magnitude of the ligand field coefficients of order 2, 4, and 6 and their relative contributions to the rate 1/T(le). Despite the considerable variation of these contributions with the nature of the lanthanide ion and its fluctuating ligand field, the theory explains the modest change of measured T(le) values and their remarkable statistical ordering across the lanthanide series. Both experiment and theory indicate that complexes of terbium and dysprosium should most efficiently promote paramagnetic enhancement of the rate of nuclear relaxation.

  20. Water quality and quantity of selected springs and seeps along the Colorado River corridor, Utah and Arizona: Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park, 1997-98

    Science.gov (United States)

    Taylor, Howard E.; Spence, John R.; Antweiler, Ronald C.; Berghoff, Kevin; Plowman, Terry I.; Peart, Dale B.; Roth, David A.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service conducted an intensive assessment of selected springs along the Colorado River Corridor in Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park in 1997 and 1998, for the purpose of measuring and evaluating the water quality and quantity of the resource. This study was conducted to establish baseline data for the future evaluation of possible effects from recreational use and climate change. Selected springs and seeps were visited over a study period from 1997 to 1998, during which, discharge and on-site chemical measurements were made at selected springs and seeps, and samples were collected for subsequent chemical laboratory analysis. This interdisciplinary study also includes simultaneous studies of flora and fauna, measured and sampled coincidently at the same sites. Samples collected during this study were transported to U.S. Geological Survey laboratories in Boulder, Colorado, where analyses were performed using state-of-the-art laboratory technology. The location of the selected springs and seeps, elevation, geology, aspect, and onsite measurements including temperature, discharge, dissolved oxygen, pH, and specific conductance, were recorded. Laboratory analyses include determinations for alkalinity, aluminum, ammonium (nitrogen), antimony, arsenic, barium, beryllium, bismuth, boron, bromide, cadmium, calcium, cerium, cesium, chloride, chromium, cobalt, copper, dissolved inorganic carbon, dissolved organic carbon, dysprosium, erbium, europium, fluoride, gadolinium, holmium, iodine, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, nitrate (nitrogen), nitrite (nitrogen), phosphate, phosphorus, potassium, praseodymium, rhenium, rubidium, samarium, selenium, silica, silver, sodium, strontium, sulfate, tellurium, terbium, thallium, thorium, thulium, tin, titanium, tungsten

  1. Sr/Al比对铝酸锶体系长余辉材料发光性能的影响%Influence of Sr/Al on Luminescence Properties of Strontium Aluminates System Long Persistence Phosphors

    Institute of Scientific and Technical Information of China (English)

    武玉亮; 吕梦林; 张小博

    2013-01-01

    Europium and dysprosium co-doped strontium aluminates long persistence phosphors was synthesized by the solid phase. This kind of material could respectively emit purple, blue, blue-green, yellow-green, yellow light by means of the alteration of Sr/Al. Spectra test revealed the material had the best luminescence intensity and the longest afterflow when Sr/Al=0.4, it emited yellow-green light. Wave length of emission spectra peak shifted to shortwave with the reduction of Sr/Al. While wave length of excitation spectra peak firstly shifted to shortwave after shift to longwave. XRD showed the alteration of Sr/Al made crystal structure change, therefore, Sr/Al affected on lumi-nescence properties of this material.%  用高温固相法制备了铕镝掺杂的铝酸锶长余辉发光材料,通过改变Sr/Al使该类材料各自发紫光、蓝光、蓝绿光、绿光、黄绿光和黄光。光谱分析表明,当Sr/Al=0.4时发光强度最强,余辉时间最长,此时材料发黄绿光。随着Sr/Al的减小,材料的发射光谱峰值波长蓝移,激发光谱峰值波长先红移后蓝移。XRD分析可知,Sr/Al的改变使材料的晶形结构发生改变,从而影响了材料的发光性能。

  2. Rare earth oxides doped NiO/γ-Al2O3 catalyst for oxidative dehydrogenation of cyclohexane

    Institute of Scientific and Technical Information of China (English)

    Hany M AbdelDayem; M Faiz; Hesham S Abdel-Samad; Salah A Hassan

    2015-01-01

    The effect of rare earth oxides (RE=Ce, La, Gd, and Dy) doping of alumina support in NiO/γ-Al2O3 system was investi-gated on its catalytic performance in oxidative dehydrogenation (ODH) of cyclohexane. The physicochemical properties of various samples were followed up through N2 physisorption, temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and potentiometric acid-base titration techniques. In the parent NiO/γ-Al2O3 catalyst, Ni species were found to be strongly interacted with alumina surface. Addition of rare earth dopants toγ-Al2O3 in the catalyst system affected the nickel-alumina interaction and resulted in significant modifications in the catalytic performances in the ODH reaction. The results re-vealed the beneficial role of both La2O3 and Gd2O3 doping in enhancing the ODH catalytic activity and selectivity to cyclohexene. H2-TPR and XPS results indicated that majority of Ni species in NiO/La2O3 modifiedγ-Al2O3 were more weakly interacted with La2O3 and alumina whereas both NiO like species and nickel aluminate were present on the surface. Doping with cerium or dyspro-sium increased the nickel-support interaction and led to a decrease in surface nickel concentration. In case of doping with Ce, surface concentration of cerium oxide was higher than those of the other RE oxides; the doped catalyst reached its steady state activity faster than the other catalysts. The acid-base results suggested that RE metals were interacted most likely with acidic surface hydroxyl groups. The degree of nickel-alumina interaction decreased in the following order: LaAl>GdAl>CeAl>DyAl.

  3. Comparison of structural and luminescence properties of Dy{sub 2}O{sub 3} nanopowders synthesized by co-precipitation and green combustion routes

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekhar, M. [Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103 (India); Department of Physics, Acharya Institute of Technology, Bangalore 560 107 (India); Nagabhushana, H., E-mail: bhushanvlc@gmail.com [Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103 (India); Sudheerkumar, K.H. [Department of Chemistry, B.M.S. Institute of Technology, Bangalore 560 064 (India); Dhananjaya, N. [Department of Physics, B.M.S. Institute of Technology, Bangalore 560 064 (India); Sharma, S.C. [Vice chancellor, Chhattisgarh Swamy Vivekananda Technical University, North Park Avenue, Sector – 8, Bhilai, Chhattisgarh 490 009 (India); Kavyashree, D. [Department of Physics, Channabasaveshwara Institute of Technology, Gubbi 572 216 (India); Shivakumara, C. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India); Nagabhushana, B.M. [Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore 560 054 (India)

    2014-07-01

    Highlights: • Dy{sub 2}O{sub 3} nanopowders were prepared by co-precipitation and eco-friendly green combustion route using plant latex. • Both the products show excellent chromaticity coordinates in the white region, which were quite useful for white LED’s. • Thermoluminescence response of the Dy{sub 2}O{sub 3} product prepared by green synthesis was higher when compared to co-precipitation route. • Structural parameters of Dy{sub 2}O{sub 3} were estimated using Rietveld refinement. • The development of nanosize materials using eco-friendly resources was an attractive non-hazardous chemical route. - Abstract: Dysprosium oxide (Dy{sub 2}O{sub 3}) nanopowders were prepared by co-precipitation (CP) and eco-friendly green combustion (GC) routes. SEM micrographs prepared by CP route show smooth rods with various lengths and diameters while, GC route show porous, agglomerated particles. The results were further confirmed by TEM. Thermoluminescence (TL) responses of the nanopowder prepared by both the routes were studied using γ-rays. A well resolved glow peak at 353 °C along with less intense peak at 183 °C was observed in GC route while, in CP a single glow peak at 364 °C was observed. The kinetic parameters were estimated using Chen’s glow peak route. Photoluminescence (PL) of Dy{sub 2}O{sub 3} shows peaks at 481, 577, 666 and 756 nm which were attributed to Dy{sup 3+} transitions of {sup 4}F{sub 9/2}⟶{sup 6}H{sub 15/2}, {sup 6}H{sub 13/2}, {sup 6}H{sub 11/2} and {sup 6}H{sub 9/2}, respectively. Color co-ordinate values were located in the white region as a result the product may be useful for the fabrication of WLED’S.

  4. Magnetic field alignable domains in phospholipid vesicle membranes containing lanthanides.

    Science.gov (United States)

    Beck, Paul; Liebi, Marianne; Kohlbrecher, Joachim; Ishikawa, Takashi; Rüegger, Heinz; Zepik, Helmut; Fischer, Peter; Walde, Peter; Windhab, Erich

    2010-01-14

    Magnetic fields were applied as a structuring force on phospholipid-based vesicular systems, using paramagnetic lanthanide ions as magnetic handles anchored to the vesicle membrane. Different vesicle formulations were investigated using small angle neutron scattering (SANS) in a magnetic field of up to 8 T, cryo-transmission electron microscopy (cryo-TEM), (31)P NMR spectroscopy, dynamic light scattering (DLS), and permeability measurements with a fluorescent water-soluble marker (calcein). The investigated vesicle formulations consisted usually of 80 mol % of the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 20 mol % of a chelator lipid (DMPE-DTPA; 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate) with complexed lanthanide ions (Tm(3+), Dy(3+), or La(3+)), and the total lipid concentration was 15 mM. Vesicles containing the paramagnetic lanthanide Tm(3+) or Dy(3+) exhibited a temperature-dependent response to magnetic fields, which can be explained by considering the formation of lipid domains, which upon reaching a critical size become alignable in a magnetic field. The features of this "magnetic field alignable domain model" are as follows: with decreasing temperature (from 30 to 2.5 degrees C) solid domains, consisting mainly of the higher melting phospholipid (DMPE-DTPA.lanthanide), begin to form and grow in size. The domains assemble the large magnetic moments conferred by the lanthanides and orient in magnetic fields. The direction of alignment depends on the type of lanthanide used. The domains orient with their normal parallel to the magnetic field with thulium (Tm(3+)) and perpendicular with dysprosium (Dy(3+)). No magnetic field alignable domains were observed if DMPE-DTPA is replaced either by POPE-DTPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-diethylenetriamine-pentaacetate) or by DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine).

