WorldWideScience

Sample records for dysprosium silicides

  1. Rare earth silicide nanowires on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Martina

    2008-11-10

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti {gamma} point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi{sub 2}-monolayer and the Dy{sub 3}Si{sub 5}-multilayer on the Si(111) surface are investigated in comparison to the known ErSi{sub 2}/Si(111) and Er{sub 3}Si{sub 5}/Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the (vector)k {sub parallel} space is elliptical at the anti M points, while the hole pocket at the anti {gamma} point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas

  2. Dysprosium magneto-optical traps

    CERN Document Server

    Youn, Seo Ho; Ray, Ushnish; Lev, Benjamin L

    2010-01-01

    Magneto-optical traps (MOTs) of highly magnetic lanthanides open the door to explorations of novel phases of strongly correlated matter such as lattice supersolids and quantum liquid crystals. We recently reported the first MOTs of the five high abundance isotopes of the most magnetic atom, dysprosium. Described here are details of the experimental technique employed for repumper-free Dy MOTs containing up to half a billion atoms. Extensive characterization of the MOTs' properties---population, temperature, loading, metastable decay dynamics, trap dynamics---is provided.

  3. On polymorphism of dysprosium trichloride

    Energy Technology Data Exchange (ETDEWEB)

    Zakiryanova, Irina D.; Khokhlov, Vladimir A.; Salyulev, Alexander B.; Korzun, Iraida V. [RAS Ural Branch, Ekaterinburg (Russian Federation). Institute of High-Temperature Electrochemistry

    2015-07-01

    For the first time, the structure of crystalline DyCl{sub 3} over a wide temperature range from room temperature to melting point was studied by Raman spectroscopy. The phonon modes (cm{sup -1}) of dysprosium trichloride (monoclinic crystal lattice of AlCl{sub 3} type, Z = 4, CN = 6) at room temperature are 257 (A{sub 1g}), 201 (E{sub g}), 112 (E{sub g}), 88 (A{sub 1g}), and 63 (E{sub g}). The monoclinic structure of the crystalline DyCl{sub 3} C{sub 2h}{sup 3} symmetry was found to remain constant over the studied temperature range. No polymorphic transformation in the solid state was detected. Gravimetry, calorimetry, and mass spectrometry have been used in addition to support the conclusions made on the basis of Raman spectroscopic data.

  4. Resonance ionization spectroscopy in dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D., E-mail: dstuder@uni-mainz.de; Dyrauf, P.; Naubereit, P.; Heinke, R.; Wendt, K. [Johannes Gutenberg-Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    We report on resonance ionization spectroscopy (RIS) of high-lying energy levels in dysprosium. We developed efficient excitation schemes and re-determined the first ionization potential (IP) via analysis of Rydberg convergences. For this purpose both two- and three-step excitation ladders were investigated. An overall ionization efficiency of 25(4) % could be demonstrated in the RISIKO mass separator of Mainz University, using a three-step resonance ionization scheme. Moreover, an extensive analysis of the even-parity 6sns- and 6snd-Rydberg-series convergences, measured via two-step excitation was performed. To account for strong perturbations in the observed s-series, the approach of multichannel quantum defect theory (MQDT) was applied. Considering all individual series limits we extracted an IP-value of 47901.76(5) cm{sup −1}, which agrees with the current literature value of 47901.7(6) cm{sup −1}, but is one order of magnitude more precise.

  5. Optical properties of beta-iron silicide, ruthenium silicide and osmium silicide: Semiconducting transition metal silicides

    Science.gov (United States)

    Birdwell, Anthony Glen

    2001-09-01

    Various optical techniques were used to study the semiconducting transition metal silicides of β- FeSi2, Ru2Si3, and OsSi2. The Raman spectra of ion beam synthesized (IBS) β-FeSi 2 were shown to provide evidence of a net tensile stress in these IBS materials. Possible origins of the observed stress were suggested and a simple model was proposed in order to calculate a value of the observed stress. A correlation between the tensile stress, the nature of the band gap, and the resulting light emitting properties of IBS β-FeSi2 was suggested. The photoreflectance (PR) spectra of IBS β- FeSi2 reveals a direct gap at 0.815 eV and were shown to agree with the band gap value obtained by photoluminescence (PL) once the adjustments for the temperature difference and trap related recombination effects were made. This provides very convincing evidence for intrinsic light emission from IBS β- FeSi2. Furthermore, a model was developed that helps to clarify the variety of inconsistent results obtained by optical absorption measurements. When the results of PL and PR were inserted into this model, a good agreement was obtained with our measured optical absorption results. We also obtained PR spectra of β-FeSi 2 thin films grown by molecular beam epitaxy. These spectra reveal the multiple direct transitions near the fundamental absorption edge of β-FeSi 2 that were predicted by theory. We suggest an order of these critical point transitions following the trends reported in the theoretical investigations. Doping these β-FeSi2 thin films with small amounts of chromium was shown to have a measurable effect on the interband optical spectra. We also report on the effects of alloying β- FeSi2 with cobalt. A decrease in the critical point transitions nearest the fundamental absorption edge was observed as the cobalt concentration increased. Finally, Raman spectroscopy was used to study the vibrational properties of β-FeSi2. The measured Raman spectra agreed very well with the

  6. The dysprosium-tin phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Eremenko, V.N.; Bulanova, M.V.; Martsenjuk, P.S. (I.N. Frantsevich Inst. for Problems of Materials Science, Kiev (Ukraine))

    1992-12-07

    The dysprosium-tin phase diagram was established by means of differential thermal, X-ray and microscopic analyses of 22 alloys. Seven intermetallic compounds were found to exist in the system. Dy[sub 5]Sn[sub 3] melts congruently at 1870 degC, and undergoes a polymorphous transformation at 1823 [+-] 6 degC. The intermetallics Dy[sub 5]Sn[sub 4], Dy[sub 11]Sn[sub 10], DySn, Dy[sub 4]Sn[sub 5], DySn[sub 2], DySn[sub 3] are formed peritectically at 1712 [+-]11, 1605 [+-]12, 1208 [+-]3, 1166 [+-]7, 1138 [+-]3 and 747 [+-]6 degC respectively. DySn[sub 3] exists in a narrow temperature range, in two polymorphous modifications. The transformation [beta]-DySn[sub 3] [yields] [alpha]-DySn[sub 3] occurs at 608 [+-] 12 degC, and at 499 [+-]2 degC [alpha]-DySn[sub 3] decomposes to DySn[sub 2] and the tin-rich melt. The dysprosium-rich eutectic crystallizes at 1204 [+-]10 degC and contains 13 at.% tin. The solid-state solubility of tin in dysprosium is about 3 at.%, and that of dysprosium in tin is negligible.

  7. Towards a new measurement of parity violation in dysprosium

    CERN Document Server

    Leefer, N; Antypas, D; Budker, D

    2014-01-01

    The dysprosium parity violation experiment concluded nearly 17 years ago with an upper limit on weak interaction induced mixing of nearly degenerate, opposite parity states in atomic dysprosium. While that experiment was limited in sensitivity by statistics, a new apparatus constructed in the interim for radio-frequency spectroscopy is expected to provide significant improvements to the statistical sensitivity. Preliminary work from the new PV experiment in dysprosium is presented with a discussion of the current statistical sensitivity and outlook.

  8. Dysprosium Modification of Cobalt Ferrite Ionic Magnetic Fluids

    Institute of Scientific and Technical Information of China (English)

    JIANG Rong-li; LIU Yong-chao; GENG Quan-rong; ZHAO Wen-tao

    2005-01-01

    Dysprosium composite cobalt ferrite ionic magnetic fluids were prepared by precipitation in the presence of Tri-sodium citrate. Influence of dysprosium modification on magnetic property is studied. The result shows that magnetic response toward exterior magnetic field can be improved by adding Dy3+. Studies also show that the increase of reaction temperature may improve the modification effect of dysprosium. By adding dysprosium ions, the average diameter of the magnetic nanoparticles will be decreased evidently. It is clear that the particles appear as balls, Cobalt ferrite with sizes of 12-15 nm, rare earth composite cobalt ferrite with sizes of 6-8 nm.

  9. Synthesis and design of silicide intermetallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Hollis, K.J.; Kung, H.H.

    1998-11-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries.

  10. Can a dysprosium shortage threaten green energy technologies?

    NARCIS (Netherlands)

    Hoenderdaal, S.; Tercero Espinoza, L.; Marschneider-Weidemann, F.; Crijns - Graus, Wina

    2013-01-01

    Dysprosium, one of the various rare earth elements, is currently for more than 99% mined in China. As China is reducing its exports, new mining projects outside of China are needed to sustain supply and meet future demands. Dysprosium is mainly used in permanent magnets to retain the magnet's streng

  11. On Silicides in High Temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    C. Ramachandra

    1986-04-01

    Full Text Available High temperature titanium alloys like IMI 685 contain small amounts of silicon (~ 0.25 wt. per cent to improve creep resistance. Different types of silicides, namely Ti5Si3 (TiZr5Si3(S1 and (TiZr6 Si3 (S2, have been observed to precipitate in various silicon-bearing titanium alloys depending upon their composition and heat treatment. The precipitation of silicides, their orientation relationship with the matrix in different alloys, and the beneficial influence of thermo-mechanical treatment on the distribution of silicides have been pointed out. The effect of silicides on mechanical properties and fracture of the commercial alloy IMI 685 is also indicated.

  12. Metrology Of Silicide Contacts For Future CMOS

    Science.gov (United States)

    Zollner, Stefan; Gregory, Richard B.; Kottke, M. L.; Vartanian, Victor; Wang, Xiang-Dong; Theodore, David; Fejes, P. L.; Conner, J. R.; Raymond, Mark; Zhu, Xiaoyan; Denning, Dean; Bolton, Scott; Chang, Kyuhwan; Noble, Ross; Jahanbani, Mohamad; Rossow, Marc; Goedeke, Darren; Filipiak, Stan; Garcia, Ricardo; Jawarani, Dharmesh; Taylor, Bill; Nguyen, Bich-Yen; Crabtree, P. E.; Thean, Aaron

    2007-09-01

    Silicide materials (NiSi, CoSi2, TiSi2, etc) are used to form low-resistance contacts between the back-end (W plugs and Cu interconnects) and front-end portions (silicon source, drain, and gate regions) of integrated CMOS circuits. At the 65 nm node, a transition from CoSi2 to NiSi was necessary because of the unique capability of NiSi to form narrow silicide nanowires on active (monocrystalline) and gate (polycrystalline) lines. Like its predecessors TiSi2 and CoSi2, NiSi is a mid-gap silicide, i.e., the Fermi level of the NiSi metal is pinned half-way between the conduction and valence band edges in silicon. This leads to a Schottky barrier between the silicide and silicon source-drain regions, which creates undesirable parasitic resistances. For future CMOS generations, band-edge silicides, such as PtSi for contacts to p-type or rare earth silicides for contacts to n-type Si will be needed. This paper reviews metrology and characterization techniques for NiSi process control for development and manufacturing, with special emphasis on x-ray reflectance and x-ray fluorescence. We also report measurement methods useful for development of a PtSi PMOS module.

  13. Phenalenyl-based mononuclear dysprosium complexes

    Directory of Open Access Journals (Sweden)

    Yanhua Lan

    2016-07-01

    Full Text Available The phenalenyl-based dysprosium complexes [Dy(PLN2(HPLNCl(EtOH] (1, [Dy(PLN3(HPLN]·[Dy(PLN3(EtOH]·2EtOH (2 and [Dy(PLN3(H2O2]·H2O (3, HPLN being 9-hydroxy-1H-phenalen-1-one, have been synthesized. All compounds were fully characterized by means of single crystal X-ray analysis, paramagnetic 1H NMR, MALDI-TOF mass spectrometry, UV–vis spectrophotometry and magnetic measurements. Both static (dc and dynamic (ac magnetic properties of these complexes have been investigated, showing slow relaxation of magnetization, indicative of single molecule magnet (SMM behavior. Attempts to synthesize sublimable phenalenyl-based dysprosium complexes have been made by implementing a synthetic strategy under anhydrous conditions. The sublimed species were characterized and their thermal stability was confirmed. This opens up the possibility to deposit phenalenyl-based lanthanides complexes by sublimation onto surfaces, an important prerequisite for ongoing studies in molecular spintronics.

  14. Anisotropy in the Interaction of Ultracold Dysprosium

    CERN Document Server

    Kotochigova, Svetlana

    2011-01-01

    The nature of the interaction between ultracold atoms with a large orbital and spin angular momentum has attracted considerable attention. It was suggested that such interactions can lead to the realization of exotic states of highly correlated matter. Here, we report on a theoretical study of the competing anisotropic dispersion, magnetic dipole-dipole, and electric quadrupole-quadrupole forces between two dysprosium atoms. Each dysprosium atom has an orbital angular momentum L=6 and magnetic moment $\\mu=10\\mu_B$. We show that the dispersion coefficients of the ground state adiabatic potentials lie between 1865 a.u. and 1890 a.u., creating a non-negligible anisotropy with a spread of 25 a.u. and that the electric quadrupole-quadrupole interaction is weak compared to the other interactions. We also find that for interatomic separations $R< 50\\,a_0$ both the anisotropic dispersion and magnetic dipole-dipole potential are larger than the atomic Zeeman splittings for external magnetic fields of order 10 G to ...

  15. Monitoring silicide formation via in situ resistance measurements

    NARCIS (Netherlands)

    Faber, Erik J.; Wolters, Rob A.M.; Rajasekharan, Bijoy; Salm, Cora; Schmitz, Jurriaan

    2009-01-01

    Silicide formation as a result of the reaction of metals with silicon is a widely studied topic in semiconductor industry since silicides form an essential part of modern day Integrated Circuits (ICs). In most situations the fundamental kinetics of silicide formation are analyzed using elaborate tec

  16. Synthesis and design of silicide intermetallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.

  17. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    Science.gov (United States)

    Jiang, Jingjing; Wang, Han; Guo, Huaihong; Yang, Teng; Tang, Wen-Shu; Li, Da; Ma, Song; Geng, Dianyu; Liu, Wei; Zhang, Zhidong

    2012-05-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the `core/shell' interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon.

  18. First search for double $\\beta$ decay of dysprosium

    CERN Document Server

    Belli, P; Cappella, F; Cerulli, R; Danevich, F A; d'Angelo, S; Di Vacri, M L; Incicchitti, A; Laubenstein, M; Nagorny, S S; Nisi, S; Tolmachev, A V; Tretyak, V I; Yavetskiy, R P

    2011-01-01

    A search for double $\\beta$ decay of dysprosium was realized for the first time with the help of an ultra low-background HP Ge $\\gamma$ detector. After 2512 h of data taking with a 322 g sample of dysprosium oxide limits on double beta processes in $^{156}$Dy and $^{158}$Dy have been established on the level of $T_{1/2}\\geq 10^{14}-10^{16}$ yr. Possible resonant double electron captures in $^{156}$Dy and $^{158}$Dy were restricted on a similar level. As a by-product of the experiment we have measured the radioactive contamination of the Dy$_2$O$_3$ sample and set limits on the $\\alpha$ decay of dysprosium isotopes to the excited levels of daughter nuclei as $T_{1/2}\\geq 10^{15} - 10^{17}$ yr.

  19. Solution synthesis of metal silicide nanoparticles.

    Science.gov (United States)

    McEnaney, Joshua M; Schaak, Raymond E

    2015-02-01

    Transition-metal silicides are part of an important family of intermetallic compounds, but the high-temperature reactions that are generally required to synthesize them preclude the formation of colloidal nanoparticles. Here, we show that palladium, copper, and nickel nanoparticles react with monophenylsilane in trioctylamine and squalane at 375 °C to form colloidal Pd(2)Si, Cu(3)Si, and Ni(2)Si nanoparticles, respectively. These metal silicide nanoparticles were screened as electrocatalysts for the hydrogen evolution reaction, and Pd(2)Si and Ni(2)Si were identified as active catalysts that require overpotentials of -192 and -243 mV, respectively, to produce cathodic current densities of -10 mA cm(-2).

  20. Electronic properties of epitaxial erbium silicide

    Science.gov (United States)

    Veuillen, J. Y.; Tan, T. A. Nguyen; Lollman, D. B. B.; Guerfi, N.; Cinti, R.

    1991-07-01

    The electronic properties of erbium silicide thin films epitaxially grown on Si(111) have been investigated by X-ray and UV photoemission. The crystalline quality has been checked by low-energy electron diffraction. XPS indicates very weak charge transfer and metallic bonding in the silicide phase. The Si 2p core-level and the Auger transition Si KLL present double structures revealing two types of Si sites, the first one attributed to Si atoms in normal sites in the silicide and the second one to Si atoms in the vicinity of the vacancies and (or) the Si substrate portions seen through the holes of the film. The UPS valence band of about 4 eV width and formed of Er(6s5d)-Si(3s3p) hybridized states disperses weakly in the direction perpendicular to the surface and strongly in the surface plane. This valence band is compared to the ones already measured on YSi-1.7 and GdSi-1.7 and to the calculations made for YSi2

  1. Neutron resonance parameters of dysprosium isotopes using neutron capture yields

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kye, Y. U.; Cho, M. H. [POSTECH, Pohang (Korea, Republic of); Namkung, W. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Kim, G. N. [Kyungpook National University, Daegu (Korea, Republic of); Lee, M. W.; Kang, Y. R. [Dongnam Inst. Of Radiological and Medical Science, Busan (Korea, Republic of)

    2015-10-15

    Dysprosium is used in the field of nuclear reactor system because it has a very large thermal neutron absorption cross-section. The dysprosium alloyed with special stainless steels is attractive for control in nuclear reactor because of the ability to absorb neutrons readily without swelling or contracting over time and its high melting point. Dysprosium is also one of fission products from the thermal fission of {sup 234}U, {sup 233}U, and {sup 239}Pu. The fission products are accumulated in the reactor core by the burn-up of the nuclear fuel and the poison effect is increased. Therefore, it is required to understand how Dysprosium as both a poison and an absorbing material in the control rod has an effect on the neutron population in a nuclear reactor system over all energy regions. Neutron Capture experiments on Dy isotopes were performed at the electron linear accelerator (LINAC) facility of the Rensselear Polytechnic Institute (RPI) in the neutron energy region from 10 eV to 1 keV. Resonance parameters were extracted by fitting the neutron capture data using the SAMMY multilevel R-matrix Bayesian code.

  2. Raman scattering from rapid thermally annealed tungsten silicide

    Science.gov (United States)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  3. The growth and applications of silicides for nanoscale devices.

    Science.gov (United States)

    Lin, Yung-Chen; Chen, Yu; Huang, Yu

    2012-03-01

    Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide materials have recently attracted increasing interest for nanoscale device applications. Nanoscale silicide materials have been demonstrated with various synthetic approaches. Solid state reaction wherein high quality silicides form through diffusion of metal atoms into silicon nano-templates and the subsequent phase transformation caught significant attention for the fabrication of nanoscale Si devices. Very interestingly, studies on the diffusion and phase transformation processes at the nanoscale have indicated possible deviations from the bulk and the thin film system. Here we present a review of fabrication, growth kinetics, electronic properties and device applications of nanoscale silicides formed through solid state reaction.

  4. Thermal Stability of Magnesium Silicide/Nickel Contacts

    Science.gov (United States)

    de Boor, J.; Droste, D.; Schneider, C.; Janek, J.; Mueller, E.

    2016-10-01

    Magnesium silicide-based materials are a very promising class of thermoelectric materials with excellent potential for thermoelectric waste heat recovery. For the successful application of magnesium silicide-based thermoelectric generators, the development of long-term stable contacts with low contact resistance is as important as material optimization. We have therefore studied the suitability of Ni as a contact material for magnesium silicide. Co-sintering of magnesium silicide and Ni leads to the formation of a stable reaction layer with low electrical resistance. In this paper we show that the contacts retain their low electrical contact resistance after annealing at temperatures up to 823 K for up to 168 h. By employing scanning electron microscope analysis and time-of-flight (ToF)-secondary ion mass spectrometry, we can further show that elemental diffusion is occurring to a very limited extent. This indicates long-term stability under practical operation conditions for magnesium silicide/nickel contacts.

  5. Thermoelectric properties of higher manganese silicides

    Science.gov (United States)

    Tseng, Yu-Chih; Venkataraman, Vijay Shankar; Kee, Hae-Young

    2015-03-01

    Higher manganese silicides (HMS) are promising thermoelectric materials that may be broadly deployable because of the abundance of the constituent elements and their non-toxic nature. We study the thermoelectric properties of HMS using density functional theory calculations and tight-binding models to fit these calculations. We estimate charge carrier density and mobility, and compare with experimental data. Theoretically obtained thermal and electrical conductivities, and the Seebeck coefficients are presented. Possible scattering mechanisms and relations to figure of merit are also discussed. NSERC CREATE - HEATER Program.

  6. Joule-assisted silicidation for short-channel silicon nanowire devices.

    Science.gov (United States)

    Mongillo, Massimo; Spathis, Panayotis; Katsaros, Georgios; Gentile, Pascal; Sanquer, Marc; De Franceschi, Silvano

    2011-09-27

    We report on a technique enabling electrical control of the contact silicidation process in silicon nanowire devices. Undoped silicon nanowires were contacted by pairs of nickel electrodes, and each contact was selectively silicided by means of the Joule effect. By a real-time monitoring of the nanowire electrical resistance during the contact silicidation process we were able to fabricate nickel-silicide/silicon/nickel-silicide devices with controlled silicon channel length down to 8 nm.

  7. Properties of Polydisperse Tin-doped Dysprosium and Indium Oxides

    Directory of Open Access Journals (Sweden)

    Malinovskaya Tatyana

    2017-01-01

    Full Text Available The results of investigations of the complex permittivity, diffuse-reflectance, and characteristics of crystal lattices of tin-doped indium and dysprosium oxides are presented. Using the methods of spectroscopy and X-ray diffraction analysis, it is shown that doping of indium oxide with tin results in a significant increase of the components of the indium oxide complex permittivity and an appearance of the plasma resonance in its diffuse-reflectance spectra. This indicates the appearance of charge carriers with the concentration of more than 1021 cm−3 in the materials. On the other hand, doping of the dysprosium oxide with the same amount of tin has no effect on its optical and electromagnetic properties.

  8. Dysprosium titanate as an absorber material for control rods

    Science.gov (United States)

    Risovany, V. D.; Varlashova, E. E.; Suslov, D. N.

    2000-09-01

    Disprosium titanate is an attractive control rod material for the thermal neutron reactors. Its main advantages are: insignificant swelling, no out-gassing under neutron irradiation, rather high neutron efficiency, a high melting point (˜1870°C), non-interaction with the cladding at temperatures above 1000°C, simple fabrication and easily reprocessed non-radioactive waste. It can be used in control rods as pellets and powder. The disprosium titanate control rods have worked off in the MIR reactor for 17 years, in VVER-1000 - for 4 years without any operating problems. After post-irradiation examinations this type of control rod having high lifetime was recommended for the VVER and RBMK. The paper presents the examination results of absorber element dummies containing dysprosium titanate, irradiated in the SM reactor to the neutron fluence of 3.4×10 22 cm -2 ( E>0.1 MeV) and, also, the data on structure, thermal-physical properties of dysprosium titanate, efficiency of dysprosium titanate control rods.

  9. Silicide precipitation strengthened TiAl

    Energy Technology Data Exchange (ETDEWEB)

    Noda, T. [Special Steel Research Laboratory, Daido Steel Co. Ltd., 2-30 Daido-cho, Minami-ku, Nagoya 457 (Japan); Okabe, M. [Special Steel Research Laboratory, Daido Steel Co. Ltd., 2-30 Daido-cho, Minami-ku, Nagoya 457 (Japan); Isobe, S. [Special Steel Research Laboratory, Daido Steel Co. Ltd., 2-30 Daido-cho, Minami-ku, Nagoya 457 (Japan); Sayashi, M. [Materials Research Laboratory, Nissan Research Center, Nissan Motor Co. Ltd., 1 Natushima-cho, Yokosuka 237 (Japan)

    1995-02-28

    Precipitation of a titanium silicide Ti{sub 5}Si{sub 3} was found to be beneficial to improvement of the creep resistance of a fully lamellar Ti-48Al-1.5Cr cast alloy without the sacrifice of tensile properties. The addition of 0.26-0.65 mol% Si generates fine precipitates less than 200 nm in size during aging at 900 C for 5 h. The precipitates are effective obstacles to dislocation motion and raise the stress exponents of power law creep significantly. The specific creep strength of Si-containing alloys is better than that of a conventional Ni-base cast superalloy Inconel 713C at 800 C for 10000 h. ((orig.))

  10. Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid

    Science.gov (United States)

    Berger, Claudia A.; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo

    2016-07-01

    The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important

  11. Silicide Nanowires for Low-Resistance CMOS Transistor Contacts.

    Science.gov (United States)

    Zollner, Stefan

    2007-03-01

    Transition metal (TM) silicide nanowires are used as contacts for modern CMOS transistors. (Our smallest wires are ˜20 nm thick and ˜50 nm wide.) While much research on thick TM silicides was conducted long ago, materials perform differently at the nanoscale. For example, the usual phase transformation sequences (e.g., Ni, Ni2Si, NiSi, NiSi2) for the reaction of thick metal films on Si no longer apply to nanostructures, because the surface and interface energies compete with the bulk energy of a given crystal structure. Therefore, a NiSi film will agglomerate into hemispherical droplets of NiSi by annealing before it reaches the lowest-energy (NiSi2) crystalline structure. These dynamics can be tuned by addition of impurities (such as Pt in Ni). The Si surface preparation is also a more important factor for nanowires than for silicidation of thick TM films. Ni nanowires formed on Si surfaces that were cleaned and amorphized by sputtering with Ar ions have a tendency to form NiSi2 pyramids (``spikes'') even at moderate temperatures (˜400^oC), while similar Ni films formed on atomically clean or hydrogen-terminated Si form uniform NiSi nanowires. Another issue affecting TM silicides is the barrier height between the silicide contact and the silicon transistor. For most TM silicides, the Fermi level of the silicide is aligned with the center of the Si band gap. Therefore, silicide contacts experience Schottky barrier heights of around 0.5 eV for both n-type and p-type Si. The resulting contact resistance becomes a significant term for the overall resistance of modern CMOS transistors. Lowering this contact resistance is an important goal in CMOS research. New materials are under investigation (for example PtSi, which has a barrier height of only 0.3 eV to p-type Si). This talk will describe recent results, with special emphasis on characterization techniques and electrical testing useful for the development of silicide nanowires for CMOS contacts. In collaboration

  12. Evaluation of Transmission Line Model Structures for Silicide-to-Silicon Specific Contact Resistance Extraction

    NARCIS (Netherlands)

    Stavitski, Natalie; Dal, van Mark J.H.; Lauwers, Anne; Vrancken, Christa; Kovalgin, Alexey Y.; Wolters, Rob A.M.

    2008-01-01

    In order to measure silicide-to-silicon specific contact resistance ρc, transmission line model (TLM) structures were proposed as attractive candidates for embedding in CMOS processes. We optimized TLM structures for nickel silicide and platinum silicide and evaluated them for various doping levels

  13. Formation of Silicide Coating layer on U-Mo Powder

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Sunghwan; Lee, Kyu Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    High-density U-Mo alloys are regarded as promising candidates for advanced research reactor fuel as they have shown stable irradiation performance when compared to other uranium alloys and compounds. However, interaction layer formation between the U-Mo alloys and Al matrix degrades the irradiation performance of U-Mo Dispersion fuel. Therefore, the addition of Ti in U-Mo alloys, the addition of Si in a Al matrix, and silicide or nitride coating on the surface of U-Mo particles have been proposed to inhibit the interaction layer growth. In this study, U-Mo alloy powder was produced using a centrifugal atomization method. In addition, silicide coating layers were fabricated by several mixing process changes on the surface of the U-Mo particles. The coated powders were characterized by using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDAX). Decreased annealing duration did not affect the forming of silicide coating layers on the surface of U-7wt%Mo powders. The variation in the mixing ratio between U-7wt%Mo and Si powders had an effect on the quality of silicide coating on the U-7wt%Mo powders. The weight of Si powders should be smaller than that of U-7wt%Mo powders for better silicide coating when it comes to the mixing ratio.

  14. Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications.

    Science.gov (United States)

    Jun, Dongsuk; Kim, Soojung; Choi, Wonchul; Kim, Junsoo; Zyung, Taehyoung; Jang, Moongyu

    2015-10-01

    We fabricated silicide/silicon hetero-junction structured thermoelectric device by CMOS process for the reduction of thermal conductivity with the scatterings of phonons at silicide/silicon interfaces. Electrical conductivities, Seebeck coefficients, power factors, and temperature differences are evaluated using the steady state analysis method. Platinum silicide/silicon multilayered structure showed an enhanced Seebeck coefficient and power factor characteristics, which was considered for p-leg element. Also, erbium silicide/silicon structure showed an enhanced Seebeck coefficient, which was considered for an n-leg element. Silicide/silicon multilayered structure is promising for thermoelectric applications by reducing thermal conductivity with an enhanced Seebeck coefficient. However, because of the high thermal conductivity of the silicon packing during thermal gradient is not a problem any temperature difference. Therefore, requires more testing and analysis in order to overcome this problem. Thermoelectric generators are devices that based on the Seebeck effect, convert temperature differences into electrical energy. Although thermoelectric phenomena have been used for heating and cooling applications quite extensively, it is only in recent years that interest has increased in energy generation.

  15. Submicron Features in Higher Manganese Silicide

    Directory of Open Access Journals (Sweden)

    Yatir Sadia

    2013-01-01

    Full Text Available The world energy crisis had increased the demand for alternative energy sources and as such is one of the topics at the forefront of research. One way for reducing energy consumption is by thermoelectricity. Thermoelectric effects enable direct conversion of thermal into electrical energy. Higher manganese silicide (HMS, MnSi1.75 is one of the promising materials for applications in the field of thermoelectricity. The abundance and low cost of the elements, combined with good thermoelectric properties and high mechanical and chemical stability at high temperatures, make it very attractive for thermoelectric applications. Recent studies have shown that Si-rich HMS has improved thermoelectric properties. The most interesting of which is the unusual reduction in thermal conductivity. In the current research, transmission (TEM and scanning (SEM electron microscopy as well as X-ray diffraction methods were applied for investigation of the govern mechanisms resulting in very low thermal conductivity values of an Si-rich HMS composition, following arc melting and hot-pressing procedures. In this paper, it is shown that there is a presence of sub-micron dislocations walls, stacking faults, and silicon and HMS precipitates inside each other apparent in the matrix, following a high temperature (0.9 Tm hot pressing for an hour. These are not just responsible for the low thermal conductivity values observed but also indicate the ability to create complicate nano-structures that will last during the production process and possibly during the application.

  16. Formation of cobalt silicide by ion beam mixing

    Science.gov (United States)

    Min, Ye; Burte, Edmund P.; Ryssel, Heiner

    1991-07-01

    The formation of cobalt silicides by arsenic ion implantation through a cobalt film which causes a mixing of the metal with the silicon substrate was investigated. Furthermore, cobalt suicides were formed by rapid thermal annealing (RTA). Sheet resistance and silicide phases of implanted Co/Si samples depend on the As dose. Ion beam mixing at doses higher than 5 × 10 15 cm -2 and RTA at temperatures T ⩾ 900° C result in almost equal values of Rs. RBS and XRD spectra of these samples illustrate the formation of a homogeneous CoSi 2 layer. Significant lateral growth of cobalt silicide beyond the edge of patterned SiO 2 was observed in samples which were only subjected to an RTA process ( T ⩾ 900 ° C), while this lateral suicide growth could be reduced efficiently by As implantation prior to RTA.

  17. Si-Ge Nano-Structured with Tungsten Silicide Inclusions

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    Traditional silicon germanium high temperature thermoelectrics have potential for improvements in figure of merit via nano-structuring with a silicide phase. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples are prepared using powder metallurgy techniques; including mechanochemical alloying via ball milling and spark plasma sintering for densification. In addition to microstructural development, thermal stability of thermoelectric transport properties are reported, as well as couple and device level characterization.

  18. Mo SILICIDE SYNTHISIS BY DUAL ION BEAM DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    T.H. Zhang; Z.Z. Yi; X.Y. Wu; S.J. Zhang; Y.G. Wu; X. Zhang; H.X. Zhang; A.D. Liu; X.J. Zhang

    2002-01-01

    Mo silicides MosSi3 with high quality were prepared using ion beam deposition equip-ment with two Filter Metal Vacuum Arc Deposition (FMEVAD). When the numberof alternant deposition times was 198, total thickness of the coating is 40nm. Thecoatings with droplet free can be readily obtained, so the surface is smooth. TEMobservation shows that Mo and Si alternant deposition coating is conpact structure.The fine Mo silicide grains densely distributed in the coating. The coating adherenceon silicon is excellent.

  19. Spin, Charge, and Bonding in Transition Metal Mono Silicides

    NARCIS (Netherlands)

    Marel, D. van der; Damascelli, A.; Schulte, K.; Menovsky, A. A.

    1997-01-01

    Published in: Physica B 244 (1998) 138-147 citations recorded in [Science Citation Index] Abstract: We review some of the relevant physical properties of the transition metal mono-silicides with the FeSi structure (CrSi, MnSi, FeSi, CoSi, NiSi, etc) and explore the relation between their structural

  20. Neutronic design of the RSG-GAS silicide core

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Kuntoro, I.; Hastowo, H. [Center for Development of Research Reactor Technology National Nuclear Energy Agency BATAN, PUSPIPTEK Serpong Tangerang, 15310 (Indonesia)

    2002-07-01

    The objective of core conversion program of the RSG-GAS multipurpose reactor is to convert the fuel from oxide, U{sub 3}O{sub 8}-Al to silicide, U{sub 3}Si{sub 2}-Al. The aim of the program is to gain longer operation cycle by having, which is technically possible for silicide fuel, a higher density. Upon constraints of the existing reactor system and utilization, an optimal fuel density in amount of 3.55 g U/cc was found. This paper describes the neutronic parameter design of the silicide equilibrium core and the design of its transition cores as well. From reactivity control point of view, a modification of control rod system is also discussed. All calculations are carried out by means of diffusion codes, Batan-EQUIL-2D, Batan-2DIFF and -3DIFF. The silicide core shows that longer operation cycle of 32 full power days can be achieved without decreasing the safety criteria and utilization capabilities. (author)

  1. Silicide Schottky Contacts to Silicon: Screened Pinning at Defect Levels

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, T.J.

    1999-03-11

    Silicide Schottky contacts can be as large as 0.955 eV (E{sub v} + 0.165 eV) on n-type silicon and as large as 1.05 eV (E{sub c} {minus} 0.07 eV) on p-type silicon. Current models of Schottky barrier formation do not provide a satisfactory explanation of occurrence of this wide variation. A model for understanding Schottky contacts via screened pinning at defect levels is presented. In the present paper it is shown that most transition metal silicides are pinned approximately 0.48 eV above the valence band by interstitial Si clusters. Rare earth disilicides pin close to the divacancy acceptor level 0.41 eV below the conduction band edge while high work function silicides of Ir and Pt pin close to the divacancy donor level 0.21 eV above the valence band edge. Selection of a particular defect pinning level depends strongly on the relative positions of the silicide work function and the defect energy level on an absolute energy scale.

  2. Study of nickel silicide formation by physical vapor deposition techniques

    Science.gov (United States)

    Pancharatnam, Shanti

    Metal silicides are used as contacts to the highly n-doped emitter in photovoltaic devices. Thin films of nickel silicide (NiSi) are of particular interest for Si-based solar cells, as they form at lower temperature and consume less silicon. However, interfacial oxide limits the reduction in sheet resistance. Hence, different diffusion barriers were investigated with regard to optimizing the conductivity and thermal stability. The formation of NiSi, and if it can be doped to have good contact with the n-side of a p-n junction were studied. Reduction of the interfacial oxide by the interfacial Ti layer to allow the formation of NiSi was observed. Silicon was treated in dilute hydrofluoric acid for removing the surface oxide layer. Ni and a Ti diffusion barrier were deposited on Si by physical vapor deposition (PVD) methods - electron beam evaporation and sputtering. The annealing temperature and time were varied to observe the stability of the deposited film. The films were then etched to observe the retention of the silicide. Characterization was done using scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and Rutherford back scattering (RBS). Sheet resistance was measured using the four-point probe technique. Annealing temperatures from 300°C showed films began to agglomerate indicating some diffusion between Ni and Si in the Ti layer, also supported by the compositional analysis in the Auger spectra. Films obtained by evaporation and sputtering were of high quality in terms of coverage over substrate area and uniformity. Thicknesses of Ni and Ti were optimized to 20 nm and 10 nm respectively. Resistivity was low at these thicknesses, and reduced by about half post annealing at 300°C for 8 hours. Thus a low resistivity contact was obtained at optimized thicknesses of the metal layers. It was also shown that some silicide formation occurs at temperatures starting from 300°C and can thus be used to make good silicide contacts.

  3. Texture in thin film silicides and germanides: A review

    Science.gov (United States)

    De Schutter, B.; De Keyser, K.; Lavoie, C.; Detavernier, C.

    2016-09-01

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi2, C54-TiSi2, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si1-xGex in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  4. Infrared and Raman characterization of beta iron silicide

    Science.gov (United States)

    Lefki, K.; Muret, P.; Bustarret, E.; Boutarek, N.; Madar, R.; Chevrier, J.; Derrien, J.; Brunel, M.

    1991-12-01

    Samples of beta-iron silicide were prepared by three different methods : solid phase reaction on silicon (111), on a monocrystaline FeSi substrate, and from the melt. These samples have been characterized by x-ray diffraction and investigated by Infrared and Raman spectroscopies. The infrared and Raman lines are compared with theoretical predictions given by the factor group analysis of the silicide primitive cell, which yields the number and the symmetry of the different modes. We relate the red shift of the Infrared and Raman lines on samples with smaller lattice parameters to the presence of Iron vacancies in films deposited on silicon, in agreement with the sign of the thermoelectric power.

  5. Controlling nickel silicide phase formation by Si implantation damage

    Energy Technology Data Exchange (ETDEWEB)

    Guihard, M.; Turcotte-Tremblay, P. [Departement de Physique, Universite de Montreal, Montreal (Canada); Gaudet, S.; Coia, C. [Departement de Genie Physique, Ecole Polytechnique de Montreal, Montreal (Canada); Roorda, S. [Departement de Physique, Universite de Montreal, Montreal (Canada); Desjardins, P. [Departement de Genie Physique, Ecole Polytechnique de Montreal, Montreal (Canada); Lavoie, C. [IBM T.J. Watson Research Center, Yorktown Heights, New York (United States); Schiettekatte, F. [Departement de Physique, Universite de Montreal, Montreal (Canada)], E-mail: francois.schiettekatte@umontreal.ca

    2009-05-01

    In the context of fabrication process of contacts in CMOS integrated circuits, we studied the effect of implantation-induced damage on the Ni silicide phase formation sequence. The device layers of Silicon-on-insulator samples were implanted with 30 or 60 keV Si ions at several fluences up to amorphization. Next, 10 or 30 nm Ni layers were deposited. The monitoring of annealing treatments was achieved with time-resolved X-ray diffraction (XRD) technique. Rutherford Backscattering Spectrometry and pole figure XRD were also used to characterize some intermediate phase formations. We show the existence of an implantation threshold (1 ions/nm{sup 2}) from where the silicidation behaviour changes significantly, the formation temperature of the disilicide namely shifting abruptly from 800 to 450 deg. C. It is also found that the monosilicide formation onset temperature for the thinner Ni deposits increases linearly by about 30 deg. C with the amount of damage.

  6. Oxidation behavior of molybdenum silicides and their composites

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Deevi, S. C.

    2000-04-03

    A key materials issue associated with the future of high-temperature structural silicides is the resistance of these materials to oxidation at low temperatures. Oxidation tests were conducted on Mo-based silicides over a wide temperature range to evaluate the effects of alloy composition and temperature on the protective scaling characteristics and testing regime for the materials. The study included Mo{sub 5}Si{sub 3} alloys that contained several concentrations of B. In addition, oxidation characteristics of MoSi{sub 2}-Si{sub 3}N{sub 4} composites that contained 20--80 vol.% Si{sub 3}N{sub 4} were evaluated at 500--1,400 C.

  7. Titanium-based silicide quantum dot superlattices for thermoelectrics applications.

    Science.gov (United States)

    Savelli, Guillaume; Stein, Sergio Silveira; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent; Dilhaire, Stefan; Pernot, Gilles

    2015-07-10

    Ti-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as well as the size and the density of the quantum dots. The thermoelectric properties of the QDSLs are measured and compared to equivalent SiGe thin films to evaluate the influence of the nanodots. Our studies revealed an increase in their thermoelectric properties-specifically, up to a trifold increase in the power factor, with a decrease in the thermal conductivity-making them very good candidates for further thermoelectric applications in cooling or energy-harvesting fields.

  8. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    Science.gov (United States)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  9. Preparation of Magnesium Silicide from Recycled Materials for Energy Storage.

    OpenAIRE

    Bumba, Jakub

    2016-01-01

    Recycling technologies help to save energy, materials and environment. This is the main reason of their popularity. The recovery of semiconductors and metals depends on recycling treatment. A new multi-step technology, which enables to obtain pure silicon and hydrogen from waste materials,is reported in this study. The only by-product is magnesium phosphate, which is a desired fertilizer. Magnesium silicide was successfully prepared from milled silicon photovoltaic (PV) panels and mill...

  10. FORMATION OF MANGANESE SILICIDE THIN FILMS BY SOLID PHASE REACTION

    Institute of Scientific and Technical Information of China (English)

    E.Q. Xie; W.W. Wang; N. Jiang; D.Y. He

    2002-01-01

    Manganese silicide MnSi2-x thin films have been prepared on n-type silicon substratesthrough solid phase reaction. The heterostructures were analyzed by X-ray diffraction,Rutherford backscattering spectroscopy, Fourier transform infrared transmittance spec-troscopy and the four-point probe technique. The results show that two manganese sili-cides have been formed sequentially via the reaction of thin layer Mn with Si substrateat different irradiation annealing stages, i.e., MnSi at 450℃ and MnSi1.73 at 550℃.MnSi1.73 phase exhibits preferred growth after irradiation with infrared. In situ four-point probe measurements of sheet resistance during infrared irradiation annealingshow that nucleation of MnSi and phase transformation of MnSi to MnSi1. 73 occur at410℃ and 530℃, respectively; the MnSi phase shows metallic behavior, while MnSi1.73exhibits semiconducting behavior. Characteristic phonon bands of MnSi2-x silicides,which can be used for phase identification along with conventional XRD techniques,have been observed by FTIR spectroscopy.

  11. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    Science.gov (United States)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S.; Guallini, F.; Vallazza, E.; Prest, M.

    2014-09-01

    Radiotherapy treatments with high-energy (>8 MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the "in vivo" dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  12. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S. [Medical Physics - Sant' Anna Hospital, Como (Italy); Guallini, F. [EL.SE s.r.l. (Italy); Vallazza, E. [INFN, Trieste (Italy); Prest, M. [University of Insubria, Como (Italy)

    2014-09-21

    Radiotherapy treatments with high-energy (>8MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the “in vivo” dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  13. Low Field Magnetic and Thermal Hysteresis in Antiferromagnetic Dysprosium

    Directory of Open Access Journals (Sweden)

    Iuliia Liubimova

    2017-06-01

    Full Text Available Magnetic and thermal hysteresis (difference in magnetic properties on cooling and heating have been studied in polycrystalline Dy (dysprosium between 80 and 250 K using measurements of the reversible Villari effect and alternating current (AC susceptibility. We argue that measurement of the reversible Villari effect in the antiferromagnetic phase is a more sensitive method to detect magnetic hysteresis than the registration of conventional B(H loops. We found that the Villari point, recently reported in the antiferromagnetic phase of Dy at 166 K, controls the essential features of magnetic hysteresis and AC susceptibility on heating from the ferromagnetic state: (i thermal hysteresis in AC susceptibility and in the reversible Villari effect disappears abruptly at the temperature of the Villari point; (ii the imaginary part of AC susceptibility is strongly frequency dependent, but only up to the temperature of the Villari point; (iii the imaginary part of the susceptibility drops sharply also at the Villari point. We attribute these effects observed at the Villari point to the disappearance of the residual ferromagnetic phase. The strong influence of the Villari point on several magnetic properties allows this temperature to be ranked almost as important as the Curie and Néel temperatures in Dy and likely also for other rare earth elements and their alloys.

  14. A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier.

    Science.gov (United States)

    Pugh, Thomas; Chilton, Nicholas F; Layfield, Richard A

    2016-09-05

    The single-molecule magnet (SMM) properties of the isocarbonyl-ligated dysprosium metallocene [Cp*2 Dy{μ-(OC)2 FeCp}]2 (1Dy ), which contains a rhombus-shaped Dy2 Fe2 core, are described. Combining a strong axial [Cp*](-) ligand field with a weak equatorial field consisting of the isocarbonyl ligands leads to an anisotropy barrier of 662 cm(-1) in zero applied field. The dominant thermal relaxation pathways in 1Dy involves at least the fourth-excited Kramers doublet, thus demonstrating that prominent SMM behavior can be observed for dysprosium in low-symmetry environments.

  15. Malonate complexes of dysprosium: synthesis, characterization and application for LI-MOCVD of dysprosium containing thin films.

    Science.gov (United States)

    Milanov, Andrian P; Seidel, Rüdiger W; Barreca, Davide; Gasparotto, Alberto; Winter, Manuela; Feydt, Jürgen; Irsen, Stephan; Becker, Hans-Werner; Devi, Anjana

    2011-01-07

    A series of malonate complexes of dysprosium were synthesized as potential metalorganic precursors for Dy containing oxide thin films using chemical vapor deposition (CVD) related techniques. The steric bulkiness of the dialkylmalonato ligand employed was systematically varied and its influence on the resulting structural and physico-chemical properties that is relevant for MOCVD was studied. Single crystal X-ray diffraction analysis revealed that the five homoleptic tris-malonato Dy complexes (1-5) are dimers with distorted square-face bicapped trigonal-prismatic geometry and a coordination number of eight. In an attempt to decrease the nuclearity and increase the solubility of the complexes in various solvents, the focus was to react these dimeric complexes with Lewis bases such as 2,2'-biypridyl and pyridine (6-9). This resulted in monomeric tris-malonato mono Lewis base adduct complexes with improved thermal properties. Finally considering the ease of synthesis, the monomeric nature and promising thermal characteristics, the silymalonate adduct complex [Dy(dsml)(3)bipy] (8) was selected as single source precursor for growing DySi(x)O(y) thin films by liquid injection metalorganic chemical vapor deposition (LI-MOCVD) process. The as-deposited films were analyzed for their morphology and composition by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Rutherford backscattering (RBS) analysis and X-ray photoelectron spectroscopy.

  16. Fuel management strategy for the new equilibrium silicide core design of RSG GAS (MPR-30)

    Energy Technology Data Exchange (ETDEWEB)

    Hong Liem Peng; Arbie, Bakri; Sembiring, T.M. [National Atomic Energy Agency (Batan), Center for Multipurpose Reactor, Tangerang (Indonesia)

    1997-07-01

    The design procedure and fuel management strategy were proposed for converting the oxide core of RSG GAS (MPR-30) to the new equilibrium silicide core using higher uranium loading. The obtained silicide core gave significant extension of the core cycle length and thus increasing the reactor availability and utilisation. (author)

  17. Fuel management strategy for the new equilibrium silicide core design of RSG GAS (MPR-30)

    Energy Technology Data Exchange (ETDEWEB)

    Hong Liem Peng; Arbie, Bakri; Sembiring, T.M. [National Atomic Energy Agency (Batan), Center for Multipurpose Reactor, Tangerang (Indonesia)

    1997-07-01

    The design procedure and fuel management strategy were proposed for converting the oxide core of RSG GAS (MPR-30) to the new equilibrium silicide core using higher uranium loading. The obtained silicide core gave significant extension of the core cycle length and thus increasing the reactor availability and utilisation. (author) 4 figs., 1 tab., refs.

  18. Mechanoactivation of chromium silicide formation in the SiC-Cr-Si system

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2002-01-01

    Full Text Available The processes of simultaneous grinding of the components of a SiC-Cr-Si mixture and further temperature treatment in the temperature range 1073-1793 K were studied by X-ray phase analysis, IR spectroscopy, electron microscopy, and X-ray microanalysis. It was established that, during grinding of the mixture, chromium silicides form. A temperature treatment completes the process. Silicide formation proceeds within the framework of the diffusion of silicon into chromium. In the presence of SiO2 in the mixture, silicide formation occurs also as a result of the reduction of silica by silicon and silicon carbide. The sintering of synthesized composite SiC-chromium silicides powders at a high temperature under a high pressure (T = 2073 K, P = 5 GPa is accompanied by the destruction of cc-SiC particles, the cc/3 transition in silicon carbide and deformation distortions of the lattices of chromium silicides.

  19. Exploration of dysprosium: the most critical element for Japan

    Science.gov (United States)

    Watanabe, Y.

    2012-04-01

    Dysprosium (Dy), one of the heavy rare earth elements, is used mainly as an additive for NdFeB permanent magnets which are installed in various modern industrial products such as voice coil motors in computers, factory automation machinery, hybrid and electric vehicles, home electronics, and wind turbine, to improve heat resistance of the magnets. Dy has been produced about 2,000t per year from the ores from ion adsorption type deposits in southern China. However, the produced amount of Dy was significantly reduced in 2011 in China due to reservation of heavy rare earth resources and protection of natural environment, resulting in soaring of Dy price in the world. In order to respond the increasing demand of Dy, unconventional supply sources are inevitably developed, in addition to heavy rare earth enriched ion adsorption type deposits outside China. Heavy rare earth elements including Dy are dominantly hosted in xenotime, fergusonite, zircon, eudialyte, keiviite, kainosite, iimoriite, etc. Concentration of xenotime is found in placer deposits in Malaysia and India, hydrothermal deposits associated with unconformity-type uranium mineralization (Athabasca basin in Canada, Western Australia), iron-oxide fluorite mineralization (South Africa) and Sn-bearing alkaline granite (Brazil). Zircon and fergusontie concentration is found as igneous and hydrothermal products in peralkaline syenite, alkaline granite and pegmatite (e.g., Nechalacho in Canada). Eudialyte concentration is found in some peralkaline syenite bodies in Greenland, Canada, Sweden and Russia. Among these sources, large Dy resources are estimated in the deposits hosted in peralkaline rocks (Nechalacho: 79,000t, Kvanefjeld: 49,000t, Norra Karr: 15,700t, etc.) compared to the present demand of Dy. Thus, Dy will be supplied from the deposits associated with peralkaline and alkaline deposits in future instead of ion adsorption type deposits in southern China.

  20. Long afterglow of trivalent dysprosium doped strontium aluminate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuan Ming, E-mail: dongshanisland@126.com [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); Ma, Qing-lan [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); School of Electronics and Information, Nantong University, Jiangsu 226019 (China)

    2015-04-15

    Trivalent dysprosium doped strontium aluminate (SrA1{sub 2}O{sub 4}:Dy{sup 3+}) was synthesized via the sol–gel combustion method to realize green afterglow in the absence of Eu{sup 2+} luminescent centers. The morphology, crystal structure, photoluminescence and long afterglow of the SrAl{sub 2}O{sub 4}:Dy{sup 3+} were characterized with scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and photoluminescence spectroscopy, respectively. The bluish-green photoluminescence of SrAl{sub 2}O{sub 4}:Dy{sup 3+} consists of a broad emission band centered at about 520 nm and two characteristic emissions of Dy{sup 3+} ions centered at 480 and 575 nm, respectively. The green afterglow of SrAl{sub 2}O{sub 4}:Dy{sup 3+} is a broad emission band centered at around 520 nm, and the lifetime extracted from afterglow decay is found to be 53 s. The mechanism on the green afterglow from SrAl{sub 2}O{sub 4}:Dy{sup 3+} is discussed in terms of the possible defect levels in the host. - Highlights: • Broad band long-lasting afterglow is observed in SrAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. • Characteristic emissions of Dy{sup 3+} ions are superimposed on the broad PL of phosphors. • Dy{sup 3+} ions can also act as luminescent centers in addition to electron traps. • A mechanism on long afterglow of SrAl{sub 2}O{sub 4}:Dy{sup 3+} is proposed without Eu{sup 2+} activator.

  1. Low temperature spin reorientation in dysprosium iron garnet

    Energy Technology Data Exchange (ETDEWEB)

    Lahoubi, M; Younsi, W; Soltani, M L [Department of Physics, Badji-Mokhtar University, BP-12 Annaba, 23000 (Algeria); Voiron, J; Schmitt, D, E-mail: mlahoubi@gmail.co [Louis Neel Laboratory, CNRS-UJF, BP-166, 38042 Grenoble Cedex 9 (France)

    2009-03-01

    The spin reorientation (SR) phase transition in dysprosium iron garnet (Dy{sub 3}Fe{sub 5}O{sub 12} or DyIG) have been studied by specific heat C{sub p}(T) and high field magnetisation measurements M{sub T}(H) and M{sub H}(T) on single crystals at low temperature. A first order SR is observed with a sharp jump at T{sub SR} = 14.5+-0.5 K in the C{sub p}(T) curve which corresponds to a spontaneous change from the high temperature (HT) easy direction (111) to an (uuw) angular low temperature (LT) phases. Above T{sub SR}, the magnetic structure is described by the irreducible representation (IR) A{sub 2g} of the rhombohedral space group R 3 c. Below T{sub SR}, the magnetic structure changes in the monoclinic the space group C2/c with the IR A{sub g}. When the field H is kept aligned along the hard symmetry directions (100) and (110), we obtain respectively the variation of the angular positions theta(T) and theta'(T) from the total spontaneous magnetisation down to 1.5 K (theta = 39.23 deg. and theta' = 30.14 deg.) and the results are in good agreement with the previous observations in low fields. When the sample is allowed to rotate freely on itself, the critical field H{sub c}(T) between the HT(111) and the LT(uuw) angular phases permits us to precise the transition line up to 15 T and 40 K between the so called canted field induced (FI) and the associated collinear magnetic phases. The experimental magnetic phase diagram (MPD) is precisely determined in the (H{sub c}-T) plane and the domains of the existence and the stability of the two magnetic phases are specified.

  2. Anisotropic magnetic properties of dysprosium iron garnet (DyIG)

    Energy Technology Data Exchange (ETDEWEB)

    Lahoubi, M; Younsi, W; Soltani, M-L [Department of Physics, Badji-Mokhtar University, BP 12 - 23000 Annaba (Algeria); Ouladdiaf, B, E-mail: mlahoubi@gmail.co [Institut Laue Langevin, BP 156 - 38042 Grenoble Cedex 9 (France)

    2010-01-01

    The magnetic properties of dysprosium iron garnet (DyIG) have been studied by performing high resolution powder neutron diffraction experiments and high dc fields magnetizations on single crystals. Among all the reflections (hkl) indexed in the nuclear cubic space group (CSG) Ia 3-bar d with h+k+l=2n and k=[000], the superstructure lines (hkl)* forbidden by the symmetry (222)* and (622)* are not observed in the patterns at all temperatures. The pattern at 130 K is well interpreted within the magnetic modes F belonging to the irreducible representation (IR) T{sub 1g} of the CSG and identified to the room temperature ferrimagnetic Neel model. The high magnetic field behavior of the spontaneous collinear magnetic structure (MS) along the easy axis (EA) <111> is isotropic. Below 130 K, the patterns exhibit additional magnetic superstructure lines. They are associated to the appearance of the spontaneous non collinear MS which is described in the subgroup of the CSG, R 3-bar c within the IR A{sub 2g}. A strong magnetization anisotropy (MA) is observed at 1.5 K in the low symmetry phases were the spin reorientation transition (SR) occur at T{sub RS}=14.5 K. The onset of MA is detected below two characteristic temperatures, Ta{sub 1}=125 K and Ta{sub 2}=75 K respectively to the hard axis (HA) <100> and <110>. Symmetry arguments are used in the framework of the theory of representation analysis (RA) applied to the subgroup of R 3-bar c, C2/c within the IR A{sub g}. It seems that this MA results essentially from the difference between the spontaneous non collinear MS and the field induced (FI) configurations. All results are discussed with previous neutrons studies.

  3. Dysprosium-containing layered double hydroxides nanoparticles intercalated with biologically active species as an approach for theranostic systems

    KAUST Repository

    Arratia-Quijada, Jenny

    2015-10-23

    A layered double hydroxide structure including dysprosium cations was prepared by co-precipitation. The nanoparticles showed a linear relationship with the reciprocal relaxation spin-lattice (T1) time of water protons which is reflected as contrast in aqueous suspensions analyzed by magnetic resonance imaging. The interlayer space of dysprosium containing LDH was successfully intercalated with folate, ibuprofen and gallate ions, which are key molecules for recognition of some cancer cells and treatment of diseases. The paramagnetic property of the dysprosium-containing LDH detected in this work beside the ability to transport drugs open up the opportunity to design theranostic materials in a single crystal phase with nanometric dimensions.