  5. High energy electron beams characterization using CaSO{sub 4}:Dy+PTFE Phosphors for clinical therapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T., E-mail: trivera@ipn.mx [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria, IPN. Av. Legaria 694, Col. Irrigacion. 11500 Mexico DF (Mexico); Espinoza, A.; Von, S.M. [Centro Estatal de Cancerologia de los Servicios de Salud de Nayarit, Enfermeria S/n, Fracc, Fray Junipero Serra, 63169 Tepic Nay (Mexico); Alvarez, R.; Jimenez, Y. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria, IPN. Av. Legaria 694, Col. Irrigacion. 11500 Mexico DF (Mexico)

    2012-07-15

    In the present work high energy electron beam dosimetry from linear accelerator (LINACs) for clinical applications using dysprosium doped calcium sulfate embedded in polytetrafluorethylene (CaSO{sub 4}:Dy+PTFE) was studied. The irradiations were carried out using high electron beams (6 to 18 MeV) from a linear accelerator (LINAC) Varian, CLINAC 2300C/D, for clinical practice purpose. The electron irradiations were obtained using the water solid in order to guarantee electronic equilibrium conditions (EEC). Field shaping for electron beams was obtained with electron cones. Glow curve and other thermoluminescent characteristics of CaSO{sub 4}:Dy+PTFE were conducted under high electrons beams irradiations. The TL response of the pellets showed an intensity peak centered at around 215 Degree-Sign C. TL response of CaSO{sub 4}:Dy+PTFE as a function of high electron absorbed dose showed a linearity in a wide range. To obtain reproducibility characteristic, a set of pellets were exposed repeatedly for the same electron absorbed dose. The results obtained in this study can suggest the applicability of CaSO{sub 4}:Dy+PTFE pellets for high electron beam dosimetry, provided fading is correctly accounted for. - Highlights: Black-Right-Pointing-Pointer Developing of CaSO{sub 4}:Dy to electron beams dosimetry. Black-Right-Pointing-Pointer Characterization of caSO{sub 4}:Dy to radiation safety in LINACs. Black-Right-Pointing-Pointer TL characteristics of CaSO{sub 4}:Dy for electron beams quality control.

  6. Evaluation of the response of thermoluminescent detectors in clinical beams dosimetry using different phantoms; Avaliacao da resposta de detectores termoluminescentes na dosimetria de feixes clinicos utilizando diferentes objetos simuladores

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Luciana Cardoso

    2010-07-01

    Radiotherapy is one of the three principal treatment modalities used in the treatment of malignant diseases such as cancer, the other two are chemotherapy and radiosurgery. In contrast to other medical specialties that rely mainly on the clinical knowledge and experience of medical specialists, radiotherapy, with its use of ionizing radiation in treatment of cancer, relies heavily on modern technology and the collaborative efforts of several professionals whose coordinated team approach greatly influences the outcome of the treatment. In the area of clinical dosimetry, an efficient and accurate calibration of the radiation beam ensures knowledge of the radiation dose delivered to the patient, allowing thus the success of radiotherapy. This study aims to compare the thermoluminescent response of calcium sulfate doped with dysprosium (CaSO{sub 4}:Dy) dosimeters produced by IPEN (6 mm in diameter and 0,8 mm tick) with the response of lithium fluoride (3,15 x 3,15 x 0,9 mm{sup 3}) doped with magnesium and titanium (LiF:Mg,Ti) in dosimetry of clinical photons (6 and 15 MV) and electrons beams (6 and 9 MeV) using solid water (RMI-457), water and PMMA phantoms. Initially, the dose-response curves were obtained for irradiation in cobalt-60 gamma radiation source in air (PMMA plates) and under electronic equilibrium conditions and for clinical electrons and photons beams at depth of maximum dose. The sensitivities of the thermoluminescent dosimeters were also evaluated and the values of their reproducibilities and intrinsic efficiency were determined for the response to different types of phantoms and radiation energy. The obtained results indicate that the main advantage of CaSO{sub 4}:Dy dosimeters is the enhanced sensitivity to radiation doses measured for {sup 60}Co, photons and electrons beams, thus representing a viable alternative for application in dosimetry in the radiotherapy area. (author)

  7. A highly sensitive CaF{sub 2}:Dy nanophosphor as an efficient low energy ion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bhadane, Mahesh S.; Hareesh, K.; Dahiwale, S.S.; Sature, K.R. [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Patil, B.J. [Department of Physics, Abasaheb Garware College, Pune 411004 (India); Asokan, K.; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Bhoraskar, V.N. [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-11-01

    Highlights: • CaF{sub 2}:Dy nanophosphor synthesized by chemical co-precipitation route. • Phosphors are irradiated by H, Ar and N low energy ions at different fluences. • LEBI irradiated phosphors are characterized by XRD, TEM, FTIR and PL spectroscopy. • First time report to LEIB irradiated for thermoluminescence dosimetric applications. - Abstract: Dysprosium doped calcium fluoride (CaF{sub 2}:Dy) powers synthesized by co-precipitation method were irradiated with low energy ion beams (LEIB) viz. 100 keV H, 200 keV Ar and 350 keV N beams at different fluences and demonstrated for low energy ion dosimetric application. X-ray Diffraction and Transmission electron microscopy revealed the formation of highly crystalline cubic structured particles with size ∼45–50 nm. FTIR spectra of the CaF{sub 2}:Dy samples show changes of some bonds such as N–O asymmetric, C–F bonding and C–H aromatic contain stretching mode after LEIB irradiation. The thermoluminescence (TL) glow curve peaks were observed at 207 °C for Ar ion, at 203 °C for H ion and at 216 °C and 270 °C for N ion. It has been found that CaF{sub 2}:Dy nanophosphor shows a linear response with minimum fading for all the ion species. Computerized Glow Curve Deconvolution was performed for TL curve of high fluence ion irradiated nanophosphor to estimate the trapping parameters and the respective figure of merit (FOM) found to be very appropriate for all the nanophosphor. These results indicated that the CaF{sub 2}:Dy can be used as a low energy ion detector or dose.

  8. Spin transistor action via tunable Landau-Zener transitions in magnetic semiconductor quantum wells

    Science.gov (United States)

    Weiss, Dieter

    2013-03-01

    Spin-transistors, employing spin-orbit interaction like Datta-Das prototypes, principally suffer from low signal levels due to limitations in spin injection efficiency, fast spin relaxation and dephasing processes. Here we present an alternative concept to implement spin transistor action where efficiency is improved by keeping spin transport adiabatic. To this end a helical stray field B, generated by ferromagnetic Dysprosium stripes, is superimposed upon a two-dimensional electron system in (Cd,Mn)Te, containing Mn ions with spin 5/2. Due to the giant spin splitting, occurring at low temperatures and small B in (Cd,Mn)Te quantum wells, the B-helix translates into a spin-helix and the electron spins follow adiabatically the imposed spin texture. Within this approach the transmission of spin-polarized electrons between two contacts is regulated by changing the degree of adiabaticity, i.e. an electron's ability to follow the spin helix. This is done by means of a small applied homogeneous magnetic field while the degree of adiabaticity is monitored by the channel resistance. Our scheme allows spin information to propagate efficiently over typical device distances and provides an alternative route to realize spintronics applications. We note that our concept is not restricted to a particular choice of materials, temperature, methods of spin injection, manipulation as well as detection. Work done in cooperation with Christian Betthausen, Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany; Tobias Dollinger, Henri Saarikosi, Institute of Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany; Valeri Kolkovsky, Grzegorz Karczewski, Tomasz Wojtowicz, Institute of Physics, Polish Academy of Sciences, PL-02668 Warsaw, Poland; and Klaus Richter, Institute of Theoretical Physics, University of Regensburg. Financial support from the Deutsche Forschungsgemeinschaft through SFB 689, WE 247618, and FOR 1483 is

  9. Semi-empirical simulation of thermoluminescent response under different filter geometries; Simulacao semi-empirica da resposta termoluminescente sob diferentes geometrias de filtro

    Energy Technology Data Exchange (ETDEWEB)

    Shammas, Gabriel Issa Jabra

    2006-07-01

    Many thermoluminescent materials has been developed and used for photon personal dosimetry but no one has all desired characteristics alone. These characteristics include robustness, high sensitivity, energy photon independence, large range of photon energy detection, good reproducibility, small fading and simple glow curve with peaks above 150 deg C. Calcium Sulfate Dysprosium doped (CaSO{sub 4}:Dy) phosphor Thermoluminescent Dosimeter (TLD) has been used by many laboratories, mainly in Brazil and India. Another interesting phosphor is Calcium Fluoride (CaF{sub 2}). These phosphor advantages begin to be more required and its disadvantages have became more apparent, in a global market more and more competitive. These phosphors are used in environmental and area monitoring, once they present more sensibility than other phosphors, like LiF:Mg. Theirs mainly disadvantage is a strong energetic dependence response, which must be corrected for theirs application in the field, where photon radiation is unknown a priori. An interesting way do make this correction in orthogonal incidence of the radiation on the phosphor is to interject a plane leaked filter between the beam and the phosphor. In order to reduce the energetic dependence on any incidence angle, reducing the field dose measurement uncertainty too, this work presents a simulation study on spherical filter geometries. It was simulated photon irradiations with Gamma rays of {sup 60}Co and x-rays of 33; 48 and 118 keV, on many incidence angles from zero to ninety degrees. These semi-empirical computational simulations using finite differences in three dimensions were done in spherical coordinates. The results pointed out the best filter thicknesses and widths, in order to optimize the correction on energetic dependence. (author)

  10. Application of perturbation theory to lattice calculations based on method of cyclic characteristics

    Science.gov (United States)

    Assawaroongruengchot, Monchai

    computing time when both direct and adjoint solutions are required. A problem that arises for the generalized adjoint problem is that the direct use of the negative external generalized adjoint sources in the adjoint solution algorithm results in negative generalized adjoint functions. A coupled flux biasing/decontamination scheme is applied to make the generalized adjoint functions positive using the adjoint functions in such a way that it can be used for the multigroup rebalance technique. Next we consider the application of the perturbation theory to the reactor problems. Since the coolant void reactivity (CVR) is a important factor in reactor safety analysis, we have decided to select this parameter for optimization studies. We consider the optimization and adjoint sensitivity techniques for the adjustments of CVR at beginning of burnup cycle (BOC) and k eff at end of burnup cycle (EOC) for a 2D Advanced CANDU Reactor (ACR) lattice. The sensitivity coefficients are evaluated using the perturbation theory based on the integral transport equations. Three sets of parameters for CVR-BOC and keff-EOC adjustments are studied: (1) Dysprosium density in the central pin with Uranium enrichment in the outer fuel rings, (2) Dysprosium density and Uranium enrichment both in the central pin, and (3) the same parameters as in the first case but the objective is to obtain a negative checkerboard CVR at beginning of cycle (CBCVR-BOC). To approximate the sensitivity coefficient at EOC, we perform constant-power burnup/depletion calculations for 600 full power days (FPD) using a slightly perturbed nuclear library and the unperturbed neutron fluxes to estimate the variation of nuclide densities at EOC. Sensitivity analyses of CVR and eigenvalue are included in the study. In addition the optimization and adjoint sensitivity techniques are applied to the CBCVR-BOC and keff-EOC adjustment of the ACR lattices with Gadolinium in the central pin. Finally we apply these techniques to the CVR