  4. Effects of Dysprosium Oxide Doping on Microstructure and Properties of Barium Titanate Ceramic

    Institute of Scientific and Technical Information of China (English)

    Pu Yongping; Ren Huijun; Chen Wei; Chen Shoutian

    2005-01-01

    Different amounts of dysprosium oxide were incorporated into barium titanate powders synthesized by hydrothermal method. Relations of substitution behaviors and lattice parameters with solid-solubility were studied. Furthermore, the influences of dysprosium oxide doping fraction on grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength, were investigated via scanning electron microscope, X-ray diffraction and electric property tester. The results show that dysprosium oxide can restrain abnormal grain growth during sintering and that fine-grained and high density of barium titanate ceramic can result in excellent dielectric properties. As mass fraction of dysprosium oxide is 0.6%, the lattice parameters of grain increase to the maximum because of the lowest vacancy concentration. The electric property parameters are cited as following: dielectric constant (25 ℃) reaches 4100, the change in relative dielectric constant with temperature is -10% to 10% within the range of -15~100 ℃, breakdown electric field strength (alternating current) achieves 3.2 kV·mm-1, which can be used in manufacturing high voltage ceramic capacitors.

  5. Sandwich-type tetrakis(phthalocyaninato) dysprosium-cadmium quadruple-decker SMM.

    Science.gov (United States)

    Wang, Hailong; Qian, Kang; Wang, Kang; Bian, Yongzhong; Jiang, Jianzhuang; Gao, Song

    2011-09-14

    Homoleptic tetrakis[2,3,9,10,16,17,23,24-octa(butyloxy)phthalocyaninato] dysprosium-cadmium quadruple-decker complex 1 was isolated in relatively good yield of 43% from a simple one-pot reaction. This compound represents the first sandwich-type tetrakis(phthalocyaninato) rare earth-cadmium quadruple-decker SMM that has been structurally characterized.

  6. In situ characterization of the nitridation of dysprosium during mechanochemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J.; Osterberg, Daniel D.; Alanko, Gordon A.; Tamrakar, Sumit; Smith, Cole R.; Hurley, Michael F.; Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu

    2015-01-15

    Highlights: • A nitridation reaction in a high energy planetary ball mill was monitored in situ. • Dysprosium mononitride was synthesized from Dy at low temperatures in short times. • Ideal gas law and in situ temperature and pressure used to assess reaction extent. • It is proposed that reaction rate is proportional to the creation of new surface. - Abstract: Processing of advanced nitride ceramics traditionally requires long durations at high temperatures and, in some cases, in hazardous atmospheres. In this study, dysprosium mononitride (DyN) was rapidly formed from elemental dysprosium in a closed system at ambient temperatures. An experimental procedure was developed to quantify the progress of the nitridation reaction during mechanochemical processing in a high energy planetary ball mill (HEBM) as a function of milling time and intensity using in situ temperature and pressure measurements, SEM, XRD, and particle size analysis. No intermediate phases were formed. It was found that the creation of fresh dysprosium surfaces dictates the rate of the nitridation reaction, which is a function of milling intensity and the number of milling media. These results show clearly that high purity nitrides can be synthesized with short processing times at low temperatures in a closed system requiring a relatively small processing footprint.

  7. Mechanochemical synthesis and spark plasma sintering of the cerium silicides

    Energy Technology Data Exchange (ETDEWEB)

    Alanko, Gordon A.; Jaques, Brian; Bateman, Allyssa [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Butt, Darryl P., E-mail: darrylbutt@boisestate.edu [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Boulevard, Idaho Falls, ID 83401 (United States)

    2014-12-15

    Highlights: • Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−x} and CeSi{sub 2} were mechanochemically synthesized. • Temperature and pressure were monitored to investigate reaction progress. • All syntheses proceeded through a MSR event followed by rapid solid-state diffusion. • Milling time before MSR correlates well with effective heat of formation. • Some synthesized material was densified by spark plasma sintering. - Abstract: The cerium silicides, Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−y}, and CeSi{sub 2−x}, have been prepared from the elements by mechanochemical processing in a planetary ball mill. Preparation of the cerium silicide Ce{sub 5}Si{sub 4} was unsuccessfully attempted and potential reasons for this are discussed. Temperature and pressure of the milling vial were monitored in situ to gain insight into the mechanochemical reaction kinetics, which include a mechanically-induced self-propagating reaction (MSR). Some prepared powders were consolidated by spark plasma sintering to high density. Starting materials, as-milled powders, and consolidated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results obtained help elucidate key questions in mechanochemical processing of intermetallics, showing first phase formation similar to thin films, MSR ignition times that are composition- and milling speed-dependent, and sensitivity of stable compound formation on the impact pressure. The results demonstrate mechanochemical synthesis as a viable technique for rare earth silicides.

  8. Dysprosium complexes with the tetraphenylporphyrin macrocyclic ligand; Complejos de disprosio con el ligante macrociclico tetrafenilporfirina

    Energy Technology Data Exchange (ETDEWEB)

    Martinez M, V.; Padilla, J.; Ramirez, F.M

    1992-04-15

    In this report, the results obtained on the synthesis, characterization and study of the chemical behavior of dysprosium complex with the acetylacetone chelating agent (Hacac) and the tetraphenylporphyrin macrocyclic ligand (H{sub 2}TFP) are given. Based on the literature but according to our necessities and interest, the appropriate methodology settled down from the synthesis of prime matters until the obtaining and characterization of the products. The acetyl acetonate complex was obtained of mono hydrated dysprosium [Dy(acac){sub 3}. H{sub 2}0] and trihydrated [Dy(acac){sub 3} .3 H{sub 2}0], the mono tetra phenyl porphyrinate [Dy(TFP)(acac). 2 ac] the double sandwich of the dysprosium porphyrinate [Dy(TFP){sub 2}] and the triple sandwich of the dysprosium porphyrinate [Dy(TFP){sub 3}. 2 TCB] (TCB = trichlorobenzene). Its were characterized by their melting points, solubility, IR, UV, TGA and DTA both first and besides the techniques already mentioned for NMR'H, RPE and Magnetic susceptibility the three last complexes. From the spectroscopic point of view, IR and RPE its suggested the existence of a complex of inverse mixed valence [Dy(TFP){sup 2-} (TFP) {sup 1-}] for the Dy(TFP){sub 2} as a result of the existence of the free radical (TFP' {sup 1-} and that it was not in none of the other porphyrin compounds. In the NMR'H spectra of the compounds were not observed signals in the region from 0 to 10 ppm that which shows that the dysprosium complexes in special those of the porphyrin type are highly paramagnetic and its could be used as displacement reagents, creators of images and contrast agents of great utility in these days in studies of NMR, technique today by today used in medical diagnoses. (Author)

  9. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    Science.gov (United States)

    Chiriac, L. B.; Trandafir, D. L.; Turcu, R. V. F.; Todea, M.; Simon, S.

    2016-11-01

    The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, 29Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T1 and RARE-T2 protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T2-weighted MRI contrast properties.

  10. Dysprosium-containing layered double hydroxides nanoparticles intercalated with biologically active species as an approach for theranostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Arratia-Quijada, Jenny [Departamento de Ciencias de la Salud, Centro Universitario Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555, C.P. 48525, Tonalá, Jalisco (Mexico); Sánchez Jiménez, Cecilia [Departamento de Química, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Gurinov, Andrey [Research Resources Center for Magnetic Resonance, St. Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg (Russian Federation); NMR Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Pérez Centeno, Armando; Ceja Andrade, Israel [Departamento de Física, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Carbajal Arízaga, Gregorio Guadalupe, E-mail: gregoriocarbajal@yahoo.com.mx [Departamento de Química, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico)

    2016-01-15

    Graphical abstract: - Highlights: • LDH structure including dysprosium was prepared by co-precipitation. • LDH was capable to produce contrast in the T1 mode of MRI. • LDH were intercalated with folate, ibuprofen and gallate ions. - Abstract: A layered double hydroxide structure including dysprosium cations was prepared by co-precipitation. The nanoparticles showed a linear relationship with the reciprocal relaxation spin-lattice (T1) time of water protons which is reflected as contrast in aqueous suspensions analyzed by magnetic resonance imaging. The interlayer space of dysprosium containing LDH was successfully intercalated with folate, ibuprofen and gallate ions, which are key molecules for recognition of some cancer cells and treatment of diseases. The paramagnetic property of the dysprosium-containing LDH detected in this work beside the ability to transport drugs open up the opportunity to design theranostic materials in a single crystal phase with nanometric dimensions.

  11. Work function characterization of solution-processed cobalt silicide

    Science.gov (United States)

    Shihab Ullah, Syed; Robinson, Matt; Hoey, Justin; Sky Driver, M.; Caruso, A. N.; Schulz, Douglas L.

    2012-06-01

    Cobalt silicide thin films were prepared by spin-coating liquid cyclohexasilane-based inks onto silicon substrates followed by a thermal treatment. The work function of the solution-processed Co-Si was determined by both capacitance-voltage (C-V) measurements of metal-oxide-semiconductor (MOS) structures as well as by ultraviolet photoemission spectroscopy (UPS). Variable frequency C-V of MOS structures with silicon oxide layers of variable thickness showed that solution-processed metal silicide films exhibit a work function of 4.36 eV with one Co-Si film on Si giving a UPS-derived work function of 4.80 eV. Similar work function measurements were collected for vapor-deposited MOS capacitors where Al thin films were prepared according to standard class 100 cleanroom handling techniques. In both instances, the work function values established by the electrical measurements were lower than those measured by UPS and this difference appears to be a consequence of parasitic series resistance.

  12. Atomic size effects studied by transport in single silicide nanowires

    Science.gov (United States)

    Miccoli, I.; Edler, F.; Pfnür, H.; Appelfeller, S.; Dähne, M.; Holtgrewe, K.; Sanna, S.; Schmidt, W. G.; Tegenkamp, C.

    2016-03-01

    Ultrathin metallic silicide nanowires with extremely high aspect ratios can be easily grown, e.g., by deposition of rare earth elements on semiconducting surfaces. These wires play a pivotal role in fundamental research and open intriguing perspectives for CMOS applications. However, the electronic properties of these one-dimensional systems are extremely sensitive to atomic-sized defects, which easily alter the transport characteristics. In this study, we characterized comprehensively TbSi2 wires grown on Si(100) and correlated details of the atomic structure with their electrical resistivities. Scanning tunneling microscopy (STM) as well as all transport experiments were performed in situ using a four-tip STM system. The measurements are complemented by local spectroscopy and density functional theory revealing that the silicide wires are electronically decoupled from the Si template. On the basis of a quasiclassical transport model, the size effect found for the resistivity is quantitatively explained in terms of bulk and surface transport channels considering details of atomic-scale roughness. Regarding future applications the full wealth of these robust nanostructures will emerge only if wires with truly atomically sharp interfaces can be reliably grown.

  13. Slow magnetic relaxation in a hydrogen-bonded 2D array of mononuclear dysprosium(III) oxamates.

    Science.gov (United States)

    Fortea-Pérez, Francisco R; Vallejo, Julia; Julve, Miguel; Lloret, Francesc; De Munno, Giovanni; Armentano, Donatella; Pardo, Emilio

    2013-05-01

    The reaction of N-(2,6-dimethylphenyl)oxamic acid with dysprosium(III) ions in a controlled basic media afforded the first example of a mononuclear lanthanide oxamate complex exhibiting a field-induced slow magnetic relaxation behavior typical of single-ion magnets (SIMs). The hydrogen-bond-mediated self-assembly of this new bifunctional dysprosium(III) SIM in the solid state provides a unique example of 2D hydrogen-bonded polymer with a herringbone net topology.

  14. Silicidation in Pd/Si thin film junction-Defect evolution and silicon surface segregation

    Energy Technology Data Exchange (ETDEWEB)

    Abhaya, S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amarendra, G. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)], E-mail: amar@igcar.gov.in; Venugopal Rao, G.; Rajaraman, R.; Panigrahi, B.K.; Sastry, V.S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2007-09-25

    Depth resolved positron annihilation studies on Pd/Si thin film system have been carried out to investigate silicide phase formation and vacancy defect production induced by thermal annealing. The evolution of defect sensitive S-parameter clearly indicates the presence of divacancy defects across the interface, due to enhanced Si diffusion beyond 870 K consequent to silicide formation. Corroborative glancing incidence X-ray diffraction (GIXRD), Auger electron spectroscopy (AES) and Rutherford backscattering spectrometry (RBS) have elucidated the aspects related to silicide phase formation and Si surface segregation.

  15. Comparison of nickel silicide and aluminium ohmic contact metallizations for low-temperature quantum transport measurements

    Directory of Open Access Journals (Sweden)

    Polley Craig

    2011-01-01

    Full Text Available Abstract We examine nickel silicide as a viable ohmic contact metallization for low-temperature, low-magnetic-field transport measurements of atomic-scale devices in silicon. In particular, we compare a nickel silicide metallization with aluminium, a common ohmic contact for silicon devices. Nickel silicide can be formed at the low temperatures (<400°C required for maintaining atomic precision placement in donor-based devices, and it avoids the complications found with aluminium contacts which become superconducting at cryogenic measurement temperatures. Importantly, we show that the use of nickel silicide as an ohmic contact at low temperatures does not affect the thermal equilibration of carriers nor contribute to hysteresis in a magnetic field.

  16. Controlled assembly of graphene-capped nickel, cobalt and iron silicides

    Science.gov (United States)

    Vilkov, O.; Fedorov, A.; Usachov, D.; Yashina, L. V.; Generalov, A. V.; Borygina, K.; Verbitskiy, N. I.; Grüneis, A.; Vyalikh, D. V.

    2013-07-01

    The unique properties of graphene have raised high expectations regarding its application in carbon-based nanoscale devices that could complement or replace traditional silicon technology. This gave rise to the vast amount of researches on how to fabricate high-quality graphene and graphene nanocomposites that is currently going on. Here we show that graphene can be successfully integrated with the established metal-silicide technology. Starting from thin monocrystalline films of nickel, cobalt and iron, we were able to form metal silicides of high quality with a variety of stoichiometries under a Chemical Vapor Deposition grown graphene layer. These graphene-capped silicides are reliably protected against oxidation and can cover a wide range of electronic materials/device applications. Most importantly, the coupling between the graphene layer and the silicides is rather weak and the properties of quasi-freestanding graphene are widely preserved.

  17. Dysprosium-Catalyzed Growth of Single-Walled Carbon Nanotube Arrays on Substrates

    Directory of Open Access Journals (Sweden)

    Qian Yong

    2009-01-01

    Full Text Available Abstract In this letter, we report that dysprosium is an effective catalyst for single-walled carbon nanotubes (SWNTs growth via a chemical vapor deposition (CVD process for the first time. Horizontally superlong well-oriented SWNT arrays on SiO2/Si wafer can be fabricated by EtOH-CVD under suitable conditions. The structure and properties are characterized by scanning electron microscopy, transition electron microscopy, Raman spectroscopy and atomic force microscopy. The results show that the SWNTs from dysprosium have better structural uniformity and better conductivity with fewer defects. This rare earth metal provides not only an alternative catalyst for SWNTs growth, but also a possible method to generate high percentage of superlong semiconducting SWNT arrays for various applications of nanoelectronic device.

  18. Direct Search for keV Sterile Neutrino Dark Matter with a Stable Dysprosium Target

    CERN Document Server

    Lasserre, T; Cribier, M; Merle, A; Mertens, S; Vivier, M

    2016-01-01

    We investigate a new method to search for keV-scale sterile neutrinos that could account for Dark Matter. Neutrinos trapped in our galaxy could be captured on stable $^{163}$Dy if their mass is greater than 2.83~keV. Two experimental realizations are studied, an integral counting of $^{163}$Ho atoms in dysprosium-rich ores and a real-time measurement of the emerging electron spectrum in a dysprosium-based detector. The capture rates are compared to the solar neutrino and radioactive backgrounds. An integral counting experiment using several kilograms of $^{163}$Dy could reach a sensitivity for the sterile-to-active mixing angle $\\sin^2\\theta_{e4}$ of $10^{-5}$ significantly exceeding current laboratory limits. Mixing angles as low as $\\sin^2\\theta_{e4} \\sim 10^{-7}$ / $\\rm m_{^{163}\\rm Dy}\\rm{(ton)}$ could possibly be explored with a real-time experiment.

  19. Status of the atomized uranium silicide fuel development at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  20. Mechanical, elastic and thermodynamic properties of crystalline lithium silicides

    CERN Document Server

    Schwalbe, Sebastian; Trepte, Kai; Biedermann, Franziska; Mertens, Florian; Kortus, Jens

    2016-01-01

    We investigate crystalline thermodynamic stable lithium silicides phases (LixSiy) with density functional theory (DFT) and a force-field method based on modified embedded atoms (MEAM) and compare our results with experimental data. This work presents a fast and accurate framework to calculate thermodynamic properties of crystal structures with large unit cells with MEAM based on molecular dynamics (MD). Mechanical properties like the bulk modulus and the elastic constants are evaluated in addition to thermodynamic properties including the phonon density of states, the vibrational free energy and the isochoric/isobaric specific heat capacity for Li, Li12Si7, Li7Si3, Li13Si4, Li15Si4, Li21Si5, Li17Si4, Li22Si5 and Si. For a selected phase (Li13Si4) we study the effect of a temperature dependent phonon density of states and its effect on the isobaric heat capacity.

  1. Capping of rare earth silicide nanowires on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Appelfeller, Stephan; Franz, Martin; Kubicki, Milan; Dähne, Mario [Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin (Germany); Reiß, Paul; Niermann, Tore; Lehmann, Michael [Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin (Germany); Schubert, Markus Andreas [IHP–Leibniz-Institut für innovative Mikroelektronik, 15236 Frankfurt (Oder) (Germany)

    2016-01-04

    The capping of Tb and Dy silicide nanowires grown on Si(001) was studied using scanning tunneling microscopy and cross-sectional high-resolution transmission electron microscopy. Several nanometers thick amorphous Si films deposited at room temperature allow an even capping, while the nanowires maintain their original structural properties. Subsequent recrystallization by thermal annealing leads to more compact nanowire structures and to troughs in the Si layer above the nanowires, which may even reach down to the nanowires in the case of thin Si films, as well as to V-shaped stacking faults forming along (111) lattice planes. This behavior is related to strain due to the lattice mismatch between the Si overlayer and the nanowires.

  2. Preparation of Dysprosium Ferrite/Polyacrylamide Magnetic Composite Microsphere and Its Characterization

    Institute of Scientific and Technical Information of China (English)

    Hidehiro Kumazawa; Wang Zhifeng; Zhou Lanxiang; Zhang Hong; Li Yourong; Zhang Ming

    2005-01-01

    Using the technique of microemulsion polymerization with nano-reactor, dysprosium ferrite/polyacrylamide magnetic composite microsphere was prepared by one-step method in a single inverse microemulsion. The structure, average particle size, morphology of composite microsphere were characterized by FTIR, XRD, TEM and TGA. The magnetic responsibility of composite microsphere was also investigated. The results indicate that the magnetic composite microsphere possess high magnetic responsibility and suspension stability.

  3. {Delta}I = 2 energy staggering in normal deformed dysprosium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M.A.; Brown, T.B.; Archer, D.E. [Florida State Univ., Tallahassee, FL (United States)] [and others

    1996-12-31

    Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.

  4. Poly[[[μ3-N′-(carboxymethylethylenediamine-N,N,N′-triacetato]dysprosium(III] trihydrate

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhuang

    2010-11-01

    Full Text Available In the title coordination polymer, {[Dy(C10H13N2O8]·3H2O}n, the dysprosium(III ion is coordinated by two N atoms and six O atoms from three different (carboxymethylethylenediaminetriacetate ligands in a distorted square-antiprismatic geometry. The ligands connect the metal atoms, forming layers parallel to the ab plane. O—H...O hydrogen bonds further assemble adjacent layers into a three-dimensional supramolecular network.

  5. Making two dysprosium atoms rotate - Einstein-de Haas effect revisited

    OpenAIRE

    Górecki, Wojciech; Rzążewski, Kazimierz

    2016-01-01

    We present a numerical study of the behaviour of two magnetic dipolar atoms trapped in a harmonic potential and exhibiting the standard Einstein-de Haas effect while subject to a time dependent homogeneous magnetic field. Using a simplified description of the short range interaction and the full expression for the dipole-dipole forces we show, that under experimentally realisable conditions two dysprosium atoms may be pumped to a high ($l>20$) value of the relative orbital angular momentum.

  6. Synthesis and design of silicide intermetallic materials. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Vaidya, R.U.; Hollis, K.J.; Kung, H.H.

    1999-03-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the US processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive US processing industries. The program presently has a number of developing industrial connections, including a CRADA with Johns Manville Corporation targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. With Combustion Technology Inc., they are developing silicide-based periscope sight tubes for the direct observation of glass melts. With Accutru International Corporation, they are developing silicide-based protective sheaths for self-verifying temperature sensors which may be used in glass furnaces and other industrial applications. The progress made on the program in this period is summarized.

  7. Synthesis of Co-silicides and fabrication of microwavepower device using MEVVA source implantation

    Institute of Scientific and Technical Information of China (English)

    张通和; 吴瑜光; 钱卫东; 刘要东; 张旭

    2002-01-01

    Co synthesis silicides with good properties were prepared using MEVVA ion implantation with flux of 25-125 mA/cm2 to does of 5×1017/cm2. The structure of the silicides was investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM analysis shows that if the ion dose is greater than 2×1017/cm2, a continuous silicide layer will be formed. The sheet resistance of Co silicide decreases with an increase in ion flux and ion dose. The formation of silicides with CoSi and CoSi2 are identified by XRD analysis. After annealing, the sheet resistance decreases further. A continuous silicide layer with a width of 90-133 nm is formed. The optimal implantation condition is that the ion flux and dose are 50 mA/cm2 and 5×1017/cm2, respectively. The optimal annealing temperature and time are 900℃ and 10 s, respectively. The ohmic contact for power microwave transistors is fabricated using Co ion implantation technique for the first time. The emitter contact resistance and noise of the transistors decrease markedly; the microwave property has been improved obviously.

  8. Phosphor Dysprosium-Doped Layered Double Hydroxides Exchanged with Different Organic Functional Groups

    Directory of Open Access Journals (Sweden)

    David Ricardo Martínez Vargas

    2013-01-01

    Full Text Available The layers of a Zn/Al layered double hydroxide (LDH were doped with Dy3+ cations. Among some compositions, the Zn2+ : Al3+ : Dy3+ molar ratio equal to 30 : 9 : 1 presented a single crystalline phase. Organic anions with carboxylic, amino, sulfate, or phosphate functional groups were intercalated as single layers between LDH layers as confirmed by X-ray diffraction and infrared spectroscopy. Photoluminescence spectra of the nitrate intercalated LDH showed a wide emission band with strong intensity in the yellow region (around 574 nm, originated due to symmetry distortion of the octahedral coordination in dysprosium centers. Moreover, a broad red band emission was also detected apparently due to the presence of zinc oxide. The distorted symmetry of the dysprosium coordination environment, also confirmed by X-ray photoelectron spectroscopy analysis, was modified after the intercalation with phenyl phosphonate (PP, aspartate (Asp, adipate (Adip, and serinate (Ser anions; the emission as measured from PL spectra of these LDH was more intense in the blue region (ca. 486 nm, thus indicating an increase in symmetry of dysprosium octahedrons. The red emission band from zinc oxide kept the same intensity after intercalation of dodecyl sulfate (DDS. An additional emission of unknown origin at λ = 767 nm was present in all LDHs.

  9. On the size-dependent magnetism and all-optical magnetization switching of transition-metal silicide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Glushkov, G. I.; Tuchin, A. V.; Popov, S. V.; Bityutskaya, L. A., E-mail: me144@phys.vsu.ru [Voronezh State University (Russian Federation)

    2015-12-15

    Theoretical investigations of the electronic structure, synthesis, and all-optical magnetization switching of transition-metal silicide nanostructures are reported. The magnetic moment of the nanostructures is studied as a function of the silicide cluster size and configuration. The experimentally demonstrated magnetization switching of nanostructured nickel silicide by circularly polarized light makes it possible to create high-speed storage devices with high density data recording.

  10. Systematic study on surface and magnetostructural changes in Mn-substituted dysprosium ferrite by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Rekha, G. [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Tholkappiyan, R. [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Department of Physics, College of Science, UAE University, Al-Ain 15551 (United Arab Emirates); Vishista, K., E-mail: raovishista@gmail.com [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Hamed, Fathalla [Department of Physics, College of Science, UAE University, Al-Ain 15551 (United Arab Emirates)

    2016-11-01

    Highlights: • Garnet type Dy{sub 3}Fe{sub 5-x}Mn{sub x}O{sub 12} (x = 0–0.06) nanoparticles of 88.4–86.8 nm were synthesized by hydrothermal method. • The Dy, Mn, Fe and O elements in the ferrites were confirmed from XPS. • The multiple oxidation states of Fe and Mn ions, bonding energy and cationic distributions of the samples were examined by XPS. • The magnetic property shows ferromagnetic behavior from VSM technique. • The results from these studies are correlated with respect to Mn dopant. - Abstract: Dysprosium iron garnets are of scientific importance because of the wide range of magnetic properties that can be obtained in substituting dysprosium by a rare earth metal. In the present work, the effect of Mn substitution on magnetostructural changes in dysprosium ferrite nanoparticles is studied. Highly crystalline pure and Mn doped dysprosium ferrite nanoparticles were synthesized by hydrothermal method. The samples were calcined at 1100 °C for 2 h in air atmosphere which is followed by characterization using XRD, FT-IR analysis, SEM, XPS and VSM. The average crystallite size of synthesized samples were calculated by X-ray diffraction falls in the range of 88.4–86.8 nm and was found to be in cubic garnet structure. For further investigation of the structure and corresponding changes in the tetrahedral and octahedral stretching vibrational bonds, FT-IR was used. The synthesized samples consist of multiple oxidation (Fe{sup 3+} and Fe{sup 2+}) states for Fe ions and (Mn{sup 3+} and Mn{sup 2+}) Mn ions analyzed in three ways of Fe 2p and Mn 2p spectra from the XPS analysis. With respect to Mn dopant in Dy{sub 3}Fe{sub 5}O{sub 12}, the cationic distributions of elements were discussed from high resolution XPS spectra by peak position and shift, area, width. To find out the porous/void surface morphology of the sample, scanning electron microscopy was used. From XPS analysis, the presence of elements (Dy, Mn, Fe and O) and their composition in the

  11. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, L.B.; Trandafir, D.L. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Turcu, R.V.F. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Todea, M. [Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania)

    2016-11-01

    Highlights: • Dysprosium containing silica microparticles obtained by freeze and spray drying. • Higher structural units interconnection achieved in freeze vs. spray dried samples. • Dy occurance on the outermost layer of the microparticles evidenced by XPS. • Enhanced MRI contrast observed for freeze dried samples with 5% mol Dy{sub 2}O{sub 3}. - Abstract: The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, {sup 29}Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T{sub 1} and RARE-T{sub 2} protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T{sub 2}-weighted MRI contrast properties.

  12. Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States); Harp, Jason [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-15

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions, and therefore evaluate the qualification of U3Si2 as an AFT for LWRs. Considering the high cost, long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U3Si2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U3Si2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.

  13. Attempt to produce silicide fuel elements in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Soentono, S. (Nuclear Fuel Element Centre, BATAN Kawasan PUSPIPTEK, Serpong (Indonesia)); Suripto, A. (Nuclear Fuel Element Centre, BATAN Kawasan PUSPIPTEK, Serpong (Indonesia))

    1991-01-01

    After the successful experiment to produce U[sub 3]Si[sub 2] powder and U[sub 3]Si[sub 2]-Al fuel plates using depleted U and Si of semiconductor quality, silicide fuel was synthesized using <20% enriched U metal and silicon chips employing production train of UAl[sub x]-Al available at the Fuel Element Production Installation (FEPI) at Serpong, Indonesia. Two full-size U[sub 3]Si[sub 2]-Al fuel elements, having similar specifications to the ones of U[sub 3]O[sub 8]-Al for the RSG-GAS (formerly known as MPR-30), have been produced at the FEPI. All quality controls required have been imposed to the feeds, intermediate, as well as final products throughout the production processes of the two fuel elements. The current results show that these fuel elements are qualified from fabrication point of view, therefore it is expected that they will be permitted to be tested in the RSG-GAS, sometime by the end of 1989, for normal ([proportional to]50%) and above normal burn-up. (orig.)

  14. Oxidation/vaporization of silicide coated columbium base alloys

    Science.gov (United States)

    Kohl, F. J.; Stearns, C. A.

    1971-01-01

    Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.

  15. High Quality Factor Platinum Silicide Microwave Kinetic Inductance Detectors

    CERN Document Server

    Szypryt, P; Ulbricht, G; Bumble, B; Meeker, S R; Bockstiegel, C; Walter, A B

    2016-01-01

    We report on the development of Microwave Kinetic Inductance Detectors (MKIDs) using platinum silicide as the sensor material. MKIDs are an emerging superconducting detector technology, capable of measuring the arrival times of single photons to better than two microseconds and their energies to around ten percent. Previously, MKIDs have been fabricated using either sub-stoichiometric titanium nitride or aluminum, but TiN suffers from spatial inhomogeneities in the superconducting critical temperature and Al has a low kinetic inductance fraction, causing low detector sensitivity. To address these issues, we have instead fabricated PtSi microresonators with superconducting critical temperatures of 944$\\pm$12~mK and high internal quality factors ($Q_i \\gtrsim 10^6$). These devices show typical quasiparticle lifetimes of $\\tau_{qp} \\approx 30$--$40~\\mu$s and spectral resolution, $R = \\lambda / \\Delta \\lambda$, of 8 at 406.6~nm. We compare PtSi MKIDs to those fabricated with TiN and detail the substantial advanta...

  16. Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States); Harp, Jason [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-15

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions need to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions and therefore evaluate the qualification of U3Si2 as an AFT for LWRs. Considering the high cost, long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U3Si2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U3Si2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.

  17. New Manganese Silicide Mineral Phase in an Interplanetary Dust Particle

    Science.gov (United States)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Palma, R. L.; Pepin, R. O.; Kloeck, W.; Zolensky, M. E.; Messenger, S.

    2008-01-01

    Comet 26P/Grigg-Skjellerup was identified as a source of an Earth-crossing dust stream with low Earth-encounter velocities, with peak anticipated fluxes during April in 2003 and 2004 [1]. In response to this prediction, NASA performed dedicated stratospheric dust collections using high altitude aircraft to target potential interplanetary dust particles (IDPs) from this comet stream in April 2003. Several IDPs from this collection have shown unusually low noble gas abundances [2] consistent with the predicted short space exposure ages of Grigg-Skjellerup dust particles [1]. High abundances of large D enrichments [3] and presolar grains [4] in IDPs from this collection are also consistent with an origin from the comet Grigg-Skjellerup. Here we report a new mineral from one of the cluster IDPs of the "Grigg-Skjellerup" collection, L2055. Our report focuses on an unusual manganese-iron-chromium silicide phase that, to our knowledge, has not been observed previously in nature. This unique phase may also shed light on the genesis of the enigmatic low-Fe,Mn-enriched (LIME) olivine that has been previously reported in IDPs and meteorites [5].

  18. Silicidation in Ni/Si thin film system investigated by X-ray diffraction and Auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abhaya, S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Amarendra, G. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: amar@igcar.gov.in; Kalavathi, S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Gopalan, Padma [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kamruddin, M. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Tyagi, A.K. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sastry, V.S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sundar, C.S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2007-02-15

    Silicide formation induced by thermal annealing in Ni/Si thin film system has been investigated using glancing incidence X-ray diffraction (GIXRD) and Auger electron spectroscopy (AES). Silicide formation takes place at 870 K with Ni{sub 2}Si, NiSi and NiSi{sub 2} phases co-existing with Ni. Complete conversion of intermediate silicide phases to the final NiSi{sub 2} phase takes place at 1170 K. Atomic force microscopy measurements have revealed the coalescence of pillar-like structures to ridge-like structures upon silicidation. A comparison of the experimental results in terms of the evolution of various silicide phases is presented.

  19. Influence of exchange splitting on optical properties in gadolinium and dysprosium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, Yu.V.; Bolotin, G.A. (AN SSSR, Sverdlovsk. Inst. Fiziki Metallov)

    1984-12-01

    The temperature dependences of optical conductivity in gadolinium and dysprosium single crystals at the light wave vector polarization along a hexagonal axis and in the basis plane are considered. A substantial anisotropy of interzonal absorption has been found. The sample transition into magnetically ordered state is shown to be accompanied by the emergence of resonance absorption peaks in the near infrared spectral region. The manifestation of these peculiarities is associated with quantum electron transitions between the s-, d-f- interaction-split energy bands near the Fermi level. Main peculiarities of the experimental spectrum of gadolinium optical conductivity found their reflection in theoretically calculated dispersion dependence.

  20. Therapeutic application of dysprosium-165-FHMA in the treatment of rheumatoid knee effusions

    Energy Technology Data Exchange (ETDEWEB)

    English, R.J.; Zalutsky, M.; Venkatesan, P.; Sledge, C.B.

    1986-03-01

    Radiation synovectomy utilizing a variety of radionuclides has proven to be an effective technique in the treatment of rheumatoid arthritis. The recent introduction of the short-lived radionuclide, Dysprosium-165 (/sup 165/Dy), as a replacement for the longer-lived radiocolloids has reduced nontarget dosimetry caused by leakage of the agent from the articular cavity. A review of the methods and status of radiation synovectomy, and the application of /sup 165/Dy-ferric hydroxide macroaggregates (FHMA) as an alternative therapeutic agent is described.

  1. Properties of dysprosium-doped gallium lanthanum sulfide fiber amplifiers operating at 1.3 microm.

    Science.gov (United States)

    Samson, B N; Schweizer, T; Hewak, D W; Laming, R I

    1997-05-15

    In light of recent progress in the fabrication of gallium lanthanum sulfide (GaLaS) fibers, we have modeled the performance of dysprosium-doped GaLaS fiber amplifiers operating at 1.3 microm . Based on experimental data, we find that the incorporation of a codopant (terbium) in the fiber core significantly shortens the optimum amplifier length from >30 m to approximately 3 m . Such a device may be practical, given the fiber losses currently achieved in GaLaS fibers.

  2. Role of Ti3Al/silicides on tensile properties of Timetal 834 at various temperatures

    Indian Academy of Sciences (India)

    K V Sai Srinadh; Nidhi Singh; V Singh

    2007-12-01

    Extremely fine coherent precipitates of ordered Ti3Al and relatively coarse incoherent precipitates of 2 silicide exist together in the near -titanium alloy, Timetal 834, in the dual phase matrix of primary and transformed . In order to assess the role of these precipitates, three heat treatments viz. WQ, WQ–A and WQ–OA, were given to have no precipitates, Ti3Al and silicide and only silicide precipitates in the respective conditions. Tensile properties in the above three heat treated conditions were determined at room temperature, 673 K and 873 K. It was observed that largely Ti3Al precipitates were responsible for increase in the yield strength and decrease in ductility in this alloy.

  3. Anisotropic thermal expansion of Ni, Pd and Pt germanides and silicides

    Science.gov (United States)

    Geenen, F. A.; Knaepen, W.; Moens, F.; Brondeel, L.; Leenaers, A.; Van den Berghe, S.; Detavernier, C.

    2016-07-01

    Silicon or germanium-based transistors are nowadays used in direct contact with silicide or germanide crystalline alloys for semiconductor device applications. Since these compounds are formed at elevated temperatures, accurate knowledge of the thermal expansion of both substrate and the contact is important to address temperature depending effects such as thermal stress. Here we report the linear coefficients of thermal expansion of Ni-, Pd- and Pt-based mono-germanides, mono-silicides and di-metal-silicides as determined by powder-based x-ray diffraction between 300 and 1225 K. The investigated mono-metallic compounds, all sharing the MnP crystal structure, as well as Pd2Si and Pt2Si exhibit anisotropic expansion. By consequence, this anisotropic behaviour should be taken into account for evaluating the crystal unit’s cell at elevated temperatures.

  4. Use of silicide fuel in the Ford Nuclear Reactor - to lengthen fuel element lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M.M.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Burn, R.R.; Lee, J.C. [Univ. of Michigan, Ann Arbor, MI (United States). Phoenix Memorial Lab.

    1995-12-31

    Based on economic considerations, it has been proposed to increase the lifetime of LEU fuel elements in the Ford Nuclear Reactor by raising the {sup 235}U plate loading from 9.3 grams in aluminide (UAl{sub x}) fuel to 12.5 grams in silicide (U{sub 3}Si{sub 2}) fuel. For a representative core configuration, preliminary neutronic depletion and steady state thermal hydraulic calculations have been performed to investigate core characteristics during the transition from an all-aluminide to an all-silicide core. This paper discusses motivations for this fuel element upgrade, results from the calculations, and conclusions.

  5. Carbon mediated reduction of silicon dioxide and growth of copper silicide particles in uniform width channels

    DEFF Research Database (Denmark)

    Pizzocchero, Filippo; Bøggild, Peter; Booth, Tim

    2013-01-01

    channels, which are aligned with the intersections of the (100) surface of the wafer and the {110} planes on an oxidized silicon wafer, as well as endotaxial copper silicide nanoparticles within the wafer bulk. We apply energy dispersive x-ray spectroscopy, in combination with scanning and transmission......We show that surface arc-discharge deposited carbon plays a critical intermediary role in the breakdown of thermally grown oxide diffusion barriers of 90 nm on a silicon wafer at 1035°C in an Ar/H2 atmosphere, resulting in the formation of epitaxial copper silicide particles in ≈ 10 μm wide...

  6. Self-organized growth and magnetic properties of epitaxial silicide nanoislands

    Science.gov (United States)

    Tripathi, J. K.; Levy, R.; Camus, Y.; Dascalu, M.; Cesura, F.; Chalasani, R.; Kohn, A.; Markovich, G.; Goldfarb, I.

    2017-01-01

    Self-organized transition-metal (Ni and Fe) and rare-earth (Er) silicide nanostructures were grown on Si(1 1 1) and Si(0 0 1) surfaces under low coverage conditions, in a "solid phase" and "reactive deposition" epitaxial regimes. Island evolution was continuously monitored in-situ, using real-time scanning tunneling microscopy and surface electron diffraction. After anneal of a Ni/Si(1 1 1) surface at 700 °C, we observed small hemispherical Ni-silicide nanoislands ∼10 nm in diameter decorating surface steps in a self-ordered fashion and pinning them. Fe-silicide nanoislands formed after a 550 °C anneal of a Fe-covered surface, were also self-ordered along the surface step-bunches, however were significantly larger (∼70 × 10 nm) and exhibited well-developed three-dimensional polyhedral shapes. Ni-silicide islands were sparsely distributed, separated by about ∼100 nm from one another, on average, whereas Fe-silicide islands were more densely packed, with only ∼50 nm mean separation distance. In spite of the above differences between both types of island in size, shape, and number density, the self-ordering in both cases was close to ideal, with practically no islands nucleated on terraces. Superconducting quantum interference device magnetometry showed considerable superparamagnetism, in particular in Fe-silicide islands with ∼1.9 μB/Fe atom, indicating stronger ferromagnetic coupling of individual magnetic moments, contrary to Ni-silicide islands with the calculated moments of only ∼ 0.5μB /Ni atom. To elucidate the effects of the island size, shape, and lateral ordering on the measured magnetic response, we have controllably changed the island morphology by varying deposition methods and conditions and even using differently oriented Si substrates. We have also begun experimenting with rare-earth silicide islands. In the forthcoming experiments we intend to compare the magnetic response of these variously built and composed islands and correlate

  7. Optically probing the detection mechanism in a molybdenum silicide superconducting nanowire single-photon detector

    CERN Document Server

    Caloz, Misael; Timoney, Nuala; Weiss, Markus; Gariglio, Stefano; Warburton, Richard J; Schönenberger, Christian; Renema, Jelmer; Zbinden, Hugo; Bussieres, Felix

    2016-01-01

    We experimentally investigate the detection mechanism in a meandered molybdenum silicide (MoSi) superconducting nanowire single-photon detector by characterising the detection probability as a function of bias current in the wavelength range of 750 to 2050 nm. Contrary to some previous observations on niobium nitride (NbN) or tungsten silicide (WSi) detectors, we find that the energy-current relation is nonlinear in this range. Furthermore, thanks to the presence of a saturated detection efficiency over the whole range of wavelengths, we precisely quantify the shape of the curves. This allows a detailed study of their features, which are indicative of both Fano fluctuations and position-dependent effects.

  8. Effect of dysprosium on the kinetics and structural transformations during the decomposition of the supersaturated solid solution in magnesium-samarium alloys

    Science.gov (United States)

    Rokhlin, L. L.; Luk'yanova, E. A.; Tabachkova, N. Yu.; Dobatkina, T. V.; Tarytina, I. E.; Korol'kova, I. G.

    2017-03-01

    The effect of dysprosium added in the amounts such that it does not form an individual phase in equilibrium with solid magnesium on the decomposition of the supersaturated magnesium solid solution in Mg-Sm alloys is studied. The presence of dysprosium in Mg-Sm alloys is found to retard the decomposition of the supersaturated magnesium solid solution and to increase the hardening effect upon aging. When these alloys are aged, dysprosium is partly retained in the magnesium solid solution and partly enters into the compositions of the phases that form during the decomposition of the solid solution and are characteristic of Mg-Sm alloys.

  9. Radiation Re-solution Calculation in Uranium-Silicide Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-27

    The release of fission gas from nuclear fuels is of primary concern for safe operation of nuclear power plants. Although the production of fission gas atoms can be easily calculated from the fission rate in the fuel and the average yield of fission gas, the actual diffusion, behavior, and ultimate escape of fission gas from nuclear fuel depends on many other variables. As fission gas diffuses through the fuel grain, it tends to collect into intra-granular bubbles, as portrayed in Figure 1.1. These bubbles continue to grow due to absorption of single gas atoms. Simultaneously, passing fission fragments can cause collisions in the bubble that result in gas atoms being knocked back into the grain. This so called “re-solution” event results in a transient equilibrium of single gas atoms within the grain. As single gas atoms progress through the grain, they will eventually collect along grain boundaries, creating inter-granular bubbles. As the inter-granular bubbles grow over time, they will interconnect with other grain-face bubbles until a pathway is created to the outside of the fuel surface, at which point the highly pressurized inter-granular bubbles will expel their contents into the fuel plenum. This last process is the primary cause of fission gas release. From the simple description above, it is clear there are several parameters that ultimately affect fission gas release, including the diffusivity of single gas atoms, the absorption and knockout rate of single gas atoms in intra-granular bubbles, and the growth and interlinkage of intergranular bubbles. Of these, the knockout, or re-solution rate has an particularly important role in determining the transient concentration of single gas atoms in the grain. The re-solution rate will be explored in the following sections with regards to uranium-silicide fuels in order to support future models of fission gas bubble behavior.

  10. Water splitting and electricity with semiconducting silicides in sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Demuth, Martin [Max-Planck-Institut fuer Bioanorganische Chemie, Muelheim an der Ruhr (Germany); H2 Solar GmbH, Loerrach (Germany); Kerpen, Klaus; Kuklya, Andriy; Wuestkamp, Marc-Andre [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    2010-07-01

    Generation of hydrogen and oxygen from water is described using mainly the semiconductor titanium disilicide as catalyst and halogen light which closely mimics solar radiation. The reactions are carried out under non-aerobic conditions, i.e., under nitrogen. High efficiencies are reached at 1.1-1.2 bar pressure. In the first phase of these reactions the catalytically active centers are built up. During this phase of reaction the kinetics of the water splitting process is growing in and leads to a linear dependence in the further course of the reactions which consists of >96% water splitting to yield hydrogen and oxygen in a 2:1 ratio. Hydrogen is partially and reversibly stored physically, depending on temperature. Oxygen behaves differently since it is stored entirely under the applied reaction conditions (50-80 C and light) and can be liberated from storage upon heating the slurries in the dark. This allows convenient separation of hydrogen and oxygen. The stability of titanium disilicide has been positively tested over several months. This material is abundant and inexpensive besides that it absorbs most of the solar radiation. Further, XRD and XPS studies show that titanium disilicide is 80% crystalline and the oxide formation is limited to a few molecular layers in depth. By using labeled water it was shown that labeled dioxygen appears in the gas phase of such reactions, this showing definitively that hydrogen evolution occuring here stems from photochemical splitting of water. Further, water splitting is part of a project which involves photoelectrochemistry and in which the silicides are used as light-receiving electrode and transition metal-coated anodes serve to split water. (orig.)

  11. Cyclic single-molecule magnets: from the odd-numbered heptanuclear to a dimer of heptanuclear dysprosium clusters.

    Science.gov (United States)

    Tian, Haiquan; Bao, Song-Song; Zheng, Li-Min

    2016-02-01

    A heptanuclear and a dimer of heptanuclear dysprosium clusters (Dy7 and Dy14) have been successfully synthesized by ingenious coalescence of the single and double pyrazinyl hydrazone as well as phosphonate ligands. The complexes feature the largest odd-numbered cyclic lanthanide clusters reported thus far. Both exhibit single molecule magnet behaviors at low temperature.

  12. A comparison of the effects of symmetry and magnetoanisotropy on paramagnetic relaxation in related dysprosium single ion magnets.

    Science.gov (United States)

    Williams, Ursula J; Mahoney, Brian D; DeGregorio, Patrick T; Carroll, Patrick J; Nakamaru-Ogiso, Eiko; Kikkawa, James M; Schelter, Eric J

    2012-06-07

    Dysprosium complexes of the tmtaa(2-) ligand were synthesized and characterized by X-band EPR and magnetism studies. Both complexes demonstrate magnetoanisotropy and slow paramagnetic relaxation. Comparison of these compounds with the seminal phthalocyanine complex [Dy(Pc)(2)](-) shows the azaannulide complexes are more susceptible to relaxation through non-thermal pathways.

  13. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P. [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Gurinov, Andrey [Research Resources Center for Magnetic Resonance, Saint Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg (Russian Federation); Ortiz, Genaro Gabriel [Laboratorio Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano de Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Carbajal Arízaga, Gregorio Guadalupe, E-mail: gregoriocarbajal@yahoo.com.mx [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico)

    2015-03-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488 nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. - Highlights: • Hydroxyapatite functionalized with glucuronic acid reduced oxidative stress in rats. • Functionalization with folic acid reduced oxidative stress in rats. • Dysprosium doping does not affect the crystalline structure of hydroxyapatite. • Dysprosium doped particles are visible in fluorescent microscope. • Dysprosium doped particles act as MRI contrast agents.

  14. Tuning Slow Magnetic Relaxation in a Two-Dimensional Dysprosium Layer Compound through Guest Molecules.

    Science.gov (United States)

    Chen, Qi; Li, Jian; Meng, Yin-Shan; Sun, Hao-Ling; Zhang, Yi-Quan; Sun, Jun-Liang; Gao, Song

    2016-08-15

    A novel two-dimensional dysprosium(III) complex, [Dy(L)(CH3COO)]·0.5DMF·H2O·2CH3OH (1), has been successfully synthesized from a new pyridine-N-oxide (PNO)-containing ligand, namely, N'-(2-hydroxy-3-methoxybenzylidene)pyridine-N-oxidecarbohydrazide (H2L). Single-crystal X-ray diffraction studies reveal that complex 1 is composed of a dinuclear dysprosium subunit, which is further extended by the PNO part of the ligand to form a two-dimensional layer. Magnetic studies indicate that complex 1 shows well-defined temperature- and frequency-dependent signals under a zero direct-current (dc) field, typical of slow magnetic relaxation with an effective energy barrier Ueff of 33.6 K under a zero dc field. Interestingly, powder X-ray diffraction and thermogravimetric analysis reveal that compound 1 undergoes a reversible phase transition that is induced by the desorption and absorption of methanol and water molecules. Moreover, the desolvated sample [Dy(L)(CH3COO)]·0.5DMF (1a) also exhibits slow magnetic relaxation but with a higher anisotropic barrier of 42.0 K, indicating the tuning effect of solvent molecules on slow magnetic relaxation.

  15. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2016-01-22

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  16. Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide.

    Science.gov (United States)

    Zhu, Shiyang; Lo, G Q; Kwong, D L

    2011-08-15

    An ultracompact integrated silicide Schottky barrier detector (SBD) is designed and theoretically investigated to electrically detect the surface plasmon polariton (SPP) propagating along horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides at the telecommunication wavelength of 1550 nm. An ultrathin silicide layer inserted between the silicon core and the insulator, which can be fabricated precisely using the well-developed self-aligned silicide process, absorbs the SPP power effectively if a suitable silicide is chosen. Moreover, the Schottky barrier height in the silicide-silicon-silicide configuration can be tuned substantially by the external voltage through the Schottky effect owing to the very narrow silicon core. For a TaSi(2) detector with optimized dimensions, numerical simulation predicts responsivity of ~0.07 A/W, speed of ~60 GHz, dark current of ~66 nA at room temperature, and minimum detectable power of ~-29 dBm. The design also suggests that the device's size can be reduced and the overall performances will be further improved if a silicide with smaller permittivity is used.

  17. Real-time monitoring of the silicidation process of tungsten filaments at high temperature used as catalysers for silane decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Nos, O., E-mail: oriol.nos@gmail.com; Frigeri, P.A.; Bertomeu, J.

    2014-01-15

    The scope of this work is the systematic study of the silicidation process affecting tungsten filaments at high temperature (1900 °C) used for silane decomposition in the hot-wire chemical vapour deposition technique (HWCVD). The correlation between the electrical resistance evolution of the filaments, R{sub fil}(t), and the different stages of the their silicidation process is exposed. Said stages correspond to: the rapid formation of two WSi{sub 2} fronts at the cold ends of the filaments and their further propagation towards the middle of the filaments; and, regarding the hot central portion of the filaments: an initial stage of silicon dissolution into the tungsten bulk, with a random duration for as-manufactured filaments, followed by the inhomogeneous nucleation of W{sub 5}Si{sub 3} (which is later replaced by WSi{sub 2}) and its further growth towards the filaments core. An electrical model is used to obtain real-time information about the current status of the filaments silicidation process by simply monitoring their R{sub fil}(t) evolution during the HWCVD process. It is shown that implementing an annealing pre-treatment to the filaments leads to a clearly repetitive trend in the monitored R{sub fil}(t) signatures. The influence of hydrogen dilution of silane on the filaments silicidation process is also discussed. - Highlights: • The silicidation process of tungsten filaments at 1900 °C has been elucidated. • The silicidation process is correlated with the electrical resistance evolution. • Hydrogen dilution of silane delays the precipitation of silicides. • A thermal treatment of the filaments makes the silicidation process repeatable. • Raman spectroscopy and EDX analysis allow the tungsten silicides identification.

  18. High pressure studies on uranium and thorium silicide compounds: Experiment and theory

    DEFF Research Database (Denmark)

    Yagoubi, S.; Heathman, S.; Svane, A.

    2013-01-01

    The actinide silicides ThSi, USi and USi2 have been studied under high pressure using both theory and experiment. High pressure synchrotron X-ray diffraction experiments were performed on polycrystalline samples in diamond anvil cells at room temperature and for pressures up to 54, 52 and 26 GPa...

  19. Reversibility of silicidation of Ta filaments in HWCVD of thin film silicon

    NARCIS (Netherlands)

    van der Werf, C.H.M.; Li, H. B. T.; Verlaan, V.; Oliphant, C.J.; Bakker, R.; Houweling, Z.S.; Schropp, R.E.I.

    2009-01-01

    If tantalum filaments are used for the hot wire chemical vapour deposition (HWCVD) of thin film silicon, various types of tantalum silicides are formed, depending on the filament temperature. Under deposition conditions employed for device quality amorphous and microcrystalline silicon (Twire ≈ 1750

  20. Thermal Stability Study from Room Temperature to 1273 K (1000 °C) in Magnesium Silicide

    Science.gov (United States)

    Stefanaki, Eleni-Chrysanthi; Hatzikraniotis, Euripides; Vourlias, George; Chrissafis, Konstantinos; Kitis, George; Paraskevopoulos, Konstantinos M.; Polymeris, George S.

    2016-10-01

    Doped magnesium silicide has been identified as a promising and environmentally friendly advanced thermoelectric material in the temperature range between 500 K and 800 K (227 °C and 527 °C). Besides the plethora of magnesium silicide thermoelectric advantages, it is well known for its high sensitivity to oxidation. Oxidation is one of the primary instability mechanisms of degradation of high-temperature Mg2Si thermoelectric devices, as in the presence of O2, Mg2Si decomposes to form MgO and Si. In this work, commercial magnesium silicide in bulk form was used for thermal stability study from room temperature to 1273 K (1000 °C). Various techniques such as DTA-TG, PXRD, and FTIR have been applied. Moreover, the application of thermoluminescence (TL) as an effective and alternative probe for the study of oxidation and decomposition has been exploited. The latter provides qualitative but very helpful hints toward oxidation studies. The low-detection threshold of thermoluminescence, in conjunction with the chemical composition of the oxidation byproducts, consisting of MgO, Mg2SiO4, and SiO2, constitute two powerful motivations for further investigating its viable use as proxy for instability/decomposition studies of magnesium silicide. The partial oxidation reaction has been adopted due to the experimental fact that magnesium silicide is monitored throughout the heating temperature range of the present study. Finally, the role of silicon dioxide to the decomposition procedure, being in amorphous state and gradually crystallizing, has been highlighted for the first time in the literature. Mg2Si oxidation takes place in two steps, including a mild oxidation process with temperature threshold of 573 K (300 °C) and an abrupt one after 773 K (500 °C). Implications on the optimum operational temperature range for practical thermoelectric (TE) applications have also been briefly discussed.

  1. Impact of silicide layer on single photon avalanche diodes in a 130 nm CMOS process

    Science.gov (United States)

    Cheng, Zeng; Palubiak, Darek; Zheng, Xiaoqing; Deen, M. Jamal; Peng, Hao

    2016-09-01

    Single photon avalanche diode (SPAD) is an attractive solid-state optical detector that offers ultra-high photon sensitivity (down to the single photon level), high speed (sub-nanosecond dead time) and good timing performance (less than 100 ps). In this work, the impact of the silicide layer on SPAD’s characteristics, including the breakdown voltage, dark count rate (DCR), after-pulsing probability and photon detection efficiency (PDE) is investigated. For this purpose, two sets of SPAD structures in a standard 130 nm complementary metal oxide semiconductor (CMOS) process are designed, fabricated, measured and compared. A factor of 4.5 (minimum) in DCR reduction, and 5 in PDE improvements are observed when the silicide layer is removed from the SPAD structure. However, the after-pulsing probability of the SPAD without silicide layer is two times higher than its counterpart with silicide. The reasons for these changes will be discussed.

  2. Luminescent properties of dysprosium(Ⅲ) ions in LaAlO3 nanocrystallites

    Institute of Scientific and Technical Information of China (English)

    K. Lema(n)ski; P.J. Dere(n)

    2011-01-01

    The absorption and emission spectra as well as decay time profile of Dy3+ ions in LaAlO3 nanocrystals were analyzed.The crystal structure of LaAlO3 was confirmed from XRD measurement.The emission peaks from blue to red came from main emitting level of dysprosium 4F9/2 to the ground and other excited levels of Dy3+ ions.Cross relaxation process led to non-radiative quenching of luminescence,so that the lifetime of the 4F9/2 energy level ions decreased with increasing amount of doped Dy3+ ions.The cross relaxation transfer rates were experimentally determined as a function of Dy3+ concentration.

  3. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    Science.gov (United States)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-04-01

    Magnetic ordering temperatures in heavy rare earth metal dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to a pressure of 69 GPa and a temperature of 10 K. Previous studies using magnetic susceptibility measurements at high pressures were able to track magnetic ordering temperature only till 7 GPa in the hexagonal close packed (hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. This is followed by a rapid increase in the magnetic ordering temperatures in the double hcp phase and finally leveling off in the distorted face centered cubic phase of Dy. Our studies reaffirm that 4f-shell remains localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.

  4. Electrochemical behaviour of dysprosium in the eutectic LiCl-KCl at W and Al electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Castrillejo, Y. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain)]. E-mail: ycastril@qa.uva.es; Bermejo, M.R. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Barrado, A.I. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Pardo, R. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Barrado, E. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Martinez, A.M. [Department of Materials Technology, Sem Saelands vei 6, 7491 Trondheim (Norway)

    2005-03-15

    The electrochemical behaviour of DyCl{sub 3} was studied in the eutectic LiCl-KCl at different temperatures. The cathodic reaction can be written:Dy(III)+3e-bar Dy(0)which can be divided in two very close cathodic steps:Dy(III)+1e-bar Dy(II)andDy(II)+2e-bar Dy(0)Transient electrochemical techniques, such as cyclic voltammetry, chronopotentiometry, and chronoamperometry were used in order to study the reaction mechanism and the transport parameters of electroactive species at a tungsten electrode. The results showed that in the eutectic LiCl-KCl, electrocrystallization of dysprosium seems to be the controlling electrochemical step. Chronoamperometric studies indicated instantaneous nucleation of dysprosium with three dimensional growth of the nuclei whatever the applied overpotential.Mass transport towards the electrode is a simple diffusion process, and the diffusion coefficient of the electroactive species, i.e. Dy(III), has been calculated. The validity of the Arrhenius law was also verified by plotting the variation of the logarithm of the diffusion coefficient versus 1/T.In addition, the electrode reactions of the LiCl-KCl-DyCl{sub 3} solutions at an Al wire were also investigated by cyclic voltammetry and open circuit chronopotentiometry. The redox potential of the Dy(III)/Dy couple at the Al electrode was observed at more positive potentials values than those at the inert electrode. This potential shift was thermodynamically analyzed by a lowering of activity of Dy in the metal phase due to the formation of intermetallic compounds.