  11. A rare opportunity beckons

    Energy Technology Data Exchange (ETDEWEB)

    Gschneidner, K

    2011-02-01

    There is a great deal of uncertainty for the future of rare-earth production. Rare-earths are a collection of 17 chemical elements in the periodic table, which include scandium and yttrium as well as the 15 lanthanides, such as dysprosium and ytterbium. China has a stranglehold on today's rare-earth market, which was worth about $3bn in 2010, with the country accounting for about 95% of worldwide production. Yet China's future actions can only be guessed at best. In September it halted shipments of rare-earth elements to Japan over a diplomatic spat concerning the detention of a Chinese trawler captain. Although the ban was later lifted, the episode raised concerns around the world about China's rare-earth monopoly and its use in diplomacy. China has already warned that it will not export any rare-earth material in the coming years as it expects its own consumption of rare-earth metals to increase. The country has introduced export taxes as well as production and export quotas, and also refused to grant any new rare-earth mining licences. Furthermore, because its reserves are limited and China's internal markets are growing so rapidly, the country has suggested it will no longer export products that require rare-earth elements, especially those that need heavy rare-earth elements, such as terbium and dysprosium. China's actions have led to huge rises in the cost of rare-earth materials and products. Dysprosium oxide, for example, has shot up from $36 per kilogram in 2005 to a massive $305 per kilogram by late last year. This could have a huge impact on much of today's electronics industry, given that rare-earth elements are ubiquitous in electric motors, computers, batteries, liquid-crystal displays (LCDs) and mobile phones. Neodymium-iron-boron permanent magnets, for example, are used as computer spindle drives. The question is: what can be done to ensure that China's dominance of the rare-earth industry does not affect the

  12. Manifestations of Dark matter and variation of the fundamental constants in atomic and astrophysical phenomena

    Science.gov (United States)

    Flambaum, Victor

    2016-05-01

    Low-mass boson dark matter particles produced after Big Bang form classical field and/or topological defects. In contrast to traditional dark matter searches, effects produced by interaction of an ordinary matter with this field and defects may be first power in the underlying interaction strength rather than the second or fourth power (which appears in a traditional search for the dark matter). This may give a huge advantage since the dark matter interaction constant is extremely small. Interaction between the density of the dark matter particles and ordinary matter produces both `slow' cosmological evolution and oscillating variations of the fundamental constants including the fine structure constant alpha and particle masses. Recent atomic dysprosium spectroscopy measurements and the primordial helium abundance data allowed us to improve on existing constraints on the quadratic interactions of the scalar dark matter with the photon, electron and light quarks by up to 15 orders of magnitude. Limits on the linear and quadratic interactions of the dark matter with W and Z bosons have been obtained for the first time. In addition to traditional methods to search for the variation of the fundamental constants (atomic clocks, quasar spectra, Big Bang Nucleosynthesis, etc) we discuss variations in phase shifts produced in laser/maser interferometers (such as giant LIGO, Virgo, GEO600 and TAMA300, and the table-top silicon cavity and sapphire interferometers), changes in pulsar rotational frequencies (which may have been observed already in pulsar glitches), non-gravitational lensing of cosmic radiation and the time-delay of pulsar signals. Other effects of dark matter and dark energy include apparent violation of the fundamental symmetries: oscillating or transient atomic electric dipole moments, precession of electron and nuclear spins about the direction of Earth's motion through an axion condensate, and axion-mediated spin-gravity couplings, violation of Lorentz

  13. Characterization of the deviation to the ideality of concentrated actinide and lanthanide salt solutions: contribution of the Bimsa theory; Caracterisation de l'ecart a l'idealite de solutions concentrees de sels d'actinide et de lanthanide: contribution de la theorie Bimsa

    Energy Technology Data Exchange (ETDEWEB)

    Ruas, A

    2006-03-15

    , in chapter 3, two predictive capabilities of the theory are shown. One of them, from comparison of our experimentally measured cerium(III) salt water activities, with water activities deduced from the BIMSA using data of other salts. A second predictive capability of the BIMSA is shown from comparison of our experimentally measured uranyl nitrate salt properties with osmotic coefficients extrapolated to higher concentration from the BIMSA. In the final chapter, molecular dynamics calculations and also experimental measurements (TRLFS, EXAFS, UV visible spectroscopy) on dysprosium salts are made to discuss the parameters used in the theory. First, this final part is aimed at a better understanding of microscopic features of the electrolytes. Also, possible ways for improving predictive capabilities of the BIMSA are discussed. (author)

  14. Resolution of the three dimensional structure of components of the glomerular filtration barrier.

    Science.gov (United States)

    Arkill, Kenton P; Qvortrup, Klaus; Starborg, Tobias; Mantell, Judith M; Knupp, Carlo; Michel, C Charles; Harper, Steve J; Salmon, Andy H J; Squire, John M; Bates, Dave O; Neal, Chris R

    2014-02-01

    The human glomerulus is the primary filtration unit of the kidney, and contains the Glomerular Filtration Barrier (GFB). The GFB had been thought to comprise 3 layers - the endothelium, the basement membrane and the podocyte foot processes. However, recent studies have suggested that at least two additional layers contribute to the function of the GFB, the endothelial glycocalyx on the vascular side, and the sub-podocyte space on the urinary side. To investigate the structure of these additional layers is difficult as it requires three-dimensional reconstruction of delicate sub-microscopic (<1 μm) cellular and extracellular elements. Here we have combined three different advanced electron microscopic techniques that cover multiple orders of magnitude of volume sampled, with a novel staining methodology (Lanthanum Dysprosium Glycosaminoglycan adhesion, or LaDy GAGa), to determine the structural basis of these two additional layers. Serial Block Face Scanning Electron Microscopy (SBF-SEM) was used to generate a 3-D image stack with a volume of a 5.3 x 105 μm3 volume of a whole kidney glomerulus (13% of glomerular volume). Secondly, Focused Ion Beam milling Scanning Electron Microscopy (FIB-SEM) was used to image a filtration region (48 μm3 volume). Lastly Transmission Electron Tomography (Tom-TEM) was performed on a 0.3 μm3 volume to identify the fine structure of the glycocalyx. Tom-TEM clearly showed 20 nm fibre spacing in the glycocalyx, within a limited field of view. FIB-SEM demonstrated, in a far greater field of view, how the glycocalyx structure related to fenestrations and the filtration slits, though without the resolution of TomTEM. SBF-SEM was able to determine the extent of the sub-podocyte space and glycocalyx coverage, without additional heavy metal staining. Neither SBF- nor FIB-SEM suffered the anisotropic shrinkage under the electron beam that is seen with Tom-TEM. These images demonstrate that the three dimensional structure of the GFB can

  15. Luminescence properties of Sr2Al14O25:Eu2+,Dy3+phosphors prepared by co-precipitation hydrothermal method%Sr2Al14O25:Eu2+,Dy3+的共沉淀-水热合成及其发光性能

    Institute of Scientific and Technical Information of China (English)

    杜红丽; 王丽影; 许佳斌; 陈研文; 武利民; 郭栋才

    2014-01-01

    以氨水或碳酸铵为沉淀剂,采用共沉淀-水热合成法制备稀土掺杂铝酸锶发光纳米材料,并优化制备稀土掺杂铝酸锶发光材料的工艺条件。对激活剂、助激活剂、助熔剂的用量、体系的酸碱度和灼烧温度对目标产物发光性能的影响规律进行研究。结果表明:目标产物Sr2Al14O25:Eu2+,Dy3+属正交晶系,为蓝绿色长余辉纳米材料,主激发峰均在360 nm左右;氨水共沉淀法制备的产物主发射峰在490 nm,磷光衰减寿命约30 s;碳酸铵沉淀法制备的产物主发射峰在460 nm,磷光衰减寿命约15 s。%Europium and dysprosium co-doped strontium aluminate nanomaterials were prepared by co-precipitation hydrothermal method using ammonia and ammonium carbonate as precipitating agent, and the optimal conditions were determined. The influences, such as the amount of the activator, co-activator, flux, calcined temperature and pH, of the system on the luminescence properties of the products were investigated. The results show that the compound Sr2Al14O25:Eu2+,Dy3+is orthorhombic aquamarine blue long afterglow nanomaterials, the main excitation peak is around 360 nm, the main emission peak of the phosphors obtained using ammonia as precipitation agent is around 490 nm, with the phosphorescence decay lifetime of 30 s, the main emission peak of the products with ammonium carbonate as precipitation agent is around 460 nm, and its phosphorescence decay lifetime is 15 s. The target products with good long afterglow properties are hopeful to be applied in coating, ceramics, photonic devices and other related fields.

  16. Photoluminescence and thermoluminescence study of KCaSO{sub 4}Cl doped with Dy and Ce synthesized by acid distillation method

    Energy Technology Data Exchange (ETDEWEB)

    Kore, Bhushan P. [Department of Physics, RTM Nagpur University, Nagpur 440033 (India); Dhoble, N.S. [Department of Chemistry, Sevadal Mahila Mahavidyalaya, Nagpur 440009 (India); Lochab, S.P. [Inter-University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110067 (India); Dhoble, S.J., E-mail: sjdhoble@rediffmail.com [Department of Physics, RTM Nagpur University, Nagpur 440033 (India)

    2014-01-15

    Photoluminescence and thermoluminescence properties of KCaSO{sub 4}Cl doped with dysprosium and cerium have been studied. Dy/Ce doped KCaSO{sub 4}Cl phosphors were synthesized by the acid distillation method. The samples were characterized by XRD, SEM, PL and TL for structural, morphological and luminescence studies. The SEM image analysis of KCaSO{sub 4}Cl phosphor shows nearly spherical particles with diameter varying between 3–10 μm. In the present host Dy{sup 3+} emission at 482 and 573 nm is observed due to {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transition, respectively, whereas the PL emission spectra of KCaSO{sub 4}Cl:Ce phosphor shows two luminescence bands at 307 nm and 326 nm and are attributed to the allowed inter configurational transitions from the 5d-level to the {sup 2}F{sub 5/2} and {sup 2}F{sub 7/2} levels of Ce{sup 3+} ion. Effect of annealing on the structure of the glow curve is investigated for KCaSO{sub 4}Cl:Dy phosphors. Thermoluminescence linearity has been studied for 0.1–9000 Gy dose of gamma rays. Linear behavior over a large dose range between 0.1 Gy and 170 Gy was found. In addition to this trap parameters of KCaSO{sub 4}Cl:Dy were studied using computerized glow curve deconvolution. -- Highlights: • The novel phosphor is first time prepared by acid distillation method. • This study reports the thermoluminescence properties of KCaSO{sub 4}Cl irradiated with gamma rays. • The trapping analysis was done by GCD function and Chen's peak shape method. • Its good photoluminescence property can be utilized in display devices as well. • The phosphor can be used as a good dosimeter for measuring the high doses of γ-rays.

  17. The Sol-Gel Preparation Procedure and Sintering Behavior of GdAlO3%GdAlO3粉体的溶胶凝胶法制备工艺及烧结行为研究

    Institute of Scientific and Technical Information of China (English)

    张展; 陈沙鸥; 邵渭泉; 魏妙; 李达; 王峰

    2011-01-01

    以Gd2O3、Al(NO3)3·9H2O和HNO3为原料,柠檬酸为络合剂,通过溶胶凝胶法制备前驱体,经过1000℃,保温2h热处理得到了纯相铝酸钆(GdAlO3)粉体,通过谢乐公式计算,得到各种温度煅烧后粉体的平均晶粒尺寸范围为25~40nm,发现随着煅烧温度的提高,晶粒尺寸逐渐长大;通过研究GdAlO3坯体样品的恒速无压烧结曲线,发现当升温速率为5℃/min时,样品在957℃开始收缩,烧结温度为1600℃时,最大收缩率为16.17%;以烧结曲线为基础,使用基于相对收缩率的Arrhenius关系,计算得到铝酸钆的烧结激活能为22.4kJ/mol,低于氧化铝的烧结激活能,说明其会促进氧化铝的烧结.%Pure phase dysprosium aluminum garnet (GdAIO3) powder synthesized with GdA Al (NO3)3-9H2O and HNO3 as the raw materials and citric as the chelating by the sol-gel method was obtained at 1000°C with a dwell time of 2 hours. On the basis of the Scherrer formula, the average grain size for the powder calcined at different temperatures was calculated to be about 25~40nm. It was found that the average grain size increased with the increasing temperature. The sintering behaviors of GdAIO3 green compacts were studied through the sintering curves, and it was found that the GdAIO3 sample began to shrink at the temperature of 957% or so and the maximum shrinkage was 16.17% at 1600t. Moreover, on the basis of the relative shrinkage, the sintering activation energy for GdAIO3 during the sintering process was cumulated by Arrhenius theory, which was about 22.4 kJ/mol, lower than that of alumina. So it was helpful for the sintering of alumina.

  18. Synthesis and characterization of Silica/polyvinyl imidazole/H2PO4-core-shell nanoparticles as recyclable adsorbent for efficient scavenging of Sm(III) and Dy(III) from water.

    Science.gov (United States)

    Ettehadi Gargari, Jafar; Sid Kalal, Hossein; Shakeri, Alireza; Khanchi, Alireza

    2017-11-01

    In this study, we used Silica/polyvinyl imidazole core-shell nanoparticles impregnated with sodium dihydrogen phosphate (SiO2/PVI/H2PO4(-) NPs) for adsorption of samarium and dysprosium ions from aqueous solutions. The effects of the pH, adsorbent dose, contact time, and initial concentration of the adsorbate on the Core-shell nanoparticles adsorption capacity have been studied. The pH value for maximum removal of Sm (III) and Dy (III) on the core-shell nanoparticles surface were found to be 4. The saturated capacity of SiO2/PVI/H2PO4(-) NPs was up to 160mg.g(-1) and 150mg.g(-1)at 25°C for Sm (III) and Dy (III) ions respectively. The obtained uptake data were analyzed by the Langmuir and Freundlich equations using a linearized correlation coefficient at room temperature. The Freundlich isotherm was found to fit well with the equilibrium data. The adsorption kinetics could be modeled by a pseudo-second-order rate expression. Thermodynamic investigation revealed the adsorption process of the studied ions is entropy driven. Furthermore, the performance of regeneration and reutilization were studied. The adsorbed Sm (III) and Dy (III) can be desorbed by 0.5mol/L HCl, with the desorption percentage of 90% for Sm (III) and Dy (III). After five adsorption-desorption cycles, the adsorption capacity shows a slight decrease (about 15%), implying that the SiO2/PVI/H2PO4(-) NPs can be used as an effective adsorbent for the removal and recovery of Sm(III) and Dy(III) from aqueous solution. The colloid stability of the SiO2/PVI/H2PO4(-) NPs was investigated by dynamic light scattering measurements. The SiO2/PVI/H2PO4(-) NPs are stable in adsorption media after five adsorption - desorption cycles. The high stability of SiO2/PVI/H2PO4(-) NPs can be attributed to steric stabilization by polyvinyl imidazole adsorbed on SiO2 nanoparticle surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Green to white tunable light emitting phosphors: Dy3+/Tb3+ in zinc phosphate glasses

    Science.gov (United States)

    Juárez-Batalla, J.; Meza-Rocha, A. N.; Muñoz H., G.; Caldiño, Ulises

    2017-02-01

    Dy3+/Tb3+-doped zinc phosphate glasses of composition in mol.%: 98.0Zn(PO3)2-2.0Dy2O3, (100.0-x)Zn(PO3)2-xTb2O3 and (98.0-x)Zn(PO3)2-2.0Dy2O3-xTb2O3, x = 0.6, 1.0, 2.0 and 5.0, were prepared by conventional melt quenching technique, and characterized by photoluminescence and decay time spectroscopy. The emission color can be adjusted from neutral white of 4279 K (98.0 Zn(PO3)2-2.0 Dy2O3 glass) toward the green region by codoping with Tb3+ from 0.6 to 5.0 mol% of Tb2O3 upon Dy3+ excitation at 392 nm. The Tb3+ emissions (5D4 → 7F6,5,4,3) being sensitized by Dy3+ through a non-radiative energy transfer. Dysprosium 4F9/2 level emissions can also be sensitized through excitation of Tb3+ at 284 nm with an efficiency up to of 80%. Additionally, upon 284 nm excitation dominant 5D4 → 7F5 green emission in detriment of the 5D3 → 7FJ blue one is promoted by a cross relaxation process between Tb3+ and Dy3+ in addition to that among Tb3+ ions. In consequence, the most intense green emission observed in the ZP2Dy5Tb phosphor gives rise to a color purity of 67.8% and chromaticity coordinates (0.29, 0.59) very close to those (0.29, 0.60) of European Broadcasting Union illuminant green. Such cross relaxation processes enhancing the green emission of Tb3+ with ultraviolet excitation might contribute to increment the spectral response of solar photovoltaic cells by down-shifting of the incident solar spectrum.

  20. SrMoO4:Dy^3+荧光粉的制备及发光性能%Preparation and Photoluminescence of a Phosphor SrMoO4:Dy3+

    Institute of Scientific and Technical Information of China (English)

    林莹; 高绍康

    2012-01-01

    采用高温固相法合成了 SrMoO4:Dy^3+荧光粉。在紫外光(λ=353nm)激发下,该样品发射出 Dy^3+的特征光谱。用热分析仪、X 射线粉末衍射和荧光光谱对样品的结构、性能等进行了研究,考察了 Dy 的掺杂量、不同助熔剂对样品的结构和性能的影响,并讨论 Dy^3+浓度猝灭机理。研究表明:合成过程中添加适量的复合助熔剂 Li2CO3+H3BO3,并当 Dy^3+的掺杂量为 4%(摩尔分数)时,样品的荧光强度最强。这也说明了能量从基质 MoO4^2–传递到 Dy^3+是十分有效的。%Trivalent dysprosium ion (Oy3+) activated strontium molybdate (SrMoO4) phosphor was synthesized via solid-state reaction in a weak reductive atmosphere of active carbon. The effects of the sintering temperature, the activator concentration and the different fluxes on the luminescence properties were investigated by thermogravimetry~lerivative thermogravimetry, X-ray diffraction and photoluminescence spectroscopy, respectively. The excitation and emission spectra indicate that this phosphor can be effectively excited by near UV light of 387 urn, and it exhibits a bright yellow emitting. The optimum concentration for Dy3+ is 4%. The results indicate that SrMoO4:Dy3+ may be a potential luminescent material for solid-state lighting applications.

  1. Visible light emitting Ln{sup 3+} ion (Ln=Sm, Eu and Dy) as a structural probe: A case study with SrZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Santosh K., E-mail: santufrnd@gmail.com [Radiochemistry Division, Bhabha Atomic Research Centre (India); Yadav, A.K.; Bhattacharya, D.; Jha, S.N. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085 (India); Natarajan, V. [Radiochemistry Division, Bhabha Atomic Research Centre (India)

    2015-08-15

    Undoped and various rare earth ion doped SrZrO{sub 3} (SZO) perovskite based phosphors have been synthesized using the gel-combustion technique employing citric acid as a fuel. The phase purity of the sample is confirmed by the X-ray diffraction (XRD) technique. It was observed that average particle size of perovskite particle was around 100 nm. In order to probe the local structure and symmetry around lanthanide ions in SrZrO{sub 3}, detailed experimental investigation has been carried out. X-ray absorption near edge fine (XANES) measurements along with their respective emission spectroscopy confirm that on doping lanthanide ion; in cases they were found to get stabilized as trivalent species. Extensive time resolved emission spectroscopy (TRES) on doped samples shows that on doping Sm{sup 3+} in SZO; an efficient energy transfer takes place and Sm{sup 3+} ions are localized both in Sr and Zr positions of SZO. PL decay time shows the presence of two life time values in case of nanocrystalline SrZrO{sub 3}:Sm{sup 3+}: (i) Sm{sup 3+} at Zr{sup 4+} site (τ=500 µs) and (ii) Sm{sup 3+} at Sr{sup 2+} site (τ=1.2 ms) in the ratio of 3:1. Based on TRES for europium doped sample, it was inferred that, two different types of Eu{sup 3+} ions were present in the SZO matrix. The first type was a long lived species present at relatively higher symmetric site of 'Sr{sup 2+}' and the second was a short lived species present at relatively lower symmetric 'Zr{sup 4+}' site which gets selectively excited at 296 nm. Dysprosium ion specifically occupies Zr{sup 4+} site only in SZO. EXAFS studies supported the TRES results. - Highlights: • Site occupancy of lanthanide. • Time resolved emission is explored. • XANES is used for oxidation state determination. • EXAFS for local structure investigation.