  5. Structural, optical, thermal, mechanical and dielectric studies of Sulfamic acid single crystals: An influence of dysprosium (Dy3+) doping

    Science.gov (United States)

    Singh, Budhendra; Shkir, Mohd.; AlFaify, S.; Kaushal, Ajay; Nasani, Narendar; Bdikin, Igor; Shoukry, H.; Yahia, I. S.; Algarni, H.

    2016-09-01

    Sulfamic acid is a potential material that exhibits excellent optical properties. A good quality, pure and dysprosium (Dy3+) doped (2.5 and 5 mol %) Sulfamic acid (SA) single crystals were grown successfully by slow cooling method. Structural study revealed a slight change in its lattice parameters and volume, suggesting the successful incorporation of Dy3+ in crystal system. The existence of dysprosium in the system was also confirmed. Presence of various vibrational modes was confirmed. Optical transparency was found to have a significant effect with variation in the doping concentration. Furthermore, a marked enhancement in its mechanical parameters with doping was also identified by nanoindentation technique. Etching study was also performed on the grown crystals to study the etch-pit formation and growth mechanism. Effect of doping on the thermal stability was analysed. All the results were compared and discussed in detail to get insight of the effect of doping concentration on Sulfamic acid crystal.

  6. Optical trapping of ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities and van der Waals $C_6$ coefficients

    CERN Document Server

    Li, Hui; Dulieu, Olivier; Nascimbene, Sylvain; Lepers, Maxence

    2016-01-01

    The efficiency of optical trapping of ultracold atoms depend on the atomic dynamic dipole polarizability governing the atom-field interaction. In this article, we have calculated the real and imaginary parts of the dynamic dipole polarizability of dysprosium in the ground and first excited level. Due to the high electronic angular momentum of those two states, the polarizabilities possess scalar, vector and tensor contributions that we have computed, on a wide range of trapping wavelengths, using the sum-over-state formula. Using the same formalism, we have also calculated the $C_6$ coefficients characterizing the van der Waals interaction between two dysprosium atoms in the two lowest levels. We have computed the energies of excited states and the transition probabilities appearing in the sums, using a combination of \\textit{ab initio} and least-square-fitting techniques provided by the Cowan codes and extended in our group. Regarding the real part of the polarizability, for field frequencies far from atomic...

  7. Mixed (phthalocyaninato)(Schiff-base) di-dysprosium sandwich complexes. Effect of magnetic coupling on the SMM behavior.

    Science.gov (United States)

    Wang, Hailong; Liu, Chenxi; Liu, Tao; Zeng, Suyuan; Cao, Wei; Ma, Qi; Duan, Chunying; Dou, Jianmin; Jiang, Jianzhuang

    2013-11-21

    Reaction between Schiff-base ligand and half-sandwich complex M(Pc)(acac) led to the isolation of new sandwich-type mixed (phthalocyaninato)(Schiff-base) di-lanthanide compounds M2(Pc)2(L)H2O (M = Dy, Gd) (1, 2) [H2Pc = metal free phthalocyanine, Hacac = acetylacetone, H2L = N,N'-bis(3-methyloxysalicylidene)benzene-1,2-diamine] with the triple-decker molecular structure clearly revealed by single crystal X-ray diffraction analysis. For the comparative studies, sandwich triple-decker analogues with pure Schiff-base ligand M2(L)3H2O (M = Dy, Gd) (3, 4) were also prepared. Dynamic magnetic measurement result reveals the single-molecule magnet (SMM) nature of the di-dysprosium derivative 1, while the static magnetic investigation over both pure and the diamagnetic diluted samples of this compound discloses the interionic ferromagnetic coupling between the two dysprosium ions, which in turn effectively suppresses the QTM and enhances the energy barrier of this SMM. Nevertheless, comparative studies over the static magnetic properties of the di-dysprosium triple-decker complexes 1 and 3 indicate the stronger magnetic coupling between the two lanthanide ions in mixed (phthalocyaninato)(Schiff-base) species than in the pure Schiff-base triple-decker analogue, suggesting the special coordination sphere around the dysprosium ions in the former compound over the latter one on the more intense inter-ionic ferromagnetic coupling. As a very small step towards understanding the structure-property relationship, the present result will be surely helpful for the design and synthesis of the multinuclear lanthanide-based SMMs with good properties.

  8. Optical characteristics of an epitaxial Fe3Si/Si(111) iron silicide film

    Science.gov (United States)

    Tarasov, I. A.; Popov, Z. I.; Varnakov, S. N.; Molokeev, M. S.; Fedorov, A. S.; Yakovlev, I. A.; Fedorov, D. A.; Ovchinnikov, S. G.

    2014-07-01

    The dispersion of the relative permittivity ɛ of a 27-nm-thick epitaxial Fe3Si iron silicide film has been measured within the E = 1.16-4.96 eV energy range using the spectroscopic ellipsometry technique. The experimental data are compared to the relative permittivity calculated in the framework of the density functional theory using the GGA-PBE approximation. For Fe3Si, the electronic structure and the electronic density of states (DOS) are calculated. The analysis of the frequencies corresponding to the transitions between the DOS peaks demonstrates qualitative agreement with the measured absorption peaks. The analysis of the single wavelength laser ellipsometry data obtained in the course of the film growth demonstrates that a continuous layer of Fe3Si iron silicide film is formed if the film thickness achieves 5 nm.

  9. Study of optical and luminescence properties of silicon — semiconducting silicide — silicon multilayer nanostructures

    Science.gov (United States)

    Galkin, N. G.; Galkin, K. N.; Dotsenko, , S. A.; Goroshko, D. L.; Shevlyagin, A. V.; Chusovitin, E. A.; Chernev, I. M.

    2016-12-01

    By method of in situ differential spectroscopy it was established that at the formation of monolayer Fe, Cr, Ca, Mg silicide and Mg stannide islands on the atomically clean silicon surface an appearance of loss peaks characteristic for these materials in the energy range of 1.1-2.6 eV is observed. An optimization of growth processes permit to grow monolithic double nanoheterostructures (DNHS) with embedded Fe, Cr and Ca nanocrystals, and also polycrystalline DNHS with NC of Mg silicide and Mg stannide and Ca disilicide. By methods of optical spectroscopy and Raman spectroscopy it was shown that embedded NC form intensive peaks in the reflectance spectra at energies up to 2.5 eV and Raman peaks. In DNS with β-FeSi2 NC a photoluminescence and electroluminescence at room temperature were firstly observed.

  10. Influence of the initial nitrogen content in titanium films on the nitridation and silicidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, C.; Perez-Casero, R.; Martinez-Duart, J.M. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Aplicada; Perez-Rigueiro, J. [Dpto. Ciencia de Materiales, ETSI Caminos, Universidad Politecnica de Madrid, E-28040, Madrid (Spain); Vazquez, L.; Fernandez, M. [Instituto Ciencia de Materiales, CSIC, E-28049, Madrid (Spain)

    1997-08-15

    The rapid thermal annealing of Ti films on silicon in a nitrogen atmosphere seems to be a very promising method to obtain the Si/TiSi{sub 2}/TiN structure. We have tried to increase the final nitrogen content (i.e. TiN thickness) by incorporating nitrogen during the deposition of the initial Ti films. The influence of the nitrogen present in the titanium film on the silicidation process has been studied by comparison with the silicidation of pure titanium. The evolution of the nitrogen content with thermal treatment conditions has been established by nuclear reaction analysis (NRA). The nitrogen initially incorporated in the Ti film plays a passive role during the nitridation process, since its initial presence does not strongly influence the further incorporation of nitrogen from the atmosphere. The final nitrogen content of the N-doped samples is the addition of the nitrogen incorporated from the atmosphere during the thermal treatment in pure titanium samples and the nitrogen incorporated during deposition. The silicidation process has been studied using complementary techniques. The sheet resistances, Rutherford backscattering spectra and grazing X-ray diffraction (GXRD) diagrams have allowed us to establish the evolution of the reaction. Silicidation is not affected by the nitrogen incorporated during deposition. No differences have been found due to the presence of nitrogen. Nevertheless, changes in the surface morphology were found by atomic force microscopy (AFM). The Ti(N{sub 2}) samples are characterized by lower root mean square (rms) surface roughness values and different features. (orig.) 14 refs.

  11. High-Temperature Compatible Nickel Silicide Thermometer And Heater For Catalytic Chemical Microreactors

    DEFF Research Database (Denmark)

    Jensen, Søren; Quaade, U.J.; Hansen, Ole

    2005-01-01

    Integration of heaters and thermometers is important for agile and accurate control and measurement of the thermal reaction conditions in microfabricated chemical reactors (microreactors). This paper describes development and operation of nickel silicide heaters and temperature sensors...... for temperatures exceeding 700 °C. The heaters and thermometers are integrated with chemical microreactors for heterogeneous catalytic conversion of gasses, and thermally activated catalytic conversion of CO to CO2 in the reactors is demonstrated. The heaters and thermometers are shown to be compatible...

  12. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Yuryev, V. A., E-mail: vyuryev@kapella.gpi.ru; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P. [A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991 (Russian Federation); Senkov, V. M. [P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Avenue, Moscow 119991 (Russian Federation); Nalivaiko, O. Y. [JSC “Integral” – “Integral” Holding Management Company, 121A, Kazintsa I. P. Street, Minsk 220108 (Belarus); Novikau, A. G.; Gaiduk, P. I. [Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus)

    2015-05-28

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.

  13. Low-Temperature Wet Conformal Nickel Silicide Deposition for Transistor Technology through an Organometallic Approach.

    Science.gov (United States)

    Lin, Tsung-Han; Margossian, Tigran; De Marchi, Michele; Thammasack, Maxime; Zemlyanov, Dmitry; Kumar, Sudhir; Jagielski, Jakub; Zheng, Li-Qing; Shih, Chih-Jen; Zenobi, Renato; De Micheli, Giovanni; Baudouin, David; Gaillardon, Pierre-Emmanuel; Copéret, Christophe

    2017-02-08

    The race for performance of integrated circuits is nowadays facing a downscale limitation. To overpass this nanoscale limit, modern transistors with complex geometries have flourished, allowing higher performance and energy efficiency. Accompanying this breakthrough, challenges toward high-performance devices have emerged on each significant step, such as the inhomogeneous coverage issue and thermal-induced short circuit issue of metal silicide formation. In this respect, we developed a two-step organometallic approach for nickel silicide formation under near-ambient temperature. Transmission electron and atomic force microscopy show the formation of a homogeneous and conformal layer of NiSix on pristine silicon surface. Post-treatment decreases the carbon content to a level similar to what is found for the original wafer (∼6%). X-ray photoelectron spectroscopy also reveals an increasing ratio of Si content in the layer after annealing, which is shown to be NiSi2 according to X-ray absorption spectroscopy investigation on a Si nanoparticle model. I-V characteristic fitting reveals that this NiSi2 layer exhibits a competitive Schottky barrier height of 0.41 eV and series resistance of 8.5 Ω, thus opening an alternative low-temperature route for metal silicide formation on advanced devices.

  14. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Science.gov (United States)

    Yuryev, V. A.; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P.; Senkov, V. M.; Nalivaiko, O. Y.; Novikau, A. G.; Gaiduk, P. I.

    2015-05-01

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si3N4/SiO2/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about -2%/ °C in the temperature interval from 25 to 50 °C.

  15. Raman study of Ni and Ni silicide contacts on 4H- and 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Cichon, Stanislav, E-mail: cichons@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Machac, Petr; Barda, Bohumil [Department of Solid State Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Machovic, Vladimir [Central Laboratories, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Slepicka, Petr [Department of Solid State Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2012-04-30

    Ni{sub 2}Si, NiSi and NiSi{sub 2} contacts were prepared on n-type 4H- and 6H-SiC(0001) by deposition of Ni and Si multilayers in the respective stoichiometry after high-temperature annealing, as well as pure Ni contacts. After annealing, the individual contacts were analyzed by Raman spectroscopy and electrical property measurements. Contact structures were then etched-off and subsequently observed by means of AFM (Atomic Force Microscopy). Ni reacted with SiC, forming Ni{sub 2}Si and carbon. At Ni{sub x}Si{sub y}/SiC contact structures the respective silicides were already formed at low annealing temperatures, when only Schottky behavior of the structures was observed. The intended silicides, once formed, did not change any further with increasing annealing temperature. All contact structures provided good ohmic behavior after being annealed at 960 Degree-Sign C. By means of combined AFM and Raman analysis of the etched-off contacts we found that the silicide contact structures very probably did not react with SiC which is in accordance with the thermodynamic assumptions. After annealing the silicide contact structures at such temperature, when Schottky behavior changed to ohmic, a certain form of interaction between the SiC substrate and the silicide contact structures must have occurred. - Highlights: Black-Right-Pointing-Pointer Ni and Ni silicides as electrical contacts on N-type SiC. Black-Right-Pointing-Pointer Contacts examined by electrical measurements and Raman spectroscopy. Black-Right-Pointing-Pointer Ohmic behavior of contacts was reached after annealing at high temperatures. Black-Right-Pointing-Pointer Ni silicides showed to be non-reactive with SiC.

  16. Evaluating United States and world consumption of neodymium, dysprosium, terbium, and praseodymium in final products

    Science.gov (United States)

    Hart, Matthew

    This paper develops scenarios of future rare-earth-magnet metal (neodymium, dysprosium, terbium, and praseodymium) consumption in the permanent magnets used in wind turbines and hybrid electric vehicles. The scenarios start with naive base-case scenarios for growth in wind-turbine and hybrid-electric-vehicle sales over the period 2011 to 2020, using historical data for each good. These naive scenarios assume that future growth follows time trends in historical data and does not depend on any exogenous variable. Specifically, growth of each technological market follows historical time trends, and the amount of rare earths used per unit of technology remains fixed. The chosen reference year is 2010. Implied consumptions of the rare earth magnet metals are calculated from these scenarios. Assumptions are made for the material composition of permanent magnets, the market share of permanent-magnet wind turbines and vehicles, and magnet weight per unit of technology. Different scenarios estimate how changes in factors like the material composition of magnets, growth of the economy, and the price of a substitute could affect future consumption. Each scenario presents a different method for reducing rare earth consumption and could be interpreted as potential policy choices. In 2010, the consumption (metric tons, rare-earth-oxide equivalent) of each rare-earth-magnet metal was as follows. Total neodymium consumption in the world for both technologies was 995 tons; dysprosium consumption was 133 tons; terbium consumption was 50 tons; praseodymium consumption was zero tons. The base scenario for wind turbines shows there could be strong, exponential growth in the global wind turbine market. New U.S. sales of hybrid vehicles would decline (in line with the current economic recession) while non-U.S. sales increase through 2020. There would be an overall increase in the total amount of magnetic rare earths consumed in the world. Total consumption of each rare earth in the short

  17. Thermal transport across metal silicide-silicon interfaces: An experimental comparison between epitaxial and nonepitaxial interfaces

    Science.gov (United States)

    Ye, Ning; Feser, Joseph P.; Sadasivam, Sridhar; Fisher, Timothy S.; Wang, Tianshi; Ni, Chaoying; Janotti, Anderson

    2017-02-01

    Silicides are used extensively in nano- and microdevices due to their low electrical resistivity, low contact resistance to silicon, and their process compatibility. In this work, the thermal interface conductance of TiSi2, CoSi2, NiSi, and PtSi are studied using time-domain thermoreflectance. Exploiting the fact that most silicides formed on Si(111) substrates grow epitaxially, while most silicides on Si(100) do not, we study the effect of epitaxy, and show that for a wide variety of interfaces there is no dependence of interface conductance on the detailed structure of the interface. In particular, there is no difference in the thermal interface conductance between epitaxial and nonepitaxial silicide/silicon interfaces, nor between epitaxial interfaces with different interface orientations. While these silicide-based interfaces yield the highest reported interface conductances of any known interface with silicon, none of the interfaces studied are found to operate close to the phonon radiation limit, indicating that phonon transmission coefficients are nonunity in all cases and yet remain insensitive to interfacial structure. In the case of CoSi2, a comparison is made with detailed computational models using (1) full-dispersion diffuse mismatch modeling (DMM) including the effect of near-interfacial strain, and (2) an atomistic Green' function (AGF) approach that integrates near-interface changes in the interatomic force constants obtained through density functional perturbation theory. Above 100 K, the AGF approach significantly underpredicts interface conductance suggesting that energy transport does not occur purely by coherent transmission of phonons, even for epitaxial interfaces. The full-dispersion DMM closely predicts the experimentally observed interface conductances for CoSi2, NiSi, and TiSi2 interfaces, while it remains an open question whether inelastic scattering, cross-interfacial electron-phonon coupling, or other mechanisms could also account for

  18. Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby; Wright, Nick; O' Neill, Anthony; Horsfall, Alton; Goss, Jonathan [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Cumpson, Peter [School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2013-03-21

    Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such as the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.

  19. Luminescence features of dysprosium and phosphorus oxide co-doped lithium magnesium borate glass

    Science.gov (United States)

    Hashim, S.; Mhareb, M. H. A.; Ghoshal, S. K.; Alajerami, Y. S. M.; Saripan, M. I.; Bradley, D. A.

    2017-08-01

    Lithium magnesium borate (LMB) glass system co-doped with the oxides of dysprosium (Dy2O3) and phosphorus (P2O5) were synthesized using melt-quenching method. Prepared samples were characterized using various techniques to determine the effects of co-dopants concentration variation on their thermoluminescence (TL) and photoluminescence (PL) properties. TL glow curves of LMB:0.5Dy sample revealed a single prominent peak at Tm=190 °C, where TL intensity was enhanced by a factor of 2.5 with the increase of P2O5 concentration up to 1 mol%. This enhancement was accompanied by a shift in Tm towards higher temperature. Good linearity in the range of 1-100 Gy with linear correlation coefficient of 0.998 was achieved. PL spectra displayed two significant peaks centred at 481 nm and 573 nm. These attractive luminescence features of the proposed glass system may be useful for the development of radiation dosimetry.

  20. Single-molecule magnet behavior for an antiferromagnetically superexchange-coupled dinuclear dysprosium(III) complex.

    Science.gov (United States)

    Long, Jérôme; Habib, Fatemah; Lin, Po-Heng; Korobkov, Ilia; Enright, Gary; Ungur, Liviu; Wernsdorfer, Wolfgang; Chibotaru, Liviu F; Murugesu, Muralee

    2011-04-13

    A family of five dinuclear lanthanide complexes has been synthesized with general formula [Ln(III)(2)(valdien)(2)(NO(3))(2)] where (H(2)valdien = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine) and Ln(III) = Eu(III)1, Gd(III)2, Tb(III)3, Dy(III)4, and Ho(III)5. The magnetic investigations reveal that 4 exhibits single-molecule magnet (SMM) behavior with an anisotropic barrier U(eff) = 76 K. The step-like features in the hysteresis loops observed for 4 reveal an antiferromagnetic exchange coupling between the two dysprosium ions. Ab initio calculations confirm the weak antiferromagnetic interaction with an exchange constant J(Dy-Dy) = -0.21 cm(-1). The observed steps in the hysteresis loops correspond to a weakly coupled system similar to exchange-biased SMMs. The Dy(2) complex is an ideal candidate for the elucidation of slow relaxation of the magnetization mechanism seen in lanthanide systems.

  1. A comparative study of donor formation in dysprosium, holmium, and erbium implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Emtsev, V.V.; Emtsev, V.V. Jr.; Poloskin, D.S.; Shek, E.I.; Sobolev, N.A. [Division of Solid State Electronics, Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    1998-12-01

    Formation of donor centers in Czochralski grown silicon doped with dysprosium, holmium, and erbium is discussed. Donor states of three kinds are introduced in the implanted layers after annealing at T=700C. Shallow donor states with ionization energies between 20 and 40 meV are attributed to oxygen -related thermal donors. Other donor centers in the energy range of E{sub C}-(60...70) meV and E{sub C}-(100...120) meV appear to be dependent on dopants. After a 900C anneal strong changes in the donor formation are observed only in silicon doped with erbium. Instead of donors at E{sub C}-(118{+-}5) meV, new donor centres at E{sub C}-(145{+-}5) meV are formed. Reportedly, the latter ones are involved in the excitation process of the Er{sup 3+} ions with a characteristic luminescence line at {approx}1.54 {mu}m. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    Science.gov (United States)

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters.

  3. Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion

    Science.gov (United States)

    Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.

    2017-04-01

    The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.

  4. Isolation of {sup 163}Ho from dysprosium target material by HPLC for neutrino mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Veronika; Taylor, Wayne A.; Nortier, Francois M.; Engle, Jonathan W.; Pollington, Anthony D.; Kunde, Gerd J.; Rabin, Michael W.; Birnbaum, Eva R. [Los Alamos National Laboratory, Los Alamos, NM (United States). Chemistry Div.; Barnhart, Todd E.; Nickles, Robert J. [Univ. Wisconsinn, Madison, WI (United States). Dept. of Medical Physics

    2015-07-01

    The rare earth isotope {sup 163}Ho is of interest for neutrino mass measurements. This report describes the isolation of {sup 163}Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, {sup 163}Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm{sup -3} α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized by MC-ICP-MS to determine the {sup 163}Ho/{sup 165}Ho ratio, {sup 163}Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4 x 10{sup 5} for Dy. The isolated Ho fraction contained 24.8 ± 1.3 ng of {sup 163}Ho corresponding to holmium recovery of 72 ± 3%.

  5. X-ray photoemission spectromicroscopy of titanium silicide formation in patterned microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.; Solak, H.; Cerrina, F. [Univ. of Wisconsin-Madison, Stoughton, WI (United States)] [and others

    1997-04-01

    Titanium silicide has the lowest resistivity of all the refractory metal silicides and has good thermal stability as well as excellent compatibility with Al metallization. It is used as an intermediate buffer layer between W vias and the Si substrate to provide good electrical contact in ULSI technology, whose submicron patterned features form the basis of the integrated circuits of today and tomorrow, in the self aligned silicide (salicide) formation process. TiSi{sub 2} exists in two phases: a metastable C49 base-centered orthorhombic phase with specific resistivity of 60-90 {mu}{Omega}-cm that is formed at a lower temperature (formation anneal) and the stable 12-15 {mu}{Omega}-cm resistivity face-centered orthorhombic C54 phase into which C49 is transformed with a higher temperature (conversion anneal) step. C54 is clearly the target for low resistivity VLSI interconnects. However, it has been observed that when dimensions shrink below 1/mic (or when the Ti thickness drops below several hundred angstroms), the transformation of C49 into C54 is inhibited and agglomeration often occurs in fine lines at high temperatures. This results in a rise in resistivity due to incomplete transformation to C54 and because of discontinuities in the interconnect line resulting from agglomeration. Spectromicroscopy is an appropriate tool to study the evolution of the TiSi2 formation process because of its high resolution chemical imaging ability which can detect bonding changes even in the absence of changes in the relative amounts of species and because of the capability of studying thick {open_quotes}as is{close_quotes} industrial samples.

  6. Combustion synthesis of molybdenum silicides and borosilicides for ultrahigh-temperature structural applications

    Science.gov (United States)

    Alam, Mohammad Shafiul

    Molybdenum silicides and borosilicides are promising structural materials for gas-turbine power plants. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. For example, molybdenum disilicide (MoSi2) has excellent oxidation resistance and poor mechanical properties, while Mo-rich silicides such as Mo5Si3 (called T 1) have much better mechanical properties but poor oxidation resistance. One approach is based on the fabrication of MoSi2-T 1 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of T1. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, Mo 5SiB2 (called T2) phase is considered as an attractive material. In the thesis, MoSi2-T1 composites and materials based on T2 phase are obtained by mechanically activated SHS. Use of SHS compaction (quasi-isostatic pressing) significantly improves oxidation resistance of the obtained MoSi2-T1 composites. Combustion of Mo-Si-B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of molybdenum boride. These mixtures exhibit spin combustion, the characteristics of which are in good agreement with the spin combustion theory. Oxidation resistance of the obtained Mo-Si-B materials is independent on the concentration of Mo phase in the products so that the materials with a higher Mo content are preferable because of better mechanical properties. Also, T2 phase has been obtained by the chemical oven combustion synthesis technique.

  7. Effect of Annealing Temperature on the Formation of Silicides and the Surface Morphologies of PtSi Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of annealing temperature on the formation of the PtSi phase, distribution of silicides and the surface morphologies of silicides films is investigated by XPS, AFM. It is shown that the phase sequences of the films change from Pt-Pt2Si-PtSi-Si to Pt+Pt2Si+PtSi-PtSi-Si or Pt+Pt2Si+PtSi-PtSi-Si with an increase of annealing temperature and the reason for the formation of mixed layers is discussed.

  8. Synthesis of metallic silicide fullerenes and the characteristics thereof by mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Direct current arc discharge is used for the study on the synthesis of metallo-fullerenes (MFs) to discover whether there exist metallic silicide fullerenes and silicon fullerenes. The resultant components are isolated by the multistage high-performance liquid chromatography (HPLC) and analyzed with the Time-of-Flight (TOF) mass spectrometry. Results show that there exist fullerenes such as SiC69, YSi2C64, YSi2C78, Y3Si2C78 as well as Y2Si2C90 which are structurally similar to (Y2C2)@C82.

  9. On the structural and electronic properties of Ir-silicide nanowires on Si(001) surface

    Science.gov (United States)

    Fatima, Can Oguz, Ismail; ćakır, Deniz; Hossain, Sehtab; Mohottige, Rasika; Gulseren, Oguz; Oncel, Nuri

    2016-09-01

    Iridium (Ir) modified Silicon (Si) (001) surface is studied with Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Density Functional Theory (DFT). A model for Ir-silicide nanowires based on STM images and ab-initio calculations is proposed. According to our model, the Ir adatom is on the top of the substrate dimer row and directly binds to the dimer atoms. I-V curves measured at 77 K shows that the nanowires are metallic. DFT calculations confirm strong metallic nature of the nanowires.

  10. Synthesis of metallic silicide fullerenes and the characteristics thereof by mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    CHEN YiChi; GUO Liang; ZHU LiQun

    2007-01-01

    Direct current arc discharge is used for the study on the synthesis of metallofullerenes (MFs) to discover whether there exist metallic silicide fullerenes and silicon fullerenes. The resultant components are isolated by the multistage high-performance liquid chromatography (HPLC) and analyzed with the Time-of-Flight (TOF) mass spectrometry. Results show that there exist fullerenes such as SiC69, YSi2C64, YSi2C78, Y3Si2C78 as well as Y2Si2C90 which are structurally similar to (Y2C2)@C82.

  11. Superconductivity at 3.7 K in Ternary Silicide Li2IrSi3

    OpenAIRE

    Hirai, Daigorou; Kawakami, Rui; Magdysyuk, Oxana V.; Dinnebier, Robert E; Yaresko, Alexander; Takagi, Hidenori

    2014-01-01

    We report the discovery of superconductivity at Tc = 3.7 K in the new ternary lithium silicide Li2IrSi3. The crystal structure of Li2IrSi3 consists of IrSi6 antiprisms connected by Si triangles, giving rise to a three dimensional framework of covalent Si-Si and Si-Ir bonds. Electronic specific-heat in superconducting phase suggests that Li2IrSi3 is a BCS weak-coupling superconductor.

  12. Current enhancement in crystalline silicon photovoltaic by low-cost nickel silicide back contact

    KAUST Repository

    Bahabry, R. R.

    2016-11-30

    We report short circuit current (Jsc) enhancement in crystalline silicon (C-Si) photovoltaic (PV) using low-cost Ohmic contact engineering by integration of Nickel mono-silicide (NiSi) for back contact metallization as an alternative to the status quo of using expensive screen printed silver (Ag). We show 2.6 mA/cm2 enhancement in the short circuit current (Jsc) and 1.2 % increment in the efficiency by improving the current collection due to the low specific contact resistance of the NiSi on the heavily Boron (B) doped Silicon (Si) interface.

  13. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    Energy Technology Data Exchange (ETDEWEB)

    Munir, Zuhair A. (Davis, CA); Woolman, Joseph N. (Davis, CA); Petrovic, John J. (Los Alamos, NM)

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  14. Magnetization reversal of ultrathin Fe film grown on Si(111) using iron silicide template

    Institute of Scientific and Technical Information of China (English)

    He Wei; Zhan Qing-Feng; Wang De-Yong; Chen Li-Jun; Sun Young; Cheng Zhao-Hua

    2007-01-01

    Ultrathin Fe films were epitaxially grown on Si(111) by using an ultrathin iron silicide film with p(2 × 2) surface reconstruction as a template. The surface structure and magnetic properties were investigated in situ by low energy electron diffraction (LEED), scanning tunnelling microscopy (STM), and surface magneto-optical effect (SMOKE). Polar SMOKE hysteresis loops demonstrate that the Fe ultrathin films with thickness t< 6 ML (monolayers) exhibit perpendicular magnetic anisotropy. The characters of M-H loops with the external magnetic field at difference angles and the angular dependence of coercivity suggest that the domain-wall pinning plays a dominant role in the magnetization reversal process.

  15. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach.

    Science.gov (United States)

    Vukov, Oliver; Smith, D Scott; McGeer, James C

    2016-01-01

    The toxicological understanding of rare earth elements (REEs) in the aquatic environment is very limited but of increasing concern. The objective of this research is to compare the toxicological effect of the REE dysprosium to the freshwater invertebrates Daphnia pulex and Hyalella azteca and in the more sensitive organism, understand the toxicity modifying influence of Ca, Na, Mg, pH and dissolved organic matter (DOM). Standard methods (Environment Canada) were followed for testing and culture in media of intermediate hardness (60mg CaCO3 mg/L) at pH 7.8 with Ca at 0.5, Na 0.5, Mg 0.125 (mM) and 23°C. Acute toxicity tests were done with azteca and D. pulex revealed Hyalella to be 1.4 times more sensitive than Daphnia. Additions of Ca and Na but not Mg provided significant protection against Dy toxicity to Hyalella. Similarly, low pH was associated with reduction in toxicity. Exposures which were pH buffered with and without MOPS were significantly different and indicated that MOPS enhanced Dy toxicity. DOM also mitigated Dy toxicity. Biotic ligand based parameters (LogK values) were calculated based on free ion relationships as determined by geochemical equilibrium modeling software (WHAM ver. 7.02). The logK value for Dy(3+) toxicity to Hyalella was 7.75 while the protective influence of Ca and Na were 3.95 and 4.10, respectively. This study contributes data towards the development of site specific water quality guidelines and criteria for Dy and possibly REEs in general and offers insight into the complex bio-geochemical nature of this element.

  16. Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts.

    Science.gov (United States)

    Habicht, S; Zhao, Q T; Feste, S F; Knoll, L; Trellenkamp, S; Ghyselen, B; Mantl, S

    2010-03-12

    We present electrical characterization of nickel monosilicide (NiSi) contacts formed on strained and unstrained silicon nanowires (NWs), which were fabricated by top-down processing of initially As(+) implanted and activated strained and unstrained silicon-on-insulator (SOI) substrates. The resistivity of doped Si NWs and the contact resistivity of the NiSi to Si NW contacts are studied as functions of the As(+) ion implantation dose and the cross-sectional area of the wires. Strained silicon NWs show lower resistivity for all doping concentrations due to their enhanced electron mobility compared to the unstrained case. An increase in resistivity with decreasing cross section of the NWs was observed for all implantation doses. This is ascribed to the occurrence of dopant deactivation. Comparing the silicidation of uniaxially tensile strained and unstrained Si NWs shows no difference in silicidation speed and in contact resistivity between NiSi/Si NW. Contact resistivities as low as 1.2 x 10(-8) Omega cm(-2) were obtained for NiSi contacts to both strained and unstrained Si NWs. Compared to planar contacts, the NiSi/Si NW contact resistivity is two orders of magnitude lower.

  17. Microstructure of the irradiated U 3Si 2/Al silicide dispersion fuel

    Science.gov (United States)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J.-F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.

    2011-12-01

    The silicide dispersion fuel of U 3Si 2/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm 3 fuel loading. An irradiated U 3Si 2/Al dispersion fuel ( 235U ˜ 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U 3Si 2 fuel particles for the TEM sample are estimated to be approximately 110 °C and 5.4 × 10 27 f/m 3. The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (fuel particle are ˜94 nm, 1.05 × 10 20 m -3 and ˜11%, respectively. The results and their implication on the performance of the U 3Si 2/Al silicide dispersion fuel are discussed.

  18. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Sudhir B. [Brimrose Technology Corporation; Kutcher, Susan W. [Brimrose Technology Corporation; Rosemeier, Cory A. [Brimrose Technology Corporation; Mayers, David [Brimrose Technology Corporation; Singh, Jogender [Pennsylvania State University

    2013-12-02

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  19. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing high enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.

  20. Effect of annealing on magnetic properties and silicide formation at Co/Si interface

    Indian Academy of Sciences (India)

    Shivani Agarwal; V Ganesan; A K Tyagi; I P Jain

    2006-11-01

    The interaction of Co (30 nm) thin films on Si (100) substrate in UHV using solid state mixing technique has been studied. Cobalt was deposited on silicon substrate using electron beam evaporation at a vacuum of 4 × 10-8 Torr having a deposition rate of about 0.1 Å/s. Reactivity at Co/Si interface is important for the understanding of silicide formation in thin film system. In the present paper, cobalt silicide films were characterized by atomic force microscopy (AFM) and secondary ion mass spectroscopy (SIMS) in terms of the surface and interface morphologies and depth profile, respectively. The roughness of the samples was found to increase up to temperature, 300°C and then decreased with further rise in temperature, which was due to the formation of crystalline CoSi2 phase. The effect of mixing on magnetic properties such as coercivity, remanence etc at interface has been studied using magneto optic Kerr effect (MOKE) techniques at different temperatures. The value of coercivity of pristine sample and 300°C annealed sample was found to be 66 Oe and 40 Oe, respectively, while at high temperature i.e. 748°C, the hysteresis disappears which indicates the formation of CoSi2 compound.

  1. Crystal structure of the ternary silicide Gd2Re3Si5.

    Science.gov (United States)

    Fedyna, Vitaliia; Kozak, Roksolana; Gladyshevskii, Roman

    2014-12-01

    A single crystal of the title compound, the ternary silicide digadolinium trirhenium penta-silicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubo-octa-hedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square anti-prisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re-Re distance of 2.78163 (5) Å and isolated squares with an Re-Re distance of 2.9683 (6) Å.

  2. Design of transition cores of RSG GAS (MPR-30) with higher loading silicide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Liem, Peng Hong, E-mail: liemph@nais.ne.j [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo 152-8550 (Japan); Sembiring, Tagor Malem [Center for Reactor Technology and Nuclear Safety, National Nuclear Energy Agency (Batan), Puspiptek, Serpong, Tangerang 15310 (Indonesia)

    2010-06-15

    A procedure of designing transition cores to achieve the equilibrium silicide core of RSG GAS with higher fuel loading of 300 g U/fuel element (FE) (meat density of 3.55 g U/cm{sup 3}) has been proposed. In the proposed procedure, the EOC excess reactivity of each transition core is minimized in order to satisfy the safety design limit of one-stuck-rod sub-criticality margin while keeping the maximum of radial power peaking factor below the allowable value. Under the design procedure, the initial fuel loadings are increased gradually in two steps, i.e. from 250 to 275 g U/FE followed by 275-300 g U/FE. The analysis results show that all transition cores can satisfy all design requirements and safety limits. We concluded that the obtained transition core design should be adopted into the future core conversion program of RSG GAS. The targeted silicide core can be achieved practically in at least 24 transition cores.

  3. Absorption enhancement in amorphous silicon thin films via plasmonic resonances in nickel silicide nanoparticles

    Science.gov (United States)

    Hachtel, Jordan; Shen, Xiao; Pantelides, Sokrates; Sachan, Ritesh; Gonzalez, Carlos; Dyck, Ondrej; Fu, Shaofang; Kalnayaraman, Ramki; Rack, Phillip; Duscher, Gerd

    2013-03-01

    Silicon is a near ideal material for photovoltaics due to its low cost, abundance, and well documented optical properties. The sole detriment of Si in photovoltaics is poor absorption in the infrared. Nanoparticle surface plasmon resonances are predicted to increase absorption by scattering to angles greater than the critical angle for total internal reflection (16° for a Si/air interface), trapping the light in the film. Experiments confirm that nickel silicide nanoparticles embedded in amorphous silicon increases absorption significantly in the infrared. However, it remains to be seen if electron-hole pair generation is increased in the solar cell, or whether the light is absorbed by the nanoparticles themselves. The nature of the absorption is explored by a study of the surface plasmon resonances through electron energy loss spectrometry and scanning transmission electron microscopy experiments, as well as first principles density functional theory calculations. Initial experimental results do not show strong plasmon resonances on the nanoparticle surfaces. Calculations of the optical properties of the nickel silicide particles in amorphous silicon are performed to understand why this resonance is suppressed. Work supported by NSF EPS 1004083 (TN-SCORE).

  4. "Nanoparticle-in-alloy" approach to efficient thermoelectrics: silicides in SiGe.

    Science.gov (United States)

    Mingo, N; Hauser, D; Kobayashi, N P; Plissonnier, M; Shakouri, A

    2009-02-01

    We present a "nanoparticle-in-alloy" material approach with silicide and germanide fillers leading to a potential 5-fold increase in the thermoelectric figure of merit of SiGe alloys at room temperature and 2.5 times increase at 900 K. Strong reductions in computed thermal conductivity are obtained for 17 different types of silicide nanoparticles. We predict the existence of an optimal nanoparticle size that minimizes the nanocomposite's thermal conductivity. This thermal conductivity reduction is much stronger and strikingly less sensitive to nanoparticle size for an alloy matrix than for a single crystal one. At the same time, nanoparticles do not negatively affect the electronic conduction properties of the alloy. The proposed material can be monolithically integrated into Si technology, enabling an unprecedented potential for micro refrigeration on a chip. High figure-of-merit at high temperatures (ZT approximately 1.7 at 900 K) opens up new opportunities for thermoelectric power generation and waste heat recovery at large scale.

  5. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    Science.gov (United States)

    Harp, Jason M.; Lessing, Paul A.; Hoggan, Rita E.

    2015-11-01

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ± 0.06 g/cm3. Additional characterization of the pellets by scanning electron microscopy and X-ray diffraction has also been performed. Pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.

  6. Organometallic halide perovskite/barium di-silicide thin-film double-junction solar cells

    Science.gov (United States)

    Vismara, R.; Isabella, O.; Zeman, M.

    2016-04-01

    Barium di-silicide (BaSi2) is an abundant and inexpensive semiconductor with appealing opto-electrical properties. In this work we show that a 2-μm thick BaSi2-based thin-film solar cell can exhibit an implied photo-current density equal to 41.1 mA/cm2, which is higher than that of a state-of-the-art wafer-based c-Si hetero-junction solar cell. This performance makes BaSi2 an attractive absorber for high-performing thin-film and multi-junction solar cells. In particular, to assess the potential of barium di-silicide, we propose a thin-film double-junction solar cell based on organometallic halide perovskite (CH3NH3PbI3) as top absorber and BaSi2 as bottom absorber. The resulting modelled ultra-thin double-junction CH3NH3PbI3 / BaSi2 (< 2 μm) exhibits an implied total photo-current density equal to 38.65 mA/cm2 (19.84 mA/cm2 top cell, 18.81 mA/cm2 bottom cell) and conversion efficiencies up to 28%.

  7. Optical trapping of ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities and van der Waals C 6 coefficients

    Science.gov (United States)

    Li, H.; Wyart, J.-F.; Dulieu, O.; Nascimbène, S.; Lepers, M.

    2017-01-01

    The efficiency of the optical trapping of ultracold atoms depends on the atomic dynamic dipole polarizability governing the atom-field interaction. In this article, we have calculated the real and imaginary parts of the dynamic dipole polarizability of dysprosium in the ground and first excited levels. Due to the high electronic angular momentum of those two states, the polarizabilities possess scalar, vector and tensor contributions that we have computed, on a wide range of trapping wavelengths, using the sum-over-state formula. Using the same formalism, we have also calculated the C 6 coefficients characterizing the van der Waals interaction between two dysprosium atoms in the two lowest levels. We have computed the energies of excited states and the transition probabilities appearing in the sums, using a combination of ab initio and least-square-fitting techniques provided by the Cowan codes and extended in our group. Regarding the real part of the polarizability, for field frequencies far from atomic resonances, the vector and tensor contributions are two-orders-of-magnitude smaller than the scalar contribution, whereas for the imaginary part, the vector and tensor contributions represent a noticeable fraction of the scalar contribution. Finally, our anisotropic C 6 coefficients are much smaller than those published in the literature.

  8. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  9. In situ micro-Raman analysis and X-ray diffraction of nickel silicide thin films on silicon.

    Science.gov (United States)

    Bhaskaran, M; Sriram, S; Perova, T S; Ermakov, V; Thorogood, G J; Short, K T; Holland, A S

    2009-01-01

    This article reports on the in situ analysis of nickel silicide (NiSi) thin films formed by thermal processing of nickel thin films deposited on silicon substrates. The in situ techniques employed for this study include micro-Raman spectroscopy (microRS) and X-ray diffraction (XRD); in both cases the variations for temperatures up to 350 degrees C has been studied. Nickel silicide thin films formed by vacuum annealing of nickel on silicon were used as a reference for these measurements. In situ analysis was carried out on nickel thin films on silicon, while the samples were heated from room temperature to 350 degrees C. Data was gathered at regular temperature intervals and other specific points of interest (such as 250 degrees C, where the reaction between nickel and silicon to form Ni(2)Si is expected). The transformations from the metallic state, through the intermediate reaction states, until the desired metal-silicon reaction product is attained, are discussed. The evolution of nickel silicide from the nickel film can be observed from both the microRS and XRD in situ studies. Variations in the evolution of silicide from metal for different silicon substrates are discussed, and these include (100) n-type, (100) p-type, and (110) p-type silicon substrates.

  10. Improvement of power conversion efficiency in photovoltaic-assisted UHF rectifiers by non-silicide technique applied to photovoltaic cells

    Science.gov (United States)

    Kotani, Koji

    2015-04-01

    Non-silicide PV cell structures were successfully applied to the photovoltaic (PV)-assisted UHF rectifier, which is one example realization of the “synergistic ambient energy harvesting” concept. Silicide blocking of PV cell area was experimentally verified to be effective for increasing photo-generated bias voltage, which resulted in the improved power conversion efficiency (PCE) of the rectifier by enhanced VTH compensation effect. Increase in both transparency of light and quantum efficiency of PV cells obtained by eliminating silicide layer affects the PCE improvement almost equally. 25.8% of PCE was achieved under the conditions of an RF input power of -20 dBm, a frequency of 920 MHz, an output load of 47 kΩ, and a typical indoor light irradiance level of 1 W/m2. In addition, when the non-silicide PV cell technique was applied to the voltage-boosted PV-cell structures, 32.1% peak PCE was achieved at 10 W/m2.

  11. Intercalation synthesis of graphene-capped iron silicide atop Ni(111): Evolution of electronic structure and ferromagnetic ordering

    Science.gov (United States)

    Grebenyuk, G. S.; Vilkov, O. Yu.; Rybkin, A. G.; Gomoyunova, M. V.; Senkovskiy, B. V.; Usachov, D. Yu.; Vyalikh, D. V.; Molodtsov, S. L.; Pronin, I. I.

    2017-01-01

    A new method for synthesis of graphene-protected iron silicides has been tested, which consists in formation of graphene on Ni(111) followed by two-step intercalation of the system with Fe and Si. Characterization of the samples was performed in situ by low-energy electron diffraction, angular-resolved photoelectron spectroscopy, core-level photoelectron spectroscopy with synchrotron radiation and magnetic linear dichroism in photoemission of Fe 3p electrons. It is shown, that at 400 °C the intercalation of graphene/Ni(111) with iron occurs in a range up to 14 ML. The graphene layer strongly interacts with the topmost Fe atoms and stabilizes the fcc structure of the film. The in-plane ferromagnetic ordering of the film has a threshold nature and arises after the intercalation of 5 ML Fe due to the thickness-driven spin reorientation transition. Subsequent intercalation of graphene/Fe/Ni(111) with Si leads to the formation of the inhomogeneous system consisted of intercalated and nonintercalated areas. The intercalated islands coalesce at 2 ML Si when a Fe-Si solid solution covered with the Fe3Si surface silicide is formed. The Fe3Si silicide is ferromagnetic and has an ordered (√3 × √3)R30° structure. The graphene layer is weakly electronically coupled to the silicide phase keeping its remarkable properties ready for use.

  12. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+-n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  13. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach

    Energy Technology Data Exchange (ETDEWEB)

    Vukov, Oliver, E-mail: vuko3930@mylaurier.ca [Biology Department, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Smith, D. Scott [Chemistry Department, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); McGeer, James C. [Biology Department, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada)

    2016-01-15

    The toxicological understanding of rare earth elements (REEs) in the aquatic environment is very limited but of increasing concern. The objective of this research is to compare the toxicological effect of the REE dysprosium to the freshwater invertebrates Daphnia pulex and Hyalella azteca and in the more sensitive organism, understand the toxicity modifying influence of Ca, Na, Mg, pH and dissolved organic matter (DOM). Standard methods (Environment Canada) were followed for testing and culture in media of intermediate hardness (60 mg CaCO{sub 3} mg/L) at pH 7.8 with Ca at 0.5, Na 0.5, Mg 0.125 (mM) and 23 °C. Acute toxicity tests were done with <24 h old neonates for 48 h in the case of D. pulex and with 2–9 days old offspring for 96 h tests with Hyalella. The potential protective effect of cationic competition was tested with Ca (0.5–2.0 mM), Na (0.5–2.0 mM) and Mg (0.125–0.5 mM). The effect of pH (6.5–8.0) and Suwannee River DOM complexation (at dissolved organic carbon (DOC) concentrations of 9 and 13 mg C/L) were evaluated. Dissolved Dy concentrations were lower than total (unfiltered) indicating precipitation, particularly at higher concentrations. Acute toxicity of Dy to H. azteca and D. pulex revealed Hyalella to be 1.4 times more sensitive than Daphnia. Additions of Ca and Na but not Mg provided significant protection against Dy toxicity to Hyalella. Similarly, low pH was associated with reduction in toxicity. Exposures which were pH buffered with and without MOPS were significantly different and indicated that MOPS enhanced Dy toxicity. DOM also mitigated Dy toxicity. Biotic ligand based parameters (Log K values) were calculated based on free ion relationships as determined by geochemical equilibrium modeling software (WHAM ver. 7.02). The log K value for Dy{sup 3+} toxicity to Hyalella was 7.75 while the protective influence of Ca and Na were 3.95 and 4.10, respectively. This study contributes data towards the development of site specific

  14. White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses

    Science.gov (United States)

    Luewarasirikul, N.; Kim, H. J.; Meejitpaisan, P.; Kaewkhao, J.

    2017-04-01

    Lanthanum calcium phosphate oxide and oxyfluoride glasses doped with dysprosium oxide were prepared by melt-quenching technique with chemical composition 20La2O3:10CaO:69P2O5:1Dy2O3 and 20La2O3:10CaF2:69P2O5:1Dy2O3. The physical, optical and luminescence properties of the glass samples were studied to evaluate their potential to using as luminescence materials for solid-state lighting applications. The density, molar volume and refractive index of the glass samples were carried out. The optical and luminescence properties were studied by investigating absorption, excitation, and emission spectra of the glass samples. The absorption spectra were investigated in the UV-Vis-NIR region from 300 to 2000 nm. The excitation spectra observed under 574 nm emission wavelength showed the highest peak centered at 349 nm (6H15/2 → 6P7/2). The emission spectra, excited with 349 nm excitation wavelength showed two major peaks corresponding to 482 nm blue emission (4F9/2 → 6H15/2) and 574 nm yellow emission (4F9/2 → 6H13/2). The experimental lifetime were found to be 0.539 and 0.540 for oxide and oxyfluoride glass sample, respectively. The x,y color coordinates under 349 nm excitation wavelength were (0.38, 0.43) for both glass samples, that be plotted in white region of CIE 1931 chromaticity diagram. The CCT values obtained from the glass samples are 4204 K for oxide glass and 4228 K for oxyfluoride glass corresponding to the commercial cool white light (3100-4500 K). Judd-Ofelt theory had also been employed to obtain the J-O parameters (Ω2, Ω4 and Ω6), oscillator strength, radiative transition possibility, stimulated emission cross section and branching ratio. The Ω2 > Ω4 > Ω6 trend of J-O parameters of both glass samples may indicate the good quality of a glass host for using as optical device application. Temperature dependence of emission spectra was studied from 300 K to 10 K and found that the intensity of the emission peak was found to be increased with

  15. Understanding and Improving High-Temperature Structural Properties of Metal-Silicide Intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Bruce S. Kang

    2005-10-10

    The objective of this project was to understand and improve high-temperature structural properties of metal-silicide intermetallic alloys. Through research collaboration between the research team at West Virginia University (WVU) and Dr. J.H. Schneibel at Oak Ridge National Laboratory (ORNL), molybdenum silicide alloys were developed at ORNL and evaluated at WVU through atomistic modeling analyses, thermo-mechanical tests, and metallurgical studies. In this study, molybdenum-based alloys were ductilized by dispersing MgAl2O4 or MgO spinel particles. The addition of spinel particles is hypothesized to getter impurities such as oxygen and nitrogen from the alloy matrix with the result of ductility improvement. The introduction of fine dispersions has also been postulated to improve ductility by acting as a dislocation source or reducing dislocation pile-ups at grain boundaries. The spinel particles, on the other hand, can also act as local notches or crack initiation sites, which is detrimental to the alloy mechanical properties. Optimization of material processing condition is important to develop the desirable molybdenum alloys with sufficient room-temperature ductility. Atomistic analyses were conducted to further understand the mechanism of ductility improvement of the molybdenum alloys and the results showed that trace amount of residual oxygen may be responsible for the brittle behavior of the as-cast Mo alloys. For the alloys studied, uniaxial tensile tests were conducted at different loading rates, and at room and elevated temperatures. Thermal cycling effect on the mechanical properties was also studied. Tensile tests for specimens subjected to either ten or twenty thermal cycles were conducted. For each test, a follow-up detailed fractography and microstructural analysis were carried out. The test results were correlated to the size, density, distribution of the spinel particles and processing time. Thermal expansion tests were carried out using thermo

  16. Crystalline structures and misfit strain inside Er silicide nanocrystals self-assembled on Si(001) substrates.

    Science.gov (United States)

    Ding, Tao; Wu, Yueqin; Song, Junqiang; Li, Juan; Huang, Han; Zou, Jin; Cai, Qun

    2011-06-17

    The morphology and crystalline structure of Er silicide nanocrystals self-assembled on the Si(001) substrate were investigated using scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). It was found that the nanowires and nanorods formed at 630 °C has dominant hexagonal AlB(2)-type structure, while inside the nanoislands self-organized at 800 °C the tetragonal ThSi(2)-type structure is prevalent. The lattice analysis via cross-sectional high-resolution TEM demonstrated that internal misfit strain plays an important role in controlling the growth of nanocrystals. With the relaxation of strain, the nanoislands could evolve from a pyramid-like shape into a truncated-hut-like shape.

  17. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  18. Comparative study of metallic silicide-germanide orthorhombic MnP systems.

    Science.gov (United States)

    Connétable, Damien; Thomas, Olivier

    2013-09-04

    We present a comparative study of the structural, energetic, electronic and elastic properties of MX type MnP systems (where X=Si or Ge, and M=Pt, Pd or Ni) using first-principles calculations. The optimized ground state properties of these systems are in excellent agreement with the experimental values. A detailed comparative study of the elastic properties of polycrystalline structures is also presented. We analyze the relationship between the composition and the properties of the systems. Finally, we present the properties of NiSi1-xGex alloys. We show that these properties depend linearly on the Ge content of the alloy. This work has important consequences for semiconductor devices in which silicides, germanides and alloys thereof are used as contact materials.

  19. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M. [Univ. of Western Ontario, London, Ontario (Canada)

    1998-12-31

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L{sub 2,3}- and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi{sub 2} sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi{sub 2}. Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed.

  20. Strain-promoted growth of Mn silicide nanowires on Si(001)

    Science.gov (United States)

    Miki, Kazushi; Liu, Hongjun; Owen, James H. G.; Renner, Christoph

    2011-03-01

    We have discovered a method to promote the growth of Mn silicide nanowires on the Si(001) at 450° C. Deposition of sub-monolayer quantities of Mn onto a Si(001) surface with a high density of Bi nanolines results in the formation of nanowires, 5-10 nm wide, and up to 600 nm long. These nanowires are never formed if the same growth procedure is followed in the absence of the Bi nanolines. The Haiku core of the Bi nanoline is known to induce short-range stress in the surrounding silicon surface, straining neighbouring dimers, and repelling step edges. We discuss the possible mechanisms for this effect, including the effect of the Bi nanolines on the surface stress tensor and alteration of the available diffusion channels on the surface. This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research, the Iketani Science and Technology Foundation.

  1. Chemical vapour deposition of tungsten and tungsten silicide layers for applications in novel silicon technology

    CERN Document Server

    Li, F X

    2002-01-01

    This work was a detailed investigation into the Chemical Vapour Deposition (CVD) of tungsten and tungsten silicide for potential applications in integrated circuit (IC) and other microelectronic devices. These materials may find novel applications in contact schemes for transistors in advanced ICs, buried high conductivity layers in novel Silicon-On-Insulator (SOI) technology and in power electronic devices. The CVD techniques developed may also be used for metal coating of recessed or enclosed features which may occur in novel electronic or electromechanical devices. CVD of tungsten was investigated using the silicon reduction reaction of WF sub 6. W layers with an optimum self-limiting thickness of 100 nm and resistivity 20 mu OMEGA centre dot cm were produced self-aligned to silicon. A hydrogen passivation technique was developed as part of the wafer pre-clean schedule and proved essential in achieving optimum layer thickness. Layers produced by this approach are ideal for intimate contact to shallow junct...

  2. Dependence of ion-induced Pd-silicide formation on nuclear energy deposition density

    Energy Technology Data Exchange (ETDEWEB)

    Horino, Yuji; Matsunami, Noriaki; Itoh, Noriaki

    1986-05-01

    Pd/sub 2/Si formation at the Pd-Si interface induced by irradiation with ions having a wide range of nuclear energy of deposition density has been investigated. It is found that the thickness of the silicide layer formed by irradiation is proportional to the ion fluence for irradiation with ions having low energy-deposition densities, while it is proportional to the square root of the fluence for irradiation with ions having energy-deposition densities. The results indicate that Pd/sub 2/Si formation is reaction limited when the energy-deposition density at the interface is low and is diffusion limited when it is high. The results are compared with the phenomenological theory developed by Horino et al. and it is shown that such a dependence of the limiting processes on the energy depositon density is induced when the diffusion is thermally activated while the reaction at the interface is radiation-enhanced.

  3. Discovery of Brownleeite: a New Manganese Silicide Mineral in an Interplanetary Dust Particle

    Science.gov (United States)

    Keller, Lindsay P.; Nakamura-Messenger, Keiko; Clemett, Simon J.; Messenger, Scott; Jones, John H.; Palma, Russell L.; Pepin, Robert O.; Klock, Wolfgang; Zolensky, Michael E.; Tatsuoka, Hirokazu

    2011-01-01

    The Earth accretes approximately 40,000 tons of cosmic dust annually, originating mainly from the disintegration of comets and collisions among asteroids. This cosmic dust, also known as interplanetary dust particles (IDPs), is a subject of intense interest since it is made of the original building blocks of our Solar System. Although the specific parent bodies of IDPs are unknown, the anhydrous chondritic-porous IDPs (CP-IDPs) subset has been potentially linked to a cometary source. The CP-IDPs are extremely primitive materials based on their unequilibrated mineralogy, C-rich chemistry, and anomalous isotopic signatures. In particular, some CP-IDPs escaped the thermal, aqueous and impact shock processing that has modified or destroyed the original mineralogy of meteorites. Thus, the CP-IDPs represent some of the most primitive solar system materials available for laboratory study. Most CP-IDPs are comprised of minerals that are common on Earth. However, in the course of an examination of one of the CP-IDPs, we encountered three sub-micrometer sized grains of manganese silicide (MnSi), a phase that has heretofore not been found in nature. In the seminar, we would like to focus on IDP studies and this manganese silicide phase that has been approved as the first new mineral identified from a comet by the International Mineralogical Association (IMA) in 2008. The mineral is named in honour of Donald E. Brownlee, an American astronomer and a founder of the field of cosmic dust research who is the principal investigator of the NASA Stardust Mission that collected dust samples from Comet 81P/Wild-2 and returned them to Earth. Much of our current view and understanding of the early solar system would not exist without the pioneering work of professor Don Brownlee in the study of IDPs.