  2. Ce1-xDyx-ySryO2-δ导电体的制备与表征%Preparation and characterization of Ce1-xDyx-ySryO2-δsystem

    Institute of Scientific and Technical Information of China (English)

    S. RAMESH; K. C. JAMES RAJU; C. VISHNUVARDHAN REDDY

    2014-01-01

    The effect of dysprosium and strontium on the total ionic conductivity of ceria in the system Ce1-xDyx-ySryO2-δ was studied. In this system, few compositions were prepared with x=0.15, y=0.015, 0.03 and 0.045 by modified sol-gel process using maltose and pectin as organic precursors. Rietveld refinement of XRD patterns confirms the cubic structure with space group Fm3m . SEM images show relatively uniform grains with clean and distinct grain boundaries. Four probe AC impedance measurements were carried out to evaluate the total ionic conductivity in the temperature range of 150-500 °C and frequency range of 40 Hz-1 MHz. The composition Ce0.85Dy0.12Sr0.03O2-δshows higher electrical conductivity than single-doped ceria samples.%在Ce1-xDyx-ySryO2-δ体系中,研究了Dy和Se对总离子电导率的影响。在该体系中,使用麦芽糖和果胶作为有机前驱体,通过改性溶胶-凝胶工艺,在 x=0.15,y=0.015,0.03和0.045的条件下,制备不同组分的导电体。采用X射线衍射谱的Rietveld拟合验证了导电体具有空间群Fm3m的立方结构。从SEM像可以看到具有明显晶界、相对均匀的晶粒。在150~500°C的温度范围和40 Hz~1 MHz的频率范围内,采用四探针交流阻抗法测量导电体的总离子电导率。与单掺杂的二氧化铈样品相比,Ce0.85Dy0.12Sr0.03O2-δ具有更高的电导率。

  3. Anthropogenic Cycles of Rare Earth Elements

    Science.gov (United States)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  4. Preparation of {sup 166} Dy/{sup 166} Ho DTPA-bis biotin as a system of In vivo generator; Preparacion de {sup 166} Dy/{sup 166} Ho DTPA-bis biotina como un sistema de generador In vivo

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez V, M.R

    2003-07-01

    The objective of this work was to synthesize the complex {sup 166} Dy/{sup 166} Ho - diethylen triamine pentaacetic-bis Biotin ({sup 166} Dy/{sup 166} Ho DTPA-bis Biotin) to evaluate its potential as a new radiopharmaceutical in directed radiotherapy. The Dysprosium-166 was obtained for neutron irradiation of {sup 164} Dy{sub 2}0{sub 3} in the TRIGA Mark III reactor. The labelled was carried out in aqueous solution to p H 8.0 for addition of {sup 166} Dy Cl{sub 3} to the diethylen triamine pentaacetic-{alpha}, {omega}-bis Biotin (DTPA-bis Biotin). The radiochemical purity was determined for HPLC and ITLC. The biological integrity of the marked biotin is evaluated by the biological recognition of the avidin for HPLC - molecular exclusion with and without avidin addition. The studies of stability in vitro were made in dilutions of saline solution to 0.9% and with human serum at 37 C incubated 1 and 24 hours. The complex {sup 166} Dy/{sup 166} Ho DTPA-bis Biotin was obtained with a radiochemical purity of 99.1 {+-} 0.6%. The biological recognition of the complex {sup 166} Dy/{sup 166} Ho DTPA-bis Biotin for the avidin it doesn't affect the labelling procedure. The studies in vitro demonstrated that the {sup 166} Dy/{sup 166} Ho DTPA-bis Biotin is stable after the dilution in saline solution and in human serum that there is not translocation of the one radionuclide subsequent son to the beta decay of the {sup 166} Dy that could produce the {sup 166} Ho{sup 3+} liberation. The studies of Biodistribution in healthy mice demonstrated that the one complex {sup 166} Dy/{sup 166} Ho DTPA-bis Biotin have a high renal distribution. In conclusion the radiolabelled biotin in this investigation has the appropriate properties to be used as an In vivo generator system stable for directed radiotherapy. (Author)

  5. Cytotoxic and genotoxic effect of the [{sup 166}Dy]Dy/{sup 166}Ho-EDTMP in vivo generator system in mice

    Energy Technology Data Exchange (ETDEWEB)

    Pedraza-Lopez, Martha [Departamento de Medicina Nuclear, Instituto Nacional de Ciencias Medicas y Nutricion, Salvador Zubiran, Delegacion Tlalpan, Mexico DF 14000 (Mexico); Ferro-Flores, Guillermina [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca, Ocoyoacac, Estado de Mexico, CP 52045 (Mexico); Arteaga de Murphy, Consuelo [Departamento de Medicina Nuclear, Instituto Nacional de Ciencias Medicas y Nutricion, Salvador Zubiran, Delegacion Tlalpan, Mexico DF 14000 (Mexico)]. E-mail: consuelo_murphy@yahoo.com.mx; Morales-Ramirez, Pedro [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca, Ocoyoacac, Estado de Mexico, CP 52045 (Mexico); Piedras-Ross, Josefa [Departamento de Medicina Nuclear, Instituto Nacional de Ciencias Medicas y Nutricion, Salvador Zubiran, Delegacion Tlalpan, Mexico DF 14000 (Mexico); Murphy-Stack, Eduardo [Hospital Santaelena, Mexico DF (Mexico); Hernandez-Oviedo, Omar [Escuela Superior de Fisica y Matematicas, IPN, Mexico DF (Mexico)

    2004-11-01

    Multiple myeloma and other hematological malignancies have been treated by myeloablative radiotherapy/chemotherapy and subsequent stem cell transplantation. [{sup 166}Dy]Dy/{sup 166}Ho-ethylenediaminetetramethylene phosphonate (EDTMP) forms a stable in vivo generator system with selective skeletal uptake in mice; therefore, it could work as a potential and improved agent for marrow ablation. Induced bone marrow cytotoxicity and genotoxicity are determined by the reduction of reticulocytes (RET) and elevation of micronucleated reticulocyte (MN-RET) in peripheral blood and ablation by bone marrow histological studies. The aim of this study was to determine the bone marrow cytotoxic and genotoxic effect of the [{sup 166}Dy]Dy/{sup 166}Ho-EDTMP in vivo generator system in mice and to evaluate by histopathology its myeloablative potential. Enriched {sup 166}Dy{sub 2}O{sub 3} was irradiated and [{sup 166}Dy]DyCl{sub 3} was added to EDTMP in phosphate buffer (pH 8.0) in a molar ratio of 1:1.75. QC was determined by TLC. Dy-EDTMP complex was prepared the same way with nonirradiated dysprosium oxide. A group of BALB/c mice were intraperitoneally injected with the radiopharmaceutical and two groups of control animals were injected with the cold complex and with 0.9% sodium chloride, respectively. A blood sample was taken at the beginning of the experiments and every 48 h for 12 days postinjection. The animals were sacrificed, organs of interest taken out and the radioactivity determined. The femur was used for histological studies. Flow cytometry analysis was used to quantify the frequency of RET and MN-RET in the blood samples. The MCNP4B Monte Carlo computer code was used for dosimetry calculations. Radiochemical purity was 99% and the mean specific activity was 1.3 MBq/mg. The RET and MN-RET frequency were statistically different in the treatment at the end of the 12-day period demonstrating cytotoxicity and genotoxicity induced by the in vivo generator system. The

  6. White light generation in Dy{sup 3+}-and Ce{sup 3+}/Dy{sup 3+}-doped zinc–sodium–aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Caldiño, U., E-mail: cald@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 México, D.F. (Mexico); Lira, A. [Departamento de Física , Facultad de Ciencias, Universidad Autónoma del estado de México, C.P. 50000 Toluca (Mexico); Meza-Rocha, A.N. [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 México, D.F. (Mexico); Pasquini, E. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, Sesto Fiorentino, 50019 Firenze (Italy); Pelli, S. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze (Italy); Speghini, A. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze (Italy); Dipartimento di Biotecnologie, Università di Verona, and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); Bettinelli, M. [Dipartimento di Biotecnologie, Università di Verona, and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); Righini, G.C. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 2, 00184 Roma (Italy)

    2015-11-15

    A spectroscopic investigation of 1% Dy{sub 2}O{sub 3}-singly doped and 0.5% Ce{sub 2}O{sub 3}-1.0% Dy{sub 2}O{sub 3}-codoped zinc–sodium–aluminosilicate glasses was performed by analyzing their absorption and photoluminescence spectra, and decay times. Warm white yellow light emission, with (0.419, 0.440) CIE1931 chromaticity coordinates and 3579 K color temperature, is obtained in the Dy{sup 3+}-singly doped glass excited at 399 nm, which fits to the requirements of GaN LEDs. A quantum efficiency of 74% and a very high optical gain (38.7×10{sup −25} cm{sup 2} s) were estimated for the dysprosium {sup 4}F{sub 9/2} level luminescence, which might also make the Dy{sup 3+}-doped glass a promising gain medium for solid state yellow laser pumped by GaN LEDs. In the Ce{sup 3+}/Dy{sup 3+}-codoped glass a radiative energy transfer from Ce{sup 3+} to Dy{sup 3+} is observed upon UV excitation (310–365 nm), with a Ce{sup 3+} to Dy{sup 3+} interaction distance that could be greater than 6–12 Å. The emission color from the codoped glass can be tuned with the excitation wavelength from blue light (0.247, 0.245), upon 310 nm excitation, to cold white light (0.284, 0.300), with a 9052 K color temperature, upon 365 nm excitation. - Highlights: • Zinc–sodium–aluminosilicate (ZN) glasses are optically activated with Dy{sup 3+} (ZNDy). • ZN glasses are optically activated with Ce{sup 3+}/Dy{sup 3+} (ZNCeDy). • Dy{sup 3+} is sensitized by Ce{sup 3+} through a radiative energy transfer. • ZNDy glass can generate 3579 K warm white yellow light emission. • ZNCeDy glass can generate 9052 K cold white light emission.

  7. Luminescent investigations of Li{sub 6}Lu(BO{sub 3}){sub 3}:Tb{sup 3+}, Dy{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Fawad, U.; Oh, Myeongjin; Park, H. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Sunghwan [Department of Radiological Science, Cheongju University, Cheongju 360-764 (Korea, Republic of); Kim, H.J., E-mail: hongjoo@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2014-10-15

    Highlights: • New Li{sub 6}Lu(BO{sub 3}){sub 3}:Tb{sup 3+}, Dy{sup 3+} phosphors were fabricated by solid state reaction method. • Li{sub 6}Lu(BO{sub 3}){sub 3}:Dy{sup 3+} emissions; 481, 578, 666 and 734 nm (λ{sub ex} = 350 nm) and for. • Li{sub 6}Lu(BO{sub 3}){sub 3}:Tb{sup 3+}; 488–492, 543–551, 578–599, 614–629 and 651–688 nm (λ{sub ex} = 305 nm). • Light yield of Li{sub 6}Lu(BO{sub 3}){sub 3}:Tb{sup 3+}; 75% while for Li{sub 6}Lu(BO{sub 3}){sub 3}:Dy{sup 3+} is 19% of PDP. • The decay time measured for Li{sub 6}Lu(BO{sub 3}){sub 3}:Tb{sup 3+} phosphor was 1.38 ms. - Abstract: In our novel work we report the luminescence properties of Terbium (Tb{sup 3+}) and Dysprosium (Dy{sup 3+}) ions in Li{sub 6}Lu(BO{sub 3}){sub 3} (lithium lutetium borate) phosphors with its specific and productive use in various luminescent display systems. We have synthesized Tb{sup 3+} and Dy{sup 3+} doped Li{sub 6}Lu(BO{sub 3}){sub 3} phosphors by the solid state reaction method. Concentration based optimization of activators is attained i.e. 2 mol% for Tb{sup 3+} and 5 mol% for Dy{sup 3+}. XRD (X-ray diffraction) and FE-SEM (Field emission-scanning electron microscopy) were used to analyze the overall morphologies, crystalline structures and the grain sizes of the prepared phosphors. Moreover, the grain size of 20 μm is confirmed via Scherrer’s formula. In order to characterize the luminescence properties of the synthesized phosphors, we measured its X-ray induced luminescence, proton induced luminescence and UV induced photoluminescence. Under UV luminescence Dy{sup 3+} doped phosphor, it displayed seven obvious peaks corresponding to transitions from {sup 6}H{sub 15/2} (f{sup 9}) ground state to higher energy state of 4f{sup 9} whereas, UV-emission spectrum of Li{sub 6}Lu(BO{sub 3}){sub 3}:Tb{sup 3+} phosphor has shown five major transitions with each peak consists of several smaller lines, confirming the complicated transition ({sup 5}D{sub j} → {sup 7}F

  8. Research progress on the single-molecule magnets of Lanthanide complexes%稀土配合物单分子磁体研究进展

    Institute of Scientific and Technical Information of China (English)

    董飘平; 梁福永; 邹征刚; 温和瑞

    2016-01-01

    Single-molecule magnets(SMMs) have potential application in the areas of ultrahigh-density memory components,spintronic devices and quantum computers. Rare earth ions are widely used for preparation of magnetic materials due to their high spin ground state as well as strong spin orbit coupling and magnetic anisotropy. In recent years,the rare earth ions have been used to improve SMMs spin flip energy barrier and a lot of rare earth complexes have been also synthesized. In this paper,the synthesis and structures of Lanthanide-based SMMs are briefly reviewed with an emphasis on magnetism properties of the mono-,di-,tri-,tetra-,penpa- and hexa-nuclear Lanthanide SMMs. Studies have showed that the SMMs made from Dysprosium-based complexes are the best and of the more the complex nuclear,the stronger the characteristics of SMMs. The future research of Lanthanide-based SMMs should focus on the synthesis of high nuclear complexes and the advancement of magnetic anisotropy energy barrier.%单分子磁体在超高密度存储、自旋电子器件、量子计算机等领域具有潜在的应用。稀土离子因其存在高电子自旋基态以及很强的自旋轨道耦合和磁各向异性,被广泛应用于磁性材料的制备。近年来,稀土离子用来提高单分子磁体的自旋翻转能垒的研究备受关注,大量具有单分子磁体性能的稀土配合物被合成。本文综述了稀土配合物单分子磁体的合成、结构与磁性研究进展,着重介绍了单核、双核、三核、四核、五核及六核稀土配合物单分子磁体的结构与磁学性质。研究表明,应用元素镝构筑的稀土配合物单分子磁体性能最好,且随着配合物核数的增加,单分子磁体的特性更加明显。展望稀土配合物单分子磁体的研究,今后的研究重点是合成高核稀土配合物和提高磁各向异性能垒。

  9. Preparation of {sup 166} Dy/{sup 166} Ho-Macro aggregates as an In vivo generator system for the treatment of arthrophaties; Preparacion de {sup 166} Dy/{sup 166} Ho-Macro agregados como un sistema de generador In vivo para el tratamiento de artropatias

    Energy Technology Data Exchange (ETDEWEB)

    Aldama A, T.K

    2003-07-01

    The present work reports the obtention of macro aggregates of hydroxides of Dysprosium-166/Holmium-166 ({sup 166} Dy/{sup 166} Ho-MH), as a generator system in vivo to be used in the treatment of arthritis rheumatoid. The {sup 166} Dy was obtained by neutron irradiation of {sup 166} DyO{sub 3} (enriched to 98.45%) by 20 h in the TRIGA Mark III Reactor and 50 h of decay, to the oxide of {sup 166} Dy/{sup 166} Ho formed, it was added HCl 0.12 N to obtain a final volume of 3.5 ml of solution of {sup 166} Dy/{sup 166} Ho chloride. The solution of {sup 166D}yCl{sub 3} solution was obtained with an activity of 3.502 mCi (129 MBq), appropriate for the preparation of the radiopharmaceutical {sup 166} Dy/{sup 166} Ho-MH. The separation of the {sup 166} Dy from the {sup 166} Ho, was carried out by chromatography in an cation exchange column, gaining an appropriate separation, obtaining a {sup 166} Dy with a radionuclide purity greater than 90%. The {sup 166} Dy/{sup 166} Ho-MH were prepared by addition to the solution of {sup 166} DyCI{sub 3} NaOH 0.5 N low ultrasonic bath with later centrifugation, decanted and resuspension in saline solution, obtaining a radiopharmaceutical with a generator system {sup 166} Dy/ {sup 166} Ho with particles of size average of 3 {mu}m, in form of {sup 166} Dy / {sup 166} Ho-MH. Under these conditions, it was obtained a radiochemical yield greater than 99%. The microscopic analysis and of filtration showed that the formulation doesn't present particles smaller than to 1 {mu}m, neither greater to 50 {mu}m, which will allow, the quick phagocytosis for the synoviocytes of the synovial membrane, and by consequence, an homogeneous distribution of the radiation dose could exist. The sedimentation velocity for the formulated suspension is of 0.04 cm/min that it will allow the administration of homogeneous activities of the radiopharmaceutical, to the no deposit in the injection devices. The studies of stability in vitro indicate us that inside

  10. Effects of mixtures of red clover and maize silages on the partitioning of dietary nitrogen between milk and urine by dairy cows.

    Science.gov (United States)

    Dewhurst, R J; Davies, L J; Kim, E J

    2010-05-01

    Eight multiparous lactating Holstein-Friesian cows were used to evaluate the partitioning of dietary nitrogen (N) from diets based on mixtures of red clover and maize silages in comparison with diets based on ryegrass silage. All cows received 4 kg/day of a standard dairy concentrate with one of four forage treatments in an incomplete changeover design with three 4-week periods. Three treatments were based on mixtures of red clover and maize silage. N intake was altered both by varying the ratio of these silages (40/60 and 25/75 on a dry matter (DM) basis) and by an additional treatment for which the DM intake of the 40/60 mixture was restricted to the level achieved with grass silage. Rumen passage rates were estimated from faecal excretion curves following a pulse oral dose of Dysprosium-labeled silage and urinary excretion of purine derivatives (PD) was used as an index of rumen microbial protein synthesis. Red clover silage mixtures led to significantly increased feed intake (21.5, 20.7 and 15.2 kg DM/day for 40/60 and 25/75 red clover/maize silage mixtures and grass silage, respectively), milk production (25.8, 27.8 and 20.0 kg/day for the same treatments, respectively) and milk component yields, but were without effect on milk fat and protein concentrations. The large increase in the yield of milk (24.5 kg/day) and milk components for the restricted red clover/maize silage treatment, in comparison with the grass silage treatment, was proportionately greater than the increase in DM intake (16.6 kg DM/day). There were no significant treatment effects on diet digestibility, while the higher intakes of red clover silage mixtures were associated with higher rumen passage rates (5.82%, 6.24% and 4.55%/h, respectively). There were significant effects of both N intake and forage source on the partitioning of dietary N between milk and urine. When dietary protein was diluted by the inclusion of maize silage, red clover silage led to increased milk N and reduced

  11. U.S. Department of Energy Critical Materials Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, D.; Diamond, D.; Li, J.; Sandalow, D.; Telleen, P.; Wanner, B.

    2010-12-01

    This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DOE) based on data collected and research performed during 2010. Its main conclusions include: (a) Several clean energy technologies -- including wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting -- use materials at risk of supply disruptions in the short term. Those risks will generally decrease in the medium and long term. (b) Clean energy technologies currently constitute about 20 percent of global consumption of critical materials. As clean energy technologies are deployed more widely in the decades ahead, their share of global consumption of critical materials will likely grow. (c) Of the materials analyzed, five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium), as well as indium, are assessed as most critical in the short term. For this purpose, 'criticality' is a measure that combines importance to the clean energy economy and risk of supply disruption. (d) Sound policies and strategic investments can reduce the risk of supply disruptions, especially in the medium and long term. (e) Data with respect to many of the issues considered in this report are sparse. In the report, DOE describes plans to (i) develop its first integrated research agenda addressing critical materials, building on three technical workshops convened by the Department during November and December 2010; (ii) strengthen its capacity for information-gathering on this topic; and (iii) work closely with international partners, including Japan and Europe, to reduce vulnerability to supply disruptions and address critical material needs. DOE will work with other stakeholders -- including interagency colleagues, Congress and the public -- to shape policy tools that strengthen the United States' strategic capabilities. DOE also announces its plan to develop an updated critical

  12. Solvation structure and thermodynamics for Pr(III), Nd(III) and Dy(III) complexes in ionic liquids evaluated by Raman spectroscopy and DFT calculation

    Science.gov (United States)

    Kuribara, Keita; Matsumiya, Masahiko; Tsunashima, Katsuhiko

    2016-12-01

    The coordination states of trivalent praseodymium, neodymium, and dysprosium complexes in the ionic liquid, triethyl-n-pentylphosphonium bis(trifluoromethyl-sulfonyl) amide ([P2225][TFSA]) were investigated by Raman spectroscopy. The effect of the concentration of rare earth ions on the Raman spectra was investigated, ranging from 0.23 to 0.45 mol kg-1 of Pr(III), Nd(III), and Dy(III) in [P2225][TFSA]. Based on a conventional analysis, the solvation numbers, n, of Pr(III), Nd(III), and Dy(III) in [P2225][TFSA] were determined to be 4.99, 5.01, and 5.00 at 298 K and 5.04, 5.06, and 5.07 at 373 K, respectively. Thermodynamic properties such as ΔisoG, ΔisoH, and ΔisoS for the isomerism of [TFSA]- from trans- to cis-coordinated isomer in the bulk and the first solvation sphere of the central RE3+ (RE = Pr, Nd, and Dy) cation in [P2225][TFSA] were evaluated from the temperature dependence of the Raman bands, measured at temperatures ranging from 298 to 398 K. Regarding the bulk properties, ΔisoG(bulk), ΔisoH(bulk), and TΔisoS(bulk) at 298 K were found to be -1.06, 6.86, and 7.92 kJ mol-1, respectively. The trans-[TFSA]- was a dominant contributor to the enthalpy, as shown by the positive value of ΔisoH(bulk). The value of TΔisoS(bulk) was slightly larger than that of ΔisoH(bulk), and cis-[TFSA]- was, therefore, entropy-controlled in [P2225][TFSA]. In contrast, in the first solvation sphere of the RE3+ cation, ΔisoH(RE) became remarkably negative, suggesting that cis-[TFSA]- isomers were stabilized by enthalpic contributions. Furthermore, ΔisoH(RE) contributed to the remarkable decrease in ΔisoG(RE), and this result clearly indicates that cis-[TFSA]- conformers bound to RE3+ cations are the preferred coordination state of [RE(III)(cis-TFSA)5]2- in [P2225][TFSA]. Moreover, optimized geometries and binding energies of [Pr(III)(cis-TFSA)5]2-, [Nd(III)(cis-TFSA)5]2-, and [Dy(III)(cis-TFSA)5]2- clusters were also investigated by DFT calculations using the ADF

  13. Lanthanide ion and tetrathiafulvalene-based ligand as a "magic" couple toward luminescence, single molecule magnets, and magnetostructural correlations.