  4. The modulation of Schott ky barrier height of NiSi/n-Si Schottky diodes by silicide as diffusion source technique

    Institute of Scientific and Technical Information of China (English)

    An Xia; Fan Chun-Hui; Huang Ru; Guo Yue; Xu Cong; Zhang Xing; Wang Yang-Yuan

    2009-01-01

    This paper reports that the Schottky barrier height modulation of NiSi/n-si is experimentally investigated by adopting a novel silicide-as-diffusion-source technique. which avoids the damage to the NiSi/Si interface induced from the conventional dopant segregation method. In addition, the impact of post-BF_2 implantation after silicidation on the surface morphology of Ni silicides is also illustrated. The thermal stability of Ni silicides can be improved by sihcideas-diffusion-source technique. Besides, the electron Schottky barrier height is successfully modulated by 0.11 eV at a boron dose of 10~(15) cm~(-2) in comparison with the non. implanted samples. The change of barrier height is not attributed to the phase change of silicide films but due to the boron pile-up at the interface of NiSi and Si substrate which causes the upward bending of conducting band. The results demonstrate the feasibility of novel silicide-as-diffusion-source technique for the fabrication of Schottky source/drain Si MOS devices.

  5. Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium.

    Science.gov (United States)

    Hohensee, M A; Leefer, N; Budker, D; Harabati, C; Dzuba, V A; Flambaum, V V

    2013-08-02

    We report a joint test of local Lorentz invariance and the Einstein equivalence principle for electrons, using long-term measurements of the transition frequency between two nearly degenerate states of atomic dysprosium. We present many-body calculations which demonstrate that the energy splitting of these states is particularly sensitive to violations of both special and general relativity. We limit Lorentz violation for electrons at the level of 10(-17), matching or improving the best laboratory and astrophysical limits by up to a factor of 10, and improve bounds on gravitational redshift anomalies for electrons by 2 orders of magnitude, to 10(-8). With some enhancements, our experiment may be sensitive to Lorentz violation at the level of 9 × 10(-20).

  6. Nonlinear optical properties of lutetium and dysprosium bisphthalocyanines at 1550 nm with femto- and nanosecond pulse excitation

    Science.gov (United States)

    Plekhanov, A. I.; Basova, T. V.; Parkhomenko, R. G.; Gürek, A. G.

    2017-02-01

    In this work, the nonlinear optical properties of unsubstituted lutetium (LuPc2) and dysprosium (DyPc2) bisphthalocyanines as well as octasubstituted Lu(PcR8)2 derivative with R=-S(C6H13) were studied at a wavelength of 1550 nm with 10 ns and 300 fs pulses. Based on Z-scan measurements the nonlinear absorption and refraction coefficient as well as the nature of nonlinear optical properties were analyzed for these materials. Open aperture Z-scan indicates strong two-photon absorption in all three bisphthalocyanines in nano- and femtosecond regimes. With good nonlinear optical coefficients, bisphthalocyanines of rare earth elements are expected to be promising materials for the creation of optical limiters.

  7. Spectroscopic data of the 1.8-, 2.9-, and 4.3- mu m transitions in dysprosium-doped gallium lanthanum sulfide glass

    Science.gov (United States)

    Schweizer, T.; Hewak, D. W.; Samson, B. N.; Payne, D. N.

    1996-10-01

    Infrared emission at 1.8, 2.9, and 4.3 mu m is measured in dysprosium-doped gallium lanthanum sulfide (Ga:La:S) glass excited at 815 nm. Emission cross sections were calculated by Judd-Ofelt analysis, the Fuchtbauer-Ladenburg equation, and the theory of McCumber. The sigma tau value for the 4.3- mu m transition is \\similar 4000 times larger in the Ga:La:S glass than in a dysprosium-doped LiYF4 crystal, which has lased on this transition. The large sigma tau value and the recently reported ability of Ga:La:S glass to be fabricated into fiber form show the potential for an efficient, low-threshold mid-infrared fiber laser. The fluorescence peak at 4.3 mu m coincides with the fundamental absorption of atmospheric carbon dioxide, making the glass a potential laser source for gas-sensing applications.

  8. Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass.

    Science.gov (United States)

    Schweizer, T; Hewak, D W; Samson, B N; Payne, D N

    1996-10-01

    Infrared emission at 1.8, 2.9, and 4.3 microm is measured in dysprosium-doped gallium lanthanum sulfide (Ga:La:S) glass excited at 815 nm. Emission cross sections were calculated by Judd-Ofelt analysis, the Füchtbauer- Ladenburg equation, and the theory of McCumber. The sigmatau value for the 4.3-microm transition is ~4000 times larger in the Ga:La:S glass than in a dysprosium-doped LiYF(4) crystal, which has lased on this transition. The large sigmatau value and the recently reported ability of Ga:La:S glass to be fabricated into fiber form show the potential for an efficient, low-threshold mid-infrared fiber laser. The f luorescence peak at 4.3 microm coincides with the fundamental absorption of atmospheric carbon dioxide, making the glass a potential laser source for gas-sensing applications.

  9. Evaluation of powder metallurgical processing routes for multi-component niobium silicide-based high-temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seemueller, Hans Christoph Maximilian

    2016-03-22

    Niobium silicide-based composites are potential candidates to replace nickel-base superalloys for turbine applications. The goal of this work was to evaluate the feasibility and differences in ensuing properties of various powder metallurgical processing techniques that are capable of manufacturing net-shape turbine components. Two routes for powder production, mechanical alloying and gas atomization were combined with compaction via hot isostatic pressing and powder injection molding.

  10. On-line complexation/cloud point preconcentration for the sensitive determination of dysprosium in urine by flow injection inductively coupled plasma-optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Claudia; Cerutti, Soledad; Silva, Maria F. [Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700, San Luis (Argentina); Olsina, Roberto A.; Martinez, Luis D. [Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700, San Luis (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Avda. Rivadavia 1917, CP C1033AAJJ, Buenos Aires (Argentina)

    2003-01-01

    An on-line dysprosium preconcentration and determination system based on the hyphenation of cloud point extraction (CPE) to flow injection analysis (FIA) associated with ICP-OES was studied. For the preconcentration of dysprosium, a Dy(III)-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex was formed on-line at pH 9.22 in the presence of nonionic micelles of PONPE-7.5. The micellar system containing the complex was thermostated at 30 C in order to promote phase separation, and the surfactant-rich phase was retained in a microcolumn packed with cotton at pH 9.2. The surfactant-rich phase was eluted with 4 mol L{sup -1} nitric acid at a flow rate of 1.5 mL min{sup -1}, directly in the nebulizer of the plasma. An enhancement factor of 50 was obtained for the preconcentration of 50 mL of sample solution. The detection limit value for the preconcentration of 50 mL of aqueous solution of Dy was 0.03 {mu}g L{sup -1}. The precision for 10 replicate determinations at the 2.0 {mu}g L{sup -1}Dy level was 2.2% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the preconcentration system for dysprosium was linear with a correlation coefficient of 0.9994 at levels near the detection limits up to at least 100 {mu}g L {sup -1}. The method was successfully applied to the determination of dysprosium in urine. (orig.)

  11. Thin manganese films on Si(111)-(7 x 7): electronic structure and strain in silicide formation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashwani; Tallarida, M; Hansmann, M; Starke, U; Horn, K [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

    2004-04-07

    The electronic and structural properties of thin epitaxial Mn films on Si(111)-(7 x 7) and their silicide reaction are studied by means of low-energy electron diffraction, scanning tunnelling microscopy (STM) and photoemission spectroscopy (PES). The deposition of Mn at room temperature initially results in the growth of islands. The metal-silicon reaction already occurs at this temperature, which is further enhanced by annealing up to 400 deg. C, leading to the formation of manganese silicide and turning islands into nearly closed films at higher coverage. A pseudo-(1 x 1) phase develops for Mn films of up to 1 monolayer (ML) thickness. For films of higher thicknesses of up to 5 ML, a ( {radical}3 x {radical}3)R30 deg. phase is observed. STM images show that then the silicide film is almost closed and exhibits a strain relief network reflecting an incommensurate interface structure. PES reveals that the (1 x 1) phase is semiconducting while the ({radical}3 x {radical}3)R30 deg. phase is metallic. For both phases, Si 2p core level photoemission data indicate that the surface is probably terminated by Si atoms.

  12. Thin manganese films on Si(111)-(7 × 7): electronic structure and strain in silicide formation

    Science.gov (United States)

    Kumar, Ashwani; Tallarida, M.; Hansmann, M.; Starke, U.; Horn, K.

    2004-04-01

    The electronic and structural properties of thin epitaxial Mn films on Si(111)-(7 × 7) and their silicide reaction are studied by means of low-energy electron diffraction, scanning tunnelling microscopy (STM) and photoemission spectroscopy (PES). The deposition of Mn at room temperature initially results in the growth of islands. The metal-silicon reaction already occurs at this temperature, which is further enhanced by annealing up to 400°C, leading to the formation of manganese silicide and turning islands into nearly closed films at higher coverage. A pseudo-(1 × 1) phase develops for Mn films of up to 1 monolayer (ML) thickness. For films of higher thicknesses of up to 5 ML, a ( \\sqrt{3}\\times\\sqrt{3} )R30° phase is observed. STM images show that then the silicide film is almost closed and exhibits a strain relief network reflecting an incommensurate interface structure. PES reveals that the (1 × 1) phase is semiconducting while the ( \\sqrt{3}\\times\\sqrt{3} )R30° phase is metallic. For both phases, Si 2p core level photoemission data indicate that the surface is probably terminated by Si atoms.

  13. Electrical and optical properties of sub-10 nm nickel silicide films for silicon solar cells

    Science.gov (United States)

    Brahmi, Hatem; Ravipati, Srikanth; Yarali, Milad; Shervin, Shahab; Wang, Weijie; Ryou, Jae-Hyun; Mavrokefalos, Anastassios

    2017-01-01

    Highly conductive and transparent films of ultra-thin p-type nickel silicide films have been prepared by RF magnetron sputtering of nickel on silicon substrates followed by rapid thermal annealing in an inert environment in the temperature range 400-600 °C. The films are uniform throughout the wafer with thicknesses in the range of 3-6 nm. The electrical and optical properties are presented for nickel silicide films with varying thickness. The Drude-Lorentz model and Fresnel equations were used to calculate the dielectric properties, sheet resistance, absorption and transmission of the films. These ultrathin nickel silicide films have excellent optoelectronic properties for p-type contacts with optical transparencies up to 80% and sheet resistance as low as ~0.15 µΩ cm. Furthermore, it was shown that the use of a simple anti-reflection (AR) coating can recover most of the reflected light approaching the values of a standard Si solar cell with the same AR coating. Overall, the combination of ultra-low thickness, high transmittance, low sheet resistance and ability to recover the reflected light by utilizing standard AR coating makes them ideal for utilization in silicon based photovoltaic technologies as a p-type transparent conductor.

  14. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.R.; Zheng, M.H.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  15. On the interdiffusion in multilayered silicide coatings for the vanadium-based alloy V-4Cr-4Ti

    Science.gov (United States)

    Chaia, N.; Portebois, L.; Mathieu, S.; David, N.; Vilasi, M.

    2017-02-01

    To provide protection against corrosion at high temperatures, silicide diffusion coatings were developed for the V-4Cr-4Ti alloy, which can be used as the fuel cladding in next-generation sodium-cooled fast breeder reactors. The multilayered coatings were prepared by halide-activated pack cementation using MgF2 as the transport agent and pure silicon (high activity) as the master alloy. Coated pure vanadium and coated V-4Cr-4Ti alloy were studied and compared as substrates. In both cases, the growth of the silicide layers (V3Si, V5Si3, V6Si5 and VSi2) was controlled exclusively by solid-state diffusion, and the growth kinetics followed a parabolic law. Wagner's analysis was adopted to calculate the integrated diffusion coefficients for all silicides. The estimated values of the integrated diffusion coefficients range from approximately 10-9 to 10-13 cm2 s-1. Then, a diffusion-based numerical approach was used to evaluate the growth and consumption of the layers when the coated substrates were exposed at critical temperatures. The estimated lifetimes of the upper VSi2 layer were 400 h and 280 h for pure vanadium and the V-4Cr-4Ti alloy, respectively. The result from the numeric simulation was in good agreement with the layer thicknesses measured after aging the coated samples at 1150 °C under vacuum.

  16. Rate Theory Modeling and Simulations of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States); Mei, Zhigang [Argonne National Lab. (ANL), Argonne, IL (United States); Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-10

    Uranium silicide (U3Si2) fuel has higher thermal conductivity and higher uranium density, making it a promising candidate for the accident-tolerant fuel (ATF) used in light water reactors (LWRs). However, previous studies on the fuel performance of U3Si2, including both experimental and computational approaches, have been focusing on the irradiation conditions in research reactors, which usually involve low operation temperatures and high fuel burnups. Thus, it is important to examine the fuel performance of U3Si2 at typical LWR conditions so as to evaluate the feasibility of replacing conventional uranium dioxide fuel with this silicide fuel material. As in-reactor irradiation experiments involve significant time and financial cost, it is appropriate to utilize modeling tools to estimate the behavior of U3Si2 in LWRs based on all those available research reactor experimental references and state-of-the-art density functional theory (DFT) calculation capabilities at the early development stage. Hence, in this report, a comprehensive investigation of the fission gas swelling behavior of U3Si2 at LWR conditions is introduced. The modeling efforts mentioned in this report was based on the rate theory (RT) model of fission gas bubble evolution that has been successfully applied for a variety of fuel materials at devious reactor conditions. Both existing experimental data and DFT-calculated results were used for the optimization of the parameters adopted by the RT model. Meanwhile, the fuel-cladding interaction was captured by the coupling of the RT model with simplified mechanical correlations. Therefore, the swelling behavior of U3Si2 fuel and its consequent interaction with cladding in LWRs was predicted by the rate theory modeling, providing valuable information for the development of U3Si2 fuel as an accident

  17. Silicides and Nitrides Formation in Ti Films Coated on Si and Exposed to (Ar-N2-H2 Expanding Plasma

    Directory of Open Access Journals (Sweden)

    Isabelle Jauberteau

    2017-02-01

    Full Text Available The physical properties including the mechanical, optical and electrical properties of Ti nitrides and silicides are very attractive for many applications such as protective coatings, barriers of diffusion, interconnects and so on. The simultaneous formation of nitrides and silicides in Ti films improves their electrical properties. Ti films coated on Si wafers are heated at various temperatures and processed in expanding microwave (Ar-N2-H2 plasma for various treatment durations. The Ti-Si interface is the centre of Si diffusion into the Ti lattice and the formation of various Ti silicides, while the Ti surface is the centre of N diffusion into the Ti film and the formation of Ti nitrides. The growth of silicides and nitrides gives rise to two competing processes which are thermodynamically and kinetically controlled. The effect of thickness on the kinetics of the formation of silicides is identified. The metastable C49TiSi2 phase is the main precursor of the stable C54TiSi2 phase, which crystallizes at about 600 °C, while TiN crystallizes at about 800 °C.

  18. Influence of mechanical grinding on lithium insertion and extraction properties of iron silicide/silicon composites

    Science.gov (United States)

    Usui, Hiroyuki; Nouno, Kazuma; Takemoto, Yuya; Nakada, Kengo; Ishii, Akira; Sakaguchi, Hiroki

    2014-12-01

    We prepared composite electrodes of iron silicide/Si by using mechanical grinding for mixtures of ferrosilicon and Si followed by gas-deposition, and investigated their electrochemical properties as Li-ion battery anode. With increasing the mechanical grinding time, the phase transformation from FeSi to FeSi2 took place more significantly, and the composite electrode showed better cycle stabilities. There was no remarkable difference in mechanical properties and electronic conductivity between FeSi and FeSi2. On the other hand, the FeSi2 electrode exhibited about three times larger capacities in comparison with the FeSi electrode. In addition, a result of our first principle calculation indicates that Li-ion can diffuse more easily in FeSi2 lattice than in FeSi lattice. It is suggested that the better cyclability of the composite electrodes was attributed to the moderate reactivity of FeSi2 with Li and the smooth Li-ion diffusion in it.

  19. Experimental studies of thermal and chemical interactions between oxide and silicide nuclear fuels with water

    Energy Technology Data Exchange (ETDEWEB)

    farahani, A.A.; Corradini, M.L. [Univ. of Wisconsi, Madison, WI (United States)

    1995-09-01

    Given some transient power/cooling mismatch is a nuclear reactor and its inability to establish the necessary core cooling, energetic fuel-coolant interactions (FCI`s commonly called `vapor explosions`) could occur as a result of the core melting and coolant contact. Although a large number of studies have been done on energetic FCI`s, very few experiments have been performed with the actual fuel materials postulated to be produced in severe accidents. Because of the scarcity of well-characterized FCI data for uranium allows in noncommercial reactors (cermet and silicide fuels), we have conducted a series of experiments to provide a data base for the foregoing materials. An existing 1-D shock-tube facility was modified to handle depleted radioactive materials (U{sub 3}O{sub 8}-Al, and U{sub 3}Si{sub 2}-Al). Our objectives have been to determine the effects of the initial fuel composition and temperature and the driving pressure (triggering) on the explosion work output, dynamic pressures, transient temperatures, and the hydrogen production. Experimental results indicate limited energetics, mainly thermal interactions, for these fuel materials as compared to aluminum where more chemical reactions occur between the molten aluminum and water.

  20. Status of core conversion with LEU silicide fuel in JRR-4

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Teruo; Ohnishi, Nobuaki; Shirai, Eiji [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-08-01

    Japan Research Reactor No.4 (JRR-4) is a light water moderated and cooled, 93% enriched uranium ETR-type fuel used and swimming pool type reactor with thermal output of 3.5MW. Since the first criticality was achieved on January 28, 1965, JRR-4 has been used for shielding experiments, radioisotope production, neutron activation analyses, training for reactor engineers and so on for about 30 years. Within the framework of the RERTR Program, the works for conversion to LEU fuel are now under way, and neutronic and thermal-hydraulic calculations emphasizing on safety and performance aspects are being carried out. The design and evaluation for the core conversion are based on the Guides for Safety Design and Evaluation of research and testing reactor facilities in Japan. These results show that the JRR-4 will be able to convert to use LEU fuel without any major design change of core and size of fuel element. LEU silicide fuel (19.75%) will be used and maximum neutron flux in irradiation hole would be slightly decreased from present neutron flux value of 7x10{sup 13}(n/cm{sup 2}/s). The conversion works are scheduled to complete in 1998, including with upgrade of the reactor building and utilization facilities.

  1. The whole-core LEU silicide fuel demonstration in the JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Aso, Tomokazu; Akashi, Kazutomo; Nagao, Yoshiharu [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others

    1997-08-01

    The JMTR was fully converted to LEU silicide (U{sub 3}Si{sub 2}) fuel with cadmium wires as burnable absorber in January, 1994. The reduced enrichment program for the JMTR was initiated in 1979, and the conversion to MEU (enrichment ; 45%) aluminide fuel was carried out in 1986 as the first step of the program. The final goal of the program was terminated by the present LEU conversion. This paper describes the results of core physics measurement through the conversion phase from MEU fuel core to LEU fuel core. Measured excess reactivities of the LEU fuel cores are mostly in good agreement with predicted values. Reactivity effect and burnup of cadmium wires, therefore, were proved to be well predicted. Control rod worth in the LEU fuel core is mostly less than that in the MEU fuel core. Shutdown margin was verified to be within the safety limit. There is no significant difference in temperature coefficient of reactivity between the MEU and LEU fuel cores. These results verified that the JMTR was successfully and safely converted to LEU fuel. Extension of the operating cycle period was achieved and reduction of spend fuel elements is expected by using the fuel with high uranium density.

  2. The ability of silicide coating to delay the catastrophic oxidation of vanadium under severe conditions

    Science.gov (United States)

    Chaia, N.; Mathieu, S.; Rouillard, F.; Vilasi, M.

    2015-02-01

    V-4Cr-4Ti vanadium alloy is a potential cladding material for sodium-cooled fast-neutron reactors (SFRs). However, its affinity for oxygen and the subsequent embrittlement that oxygen induces causes a need for an oxygen diffusion barrier, which can be obtained by manufacturing a multi-layered silicide coating. The present work aims to evaluate the effects of thermal cycling (using a cyclic oxidation device) and tensile and compressive stresses (using the three-point flexure test) on the coated alloy system. Tests were performed in air up to 1100 °C, which is 200 °C higher than the accidental temperature for SFR applications. The results showed that the VSi2 coating was able to protect the vanadium substrate from oxidation for more than 400 1-h cycles between 1100 °C and room temperature. The severe bending applied to the coated alloy at 950 °C using a load of 75 MPa did not lead to specimen breakage. It can be suggested that the VSi2 coating has mechanical properties compatible with the V-4Cr-4Ti alloy for SFR applications.

  3. Characteristics of high wear resistant Ni-base materials strengthened by precipitation hardening of wolfram silicide

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, Kiyoshi; Ide, Hisayuki; Ishiyama, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-12-31

    The practical application of Co-base Stellite and Ni base Inconel for reactor core components with high allowable stress levels is considered to be limited by the formation of radioactive cruds and the susceptibility to IASCC respectively. For this view-point, W-silicide strengthened Cr-W-Si Ni-base high wear resistant alloy so-called HWI alloy was newly developed as an alternative material. The chemical composition and the alloy making process were optimized by applying the electron beam purification process and the thermo-mechanical treatment. The mechanical strength higher than it of above commercial alloys was easily obtained by both solid solution hardening and precipitation hardening, because this alloy has the excellent cold and hot workabilities. The irradiation resistance and the corrosion resistance superior than these of above commercial alloys were verified by several laboratory tests of HWI heats. To maintain austenite phase stability at the practical temperature and to enrich oxide former alloying elements were clarified to be the most important means for this alloy development. (author)

  4. Crystal structure of the ternary silicide Gd2Re3Si5

    Directory of Open Access Journals (Sweden)

    Vitaliia Fedyna

    2014-12-01

    Full Text Available A single crystal of the title compound, the ternary silicide digadolinium trirhenium pentasilicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubooctahedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square antiprisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re—Re distance of 2.78163 (5 Å and isolated squares with an Re—Re distance of 2.9683 (6 Å.

  5. Formation of the Thermoelectric Candidate Chromium Silicide by Use of a Pack-Cementation Process

    Science.gov (United States)

    Stathokostopoulos, D.; Chaliampalias, D.; Tarani, E.; Theodorakakos, A.; Giannoulatou, V.; Polymeris, G. S.; Pavlidou, E.; Chrissafis, K.; Hatzikraniotis, E.; Paraskevopoulos, K. M.; Vourlias, G.

    2014-10-01

    Transition-metal silicides are reported to be good candidates for thermoelectric applications because of their thermal and structural stability, high electrical conductivity, and generation of thermoelectric power at elevated temperatures. Chromium disilicide (CrSi2) is a narrow-gap semiconductor and a potential p-type thermoelectric material up to 973 K with a band gap of 0.30 eV. In this work, CrSi2 was formed from Si wafers by use of a two-step, pack-cementation, chemical diffusion method. Several deposition conditions were used to investigate the effect of temperature and donor concentration on the structure of the final products. Scanning electron microscopy and x-ray diffraction analysis were performed for phase identification, and thermal stability was evaluated by means of thermogravimetric measurements. The results showed that after the first step, chromizing, the structure of the products was a mixture of several Cr-Si phases, depending on the donor (Cr) concentration during the deposition process. After the second step, siliconizing, the pure CrSi2 phase was formed as a result of Si enrichment of the initial Cr-Si phases. It was also revealed that this compound has thermoelectric properties similar to those reported elsewhere. Moreover, it was found to have exceptional chemical stability even at temperatures up to 1273 K.

  6. Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy

    Science.gov (United States)

    Zhang, Chen; Ni, Dalong; Liu, Yanyan; Yao, Heliang; Bu, Wenbo; Shi, Jianlin

    2017-05-01

    A material that rapidly absorbs molecular oxygen (known as an oxygen scavenger or deoxygenation agent (DOA)) has various industrial applications, such as in food preservation, anticorrosion of metal and coal deoxidation. Given that oxygen is vital to cancer growth, to starve tumours through the consumption of intratumoral oxygen is a potentially useful strategy in fighting cancer. Here we show that an injectable polymer-modified magnesium silicide (Mg2Si) nanoparticle can act as a DOA by scavenging oxygen in tumours and form by-products that block tumour capillaries from being reoxygenated. The nanoparticles are prepared by a self-propagating high-temperature synthesis strategy. In the acidic tumour microenvironment, the Mg2Si releases silane, which efficiently reacts with both tissue-dissolved and haemoglobin-bound oxygen to form silicon oxide (SiO2) aggregates. This in situ formation of SiO2 blocks the tumour blood capillaries and prevents tumours from receiving new supplies of oxygen and nutrients.

  7. Synthesis and Crystal Structure of Tri-(2-mercaptopyridine N-oxide)bis(dimethyl sulfoxide) Dysprosium(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A range of rare earth metal complexes of 2-mercaptopyridine N-oxide (Hmpo) have been synthesized, and studied by elemental analysis and IR spectroscopic technique. Crystal structure of Dy(mpo)3(DMSO)2 (DMSO = dimethyl sulfoxide) has been determined. The complex crystallizes in the triclinic system, space group Pī with lattice parameters: a = 9.602(3), b = 9.803(3), c = 15.498(5)A, α= 89.51(1), β= 85.73(1), γ= 62.99(1)°, Dc = 1.787 g/cm3, C19H24N3O5S5Dy, Mr = 697.21, Z = 2, F(000) = 690, μ = 3.321mm-1, the final R = 0.0237 and wR = 0.0587 for 4116 reflections with I>σ2(I). The coordination number of dysprosium Ⅲ is eight, and its coordination geometry is a somewhat distorted square antiprism with O(3), O(4), O(5), S(3) and O(1), O(2), S(1), S(2) at the tetragonal bases (dihedral angle between their mean planes is 2.9(1)0). Around the Dy atom, three five-membered ring planes (Dy, O, N, C, S) make the dihedral angles of 74.42, 11.31 and 83.72, respectively.

  8. Photo-, cathodo- and thermoluminescent properties of dysprosium-doped HfO2 films deposited by ultrasonic spray pyrolysis.

    Science.gov (United States)

    Manríquez, R Reynoso; Góngora, J A I Díaz; Guzmán-Mendoza, J; Montalvo, T Rivera; Olguín, J C Guzmán; Ramírez, P V Cerón; García-Hipólito, M; Falcony, C

    2014-09-01

    In this work, the photoluminescent (PL), cathodoluminescent (CL) and thermoluminescent (TL) properties of hafnium oxide films doped with trivalent dysprosium ions are reported. The films were deposited on glass substrates at temperatures ranging from 300 to 600°C, using chlorides as precursor reagents. The surface morphology of films showed a veins shaped microstructure at low deposition temperatures, while at higher temperatures the formation of spherical particles was observed on the surface. X-ray diffraction showed the presence of HfO2 monoclinic phase in the films deposited at temperatures greater than 400°C. The PL and CL spectra of the doped films showed the highest emission band centered at 575nm corresponding to the transitions (4)F9/2→(6)H13/2, which is a characteristic transition of Dy(3+) ion. The greatest emission intensities were observed in samples doped with 1 atomic percent (at%) of DyCl3 in the precursor solution. Regarding the TL behavior, the glow curve of HfO2:Dy(+3) films exhibited spectrum with one broad band centered at about 150°C. The highest intensity TL response was observed on the films deposited at 500°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    Science.gov (United States)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  10. Ferroelectric properties of dysprosium-doped Bi4Ti3O12 thin films crystallized in various atmospheres

    Institute of Scientific and Technical Information of China (English)

    CHENG Chuan-pin; TANG Ming-hua; YE Zhi; ZHOU Yic-hun; ZHENG Xue-jun; ZHONG Xiang-li; HU Zeng-shun

    2006-01-01

    Dysprosium-doped Bi4Ti3O12 (Bi3.4Dy0.6Ti3O12,BDT) ferroelectric thin films were deposited on Pt(111)/Ti/SiO2/Si(111) substrates by chemical solution deposition (CSD) and crystallized in nitrogen,air and oxygen atmospheres,respectively. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to identify the crystal structure,the surface and cross-section morphology of the deposited ferroelectric films. The results show that the crystallization atmosphere has significant effect on determining the crystallization and ferroelectric properties of the BDT films. The film crystallized in nitrogen at a relatively low temperature of 650 ℃,exhibits excellent crystallinity and ferroelectricity with a remanent polarization of 2Pr = 24.9 μC/cm2 and a coercive field of 144.5 kV/cm. While the films annealed in air and oxygen at 650 ℃ do not show good crystallinity and ferroelectricity until they are annealed at 700 ℃. The structure evolution and ferroelectric properties of BDT thin films annealed under different temperatures (600-750 ℃) were also investigated. The crystallinity of the BDT films is improved and the average grain size increases when the annealing temperature increases from 600 ℃ to 750 ℃ at an interval of 50 ℃. However,the polarization of the films is not monotonous function of the annealing temperature.

  11. Comparing the electrical characteristics and reliabilities of BJTs and MOSFETs between Pt and Ti contact silicide processes

    Science.gov (United States)

    Liu, Kaiping; Shang, Ling

    1999-08-01

    The sub-threshold characteristics and the reliability of BJTs, using platinum contact silicide (PtSi) or titanium contact silicide (TiSi2), are compared and analyzed. During processing, it is observed that the TiSi2 process produces higher interface state density (Dit) than the PtSi process. The increase in Dit not only leads to a higher base current in the BJTs, but also leads to a lower transconductance for the MOS transistors. The data also show that the impact on NPN and nMOS is more severe than the impact of PNP and pMOS, respectively. This can be explained by the non-symmetric interface state distribution, the re- activation of boron, and/or by substrate trap centers. The amount of interface states produced depends not only on the thickness of the titanium film deposited, but also on the temperature and duration of the titanium silicide process. The electrical data indicates that after all the Back-End- Of-The-Line processing steps, which includes a forming gas anneal, Dit is still higher on wafers with the TiSi2 transistor's base current increases at different rates between the two processes, but eventually levels off to the same final value. However, the PNP transistor's base current increases at approximately the same rate, but eventually levels off at different final values. These indicate that the TiSi2 process may have modified the silicon and oxygen dangling bond structure during its high temperature process in addition to removing the hydrogen from the passivated interface states.

  12. Orientation relationship between alpha-prime titanium and silicide S2 in alloy Ti-6Al-5Zr-0. 5Mo-0. 25Si

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandra, C.; Singh, V.

    1985-03-01

    Orientation relationships between the silicide S2 and the matrix of alpha-prime platelets are established for the titanium alloy 685 (Ti-6Al-5Zr-0.5Mo-0.25Si), a near-alpha alloy designed for the high-temperature components of jet engines. A stereogram showing the parallel planes of alpha-prime and S2 is presented for the alloy in the water-quenched and aged condition. A table is also presented which lists the parallel planes of the matrix and the silicide along with the misfit parameters. The results obtained are compared with the orientation relationships reported in the literature. 14 references.

  13. A study of nickel silicide in a conventional furnace for Ni/Cu contact monocrystalline-silicon solar cells

    Science.gov (United States)

    Min, Seon Kyu; Lee, Soo Hong

    2013-01-01

    High-conductivity contacts in place of screen-printed contacts are in demand for commercial solar cells. Also, simplifying the process steps is required for commercial solar cells. In addition, very expensive metals are necessary improved efficiency without using scarce. In this research, we replaced screen-printed contacts with Ni/Cu contacts in passivated emitter solar cells. A layer of nickel was used as the seed and the adhesion layer. The main contact was formed by plating with copper. Firing conditions in a conventional furnace were varied so as to form nickel silicide. The best cell showed a solar cell efficiency of 18.76%.

  14. Physical properties of ternary silicide superconductors Li2XSi3 (X = Rh, Os): An ab initio study

    Science.gov (United States)

    Alam, M. A.; Zilani, M. A. K.; Parvin, F.; Hadi, M. A.

    2017-08-01

    An ab initio method, based on the plane wave pseudopotential and the generalized gradient approximation (GGA), is performed to investigate the physical properties such as structural, elastic, electronic and bonding properties of newly synthesized Li2RhSi3 and predicted Li2OsSi3 ternary silicide superconductors for the first time. Both of these compounds are mechanically stable and are brittle in nature. They also have good machinability. Electronic band structures reveal that these compounds have metallic characteristics. They possess complex bonding nature (metallic, covalent and ionic). According to theoretical Vickers hardness, Li2RhSi3 is softer than Li2OsSi3.

  15. Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gamble, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation; Mei, Zhi-Gang [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-08-29

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U3Si2 at LWR conditions. The fission gas behavior of U3Si2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranular bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U3Si2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U3Si2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U3Si2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.

  16. Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gamble, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation; Mei, Zhi-Gang [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-08-29

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions need to be well-understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U3Si2 at LWR conditions. The fission gas behavior of U3Si2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranular bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U3Si2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U3Si2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U3Si2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.

  17. Sensitive search for the temporal variation of the fine structure constant using radio-frequency E1 transitions in atomic dysprosium

    CERN Document Server

    Nguyen, A T; Lamoreaux, S K; Torgerson, J R

    2003-01-01

    It has been proposed that the radio-frequency electric-dipole (E1) transition between two nearly degenerate opposite-parity states in atomic dysprosium should be highly sensitive to possible temporal variation of the fine structure constant ($\\alpha$) [V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. A {\\bf 59}, 230 (1999)]. We discuss here an experimental realization of the proposed search, which involves monitoring the E1 transition frequency over a period of time using direct frequency counting techniques. We estimate that a statistical sensitivity of $|\\adota| \\sim 10^{-18}$/yr may be achieved and discuss possible systematic effects in such a measurement.

  18. Thermal Stability and Growth Behavior of Erbium Silicide Nanowires Self-Assembled on a Vicinal Si(001) Surface

    Institute of Scientific and Technical Information of China (English)

    DING Tao; SONG Jun-Qiang; LI Juan; CAI Qun

    2011-01-01

    Erbium silicide nanowires are self-assembled on vicinal Si(Ool) substrates after electron beam evaporation and post annealing at 63(fC In-situ scanning tunneling microscopy investigations manifest that the nanowires will successively shrink and transform into a nanoisland with annealing prolonged. Meanwhile, a structural transition from hexagonal AIB2 phase to tetragonal ThSi'2 phase is revealed with high-resolution transmission electron microscopy. It is also found that the nanowires gradually expand to embed into the substrates during the growth process, which has much influence on the shape instability of nanowires. Additionally, a multiple deposition-annealing treatment is given as a novel growth method to strengthen the controlled fabrication of nanowires.%@@ Erbium silicide nanowires are self-assembled on vicinal Si(001) substrates after electron beam evaporation and post annealing at 630℃ In-situ scanning tunneling microscopy investigations manifest that the nanowires will successively shrink and transform into a nanoisland with annealing prolonged.Meanwhile, a structural transition from hexagonal AlB phase to tetragonal ThSi phase is revealed with high-resolution transmission electron microscopy.It is also found that the nanowires gradually expand to embed into the substrates during the growth process, which has much influence on the shape instability of nanowires.Additionally, a multiple deposition- annealing treatment is given as a novel growth method to strengthen the controlled fabrication of nanowires.

  19. Effects of nitrogen annealing on surface structure, silicide formation and magnetic properties of ultrathin films of Co on Si(100)

    Indian Academy of Sciences (India)

    Ganesh K Rajan; Shivaraman Ramaswamy; C Gopalakrishnan; D John Thiruvadigal

    2012-02-01

    Effects of nitrogen annealing on structural and magnetic properties of Co/Si (100) up to 700°C has been studied in this paper. Ultrathin Co films having a constant thickness of 50 Å were grown on Si (100) substrates using electron-beam evaporation under very high vacuum conditions at room temperature. Subsequently, the samples were annealed at temperatures ranging from 100–700°C in a nitrogen environment at atmospheric pressure. Sample quality and surface morphology were examined using atomic force microscopy. Silicide formation and the resultant variation in crystallographic arrangement were studied using X-ray diffractometer. The magnetization measurements done using a vibrating sample magnetometer indicate a decrease in coercivity and retentivity values with increase in annealing temperature. Resistivity of the samples measured using a four-point probe set up shows a decrease in resistivity with increase in annealing temperature. Formation of various silicide phases at different annealing temperatures and the resultant variation in the magnetic susceptibility has been thoroughly studied and quantified in this work.

  20. Hot wire chemical vapor deposition: limits and opportunities of protecting the tungsten catalyzer from silicide with a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Frigeri, P.A. [Dept. de Fisica Aplicada i Optica, Universitat de Barcelona, Barcelona-08028 (Spain); Nos, O., E-mail: oriol_nos@ub.ed [Dept. de Fisica Aplicada i Optica, Universitat de Barcelona, Barcelona-08028 (Spain); Ecotecnia (ALSTOM Group) (Spain); Bengoechea, S.; Frevert, C.; Asensi, J.M.; Bertomeu, J. [Dept. de Fisica Aplicada i Optica, Universitat de Barcelona, Barcelona-08028 (Spain)

    2009-04-30

    Hot Wire Chemical Vapor Deposition (HW-CVD) is one of the most promising techniques for depositing the intrinsic microcrystalline silicon layer for the production of micro-morph solar cells. However, the silicide formation at the colder ends of the tungsten wire drastically reduces the lifetime of the catalyzer, thus limiting its industrial exploitation. A simple but interesting strategy to decrease the silicide formation is to hide the electrical contacts of the catalyzer in a long narrow cavity which reduces the probability of the silane molecules to reach the colder ends of the wire. In this paper, the working mechanism of the cavity is elucidated. Measurements of the thickness profile of the silicon deposited in the internal walls of the cavity have been compared with those predicted using a simple diffusion model based on the assumption of Knudsen flow. A lifetime study of the protected and unprotected wires has been carried out. The different mechanisms which determine the deterioration of the catalyzer have been identified and discussed.

  1. Silicide induced surface defects in FePt nanoparticle fcc-to-fct thermally activated phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shu; Lee, Stephen L. [School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS (United Kingdom); André, Pascal, E-mail: pjpandre@riken.jp [School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS (United Kingdom); RIKEN, Wako 351-0198 (Japan); Department of Physics, CNRS-Ewha International Research Center (CERC), Ewha W. University, Seoul 120-750 (Korea, Republic of)

    2016-11-01

    Magnetic nanoparticles (MnPs) are relevant to a wide range of applications including high density information storage and magnetic resonance imaging to name but a few. Among the materials available to prepare MnPs, FePt is attracting growing attention. However, to harvest the strongest magnetic properties of FePt MnPs, a thermal annealing is often required to convert face-centered cubic as synthesized nPs into its tetragonal phase. Rarely addressed are the potential side effects of such treatments on the magnetic properties. In this study, we focus on the impact of silica shells often used in strategies aiming at overcoming MnP coalescence during the thermal annealing. While we show that this shell does prevent sintering, and that fcc-to-fct conversion does occur, we also reveal the formation of silicide, which can prevent the stronger magnetic properties of fct-FePt MnPs from being fully realised. This report therefore sheds lights on poorly investigated and understood interfacial phenomena occurring during the thermal annealing of MnPs and, by doing so, also highlights the benefits of developing new strategies to avoid silicide formation.

  2. Influence of layout parameters on snapback characteristic for a gate-grounded NMOS device in 0.13-μm silicide CMOS technology

    Institute of Scientific and Technical Information of China (English)

    Jiang Yuxi; Li Jiao; Ran Feng; Cao Jialin; Yang Dianxiong

    2009-01-01

    r of the GGNMOS devices under high ESD current stress, and design area-efficient ESD protection circuits to sustain the required ESD level.Optimized layout rules for ESD protection in 0.13-μm silicide CMOS technology are also presented.

  3. The role of composition and microstructure in Ni-W silicide formation and low temperature epitaxial NiSi2 growth by premixing Si

    Science.gov (United States)

    Schrauwen, A.; Van Stiphout, K.; Demeulemeester, J.; De Schutter, B.; Devulder, W.; Comrie, C. M.; Detavernier, C.; Temst, K.; Vantomme, A.

    2017-02-01

    We report on an extensive and detailed study of the silicide reaction of Ni-W alloys on Si(1 0 0). The solid phase reaction when studied over the full composition range reveals the substantial impact of composition and microstructure on the silicide reaction properties, such as the phase formation sequence and formation temperatures. It was found that the microstructure of the as-deposited film depends crucially on the alloy composition, being polycrystalline below 45 at.% W and amorphous above 45 at.% W. The microstructure affects the elemental mobility substantially, resulting in a drastic increase in the silicide reaction temperature in the case of an amorphous thin film. To further investigate the effect of elemental mobility, Si was premixed in the as-deposited alloy, thereby excluding the need for long-range diffusion. As a result, the silicide reaction temperatures were lowered. However, what was more striking was the observation of a bilayer structure for epitaxial NiSi2 in contact with the Si substrate and a W-rich layer residing at the outermost layer at a temperature of only 300 °C. The results stress the importance of the composition and crystalline nature of the as-deposited film, with these being decisive for the reaction sequence.

  4. High-temperature thermochemistry of transition metal borides, silicides and related compounds. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Klemppa, Ole J.

    2000-10-01

    Earlier this year in collaboration with Dr. Susan V. Meschel we prepared a major review paper which gives a comprehensive summary of what our laboratory has accomplished with support from DOE. This paper is No.43 in the List of Publications provided. It was presented to TMS at its National Meeting in Nashville, TN last March. A copy of the manuscript of this paper was recently mailed to DOE. It has been submitted for publication in Journal of Alloys and Compounds. This review paper summarizes our observed trends in the enthalpies of formation of TR-X and RE-X compounds (where X is a IIIB or IVB element) in their dependence of the atomic number of the transition metal (TR) and the lanthanide metal (RE). In this paper our measured enthalpies of formation for each alloy family are compared for the 3d, 4d and 5d transition metal elements. We also compare our experimental results with predicted values based on Miedema's semi-empirical model. Data are presented for the carbides, silicides, germanides and stannides in Group IVB, and for the borides and aluminides in Group IIIB. During the past year (1999-2000) we have extended our work to compounds of the 3d, 4d and 5d elements with gallium (see papers No.40, No.41, and No.45 in the List of Publications). Fig. 1 (taken from No.45) presents a systematic picture of our experimental values for the most exothermic gallide compounds formed with the transition elements. This figure is characteristic of the other systematic pictures which we have found for the two other IIIB elements which we have studied and for the four IVB elements. These figures are all presented in Ref. No.43. This paper also illustrates how the enthalpy of formation of compounds of the IIIB and IVB elements with the lanthanide elements (with the exception of Pm, Eu and Yb) depend on the atomic number of RE. Finally our results for the RE-X compounds are compared with the predictions of Gschneidner (K.A. Gschneidner, Jr., J. Less Common Metals 17, 1

  5. Dysprosium doping induced shape and magnetic anisotropy of Fe3-xDyxO4 (x=0.01-0.1) nanoparticles

    Science.gov (United States)

    Jain, Richa; Luthra, Vandna; Gokhale, Shubha

    2016-09-01

    The effect of dysprosium doping on evolution of structural and magnetic properties of magnetite (Fe3O4) nanoparticles is reported. A standard route of co-precipitation was used for the synthesis of undoped and doped magnetite nanoparticles Fe3-xDyxO4 (x=0.0-0.1). Transmission electron microscopy (TEM) shows formation of round shaped particles with diameter in the range of 8-14 nm for undoped sample. On doping beyond x=0.01, the formation of rod like structures is initiated along with the round shaped particles. The number of rods is found to increase with increasing doping concentration. Magnetic characterization using Vibrating Sample Magnetometer (VSM) revealed doping dependent magnetic properties which can be correlated with the crystallite size as determined from X-ray diffraction (XRD). Enhancement in the saturation magnetization in the initial stages of doping can be explained on the basis of incorporation of Dy3+ ions in the inverse spinel structure at the octahedral site in place of Fe3+ ions. Subsequent decrease in saturation magnetization observed beyond x=0.03 could be attributed to precipitation of excess Dy in form of dysprosium ferrite phase.

  6. Physical, Mechanical, and Structural Properties of Highly Efficient Nanostructured n- and p-Silicides for Practical Thermoelectric Applications

    Science.gov (United States)

    Gelbstein, Yaniv; Tunbridge, Jonathan; Dixon, Richard; Reece, Mike J.; Ning, Huanpo; Gilchrist, Robert; Summers, Richard; Agote, Iñigo; Lagos, Miguel A.; Simpson, Kevin; Rouaud, Cedric; Feulner, Peter; Rivera, Sergio; Torrecillas, Ramon; Husband, Mark; Crossley, Julian; Robinson, Ivan

    2014-06-01

    Cost-effective highly efficient nanostructured n-type Mg2Si1- x Sn x and p-type higher manganese silicide (HMS) compositions were prepared for the development of practical waste heat generators for automotive and marine thermoelectric applications, in the frame of the European Commission (EC)-funded PowerDriver project. The physical, mechanical, and structural properties were fully characterized as part of a database-generation exercise required for the thermoelectric converter design. A combination of high maximal ZT values of ˜0.6 and ˜1.1 for the HMS and Mg2Si1- x Sn x compositions, respectively, and adequate mechanical properties was obtained.

  7. Reaction path and crystallograpy of cobalt silicide formation on silicon(001) by reaction deposition epitaxy

    Science.gov (United States)

    Lim, Chong Wee

    CaF2-structure CoSi2 layers were formed on Si(001) by reactive deposition epitaxy (RDE) and compared with CoSi2 layers obtained by conventional solid phase growth (SPG). In the case of RDE, CoSi 2 formation occurred during Co deposition at elevated temperature while for SPG, Co was deposited at 25°C and silicidation took place during subsequent annealing. My results demonstrate that RDE CoSi2 layers are epitaxial with a cube-on-cube relationship, 001CoSi2 ‖001Si and 100CoSi2 ‖100 Si . In contrast, SPG films are polycrystalline with a mixed 111/002/022/112 orientation. I attribute the striking difference to rapid Co diffusion during RDE for which the high Co/Si reactivity gives rise to a flux-limited reaction resulting in the direct formation of the disilicide phase. Initial formation of CoSi2(001) follows the Volmer-Weber mode with two families of island shapes: inverse pyramids and platelets. The rectangular-based pyramidal islands extend along orthogonal directions, bounded by four {111} CoSi2/Si interfaces, and grow with a cube-on-cube orientation with respect to Si(001). Platelet-shaped islands are bounded across their long directions by {111} twin planes and their narrow directions by 511CoSi2 ‖111Si interfaces. The top and bottom surfaces are {22¯1}, with 22¯1 CoSi2‖001 Si , and {1¯1¯1}, with 1¯1¯ 1CoSi2‖ 11¯1Si , respectively. The early stages of film growth (tCo ≤ 13 A) are dominated by the twinned platelets due to a combination of higher nucleation rates and rapid elongation along preferred directions. However, at tCo ≥ 13 A, island coalescence becomes significant as orthogonal platelets intersect and block elongation along fast growth directions. Further island growth becomes dominated by the untwinned islands. I show that high-flux low-energy Ar+ ion irradiation during RDE growth dramatically increases the area fraction of untwinned regions from 0.17 in films grown under standard magnetically balanced conditions in which the ratio

  8. Single-molecule magnet behavior in an octanuclear dysprosium(iii) aggregate inherited from helical triangular Dy3 SMM-building blocks.

    Science.gov (United States)

    Zhang, Li; Zhang, Peng; Zhao, Lang; Wu, Jianfeng; Guo, Mei; Tang, Jinkui

    2016-06-28

    An unprecedented octanuclear dysprosium(iii) cluster with the formula [Dy8L6(μ3-OH)4(μ2-CH3O)2(CH3OH)6(H2O)2]·6H2O·10CH3OH·2CH3CN () based on a nonlinearly tritopic aroylhydrazone ligand H3L has been isolated, realizing the successful linking of pairwise interesting triangular Dy3 SMMs. It is noteworthy that two enantiomers (Λ and Δ configurations) individually behaving as a coordination-induced chirality presented in the Dy3 helicate are connected in the meso Dy8 cluster. Remarkably, alternating-current magnetic susceptibility measurements revealed that the Dy8 cluster shows typical SMM behavior inherited from its Dy3 helical precursor. It is one of the rare polynuclear Lnn SMMs (n > 7) under zero dc field.

  9. Another challenge to paramagnetic relaxation theory: a study of paramagnetic proton NMR relaxation in closely related series of pyridine-derivatised dysprosium complexes.

    Science.gov (United States)

    Rogers, Nicola J; Finney, Katie-Louise N A; Senanayake, P Kanthi; Parker, David

    2016-02-14

    Measurements of the relaxation rate behaviour of two series of dysprosium complexes have been performed in solution, over the field range 1.0 to 16.5 Tesla. The field dependence has been modelled using Bloch-Redfield-Wangsness theory, allowing estimates of the electronic relaxation time, T1e, and the size of the magnetic susceptibility, μeff, to be made. Changes in relaxation rate of the order of 50% at higher fields were measured, following variation of the para-substituent in the single pyridine donor. The magnetic susceptibilities deviated unexpectedly from the free-ion values for certain derivatives in each series examined, in a manner that was independent of the electron-releasing/withdrawing ability of the pyridine substituent, suggesting that the polarisability of just one pyridine donor in octadenate ligands can play a significant role in defining the magnetic susceptibility anisotropy.

  10. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μl) microbial fuel cell

    KAUST Repository

    Mink, Justine E.

    2012-02-08

    Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m 2 of current density and 392 mW/m 3 of power density. The MWCNTs increased the anode surface-to-volume ratio, which improved the ability of the microorganisms to couple and transfer electrons to the anode. The use of nickel silicide also helped to boost the output current by providing a low resistance contact area to more efficiently shuttle electrons from the anode out of the device. © 2012 American Chemical Society.

  11. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing; Comportement du silicium en milieu nitrique. Application au retraitement des combustibles siliciures d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cheroux, L

    2001-07-01

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  12. Characteristics of a nickel thin film and formation of nickel silicide by using remote plasma atomic layer deposition with Ni( i Pr-DAD)2

    Science.gov (United States)

    Kim, Jinho; Jang, Woochool; Park, Jingyu; Jeon, Heeyoung; Kim, Hyunjung; Yuh, Junhan; Jeon, Hyeongtag

    2015-03-01

    In this study, the characteristics of nickel thin film deposited by remote plasma atomic layer deposition (RPALD) on p-type Si substrate and formation of nickel silicide using rapid thermal annealing were determined. Bis(1,4-di-isopropyl-1,3-diazabutadienyl)nickel, Ni(iPr-DAD)2, was used as a Ni precursor and ammonia plasma was used as a reactant. This was the first attempt to deposit Ni thin film using Ni(iPr-DAD)2 as a precursor for the ALD process. The RPALD Ni film was deposited with a growth rate of around 2.2{\\AA}/cycle at 250 {\\deg}C and showed significant low resistivity of 33 {\\mu}{\\Omega}cm with a total impurity concentration of around 10 at. %.The impurities of the thin film, carbon and nitrogen, were existent by the forms of C-C and C-N in a bonding state. The impurities removal tendency was investigated by comparing of experimental conditions, namely process temperature and pressure. Nitrogen impurity was removed by thermal desorption during each ALD cycle and carbon impurity was reduced by the optimizing of the process pressure which is directly related with a mean free path of NH3 plasma. After Ni deposition, nickel silicide was formed by RTA in a vacuum ambient for 1 minute. A nickel silicide layer from ALD Ni and PVD Ni was compared at the annealing temperature from 500 to 900 {\\deg}C. NiSi from ALD Ni showed better thermal stability due to the contribution of small amounts of carbon and nitrogen in the asdeposited Ni thin film. Degradation of the silicide layer was effectively suppressed with a use of ALD Ni.

  13. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, M.; He, Y.R.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  14. Atomically precise self-organization of perfectly ordered gadolinium–silicide nanomeshes controlled by anisotropic electromigration-induced growth on Si(1 1 0)-16 × 2 surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ie-Hong, E-mail: ihhong@mail.ncyu.edu.tw [Department of Electrophysics, National Chiayi University, Chiayi 60004, Taiwan (China); Institute of Optoelectronics and Solid State Electronics, National Chiayi University, Chiayi 60004, Taiwan (China); Chen, Tsung-Ming; Tsai, Yung-Feng [Institute of Optoelectronics and Solid State Electronics, National Chiayi University, Chiayi 60004, Taiwan (China)

    2015-09-15

    Highlights: • This work provides a clear understanding of the template-directed self-organization mechanism of a perfectly ordered Gd-silicide nanomesh on a double-domain Si(1 1 0)-16 × 2 and identifies that the anisotropic electromigration is the driving force governing the two-dimensional self-ordering of the atomically precise silicide nanomesh. • The ability to self-organize a variety of the perfectly ordered silicide nanomeshes on Si(1 1 0) with atomic precision represents a promising route for the optimal bottom-up fabrication of well-defined crossbar nanocircuits, which opens the possibility for their utilizations in crossbar nanoarchitectures and Si-based magnetoelectronic nanodevices. - Abstract: Detailed scanning tunneling microscopy and spectroscopy (STM and STS) studies for the effects of thermal migration and electromigration on the growth of gadolinium–silicide nanomeshes on double-domain Si(1 1 0)-16 × 2 surfaces are presented to identify the driving force for the self-organization of a perfectly ordered silicide nanomesh on Si(1 1 0). STM results clearly show that the anisotropic electromigration effect is crucial for the control of the spatial uniformity of a self-ordered silicide nanomesh on Si(1 1 0). This two-dimensional self-ordering driven by the anisotropic-electromigration-induced growth allows the sizes and positions of crossed nanowires to be precisely controlled within a variation of ±0.2 nm over a mesoscopic area, and it can be straightforwardly applied to other metals (e.g., Au and Ce) to grow a variety of highly regular silicide nanomeshes for the applications as nanoscale interconnects. Moreover, the STS results show that the anisotropic electromigration-induced growth causes the metallic horizontal nanowires to cross over the semiconducting oblique nanowires, which opens the possibility for the atomically precise bottom-up fabrication of well-defined crossbar nanoarchitectures.

  15. Production Cycle for Large Scale Fission Mo-99 Separation by the Processing of Irradiated LEU Uranium Silicide Fuel Element Targets

    Directory of Open Access Journals (Sweden)

    Abdel-Hadi Ali Sameh

    2013-01-01

    Full Text Available Uranium silicide fuels proved over decades their exceptional qualification for the operation of higher flux material testing reactors with LEU elements. The application of such fuels as target materials, particularly for the large scale fission Mo-99 producers, offers an efficient and economical solution for the related facilities. The realization of such aim demands the introduction of a suitable dissolution process for the applied U3Si2 compound. Excellent results are achieved by the oxidizing dissolution of the fuel meat in hydrofluoric acid at room temperature. The resulting solution is directly behind added to an over stoichiometric amount of potassium hydroxide solution. Uranium and the bulk of fission products are precipitated together with the transuranium compounds. The filtrate contains the molybdenum and the soluble fission product species. It is further treated similar to the in-full scale proven process. The generated off gas stream is handled also as experienced before after passing through KOH washing solution. The generated alkaline fluoride containing waste solution is noncorrosive. Nevertheless fluoride can be selectively bonded as in soluble CaF2 by addition of a mixture of solid calcium hydroxide calcium carbonate to the sand cement mixture used for waste solidification. The generated elevated amounts of LEU remnants can be recycled and retargeted. The related technology permits the minimization of the generated fuel waste, saving environment, and improving processing economy.

  16. Crystal Structure and Thermoelectric Properties of Lightly Vanadium-Substituted Higher Manganese Silicides (Mn1-x V x )Si γ )

    Science.gov (United States)

    Miyazaki, Yuzuru; Hamada, Haruki; Hayashi, Kei; Yubuta, Kunio

    2016-09-01

    To further enhance the thermoelectric (TE) properties of higher manganese silicides (HMSs), dissipation of layered precipitates of MnSi phase as well as optimization of hole carrier concentration are critical. We have prepared a lightly vanadium-substituted solid solution of HMS, (Mn1-x V x )Si γ , by a melt growth method. A 2% substitution of manganese with vanadium is found to dissipate MnSi precipitates effectively, resulting in a substantial increase in the electrical conductivity from 280 S/cm to 706 S/cm at 800 K. The resulting TE power factor reaches 2.4 mW/K2-m at 800 K, more than twice that of the V-free sample. The total thermal conductivity did not change significantly with increasing x owing to a reduction of the lattice contribution. As a consequence, the dimensionless figure of merit zT of the melt-grown samples increased from 0.26 ± 0.01 for x = 0 to 0.59 ± 0.01 for x = 0.02 at around 800 K.

  17. Oxidation and interdiffusion behavior of a germanium-modified silicide coating on an Nb-Si-based alloy

    Science.gov (United States)

    Li, Jin-long; Wang, Wan; Zhou, Chun-gen

    2017-03-01

    To investigate the interdiffusion behavior of Ge-modified silicide coatings on an Nb-Si-based alloy substrate, the coating was oxidized at 1250°C for 5, 10, 20, 50, or 100 h. The interfacial diffusion between the (Nb,X)(Si,Ge)2 (X = Ti, Cr, Hf) coating and the Nb-Si based alloy was also examined. The transitional layer is composed of (Ti,Nb)5(Si,Ge)4 and a small amount of (Nb,X)5(Si,Ge)3. With increasing oxidation time, the thickness of the transitional layer increases because of the diffusion of Si from the outer layer to the substrate, which obeys a parabolic rate law. The parabolic growth rate constant of the transitional layer under oxidation conditions is 2.018 μm·h-1/2. Moreover, the interdiffusion coefficients of Si in the transitional layer were determined from the interdiffusion fluxes calculated directly from experimental concentration profiles.

  18. Tuning the composition and magnetostructure of dysprosium iron garnets by Co-substitution: An XRD, FT-IR, XPS and VSM study

    Energy Technology Data Exchange (ETDEWEB)

    Tholkappiyan, R.; Vishista, K., E-mail: raovishista@gmail.com

    2015-10-01

    Graphical abstract: - Highlights: • Garnet type Dy{sub 3}Fe{sub 5−x}Co{sub x}O{sub 12} (x = 0–0.06) nanoparticles were synthesized by glycine assisted combustion method. • To investigate and confirm the phases in the synthesized ferrite nanoparticles by FT-IR and XRD analysis. • To investigate the compositional and oxidation state of the samples by X-ray photoelectron spectroscopy. • The detailed core level spectra of Dy 4d, Fe 2p, Co 2p and O 1s were analyzed using XPS. • The magnetic property was studied by VSM technique. - Abstract: We report the Co-substituting on the synthesis and properties of garnet type dysprosium ferrite nanoparticles by basic composition Dy{sub 3}Fe{sub 5−x}Co{sub x}O{sub 12} (x = 0–0.06) synthesized through glycine assisted combustion method. A possible formation mechanism of synthesized Dy{sub 3}Fe{sub 5−x}Co{sub x}O{sub 12} samples by controlling the synthesis process has been proposed. XRD, FT-IR, XPS and VSM studies were used to investigate the compositional and magnetostructural properties of the prepared nanoparticles. XRD results confirm that all the samples are single-phase cubic garnet structure with mean crystallite size of 97–105 nm obtained from Scherrer method and 95–102 nm from W–H method. FT-IR analysis shows the presence of three expected bands in the frequency limit of 450–600 cm{sup −1} attributed to metal–O stretching vibration in tetrahedral site of garnet structure. A typical survey spectrum from XPS results confirmed the presence of Dy, Fe, Co and O elements in the samples. This study also to characterize the different oxidation states of the samples by fitting the parameters of high resolution Dy 4d, Fe 2p, Co 2p and O 1s XPS spectra. The XPS data of Dy 4d spectrum show that Dy{sup 3+} ion occupy in dodecahedral (D) site. The XPS analysis of Fe 2p and Co 2p data suggests that (Fe{sup 3+} and Fe{sup 2+}), (Co{sup 3+} and Co{sup 2+}) are distributed in tetrahedral and octahedral sites

  19. Structural, elastic, electronic properties and stability trends of 1111-like silicide arsenides and germanide arsenides MCuXAs (M = Ti, Zr, Hf; X = Si, Ge) from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Bannikov, V.V.; Shein, I.R. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg (Russian Federation); Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg (Russian Federation)

    2012-08-25

    Highlights: Black-Right-Pointing-Pointer Silicide arsenides and germanide arsenides of Ti, Zr, Hf are probed from first principles. Black-Right-Pointing-Pointer Structural, elastic, electronic properties and stability trends are evaluated. Black-Right-Pointing-Pointer Bulk moduli of HfCuSiAs and HfCuGeAs are the largest among all 1111-like phases. Black-Right-Pointing-Pointer Chemical bonding is analyzed. - Abstract: The tetragonal (s.g. I4/nmm; no. 129) silicide arsenide ZrCuSiAs is well known as a structural type of the broad family of so-called 1111-like quaternary phases which includes now more than 150 representatives. These materials demonstrate a rich variety of outstanding physical properties (from p-type transparent semiconductors to high-temperature Fe-based superconductors) and attracted a great interest as promising candidates for a broad range of applications. At the same time, the data about the electronic and elastic properties of the ZrCuSiAs phase itself, as well as of related silicide arsenides and germanide arsenides are still very limited. Here for a series of six isostructural and isoelectronic 1111-like phases which includes both synthesized (ZrCuSiAs, HfCuSiAs, ZrCuGeAs, and HfCuGeAs) and hypothetical (TiCuSiAs and TiCuGeAs) materials, systematical studies of their structural, elastic, electronic properties and stability trends are performed by means of first-principles calculations.

  20. Effect of Chemistry and Particle Size on the Performance of Calcium Disilicide Primers. Part 1 - Synthesis of Calcium Silicide (CaSi2) by Rotary Atomization

    Science.gov (United States)

    2010-02-01

    refs. 8 and 9); electrolysis (refs. 10 and 11); calcium hydride (CaH2) and Si (ref. 12); SiC and CaO (ref. 13); and combustion synthesis (ref. 14...obtained using a goiniometer (Phillips Model PW 3040, Phillips, Eindhoven, the Netherlands) using copper (Cu) K„ radiation (X - 1.54183 A) with a graphite...34 Electrolysis of Molten Alkali and Alkaline Earth Silicates." Bull. Soc. Chim., 6,206, 1939. 12. Louis, V. and Franck, H. H., "Silicide of Calcium," Z. Anorq

  1. A dysprosium-based metal-organic framework: Synthesis, characterization, crystal structure and interaction with calf thymus-DNA and bovine serum albumin

    Indian Academy of Sciences (India)

    Biplab Mondal; Buddhadeb Sen; Ennio Zangrando; Pabitra Chattopadhyay

    2014-07-01

    A dysprosium-based metallo-organic framework (MOF) containing calcium ions formulated as {Dy(pyda)3Ca1.5(H2O)6} · 5.5H2O (1) (H2pyda = pyridine-2,6-dicarboxylic acid) was solvothermally synthesized in ethanolic medium and characterized by physico-chemical and spectroscopic tools. A detailed structural analysis of the solid state structure of 1 by single crystal X-ray diffraction study showed a tricapped trigonal prism geometry for lanthanide in the [Dy(pyda)3]3− fragment. The mode of interaction of 1 with calf thymus- DNA and with protein bovine serum albumin (BSA) was investigated by using absorption and emission spectroscopic tools. The apparent association constant of complex 1 with CT-DNA was deduced from an absorption spectral study (b = 4.08 × 104 M-1). Spectral and viscosity measurements indicated a groove-binding mode of 1 with CT-DNA, and from spectroscopic study the formation of a metal complex-BSA adduct was assumed to be the result of the interaction of 1 with BSA.

  2. Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and in vivo application

    Science.gov (United States)

    Tegafaw, Tirusew; Xu, Wenlong; Wasi Ahmad, Md; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho

    2015-09-01

    A new type of dual-mode T1 and T2 magnetic resonance imaging (MRI) contrast agent based on mixed lanthanide oxide nanoparticles was synthesized. Gd3+ (8S7/2) plays an important role in T1 MRI contrast agents because of its large electron spin magnetic moment resulting from its seven unpaired 4f-electrons, and Dy3+ (6H15/2) has the potential to be used in T2 MRI contrast agents because of its very large total electron magnetic moment: among lanthanide oxide nanoparticles, Dy2O3 nanoparticles have the largest magnetic moments at room temperature. Using these properties of Gd3+ and Dy3+ and their oxide nanoparticles, ultrasmall mixed gadolinium-dysprosium oxide (GDO) nanoparticles were synthesized and their potential to act as a dual-mode T1 and T2 MRI contrast agent was investigated in vitro and in vivo. The D-glucuronic acid coated GDO nanoparticles (davg = 1.0 nm) showed large r1 and r2 values (r2/r1 ≈ 6.6) and as a result clear dose-dependent contrast enhancements in R1 and R2 map images. Finally, the dual-mode imaging capability of the nanoparticles was confirmed by obtaining in vivo T1 and T2 MR images.

  3. Experimental and molecular dynamics studies of dysprosium(III) salt solutions for a better representation of the microscopic features used within the binding mean spherical approximation theory.

    Science.gov (United States)

    Ruas, Alexandre; Guilbaud, Philippe; Den Auwer, Christophe; Moulin, Christophe; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe

    2006-10-19

    This work is aimed at a predictive description of the thermodynamic properties of actinide(III) salt solutions at high concentration and 25 degrees C. A new solution of the binding mean spherical approximation (BIMSA) theory, based on the Wertheim formalism, for taking into account 1:1 and also 1:2 complex formation, is used to reproduce, from a simple procedure, experimental osmotic coefficient variation with concentration for three binary salt solutions of the same lanthanide(III) cation: dysprosium(III) perchlorate, nitrate, and chloride. The relevance of the fitted parameters is discussed, and their values are compared with available literature values. UV-vis/near-IR, time-resolved laser-induced fluorescence spectroscopy experiments, and molecular dynamics (MD) calculations were conducted for dilute to concentrated solutions (ca. 3 mol.kg-1) for a study of the microscopic behavior of DyCl3 binary solutions. Coupling MD calculations and extended X-ray absorption fine structure led to the determination of reliable distances. The MD results were used for a discussion of the parameters used in the BIMSA.

  4. Experimental and molecular dynamics studies of dysprosium(III) salt solutions for a better representation of the microscopic features used within the binding mean spherical approximation theory

    Energy Technology Data Exchange (ETDEWEB)

    Ruas, Alexandre; Guilbaud, Philippe; Den Auwer, Christophe; Moulin, Christophe; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe [DEN/DRCP/SCPS, CEA-Valrho Marcoule, BP 17171, 30207 Bagnols-sur-Ceze Cedex, DEN/DPC/SECR/LSRM, CEA-Saclay, Bat 391, BP 91191 Gif sur Yvette, Cedex (France); Laboratoire LI2C (UMR 7612), Universite Pierre et Marie Curie-Paris 6, Boite No. 51, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2006-07-01

    This work is aimed at a predictive description of the thermodynamic properties of actinide (III) salt solutions at high concentration and 25 deg. C. A new solution of the binding mean spherical approximation (BIMSA) theory, based on the Wertheim formalism, for taking into account 1: 1 and also 1: 2 complex formation, is used to reproduce, from a simple procedure, experimental osmotic coefficient variation with concentration for three binary salt solutions of the same lanthanide (III) cation: dysprosium (III) perchlorate, nitrate, and chloride. The relevance of the fitted parameters is discussed, and their values are compared with available literature values. UV-vis/near-IR, time-resolved laser-induced fluorescence spectroscopy experiments, and molecular dynamics (MD) calculations were conducted for dilute to concentrated solutions (ca. 3 mol, kg{sup -1}) for a study of the microscopic behavior of DyCl{sub 3} binary solutions. Coupling MD calculations and extended X-ray absorption fine structure led to the determination of reliable distances. The MD results were used for a discussion of the parameters used in the BIMSA. (authors)

  5. Elucidation of Dual Magnetic Relaxation Processes in Dinuclear Dysprosium(III) Phthalocyaninato Triple-Decker Single-Molecule Magnets Depending on the Octacoordination Geometry.

    Science.gov (United States)

    Katoh, Keiichi; Aizawa, Yu; Morita, Takaumi; Breedlove, Brian K; Yamashita, Masahiro

    2017-08-07

    When applying single-molecule magnets (SMMs) to spintronic devices, control of the quantum tunneling of the magnetization (QTM) as well as a spin-lattice interactions are important. Attempts have been made to use not only coordination geometry but also magnetic interactions between SMMs as an exchange bias. In this manuscript, dinuclear dysprosium(III) (Dy(III) ) SMMs with the same octacoordination geometry undergo dual magnetic relaxation processes at low temperature. In the dinuclear Dy(III) phthalocyaninato (Pc(2-) ) triple-decker type complex [(Pc)Dy(ooPc)Dy(Pc)] (1) (ooPc(2-) =2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyaninato) with a square-antiprismatic (SAP) geometry, the ground state is divided by the Zeeman effect, and level intersection occurs when a magnetic field is applied. Due to the ground state properties of 1, since the Zeeman diagram where the levels intersect in an Hdc of 2500 Oe, two kinds of QTM and direct processes occur. However, dinuclear Dy(III) -Pc systems with C4 geometry, which have a twist angle (ϕ) of less than 45° do not undergo dual magnetic relaxation processes. From magnetic field and temperature dependences, the dual magnetic relaxation processes were clarified. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M; Nur-E-Alam, M; Alameh, K [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027 (Australia); Premchander, P; Lee, Y T [Department of Information and Communications, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712 (Korea, Republic of); Kotov, V A [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 11 Mohovaya St, Moscow, 125009 (Russian Federation); Lee, Y P, E-mail: m.vasiliev@ecu.edu.au [Quantum Photonic Science Research Center, Department of Physics, Hanyang University, 133-791 (Korea, Republic of)

    2011-02-23

    We investigate the magneto-optic properties, crystal structure and annealing behaviour of nano-composite media with record-high magneto-optic quality exceeding the levels reported so far in sputtered iron-garnet films. Bi-substituted dysprosium-gallium iron-garnet films having excess bismuth oxide content are deposited using RF co-sputtering, and a range of garnet materials are crystallized using conventional oven-annealing processes. We report, for the first time ever, the results of optimization of thermal processing regimes for various high-performance magneto-optic iron-garnet compositions synthesized and describe the evolution of the optical and magneto-optical properties of garnet-Bi-oxide composite-material films occurring during the annealing processes. The crystallization temperature boundaries of the system (BiDy){sub 3}(FeGa){sub 5}O{sub 12} : Bi{sub 2}O{sub 3} are presented. We also report the results of x-ray diffraction and energy-dispersive x-ray spectroscopy studies of this recently developed class of high-performance magneto-optic composites. Our hypothesis of iron oxides being the cause of excess optical absorption in sputtered Bi-iron-garnet films is confirmed experimentally.

  7. Improvement of the thermal stability of nickel silicide using a ruthenium interlayer deposited via remote plasma atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Inhye [Department of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea and System LSI Manufacturing Operation Center, Samsung Electronics Co., Ltd, Gyeonggi-do 17113 (Korea, Republic of); Park, Jingyu; Jeon, Heeyoung; Kim, Hyunjung; Shin, Changhee [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Shin, Seokyoon; Lee, Kunyoung [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea and Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 04763 (Korea, Republic of)

    2016-05-15

    In this study, the effects of a thin Ru interlayer on the thermal and morphological stability of NiSi have been investigated. Ru and Ni thin films were deposited sequentially to form a Ni/Ru/Si bilayered structure, without breaking the vacuum, by remote plasma atomic layer deposition (RPALD) on a p-type Si wafer. After annealing at various temperatures, the thermal stabilities of the Ni/Ru/Si and Ni/Si structures were investigated by various analysis techniques. The results showed that the sheet resistance of the Ni/Ru/Si sample was consistently lower compared to the Ni/Si sample over the entire temperature range. Although both samples exhibited the formation of NiSi{sub 2} phases at an annealing temperature of 800 °C, as seen with glancing angle x-ray diffraction, the peaks of the Ni/Ru/Si sample were observed to have much weaker intensities than those obtained for the Ni/Si sample. Moreover, the NiSi film with a Ru interlayer exhibited a better interface and improved surface morphologies compared to the NiSi film without a Ru interlayer. These results show that the phase transformation of NiSi to NiSi{sub 2} was retarded and that the smooth NiSi/Si interface was retained due to the activation energy increment for NiSi{sub 2} nucleation that is caused by adding a Ru interlayer. Hence, it can be said that the Ru interlayer deposited by RPALD can be used to control the phase transformation and physical properties of nickel silicide phases.

  8. Self-organised silicide nanodot patterning by medium-energy ion beam sputtering of Si(100): local correlation between the morphology and metal content

    Science.gov (United States)

    Redondo-Cubero, A.; Galiana, B.; Lorenz, K.; Palomares, FJ; Bahena, D.; Ballesteros, C.; Hernandez-Calderón, I.; Vázquez, L.

    2016-11-01

    We have produced self-organised silicide nanodot patterns by medium-energy ion beam sputtering (IBS) of silicon targets with a simultaneous and isotropic molybdenum supply. Atomic force microscopy (AFM) studies show that these patterns are qualitatively similar to those produced thus far at low ion energies. We have determined the relevance of the ion species on the pattern ordering and properties. For the higher ordered patterns produced by Xe+ ions, the pattern wavelength depends linearly on the ion energy. The dot nanostructures are silicide-rich as assessed by x-ray photoelectron spectroscopy (XPS) and emerge in height due to their lower sputtering yield, as observed by electron microscopy. Remarkably, a long wavelength corrugation is observed on the surface which is correlated with both the Mo content and the dot pattern properties. Thus, as assessed by electron microscopy, the protrusions are Mo-rich with higher and more spaced dots on their surface whereas the valleys are Mo-poor with smaller dots that are closer to each other. These findings indicate that there is a correlation between the local metal content of the surface and the nanodot pattern properties both at the nanodot and the large corrugation scales. These results contribute to advancing the understanding of this interesting nanofabrication method and aid in developing a comprehensive theory of nanodot pattern formation and evolution.

  9. Self-organised silicide nanodot patterning by medium-energy ion beam sputtering of Si(100): local correlation between the morphology and metal content.

    Science.gov (United States)

    Redondo-Cubero, A; Galiana, B; Lorenz, K; Palomares, F J; Bahena, D; Ballesteros, C; Hernandez-Calderón, I; Vázquez, L

    2016-11-01

    We have produced self-organised silicide nanodot patterns by medium-energy ion beam sputtering (IBS) of silicon targets with a simultaneous and isotropic molybdenum supply. Atomic force microscopy (AFM) studies show that these patterns are qualitatively similar to those produced thus far at low ion energies. We have determined the relevance of the ion species on the pattern ordering and properties. For the higher ordered patterns produced by Xe(+) ions, the pattern wavelength depends linearly on the ion energy. The dot nanostructures are silicide-rich as assessed by x-ray photoelectron spectroscopy (XPS) and emerge in height due to their lower sputtering yield, as observed by electron microscopy. Remarkably, a long wavelength corrugation is observed on the surface which is correlated with both the Mo content and the dot pattern properties. Thus, as assessed by electron microscopy, the protrusions are Mo-rich with higher and more spaced dots on their surface whereas the valleys are Mo-poor with smaller dots that are closer to each other. These findings indicate that there is a correlation between the local metal content of the surface and the nanodot pattern properties both at the nanodot and the large corrugation scales. These results contribute to advancing the understanding of this interesting nanofabrication method and aid in developing a comprehensive theory of nanodot pattern formation and evolution.

  10. Carrier-transport mechanism of Er-silicide Schottky contacts to strained-silicon-on-insulator and silicon-on-insulator.

    Science.gov (United States)

    Jyothi, I; Janardhanam, V; Kang, Min-Sung; Yun, Hyung-Joong; Lee, Jouhahn; Choi, Chel-Jong

    2014-11-01

    The current-voltage characteristics and the carrier-transport mechanism of the Er-silicide (ErSi1.7) Schottky contacts to strained-silicon-on-insulator (sSOI) and silicon-on-insulator (SOI) were investigated. Barrier heights of 0.74 eV and 0.82 eV were obtained for the sSOI and SOI structures, respectively. The barrier height of the sSOI structure was observed to be lower than that of the SoI structure despite the formation of a Schottky contact using the same metal silicide. The sSOI structure exhibited better rectification and higher current level than the SOI structure, which could be associated with a reduction in the band gap of Si caused by strain. The generation-recombination mechanism was found to be dominant in the forward bias for both structures. Carrier generation along with the Poole-Frenkel mechanism dominated the reverse-biased current in the SOI structure. The saturation tendency of the reverse leakage current in the sSOI structure could be attributed to strain-induced defects at the interface in non-lattice-matched structures.

  11. Global use structures of the magnetic materials neodymium and dysprosium. A scenario-based analysis of the effect of the diffusion of electromobility on the demand for rare earths; Globale Verwendungsstrukturen der Magnetwerkstoffe Neodym und Dysprosium. Eine szenariobasierte Analyse der Auswirkung der Diffusion der Elektromobilitaet auf den Bedarf an Seltenen Erden

    Energy Technology Data Exchange (ETDEWEB)

    Gloeser-Chahoud, Simon; Kuehn, Andre; Tercero Espinoza, Luis

    2016-06-15

    Neodymium-iron-boron magnets (NdFeB) have experienced a significant demand as the most powerful permanent magnet in recent years, especially for the manufacture of compact electric servomotors with high efficiency and high power density, especially for mobile applications in hybrid traction motors and electric vehicles or for electric bikes. However, NdFeB magnets are also increasingly being used in general mechanical engineering (conveying and pumping systems, tools, air conditioning systems, lift motors, etc.), in the small electric motors of conventional passenger cars or in the generators of large wind power plants with permanent magnetic direct drive. Nevertheless, there is still high uncertainty in the use structures of NdFeB magnets and the contained rare earth elements neodymium and dysprosium. An effective instrument for increasing the market transparency and the understanding of complex anthropogenic material cycles is the dynamic material flow modeling. In the present work paper, this instrument is used for an in-depth analysis of the use structures of NdFeB magnets and the contained rare earths on a global scale. The dynamic modeling of product usage cycles reveals today's usage structures and quantifies future magnetic quantities in obsolete product flows. It could be shown that the magnets in today's scrap volume are mainly contained in obsolete electronics applications such as hard disks (HDD), CD and DVD drives, which makes the recycling hardly seem to be economical due to the small magnets and the high material spread, but in the foreseeable future with larger magnetic quantities from synchronous servomotors and generators can be expected, which significantly increases the recycling potential. In a further step, the effect of the diffusion of alternative drives in the automotive market on the dysprosium requirement is analyzed using a system dynamics model and possible adaptation mechanisms in the form of different substitution effects in

  12. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D., E-mail: dhb@ansto.gov.au; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-07-15

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni{sub 2}(Mo,Cr){sub 4}(Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni{sub 3}(Mo,Cr){sub 3}(Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld

  13. The role of dysprosium on the structural and magnetic properties of (Nd1-xDyx)2Fe14B nanoparticles

    Science.gov (United States)

    Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid

    2017-02-01

    In current work, Nd2Fe14B nanoparticles was synthesized by sol-gel method. Dysprosium powders were added into Nd2Fe14B nanoparticles by mechanical alloying process in order to enhancement of coercivity. The phase analysis, structure, and magnetic properties of annealed (Nd1-xDyx)2Fe14B nanoparticles with different Dy-content (x=0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were investigated by employing X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive spectroscopy, field emission scanning electron microscope, transmission electron microscope and vibrating sample magnetometer techniques. The results showed that with an increase in Dy amounts, the coercivity of particles increased from 2.9 kOe to 13.4 kOe and then decreased to 5.6 kOe. By adding an optimum amount of Dy (x=0.4), the coercivity was significantly increased from 2.9 kOe to 13.4 kOe. The average particle size of annealed (Nd1-xDyx)2Fe14B nanoparticles was below 10 nm. Magnetization reversal studies indicate that the coercivity of milled and annealed (Nd1-xDyx)2Fe14B nanoparticles is controlled by the nucleation of reversed magnetic domains. The experimental results in the angular dependence of coercivity for (Nd1-xDyx)2Fe14B permanent magnets showed that the normalized coercivity of the permanent magnets Hc(θ)/Hc(0) increases from 1 to about 1.2-1.5 with increasing θ from 0 to about π/3, for x=0.4-0.6.

  14. Structural, elastic, and electronic properties of recently discovered ternary silicide superconductor Li2IrSi3:An ab-initio study

    Institute of Scientific and Technical Information of China (English)

    M. A. Hadi; M. A. Alam; M. Roknuzzaman; M. T. Nasir; A. K. M. A. Islam; S. H. Naqib

    2015-01-01

    The structural, elastic, and electronic properties of the very recently discovered ternary silicide superconductor, Li2IrSi3, are calculated using an ab-initio technique. We adopt the plane-wave pseudopotential approach within the frame-work of the first-principles density functional theory (DFT) implemented by the CASTEP code. The calculated structural parameters show reasonable agreement with the experimental results. The elastic moduli of this interesting material are calculated for the first time. The electronic band structure and electronic energy density of states indicate the strong cova-lent Ir–Si and Si–Si bonding, which leads to the formation of the rigid structure of Li2IrSi3. Strong covalency gives rise to a high Debye temperature in this system. We discuss the theoretical results in detail in this paper.

  15. Study of the phase composition of silicide coatings, based on layered Nb-Mo structures, obtained by vacuum-arc deposition

    Science.gov (United States)

    Lozovan, A. A.; Betsofen, S. Ya; Lenkovets, A. S.

    2016-07-01

    A multilayer composite ∼1000 μm in thickness, formed by niobium and molybdenum layers (number of layers n = 230), is obtained by vacuum-arc deposition with subsequent siliconization of the surface layers at a temperature of 1200 °C. Layer-by-layer phase analysis is performed by X-ray diffraction and scanning electron microscopy. It is found that in the surface layers ∼130 μm in thickness, single-phase silicides (Nb x Mo1- x )Si2 are formed with the hexagonal C40 structure (Strukturbericht designations). Alternating layers of solid solutions based on niobium and molybdenum with a body-centered cubic (BCC) lattice are observed within the composite. The formation of solid solutions caused by heating of the coating leads to convergence of the values of the linear thermal expansion coefficient and Young's modulus at the interface between the layers.

  16. Si-rich W silicide films composed of W-atom-encapsulated Si clusters deposited using gas-phase reactions of WF6 with SiH4.

    Science.gov (United States)

    Okada, Naoya; Uchida, Noriyuki; Kanayama, Toshihiko

    2016-02-28

    We formed Si-rich W silicide films composed of Sin clusters, each of which encapsulates a W atom (WSi(n) clusters with 8 composed of WSi(n) clusters with a uniform n, which was determined by the gas temperature. The formed films were amorphous semiconductors with an optical gap of ∼0.8-1.5 eV and an electrical mobility gap of ∼0.05-0.12 eV, both of which increased as n increased from 8 to 12. We attribute this dependence to the reduction of randomness in the Si network as n increased, which decreased the densities of band tail states and localized states.

  17. Silicides for VLSI applications

    CERN Document Server

    Murarka, Shyam P

    1983-01-01

    Most of the subject matter of this book has previously been available only in the form of research papers and review articles. I have not attempted to refer to all the published papers. The reader may find it advantageous to refer to the references listed.

  18. Dysprosium(III) complexes with a square-antiprism configuration featuring mononuclear single-molecule magnetic behaviours based on different β-diketonate ligands and auxiliary ligands.

    Science.gov (United States)

    Zhang, Sheng; Ke, Hongshan; Shi, Quan; Zhang, Jangwei; Yang, Qi; Wei, Qing; Xie, Gang; Wang, Wenyuan; Yang, Desuo; Chen, Sanping

    2016-03-28

    Three mononuclear dysprosium(III) complexes derived from three β-diketonate ligands, 4,4,4-trifluoro-1-(4-methylphenyl)-1,3-butanedione (tfmb), 4,4,4-trifluoro-1-(4-fluorophenyl)-1,3-butanedione (tffb) and 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione (tfnb) as well as auxiliary ligands, 5-nitro-1,10-phenanthroline (5-NO2-Phen), DMF and 2,2'-bipyridine (bpy) have been synthesized and structurally characterized, namely [Dy(5-NO2-Phen)(tfmb)3] (1), [Dy(DMF)2(tffb)3] (2) and [Dy(bpy)2(tfnb)3]·0.5(1,4-dioxane) (3). The metal ions in 1-3 adopt an approximately square-antiprismatic (SAP) coordination environment with D4d axial symmetry. The magnetic properties of 1-3 have been investigated, displaying weak out-of-phase AC signals under a zero-DC field. With an applied DC field of 1200 Oe, the quantum tunnelling of the magnetization was suppressed in 1-3 with the pre-exponential factor τ0 = 5.3 × 10(-7) s and the effective barrier ΔE/kB = 83 K for 1 as well as the pre-exponential factor τ0 = 3.09 × 10(-7) s and the effective barrier ΔE/kB = 39 K for 3. Interestingly, for the frequency dependence of the out-of-phase (χ'') of the AC susceptibility of 2, two slow relaxation of the magnetization processes occurred under the applied magnetic field of 1200 Oe, corresponding to the fast relaxation (FR) phase and slow relaxation (SR) phase, respectively. Arrhenius analysis gave the effective energy barrier (ΔE/kB) of 55 K and the pre-exponential factor (τ0) of 8.23 × 10(-12) for the SR. It is thus very likely that the FR process in complex 2 results from QTM enhanced by dipolar interactions between the Dy ions or the presence of the applied field. The structure-property relationship of some Dy(III) based mononuclear SMMs with the SAP configuration was further discussed.

  19. Magnetic Phase Transition of Nanocrystalline Bulk Metal Gadolinium and Dysprosium%纳米块体金属钆和镝的磁性相变分析

    Institute of Scientific and Technical Information of China (English)

    刘凤艳; 侯碧辉; 岳明; 王克军

    2011-01-01

    The magnetic properties of bulk nanocrystalline metal gadolinium (Gd) and dysprosium (Dy)samples were studied.The magnetization and Curie temperature TC of nanocrystalline Gd and Dy decreased usually as compared with the polycrystal.However,when the mean grain size was 10 nm, the Curie temperature Tc of nanocrystalline Dy increased to 100 K instead and there was an antiferromagnetic phase in nanocrystalline Gd.According to the calculation based on Ruderman-Kittel-Kasuya-Yosida exchange interaction, the exchange integral of the grain boundary atoms and crystalline surface atoms had its sign changed from plus to minus or vice versa, and there were three orderly phases in the steady state with the lowest energy, ferromagnetic phase, antiferromagnetic phase and fan phase.For the nanocrystals with mean grain size of 10 nm, the proportion of grain boundary to crystalline surface atoms was high, and as the result of superposition of the three phases, and there appeared a peak near the phase transition temperature for the nanocrystalline Gd.While for the Dy, the magnetization decreased gently with temperature, and showing a higher Curie temperature than in the case of the polycrystal.%对纳米晶钆(Gd)和镝(Dy)块体材料的磁性进行了研究.与多晶比较,通常纳米晶的磁化强度减小,居里温度TC降低,但平均粒径为10 nm的纳米晶Dy的居里温度TC反而升高到100 K,平均粒径为10 nm的纳米晶Gd中还存在明显的反铁磁相.通过RKKY交换作用的计算知道,晶面晶界处原子的交换积分会发生正负号的变化,能量最低的稳定状态对应三种有序相:铁磁相、反铁磁相和扇相,晶粒中在一定条件下出现三相共存.对于平均粒径为10 nm的纳米晶,晶面晶界处原子所占比例很大,三相叠加的结果,对于Gd,即是在相变点附近出现磁化强度尖峰;对于Dy,则是磁化强度随温度升高下降缓慢,表现为居里温度TC比多晶升高.

  20. Oxidation behaviours of Nb–22Ti–15Si–2Al–2Hf–2V–(2, 14)Cr alloys with Al and Y modified silicide coatings prepared by pack cementation

    OpenAIRE

    Songming Zhang; Xingrui Shi; Jiangbo Sha

    2015-01-01

    Al and Y modified silicide coatings on the Nb–15Si–22Ti–(2,14)Cr–2Al–2Hf–2V alloys (where the alloy with 2 at% Cr or 14 at% Cr is hereafter referred to as 2Cr and 14Cr alloy, respectively) was prepared by pack cementation. The microstructural evolution and the oxidation behaviours of the coating 2Cr and 14Cr samples at 1250 °C were studied. The 2Cr alloy consists of Nb solid solution (NbSS) and α-Nb5Si3 silicide, while the Laves C15–Cr2Nb phase arised in the 14Cr alloy. The coating structure ...

  1. Extension of the energy range of the experimental activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium up to 65 MeV

    CERN Document Server

    Tárkányi, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2016-01-01

    Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65 MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides $^{159}$Dy, $^{157}$Dy, $^{155}$Dy, $^{161}$Tb, $^{160}$Tb, $^{156}$Tb, $^{155}$Tb, $^{154m2}$Tb, $^{154m1}$Tb, $^{154g}$Tb, $^{153}$Tb, $^{152}$Tb and $^{151}$Tb are reported in the 36-65 MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013.

  2. Extension of the energy range of the experimental activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium up to 65MeV.

    Science.gov (United States)

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-04-01

    Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides (159)Dy, (157)Dy, (155)Dy, (161)Tb, (160)Tb, (156)Tb, (155)Tb, (154m2)Tb, (154m1)Tb, (154g)Tb, (153)Tb, (152)Tb and (151)Tb are reported in the 36-65MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013. Copyright © 2015. Published by Elsevier Ltd.

  3. Dysprosium selective potentiometric membrane sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Faridbod, Farnoush; Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-03-01

    A novel Dy(III) ion-selective PVC membrane sensor was made using a new synthesized organic compound, 3,4-diamino-N Prime -((pyridin-2-yl)methylene)benzohydrazide (L) as an excellent sensing element. The electrode showed a Nernstian slope of 19.8 {+-} 0.6 mV per decade in a wide concentration range of 1.0 Multiplication-Sign 10{sup -6}-1.0 Multiplication-Sign 10{sup -2} mol L{sup -1}, a detection limit of 5.5 Multiplication-Sign 10{sup -7} mol L{sup -1}, a short conditioning time, a fast response time (< 10 s), and high selectivity towards Dy(III) ion in contrast to other cations. The proposed sensor was successfully used as an indicator electrode in the potentiometric titration of Dy(III) ions with EDTA. The membrane sensor was also applied to the F{sup -} ion indirect determination of some mouth washing solutions and to the Dy{sup 3+} determination in binary mixtures. Highlights: Black-Right-Pointing-Pointer The novelty of this work is based on the high affinity of the ionophore toward the Dy{sup 3+} ions. Black-Right-Pointing-Pointer This technique is very simple, fast and inexpensive and it is not necessary to use sophisticated equipment. Black-Right-Pointing-Pointer The newly developed sensor is superior to the formerly reported Dy{sup 3+} sensors in terms of selectivity.

  4. The magnetocaloric effect in dysprosium

    Science.gov (United States)

    Benford, S. M.

    1979-01-01

    The magnetocaloric effect in polycrystalline Dy was measured in the 84-280-K range in measuring fields from 1 to 7 T. These adiabatic temperature changes reflect structural changes in Dy with applied field and temperature, and include the first magnetocaloric data for a helical antiferromagnet. Above the Neel point (179 K) a field increase always caused heating; below the Neel point fields less than about 2 T cause cooling for some values of initial temperature. The largest temperature increase with a 7 T field occurs at the Neel point and at fields below 2 T near the Curie point. For refrigeration purposes the optimal working region for a Dy cooling element is field dependent.

  5. Progress of p-channel bottom-gate poly-Si thin-film transistor by nickel silicide seed-induced lateral crystallization

    Science.gov (United States)

    Lee, Sol Kyu; Seok, Ki Hwan; Park, Jae Hyo; Kim, Hyung Yoon; Chae, Hee Jae; Jang, Gil Su; Lee, Yong Hee; Han, Ji Su; Joo, Seung Ki

    2016-06-01

    Excimer laser annealing (ELA) is known to be the most common crystallization technology for the fabrication of low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) in the mass production industry. This technology, however, cannot be applied to bottom-gate (BG) TFTs, which are well developed for the liquid-crystal display (LCD) back-planes, because strong laser energy of ELA can seriously damage the other layers. Here, we propose a novel high-performance BG poly-Si TFT using Ni silicide seed-induced lateral crystallization (SILC). The SILC technology renders it possible to ensure low damage in the layers, smooth surface, and longitudinal large grains in the channel. It was observed that the electrical properties exhibited a steep subthreshold slope of 110 mV/dec, high field-effect mobility of 304 cm2/Vsec, high I on/ I off ratio of 5.9 × 107, and a low threshold voltage of -3.9 V.

  6. Development of new ORIGEN2 data library sets for research reactors with light water cooled oxide and silicide LEU (20 w/o) fuels based on JENDL-3.3 nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Liem, Peng Hong, E-mail: liemph@nais.ne.jp [Nippon Advanced Information Service (NAIS Co., Inc.), 416 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1112 (Japan); Sembiring, Tagor Malem [Center for Reactor Technology and Nuclear Safety Indonesian National Nuclear Energy Agency (BATAN), Puspiptek Complex, Building No. 80, Serpong, Tangerang 15310 (Indonesia)

    2013-09-15

    Highlights: • We developed new ORIGEN2 data library sets for research reactors based on JENDL-3.3. • The sets cover oxide and silicide LEU fuels with meat density up to 4.74 g U/cm{sup 3}. • Two kinds of data library sets are available: fuel region and non-fuel regions. • We verified the new data library sets with other codes. • We validated the new data library against a non-destructive test. -- Abstract: New sets of ORIGEN2 data library dedicated to research/testing reactors with light water cooled oxide and silicide LEU fuel plates based on JENDL-3.3 nuclear data were developed, verified and validated. The new sets are considered to be an extension of the most recent release of ORIGEN2.2UPJ code, i.e. the ORLIBJ33 library sets. The newly generated ORIGEN2 data library sets cover both oxide and silicide LEU fuels with fuel meat density range from 2.96 to 4.74 g U/cm{sup 3} used in the present and future operation of the Indonesian 30 MWth RSG GAS research reactor. The new sets are expected applicable also for other research/testing reactors which utilize similar fuels or have similar neutron spectral indices. In addition to the traditional ORIGEN2 library sets for fuel depletion analyses in fuel regions, in the new data library sets, new ORIGEN2 library sets for irradiation/activation analyses were also prepared which cover all representative non-fuel regions of RSG GAS such as reflector elements, irradiation facilities, etc. whose neutron spectra are significantly softer than fuel regions. Verification with other codes as well as validation with a non-destructive test result showed promising results where a good agreement was confirmed.

  7. M5Si3(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhihong [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti5Si3-based alloys was investigated. Oxidation behavior of Ti5Si3-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti5Si3 by nucleation and growth of nitride subscale. Ti5Si3.2and Ti5Si3C0.5 alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi2 coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo3Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo3Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nbss (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} NbSS + NbB was determined to occur at 2104 ± 5 C by DTA.

  8. Accelerations of {epsilon}+{alpha}{yields}{beta} transformation and sintering of iron silicide by addition of Pd; Pd tenka ni yoru keikatetsu no {epsilon}+{alpha}{yields}{beta} hentai to shoketsu no sokushin

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M.; Yamamoto, N.; Takeda, T. [Isuzu Advanced Engineering Center Ltd., Kanagawa (Japan); Hayashi, K. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1996-12-15

    FeSi2 ({beta} phase) semiconducting iron silicide, which is expected to be widely used as a thermoelectric material in high temperature environment, is formed below 1259K by the peritectoid reaction of FeSi ({epsilon}) and Fe2Si5 ({alpha}) two metallic phases. Because the transformation of {epsilon} + {alpha} {yields} {beta} caused by this peritectoid reaction occurs considerably slowly, the iron silicide material which is produced by sintering of the powder at temperatures above 1259K has to be isothermally heat-treated for at least 180ks at about 1120K after the sintering so that the transformation occurs completely. We have found that the transformation was drastically accelerated by the addition of a small amount of Pd in the same way as Cu; the isothermal heat-treatment time necessary for the completion of the transformation was reduced to about 1/60. The sintering time needed for the almost full densification of the powder by pressure DCL sintering (DCL; direct current loading) was also reduced. A hypothesis for the mechanisms was proposed. 15 refs., 7 figs., 2 tabs.

  9. Construction of a four tip scanning tunneling microscope/scanning electron microscope combination and conductivity measurements of silicide nanowires; Aufbau einer Vierspitzen-Rastertunnelmikroskop/Rasterelektronenmikroskop-Kombination und Leitfaehigkeitsmessungen an Silizid Nanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, Evgeniy

    2013-09-01

    In this work the combination of a four-tip scanning tunneling microscope with a scanning electron microscope is presented. By means of this apparatus it is possible to perform the conductivity measurements on the in-situ prepared nanostructures in ultra-high vacuum. With the aid of a scanning electron microscope (SEM), it becomes possible to position the tunneling tips of the four-tip scanning tunneling microscope (STM), so that an arrangement for a four-point probe measurement on nanostructures can be obtained. The STM head was built according to the novel coaxial Beetle concept. This concept allows on the one hand, a very compact arrangement of the components of the STM and on the other hand, the new-built STM head has a good mechanical stability, in order to achieve atomic resolution with all four STM units. The atomic resolution of the STM units was confirmed by scanning a Si(111)-7 x 7 surface. The thermal drift during the STM operation, as well as the resonant frequencies of the mechanical structure of the STM head, were determined. The scanning electron microscope allows the precise and safe navigation of the tunneling tips on the sample surface. Multi tip spectroscopy with up to four STM units can be performed synchronously. To demonstrate the capabilities of the new-built apparatus the conductivity measurements were carried out on metallic yttrium silicide nanowires. The nanowires were prepared by the in-situ deposition of yttrium on a heated Si(110) sample surface. Current-voltage curves were recorded on the nanowires and on the wetting layer in-between. The curves indicate an existence of the Schottky barrier between the yttrium silicide nanowires and the silicon bulk. By means of the two-tip measurements with a gate, the insulating property of the Schottky barrier has been confirmed. Using this Schottky barrier, it is possible to limit the current to the nanowire and to prevent it from flowing through the silicon bulk. A four-tip resistance measurement

  10. Microstructure and dielectric properties of dysprosium-doped barium titanate ceramics Microestrutura e propriedades dielétricas de cerâmicas de titanato de bário dopado com disprósio

    Directory of Open Access Journals (Sweden)

    Y. Pu

    2005-09-01

    Full Text Available The substitution behavior and lattice parameter of barium titanate between solid_solubility with a dopant concentration in the range of 0.25 to 1.5 mol% are studied. The influences of dysprosium-doped fraction on the grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength, are investigated via scanning electronic microscopy, X-ray diffraction and electric property tester. The results show that, at a dysprosium concentration of 0.75 mol%, the abnormal grain growth is inhibited and the lattice parameters of grain rise up to the maximum because of the lowest vacancy concentration. In addition, the finegrain and high density of barium titanate ceramic result in its excellent dielectric properties. The relative dielectric constant (25 °C reaches to 4100. The temperature coefficient of the capacitance varies from -10 to 10% within the temperature range of -15 °C -100 °C, and the breakdown electric field strength (alternating current achieves 3.2 kV/mm. These data suggest that our barium titanate could be used in the manufacture of high voltage ceramic capacitors.Foram estudados o comportamento da substituição e o parâmetro de rede de titanato de bário da solubilidade sólida com uma concentração de dopante na faixa 0,25-1,5 mol%. As influências da fração do dopante disprósio no tamanho de grão e nas propriedades dielétricas da cerâmica de titanato de bário, incluindo constante dielétrica e rigidez dielétrica foram investigadas por meio de microscopia eletrônica de varredura, difração de raios X e teste de propriedades elétricas. Os resultados mostram que a uma concentração de disprósio de 0,75 mol% o crescimento anormal de grão é inibido e os parâmetros de rede aumentam até um máximo devido a menor concentração de vacâncias. Além disso, as cerâmicas de grãos pequenos e alta densidade resultam em excelentes propriedades dielétricas. A

  11. Neodymium Dysprosium Modified Starch- coated Magnetic Fluid Preparation of Ferrite%淀粉包覆镝钕改性铁氧体磁性液体的制备

    Institute of Scientific and Technical Information of China (English)

    林穗云; 周育辉

    2011-01-01

    In this paper, in order to obtain the ferrite magnetic fluids of higher saturation magnetic intensity with simple technology, nanometer magnetite ( Fe3O4 ) particles ware prepared by chemical co - precipitation. And to a certain proportion of Dysprosium Neodymium ferrite magnetic fluids on the modification, we selected starch prepara- tion for the relief of water - based coating of rare earth iron oxide magnetic fluid composites. We also investigated the amount of Nd - Dy, the amount of coating agent, reaction temperature, coating temperature on the performance of the products and the effects of particle size, and its preliminary characterization was also performed . Through experiment,we summed up, under n (Fe) : [ n ( Nd3+ ) + n ( Dy3+ ) ] = 30:1 and n ( Fe3 + ) : n ( Fe2 + ) = 1.70 ~ 1. 75, the ratio for use of dysprosium and neodymium is n(Dy3+ ) : n(Nd3+ ) =4:1, 25%NH3 · H2O(A. R. ) as precipitating agent and pH value conditioner; the reacting system temperature was controlled in 35 ℃, and the pH value was adjusted to 9 ~ 11 ; the best dosage of starch as the relief is O. 0050g each 6OraL magnetic fluids, the temperature of surfactant was controlled in 50℃ and the pH value was adjusted to 2 ~ 3. In such system under the conditions of a water - based rare - earth compound Nd Dy Fe Magnetic, fluid magnetic oxygen was higher than or- dinary water- based ferrite.%为制备工艺简单且饱和磁化强度高的磁流体,本文采用化学共沉淀法制得了纳米磁性Fe304粒子.然后以一定比例的镝钕对铁氧体磁流体改性,选择淀粉为包覆剂制备水基稀土复合铁氧磁流体.考察了镝钕的用量、包覆剂的用量、反应温度、包覆温度等因素对产物粒径及性能的影响,并对其进行了初步的性能表征.实验总结出适宜的条件:在n(Fe):[n(Nd3+)+n(Dy3+)]=30:1,n(Fe3+):n(Fe2+)=1.70~1.75

  12. Oxidation behaviours of Nb–22Ti–15Si–2Al–2Hf–2V–(2, 14Cr alloys with Al and Y modified silicide coatings prepared by pack cementation

    Directory of Open Access Journals (Sweden)

    Songming Zhang

    2015-10-01

    Full Text Available Al and Y modified silicide coatings on the Nb–15Si–22Ti–(2,14Cr–2Al–2Hf–2V alloys (where the alloy with 2 at% Cr or 14 at% Cr is hereafter referred to as 2Cr and 14Cr alloy, respectively was prepared by pack cementation. The microstructural evolution and the oxidation behaviours of the coating 2Cr and 14Cr samples at 1250 °C were studied. The 2Cr alloy consists of Nb solid solution (NbSS and α-Nb5Si3 silicide, while the Laves C15–Cr2Nb phase arised in the 14Cr alloy. The coating structure of the coating 2Cr sample contained the outer (Nb, XSi2+(Nb, X5Si3 layer, the middle (Nb, X5Si3 layer and the inner undeveloped intermetallic (Nb,Ti3(Al,X layer; the structure of the coating 14Cr sample consisted of the outer single (Nb, XSi2 layer, the middle (Nb, X5Si3 layer, the transition (Nb,Ti (Cr,Al layer and the inner (Cr, Al2(Nb,Ti layer. The coating 14Cr sample exhibited better oxidation resistance than the coating 2Cr sample. With an outer single (Nb, XSi2 layer, a compact oxide scale consisting of SiO2 and TiO2 formed on the coating 14Cr sample, which can efficiently prevent the substrate from oxidising. For the coating 2Cr sample with an outer (Nb, XSi2+(Nb, X5Si3 layer, the oxide scale of the SiO2, TiO2, Nb2O5 and CrNbO4 mixture generated, and the scale spalled out from the surface of the sample, resulting in disastrous failure.

  13. Studies of valence of selected rare earth silicides determined using Si K and Pd/Rh L{sub 2,3} XANES and LAPW numerical studies

    Energy Technology Data Exchange (ETDEWEB)

    Zajdel, P., E-mail: pawel.zajdel@us.edu.pl [Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Kisiel, A., E-mail: andrzej.kisiel@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Kraków (Poland); Szytuła, A., E-mail: andrzej.szytula@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Kraków (Poland); Goraus, J., E-mail: jerzy.goraus@us.edu.pl [Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Balerna, A., E-mail: antonella.balerna@lnf.infn.it [Laboratori Nazionali di Frascati, INFN, Lab DAPHINE-Light, Via E. Fermi 40, I-00044 Frascati (Italy); Banaś, A., E-mail: slsba@nus.edu.sg [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Starowicz, P., E-mail: pawel.starowicz@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Kraków (Poland); Konior, J., E-mail: jerzy.konior@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Kraków (Poland); Cinque, G., E-mail: gianfelice.cinque@diamond.ac.uk [Diamond Light Source, Harwell Campus, OX11 0DE Chilton-Didcot (United Kingdom); Grilli, A., E-mail: antonio.grilli@lnf.infn.it [Laboratori Nazionali di Frascati, INFN, Lab DAPHINE-Light, Via E. Fermi 40, I-00044 Frascati (Italy)

    2015-12-01

    Highlights: • The Si K and Pd L{sub 3} edges of R{sub 2}PdSi{sub 3} (R = Ce, Nd, Tb, Dy, Ho, Er) and HoRh{sub 2−x}Pd{sub x}Si{sub 2} are reported. • The R–Si bonds possess polar and 4d5s bands of Pd and Rh metallic characters. • There is no indication of Ce having a different valence than the other rare earths. • The positions and features of the calculated edges exhibit a fair agreement up to ≈10 eV. • The supercell used for Ho{sub 2}PdSi{sub 3} is good enough to reproduce the Si K edge. - Abstract: We report on the investigation of Si and Pd/Rh chemical environments using X-ray Absorption Near Edge Spectroscopy in two different families of rare earth silicides R{sub 2}PdSi{sub 3} (R = Ce, Nd, Tb, Dy, Ho, Er) and HoRh{sub 2−x}Pd{sub x}Si{sub 2} (x = 0, 0.5, 0.75, 1.0, 1.5, 1.8, 2.0). The Si K, Pd L{sub 3} and Rh L{sub 3} absorption edges were recorded in order to follow their changes upon the variation of 4f and 4d5s electron numbers. In both cases it was found that the Si K edge was shifted ≈0.5 eV toward lower energies, relative to pure silicon. In the first family, the shift decreases with increasing number of f-electrons, while the Si K edge remains constant upon rhodium–palladium substitution. In all cases the Pd L{sub 3} edge was shifted to higher energies relative to metallic Pd. No visible change in the Pd L{sub 3} position was observed either with a varying 4f electron count or upon Pd/Rh substitution. Also, the Rh L{sub 3} edge did not change. For two selected members, Ho{sub 2}PdSi{sub 3} and HoPd{sub 2}Si{sub 2}, the Wien2K’09 (LDA + U) package was used to calculate the electronic structure and the absorption edges. Si K edges were reproduced well for both compounds, while Pd L{sub 3} only exhibited a fair agreement for the second compound. This discrepancy between the Pd L{sub 3} theory and experiment for the Ho{sub 2}PdSi{sub 3} sample can be attributed to the specific ordered superstructure used in the numerical calculations

  14. 表面修饰对镝铁氧体纳米磁粒子的合成及其磁性能的影响%Effect of Surface Modification on Formation and Magnetic Property of Dysprosium Ferrite Nanomagnetic Particles

    Institute of Scientific and Technical Information of China (English)

    陈静; 张茂润; 邓真娟

    2011-01-01

    利用湿化学法制备镝铁氧体纳米磁粒子时,用适量的阴离子表面活性剂进行表面修饰,能够有效地控制磁粒子的粒径,同时避免干燥时产生硬团聚.文章介绍了用月桂酸、月桂酸钠、正十二烷基硫酸钠对磁粒子进行表面修饰的研究结果,探讨了三者及其用量对磁粒子的形成及磁性能的影响.借助X射线衍射仪(XRD)、透射电镜(TEM)、振动样品磁强计(VSM)、红外光谱仪(IR)对产物的性能进行了表征.结果表明,用月桂酸修饰后的产物具有Fe3O4磁粒子的晶型结构且结晶度高、磁性能优异、平均粒径约16nm;用月桂酸钠、正十二烷基硫酸钠修饰后的产物不具有Fe3O4磁粒子的晶型结构,结晶度低且磁性能差.%When wet chemical method are use to prepare dysprosium-doped ferrite magnetic nanoparticles, right a-mount of anionic surfactant were doped as surface modification, which can effectively control the size of magnetic particles, and avoid producing hard reunion when dry out. This paper introduces the research results of magnetic particle surface modification by using lauric acid, laurel acid sodium and lauryl sodium sulfate, discusses the effect of lauric acid, laurel acid sodium and lauryl sodium sulfate and their dosages on the formation of magnetic and its magnetic property. The properties of the product can be characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), infrared spectrometer (IR). The results showed that the product modified with lauric acid have a crystalline structure of Fe3O4 magnetic particles and high crystallin-ity, excellent magnetic properties. The average particle size is about 16 nm; the product modified with laurel acid sodium and lauryl sodium sulfate does not have the crystalline structure of Fe3O4 magnetic particles, with low crystal-linity and low magnetic property.

  15. Ternary silicides ScIr{sub 4}Si{sub 2} and RERh{sub 4}Si{sub 2} (RE = Sc, Y, Tb-Lu) and quaternary derivatives RERh{sub 4}Si{sub 2-x}Sn{sub x} (RE = Y, Nd, Sm, Gd-Lu) - structure, chemical bonding, and solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vosswinkel, Daniel; Benndorf, Christopher; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Sao Paulo Univ., Sao Carlos (Brazil). Inst. of Physics; Matar, Samir F. [Bordeaux Univ., CNRS, ICMCB, UPR 9048, Pessac (France)

    2016-11-01

    The silicides ScIr{sub 4}Si{sub 2} and RERh{sub 4}Si{sub 2} (RE = Sc, Y, Tb-Lu) and silicide stannides RERh{sub 4}Si{sub 2-x}Sn{sub x}(RE = Y, Nd, Sm, Gd-Lu) were synthesized from the elements by arc-melting and subsequent annealing. The new compounds crystallize with the orthorhombic YRh{sub 4}Ge{sub 2} type structure, space group Pnma. They were characterized by X-ray powder patterns and several structures were refined from single crystal X-ray diffractometer data. The main structural motifs of this series of silicides are tricapped trigonal prisms formed by the transition metal and rare earth atoms. One of the two crystallographically independent silicon sites allows for formation of solid solutions with tin, exemplarily studied for ErRh{sub 4}Si{sub 2-x}Sn{sub x}. Electronic structure calculations reveal strong covalent Rh-Si bonding as the main stability factor. Multinuclear ({sup 29}Si, {sup 45}Sc, and {sup 89}Y) magic-angle spinning (MAS) NMR spectra of the structure representatives with diamagnetic rare-earth elements (Sc, Y, Lu) are found to be consistent with the crystallographic data and specifically confirm the selective substitution of Sn in the Si2 sites in the quaternary compounds YRh{sub 4}SiSn and LuRh{sub 4}SiSn.

  16. CeO2对铌硅基超高温合金硅化物渗层组织及抗氧化性能的影响%Effect of CeO2 on microstructure and oxidation resistance of silicide coatings prepared on Nb­silicide­based ultrahigh temperature alloy

    Institute of Scientific and Technical Information of China (English)

    张艺; 郭喜平

    2013-01-01

      采用Si­CeO2包埋共渗工艺于1150℃在铌硅基超高温合金表面制备Si­Ce共渗层,分析渗剂中CeO2粉含量对共渗层组织、相组成及高温抗氧化性能的影响。结果表明:Si­Ce 共渗层的组织、结构与单独渗硅层的相似,由(Nb, X)Si2(X表示Ti、Hf和Cr)外层、(Ti, Nb)5Si4过渡层和富Al扩散层组成。EDS分析结果表明,Ce在共渗层中的分布不均匀,而在由原基体合金中的(Nb, X)5Si3块转变而成的富Hf (Nb, X)Si2相中含量较高。渗剂中添加CeO2不仅起到了细化渗层组织的作用,而且起到了明显的催渗作用,当渗剂中CeO2粉含量为3%(质量分数)时催渗效果更显著。Si­Ce共渗层及单独渗硅层经1250℃氧化50 h后的氧化膜均主要由TiO2与SiO2组成。但Si­Ce共渗层试样的氧化膜中TiO2棒更细小,并且在SiO2基体中的分布也更均匀,因而能显著改善氧化膜的粘附性与致密性,进而提高Si­Ce共渗层的高温抗氧化性能。%Si­Ce co­deposition coatings were prepared on an Nb­silicide­based ultrahigh temperature alloy by pack cementation processes at 1 150℃for 8 h. The effects of CeO2 content in pack mixtures on the microstructure, constituent phases and high temperature oxidation resistance of the coatings were studied. The results show that all coatings prepared with different contents of CeO2 in the pack mixtures are mainly composed of a (Nb, X)Si2 (X represents Ti, Hf and Cr) outer layer, a (Ti, Nb)5Si4 transitional layer and an Al­rich diffusion zone, which are similar to that of purely siliconized coatings. EDS analysis reveals that the distribution of Ce in the co­deposition coatings is not uniform. The content of Ce in the Hf­rich (Nb, X)Si2 phase transferred from (Nb, X)5Si3 in the base alloy is higher than that in other phases. The addition of CeO2 in the pack mixtures not only refines the microstructure of the coatings, but also obviously catalyzes the coating growth

  17. The silicides YT{sub 2}Si{sub 2} (T = Co, Ni, Cu, Ru, Rh, Pd). A systematic study by {sup 89}Y solid-state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hoeting, Christoph; Rodewald, Ute C.; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Matar, Samir F. [CNRS Bordeaux Univ., Pessac (France). ICMCB

    2014-03-15

    The ThCr{sub 2}Si{sub 2}-type silicides YT{sub 2}Si{sub 2} (T = Co, Ni, Cu, Ru, Rh, Pd) were synthesized from the elements by arc-melting. They were characterized by powder X-ray diffraction, and the structures were refined on the basis of single-crystal X-ray diffractometer data. The course of the lattice parameters shows a distinct anomaly for YRu{sub 2}Si{sub 2} which has by far the smallest c/a ratio along with elongated Y-Si distances. Systematic {sup 89}Y solid-state NMR spectra show large Knight shifts arising from unpaired conduction electron spin density near the Fermi edge. The Knight shift decreases with increasing valence electron count (VEC), reflecting the sensitivity of this parameter to electronic properties. The particularly strong structural distortion observed in YRu{sub 2}Si{sub 2} manifests itself in a sizeable magnetic shielding anisotropy. Electronic structure calculations for YRu{sub 2}Si{sub 2} and YRh{sub 2}Si{sub 2} reveal similar projected density of states (PDOS) shapes with an energy upshift of the Fermi level in YRh{sub 2}Si{sub 2} due to the extra electron brought in by Rh. As a consequence, the PDOS at the Fermi energy is twice as large in the Ru compound as in the Rh compound. While both compounds show the major bonding interaction within the T{sub 2}Si{sub 2} layers, YRh{sub 2}Si{sub 2} exhibits significantly stronger Y-Si bonding. (orig.)