    Science.gov (United States)

    Pointillart, Fabrice; le Guennic, Boris; Cador, Olivier; Maury, Olivier; Ouahab, Lahcène

    2015-11-17

    sensitization of visible and near-infrared (NIR) luminescence of lanthanides. The mechanism of sensitization involves either antenna effect (energy transfer from the excited state) or photoinduced electron transfer. TTF-based ligands act also as structural agents in the conception of SMM in crystals. Such objects are obtained with the highly anisotropic Dy(III) ion in crystalline phase as well as in frozen solution with magnetic memory at helium-4 temperature (4 K). We highlight the influence of the magnetic dilution (both in amorphous solution and in diamagnetic crystalline matrix) and, particular case of dysprosium based SMMs, the effect of metal-centered isotope enrichment on the SMM properties. Our aim is not only to realize functional molecules but to rationalize both luminescence and magnetic properties on the basis of the structure of the molecules. These two properties are intimately intricate and governed by the electronic structure, which can be calculated and interpreted using modern quantum chemistry tools.

  14. Anion and cation diffusion in barium titanate and strontium titanate; Anionen- und Kationendiffusion in Barium- und Strontiumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, Markus Franz

    2012-12-19

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO{sub 3} single crystals has been studied by means of {sup 18}O{sub 2}/{sup 16}O{sub 2} isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial

  15. Genotoxic and cytotoxic damage by the therapeutic radiopharmaceutical [{sup 166}Dy]Dy/{sup 166}Ho-EDTMP as in vivo generator system; Dano genotoxico y citotoxico por el radiofarmaco terpeutico [{sup 166}Dy]Dy/{sup 166}Ho-EDTMP como sistema de generador in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Pedraza L, M.; Piedras R, J. [Instituto Nacional de Ciencias Medicas y Nutricion, Salvador Zubiran. Vasco. de Quiroga 15, 14000 Mexico D.F. (Mexico); Ferro F, G.; Morales R, P. [ININ, Km. 36.5 Carretera Mexico-Toluca, Ocoyoacac, 52045 Estado de Mexico (Mexico); Murphy S, E. [Hospital Santaelena, Mexico D.F. (Mexico); Hernandez O, O. [Escuela Superior de Fisica y Matematicas, IPN, Mexico D.F. (Mexico)

    2005-07-01

    In patients with leukemias and multiple myeloma, the cure can be obtained to inclination of a bone marrow transplant (m.o.), for that which one is used a combination of external radiotherapy and chemotherapy with the consequent toxicity to healthy organs. The complex [{sup 166}Dy]Dy/{sup 166}Ho-ethylenediaminetetramethylenephosphonate ([{sup 166}Dy]Dy/{sup 166}Ho-EDTMP) it forms a generator system in vivo stable with bony selective likeness in mice therefore, this it could work as a therapeutic radiopharmaceutical for bone marrow ablation. The objective of this original work was to determine the genotoxic and cytotoxic damage produced by the [{sup 166}Dy]Dy/{sup 166}Ho-EDTMP like a generator system in vivo by means of the reticulocytes reduction (RET) and micronucleus elevation in reticulocytes (RET-MN) in peripheral blood and to evaluate its myeloablative potential for histopathologic studies. It was irradiated {sup 166}Dy{sub 2}O{sub 3} enriched and it was add in form {sup 166}DyCI{sub 3} to the EDTMP in a softening media of phosphates (pH 8), the optimal molar relationship {sup 166}Dy: EDTMP was 1.7:1 and the radiochemical purity was evaluated by ITLC. The Dy:EDTMP complexes, non radioactive, its were prepared in the same way with non irradiated dysprosium oxide. A group of BALB/c mice was injected intraperitoneally with the radiopharmaceutical and two groups of control mice were injected with the non radioactive complex and with sodium chloride 0.9% respectively. Before injecting each one of the solutions it was take a basal sample of peripheral blood of the mouse tail and each 48 h post-injection during 12 d. The animals were sacrificed to obtain the organs of interest and to determine the radioactivity in each one. The femur was used for the histopathologic studies. The quantification of the frequency of RET and RET-MN was carried out by flow cytometry of the sanguine samples and the Monte Carlo code MCNP4B for the dosimetry calculations was used. The

  16. 制备条件对稀土掺杂TiO2物理性质和光催化降解吡唑草胺性能的影响%Influence of synthesis conditions on physical properties of lanthanide-doped titania for photocatalytic decomposition of metazachlor

    Institute of Scientific and Technical Information of China (English)

    Marcela Kralova; Irina Levchuk; Vit Kasparek; Mika Sillanpaa; Jaroslav Cihlar

    2015-01-01

    Heterogeneous photocatalysis is a very effective method for the decomposition of a whole range of water pollutants. In this work, the influence of synthesis conditions on the physical properties and photocatalytic activity of lanthanide-doped titanium dioxide photocatalysts was evaluated. Titani-um dioxide was prepared via sol-gel synthesis followed by a solid state reaction under different conditions, including different temperatures (450, 550, and 650 °C) and reaction times (4, 8, and 12 h). The crystalline phase of the products was determined to be solely anatase using X-ray diffrac-tion, and this result was confirmed by Raman spectroscopy. The structure, as well as particle size, of the samples was examined using scanning electron microscopy, and their specific surface area was calculated using Brunauer-Emmett-Teller analysis. The band gap energy of the samples was exam-ined using ultraviolet-visible spectroscopy from diffuse reflectance measurements. Doping with lanthanide species, dysprosium and praseodymium, caused the absorption edge to shift towards higher wavelengths and enhanced photocatalytic activity in comparison with pure titania. The pho-tocatalytic activity of the samples was studied in terms of the degradation of the commonly used herbicide metazachlor. The decomposition was carried under UV light and the decrease in metaza-chlor concentration was measured using high performance liquid chromatography. The best per-formance was obtained for samples treated at 550 °C for 8 h during the solid state reaction step.%多相光催化是一种非常有效的降解各种水污染物的方法.本文以稀土(镝和镨)掺杂的TiO2为光催化剂,考察了制备条件对其物理性质和光催化性能的影响.采用溶胶-凝胶法和不同条件(反应温度450,550,650oC;反应时间4,8,12 h)的固态反应法制备了TiO2样品.运用X射线衍射分析了该样品的晶相,发现只存在锐钛矿相,并得到Raman光谱的证实.同时采用扫

  17. Production and characterization of thin film group IIIB, IVB and rare earth hydrides by reactive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Provo, James L., E-mail: jlprovo@verizon.net [Consultant, J.L. Provo Consulting, Trinity, Florida 34655-7179 (United States)

    2015-07-15

    A recent short history of reactive evaporation by D. M. Mattox [History Corner—A Short History of Reactive Evaporation, SVC Bulletin (Society of Vacuum Coaters, Spring 2014), p. 50–51] describes various methods for producing oxides, nitrides, carbides, and some compounds, but hydrides were not mentioned. A study was performed in the mid-1970s at the General Electric Company Neutron Devices Department in Largo, FL, by the author to study preparation of thin film hydrides using reactive evaporation and to determine their unique characteristics and properties. Films were produced of scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr), and the rare earth praseodymium (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy), and erbium (Er) hydrides by hot crucible filament and electron beam evaporation in atmospheres of deuterium and tritium gases. All-metal vacuum systems were used and those used with tritium were dedicated for this processing. Thin film test samples 1000 nm thick were prepared on 1.27 cm diameter molybdenum disk substrates for each occluder (i.e., an element that can react with hydrogen to form a hydride) material. Loading characteristics as determined by gas-to-metal atomic ratios, oxidation characteristics as determined by argon–sputter Auger analysis, film structure as determined by scanning electron microscope analysis, and film stress properties as determined by a double resonator technique were used to define properties of interest. Results showed hydrogen-to-metal atomic ratios varied from 1.5 to 2.0 with near maximum loading for all but Pr and Nd occluders which correlated with the oxidation levels observed, with all occluder oxidation levels being variable due to vacuum system internal processing conditions and the materials used. Surface oxide levels varied from ∼80 Å to over 1000 Å. For most films studied, results showed that a maximum loading ratio of near 2.0 and a minimum surface oxide level of ∼80 Å could be

  18. Enhancement of anion binding in lanthanide optical sensors.

    Science.gov (United States)

    Cable, Morgan L; Kirby, James P; Gray, Harry B; Ponce, Adrian

    2013-11-19

    In the design of molecular sensors, researchers exploit binding interactions that are usually defined in terms of topology and charge complementarity. The formation of complementary arrays of highly cooperative, noncovalent bonding networks facilitates protein-ligand binding, leading to motifs such as the "lock-and-key". Synthetic molecular sensors often employ metal complexes as key design elements as a way to construct a binding site with the desired shape and charge to achieve target selectivity. In transition metal complexes, coordination number, structure and ligand dynamics are governed primarily by a combination of inner-sphere covalent and outer-sphere noncovalent interactions. These interactions provide a rich variable space that researchers can use to tune structure, stability, and dynamics. In contrast, lanthanide(III)-ligand complex formation and ligand-exchange dynamics are dominated by reversible electrostatic and steric interactions, because the unfilled f shell is shielded by the larger, filled d shell. Luminescent lanthanides such as terbium, europium, dysprosium, and samarium display many photophysical properties that make them excellent candidates for molecular sensor applications. Complexes of lanthanide ions act as receptors that exhibit a detectable change in metal-based luminescence upon binding of an anion. In our work on sensors for detection of dipicolinate, the unique biomarker of bacterial spores, we discovered that the incorporation of an ancillary ligand (AL) can enhance binding constants of target anions to lanthanide ions by as much as two orders of magnitude. In this Account, we show that selected ALs in lanthanide/anion systems greatly improve sensor performance for medical, planetary science, and biodefense applications. We suggest that the observed anion binding enhancement could result from an AL-induced increase in positive charge at the lanthanide ion binding site. This effect depends on lanthanide polarizability, which can be

  19. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Renier, J.A.