  18. Dual fuel gradients in uranium silicide plates

    Energy Technology Data Exchange (ETDEWEB)

    Pace, B.W. [Babock and Wilcox, Lynchburg, VA (United States)

    1997-08-01

    Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final core gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.

  19. Dysprosium-free melt-spun permanent magnets.

    Science.gov (United States)

    Brown, D N; Wu, Z; He, F; Miller, D J; Herchenroeder, J W

    2014-02-12

    Melt-spun NdFeB powders can be formed into a number of different types of permanent magnet for a variety of applications in electronics, automotive and clean technology industries. The melt-spinning process produces flake powder with a fine uniform array of nanoscale Nd2Fe14B grains. These powders can be net-shape formed into isotropic polymer-bonded magnets or hot formed into fully dense magnets. This paper discusses the influence of heavy rare earth elements and microstructure on the magnetic performance, thermal stability and material cost of NdFeB magnets. Evidence indicates that melt-spun nanocrystalline NdFeB magnets are less dependent on heavy rare earth elements for high-temperature performance than the alternative coarser-grained sintered NdFeB magnets. In particular, hot-pressed melt-spun magnets are an attractive low-cost solution for applications that require thermal stability up to 175-200 °C.

  20. Structural and magnetic study of dysprosium substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemaunt, E-mail: hvatsal@gmail.com [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Srivastava, R.C. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Pal Singh, Jitendra [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Negi, P. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Agrawal, H.M. [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Das, D. [UGC-DAE CSR Kolkata Centre, Kolkata 700098 (India); Hwa Chae, Keun [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of)

    2016-03-01

    The present work investigates the magnetic behavior of Dy{sup 3+} substituted cobalt ferrite nanoparticles. X-ray diffraction studies reveal presence of cubic spinel phases in these nanoparticles. Raman spectra of these nanoparticles show change in intensity of Raman bands, which reflects cation redistribution in cubic spinel lattice. Saturation magnetization and coercivity decrease with increase of Dy{sup 3+}concentration in these nanoparticles. Room temperature Mössbauer measurements show the cation redistribution in these nanoparticles and corroborates the results obtained from Raman Spectroscopic measurements. Decrease in magnetization of Dy{sup 3+} substituted cobalt ferrite is attributed to the reduction in the magnetic interaction and cation redistribution. - Highlights: • Slight decrease in crystallite size after Dy{sup 3+} doping. • Saturation magnetization and coercivity decrease after Dy{sup 3+} doping. • Mössbauer measurements show the cation redistribution in the samples.

  1. Dysprosium Acetylacetonato Single-Molecule Magnet Encapsulated in Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ryo Nakanishi

    2016-12-01

    Full Text Available Dy single-molecule magnets (SMMs, which have several potential uses in a variety of applications, such as quantum computing, were encapsulated in multi-walled carbon nanotubes (MWCNTs by using a capillary method. Encapsulation was confirmed by using transmission electron microscopy (TEM. In alternating current magnetic measurements, the magnetic susceptibilities of the Dy acetylacetonato complexes showed clear frequency dependence even inside the MWCNTs, meaning that this hybrid can be used as magnetic materials in devices.

  2. Microscopic study of neutron-rich dysprosium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Carlos E. [Universidad Veracruzana, Facultad de Fisica e Inteligencia Artificial, Xalapa (Mexico); Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Apartado Postal 70-542, Mexico D.F. (Mexico); Velazquez, Victor [Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Apartado Postal 70-542, Mexico D.F. (Mexico); Lerma, Sergio [Universidad Veracruzana, Facultad de Fisica e Inteligencia Artificial, Xalapa (Mexico)

    2013-01-15

    Microscopic studies in heavy nuclei are very scarce due to large valence spaces involved. This computational problem can be avoided by means of the use of symmetry-based models. Ground-state, {gamma} and {beta} bands, and their B(E2) transition strengths in {sup 160-168}Dy isotopes, are studied in the framework of the pseudo-SU(3) model which includes the preserving symmetry Q . Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized. Additionally, three rotor-like terms are considered, whose free parameters, fixed for all members of the chain, are used to fine tune the moment of inertia of rotational bands and the band head of {gamma} and {beta} bands. The model succesfully describes in a systematic way rotational features in these nuclei and allows to extrapolate toward the midshell nucleus {sup 170}Dy. The results presented show that it is possible to study a full chain of isotopes or isotones in the region with the present model. (orig.)

  3. Photodissociation spectroscopy of the dysprosium monochloride molecular ion

    CERN Document Server

    Dunning, Alexander; Showalter, Steven J; Puri, Prateek; Kotochigova, Svetlana; Hudson, Eric R

    2015-01-01

    We have performed a combined experimental and theoretical study of the photodissociation cross section of the molecular ion DyCl$^+$. The cross section for the photon energy range 35,500 cm$^{-1}$ to 47,500 cm$^{-1}$ is measured using an integrated ion trap and time-of-flight mass spectrometer, and we observe a broad, asymmetric profile that is peaked near 43,000 cm$^{-1}$. The theoretical cross section is determined from electronic potentials and transition dipole moments calculated using the relativistic configuration-interaction valence-bond and coupled-cluster methods. The electronic structure of DyCl$^+$ is unprecedentedly complex due to the presence of multiple open electronic shells, including 4f$^{10}$ orbitals. The molecule has nine attractive potentials with ionically-bonded electrons and 99 repulsive potentials dissociating to a ground state Dy$^+$ ion and Cl atom. We explain the lack of symmetry in the cross section as due to multiple contributions from one-electron-dominated transitions between t...

  4. FTIR and Electrical Study of Dysprosium Doped Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hemaunt Kumar

    2014-01-01

    Full Text Available We have studied the role of Dy3+ doping on the XRD, TEM, FTIR, and dielectric and electrical properties of CoFe2O4 at room temperature. Cubic spinel phase of CoFe2−xDyxO4 (x = 0.00, 0.05, 0.10, and 0.15 was synthesized by using different sintering temperatures (300, 500, 700, and 900°C. The two absorption bands ν1 and ν2 are observed in Fourier transform infrared spectroscopy (FTIR spectra corresponding to the tetrahedral and octahedral sites, which show signature of spinel structure of the sample. For the sample sintered at 300°C, the dielectric constant is almost unchanged with the frequency at the particular concentrations of x = 0.00 and 0.05. Similar result is obtained for the sample sintered at 500°C (x = 0.10, 0.15, 700°C (x = 0.05, 0.10, and 0.15, and 900°C (x = 0.05, 0.10. An increase in the dielectric constant was observed for the undoped cobalt ferrite sintered at 500, 700, and 900°C. The values of electrical resistivity of the materials vary from ~105 to 109 Ω-cm.

  5. Adsorption of D113 Resin for Dysprosium(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The adsorption behavior and mechanism of D113 resin for Dy(Ⅲ) was investigated by using the method of resin adsorption. Experimental results show that the optimum medium pH of adsorption of D113 resin for Dy3+ is pH=6.00 in the HAc-NaAc medium. The static adsorption capacity of D113 resin for Dy3+chemical analysis and IR spectra.

  6. 1300-nm gain obtained with dysprosium-doped chloride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Page, R.H.; Schaffers, K.I.; Beach, R.J.; Payne, S.A.; Krupke, W.F.

    1996-03-01

    Dy{sup 3+} - doped chloride crystals have high 1300-nm emission quantum yields. Pump - probe experiments on La Cl{sub 3}:Dy{sup 3+} demonstrate optical gain consistent with predictions based on spectroscopic cross sections and lifetimes.

  7. Microscopic study of neutron-rich Dysprosium isotopes

    CERN Document Server

    Vargas, Carlos E; Lerma, Sergio; 10.1140/epja/i2013-13004-1

    2013-01-01

    Microscopic studies in heavy nuclei are very scarce due to large valence spaces involved. This computational problem can be avoided by means of the use of symmetry based models. Ground-state, gamma and beta-bands, and their B(E2) transition strengths in 160-168Dy isotopes, are studied in the framework of the pseudo-SU(3) model which includes the preserving symmetry Q.Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized. Additionally, three rotor-like terms are considered whose free parameters, fixed for all members of the chain are used to fine tune the moment of inertia of rotational bands and the band-head of gamma and beta-bands. The model succesfully describes in a systematic way rotational features in these nuclei and allows to extrapolate toward the midshell nucleus 170Dy. The results presented show that it is possible to study full chain of isotopes or isotones in the region with the present model.

  8. Visible luminescence of dysprosium ions in oxyhalide lead borate glasses

    Science.gov (United States)

    Pisarska, Joanna; Żur, Lidia; Pisarski, Wojciech A.

    2011-08-01

    Visible luminescence of Dy 3+ ions in oxyhalide lead borate glasses was examined. Luminescence spectra show two intense bands at 480 nm and 573 nm due to 4F 9/2 → 6H 15/2 (blue) and 4F 9/2 → 6H 13/2 (yellow) transitions of Dy 3+. Luminescence decays from 4F 9/2 state and yellow-to-blue luminescence intensity ratios (Y/B) were analysed with PbX 2 (X = F, Cl) content. An introduction of PbX 2 to the borate glass results in the increasing of 4F 9/2 lifetime and the decreasing of yellow-to-blue luminescence intensity ratio, which is due to reduction of covalency between Dy 3+ and O 2-/X - ions.

  9. MAGNETIC FIELD INDUCED FIRST-ORDER TRANSITIONS IN DYSPROSIUM ORTHOFERRITE

    OpenAIRE

    Eremenko, V.; Gnatchenko, S.; Kharchenko, N.; Lebedev, P.; Piotrowski, K; Szymczak, H.; Szymczak, R.

    1988-01-01

    New type of magnetic first-order phase transition induced by external magnetic field applied in the ab-plane in DyFeO3 is investigated using different magnetooptic techniques. The phenomenological model of this transition is proposed. The phase diagram in H-T plane has been obtained for various H orientation in the ab-plane.

  10. Electrochemical behaviour of metal silicides in acidic and alkaline media

    Institute of Scientific and Technical Information of China (English)

    Shein; A.; B.; Rakityanskaya; I.; L.; Ivanova; O.; S.

    2005-01-01

    The elaboration of new materials with high corrosion resistance is one of the actual problems of modern corrosion science. One of the most interesting objects is intermetallic compounds and metallides. These materials are widely used as the basis for new resistive alloys.……

  11. Superconductivity in layered binary silicides: A density functional theory study

    Science.gov (United States)

    Flores-Livas, José A.; Debord, Régis; Botti, Silvana; San Miguel, Alfonso; Pailhès, Stéphane; Marques, Miguel A. L.

    2011-11-01

    A class of metal disilicides (of the form XSi2, where X is a divalent metal) crystallizes in the EuGe2 structure, formed by hexagonal corrugated silicon planes intercalated with metal atoms. These compounds are superconducting like other layered superconductors, such as MgB2. Moreover, their properties can be easily tuned either by external pressure or by negative chemical pressure (i.e., by changing the metal), which makes disilicides an ideal testbed to study superconductivity in layered systems. In view of this, we present an extensive density functional theory study of the electronic and phonon band structures as well as the electron-phonon interaction of metal disilicides. Our results explain the variation of the superconducting transition temperature with pressure and the species of the intercalating atom, and allow us to predict superconductivity for compounds not yet synthesized belonging to this family.

  12. Milestone report on MD potential development for uranium silicide

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianguo [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Hales, Jason Dean [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.

    2016-03-01

    This report summarizes the progress on the interatomic potential development of triuranium-disilicide (U3Si2) for molecular dynamics (MD) simulations. The development is based on the Tersoff type potentials for single element U and Si. The Si potential is taken from the literature and a Tersoff type U potential is developed in this project. With the primary focus on the U3Si2 phase, some other U-Si systems such as U3Si are also included as a test of the transferability of the potentials for binary U-Si phases. Based on the potentials for unary U and Si, two sets of parameters for the binary U-Si system are developed using the Tersoff mixing rules and the cross-term fitting, respectively. The cross-term potential is found to give better results on the enthalpy of formation, lattice constants and elastic constants than those produced by the Tersoff mixing potential, with the reference data taken from either experiments or density functional theory (DFT) calculations. In particular, the results on the formation enthalpy and lattice constants for the U3Si2 phase and lattice constants for the high temperature U3Si (h-U3Si) phase generated by the cross-term potential agree well with experimental data. Reasonable agreements are also reached on the elastic constants of U3Si2, on the formation enthalpy for the low temperature U3Si (m-U3Si) and h-U3Si phases, and on the lattice constants of m-U3Si phase. All these phases are predicted to be mechanically stable. The unary U potential is tested for three metallic U phases (α, β, γ). The potential is found capable to predict the cohesive energies well against experimental data for all three phases. It matches reasonably with previous experiments on the lattice constants and elastic constants of αU.

  13. Luminescence of divalent europium activated spinels synthesized by combustion and the enhanced afterglow by dysprosium incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Haoyi, E-mail: manofchina@gmail.com; Jin, Yahong

    2016-05-01

    Herein we report a luminescent phenomenon of Eu{sup 2+} in the spinel MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} samples which are successfully synthesized via a combustion method. The XRD shows cubic spinel structure is obtained from the prepared samples. The mean crystal sizes estimated from XRD data are 30 and 10 nm for MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} respectively, and the large grain particles are the agglomeration of crystallites. The Eu{sup 2+} ions show a blue emission at around 480 nm and an afterglow phenomenon is observed after the removal of excitation. The afterglow spectrum of MgAl{sub 2}O{sub 4}: Eu{sup 2+}, Dy{sup 3+} shows two emissions at 480 and 520 nm while only one at 480 nm is observed in ZnAl{sub 2}O{sub 4}: Eu{sup 2+}, Dy{sup 3+}. The afterglow intensity and the persisting duration can be substantially enhanced by the Dy{sup 3+} incorporation because the trapping ability of the electron traps is reinforced. This is confirmed by the TL curves of the samples.

  14. Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass

    Science.gov (United States)

    Gomes, Laércio; Librantz, André Felipe Henriques; Jackson, Stuart D.

    2010-03-01

    The primary excited state decay processes relating to the H613/2→H615/2˜3 μm laser transition in singly Dy3+-doped fluoride (ZBLAN) glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the F69/2, H67/2 energy levels at 1125 nm and F611/2, H69/2 energy levels at 1358 nm established that the energy levels above the H611/2 level, excluding the F49/2 level, are entirely quenched by multiphonon emission in ZBLAN glass. The H611/2 and H613/2 energy levels emit luminescence with peaks at ˜1700 and ˜2880 nm, respectively, but at low quantum (luminescence) efficiencies. The quantum efficiency of the H611/2 level and H613/2 level is ˜9×10-5 and ˜1.3×10-2, respectively, for [Dy3+]=0.5 mol % based on calculations of the radiative lifetimes using the Judd-Ofelt theory. Excited state absorption (ESA) was detected by monitoring the rise time of the 1700 nm luminescence after tuning the probe wavelength across the spectral range from 1100 to 1400 nm. As a result of nonradiative decay of the higher excited states, ESA contributes to the heating of ˜3 μm fiber lasers based on Dy3+-doped fluoride glass. For [Dy3+] up to 4 mol %, we found no evidence of energy transfer processes between Dy3+ ions that influence the decay characteristics of the H611/2 and H613/2 energy levels.

  15. A naproxen complex of dysprosium intercalates into calf thymus DNA base pairs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mengsi; Jin, Jianhua; Xu, Guiqing [School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007 (China); Cui, Fengling, E-mail: fenglingcui@hotmail.com [School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007 (China); Luo, Hongxia [Department of Chemistry, Renmin University of China, Beijing 100872 (China)

    2014-01-15

    Highlights: • Binding mode to ctDNA was studied by various methods. • Intercalation is the most possible binding mode. • Dynamic and static quenching occurred simultaneously. • Hydrophobic force played a major role. • Binding characteristic of rare earth complexes to DNA are dependent on the element. - Abstract: The binding mode and mechanism of dysprosium–naproxen complex (Dy–NAP) with calf thymus deoxyribonucleic acid (ctDNA) were studied using UV–vis and fluorescence spectra in physiological buffer (pH 7.4). The results showed that more than one type of quenching process occurred and the binding mode between Dy–NAP with ctDNA might be intercalation. In addition, ionic strength, iodide quenching and fluorescence polarization experiments corroborated the intercalation binding mode between Dy–NAP and ctDNA. The calculated thermodynamic parameters ΔG, ΔH and ΔS at different temperature demonstrated that hydrophobic interaction force played a major role in the binding process.

  16. Connecting mononuclear dysprosium single-molecule magnets to form dinuclear complexes via in situ ligand oxidation.

    Science.gov (United States)

    Yutronkie, Nathan J; Kühne, Irina A; Korobkov, Ilia; Brusso, Jaclyn L; Murugesu, Muralee

    2016-01-14

    A Dy2 complex, exhibiting SMM behaviour, and its Y analogue were prepared via in situ oxidation of Py2TTA, a pincer type ligand, followed by dimerisation. This unique metal complexation and subsequent dimerization were followed by solution NMR studies.

  17. A Linear Tetranuclear Dysprosium(III) Compound Showing Single-Molecule Magnet Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Hongshan; Xu, Gong Feng; Guo, Yun-Nan; Gamez, Patrick; Beavers, Christine M; Teat, Simon J; Tang, Jinkui

    2010-04-20

    Although magnetic measurements reveal a single-relaxation time for a linear tetranuclear Dy(III) compound, the wide distribution of the relaxation time observed clearly suggests the presence of two slightly different anisotropic centres, therefore opening new avenues for investigating the relaxation dynamics of lanthanide aggregates.

  18. A Novel (4,6)-Connected Net Based on Dysprosium Benzenedicarboxylate, [Dy(OAc)(BDC)]n

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; LI Zhao-Ji; QIN Ye-Yan; CHENG Jian-Kai; YAO Yuan-Gen

    2008-01-01

    A new lanthanide coordination polymer, [Dy(OAc)(BDC)]n 1 (OAc= acetate, BDC = 1,4-benzenediacarboxylate), has been synthesized under hydrothermal conditions. Single-crystal X-ray diffraction analysis reveals that complex 1 has infinite zigzag Dy-OAc chains, which are further connected by BDC to form a 3D metal-organic framework. According to topology analysis, this framework can be characterized as (4,6)-connected (3.4.54)(32.4.56.66) net that has never been reported before. Crystal structure for 1: space group Pbca, a = 13.314(3), b = 8.0269(18), c = 20.275(5) A, V = 2166.8(9) A3, C10H7O6Dy, Mr= 385.66, Z = 8, Dc = 2.364 g/cm3, μ = 6.910 mm-1, F(000) = 1448, the final R = 0.0181 and wR = 0.0520.

  19. Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium

    Indian Academy of Sciences (India)

    K Madhukumar; H K Varma; Manoj Komath; T S Elias; V Padmanabhan; C M K Nair

    2007-10-01

    The suitability of calcium phosphate crystals for thermoluminescence dosimetry (TLD) applications is investigated, owing to their equivalence to bone mineral. The and phases of tricalcium phosphate (TCP) were synthesized through wet precipitation and high temperature solid state routes and doped with Dy and Eu. The photoluminescence and thermoluminescence studies of the phosphors have been carried out. The TL properties were found to be highly dependent on the method of preparation of the material. Eu doping gave good PL emission, whereas Dy doping was more efficient in TL emission. -TCP was found to be less TL sensitive than -TCP, yet it was identified as a better phosphor material owing to its better fading characteristics. The dependence of TL of -TCP : Dy on the energy and dose of radiation, and on the doping concentration were studied. The TL intensity was observed to fade exponentially during a storage period of 20 days, but it stabilized at 70% of the initial value after 30 days. The optimum doping concentration was found to be 0.5 mol%.

  20. Extraction liquide-solide de Dysprosium(III) par le charbon actif ferromagnétique

    OpenAIRE

    khiri, khaira

    2014-01-01

    L’extraction liquide-solide de Dy(III) a été faite par le charbon actif ferromagnétique, dans un milieu nitré. L’effet de pH initial, concentration initial en ion Dy(III), le temps de contact, la force ionique, la température, la masse et l’élution ont été étudiés. La capacité de sorption augmente avec l’augmentation de la concentration initiale en Dy(III), le pH et la température. L’isotherme de Freundlich décrit mieux le processus d’extraction, ainsi que le modèle cinétique de p...

  1. Geometric and electronic structure of dysprosium thin films on tungsten surfaces Structural and magnetic properties

    CERN Document Server

    Moslemzadeh, N

    2001-01-01

    The rare earth thin films are frequently the focus of investigators due to their unusual structural and magnetic properties. Despite the potential interest of Dy/W systems to the surface/rare earth community, they have been little studied. This study is the first try of growing Dy on W(100) and W(112) and W(110) in which almost a complete set of information about film morphology and electronic structure of the surface and interface have been achieved. A set of different experiments have been done for this purpose including LEED, XPS, UPS (with synchrotron radiation) and STM. The growth modes of Dy on different W substrates (W(100), W(112) and W(110)) at RT and at elevated temperatures have been determined by XPS of Dy 3d sub 3 sub / sub 2 and W 4f intensities. Crystallographic ordering and the epitaxial relationship between adsorbate Dy and different W substrates have been studied with LEED and the effect of annealing temperature on the resultant superstructures was investigated. As a complementary study to t...

  2. Cerium: an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets.

    Science.gov (United States)

    Pathak, Arjun K; Khan, Mahmud; Gschneidner, Karl A; McCallum, Ralph W; Zhou, Lin; Sun, Kewei; Dennis, Kevin W; Zhou, Chen; Pinkerton, Frederick E; Kramer, Matthew J; Pecharsky, Vitalij K

    2015-04-24

    Replacement of Dy and substitution of Nd in NdFeB-based permanent magnets by Ce, the most abundant and lowest cost rare earth element, is important because Dy and Nd are costly and critical rare earth elements. The Ce, Co co-doped alloys have excellent high-temperature magnetic properties with an intrinsic coercivity being the highest known for T ≥ 453 K.

  3. Studies on Preparation of Dysprosium - 165 Metallic Macroaggregates for the Treatment of Rheumatoid Arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Kim, Jae Rok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    1994-07-15

    Irradiation of 20 mg of natural Dy(NO{sub 3})3 in a neutron flux of 2 X10{sup 13} n/cm{sup 2} sec for 4 hours gave 5.76 Ci of {sup 165}Dy (specific activity, 610 mCi/mg Dy) with high radionuclidic purity (>99.9%). {sup 165}Dy-MA was prepared in a quantitative yield by reacting the aqueous solution of {sup 165}Dy(NO{sub 3})3 with sodium borohydride solution in 0.2N NaOH. Coulter particle analyzer exhibited mean particle size of 2.6 mum (range 1 approx 6 mum). Even though the {sup 165}Dy-MA suspension in saline was stored at 37 .deg. C for 24 hours of autoclaved at 121 .deg. C for 30 minutes, there was no significant change in particle size and leakage problem indicating the prepared {sup 165}Dy-MA is sufficiently stable. In-vivo retention studies were carried out by administering {sup 165}Dy-MA into the knee joint space of normal rabbits. Gamma camera analysis showed high retention in joint space of normal rabbits. Gamma camera analysis showed high retention in joining space even at 24 hours after administration (>99.9%) The ease with which the{sup 165}Dy-MA can be made in the narrow size range and their high in vitro and vivo stability make them attractive agents for radiation synovectomy.

  4. Dysprosium sorption by polymeric composite bead: robust parametric optimization using Taguchi method.

    Science.gov (United States)

    Yadav, Kartikey K; Dasgupta, Kinshuk; Singh, Dhruva K; Varshney, Lalit; Singh, Harvinderpal

    2015-03-06

    Polyethersulfone-based beads encapsulating di-2-ethylhexyl phosphoric acid have been synthesized and evaluated for the recovery of rare earth values from the aqueous media. Percentage recovery and the sorption behavior of Dy(III) have been investigated under wide range of experimental parameters using these beads. Taguchi method utilizing L-18 orthogonal array has been adopted to identify the most influential process parameters responsible for higher degree of recovery with enhanced sorption of Dy(III) from chloride medium. Analysis of variance indicated that the feed concentration of Dy(III) is the most influential factor for equilibrium sorption capacity, whereas aqueous phase acidity influences the percentage recovery most. The presence of polyvinyl alcohol and multiwalled carbon nanotube modified the internal structure of the composite beads and resulted in uniform distribution of organic extractant inside polymeric matrix. The experiment performed under optimum process conditions as predicted by Taguchi method resulted in enhanced Dy(III) recovery and sorption capacity by polymeric beads with minimum standard deviation.

  5. Dysprosium(III)-diethylenetriaminepentaacetate complexes of aminocyclodextrins as chiral NMR shift reagents.

    Science.gov (United States)

    Wenzel, T J; Miles, R D; Zomlefer, K; Frederique, D E; Roan, M A; Troughton, J S; Pond, B V; Colby, A L

    2000-01-01

    A metal chelating ligand is bonded to alpha-, beta-, and gamma-cyclodextrin by the reaction of diethylenetraminepentaacetic dianhydride with the corresponding 6-mono- and 2-mono(amine)cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives causes shifts in the (1)H-NMR spectra of substrates such as propranolol, tryptophan, aspartame, carbinoxamine, pheniramine, doxylamine, and 1-anilino-8-naphthalenesulfonate. The Dy(III)-induced shifts enhance the enantiomeric resolution in the NMR spectra of several substrates. Enhancements in enantiomeric resolution using cyclodextrin derivatives with the amine tether are compared to previously described compounds in which the chelating ligand is attached through an ethylenediamine tether. In general, the Dy(III) complex of the 6-beta-derivative with the amine tether is a more effective chiral resolving agent than the complex with the ethylenediamine tether. The opposite trend is observed with the 2-beta-derivatives. The presence of the chelating ligand in the 2-beta-derivative hinders certain substrates from entering the cavity. For cationic substrates, evidence suggests that a cooperative association involving inclusion in the cavity and association with the Dy(III) unit occurs. Enhancements in enantiomeric resolution in the spectrum of tryptophan are greater for the secondary alpha- and gamma-derivatives than the beta-derivative.

  6. The Separation of Dysprosium and Holmium for Production of n.c.a. Ho-166

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K. H.; Kim, J. B.; Park, U. J.; Nam, S. S.; Jang, K. D.; Yoo, K. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The uses of radiolanthanide series are increasing in these days because of target therapy which does not require surgery. Certain radiolanthanides is very useful since they have the ability of simultaneous diagnosis and therapeutic effect in nuclear medicine. But this conventional therapeutic method has often limited by specific activity which is important things to affect labeling yield such as radiommunoconjugation and peptide labeling. There are two approaches to produce radiolanthanide in nuclear reactor. One is direct method using (n, γ) reaction and the other is indirect method using (n, γ)β reaction. Among the radiolanthanides, Ho-166 can be produced with two methods. Some radiolanthanides show the good theranostic effect in that they have proper LET (Linear Energy Transfer) to induce apoptosis for cancer treatment and gamma ray to use as a tracer for cancer diagnosis. The aim of this project based on this view is to get the carrier free radioisotopes for applying the nuclear medicine.

  7. Thermal expansion in dysprosium tungstate Dy10W2O21

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The complex oxide Dy10W2O21 was synthesized by a solid-state reaction and isolated in cubic symmetry by an X-ray diffractometry (XRD) method. Differential scanning calorimetry (DSC) measurements show that the compound is thermodynamically stable. The intrinsic thermal expansion coefficients were determined by extra-power powder Xray diffractometry from room temperature to 1000 ℃: linear coefficient α = 1.07 × 10-5 ℃-1 and bulk coefficient β=3.20 × 10-5℃-1. Dilatometry was used to measure the extrinsic thermal expansion coefficient (9.2 × 10-6℃-1).

  8. Magnetic Properties of Some Gadolinium, Erbium, Dysprosium, Manganese Substituted Samarium-2 Cobalt-17 Intermetallic Compounds.

    Science.gov (United States)

    1979-08-01

    S K AREA B WORK UNIT NUMBERSElect ronic Materials Research Division 61102AUS Army Electronics Technology & Devices Laborator) 1-rrr~ -rrd2An47 02 031...permanent magnet materials having intrinsically temperature compensated magneti- zations. The properties investigated were saturation magnetization...that excellent temperature compensation could be achieved in these compounds in the teinper~ture (cont’d) ~‘ DD I ? ) 1Q3 L°’TI°M °’ INOV BI

  9. Recycling of waste Nd-Fe-B sintered magnets by doping with dysprosium hydride nanoparticles

    Institute of Scientific and Technical Information of China (English)

    刘卫强; 李超; ZAKOTNIK Miha; 岳明; 张东涛; 黄秀莲

    2015-01-01

    Recycling of waste sintered Nd-Fe-B permanent magnets by doping DyH3 nanoparticles was investigated. The effect of the DyH3 nanoparticles on the microstructure and magnetic properties of the recycled magnets was studied. As the DyH3 nanoparticles additive increased, the coercivity of recycled magnet increased gradually. The recycled magnets with DyH3 nanoparticle content be-tween 0.0 wt.% and 1.0 wt.% maintained the remanence (Br), but, with higher additions, theBr began to decrease rapidly. The best recycled magnet produced contained 1.0 wt.% of DyH3 nanoparticles when compared to the properties of the starting waste sintering magnet. TheHcj,Br and (BH)max values of 101.7%, 95.4%, and 88.58%, respectively, were recovered.

  10. Photo and cathodoluminescence characteristics of dysprosium doped yttrium oxide nanoparticles prepared by Polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Balderas-Xicohténcatl, R., E-mail: rbalderas@fis.cinvestav.mx [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07360, México, D.F. (Mexico); Martínez-Martínez, R. [Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Carretera a Acatlima Km. 2.5, Huajuapan de León, Oaxaca 69000 (Mexico); Rivera-Alvarez, Z.; Santoyo-Salazar, J.; Falcony, C. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07360, México, D.F. (Mexico)

    2014-02-15

    The luminescent characteristics of Dy{sup 3+}-doped Y{sub 2}O{sub 3} nanopowders synthesized using the polyol method are reported. The Y{sub 2}O{sub 3} nanoparticles presented a cubic phase crystalline structure of Y{sub 2}O{sub 3} after an annealing treatment in oxygen ambient at temperatures above 600 °C. The averaged crystallite size determined from the X-ray diffraction peaks width was in the 20–32 nm range depending on the annealing temperature. Scanning and transmission electron microscopy studies indicate the formation of nanoparticle aggregates up to 175 nm in diameter. Photoluminescence and cathodoluminescence measurements show a predominant emission at 573 nm, which is attributed to the {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} of the Dy{sup 3+} ion. The luminescence emission dependence with the dopant concentration and post-annealing temperatures is discussed. -- Highlights: • Nanoparticles of Y{sub 2}O{sub 3}:Dy{sup 3+} have been successfully synthesized by the polyol method. • XRD shows a grain size from 20 to 32 nm which is in agreement with SEM and TEM. • Electronic micrographs indicate the formation agglomerates of ∼175 nm. • The method used in the synthesis is industrial scalable and a low cost. • CL emission is observed at naked eye.

  11. Electrophoretic deposition of magnesium silicates on titanium implants: Ion migration and silicide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Afshar-Mohajer, M. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yaghoubi, A., E-mail: yaghoubi@siswa.um.edu.my [Center for High Impact Research, University of Malaya, Kuala Lumpur 50603 (Malaysia); Ramesh, S., E-mail: ramesh79@um.edu.my [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Bushroa, A.R.; Chin, K.M.C.; Tin, C.C. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chiu, W.S. [Low Dimensional Materials Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2014-07-01

    Magnesium silicates (Mg{sub x}SiO{sub y}) and in particular forsterite (Mg{sub 2}SiO{sub 4}) owing to their low thermal expansion mismatch with metals are promising materials for bioactive coating of implants. Here, we report the electrophoretic deposition (EPD) of forsterite onto titanium substrates using different precursors. Unlike bulk samples which achieve full stoichiometry only beyond 1400 °C, non-stoichiometric magnesium silicate rapidly decomposes into magnesium oxide nanowires during sintering. Elemental mapping and X-ray diffraction suggest that oxygen diffusion followed by ion exchange near the substrate leads to formation of an interfacial Ti{sub 5}Si{sub 3} layer. Pre-annealed forsterite powder on the other hand shows a comparatively lower diffusion rate. Overall, magnesium silicate coatings do not exhibit thermally induced microcracks upon sintering as opposed to calcium phosphate bioceramics which are currently in use.

  12. Comparison of the Thermal Expansion Behavior of Several Intermetallic Silicide Alloys Between 293 and 1523 K

    Science.gov (United States)

    Raj, Sai V.

    2014-01-01

    Thermal expansion measurements were conducted on hot-pressed CrSi(sub 2), TiSi(sub 2), W Si(sub 2) and a two-phase Cr-Mo-Si intermetallic alloy between 293 and 1523 K during three heat-cool cycles. The corrected thermal expansion, (L/L(sub 0)(sub thermal), varied with the absolute temperature, T, as (deltaL/L(sub 0)(sub thermal) = A(T-293)(sup 3) + B(T-293)(sup 2) + C(T-293) + D, where A, B, C and D are regression constants. Excellent reproducibility was observed for most of the materials after the first heat-up cycle. In some cases, the data from the first heatup cycle deviated from those determined in the subsequent cycles. This deviation was attributed to the presence of residual stresses developed during processing, which are relieved after the first heat-up cycle.

  13. Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts

    OpenAIRE

    Habicht, S.; Zhao, Q. T.; Feste, S. F.; Knoll, L.; Trellenkamp, S.; Ghyselen, B.; Mantl, S

    2010-01-01

    We present electrical characterization of nickel monosilicide (NiSi) contacts formed on strained and unstrained silicon nanowires (NWs), which were fabricated by top-down processing of initially As(+) implanted and activated strained and unstrained silicon-on-insulator (SOI) substrates. The resistivity of doped Si NWs and the contact resistivity of the NiSi to Si NW contacts are studied as functions of the As(+) ion implantation dose and the cross-sectional area of the wires. Strained silicon...

  14. Self-aligned silicide process technology for sub-0.25-μm geometries

    Science.gov (United States)

    White, Ted R.; Kolar, Dave; Jahanbani, Mohamed; Frisa, Larry E.; Nagabushnam, Rajan; Chuang, Harry; Tsui, Paul; Cope, Jeff; Pulvirent, Larry; Bolton, Scott

    1998-09-01

    This work compares the extendibility of titanium with pre- deposition amorphizing implant (PAI) and cobalt salicides to sub-0.25 micrometer technologies. Cobalt salicide has low sheet resistance and a tighter distribution of sheet resistances than titanium salicide with PAI for narrow linewidths. The reaction of cobalt with silicon is not affected by dopants in the silicon as the reaction of titanium is. Less cobalt need be deposited than titanium for a given sheet resistance target. Cobalt salicide requires fewer process steps than titanium salicide with PAI. Cobalt salicide has lower diodes for shallow junctions, requires a smaller thermal budget, and provides a lower contact resistances than titanium salicide. Thus, cobalt salicide process technology has better process control, is more compatible with sub-0.25 micrometer devices, and more compatible with interlayer connections than titanium salicide with PAI.

  15. Thermal evaluation of uranium silicide miniplates irradiated at high heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Post Guillen, Donna, E-mail: Donna.Guillen@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3710 (United States)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Best estimate of thermal conditions during irradiation experiment. Black-Right-Pointing-Pointer Thermal evaluation of 25% enriched, high-density U{sub 3}Si{sub 2}/Al dispersion fuel miniplates. Black-Right-Pointing-Pointer Predictions of heat flux and temperature for as-run, high heat flux conditions. Black-Right-Pointing-Pointer Finite-element analysis uses measured values of hydroxide layer thickness. - Abstract: The Gas Test Loop (GTL)-1 irradiation experiment was conducted in the Advanced Test Reactor (ATR) to assess corrosion performance of proposed booster fuel at heat flux levels {approx}30% above the design operating condition. Sixteen miniplates fabricated from 25% enriched, high-density (4.8 g U/cm{sup 3}) U{sub 3}Si{sub 2}/Al dispersion fuel with 6061 aluminum cladding were subjected to peak beginning of cycle (BOC) heat fluxes ranging from 411 to 593 W/cm{sup 2}. No adverse impacts to the miniplates were observed at these high heat flux levels. A detailed finite element model was constructed to calculate temperatures and heat flux for an as-run cycle average effective ATR south lobe power of 25.4 MW(t). Miniplate heat flux levels and fuel, cladding, hydroxide, and coolant-hydroxide interface temperatures were calculated using the average hydroxide thickness on each miniplate measured during post-irradiation examination. The purpose of this study was to obtain a best estimate of the as-run experiment temperatures to aid in establishing acceptable heat flux levels and designing fuel qualification experiments for this fuel type.

  16. Development of Low-Noise High Value Chromium Silicide Resistors for Cryogenic Detector Applications

    Science.gov (United States)

    Jhabvala, Murzy; Babu, Sachi; Monroy, Carlos; Darren, C.; Krebs, Carolyn A. (Technical Monitor)

    2001-01-01

    Extremely high sensitivity detectors, such as silicon bolometers are required in many NASA missions for detection of photons from the x-ray to the far infrared regions. Typically, these detectors are cooled to well below the liquid helium (LHe) temperature (4.2 K) to achieve the maximum detection performance. As photoconductors, they are generally operated with a load resistor and a pre-set bias voltage, which is then coupled to the input gate of a source-follower Field Effect Transistor (FET) circuit. It is imperative that the detector system signal to noise performance be limited by the noise of the detector and not by the noise of the external components. The load resistor value is selected to optimize the detector performance. These two criteria tend to be contradictory in that these detectors require load resistors in the hundreds of megaohms, which leads to a higher Johnson noise. Additionally, the physical size of the resistor must be small for device integration as required by such missions as the NASA High Resolution Airborne Wide-Band Camera (HAWC) instrument and the Submillimeter High Angular Resolution Camera (SHARC) for the Caltech Submillimeter Observatory (CSO). We have designed, fabricated and characterized thin film resistors using a CrSi/TiW/Al metal system on optical quality quartz substrates. The resistor values range from 100 megaohms to over 650 megaohms and are Johnson noise limited at LHe temperatures. The resistor film is sputtered with a sheet resistance ranging from 300 ohms to 1600 ohms and the processing sequence developed for these devices allows for chemically fine tuning the sheet resistance in-situ. The wafer fabrication process was of sufficiently high yield (>80%) providing clusters of good resistors for integrated multiple detector channels, a very important feature in the assembly of these two instruments.

  17. Shock Melting of Iron Silicide as Determined by In Situ X-ray Diffraction.

    Science.gov (United States)

    Newman, M.; Kraus, R. G.; Wicks, J. K.; Smith, R.; Duffy, T. S.

    2016-12-01

    The equation of state of core alloys at pressures and temperatures near the solid-liquid coexistence curve is important for understanding the dynamics at the inner core boundary of the Earth and super-Earths. Here, we present a series of laser driven shock experiments on textured polycrystalline Fe-15Si. These experiments were conducted at the Omega and Omega EP laser facilities. Particle velocities in the Fe-15Si samples were measured using a line VISAR and were used to infer the thermodynamic state of the shocked samples. In situ x-ray diffraction measurements were used to probe the melting transition and investigate the potential decomposition of Fe-15Si in to hcp and B2 structures. This work examines the kinetic effects of decomposition due to the short time scale of dynamic compression experiments. In addition, the thermodynamic data collected in these experiments adds to a limited body of information regarding the equation of state of Fe-15Si, which is a candidate for the composition in Earth's outer core. Our experimental results show a highly textured solid phase upon shock compression to pressures ranging from 170 to 300 GPa. Below 320 GPa, we observe diffraction peaks consistent with decomposition of the D03 starting material in to an hcp and a cubic (potentially B2) structure. Upon shock compression above 320 GPa, the intense and textured solid diffraction peaks give way to diffuse scattering and loss of texture, consistent with melting along the Hugoniot. When comparing these results to that of pure iron, we can ascertain that addition of 15 wt% silicon increases the equilibrium melting temperature significantly, or that the addition of silicon significantly increases the metastability of the solid phase, relative to the liquid. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Study of Nickel Silicide as a Copper Diffusion Barrier in Monocrystalline Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Abhijit; Beese, Emily; Saenz, Theresa; Warren, Emily; Nemeth, William; Young, David; Marshall, Alexander; Florent, Karine; Kurinec, Santosh K.; Agarwal, Sumit; Stradins, Pauls

    2016-11-21

    NiSi as a conductive diffusion barrier to silicon has been studied. We demonstrate that the NiSi films formed using the single step annealing process are as good as the two step process using XRD and Raman. Quality of NiSi films formed using e-beam Ni and electroless Ni process has been compared. Incomplete surface coverage and presence of constituents other than Ni are the main challenges with electroless Ni. We also demonstrate that Cu reduces the thermal stability of NiSi films. The detection of Cu has proven to be difficult due to temperature limitations.

  19. Reactivity insertion transient analysis for KUR low-enriched uranium silicide fuel core

    OpenAIRE

    Shen, Xiuzhong; Nakajima, Ken; Unesaki, Hironobu; Mishima, Kaichiro

    2013-01-01

    The purpose of this study is to realize the full core conversion from the use of High Enriched Uranium (HEU) fuels to the use of Low Enriched Uranium (LEU) fuels in Kyoto University Research Reactor (KUR). Although the conversion of nuclear energy sources is required to keep the safety margins and reactor reliability based on KUR HEU core, the uranium density (3.2 gU/cm3) and enrichment (20%) of LEU fuel (U3Si2–AL) are quite different from the uranium density (0.58 gU/cm3) and enrichment (93%...

  20. Iridium/Iridium Silicide as an Oxidation Resistant Capping Layer for Soft X-ray Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Prisbrey, S; Vernon, S

    2004-04-05

    Rust on a sword, tarnish on the silverware, and a loss in reflectivity for soft x-ray mirrors are all caused by oxidation that changes the desired characteristics of a material. Methods to prevent the oxidation have varied over the centuries with the default method of a protective coating being the most common. The protective coating for x-ray mirrors is usually a self-limiting oxidized layer on the surface of the material that stops further oxidation of the material by limiting the diffusion of oxygen to the material underneath.

  1. Superconductivity at 3.1 K in the orthorhombic ternary silicide ScRuSi

    Science.gov (United States)

    Ruan, Bin-Bin; Wang, Xiao-Chuan; Yu, Jia; Pan, Bo-Jin; Mu, Qing-Ge; Liu, Tong; Chen, Gen-Fu; Ren, Zhi-An

    2017-02-01

    We report the synthesis, crystal structure, superconductivity and physical property characterizations of the ternary equiatomic compound ScRuSi. Polycrystalline samples of ScRuSi were prepared by an arc-melting method. The as-prepared samples were identified as the orthorhombic Co2P-type o-ScRuSi by powder x-ray diffraction analysis. Electrical resistivity measurements show o-ScRuSi to be a metal which superconducts below a T c of 3.1 K; the upper critical field μ 0 H c2(0) is estimated to be 0.87 T. The magnetization and specific heat measurements confirm the bulk type-II superconductivity in o-ScRuSi, with a specific heat jump within the BCS weak coupling limit. o-ScRuSi is the first Co2P-type superconductor to contain scandium. After annealing at 1273 K for a week, o-ScRuSi transforms into hexagonal Fe2P-type h-ScRuSi, which is a Pauli-paramagnetic metal with no superconductivity observed above 1.8 K.

  2. Assessment of thermodynamic functions of formation for rare earth silicides, germanides, stannides and plumbides

    Energy Technology Data Exchange (ETDEWEB)

    Witusiewicz, V.T. [Nat. Acad. of Sci. of the Ukraine, Kyyiv (Ukraine). Physico-Technological Inst. of Metals and Alloys; Sidorko, V.R. [Frantsevich Institute of Materials Science, National Academy of Sciences of the Ukraine, 3 Krzhizhanovsky St., 252180, Kyyiv (Ukraine); Bulanova, M.V. [Frantsevich Institute of Materials Science, National Academy of Sciences of the Ukraine, 3 Krzhizhanovsky St., 252180, Kyyiv (Ukraine)

    1997-02-15

    A critical assessment has been made of the available data on thermodynamic properties of binary compounds of lanthanide metals, scandium and yttrium (R) with IV group p elements (X{identical_to}Si, Ge, Sn and Pb), obtained mainly through the direct e.m.f and calorimetric methods. On the basis of the most reliable data the following empirical relation was derived which allows the estimation of entropies of formation for the intermetallics ({Delta}{sub f}S) by using the enthalpies of formation per mole of A{sub m/(m+n)}B{sub n/(m+n)} compound ({Delta}{sub f}H) together with the melting (T{sub m,I}) and boiling temperatures (T{sub b,I}) of the components I (I element of A,B):{Delta}fSm=aRmn(m+n)23TmTb(m+n)2mn+bTb{Delta}f?Hm,where {Delta}fSm={Delta}fS-(m{Delta}mSA+n{Delta}mSB)m+n; {Delta}fHm={Delta}fH-(m{Delta}mHA+n{Delta}mHB)m+n;T and macr;m=(Tm,A+Tm,B)/2 and T{sub b}=(T{sub b,A}+T{sub b,B})/2; {Delta}{sub m}S{sub A} and {Delta}{sub m}H{sub A} are the entropy and enthalpy of melting of the components, respectively; m and n are stoichiometric coefficients of a binary A{sub m}B{sub n} compound; a and b are empirical coefficients, and R is the gas constant.The calculated entropy values for the R-X intermetallics are in agreement with experimental data available. (orig.)

  3. Soft-x-ray fluorescence study of buried silicides in antiferromagnetically coupled Fe/Si multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, J.A.; Chaiken, A.; Michel, R.P. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Multilayer films made by alternate deposition of two materials play an important role in electronic and optical devices such as quantum-well lasers and x-ray mirrors. In addition, novel phenomena like giant magnetoresistance and dimensional crossover in superconductors have emerged from studies of multilayers. While sophisticated x-ray techniques are widely used to study the morphology of multilayer films, progress in studying the electronic structure has been slower. The short mean-free path of low-energy electrons severely limits the usefulness of photoemission and related electron free path of low-energy electrons severely limit spectroscopies for multilayer studies. Soft x-ray fluorescence (SXF) is a bulk-sensitive photon-in, photon-out method to study valence band electronic states. Near-edge x-ray absorption fine-structure spectroscopy (NEXAFS) measured with partial photon yield can give complementary bulk-sensitive information about unoccupied states. Both these methods are element-specific since the incident x-ray photons excite electrons from core levels. By combining NEXAFS and SXF measurements on buried layers in multilayers and comparing these spectra to data on appropriate reference compounds, it is possible to obtain a detailed picture of the electronic structure. Results are presented for a study of a Fe/Si multilayer system.

  4. Evaluation of anomalies during nickel and titanium silicide formation using the effective heat of formation mode

    CSIR Research Space (South Africa)

    Pretorius, R

    1993-11-01

    Full Text Available and M.G. Lagally, 1. Appl. Phys., 64 (1988) 4957. 21 G.W. Rubloff, R.M. Tromp and E.J. van Loenen, Appl. Phys. Len., 48 (1986) 1600. 22 R.J. Nemanich, R.T. Fulks, B.L. Stafford and H.A. Vander Plas, J. k?ac. Sci...

  5. Nickel Silicide Metallization for Passivated Tunneling Contacts for Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Alexander; Florent, Karine; Tapriya, Astha; Lee, Benjamin G.; Kurinec, Santosh K.; Young, David L.

    2016-11-21

    Passivated tunneling contacts offer promise for applications in Interdigitated Back Passivated Contact (IBPC) high efficiency silicon solar cells. Metallization of these contacts remains a key research topic. This paper investigates NiSi/poly-Si/SiO2/c-Si passivated contacts using photoluminescence and contact resistivity measurements. An amorphous Si interlayer between the NiSi and poly-Si is observed to improve passivation, decreasing recombination. The overall recombination loss has a linear trend with the NiSi thickness. Implied Voc values close to 700 mV and contact resistivities below 10 mohm-cm2 have been achieved in NiSi/poly-Si:P/SiO2/c-Si contacts.

  6. Profiles and chemistry effects in polysilicon and tungsten silicide EPROM "stack" etching

    Science.gov (United States)

    Flamm, Daniel L.; Sadjadi, Reza M.; Perry, Jeff R.

    1993-04-01

    Specialized EPROM cell architectures lead to a host of new difficulties during pattern transfer. Results from patterning stacked gate structure multilayers of WSix, polysilicon, SiO2 and Si3N4 with etching chemistries containing HBr and Cl2 are examined. Strong effects arising from changes in feed composition and wafer temperature are discussed along with some basic mechanisms involved in these interactions.

  7. Evolution of aluminum iron silicide intermetallic particles during homogenization of aluminum alloy 6063

    Science.gov (United States)

    Claves, Steven R.

    As-cast 6xxx aluminum alloys contain beta-Al9Fe2Si 2 intermetallic particles that form at grain boundaries and interdendritic regions during solidification. This secondary phase has a considerable negative influence on the workability of the material during subsequent deformation processing; e.g. it has been linked to the extrusion pick-up defect. To lessen its deleterious effects, beta-Al9Fe2Si2 is transformed to alpha-Al8Fe2Si during the homogenization process, a typical heat treatment cycle at 540--580°C for 6--8 hours. The scientific objective of this Ph.D. research was to increase the understanding of morphological, chemical, and crystallographic aspects of the beta- to alpha-AlFeSi phase transformation. The two AlFeSi phases differ in size, shape, color, chemical composition, crystal structure, and bonding strength with the surrounding aluminum matrix. Various microscopy (optical and electron) techniques have been employed to examine these particle characteristics. This research investigates the particles' evolution during intermediate heat treatment conditions. Light optical microscopy was used to study the size, color, and two-dimensional shapes of AlFeSi particles. As homogenization progresses, microstructures contain long, charcoal-colored needles (beta-Al9Fe2Si 2), which slowly transform to shorter, gray spheroids (alpha-Al 8Fe2Si). Backscatter electron imaging in the scanning electron microscope was used for higher magnification micrographs and more detailed particle measurements. Due to the complex morphologies of the AlFeSi particles, planar imaging was insufficient to accurately describe their shape. Three-dimensional microstructures were obtained via serial sectioning performed on a dual-beam focused ion beam instrument. Particle-matrix interfaces from sequential images were extracted and compiled into isosurfaces. alpha-spheroids possess much lower surface area-to-volume ratios than beta-platelets. For intermediate homogenization times, the alpha-phase was found to nucleate on the sides and grow at the expense of the beta-particles, which shrink lengthwise. The alpha-phase eventually encapsulates the ends of the plates making them rounded, with a thin middle region. To confirm morphological-based AlFeSi phase predictions, specific particles were identified via chemical composition using energy dispersive spectroscopy. As homogenization proceeds, Si diffuses away from the beta-AlFeSi; the Fe:Si ratio increases until the microstructure contains strictly alpha-particles. Intermetallics were also identified via crystallography, using electron backscatter diffraction. The thin dimension of beta-platelets corresponds to the c-axis of the monoclinic unit cell.

  8. Characterization of high-temperature oxide films on dysprosium-doped Fe-20Cr alloys by electrochemical techniques

    Institute of Scientific and Technical Information of China (English)

    GUO Pingyi; ZENG Chaoliu; SHAO Yong; QIN Zeshang

    2012-01-01

    The oxidation propegies of Fe-20Cr,Fe-20Cr-0.2Dy and Fe-20Cr-1Dy alloys were studied using gravimetric and electrochemical techniques.The high-temperature oxide films of Dy-doped Fe-20Cr alloys were prepared in air at 900 ℃ for 24,48 and 100 h,respectively.The electrochemical experiment was performed by a three-electrode electrochemical cell and in 0.1 mol/L Na2SO4 aqueous solution.Proper models were built for describing electrochemical impedance spectroscopy of the different oxide layers and the spectra were interpreted in terms of a two-layer model of the films.The results revealed that the oxide films of Dy-doped Fe-20Cr alloys became compacter than that of undoped alloys and retained their good protective ability for a relatively long time.With increasing content of Dy,the protection of the oxide films slightly decreased.Mott-Schottky curves indicated that all the oxides were n-type semi-conductors,and the Nd value of oxide film on Fe-20Cr was much larger than that of Dy-doped Fe-20Cr alloys.The results of kinetic curves and SEM were in agreement with electrochemical impedance spectroscopy and Mott-Schottky data.

  9. Reexamination of Nuclear Shape Transitions in Gadolinium and Dysprosium Isotopes Chains by Using the Geometric Collective Model

    Directory of Open Access Journals (Sweden)

    Khalaf A. M.

    2014-01-01

    Full Text Available The critical points of potential energy surface (PES’s of the limits of nuclear struc- ture harmonic oscillator, axially symmetric rotor and deformed -soft and discussed in framework of the general geometric collective model (GCM. Also the shape phase transitions linking the three dynamical symmetries are studied taking into account only three parameters in the PES’s. The model is tested for the case of 238 92 U , which shows a more prolate behavior. The optimized model parameters have been adjusted by fit- ting procedure using a simulated search program in order to reproduce the experimental excitation energies in the ground state band up to 6 + and the two neutron separation energies.

  10. Critical Rare Earths, National Security, and U.S.-China Interactions: A Portfolio Approach to Dysprosium Policy Design

    Science.gov (United States)

    2015-01-01

    yttrium are often used for pigmentation for consumer products such as paint and sunglasses. REE-based lasers are used for cosmetic, epidermal, and... bacterial cell walls (Takahashi 2005). In acidic solutions, from an initial concentration of 100 micrograms of an REE mixture per liter, the bacteria...Logistics Agency Justification Book , Research, Development, Test, and Evaluation, Defense-Wide,” U.S. Department of Defense, Washington, DC: 2013

  11. Influence of dysprosium addition on the structural, morphological, electrical and magnetic properties of nano-crystalline W-type hexaferrites

    Indian Academy of Sciences (India)

    Ali-Sharbati; Javad-Mola Verdi Khani; G R Amiri; R Mousarezaei

    2015-02-01

    Dysporium (Dy)-substituted W-type barium hexaferrites were prepared by the citrate sol–gel-method. Crystalline structure, morphology, magnetic properties, DC resistivity and microwave absorption properties of BaNi2DyFe16−O27 ( = 0-0.9) were studied using X-ray diffraction, transmission electron microscope (TEM), vibrating sample magnetometer and vector network analyzer and sensitive source meter, respectively. Single-phase W-type barium hexaferrites, with a chemical composition of BaNi2DyFe16−O27 ( = 0-0.9), were formed by being heated at 1250°C for 4 h in air. The magnetic properties such as saturation magnetization (s), and coercivity (c) were calculated from hysteresis loops. Hysteresis loop measurements show that the coercivity values lie in the range of 530–560 Oe with increasing Dy content. It was also observed that magnetization decreases with the increase of Dy content. The DC resistivity was observed to increase from 0.83 × 107 to 6.92 × 107 cm with increasing Dy contents due to the unavailability of Fe3+ ions. Microwave absorption properties of hexaferrite (70 wt%)–acrylic resin (30 wt%) composites were measured by the standing-wave-ratio (SWR) method in the range from 12 to 20 GHz. For sample with = 0.6, a minimum reflection loss of −40 dB was obtained at 16.2 GHz for a layer of 1.7 mm in thickness. Sample with = 0.9 had wide bandwidth absorption in the frequency range of 13.5–18 GHz with reflection losses less than −15 dB. Meanwhile the minimum reflection point shifts toward higher frequency with the increase of Dy content.

  12. L-Shell Ionization Cross Section Measurements of Dysprosium and Samarium by Low-Energy Electron Impact

    Institute of Scientific and Technical Information of China (English)

    GOU Cheng-Jun; WU Zhang-Wen; YANG Dai-Lun; HE Fu-Qing; PENG Xiu-Feng; AN Zhu; LUO Zheng-Ming

    2005-01-01

    @@ The Lα, Lβ and Lγ x-ray production cross sections of Dy and Sm by electron impact are measured at energies from near threshold to tens of keV. In the experiments, thin targets with thick substrates are used. Meanwhile,the electron transport bipartition model is used to eliminate the influence of electrons reflected from the thick substrates on measurements. The measured x-ray production cross sections are also compared with the theoretical predictions by Gryzinski and McGuire.

  13. Generation of White Light from Dysprosium-Doped Strontium Aluminate Phosphor by a Solid-State Reaction Method

    Science.gov (United States)

    Sahu, Ishwar Prasad; Bisen, D. P.; Brahme, N.; Tamrakar, Raunak Kumar

    2016-04-01

    A single-host lattice, white light-emitting SrAl2O4:Dy3+ phosphor was synthesized by a solid-state reaction method. The crystal structure of prepared SrAl2O4:Dy3+ phosphor was in a monoclinic phase with space group P21. The chemical composition of the sintered SrAl2O4:Dy3+ phosphor was confirmed by the energy dispersive x-ray spectroscopy technique. Under ultra-violet excitation, the characteristic emissions of Dy3+ are peaking at 475 nm, 573 nm and 660 nm, originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 →&!nbsp; 6H13/2 and 4F9/2 → 6H11/2 in the 4f9 configuration of Dy3+ ions. Commission International de I'Eclairage color coordinates of SrAl2O4:Dy3+ are suitable for white light-emitting phosphor. In order to investigate the suitability of the samples as white color light sources for industrial uses, correlated color temperature (CCT) and color rendering index (CRI) values were calculated. Values of CCT and CRI were found well within the defined acceptable range. Mechanoluminescence (ML) intensity of SrAl2O4:Dy3+ phosphor increased linearly with increasing impact velocity of the moving piston. Thus, the present investigation indicates piezo-electricity was responsible for producing ML in sintered SrAl2O4:Dy3+ phosphor. Decay rates of the exponential decaying period of the ML curves do not change significantly with impact velocity. The photoluminescence and ML results suggest that the synthesized SrAl2O4:Dy3+ phosphor was useful for the white light-emitting diodes and stress sensor respectively.

  14. Significant enhancement of energy barriers in dinuclear dysprosium single-molecule magnets through electron-withdrawing effects.

    Science.gov (United States)

    Habib, Fatemah; Brunet, Gabriel; Vieru, Veacheslav; Korobkov, Ilia; Chibotaru, Liviu F; Murugesu, Muralee

    2013-09-11

    The effect of electron-withdrawing ligands on the energy barriers of Single-Molecule Magnets (SMMs) is investigated. By introducing highly electron-withdrawing atoms on targeted ligands, the energy barrier was significantly enhanced. The structural and magnetic properties of five novel SMMs based on a dinuclear {Dy2} phenoxo-bridged motif are explored and compared with a previously studied {Dy2} SMM (1). All complexes share the formula [Dy2(valdien)2(L)2]·solvent, where H2valdien = N1,N3-bis(3-methoxysalicylidene) diethylenetriamine, the terminal ligand L = NO3(-) (1), CH3COO(-) (2), ClCH2COO(-) (3), Cl2CHCOO(-) (4), CH3COCHCOCH3(-) (5), CF3COCHCOCF3(-) (6), and solvent = 0.5 MeOH (4), 2 CH2Cl2 (5). Systematic increase of the barrier was observed for all complexes with the most drastic increase seen in 6 when the acac ligand of 5 was fluorinated resulting in a 7-fold enhancement of the anisotropic barrier. Ab initio calculations reveal more axial g tensors as well as higher energy first excited Kramers doublets in 4 and 6 leading to higher energy barriers for those complexes.

  15. Slow Magnetic Relaxation Observed in Dysprosium Compounds Containing Unsupported Near-Linear Hydroxo- and Fluoro-Bridges.

    Science.gov (United States)

    Brunet, Gabriel; Habib, Fatemah; Korobkov, Ilia; Murugesu, Muralee

    2015-07-06

    The encapsulating N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) ligand was employed to isolate two novel Dy(III) compounds which contain rare bridging pathways for lanthanide systems. Compound 1, [Na2Dy(III)2(valdien)2(μ-OH)(dbm)2(H2O)2][Na2Dy(III)2(valdien)2(μ-OH)(NO3)2(dbm)2], where dbm(-) is dibenzoylmethanido, and compound 2, [Na3Dy(III)2(valdien)2(μ-F)(μ3-F)2(Cl)2(MeOH)2]n·0.5(MeOH)·(H2O), both exhibit linear lone hydroxo- and fluoro-bridges, respectively, between the metal centers. The unit cell of 1 comprises two discrete dinuclear molecules, which differ slightly, forming a cation-anion pair, while 2 forms a coordination polymer. The magnetic investigations indicate that both compounds display ferromagnetic coupling between the Dy(III) ions. Magnetic susceptibility measurements in the temperature range 1.8-300 K reveal that the Dy(III) ions in 1 are weakly coupled, resulting in a mononuclear single-molecule magnet-like behavior under an applied field. In the case of 2, the stronger coupling arising from the fluoride-bridge, leads to zero-field single-molecule magnet (SMM) behavior with a non-negligible anisotropy barrier (Ueff) of 42 K.

  16. Effect of Ligand Field Tuning on the SMM Behavior for Three Related Alkoxide-Bridged Dysprosium Dimers.

    Science.gov (United States)

    Peng, Yan; Mereacre, Valeriu; Baniodeh, Amer; Lan, Yanhua; Schlageter, Martin; Kostakis, George E; Powell, Annie K

    2016-01-04

    The synthesis and characterization of three Dy2 compounds, [Dy2(HL1)2(NO3)4] (1), [Dy2(L2)2(NO3)4] (2), and [Dy2(HL3)2(NO3)4] (3), formed using related tripodal ligands with a central tertiary amine bearing picolyl and alkoxy arms, 2-[(2-hydroxy-ethyl)-pyridin-2-ylmethylamino]-ethanol (H2L1), 2-(bis-pyridin-2-ylmethylamino)-ethanol (HL2), and 2-(bis-pyridin-2-ylmethylamino)-propane-1,3-diol (H2L3), are reported. The compounds are rare examples of alkoxide-bridged {Dy2} complexes and display capped square antiprism coordination geometry around each Dy(III) ion. Changes in the ligand field environment around the Dy(III) ions brought about through variations in the ligand donors can be gauged from the magnetic properties, with compounds 1 and 2 showing antiparallel coupling between the Dy(III) ions and 3 showing parallel coupling. Furthermore, slow relaxation of the magnetization typical of SMM behavior could be observed for compounds 2 and 3, suggesting that small variations in the ligand field can have a significant influence on the slow relaxation processes responsible for SMM behavior of Dy(III)-based systems.

  17. Effects of magnetic annealing on structure and multiferroic properties of pure and dysprosium substituted BiFeO 3

    KAUST Repository

    Zhang, Shuxia

    2012-07-01

    In this work, the effects of magnetic annealing on crystal structure and multiferroic properties of BiFeO 3 and Bi 0.85Dy 0.15FeO 3 have been investigated. It is found that the X-ray diffraction patterns of pure BiFeO 3 samples are obviously broadened after magnetic annealing, whereas those of Bi 0.85Dy 0.15FeO 3 samples are almost unchanged. Magnetic field annealing did not affect the magnetic properties of these two kinds of samples much. However, ferroelectric properties of the two materials exhibited different behaviors after magnetic field annealing. For pure BiFeO 3 samples, the remnant polarizations (P r) are suppressed; in contrast, for Bi 0.85Dy 0.15FeO 3 samples, P r is greatly enhanced. Possible mechanisms for the effects of magnetic field annealing have been discussed. © 2012 Elsevier B.V. All rights reserved.

  18. Dielectric relaxation in double potassium yttrium orthophosphate K 3Y(PO 4) 2 doped by praseodymium and dysprosium ions

    Science.gov (United States)

    Szulia, S.; Kosmowska, M.; Kołodziej, H. A.; Mizer, D.; Czupińska, G.

    2011-12-01

    We report the paper presents the results of electric properties of double potassium yttrium orthophosphates doped by lanthanide ions K 3Y( 1-x)Ln x(PO 4) 2 ( x = 0.01, 0.05, Ln = Pr 3+, Dy 3+). Electric permittivity and dielectric loss measurements have been performed on polycrystalline samples in the temperature range -50-120 °C and frequency range 1 kHz-1 MHz by means of HP 4282A impedance meter. The frequency and temperature dependence of electric properties were analyzed by theoretical models of dielectric relaxation in order to obtain information abut molecular dynamic of our solids in external electric field.

  19. Dilution-induced slow magnetic relaxation and anomalous hysteresis in trigonal prismatic dysprosium(III) and uranium(III) complexes.

    Science.gov (United States)

    Meihaus, Katie R; Rinehart, Jeffrey D; Long, Jeffrey R

    2011-09-05

    Magnetically dilute samples of complexes Dy(H(2)BPz(Me2)(2))(3) (1) and U(H(2)BPz(2))(3) (3) were prepared through cocrystallization with diamagnetic Y(H(2)BPz(Me2)(2))(3) (2) and Y(H(2)BPz(2))(3). Alternating current (ac) susceptibility measurements performed on these samples reveal magnetic relaxation behavior drastically different from their concentrated counterparts. For concentrated 1, slow magnetic relaxation is not observed under zero or applied dc fields of several hundred Oersteds. However, a 1:65 (Dy:Y) molar dilution results in a nonzero out-of-phase component to the magnetic susceptibility under zero applied dc field, characteristic of a single-molecule magnet. The highest dilution of 3 (1:90, U:Y) yields a relaxation barrier U(eff) = 16 cm(-1), double that of the concentrated sample. These combined results highlight the impact of intermolecular interactions in mononuclear single-molecule magnets possessing a highly anisotropic metal center. Finally, dilution elucidates the previously observed secondary relaxation process for concentrated 3. This process is slowed down drastically upon a 1:1 molar dilution, leading to butterfly magnetic hysteresis at temperatures as high as 3 K. The disappearance of this process for higher dilutions reveals it to be relaxation dictated by short-range intermolecular interactions, and it stands as the first direct example of an intermolecular relaxation process competing with single-molecule-based slow magnetic relaxation.

  20. Challenging lanthanide relaxation theory: erbium and thulium complexes that show NMR relaxation rates faster than dysprosium and terbium analogues.

    Science.gov (United States)

    Funk, Alexander M; Harvey, Peter; Finney, Katie-Louise N A; Fox, Mark A; Kenwright, Alan M; Rogers, Nicola J; Senanayake, P Kanthi; Parker, David

    2015-07-07

    Measurements of the proton NMR paramagnetic relaxation rates for several series of isostructural lanthanide(III) complexes have been performed in aqueous solution over the field range 1.0 to 16.5 Tesla. The field dependence has been modeled using Bloch-Redfield-Wangsness theory, allowing values for the electronic relaxation time, Tle and the magnetic susceptibility, μeff, to be estimated. Anomalous relaxation rate profiles were obtained, notably for erbium and thulium complexes of low symmetry 8-coordinate aza-phosphinate complexes. Such behaviour challenges accepted theory and can be interpreted in terms of changes in Tle values that are a function of the transient ligand field induced by solvent collision and vary considerably between Ln(3+) ions, along with magnetic susceptibilities that deviate significantly from free-ion values.

  1. Distance determination from dysprosium induced relaxation enhancement: a case study on membrane-inserted WALP23 polypeptides

    NARCIS (Netherlands)

    Lueders, P.; Razzaghi, S.; Jäger, H.; Tschaggelar, R.; Hemminga, M.A.; Yulikov, M.; Jeschke, G.

    2013-01-01

    Membrane incorporated synthetic a-helical polypeptides labelled with Dy(III) chelate complexes and nitroxide radicals were studied by the inversion recovery (IR) technique and Dy(III)-nitroxide distances were obtained. A comparison of obtained distances with the previously reported Gd(III)-nitroxide

  2. The Fabrication, Microstructural Characterization, and Internal Photoresponse of Platinum Silicide/P-Type Silicon and Iridium Silicide/P-Type Silicon Schottky Barrier Photodetectors for Infrared Focal Plane Arrays

    Science.gov (United States)

    1991-10-01

    34)H(hv-20)X (r(I)+J/~+/ ~ jh ) D ~ ~ k/ (d Id______jrh+ X si /Y Po(X cos(fTtx’)dX (3.46) sin rd) 0 Poe where Pog represents the total number of carriers...that Cd/D o 1, so that Ym will be well estimated by the formula jhv -2\\ 2d I(Crh)] 2 H(hv-20) (3.47) In contrast to the normal photoyield expressions, Eq

  3. The mechanism behind the calcium aluminum silicide ternary structural preference and the origin of its semimetal behavior

    Science.gov (United States)

    Semi, Torey Elizabeth

    CaAl2Si2 is the prototype of the CaAl 2Si2 class of Zintl structures established to be useful as thermoelectrics. We propose that CaAl2Si2 be interpreted as an ordinary covalently bonded, tetrahedrally coordinated quasi-semiconductor consisting of a large distortion of the wurtzite structure with the almost fully ionized Ca inserted at an interstitial site. We support this interpretation via a structural mapping and calculations for both a charged binary primitive cell and a Si4primitive cell. Our intent is to explain the unusual structure of the CaAl2Si 2 class of semiconductors, the origin of its semimetallic behavior, the basis for its stability and the effect of substituting other column II atoms for Ca on these properties. To be clear, this work does not examine the nature of the true band gap, or the transport coefficients of CaAl 2Si2. GW corrections are not discussed, in view of the focus on the origins of stability of this peculiar structure.

  4. High Temperature Silicides and Refractory Alloys Symposium Held in Boston, Massachusetts on November 29 -December 2, 1993. Volume 322

    Science.gov (United States)

    1993-12-02

    Kinetics, M. Atzmon, J.M.E. Harper, A.L. Greer, M.R. Libera, 1993, ISBN: 1-55899-207-3 Volume 312- Common Themes and Mechanisms of Epitaxial Growth, P...characteristics. Table TH1. Commercial Refractory Metals and Alloys and Associated Melting Processes Base Metal Alloy Additions, wt. % How Made Nb EBM Nb 171... EBM ; EBM +VAM; PHM Nb 7.5Ta EBM +VAM Nb 45-48Ti EBM +VAM; PHM. Nb 44TI-25Ta PHM Nb 55Tt PEIM Ta ERM Ta 2.5W EBM +VAM Ta low EBM +VAM Ta 4ONb EBM + YAM Mo(Low

  5. Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green's function transport simulations

    Science.gov (United States)

    Sadasivam, Sridhar; Ye, Ning; Feser, Joseph P.; Charles, James; Miao, Kai; Kubis, Tillmann; Fisher, Timothy S.

    2017-02-01

    Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across the interface. The relative contributions of these different transport mechanisms to the interface conductance remains unclear in the current literature. In this work, we use a combination of first-principles calculations under the density functional theory framework and heat transport simulations using the atomistic Green's function (AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance of commonly used "mixing rules" to obtain the cross-interface force constants from bulk material force constants. Another important algorithmic development is the integration of the recursive Green's function (RGF) method with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in the metal. We also provide a direct comparison between simulation predictions and experimental measurements of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance technique. Importantly, the experimental results, performed across a wide temperature range, only agree well with predictions that include all transport processes: elastic and inelastic phonon scattering, electron-phonon coupling in the metal, and electron-phonon coupling across the interface.

  6. Program for in-pile qualification of high density silicide dispersion fuel at IPEN/CNEN-SP

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose E.R. da; Silva, Antonio T. e; Terremoto, Luis A.A.; Durazzo, Michelangelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: jersilva@ipen.br

    2009-07-01

    The development of high density nuclear fuel (U{sub 3}Si{sub 2}-Al) with 4,8 gU/cm{sup 3} is on going at IPEN, at this time. This fuel has been considered to be utilized at the new Brazilian Multipurpose Reactor (RMB), planned to be constructed up to 2014. As Brazil does not have hot-cell facilities available for post-irradiation analysis, an alternative qualifying program for this fuel is proposed based on the same procedures used at IPEN since 1988 for qualifying its own U{sub 3}O{sub 8}-Al (1,9 and 2,3 gU/cm{sup 3}) and U{sub 3}Si{sub 2}-Al (3,0 gU/cm{sup 3}) dispersion fuels. The fuel miniplates and full-size fuel elements irradiations should be tested at IEA-R1 core. The fuel characterization along the irradiation time should be made by means of non-destructive methods, including periodical visual inspections with an underwater video camera system, sipping tests for fuel elements suspected of leakage, and underwater dimensional measurements for swelling evaluation, performed inside the reactor pool. This work presents the program description for the qualification of the high density nuclear fuel (U{sub 3}Si{sub 2}-Al) with 4,8 gU/cm{sup 3}, and describes the IPEN fuel fabrication infrastructure and some basic features of the available systems for non-destructive tests at IEA-R1 research reactor. (author)

  7. Thermodynamic features and an experimental study of the extraction of phosphorus from ferrophosphorus in the presence of iron silicides

    Science.gov (United States)

    Shevko, V. M.; Serzhanov, G. M.; Karataeva, G. E.; Lavrov, B. A.

    2015-12-01

    The displacement of phosphorus from ferrophosphorus (24.89% P, 67.82% Fe) by FeSi2 is studied by thermodynamic simulation. The melting of electrothermic ferrophosphorus with FS65 ferrosilicium with the extraction of gaseous phosphorus and the formation of a complex ferroalloy containing 42.8-44.3% Si, 50-52.4% Fe, 1.8-2.0% Mn, and 1.4-1.6% P is experimentally investigated.

  8. Modification of Structure and Properties of Titanium Surfaces During Formation of Silicides and Borides Initiated by High-Energy Treatment

    Science.gov (United States)

    Potekaev, A. I.; Klopotov, A. A.; Ivanov, Yu. F.; Volokitin, O. G.

    2013-12-01

    An analysis of binary (Ti-Si, Ti-В, Si-B) and ternary (Ti-Si-B) phase states is made, their diagrams are presented, and a possibility for formation of a large number of metastable compounds is revealed. The latter are found to form as a result of application of non-equilibrium conditions in the course of material treatment with concentrated high-energy flows. Using an x-ray diffraction analysis and electron-diffraction microscopy, the phase composition of the surface layer of technical-grade titanium (VT1-0) treated by concentrated energy flows (irradiation with plasma from electrical wire explosion and high-intensity pulsed electron beam) is investigated.

  9. Influence of dysprosium substitution on magnetic and mechanical properties of high intrinsic coercivity Nd-Fe-B magnets prepared by double-alloy powder mixed method

    Institute of Scientific and Technical Information of China (English)

    胡志华; 瞿海锦; 马冬威; 罗成; 王会杰

    2016-01-01

    The double-alloy powder mixed method is very proper for developing new small-mass products by changing the composi-tion of sintered Nd-Fe-B magnets, and there is little research on this aspect. The variation on magnetic and mechanical properties of high intrinsic coercivity Nd-Fe-B magnets prepared by double-alloy powder mixed method was discussed, which is a method blend-ing two-type main phase alloy powders with different components. The results showed that the intrinsic coercivity and density of sin-tered Nd-Fe-B magnets increased gradually with the increase in Dy content, and the double-alloy powder mixed method could obtain high intrinsic coercivity Nd-Fe-B magnets with good crystallographic alignment and microstructure. The bending strength of sintered Nd-Fe-B magnets declined, and the Rockwell hardness of sintered Nd-Fe-B magnets first declined, and then increased with the in-crease in Dy content. The microstructure showed that there existed the phenomenon that the Dy element diffused into main phase dur-ing sintering process, and the distribution of Dy content in main phase had some variation in homogeneity as a result of incomplete reaction between the double-alloy powder types.

  10. Effect of dysprosium substitution on electrical properties of SrBi{sub 4}Ti{sub 4}O{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Mamatha, B., E-mail: boinanemamatha@gmail.com; Sarah, P.

    2014-10-15

    SrBi{sub 4−x}Dy{sub x}Ti{sub 4}O{sub 15} (with x = 0.02, 0.04, 0.06 and 0.08) powders have been synthesized using the stoichiometric amounts of nitrates and oxides of the constituent materials through sol–gel method. The compound so formed is characterized using X-ray diffraction. The density and lattice parameters are calculated. The impedance and electrical conductivity properties are investigated. The imaginary part of impedance as a function of frequency shows Debye like relaxation. Impedance data presented in the Nyquist plot which is used to identify an equivalent circuit and the fundamental circuit parameters are determined at different temperatures. The results of bulk a.c. conductivity as a function of frequency at different temperatures are presented. The dielectric behavior was investigated. Permittivity was calculated based on the relaxation frequency using an alternative approach based on the variation of the imaginary impedance component as a function of reciprocal angular frequency. The frequency dependence of real and imaginary permittivities was also investigated. - Highlights: • SrBi{sub 4−x}Dy{sub x}Ti{sub 4}O{sub 15} (x = 0.02, 0.04, 0.06 and 0.08) powders are produced by sol–gel method. Phase formation is confirmed by XRD analysis. • Frequency dependent imaginary part of impedance shows distribution of relaxation in system. • Broadness of Z″ peak shows distribution of relaxation frequency. • Increase in peak width at ½ maxima of Z″ with increase of temperature shows increase of relaxation frequency distribution. • Cole–Cole plots are resolved into two different circles, ascribed to different mechanisms of polarization and relaxation phenomena.

  11. Hexanuclear, heterometallic, Ni₃Ln₃ complexes possessing O-capped homo- and heterometallic structural subunits: SMM behavior of the dysprosium analogue.

    Science.gov (United States)

    Goura, Joydeb; Guillaume, Rogez; Rivière, Eric; Chandrasekhar, Vadapalli

    2014-08-04

    The reaction of hetero donor chelating mannich base ligand 6,6'-{(2-(dimethylamino)ethylazanediyl)bis(methylene)}bis(2-methoxy-4-methylphenol) with Ni(ClO4)2·6H2O and lanthanide(III) salts [Dy(III) (1); Tb(III) (2); Gd (III) (3); Ho(III) (4); and Er(III) (5)] in the presence of triethylamine and pivalic acid afforded a series of heterometallic hexanuclear Ni(II)-Ln(III) coordination compounds, [Ni3Ln3(μ3-O)(μ3-OH)3(L)3(μ-OOCCMe3)3]·(ClO4)·wCH3CN·xCH2Cl2·yCH3OH·zH2O [for 1, w = 8, x = 3, y = 0, z = 5.5; for 2, w = 0, x = 5, y = 0, z = 6.5; for 3, w = 15, x = 18, y = 3, z = 7.5; for 4, w = 15, x = 20, y = 6, z = 9.5; and for 5, w = 0, x = 3, y = 2, z = 3]. The molecular structure of these complexes reveals the presence of a monocationic hexanuclear derivative containing one perchlorate counteranion. The asymmetric unit of each of the hexanuclear derivatives comprises the dinuclear motif [NiLn(L)(μ3-O)(μ3-OH)(μ-Piv)]. The cation contains three interlinked O-capped clusters: one Ln(III)3O and three Ni(II)Ln(III)2O. Each of the lanthanide centers is eight- coordinated (distorted trigonal-dodecahedron), while the nickel centers are hexacoordinate (distorted octahedral). The study of the magnetic properties of all compounds are reported and suggests single molecule magnet behavior for the Dy(III) derivative (1).

  12. Two-dimensional dysprosium(III triiodate(V dihydrate, Dy(IO33(H2O·H2O

    Directory of Open Access Journals (Sweden)

    Laishun Qin

    2009-08-01

    Full Text Available During our research into novel nonlinear optical materials using 1,10-phenanthroline as an appending ligand on lanthanide iodates, crystals of an infinite layered DyIII iodate compound, Dy(IO33(H2O·H2O, were obtained under hydrothermal conditions. The DyIII cation has a dicapped trigonal prismatic coordination environment consisting of one water O atom and seven other O atoms from seven iodate anions. These iodate anions bridge the DyIII cations into a two-dimensional structure. Through O—H...O hydrogen bonds, all of these layers stack along [111], giving a supramolecular channel, with the solvent water molecules filling the voids.

  13. Two-dimensional dysprosium(III) triiodate(V) dihydrate, Dy(IO3)3(H2O)·H2O

    Science.gov (United States)

    Chai, Wenxiang; Song, Li; Shi, Hongsheng; Qin, Laishun; Shu, Kangying

    2009-01-01

    During our research into novel nonlinear optical materials using 1,10-phenanthroline as an appending ligand on lanthanide iodates, crystals of an infinite layered DyIII iodate compound, Dy(IO3)3(H2O)·H2O, were obtained under hydro­thermal conditions. The DyIII cation has a dicapped trigonal prismatic coordination environment consisting of one water O atom and seven other O atoms from seven iodate anions. These iodate anions bridge the DyIII cations into a two-dimensional structure. Through O—H⋯O hydrogen bonds, all of these layers stack along [111], giving a supra­molecular channel, with the solvent water mol­ecules filling the voids. PMID:21583297

  14. 吡罗昔康镝配合物的合成与表征%Synthesis and characterization of the complex of piroxicam and dysprosium

    Institute of Scientific and Technical Information of China (English)

    张艳军; 石俊; 孙体健; 徐隋意; 曹晓峰

    2009-01-01

    利用热乙醇搅拌法合成吡罗昔康和稀土金属镝的配合物,通过紫外光谱、红外光谱、元素分析、电导率、差热-热重等方法对其进行表征,最后确定其组成为Dy(pir)2C2H5OHCl3·2H2O.

  15. Multicolor photoluminescence and energy transfer properties of dysprosium and europium-doped Gd{sub 2}O{sub 3} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanxia; Liu, Guixia, E-mail: liuguixia22@163.com; Wang, Jinxian; Dong, Xiangting; Yu, Wensheng

    2015-11-15

    In this study, a series of Gd{sub 2}O{sub 3}: Ln{sup 3+} (Ln = Dy, Eu) submicrospheres were successfully prepared by a hydrothermal method and a subsequent higher temperature pyrolysis. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectrometer (EDS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM) were utilized to characterize the as-prepared samples. The precursor sample thoroughly decomposed into Gd{sub 2}O{sub 3} submicrospheres with a diameter of about 550 nm after calcination. Under UV excitation, the samples exhibit multicolor emissions including yellow-green, yellow, red as well as white, moreover, the Dy{sup 3+} ions acted as donors can transfer the energy to Eu{sup 3+} served as acceptors in Gd{sub 2}O{sub 3}: Dy{sup 3+}, Eu{sup 3+} system. The interaction between Dy{sup 3+} ions and Eu{sup 3+} ions is verified to be phonon-assisted electric quadrupole–quadrupole interaction. Multicolor luminescence including white light emission can be obtained through varying the content of Eu{sup 3+} or adopting different excitation wavelengths in Dy{sup 3+} and Eu{sup 3+} co-doped Gd{sub 2}O{sub 3} system. The energy transfer efficiency reaches 88.2% when the doped concentration of Eu{sup 3+} is 0.035. The CIE chromaticity diagram directly reveals the variability of the hue of the as-prepared samples. Besides, the as-prepared samples exhibit paramagnetic properties at room temperature. This type of color-tunable luminescence phosphors has promising applications in the fields of photoelectronic devices and biomedical science. - Graphical abstract: Tunable multicolor emissions and energy transfer properties of lanthanides (Ln{sup 3+}, Ln{sup 3+} = Dy{sup 3+}, Eu{sup 3+}) doped cubic Gd{sub 2}O{sub 3} submicrospheres prepared by hydrothermal method and a subsequent calcination. - Highlights: • The as-prepared samples can exhibit multicolor emissions. • Dy{sup 3+} transfer energy to Eu{sup 3+} in Dy{sup 3+} and Eu{sup 3+} co-doped Gd{sub 2}O{sub 3}. • The as-prepared phosphor has promising applications in the fields of photoelectronic devices and biomedical science.

  16. Emission from Divalent Dysprosium (Dy2+ )in Crystalline Strontium Tetraborate%晶态四硼酸锶中二价镝的发射

    Institute of Scientific and Technical Information of China (English)

    许武; Peterson; J; R

    2001-01-01

    Emission spectra from SrB4O7 doped with Dy2O3 and heated in air have been recorded at room temperature. A change in oxidation state from Dy3+ to Dy2+ was observed. Optimum production of Dy2+ ion occurs when the sample is heated in air at about 650℃. Two broad emission bands centered in the vicinity of 550 and 660nm have been observed from the sample under the excitation of 457.9nm. It is suggested that these bands are due to Dy2 + ion emission from the 5d band into the ground state 4f level (5I8). Several conditions promoting the reduction of Dy3+ion in this matrix are discussed. To aid the reduction of Dy3+ ion, we have also prepared SrB4O7 doped with Dy2O3 in Ar/H2 (4 % ) atmosphere and compared the optical characteristics of Dy2 + ion in these samples with those from the samples prepared in air. The range of g-element reducibility and stabilization in SrB4O7 has been extended from Tm2+[ E0 (Tm3+/Tm2+) = -2.3V] to Dy2+ [E0(Dy3+/Dy2 +) = -2.6V] in the present work; however, the limit of this facile reduction process has not been determined yet.%在室温下测量了在空气中灼烧掺杂Dy2O3的SrB4O7的发射光谱.观测到了由Dy3+到Dy2+氧化态的变化.经优化,当在空气中灼烧温度为650℃时为产生Dy2+的最佳温度.在457.9nm的激发下测出了两个峰位分别位于550和660nm的宽发射带.我们认为这两个宽发射带是由Dy2+离子由5d态向4f基态能级(5I8)跃迁产生的.讨论了几个有益于在这种基质中还原Dy3+离子的条件.为了实现Dy3+离子的还原,我们还在Ar/H2(4%)气氛中制备了Dy2O3掺杂的SrB4O7,比较了这种样品和在空气中所制备的样品的光学特性.本文还对标志SrB4O7还原性和稳定性的g-因子由Tm2+的[Eo(Tm3+/Tm2+=-2.3V]推导出Dy2+的[E0(Dy3+/Dy2+)=-2.6V],但对这种还原过程的局限性尚未确定.

  17. CCDC 1402057: Experimental Crystal Structure Determination : pentakis(tetra-n-butylammonium) tetrakis(mu-oxalato)-dodecachloro-tetranitrosyl-ethanol-tetra-ruthenium-dysprosium sesquihydrate

    KAUST Repository

    Kuhn, Paul-Steffen

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  18. Oxide meets silicide. Synthesis and single-crystal structure of Ca{sub 21}SrSi{sub 24}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Dept. of Chemistry and Chemical Biology

    2017-06-01

    A few black, rectangular thin plates of Ca{sub 21}SrSi{sub 24}O{sub 2} were obtained by serendipity in a solid-state reaction of calcium metal, strontium chloride and silicon powder at 1200 K for 2 days designed to produce 'Ca{sub 2}SrCl{sub 2}[Si{sub 3}]'. The title compound forms next to some CaSi and some remaining educts. Ca{sub 21}SrSi{sub 24}O{sub 2} crystallizes in the monoclinic space group C2/m (no. 12) with unit cell parameters of a=1895.2(2), b=450.63(5) and c=1397.33(18) pm and β=112.008(7) (Z=1). The title compound shows planar, eight-membered, kinked Si{sub 8} chains with Si-Si distances between 241.4 and 245.0 pm indicating bonding interactions and kinked 'rope ladders' connecting the chains with interatomic Si-Si distances in the range 268.1-274.7 pm. Embedded in between these silicon substructures are columns of oxygen centered, apex sharing [(Ca{sub 1-x} Sr{sub x}){sub 6/2}O] octahedra and calcium ions.

  19. Study on Preparation of Monosilane from Magnesium Silicide%硅化镁制备单硅烷的工艺研究

    Institute of Scientific and Technical Information of China (English)

    李群; 顾克军; 吴沙

    2013-01-01

    提供一种硅化镁制备单硅烷的方法,并对制备工艺进行了研究,得到的优化工艺条件为:氯化铵和硅化镁的摩尔比为8∶1,液氨含水量<10-5,氯化铵液氨溶液浓度为20%,反应时间3h,反应温度-20℃,单硅烷的收率大于95%.

  20. Iron silicide formation at different layers of (Fe/Si){sub 3} multilayered structures determined by conversion electron Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Badía-Romano, L., E-mail: lbadia@unizar.es; Bartolomé, J. [Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, E-50009 Zaragoza (Spain); Rubín, J. [Departamento de Ciencia y Tecnología de Materiales y Fluidos, Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, E-50018 Zaragoza (Spain); Magén, C. [Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, E-50018 Zaragoza (Spain); Bürgler, D. E. [Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany)

    2014-07-14

    The morphology and the quantitative composition of the Fe-Si interface layer forming at each Fe layer of a (Fe/Si){sub 3} multilayer have been determined by means of conversion electron Mössbauer spectroscopy (CEMS) and high-resolution transmission electron microscopy (HRTEM). For the CEMS measurements, each layer was selected by depositing the Mössbauer active {sup 57}Fe isotope with 95% enrichment. Samples with Fe layers of nominal thickness d{sub Fe} = 2.6 nm and Si spacers of d{sub Si} = 1.5 nm were prepared by thermal evaporation onto a GaAs(001) substrate with an intermediate Ag(001) buffer layer. HRTEM images showed that Si layers grow amorphous and the epitaxial growth of the Fe is good only for the first deposited layer. The CEMS spectra show that at all Fe/Si and Si/Fe interfaces a paramagnetic c-Fe{sub 1−x}Si phase is formed, which contains 16% of the nominal Fe deposited in the Fe layer. The bottom Fe layer, which is in contact with the Ag buffer, also contains α-Fe and an Fe{sub 1−x}Si{sub x} alloy that cannot be attributed to a single phase. In contrast, the other two layers only comprise an Fe{sub 1−x}Si{sub x} alloy with a Si concentration of ≃0.15, but no α-Fe.

  1. 用于FEA场发射微尖表面的硅化物薄膜%The Silicide Film on the Surface of FEA‘s Emission Tips

    Institute of Scientific and Technical Information of China (English)

    季旭东

    2000-01-01

    一些硅的化合物具有良好的场发射特性,如果用作FEA发射微尖表面的薄膜,将能较好地提高FEA的发射特性.本文对这一类硅化物的制作、测量与性能作了说明.

  2. Bottom-gate poly-Si thin-film transistors by nickel silicide seed-induced lateral crystallization with self-aligned lightly doped layer

    Science.gov (United States)

    Lee, Sol Kyu; Seok, Ki Hwan; Chae, Hee Jae; Lee, Yong Hee; Han, Ji Su; Jo, Hyeon Ah; Joo, Seung Ki

    2017-03-01

    We report a novel method to reduce source and drain (S/D) resistances, and to form a lightly doped layer (LDL) of bottom-gate polycrystalline silicon (poly-Si) thin-film transistors (TFTs). For application in driving TFTs, which operate under high drain voltage condition, poly-Si TFTs are needed in order to attain reliability against hot-carriers as well as high field-effect mobility (μFE). With an additional doping on the p+ Si layer, sheet resistance on S/D was reduced by 37.5% and an LDL was introduced between the channel and drain. These results contributed to not only a lower leakage current and gate-induced drain leakage, but also high immunity of kink-effect and hot-carrier stress. Furthermore, the measured electrical characteristics exhibited a steep subthreshold slope of 190 mV/dec and high μFE of 263 cm2/Vs.

  3. A core-shell phenomenon maintain the magnetocaloric properties of the ternary silicide Gd6Co1.67Si3 during water flux ageing

    OpenAIRE

    Chennabasappa, Madhu; Chevalier, Bernard; Lahaye, Michel; Labrugère, Christine; Toulemonde, Olivier

    2014-01-01

    International audience; Ageing effect phenomenon is artificially stimulated on room temperature magnetocaloric material Gd6Co1.67Si3 by using constant flux of water up to time interval of 3 months. A core-shell model of oxide layer formation (SiOx-Gd2O3) on surface of Gd6Co1.67Si3 due to corrosion is justified using spontaneous single metal electrochemical reactions. The model is first proposed by a detailed microstructure study using Electron Probe Micro-Analysis, X-ray diffraction experimen...

  4. Interaction mechanism between niobium-silicide-based alloy melt and Y2O3 refractory crucible in vacuum induction melting process

    Directory of Open Access Journals (Sweden)

    Gao Ming

    2011-05-01

    Full Text Available The Y2O3 crucibles were introduced in the study as an alternative to the traditional ceramic ones in vacuum induction melting of multi-component Nb-16Si-22Ti-2Al-2Hf-17Cr (at.% alloys, to reveal the possible interactions between the alloy melt and the refractory crucible. Multiple melting time lengths and two cooling schemes were designed and used for the experiments. The chemical composition and microstructure of the tested alloy and the melt-crucible interaction were investigated and evaluated. In the experiments, Y2O3 crucible displays good physical-chemical compatibility. The results indicate that the increment of O element in the as-cast ingot is 0.03at.%-0.04at.% (72-97 ppm and the increment of Y element is very insignificant. The key features of the alloy melt interacting with Y2O3 ceramics are analyzed and concluded in the paper. As a result of the dissolution reaction xY2O3 (in molten alloy + (1-xHfO2 (impurity →Hf1-xY2xO2-x, a continuous double-layer solid film consisted of HfO2 solid solution (~2 μm and pure HfO2 (~5 μm is formed on the surface of the test ingot after cooled down in the crucible. The experimental results show that the Y2O3 crucible is applicable to the vacuum induction melting of Nb-Si based alloys.

  5. Doping-Spike PtSi Schottky Infrared Detectors with Extended Cutoff Wavelengths

    Science.gov (United States)

    Lin, T. L.; Park, J. S.; Gunapala, S. D.; Jones, E. W.; Castillo, H. M. Del

    1994-01-01

    A technique incorporating a p+ doping spike at the silicide/Si interface to reduce the effective Schottky barrier of the silicide infrared detectors and thus extend the cutoff wavelength has been developed.

  6. Activation of Small Molecules by DyI_2 and Dy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results The reactivities of dysprosium diiodide and metallic dysprosium toward small molecules are discussed.For instance,DyI2-induced silyl radical reactions are described.The combination of dysprosium diiodide and dichloromethane can serve as an effective methylene transfer reagent for cyclopropanation of unfunctionalized alkenes beyond that possible with other metal-dichloromethane systems.Furthermore,we report that the combination of chlorosilane and metallic Dy can also serve as an effective prom...

  7. Heterometallic octanuclear RE(III)3Ni(II)5 (RE = Dy(III), Gd(III) and Y(III)) clusters with slow magnetic relaxation for the dysprosium derivative.

    Science.gov (United States)

    Wang, Huiyu; Ke, Hongshan; Lin, Shuang-Yan; Guo, Yang; Zhao, Lang; Tang, Jinkui; Li, Yun-Hui

    2013-04-21

    Reactions of rare earth benzoate and nickel perchlorate with a Schiff-base ligand, 2-([(2-hydroxyphenyl)imino]methyl) phenol (H2L), in the presence of triethylamine yielded three heterobimetallic octanuclear clusters of general formula [RE3Ni5L5(PhCOO)3(μ3-OH)5(μ3-OCH3)(CH3OH)4(H2O)]·xCH3OH·yH2O (RE = Dy(III), x = 4, y = 4 (1), RE = Gd(III), x = 5, y = 4 (2), RE = Y(III), x = 5, y = 3 (3)). Single-crystal X-ray diffraction reveals that the metal core of each cluster consists of two distorted [RE2Ni2O4] cubane-like moieties and a heterobimetallic triangular [RE2NiO2] unit, with RE ions arranged in a typical triangular fashion. Variable-temperature solid state magnetic susceptibilities of these complexes were measured in the temperature range 2-300 K and the results indicate that an overall ferromagnetic interaction among the metal ions is operative for compounds 2 and 3. Under zero external field, the Dy3Ni5 compound shows a frequency dependence of the out-of-phase (χ'') signals, which indicates slow relaxation of the magnetization.

  8. Poly[(6-carboxypicolinato-κ3O2,N,O6(μ3-pyridine-2,6-dicarboxylato-κ5O2,N,O6:O2′:O6′dysprosium(III

    Directory of Open Access Journals (Sweden)

    Xu Li

    2009-11-01

    Full Text Available In the title complex, [Dy(C7H3NO4(C7H4NO4]n, one of the ligands is fully deprotonated while the second has lost only one H atom. Each DyIII ion is coordinated by six O atoms and two N atoms from two pyridine-2,6-dicarboxylate and two 6-carboxypicolinate ligands, displaying a bicapped trigonal-prismatic geometry. The average Dy—O bond distance is 2.40 Å, some 0.1Å longer than the corresponding Ho—O distance in the isotypic holmium complex. Adjacent DyIII ions are linked by the pyridine-2,6-dicarboxylate ligands, forming a layer in (100. These layers are further connected by π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.827 (3 Å] and C—H...O hydrogen-bonding interactions, assembling a three-dimensional supramolecular network. Within each layer, there are other π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.501 (2 Å] and O—H...O and C—H...O hydrogen-bonding interactions, which further stabilize the structure.

  9. 10 CFR Appendix B to Part 30 - Quantities 1 of Licensed Material Requiring Labeling

    Science.gov (United States)

    2010-01-01

    ... Cesium-135 10 Cesium-136 10 Cesium-137 10 Chlorine-36 10 Chlorine-38 10 Chromium-51 1,000 Cobalt-58m 10 Cobalt-58 10 Cobalt-60 1 Copper-64 100 Dysprosium-165 10 Dysprosium-166 100 Erbium-169 100 Erbium-171...

  10. 10 CFR 33.100 - Schedule A.

    Science.gov (United States)

    2010-01-01

    ... .1 Cesium-137 .1 .001 Chlorine-36 1 .01 Chlorine-38 100 1. Chromium-51 100 1. Cobalt-57 10 0.1 Cobalt-58m 100 1. Cobalt-58 1 .01 Cobalt-60 .1 .001 Copper-64 10 .1 Dysprosium-165 100 1. Dysprosium-166...

  11. FY 1998 annual report on the improvement of toughness of silicide-based intermetallic compounds by controlling their composite structures; 1998 nendo fukugo soshikika ni yoru shirisaidokei kinzokukan kagobutsu no kyojinsei kaizen chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Intermetallic compounds, although attracting much attention as most promising materials serviceable at superhigh temperature, are very fragile at normal temperature, which is one of their major disadvantages. Structures of these compounds prepared by the melting method are controlled to improve their toughness by, e.g., changing phase ratio of the initial crystal for the Mo-Si-Nb system to prevent cracking during the melting and casting stages, addition of a third element (e.g., Zr, Ti or Hf) or a mixed component of Nb and Zr to control the structure of Mo{sub 5}Si{sub 3} considered to be a cause for the cracking, and controlling melting and solidification rates for the FZ melting method. The three-phase microstructures with added Hf or Zr show improved toughness, but need additional procedures for controlling solidification and cooling conditions. For the powder method, the MA conditions are investigated with a two-element system, and the effects of Al or Zr as the third element added to the base composition on the composite microstructures and constituent phases are also investigated. Unlike the melting method, the powder method causes no cracking problems during the stock preparation stage and hence is expected to be applicable to production of larger stocks. However, the products by this method are found to be insufficient both in toughness and high-temperature strength. It is necessary to develop methods for cutting down and controlling oxides in the grain boundaries, in order to prevent deterioration of their strength at high temperature. (NEDO)

  12. TiAl合金激光熔覆金属硅化物复合材料涂层组织研究%Study on the Microstructure of Laser Clad Metallic Silicide Composite Coatings on TiAl Intermetallic Alloy

    Institute of Scientific and Technical Information of China (English)

    刘秀波; 王华明

    2005-01-01

    利用预涂NiC-Si复合粉末对TiAl合金进行激光熔覆处理,分析了涂层的显微组织及其形成机理,并讨论了显微组织与预涂合金粉末成分的关系.结果表明:涂层的显微组织由初生块状Ti5Si3相及点状γ-NiCrAl/TiSi共晶组织组成,随着预涂合金粉末中Si含量的增加,涂层中初生Ti5Si3块状相的体积分数增大,显微硬度提高,涂层与基体之间为良好的冶金结合.

  13. A core–shell phenomenon maintain the magnetocaloric properties of the ternary silicide Gd{sub 6}Co{sub 1.67}Si{sub 3} during water flux ageing

    Energy Technology Data Exchange (ETDEWEB)

    Chennabasappa, Madhu; Chevalier, Bernard [CNRS, Université de Bordeaux, ICMCB, UPR 9048, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); Lahaye, Michel [CeCaMA, Univ. Bordeaux, ICMCB, Pessac F-33600 (France); Labrugere, Christine [CNRS, Université de Bordeaux, ICMCB, UPR 9048, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); CeCaMA, Univ. Bordeaux, ICMCB, Pessac F-33600 (France); Toulemonde, Olivier, E-mail: toulemonde@icmcb-bordeaux.cnrs.fr [CNRS, Université de Bordeaux, ICMCB, UPR 9048, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France)

    2014-01-25

    Highlights: • Ageing effect phenomenon is artificially stimulated on Gd{sub 6}Co{sub 1.67}Si{sub 3} material. • Its magnetocaloric properties are kept. • A Gd{sub 6}Co{sub 1.67}Si{sub 3}@(SiO{sub x}–Gd{sub 2}O{sub 3}) core–shell phenomenon is seen. • The core shell acts as paramagnetic Gd{sub 2}O{sub 3} passivation layer. -- Abstract: Ageing effect phenomenon is artificially stimulated on room temperature magnetocaloric material Gd{sub 6}Co{sub 1.67}Si{sub 3} by using constant flux of water up to time interval of 3 months. A core–shell model of oxide layer formation (SiO{sub x}–Gd{sub 2}O{sub 3}) on surface of Gd{sub 6}Co{sub 1.67}Si{sub 3} due to corrosion is justified using spontaneous single metal electrochemical reactions. The model is first proposed by a detailed microstructure study using Electron Probe Micro-Analysis, X-ray diffraction experiments on the aged slab revealing Gd{sub 2}O{sub 3} phase and elemental depth profile analysis against time by Auger spectroscopy. It is further supported by surface chemical bonding study using X-ray Photoelectron Spectroscopy (XPS) concentrated on Si2p and O1s spectra. It is finally demonstrated that the room temperature bulk magnetocaloric performances of the material are not affected even under formation of corroded layer at the micron level scale. The Gd{sub 2}O{sub 3} shell certainly acts as a passivation layer.

  14. Study on Magnetic Responsibility of Rare Earth Ferrite/Polyacrylamide Magnetic Microsphere

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Wang Zhifeng; Zhang Hong; Dai Shaojun; Qiu Guanming; Okamoto Hiroshi

    2005-01-01

    In inverse microemulsion, rare earth ferrite/polyacrylamide magnetic microsphere were prepared and their magnetic responsibility were studied by magnetic balance. Results indicate that the magnetic responsibility of microsphere relates to magnetic moment of rare earth ion, and it can be improved by the addition of dysprosium ion of high magnetic moment. Dysprosium content has an effect on magnetic responsibility of dysprosium ferrite/polyacrylamide magnetic microsphere. The microsphere displays strong magnetic responsibility when the molar ratio of Dy3+/iron is 0.20.

  15. Poly[hexaaquatri-μ-malonato-didysprosium(III

    Directory of Open Access Journals (Sweden)

    Mei Yang

    2008-07-01

    Full Text Available The title compound, [Dy2(C3H2O43(H2O6]n, forms a coordination polymeric structure comprising hydrated dysprosium ions and malonate ligands. In the asymmetric unit, there are one dysprosium ion, one and a half malonate ligands, and three water molecules. Each DyIII atom is coordinated by six O atoms from four malonate ligands and by three water molecules, and displays a tricapped trigonal–prismatic coordination geometry. The malonate ligands adopt two types of coordination mode, linking dysprosium centres to form a three-dimensional coordination polymer. The extensive network of hydrogen bonds in this polymer enhances the structural stability.

  16. A Thermally Actuated Flux Pump for Energizing YBCO Pucks

    Science.gov (United States)

    2016-05-01

    antiferromagnetic, so heat pulses that go above and below 85 K should create a wave of magnetism across the face of the YBCO puck. The YBCO and dysprosium...temperature sensors were located at the centre and the outer perimeter on the surface of the dysprosium closest to the cold head, and on the side of the YBCO...outer perimeter of the dysprosium, the edge of the YBCO and the coldhead. In the following figures various curves are removed to give a clear picture of

  17. Maximum Permissible Concentrations and Negligible Concentrations for Rare Earth Elements (REEs)

    NARCIS (Netherlands)

    Sneller FEC; Kalf DF; Weltje L; Wezel AP van; CSR

    2000-01-01

    In dit rapport worden maximaal toelaatbare risiconiveaus (MTR) en verwaarloosbare risiconiveaus (VR) afgeleid voor zeldzame aardmetalen (ZAM). De geselecteerde ZAMs zijn Yttrium (Y), Lanthanum (La), Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Samarium (Sm), Gadolinium (Gd), en Dysprosium (Dy

  18. Atomic physics: A strange kind of liquid

    Science.gov (United States)

    Laburthe-Tolra, Bruno

    2016-11-01

    Interactions between the magnetic dipoles of dysprosium atoms in an ultracold gas can produce a 'self-bound' droplet. This provides a useful isolated system for probing the quantum-mechanical properties of ultracold gases. See Letter p.259

  19. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Active demands from downstream industry drove the price rise of rare earth products in Chinese domestic marketrecently, particularly didymium and dysprosium products. Prices of other rare earth products remained stable.

  20. Luminescence investigation of Dy2O2S and Dy2O2SO4 obtained by thermal decomposition of sulfate hydrate

    Institute of Scientific and Technical Information of China (English)

    RV Rodrigues; L Marciniak; LU Khan; JR Matos; HF Brito; W Strk

    2016-01-01

    The yellow emitting dysprosium oxysulfide (Dy2O2S) and dysprosium oxysulfate (Dy2O2SO4) compounds were prepared from the thermal decomposition of hydrated dysprosium sulphate. The materials were characterized by using thermogravimetry (TG/DTG), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopies. The thermal stability temperatures at around 1151 and 1313 K were determined for the Dy2O2S and Dy2O2SO4 materials, respectively. The photolumines-cence properties of the dysprosium oxysulfide were investigated, showing narrow emission bands assigned to the 4F9/2→6HJ intracon-figurational transitions of the Dy3+ion. The yellow emission color of this phosphor suggests that the Dy2O2S is a promising material for applications in LEDs.

  1. Syntheses, structures, and magnetic properties of a family of tetranuclear hydroxido-bridged Ni(II)2Ln(III)2 (Ln = La, Gd, Tb, and Dy) complexes: display of slow magnetic relaxation by the zinc(II)-dysprosium(III) analogue.

    Science.gov (United States)

    Abtab, Sk Md Towsif; Maity, Manoranjan; Bhattacharya, Kisholoy; Sañudo, E Carolina; Chaudhury, Muktimoy

    2012-10-01

    A new family of [2 × 2] tetranuclear 3d-4f heterometallic complexes have been synthesized. These are [Zn(2)Dy(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2)(MeOH)(2)](NO(3))·2H(2)O·MeOH (3), [Ni(2)Dy(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2)(MeOH)(2)](NO(3))·MeOH (4), [Ni(2)La(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2)(MeOH)(2)](ClO(4))·H(2)O·2MeOH (5), [Ni(2)Tb(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2) (MeOH)(2)](NO(3))·MeOH (6), and [Ni(2)Gd(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2)(MeOH)(2)](NO(3))·MeOH (7), [H(2)L = N,N'-dimethyl-N,N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine and Hdbm = dibenzoylmethane] obtained through a single-pot synthesis using [Zn(HL)(dbm)] (for 3)/[Ni(HL)(dbm)]·2CH(3)OH (for 4, 5, 6, and 7) as 3d-metal ion precursors. Single-crystal X-ray diffraction analysis and electrospray ionization (ESI) mass spectroscopy have been used to establish their identities. Compounds are isostructural, in which the metal ions are all connected together by a bridging hydroxido ligand in a rare μ(4)-mode. In complexes 3-7, the metal ions are antiferromagnetically coupled. Taking a cue from the results of 3 and 5, precise estimations have been made for the antiferromagnetic Ni···Ni (J(Ni) = -50 cm(-1)), Ni···Gd (J(NiGd) = -4.65 cm(-1)), and Gd···Gd (J(Gd) = -0.02 cm(-1)) exchange interactions in 7, involving the gadolinium(III) ions. The Zn(II)(2)Dy(III)(2) compound 3 has shown the tail of an out-of-phase signal in alternating current (AC) susceptibility measurement, indicative of slow relaxation of magnetization. Interestingly, the Ni(II)(2)Dy(III)(2) compound 4 in which both the participating metal ions possess large single ion anisotropy, has failed to show up any slow magnetic relaxation.

  2. 镝与二甘醇酸的配位聚合物的水热合成、晶体结构及荧光性质%Hydrothermal Synthesis, Crystal Structure and Fluorescence Property of Dysprosium Coordination Polymer with Diglycolic Acid

    Institute of Scientific and Technical Information of China (English)

    张艳斌; 鞠艳玲; 李艳秋; 李夏

    2007-01-01

    A new lanthanide coordination polymer {[Dy2(dga)3(H2O)4]·2H2O}n was prepared by hydrothermal method with DyCl3·6H2O and diglycolic acid (H2dga), and structurally characterized by single-crystal X-ray diffraction technique. The complex crystallizes in Orthorhombic system, C2221 space group with a=1.773 5(11) nm, b =0.875 2(6) nm, c=1.504 3(9) nm, V=2.335 0(3) nm3, Dc=2.359 Mg·m-3, Z=4,μ=6.447 mm-1, F(000)=1 584.0, R=0.0507, wR=0.121 6. In the complex, there are two types of coordination environments for Dy3+ ion. One Dy1 ion is nine-coordinated by three diglycolato groups via six carboxyl oxygen atoms and three ether oxygen atoms. The Dy1 ion is in a distorted monocapped square-antiprism coordination geometry. Whereas the other Dy2 ion is eight-coordinated and the coordination sphere around each Dy2 ion consists of four carboxyl oxygen atoms from four diglycolato ligands and four oxygen atoms from four coordinated water molecules. The coordination polyhedron of Dy2 ion can be described as a distorted square-antiprism. Eight- and nine-coordinate Dy3+ ions are linked by diglycolato ligands to form a 2D network structure. The fluorescence spectral of the complex in solid state at room temperature shows that the diglycolic acid is suitable for the sensitization on the luminescence of Dy3+ ion. CCDC: 660435.%DyCl3·6H2O与二甘醇酸(H2dga)在水热条件下反应得到配位聚合物{[Dy2(dga)3(H2O)4]·2H2O}n,用X-射线衍射单晶结构分析方法确定了其晶体结构.该配合物的晶体属于正交晶系,C2221空间群.在配合物中,Dy3+离子存在两种类型的配位环境.九配位的Dy1离子与3个二甘醇酸根的6个羧基氧原子和3个醚氧原子配位,其配位多面体可描述为一个扭曲的单帽四方反棱柱;八配位的Dy2离子周围的8个配位氧原子形成一个扭曲的四方反棱柱配位多面体,其中4个氧原子来自4个二甘醇酸根,另外4个氧原子由4个配位水分子提供.二甘醇酸配体的2个羧基和其醚氧原子同时与Dy3+离子配位而形成2D网状结构.该配合物在室温下的固体荧光光谱显示了中心Dy3+离子的特征荧光,位于483 nm和574 nm的发射峰分别对应于Dy3+离子的4F9/2→6H15/2和4F9/2→6H13/2跃迁.