    2002-04-17

    water reactor fuel core was chosen for the study, and state-of-the-art neutronic reactor core computer codes were used for analysis. Power distribution, fuel burnup, reactivity due to burnable poisons and other fission products, spectrum shift, core reactivity, moderator void coefficients, as well as other parameters were calculated as a function of time and fuel burnup. The results not only showed advantages of separation of burnable poison isotopes but revealed benefits to be achieved by careful selection of the configuration of even naturally occurring elements used as burnable poisons. The savings in terms of additional days of operation is shown in Figure 1, where the savings is plotted for each of six favorable isotopes in the four configurations. The benefit of isotope separation is most dramatic for dysprosium, but even the time savings in the case of gadolinium is several days. For a modern nuclear plant, one day's worth of electricity is worth about one million dollars, so the resulting savings of only a few days is considerable. It is also apparent that the amount of savings depends upon the configuration of the burnable poison.

  20. Investigation of complexes with bone affinity using the In vivo generator system {sup 166} Dy/{sup 166} Ho; Investigacion de complejos con afinidad osea utilizando el Sistema de Generador in vivo {sup 166} Dy/{sup 166} Ho

    Energy Technology Data Exchange (ETDEWEB)

    Pedraza L, M

    2006-07-01

    The importance of this original research lies in the fact that it has proven that the [{sup 166}Dy]Dy/{sup 166}Ho-EDTMP in vivo generator system is a stable complex that can be used as a therapeutic radiopharmaceutical. Multiple myeloma and other hematological malignancies have been treated by myeloablative radiotherapy/chemotherapy and subsequent stem cell transplantation. Bone-seeking radiopharmaceuticals such as {sup 166}Ho-DOTMP or {sup 153}Sm-DTMP, have been proposed for delivering ablative radiation doses to marrow in multiple myeloma and other hematological malignancies or have shown excellent results in palliative bone metastasis pain therapy, respectively. As lanthanides have similar chemical characteristics the phosphonate with bone affinity (EDTMP) labeled with Dy/Ho can be used for marrow ablation while causing minimal irradiation to normal organs. This in vivo generator system has not been previously reported. The aim of this research was to label EDTMP (ethylene diamine tetramethylene phosphonate) with {sup 166}Dy/{sup 166}Ho; to evaluate the in vitro and in vivo stability of both {sup 166}Dy-EDTMP and {sup 166}Ho-EDTMP complexes when the daughter {sup 166}Ho is formed as a dysprosium decay product; to determine the bone marrow cytotoxic and genotoxic effect in mice and to evaluate, by histopathology, the myeloablative potential of the [{sup 166}Dy]Dy/{sup 166}Ho-EDTMP in vivo generator system. {sup 166}Dy was obtained by neutron irradiation of enriched {sup 164}Dy{sub 2}O{sub 3} in a TRIGA Mark III reactor. Labeling was carried out in an aqueous phosphate medium at pH 8.0 by addition of {sup 166}DyCl{sub 3} to EDTMP at a molar ratio 1:1.75, with >99 % radiochemical purity, as determined by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). In vitro studies demonstrated that {sup 166}Dy/{sup 166}Ho-EDTMP is unstable after dilution in saline but stable in human serum with no translocation of the daughter nucleus

  1. Critical materials in the 21 century

    Directory of Open Access Journals (Sweden)

    Srećko Radenko Stopić

    2013-02-01

    uses for rare earth elements include applications in auto catalysts, petroleum refining, metal alloys, cell phones, portable DVDs, etc. Permanent magnets containing neodymium, gadolinium and dysprosium are used in numerous electrical components and generators for wind turbines. The primary defense application (underwater mine detection, satellite power and communication systems, radar systems,etc. use new materials: Neodymium Iron Boron, Samarium Cobalt. REEs extraction from monazite is performed by dissolution in a hot concentrated base or acid solutions. After cooling, the hydroxides of REEs and thorium are recovered by filtration, and thorium is separated by dissolution and selective precipitation. Metallurgy of indium Indium belongs to the group of rare earth elements with a low melting point. Some addition of indium increases the strength, hardness and corrosion resistance of alloys. The most known producers are situated in Belgium, Canada, Russia, France and Japan. Indium is used as coating on metals applied in difficult operation conditions, and in semiconductor techniques for the production of diodes.It is formed as a semi-product after pyrometallurgical and hydrometallurgical treatment of sulphidic raw materials. Indium can be used with other valuable metals such as vanadium, thallium, gallium, germanium, and cadmium. The coating process based on Indium is performed by an electrolytic treatment on the surface.  Metallurgy of yttrium Yttrium compounds found interesting application in many fields. In particular, yttrium is used in the manufacture of superconductors, in super alloys of nickel and cobalt, and solid oxide fuel cells. Yttrium oxide has a high melting point and is used in ceramics. The compounds of yttrium are also used as catalysts. The growing industrial application of the rare earth elements led to a growing interest in finding new technologies for their recoveries. The selective dissolution of yttrium from lanthanum is performed by ammonium

  2. Development and validation of burnup dependent computational schemes for the analysis of assemblies with advanced lattice codes

    Science.gov (United States)

    Ramamoorthy, Karthikeyan

    and predominantly scattering isotopes. When the concentration of resonant isotopes is small, its presence does not affect the flux shape which is smooth. But when the concentration becomes high, there will be dips in the flux where resonances of the isotopes occur. This will affect the reaction rate, which is a product of cross section and flux. The reaction rate will thus be lower than that when one does not consider the flux dip. This is the phenomenon of self shielding. Self shielding treatment is thus a very important aspect of reactor lattice analysis code. This needs to be correctly modelled to obtain a physically sound and acceptable solution. In this research we will be looking into behaviour of the advanced self shielding models that have been incorporated in the code DRAGON Version4. The self shielding models are primarily classified into two broad groups, which are based on "equivalence in dilution" and "subgroup approach". These self shielding models will be tested against a variety of lattices which include Canada Deuterium Uranium (CANDU-6), CANDU-New Generation (CANDU-NG), Light Water Reactor (LWR), and High Conversion Light Water Reactor (HCLWR). The fuel composition will vary from natural uranium oxide to enriched uranium oxide and plutonium-uranium mixed oxide (MOX). We will also consider the presence of strong neutron absorbers like gadolinium and dysprosium in the lattice. The coolant/moderator chosen for the analysis will be light water/heavy water or a combination. The lattice geometry will vary from square, hexagonal and annular. Thus a broad spectrum of lattices will be analysed to assess the behaviour of advanced self shielding models. The results obtained using DRAGON will be validated against that obtained using Monte Carlo code MCNP5. The reference solutions for all situations will be provided by MCNP5. The depletion behaviour of any lattice will depend on the power or flux normalization that is considered. In general the flux in various

  3. Investigation of complexes with bone affinity using the In vivo generator system {sup 166} Dy/{sup 166} Ho; Investigacion de complejos con afinidad osea utilizando el Sistema de Generador in vivo {sup 166} Dy/{sup 166} Ho

    Energy Technology Data Exchange (ETDEWEB)

    Pedraza L, M

    2006-07-01

    The importance of this original research lies in the fact that it has proven that the [{sup 166}Dy]Dy/{sup 166}Ho-EDTMP in vivo generator system is a stable complex that can be used as a therapeutic radiopharmaceutical. Multiple myeloma and other hematological malignancies have been treated by myeloablative radiotherapy/chemotherapy and subsequent stem cell transplantation. Bone-seeking radiopharmaceuticals such as {sup 166}Ho-DOTMP or {sup 153}Sm-DTMP, have been proposed for delivering ablative radiation doses to marrow in multiple myeloma and other hematological malignancies or have shown excellent results in palliative bone metastasis pain therapy, respectively. As lanthanides have similar chemical characteristics the phosphonate with bone affinity (EDTMP) labeled with Dy/Ho can be used for marrow ablation while causing minimal irradiation to normal organs. This in vivo generator system has not been previously reported. The aim of this research was to label EDTMP (ethylene diamine tetramethylene phosphonate) with {sup 166}Dy/{sup 166}Ho; to evaluate the in vitro and in vivo stability of both {sup 166}Dy-EDTMP and {sup 166}Ho-EDTMP complexes when the daughter {sup 166}Ho is formed as a dysprosium decay product; to determine the bone marrow cytotoxic and genotoxic effect in mice and to evaluate, by histopathology, the myeloablative potential of the [{sup 166}Dy]Dy/{sup 166}Ho-EDTMP in vivo generator system. {sup 166}Dy was obtained by neutron irradiation of enriched {sup 164}Dy{sub 2}O{sub 3} in a TRIGA Mark III reactor. Labeling was carried out in an aqueous phosphate medium at pH 8.0 by addition of {sup 166}DyCl{sub 3} to EDTMP at a molar ratio 1:1.75, with >99 % radiochemical purity, as determined by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). In vitro studies demonstrated that {sup 166}Dy/{sup 166}Ho-EDTMP is unstable after dilution in saline but stable in human serum with no translocation of the daughter nucleus

  4. Frequency Standards and Metrology

    Science.gov (United States)

    Maleki, Lute

    2009-04-01

    Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and

  5. EDITORIAL: Ultrafast magnetization processes

    Science.gov (United States)

    Hillebrands, Burkard

    2008-09-01

    anisotropic magnetoresistance and pulsed inductive microwave magnetometry to measure the time-resolved precessional magnetization dynamics. The intrinsic and non-local Gilbert damping in polycrystalline Ni films is also addressed by J Walowski et al [164016] using femtosecond laser pulses. Several spin-wave modes are observed and their dissipation is studied. Non-local damping by spin currents emitted into a non-magnetic metallic layer of either vanadium, palladium or dysprosium is studied. Dissipation in small magnetic Ni81Fe19 rings is studied using Brillouin light scattering microscopy by H Schultheiss et al [164017]. They investigate the spatial profiles and the decay constants of spin-wave quasi-eigenmodes. We hope that this cluster of papers will help to stimulate and advance a better understanding of this very interesting field of ultrafast magnetization processes.