  3. 稀土金属 Dy 掺杂 TiO2光催化剂的制备及其对孔雀石绿降解性能的研究%Study on preparation of rare earth element dysprosium doped with TiO2 photocatalyst and its degradation property to malachite green

    Institute of Scientific and Technical Information of China (English)

    高航; 高梅; 李松田; 马威; 吴晓兵

    2015-01-01

    To improve the oxidation efficiency of heterogeneous photocatalysis,TiO2 doped by rare-earth elements was adopted. The results indicate that:there was red-shift adsorption spectra of synthetic product which could enhance malachite green oxidative decolorization effectively under the action of normal visible light. Due to Dy3 + -TiO2 doped photocatalyst,activation energy of photooxidation was decreased so that the efficiency of photolysis could be improved significantly. What’s more,the treatment of malachite green model wastewater with Dy3 + -TiO2 was studied and optimal conditions has been determined as follows:the concentration of malachite green is 20 mg / L,molar ratio of Dy-doping is 1. 5% . Under that reaction con-dition,after 150 min,the decolorization rates of malachite green will be over 60% .%采用稀土元素掺杂法制备改性的二氧化钛,以改善非均相光催化的氧化效率。研究结果表明,在掺杂镝元素之后,产物的吸收光谱发生了红移,在可见光作用下,可以有效地促进孔雀石绿的氧化脱色。引入掺杂型光催化剂 Dy3+-TiO2后,可降低光氧化体系所需的能量,提高光解效率。以孔雀石绿溶液作为模拟废水,考察了 Dy3+离子掺杂量、底物浓度等因素的影响,确定了优化的实验条件:在孔雀石绿的浓度为20 mg/ L,稀土元素 Dy 掺杂量为1.5%(摩尔比)时,反应150 min 后孔雀石绿脱色率达到60%以上。

  4. N-对甲苯磺酰β-丙氨酸镝配合物的合成、晶体结构及抑菌活性%Synthesis crystal structure and antibacterial activity of dysprosium complex with N-p-tolysulfonyl-β-Alanine

    Institute of Scientific and Technical Information of China (English)

    李森兰; 马录芳; 王利亚; 黄世稳; 韦启后; 梁福沛; 张漫波

    2005-01-01

    稀土由于其特殊的电子结构,容易与一些中性、酸性和碱性生物配体形成配合物。本文合成并测定了对甲苯磺酰β-丙氨酸与稀土镝配合物的晶体结构及抑菌活性。

  5. Bis[μ-2-(4-hydroxyphenylacetato]-κ3O,O′:O;κ3O:O,O′-bis{aqua(4,4′-bipyridine-κNbis[2-(4-hydroxyphenylacetato-κ2O,O′]dysprosium(III} monohydrate

    Directory of Open Access Journals (Sweden)

    Jia-Lu Liu

    2010-12-01

    Full Text Available In the title dinuclear complex, [Dy2(C8H7O36(C10H8N22(H2O2]·H2O, the DyIII atoms are coordinated by eight O atoms from four 2-(4-hydroxyphenylacetate (HPAA ligands and a water molecule, and one N atom from a 4,4′-bipyridine (bipy ligand in a distorted tricapped trigonal prismatic geometry. Whereas four HPAA ligands coordinate to just two DyIII atoms, the remaining two ligands bridge the two DyIII atoms. In the crystal, O—H...O and O—H...N hydrogen bonds link the molecules into a three-dimensional network.

  6. Lightweight Ultrahigh Temperature CMC-Lined C/C Combustion Chambers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA and DoD are seeking economical and high-performance bipropellant thrusters for various applications. These goals cannot be achieved using the silicided C103...

  7. Transient High-Temperature Processing of Silicates in Fulgurites as Analogues for Meteorite and Impact Melts

    Science.gov (United States)

    Parnell, J.; Thackrey, S.; Muirhead, D. K.; Wright, A. J.

    2008-03-01

    A fulgurite from the Sahara yielded petrographic data valuable as an analogue for highly reduced meteorite and impact melts, including iron silicide formation, devolatilization features, zircon melting and extreme melt heterogeneity.

  8. Control of interfacial layers for high-performance porous Si lithium-ion battery anode.

    Science.gov (United States)

    Park, Hyungmin; Lee, Sungjun; Yoo, Seungmin; Shin, Myoungsoo; Kim, Jieun; Chun, Myungjin; Choi, Nam-Soon; Park, Soojin

    2014-09-24

    We demonstrate a facile synthesis of micrometer-sized porous Si particles via copper-assisted chemical etching process. Subsequently, metal and/or metal silicide layers are introduced on the surface of porous Si particles using a simple chemical reduction process. Macroporous Si and metal/metal silicide-coated Si electrodes exhibit a high initial Coulombic efficiency of ∼90%. Reversible capacity of carbon-coated porous Si gradually decays after 80 cycles, while metal/metal silicide-coated porous Si electrodes show significantly improved cycling performance even after 100 cycles with a reversible capacity of >1500 mAh g(-1). We confirm that a stable solid-electrolyte interface layer is formed on metal/metal silicide-coated porous Si electrodes during cycling, leading to a highly stable cycling performance.

  9. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers, Phase II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicided niobium alloy (C103) combustion chambers have been used extensively in both NASA and DoD liquid rocket propulsion systems. Niobium alloys offer a good...

  10. PtSi Clustering in Silicon Probed by Transport Spectroscopy

    Directory of Open Access Journals (Sweden)

    Massimo Mongillo

    2013-12-01

    Full Text Available Metal silicides formed by means of thermal annealing processes are employed as contact materials in microelectronics. Control of the structure of silicide/silicon interfaces becomes a critical issue when the characteristic size of the device is reduced below a few tens of nanometers. Here, we report on silicide clustering occurring within the channel of PtSi/Si/PtSi Schottky-barrier transistors. This phenomenon is investigated through atomistic simulations and low-temperature resonant-tunneling spectroscopy. Our results provide evidence for the segregation of a PtSi cluster with a diameter of a few nanometers from the silicide contact. The cluster acts as a metallic quantum dot giving rise to distinct signatures of quantum transport through its discrete energy states.

  11. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicided niobium alloy (C103) combustion chambers have been used extensively in both NASA and DoD liquid rocket propulsion systems. Niobium alloys offer a good...

  12. Poly[hexa-aqua-tri-μ-malonato-didysprosium(III)].

    Science.gov (United States)

    Fang, Zhan-Qiang; Zeng, Rong-Hua; Song, Zhao-Feng; Yang, Mei

    2008-06-07

    The title compound, [Dy(2)(C(3)H(2)O(4))(3)(H(2)O)(6)](n), forms a coordination polymeric structure comprising hydrated dysprosium ions and malonate ligands. In the asymmetric unit, there are one dysprosium ion, one and a half malonate ligands, and three water mol-ecules. Each Dy(III) atom is coordinated by six O atoms from four malonate ligands and by three water mol-ecules, and displays a tricapped trigonal-prismatic coordination geometry. The malonate ligands adopt two types of coordination mode, linking dysprosium centres to form a three-dimensional coordination polymer. The extensive network of hydrogen bonds in this polymer enhances the structural stability.

  13. Poly[hexa­aqua­tri-μ-malonato-didysprosium(III)

    Science.gov (United States)

    Fang, Zhan-Qiang; Zeng, Rong-Hua; Song, Zhao-Feng; Yang, Mei

    2008-01-01

    The title compound, [Dy2(C3H2O4)3(H2O)6]n, forms a coordination polymeric structure comprising hydrated dysprosium ions and malonate ligands. In the asymmetric unit, there are one dysprosium ion, one and a half malonate ligands, and three water mol­ecules. Each DyIII atom is coordinated by six O atoms from four malonate ligands and by three water mol­ecules, and displays a tricapped trigonal–prismatic coordination geometry. The malonate ligands adopt two types of coordination mode, linking dysprosium centres to form a three-dimensional coordination polymer. The extensive network of hydrogen bonds in this polymer enhances the structural stability. PMID:21202748

  14. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    Science.gov (United States)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (<50 nm) CoSi2 preparation. A comparison of the plan-view and cross-section TEM micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  15. 铌硅化物基超高温合金与石墨坩埚氧化物涂层反应的热力学分析%Thermodynamic Analysis of the Reaction of the Nb Silicide-based Superalloys with Oxide Coatings for the Graphite Crucibles

    Institute of Scientific and Technical Information of China (English)

    吴梅柏; 郭喜平

    2007-01-01

    利用热力学计算,分析了几种氧化物涂层Y2O3、ZrO2、Al2O3、MgO、CaO、Ce2O3和BeO等在高温下与新型铌硅化物基超高温合金中的几种主要元素Nb、Si、Ti和Hf之间反应的可能性,得到了这些反应的ΔG(θ)与温度T的关系图.通过比较这几种氧化物对合金熔体在高温下的化学稳定性,发现Y2O3和BeO对这些合金元素的化学稳定性较好,且Y2O3为熔炼铌硅化物基超高温合金用石墨坩埚的理想涂层材料.

  16. Poly[hexa­aqua­tri-μ-malonato-didysprosium(III)

    OpenAIRE

    2008-01-01

    The title compound, [Dy2(C3H2O4)3(H2O)6]n, forms a coordination polymeric structure comprising hydrated dysprosium ions and malonate ligands. In the asymmetric unit, there are one dysprosium ion, one and a half malonate ligands, and three water molecules. Each DyIII atom is coordinated by six O atoms from four malonate ligands and by three water molecules, and displays a tricapped trigonal–prismatic coordination geometry. The malonate ligands adopt two types of coordination mode, linkin...

  17. Photoluminescence, trap states and thermoluminescence decay process study of Ca2MgSi2O7 : Eu2+, Dy3+ phosphor

    Indian Academy of Sciences (India)

    Ravi Shrivastava; Jagjeet Kaur; Vikas Dubey; Beena Jaykumar

    2014-06-01

    Europium and dysprosium-doped calcium magnesium silicate powder with different concentrations of dysprosium were synthesized using solid-state reaction. The Fourier transform infrared (FT–IR) spectra confirmed the proper preparation of the sample. The prepared phosphors were characterized using photoluminescence excitation and emission spectra. Prominent green colour emission was obtained under ultraviolet excitation. The thermoluminescence glow curves of the samples were measured at various delay times. With increased delay time, the intensity of the thermoluminescence peak decays and the position of the thermoluminescence peak shifts towards higher temperature, indicating the considerable retrapping associated with general order kinetics.

  18. Perovskite catalysts for oxidative coupling

    Science.gov (United States)

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  19. Rare Earths; The Fraternal Fifteen (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Gschneidner, Jr., Karl A. [Iowa State University; Ames Laboratory

    1966-01-01

    Rare earths are a set of 15 elements: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. They are not rare and not earths; they are metals and quite abundant. They are studied to develop commercial products which are beneficial to mankind, and because some rare earths are important to fission products.

  20. An organometallic sandwich lanthanide single-ion magnet with an unusual multiple relaxation mechanism.

    Science.gov (United States)

    Jeletic, Matthew; Lin, Po-Heng; Le Roy, Jennifer J; Korobkov, Ilia; Gorelsky, Serge I; Murugesu, Muralee

    2011-12-07

    A dysprosium(III) sandwich complex, [Dy(III)(COT″)(2)Li(THF)(DME)], was synthesized using 1,4-bis(trimethylsilyl)cyclooctatetraenyl dianion (COT″). The complex behaves as a single-ion magnet and demonstrates unusual multiple relaxation modes. The observed relaxation pathways strongly depend on the applied static dc fields.

  1. On the use of Liouville relaxation supermatrices in Mössbauer studies. III : Application to Mössbauer relaxation in superconductors

    OpenAIRE

    Hartmann-Boutron, F.

    1980-01-01

    Wagner et al. recently studied the Mössbauer relaxation of paramagnetic dysprosium as an impurity in superconducting thorium. In connection with this study, we have derived simple formulas for interpreting relaxation effects in 2+ 0+ Mössbauer transitions of rare earth ions in superconductors.

  2. High-pressure synthesis of {nu}-DyBO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Emme, H.; Huppertz, H. [Dept. Chemie und Biochemie, Ludwig-Maximilians-Univ. Muenchen, Muenchen (Germany)

    2004-12-01

    {nu}-Dysprosium borate ({nu}-DyBO{sub 3}) was synthesized under conditions of high temperature and pressure in a Walker-type multi-anvil apparatus at 3 GPa and 1323 K. The compound is isotypic with the already known {nu}-samarium and {nu}-europium orthoborates. (orig.)

  3. Note: Simple means for selective removal of the 365 nm line from the Hg spectrum using Dy

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Chorkendorff, Ib; Brock-Nannestad, T.

    2011-01-01

    The emission spectrum of mercury has a notable line at about 365 nm under both low and medium-high pressure conditions. A simple filter based on a solution of dysprosium ions, Dy3+, is shown to be very useful for applications of Hg-light sources where this line is unwanted. The presented filter i...

  4. Benzoxazole-based heterometallic dodecanuclear complex [Dy(III)4Cu(II)8] with single-molecule-magnet behavior.

    Science.gov (United States)

    Iasco, Olga; Novitchi, Ghenadie; Jeanneau, Erwann; Wernsdorfer, Wolfgang; Luneau, Dominique

    2011-08-15

    Three Cu-Ln (Ln = Dy, Gd, Y) dodecanuclear clusters assembled by a novel ligand of the benzoxazole type are reported. The dysprosium cluster exhibits a frequency dependence of the alternating-current susceptibility and hysteresis loop at low temperature, indicating single-molecule-magnet behavior.

  5. Market Review

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ RE Market Dec. 10-20 Price of Pr-Nd oxide and Pr-Nd mischrnetal kept on rising in domestic market recently due to the tight supply of RE carbonate. Short supply of ion adsorption clay in southern China did not affect the prices of dysprosium and terbium obviously.

  6. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    June 20-30, 2011 Prices of heavy rare earth products remained soaring. The same happened to dysprosium and its related products due to tight supply. Separation plants held tightly of europium oxide. Refining plants took a positive attitude toward the ma

  7. Market Review

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Rare earth market was inactive affected by sluggish demand for didymium mischmetal and dysprosium metal by NdFeB industry. Most enterprises were waiting to see what was going on with the industry. However, price of didymium oxide rose again and price of heavy rare earths kept strong. Price of Dy oxide and Yt oxide Kept on rising.

  8. Market Review

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ RE Market May 10-20 Learned from Inner Mongolia Rare Earth Association,domestic rare earth market was in good situation driven by high demand. Price of neodymium rose strongly. Dysprosium oxide and terbium oxide still hovered at the higher price level. Price of europia remained stable.

  9. Market Review RE Market April 20-30

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Driven by high demand, China rare earth market was in good situation. Dysprosium oxide and terbium oxide hovered at the higher price level. Price of Pr-Nd oxide kept upward.Price of SmEuGd rose on small extent.

  10. Infrared Transparent Selenide Glasses.

    Science.gov (United States)

    1997-03-14

    crystalline halides, silica and fluoride glasses, and chalcogenide glasses. Crystalline halides undergo plastic deformation and are hygroscopic...mainly for applications operating at wavelengths less than 3 microns. Silicate and fluoride glasses have been developed as optical fiber amplifiers...activity. Preferred rare earths includes praseodymium, neodymium, erbium, cerium , dysprosium, holmium, thulium, terbium, ytterbium or mixtures of

  11. Synthesis and structure of didysprosium complexes with a tetraketone

    Science.gov (United States)

    Yang, Luqin; Yang, Rudong

    1996-06-01

    Two novel didysprosium (Dy 2) complexes of 1,5-bis(1'-phenyl-3'-methyl-5'-pyrazolone-4')-1,5-pentanedione (H 2L), Dy 2L 3·2H 2O and Dy 2L 3·5DMF (DMF = dimethylformamide), have been synthesized. The crystal structure of Dy 2L 3·5DMF was determined by X-ray diffraction. Crystals are triclinic, space group P1¯, with a = 16.99(1), b = 17.970(9), c = 18.28(1) Å, α = 110.36(4), β = 101.47(6), γ = 111.11(5)°, V = 4533(9) Å 3, Mr = 2017.91, Z = 2, D x = 1.48 g cm -3, μ = 17.22 cm -1, F(000) = 2056, R = 0.074 with 3804 reflections used in the refinement. In the complex, each L bonds two dysprosium atoms with its two β-diketone groups. Two DMF solvent molecules bond to each dysprosium ion. The coordination number of the two dysprosium ions is eight. The eight oxygen atoms around the dysprosium ion make up a distorted square antiprism coordination polyhedron. The resonance structures of coordinated β-diketonates are also discussed. Different lanthanide ions may stabilize the specific structure.

  12. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    Science.gov (United States)

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  13. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach.

    Science.gov (United States)

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter; Dall, Ole; Wenzel, Henrik

    2014-10-21

    Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key rare earth elements (REEs), i.e., neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets, allowing for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of a secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, material flow analysis (MFA) has been carried out to perform the detailed mapping of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global levels by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products representing 18 various product types. The results show that the current amount of neodymium and dysprosium in NdFeB magnets present in the Danish waste stream is only 3 and 0.2 Mg, respectively. However, this number is estimated to increase to 175 Mg of neodymium and 11.4 Mg of dysprosium by 2035. Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge.

  14. Evidence for triaxial deformation near N=86 : Collective bands in Dy-152,Dy-153 and Ho-153

    NARCIS (Netherlands)

    Appelbe, DE; Twin, PJ; Beausang, CW; Cullen, DM; Curien, D; Duchene, G; Erturk, S; Finck, C; Haas, B; Paul, ES; Radford, DC; Rigollet, C; Smith, MB; Stezowski, O; Waddington, JC; Wilson, AN

    2002-01-01

    The N=86,87 isotopes of dysprosium and holmium have been investigated using the Eurogam II gamma-ray spectrometer. A new collective rotational band has been observed in Ho-153 and the previously observed nui(13/2) band in Dy-153 has been extended to much higher spin. Comparing these bands and

  15. Using T2-Exchange from Ln3+DOTA-Based Chelates for Contrast-Enhanced Molecular Imaging of Prostate Cancer with MRI

    Science.gov (United States)

    2016-04-01

    specific ana - tomic features or dynamic processes. The most widely used MRI contrast agents consist of various chelated forms of Gd3þ where the...Vymazal J, Holla M, Frank JA. Dysprosium-DOTA-PAMAM dendrimers as macromolecu- lar T2 contrast agents - preparation and relaxometry. Invest Radiol

  16. Preparation, Structure Characterization and Thermal Decomposition ...

    African Journals Online (AJOL)

    NJD

    The unit cell contains a dinuclear molecule of the title compound. ... The carboxylate groups are bonded to the dysprosium ions in two modes: chelating bidentate ..... 5 R.F. Wang, L.S. Li, L.P. Jin and S.Z. Lu,J. Rare Earths,1998,16, 149–152.

  17. Market Review

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Rare earth market went downward recently.Consumers worried about the continuous price falling in the following one month and were not active in the purchasing.Price of southern ion adsorption clay dropped as well,which consequently resulted in the falling of dysprosium and terbium.

  18. Reaction phases and diffusion paths in SiC/metal systems

    Energy Technology Data Exchange (ETDEWEB)

    Naka, M.; Fukai, T. [Osaka Univ., Osaka (Japan); Schuster, J.C. [Vienna Univ., Vienna (Austria)

    2004-07-01

    The interface structures between SiC and metal are reviewed at SiC/metal systems. Metal groups are divided to carbide forming metals and non-carbide forming metals. Carbide forming metals form metal carbide granular or zone at metal side, and metal silicide zone at SiC side. The further diffusion of Si and C from SiC causes the formation of T ternary phase depending metal. Non-carbide forming metals form silicide zone containing graphite or the layered structure of metal silicide and metal silicide containing graphite. The diffusion path between SiC and metal are formed along tie-lines connecting SiC and metal on the corresponding ternary Si-C-M system. The reactivity of metals is dominated by the forming ability of carbide or silicide. Te reactivity tendency of elements are discussed on the periodical table of elements, and Ti among elements shows the highest reactivity among carbide forming metals. For non-carbide forming metals the reactivity sequence of metals is Fe>Ni>Co. (orig.)

  19. Analysis of quadrupole splitting of multiple Fe sites intermixed in Si(111) with Mössbauer spectroscopy

    Science.gov (United States)

    Kawauchi, Taizo; Zhang, Xiaowei; Fukutani, Katsuyuki

    2016-12-01

    The iron silicide has various interesting phases both fundamentally and technologically, which have acquired much attention to date. Iron silicides are often fabricated on a Si substrate by a solid phase epitaxy method, and the initial stage of intermixing of iron atoms with substrate Si is of crucial importance for silicide fabrication, which remains to be clarified. Here, we have investigated the initial stage of the iron-silicide formation before crystallization with Mössbauer spectroscopy suited to characterization of magnetic and chemical properties of 57Fe atoms in materials. The sample was prepared by deposition of 57Fe of 1 nm on a Si(111) surface at 450 K. Conventional Mössbauer spectroscopy in the energy domain revealed presence of two iron sites with similar quadrupole splits and isomer shifts, which hampered complete analysis of this system. By combining the time-domain spectroscopy using polarized synchrotron radiation, we have separately analyzed the quadrupole splits and isomer shifts for the two iron sites. By using the theoretical simulation, furthermore, we successfully reproduced the experimentally observed time spectrum of the nuclear resonant scattering on the assumption that iron atoms randomly occupy the substitutional sites for Si at the initial stage of intermixing before crystallization of an iron silicide.

  20. Characteristics of TaSi/sub 2//Poly-Si films oxidized in steam for VLSI applications

    Energy Technology Data Exchange (ETDEWEB)

    DeBlasi, J.M.; Razouk, R.R.; Thomas, M.E.

    1983-12-01

    The oxidation kinetics of tantalum disilicide/polycrystalline silicon composite structures in pyrogenic steam over the temperature range of 800/sup 0/-1000/sup 0/C have been investigated. The oxide formation over the tantalum silicide film has been found to proceed in a linear-parabolic manner similar to that observed for oxide formation over single crystal silicon. The parabolic rate constant is similar to that observed for single crystal silicon, while the linear rate constant is higher than that of lightly doped single crystal and polycrystalline silicon. The electrical properties of oxides formed over the silicide as well as oxides under the silicide/polycrystalline silicon composite layer (gate oxides) have been investigated. Gate oxide integrity has been found to degrade dramatically when, due to oxidation, the average remaining underlying polysilicon thickness is reduced to less than 2000A at the gate electrode.

  1. Oxidation Behavior and Chlorination Treatment to Improve Oxidation Resistance of Nb-Mo-Si-B Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Behrani, Vikas [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    This thesis is written in an alternate format. The thesis is composed of a general introduction, two original manuscripts, and a general conclusion. References cited within each chapter are given at the end of each chapter. The general introduction starts with the driving force behind this research, and gives an overview of previous work on boron doped molybdenum silicides, Nb/Nb5Si3 composites, boron modified niobium silicides and molybdenum niobium silicides. Chapter 2 focuses on the oxidation behavior of Nb-Mo-Si-B alloys. Chapter 3 contains studies on a novel chlorination technique to improve the oxidation resistance of Nb-Mo-Si-B alloys. Chapter 4 summarizes the important results in this study.

  2. Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning.

    Science.gov (United States)

    Ryu, Jaegeon; Choi, Sinho; Bok, Taesoo; Park, Soojin

    2015-04-14

    We demonstrate a simple but straightforward process for the synthesis of nanotube-type Si-based multicomponents by combining a coaxial electrospinning technique and subsequent metallothermic reduction reaction. Si-based multicomponent anodes consisting of Si, alumina and titanium silicide show several advantages for high-performance lithium-ion batteries. Alumina and titanium silicide, which have high mechanical properties, act as an effective buffer layer for the large volume change of Si, resulting in outstanding volume suppression behavior (volume expansion of only 14%). Moreover, electrically conductive titanium silicide layers located at the inner and outer layers of a Si nanotube exhibit a high initial coulombic efficiency of 88.5% and an extraordinary rate capability. Nanotubular structured Si-based multicomponents with mechanically and electrically improved components can be used as a promising alternative to conventional graphite anode materials. This synthetic route can be extended to other high capacity lithium-ion battery anode materials.

  3. Structural and electrical properties of swift heavy ion beam irradiated Co/Si interface

    Indian Academy of Sciences (India)

    Garima Agarwal; Ankur Jain; Shivani Agarwal; D Kabiraj; I P Jain

    2006-04-01

    Synthesis of swift heavy ion induced metal silicide is a new advancement in materials science research. We have investigated the mixing at Co/Si interface by swift heavy ion beam induced irradiation in the electronic stopping power regime. Irradiations were undertaken at room temperature using 120 MeV Au ions at the Co/Si interface for investigation of ion beam mixing at various doses: 8 × 1012, 5 × 1013 and 1 × 1014 cm-2. Formation of different phases of cobalt silicide is identified by the grazing incidence X-ray diffraction (GIXRD) technique, which shows enhancement of intermixing and silicide formation as a result of irradiation. – characteristics at Co/Si interface were undertaken to understand the irradiation effect on conduction mechanism at the interface.

  4. WSi2 in Si(1-x)Ge(x) Composites: Processing and Thermoelectric Properties

    Science.gov (United States)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    Traditional SiGe thermoelectrics have potential for enhanced figure of merit (ZT) via nano-structuring with a silicide phase, such as WSi2. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples were prepared using powder metallurgy techniques; including mechano-chemical alloying, via ball milling, and spark plasma sintering for densification. Processing, micro-structural development, and thermoelectric properties will be discussed. Additionally, couple and device level characterization will be introduced.

  5. Basic factors controlling pest in high temperature systems

    Science.gov (United States)

    Berkowitz-Mattuck, J.; Rossetti, M.

    1971-01-01

    The catastrophic disintegration in air at intermediate temperatures of refractory materials which are very resistant to oxidation at high temperatures is known as pest. A study was undertaken to determine whether the mechanism proposed for pest failure in silicides might also be responsible for pest failure in NbAl3. The aim was to correlate oxidation kinetics in the range where disintegration of NbAl3 is observed with delayed failure data obtained under similar conditions. Studies were also undertaken to develop some understanding of deformation mechanisms in both silicides and aluminides.

  6. Rapid Solid-State Metathesis Routes to Nanostructured Silicon-Germainum

    Science.gov (United States)

    Kaner, Richard B. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor); Rodriguez, Marc (Inventor)

    2014-01-01

    Methods for producing nanostructured silicon and silicon-germanium via solid state metathesis (SSM). The method of forming nanostructured silicon comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and an alkaline earth metal silicide into a homogeneous powder, and initating the reaction between the silicon tetraiodide (SiI4) with the alkaline earth metal silicide. The method of forming nanostructured silicon-germanium comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and a germanium based precursor into a homogeneous powder, and initiating the reaction between the silicon tetraiodide (SiI4) with the germanium based precursors.

  7. Material Flow Analysis of NdFeB magnets for Denmark: A comprehensive waste flow sampling and analysis approach

    DEFF Research Database (Denmark)

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter

    2014-01-01

    Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key Rare Earth Elements (REEs) i.e. neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets allowing for consider......Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key Rare Earth Elements (REEs) i.e. neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets allowing...... of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global level by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products...

  8. Magnetic Properties of the Dy1-xUxCo3 System

    Science.gov (United States)

    Lupşa, Ileana; Petrişor, T.; Balasz-Mureşan, I.

    The magnetic properties of Dy1-xUxCo3 system were investigated in the 4.3-1150 K temperature range and magnetic field up to 120 kOe. The crystalline structure is rhombohedral of PuNi3 type. For x≤0.8, the samples exhibit a ferrimagnetic behavior. The uranium substitution for dysprosium leads to the decreasing of the exchange field and the reducing of the magnetization and the transition temperatures. The Co mean moments (1.9μB/Co for x=0) opposite to the dysprosium ones and the mean effective Co moments (3.75μB/Co for x=0) are gradually decreasing as Dy is replaced by uranium.

  9. Tetraanionic biphenyl lanthanide complexes as single-molecule magnets.

    Science.gov (United States)

    Huang, Wenliang; Le Roy, Jennifer J; Khan, Saeed I; Ungur, Liviu; Murugesu, Muralee; Diaconescu, Paula L

    2015-03-02

    Inverse sandwich biphenyl complexes [(NN(TBS))Ln]2(μ-biphenyl)[K(solvent)]2 [NN(TBS) = 1,1'-fc(NSi(t)BuMe2)2; Ln = Gd, Dy, Er; solvent = Et2O, toluene; 18-crown-6], containing a quadruply reduced biphenyl ligand, were synthesized and their magnetic properties measured. One of the dysprosium biphenyl complexes was found to exhibit antiferromagnetic coupling and single-molecule-magnet behavior with Ueff of 34 K under zero applied field. The solvent coordinated to potassium affected drastically the nature of the magnetic interaction, with the other dysprosium complex showing ferromagnetic coupling. Ab initio calculations were performed to understand the nature of magnetic coupling between the two lanthanide ions bridged by the anionic arene ligand and the origin of single-molecule-magnet behavior.

  10. Spectroscopy of Neutron-Rich $^{168,170}$Dy: Yrast Band Evolution Close to the $N_{p}N_{n}$ Valence Maximum

    CERN Document Server

    Söderström, P A; Regan, P H; Algora, A; de Angelis, G; Ashley, S F; Aydin, S; Bazzacco, D; Casperson, R J; Catford, W N; Cederkäll, J; Chapman, R; Corradi, L; Fahlander, C; Farnea, E; Fioretto, E; Freeman, S J; Gadea, A; Gelletly, W; Gottardo, A; Grodner, E; He, C Y; Jones, G A; Keyes, K; Labiche, M; Liang, X; Liu, Z; Lunardi, S; Muarginean, N; Mason, P; Menegazzo, R; Mengoni, D; Montagnoli, G; Napoli, D; Ollier, J; Pietri, S; Podolyák, Z; Pollarolo, G; Recchia, F; Şahin, E; Scarlassara, F; Silvestri, R; Smith, J F; Spohr, K M; Steer, S J; Stefanini, A M; Szilner, S; Thompson, N J; Tveten, G M; Ur, C A; Valiente-Dobón, J J; Werner, V; Williams, S J; Xu, F R; Zhu, J Y

    2010-01-01

    The yrast sequence of the neutron-rich dysprosium isotope Dy-168 has been studied using multi-nucleon transfer reactions following the collision of a 460-MeV Se-82 beam and a Er-170 target. The reaction products were identified using the PRISMA magnetic spectrometer and the gamma rays detected using the CLARA HPGe-detector array. The 2+ and 4+ members of the previously measured ground state rotational band of Dy-168 was confirmed and the yrast band extended up to 10+. A tentative candidate for the 4+ to 2+ transition in Dy-170 was also identified. The data on this and lighter even-even dysprosium isotopes are interpreted in terms of Total Routhian Surface calculations and the evolution of collectivity approaching the proton-neutron valence product maximum is discussed.

  11. Development of a coprecipitation system for the speciation/preconcentration of chromium in tap waters

    Energy Technology Data Exchange (ETDEWEB)

    Karatepe, Aslihan, E-mail: karatepea@gmail.com [Nevsehir University, Faculty of Science and Arts, Department of Chemistry, 50000 Nevsehir (Turkey); Korkmaz, Esra [Bozok University, Faculty of Science and Arts, Department of Chemistry, Yozgat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey); Elci, Latif [Pamukkale University, Faculty of Science and Arts, Department of Chemistry, 20020 Denizli (Turkey)

    2010-01-15

    A method for the speciation of chromium(III), chromium(VI) and determination of total chromium based on coprecipitation of chromium(III) with dysprosium hydroxide has been investigated and applied to tap water samples. Chromium(III) was quantitatively recovered by the presented method, while the recovery values for chromium(VI) was below 10%. The influences of analytical parameters including amount of dysprosium(III), pH, centrifugation speed and sample volume for the quantitative precipitation were examined. No interferic effects were observed from alkali, earth alkali and some transition metals for the analyte ions. The detection limits (k = 3, N = 15) were 0.65 {mu}g/L for chromium(III) and 0.78 {mu}g/L for chromium(VI). The validation of the presented method was checked by the analysis of certified reference materials.

  12. Development of bulk metallic glasses based on the Dy-Al binary eutectic composition

    Institute of Scientific and Technical Information of China (English)

    LUO Lin; TIAN Rui; XIAO Xueshan

    2008-01-01

    A series of dysprosium-based ternary, quadruple, and quintuple bulk metallic glasses (BMGs) based on Dy-Al binary eutectic compo-sition were obtained with the partial substitution of Co, Gd, and Ni elements, for dysprosium. The results showed that the Dy31Gd25Co20Al24 alloy, which had the best glass forming ability (GFA), could be cast into an amorphous rod with a diameter of 5 mm. The GFA of alloys was evaluated on the basis of the supercooled liquid region width, γ parameter, the formation enthalpy, and the equivalent electronegativity difference of amor-phous alloys. It was found that the eutectic composition was closely correlated with the GFA of the Dy-based BMGs.

  13. CVD Delta-Doped Boron Surface Layers for Ultra-Shallow Junction Formation

    NARCIS (Netherlands)

    Sarubbi, F.; Nanver, L.K.; Scholtes, T.L.M.

    2006-01-01

    A new doping technique is presented that uses a pure boron atmospheric/low-pressure chemical vapor deposition (AP/LPCVD) in a commercially available epitaxial reactor to form less than 2-nm-thick δ-doped boron-silicide (BxSi) layers on the silicon surface. For long exposure B segregates at the surfa

  14. Degradation of a tantalum filament during the hot-wire CVD of silicon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oliphant, C.J. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Arendse, C.J., E-mail: cjarendse@uwc.ac.za [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Muller, T.F.G. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Jordaan, W.A. [National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Knoesen, D. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2015-01-30

    Electron backscatter diffraction revealed that during the hot-wire deposition of silicon nitride, a tantalum filament partially transformed to some of its nitrides and silicides. The deposition of an encapsulating silicon nitride layer occurred at the cooler filament ends. Time-of-flight secondary ion mass spectroscopy disclosed the presence of hydrogen, nitrogen and silicon containing ions within the aged filament bulk. Hardness measurements revealed that the recrystallized tantalum core experienced significant hardening, whereas the silicides and nitrides were harder but more brittle. Crack growth, porosity and the different thermal expansion amongst the various phases are all enhanced at the hotter centre regions, which resulted in failure at these areas. - Highlights: • Tantalum filament degrades and fails during hot-wire CVD of silicon nitride thin films. • An encapsulating silicon nitride layer is deposited at the cooler ends. • Electron backscatter diffraction reveals Ta-silicides and -nitrides with a Ta core. • Filament failure occurs at hot centre regions due to different mechanical properties of Ta, its silicides and nitrides.

  15. Characterization of electroless nickel as a seed layer for silicon solar cell metallization

    Indian Academy of Sciences (India)

    Mehul C Raval; Chetan S Solanki

    2015-02-01

    Electroless nickel plating is a suitable method for seed layer deposition in Ni–Cu-based solar cell metallization. Nickel silicide formation and hence contact resistivity of the interface is largely influenced by the plating process and annealing conditions. In the present work, a thin seed layer is deposited from neutral pH and alkaline electroless nickel baths which are annealed in the range of 400–420°C for silicide morphology and contact resistivity studies. A minimum contact resistivity of 7 m cm2 is obtained for seed layer deposited from alkaline bath. Silicide formation for Pd-activated samples leads to uniform surface morphology as compared with unactivated samples due to non-homogeneous migration of nickel atoms at the interface. Formation of nickel phosphides during annealing and the presence of SiO2 at Ni–Si interface creates isolated Ni2Si–Si interface with limited supply of silicon. Such an interface leads to the formation of high resistivity metal-rich Ni3Si silicide phase which limits the reduction in contact resistivity.

  16. Formation of aligned nanosilicide structures in a MBE-grown Au/Si(110) system: a real-time temperature-dependent TEM study.

    Science.gov (United States)

    Bhatta, Umananda M; Dash, J K; Roy, Anupam; Rath, A; Satyam, P V

    2009-05-20

    Thin Au films (∼2 nm) were deposited on an Si(110) substrate epitaxially under ultra-high vacuum (UHV) conditions in a molecular beam epitaxy (MBE) system. Real-time in situ transmission electron microscopy (TEM) measurements were carried out at various temperatures (from room temperature to 700 °C), which shows the formation and growth of aligned gold silicide nanorod-like structures. The real-time selected-area electron diffraction patterns show the presence of silicon and unreacted gold at lower temperatures (up to 363 °C), while at higher temperatures only the signature of silicon has been observed. The diffraction analysis from room temperature cooled systems show the presence of gold silicide structures. Around 700 °C, 97% of the nanostructures were found to be aligned nanosilicide-rod-like structures with a longer side of ≈37 nm and aspect ratio of 1.38. For a high temperature annealed system (at 600 °C), selected-area diffraction (SAD) and high resolution lattice (after cooling down to room temperature) confirmed the formation of nano- Au(5)Si(2) structures. The alignment of gold silicide structures has been explained on the basis of lattice matching between the substrate silicon and silicide structures.

  17. Characterisation of Swift Heavy Ion-induced Mixing using Secondary Ion Mass Spectrometry

    National Research Council Canada - National Science Library

    B. R. Chakraborty; K. Diva; D. Kabiraj; D. K. Avasthi

    2009-01-01

    ...=Co, it was further probed with XRD and Raman spectroscopy to confirm the formation of cobalt silicides even at room temperature. Defence Science Journal, 2009, 59(4), pp.356-362, DOI:http://dx.doi.org/10.14429/dsj.59.1534

  18. A process for the production of a scale-proof and corrosion-resistant coating on graphite and carbon bodies

    Science.gov (United States)

    Fitzer, E.

    1981-01-01

    A process for the production of a corrosion resistant coating on graphite and carbon bodies is described. The carbon or graphite body is coated or impregnated with titanium silicide under the addition of a metal containing wetting agent in a nitrogen free atmosphere, so that a tight coating is formed.

  19. Historical Perspective and Contribution of U.S. Researchers Into the Field of Self-Propagating High-Temperature Synthesis (SHS)/Combustion Synthesis (CS): Personal Reflections

    Science.gov (United States)

    2008-07-01

    Use of zirconium in thermal batteries. ............................................................................3 Figure 2. Combustion front...and (b) TEM images of Al and Ni nanoreactants, (c) reaction chamber, (d) SEM image of nanosize nickel aluminide-alumina composite prepared by...silicides, sulfides, phosphides, hydrides, and oxides of many elements as well as intermetallics, composites, nonstoichiometric compounds, and solid

  20. Fabrication and microstructural analysis of UN-U{sub 3}Si{sub 2} composites for accident tolerant fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle D., E-mail: kylej@kth.se; Raftery, Alicia M.; Lopes, Denise Adorno; Wallenius, Janne

    2016-08-15

    In this study, U{sub 3}Si{sub 2} was synthesized via the use of arc-melting and mixed with UN powders, which together were sintered using the SPS method. The study revealed a number of interesting conclusions regarding the stability of the system – namely the formation of a probable but as yet unidentified ternary phase coupled with the reduction of the stoichiometry in the nitride phase – as well as some insights into the mechanics of the sintering process itself. By milling the silicide powders and reducing its particle size ratio compared to UN, it was possible to form a high density UN-U{sub 3}Si{sub 2} composite, with desirable microstructural characteristics for accident tolerant fuel applications. - Highlights: • U{sub 3}Si{sub 2} fabricated from elemental uranium and silicon through arc melting. • Homogeneity of the silicides assessed through densitometry, XRD, SEM and EDS, chemical etching and optical microscopy. • UN powder fabricated using hydriding-nitriding method. • No phase transformations detected when sintering using silicide particle sizes less than UN particle size. • High density composite (98%TD) fabricated with silicide grain coating using spark plasma sintering at 1450 °C.

  1. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    Science.gov (United States)

    Lowden, Richard A.

    1994-01-01

    A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.

  2. Novel test structures for dedicated temperature budget determination

    NARCIS (Netherlands)

    Faber, Erik J.; Wolters, Rob A.M.; Schmitz, Jurriaan

    2012-01-01

    We present a novel method for determining the temperature budget of the process side of silicon substrates and chips, based on well-known silicide formation reactions of metal–Si systems and (four-point probe) resistance measurements. In this paper, we focus on the Pd–Si system that is most temperat

  3. Silicon-based electrically driven microcavity LED

    OpenAIRE

    2004-01-01

    A silicon pn-diode was embedded into a microcavity composed of a buried metal silicide as bottom reflector and a Si/SiO2 Bragg mirror as top reflector. Spectral narrowing and an increased intensity of the Si bandgap electroluminescence was observed.

  4. Friction Sensitivity of Primary Explosives

    Science.gov (United States)

    1982-09-01

    potassium dinitrobenzofuroxan none tetrazene 407913 tetrazene 7902454 The mixes which were tested are: NOL 130 (basic lead styphnate , barium nitrate, lead...azide, tetrazene, and antimony sulfide); PA 100 (normal lead styphnate , barium nitrate, tetrazene, lead dioxide, calcium silicide, and antimony...styuhnate, basic lead styphnate , potassium dinitrobenzofuroxan, and tetrazene were tested to determine the- 10% and 50% probability of friction

  5. Dependence of Y sub 2 O sub 3 film growth on the state of the Si surface

    CERN Document Server

    Cho, M H; Jeong, K H; Whang, C N Y; Ko, D H; Choi, S C; Cho, S J

    1999-01-01

    Y sub 2 O sub 3 films were grown on Si substrates with various surface conditions by using ionized cluster beam deposition. The interface and the surface characteristics was investigated by reflection high energy electron diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy. The dependence of the crystallinities of the films on the surface conditions was investigated using X-ray diffraction. The investigation showed that control of the silicide layer played a crucial role in the growth of Y sub 2 O sub 3 films during the initial stage of growth. The Y sub 2 O sub 3 film grown on a silicide layer formed on a clean Si surface was a polycrystal with a monoclinic structure. However, the film grown on a silicide layer formed on a SiO sub 2 -terminated surface turned out to be a single crystalline Y sub 2 O sub 3 with a cubic structure. A high-quality film in terms of crystallinity and stochiometry was obtained when the growth of the silicide layer was controlled by a SiO sub 2 layer which had...

  6. Reconfigurable field effect transistor for advanced CMOS: Advantages and limitations

    Science.gov (United States)

    Navarro, C.; Barraud, S.; Martinie, S.; Lacord, J.; Jaud, M.-A.; Vinet, M.

    2017-02-01

    Reconfigurable FETs (RFETs) are optimized in planar Fully Depleted (FD) SOI. Their basics, electrostatics and performance are studied and compared with standard 28 nm FDSOI and other RFETs results in the literature. The main challenge for future broad adoption is analyzed and commented. Finally, some tips to improve the performance such as the asymmetric silicidation at source/drain are discussed.

  7. Quantitative strain analysis for advanced CMOS technology by Nano Beam Diffraction

    KAUST Repository

    Wang, Qingxiao

    2010-07-01

    Nano Beam Diffraction has been used to analyze the local strain distribution in MOS transistors. The influence of wafer process on the channel strain has been systematically analyzed in this paper. The source/drain implantation can cause a little strain loss but the silicidation step is the key process in which dramatic strain loss has been found. © 2010 IEEE.

  8. Dysprosium carbide iodides Dy{sub 10}(C{sub 2}){sub 2}I{sub 18}, Dy{sub 4}(C{sub 2})I{sub 6} and Dy{sub 12}(C{sub 2}){sub 3}I{sub 17}; Dysprosiumcarbidiodide Dy{sub 10}(C{sub 2}){sub 2}I{sub 18}, Dy{sub 4}(C{sub 2})I{sub 6} und Dy{sub 12}(C{sub 2}){sub 3}I{sub 17}

    Energy Technology Data Exchange (ETDEWEB)

    Mattausch, H.; Hoch, C.; Simon, A. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2007-02-15

    The title compounds are formed by reaction of DyI{sub 3}, Dy metal and C in stoichiometric amounts in closed Ta ampoules, Dy{sub 10}(C{sub 2}){sub 2}I{sub 18} at 930 C for 7 days, Dy{sub 4}(C{sub 2})I{sub 6} at 950 C for 6 days and Dy{sub 12}(C{sub 2}){sub 3}I{sub 17} at 900 C for 11 days as pure samples according to X-ray powder diffraction. Dy{sub 10}(C{sub 2}){sub 2}I{sub 18} crystallizes in space group P2{sub 1}/c with a = 10.470(2), b = 17.152(3), c = 13.983(3) Aa and {beta} = 121.14(3) , Dy{sub 4}(C{sub 2})I{sub 6} in Pnnm with a = 13.622(3), b = 14.335(3) and c = 8.396(2) Aa, and Dy{sub 12}(C{sub 2}){sub 3}I{sub 17} in C2/c with a = 19.149(4), b = 12.069(2), c = 18.595(4) Aa, and {beta} = 90.54(3) . The crystal structure of Dy{sub 10}(C{sub 2}){sub 2}I{sub 18} is composed of Dy double octahedra centered by (C{sub 2}){sup 6-} groups (ethanide) with the iodide ions above the edges and the corners of the Dy{sub 10}(C{sub 2}){sub 2} units. In Dy{sub 4}(C{sub 2})I{sub 6} the Dy atoms form chains of trans-edge sharing octahedra with embedded (C{sub 2}) groups. In the structure of Dy{sub 12}(C{sub 2}){sub 3}I{sub 17} alternately cis-, trans-edge-condensed Dy{sub 6} octahedra centered by (C{sub 2}) groups occur. The iodine atoms surround the chains like in the M{sub 6}X{sub 12} cluster and interconnect neighboring chains. (orig.)

  9. Concepts for using trapped-flux bulk high-temperature superconductor in motors and generators

    Science.gov (United States)

    Hull, John R.; Strasik, Michael

    2010-12-01

    We review previous concepts for using bulk high-temperature superconductors (HTSs) in motors and generators and discuss methods for using trapped-flux (TF) HTSs in motors and generators that have been recently investigated in our laboratory. We examine the expected performance of a brushless motor/generator that uses TF bulk HTSs to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium for the stator and rotor cores.

  10. Concepts for using trapped-flux HTS in motors and generators

    Science.gov (United States)

    Hull, John R.; Strasik, Michael

    2013-01-01

    We examine the expected performance of a brushless motor/generator that uses trapped-flux (TF) bulk high-temperature superconductors (HTSs) to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium (Dy) for the stator and rotor cores. We also examine methods to energize TF in HTS for generators used in pulsed-power applications.

  11. Concepts for using trapped-flux bulk high-temperature superconductor in motors and generators

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R; Strasik, Michael [Boeing Research and Technology, PO Box 3707, MC 2T-50, Seattle, WA 98124-2207 (United States)

    2010-12-15

    We review previous concepts for using bulk high-temperature superconductors (HTSs) in motors and generators and discuss methods for using trapped-flux (TF) HTSs in motors and generators that have been recently investigated in our laboratory. We examine the expected performance of a brushless motor/generator that uses TF bulk HTSs to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium for the stator and rotor cores.

  12. Rare earth optogalvanic spectroscopy: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Destro, Marcelo G.; Neri, Jose W.; Rodrigues, Nicolau A.S.; Silveira, Carlos A.B.; Riva, Rudimar [Instituto de Estudos Avancados (IEAv/EFO), Sao Jose dos Campos, SP (Brazil). Div. de Fotonica]. E-mail: destro@ieav.cta.br; Victor, Alessandro R. [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2008-07-01

    The IEAv has special interest in the studies of rare earth isotope applications in laser medium and integrated optics as well as aerospace research. We are starting to work with Ytterbium, Erbium, Dysprosium and Neodymium laser selective photoionization research. This paper describes the preliminary results of emission and optogalvanic spectroscopy obtained from a Neodymium hollow cathode lamps. Furthermore these results were used to setup our laser systems to work to leads a Nd isotopes selective laser photoionization. (author)

  13. Rotating Magnetocaloric Effect in an Anisotropic Molecular Dimer.

    Science.gov (United States)

    Lorusso, Giulia; Roubeau, Olivier; Evangelisti, Marco

    2016-03-01

    In contrast to the mainstream research on molecular refrigerants that seeks magnetically isotropic molecules, we show that the magnetic anisotropy of dysprosium acetate tetrahydrate, [{Dy(OAc)3 (H2 O)2}2]⋅4 H2O (1), can be efficiently used for cooling below liquid-helium temperature. This is attained by rotating aligned single-crystal samples in a constant applied magnetic field. The envisioned advantages are fast cooling cycles and potentially compact refrigerators.

  14. Energy dependence of thermoluminescent response of CaSO{sub 4}:Dy, LiF:Mg and micro LiF:Mg,Ti in clinical beams of electrons by using different simulator objects; Dependencia energetica da resposta TL de dosimetros de CaSO{sub 4}:Dy, LiF:Mg e microLiF:Mg,Ti em feixes clinicos de eletrons utilizando diferentes objetos simuladores

    Energy Technology Data Exchange (ETDEWEB)

    Bravim, Amanda; Campos, Leticia Lucente, E-mail: abravin@ipen.b, E-mail: rsakuraba@einstein.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Sakuraba, Roberto K.; Cruz, Jose Carlos da, E-mail: rsakuraba@einstein.b, E-mail: josecarlosc@einstein.b [Hospital Israelita Albert Einstein (HIAE), Sao Paulo, SP (Brazil)

    2011-10-26

    Yet not so widely applied in radiotherapy, the calcium sulfate doped with dysprosium (CaSO{sub 4}:Dy) is used in radioprotection and studies has been demonstrated its great potential for the dosimetry in radiotherapy. This work evaluates the energy dependence of the thermoluminescent answer of the CaSO{sub 4}:D, LiF:Mg,Ti (TLD-100) and micro LiF:Mg,Ti in clinical beams of electrons by using water simulators, PMMA and solid water

  15. Surface analysis of model systems: From a metal-graphite interface to an intermetallic catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kwolek, Emma J. [Iowa State Univ., Ames, IA (United States)

    2016-10-25

    This thesis summarizes research completed on two different model systems. In the first system, we investigate the deposition of the elemental metal dysprosium on highly-oriented pyrolytic graphite (HOPG) and its resulting nucleation and growth. The goal of this research is to better understand the metal-carbon interactions that occur on HOPG and to apply those to an array of other carbon surfaces. This insight may prove beneficial to developing and using new materials for electronic applications, magnetic applications and catalysis.

  16. New Realities: Energy Security in the 2010s and Implications for the U.S. Military

    Science.gov (United States)

    2014-01-01

    of the main renewable energy technologies (RETs)—such as wind power or photovoltaics (PV)—used in electric power generation. Wind turbines , PV... turbines and e-vehicle motors, and neodymium is a light REE used in the same applications as dysprosium as well as in e-vehicle batteries. China supplies...energy sector. For example, supercomputing is a key component to seismic analysis; refineries are increasingly driven by Supervisory Control and Data

  17. Properties of strongly dipolar Bose gases beyond the Born approximation

    CERN Document Server

    Ołdziejewski, Rafał

    2016-01-01

    Strongly dipolar Bose gases can form liquid droplets stabilized by quantum fluctuations. In theoretical description of this phenomenon, low energy scattering amplitude is utilized as an effective potential. We show that for magnetic atoms corrections with respect to Born approximation arise, and derive modified pseudopotential using realistic interaction model. We discuss the resulting changes in collective mode frequencies and droplet stability diagram. Our results are relevant for recent experiments with erbium and dysprosium atoms.

  18. Thermokinetics of Liquid-Liquid Reaction of Dy(NO3)3 with Histidine

    Institute of Scientific and Technical Information of China (English)

    李仲谨; 陈三平; 房艳; 高胜利

    2003-01-01

    The thermokinetics of liquid-liquid reaction of dysprosium nitrate with histidine were studied using a microcalorimeter. On the basis of experimental and calculated results, three thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), the rate constant, three kinetic parameters (the activation energy, the pre-exponential constant and the reaction order) were obtained. On the basis of thermodynamics and kinetics, the formation reaction of the complex was discussed.

  19. China rare earth market review

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Rare earth market remained weak recently. Dealings of light and heavy rare earth products were sluggish. Demand for didymium and dysprosium related products was soft and purchasers were not interested in replenishing their stocks. The market of NdFeB magnetic materials and phosphors remained inactive. Meanwhile, ceramic, catalyst and polishing powder industries were weak. Affected by global economical recession, export market of rare earth remained weak.

  20. China Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    November 20-30.2011 Weak demand resulted in the slack rare market. Consumers did not intend to rep earth enish inventories yet and transactions of rare earth products were stagnant. The market of didymium-related products was in the doldrums. Demand for dysprosium-related products was sluggish. Inquiries for europium oxide (99.9%) were few and dealings of the product were difficult.

  1. High Density Ion Implanted Contiguous Disk Bubble Technology.

    Science.gov (United States)

    1985-09-01

    of 0.504pm. A second melt producing films of (Sm1 2Lu 1.7Tm0 . 1( FeGa )5O1 2) was also developed for sub- micron bubbles. Data from films typical of the...Dysprosium film composition was to be (Sm0 .3 Dyl.1 Gd 0 .4Lu0 .7( FeGa ) 50 2) which would have magnetostriction coefficients of -2.8x10 6 and a mismatch of

  2. Single molecule magnet behaviour in a rare trinuclear {Cr(III)Dy} methoxo-bridged complex.

    Science.gov (United States)

    Car, Pierre-Emmanuel; Favre, Annaïck; Caneschi, Andrea; Sessoli, Roberta

    2015-09-28

    The reaction of the chromium(iii) chloride tetrahydrofuran complex with the dipivaloylmethane ligand, the lanthanide alcoholic salt DyCl3·CH3OH and the 1,1,1-tris(hydroxymethyl)-ethane ligand resulted in the formation of a new trinuclear chromium-dysprosium complex. Magnetic investigations revealed that the new 3d-4f complex exhibits single molecule magnet behaviour.

  3. Glass microspheres for medical applications

    Science.gov (United States)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in 100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass

  4. Synthesis and characterization of the structural and magnetic properties of new uranium and copper-based silicides and germanides: study of the physical and hydridation properties of some compounds belonging to the Gd-Ni-X systems, where X = Ga, Al, Sn; Synthese et caracterisation des proprietes structurales et magnetiques de nouveaux siliciures et germaniures a base d'uranium et de cuivre: etude des proprietes physiques et d'hydruration de quelques composes appartenant aux systemes Gd-Ni-X ou X = Ga, Al, Sn

    Energy Technology Data Exchange (ETDEWEB)

    Pechev, St

    1998-07-01

    Three novel phases, U{sub 3}Cu{sub 4}Si{sub 4}, U{sub 3}Cu{sub 4}Ge{sub 4} and UCuGe{sub 1,77}, were prepared in the U - Cu - X (X = Si or Ge) ternary system. Their structural and magnetic properties were investigated. The magnetic structures of the first two compounds were determined by neutron diffraction. Structural and magnetic behaviour transitions occur as copper substitutes silicon atoms in the UCu{sub x}Si{sub 2-x} (0,28 {<=} x {<=} 0,96) solid solution. Thus, the structure of the compositions changes in the {alpha}-ThSi{sub 2}(tetragonal) {yields} AlB{sub 2}(hexagonal) {yields} Ni{sub 2}In(hexagonal) sequence while a transition from a nonmagnetic to ferromagnetic then antiferromagnetic behaviour is observed. The magnetic properties of the different compositions are governed by a Kondo - RKKY -type interactions competition. Crystallographic disorder and magnetic frustrations are at the origin of a spin glass state between the ferro- and antiferromagnetic areas. The investigations of the GdNi{sub 3}X{sub 2} (X =Ga, Al, Sn) compounds revealed that their structural and magnetic properties are strongly dependent on the nature of the X element as well as the on thermal treatment. A CaCu{sub 5} {yields} HoNi{sub 2,6}Ga{sub 2,4} - type structure transition and a ferro - to antiferromagnetic behaviour evolution are favoured by the increase of the X - atom size. A commensurate modulated crystal structure (described also as a a{sub HoNi{sub 2,6}}{sub Ga{sub 2,4}} x a{sub HoNi{sub 2,6}}{sub Ga{sub 2,4}} x 2c{sub HoNi{sub 2,6}}{sub Ga{sub 2,4}}-type superstructure) has been observed for GdNi{sub 3}Al{sub 2}. Hydrogen absorption in Gd{sub 3}Ni{sub 6}Al{sub 2} and GdNi{sub 3}Al{sub 2} weakens the strength of the magnetic interactions. (author)

  5. Growth of Cu Films on Si(111)-7 × 7 Surfaces at Low Temperature: A Scanning Tunnelling Microscopy Study

    Institute of Scientific and Technical Information of China (English)

    SHEN Quan-Tong; SUN Guo-Feng; LI Wen-Juan; DONG Guo-Cai; HAN Tie-Zhu; MA Da-Yan; SUN Yu-Jie; JIA Jin-Feng; XUE Qi-Kun

    2007-01-01

    Morphologies of Cu(111) Rims on Si(111)-7×7 surfaces prepared at low temperature are investigated by scanning tunnelling microscopy (STM) and reflection high-energy electron diffraction (RHEED). At the initial growth stage, Cu 61ms are Bat due to the formation of silicide at the interface that decreases the mismatch between Cu films and the Si substrate. Different from the usual multilayer growth of Cu/Cu(111), on the silicide layer a layer-by-layer growth is observed. The two dimensional (2D) growth is explained by the enhanced high island density at low deposition temperature. Increasing deposition rate produces films with different morphologies, which is the result of Ostwald ripening.

  6. Microelectronic image sensors: A report from the Charge Transfer Device (CTD) team at FOA 3

    Science.gov (United States)

    Engstroem, O.; Persson, S. T.; Pettersson, H.; Ryden, K. H.

    1985-05-01

    Three concepts of microelectronic image sensors where the photo effects are based on the properties of interfaces between silicon and metal silicides or insulators were investigated. An infrared sensitive image sensor for the 3 to 5 micron wavelength range was prepared. The photosensitive elements, patterned as a 4 x 4 matrix, consist of palladium silicide Schottky-diodes. Addressing of the different picture elements is made from shift registers placed on the same silicon chip. A concept for the storage of optical information was created. The basic principle relies on the possibilities to store electrons in deep lying energy levels in an insulator layer grown on silicon. A metal-insulator-semiconductor device, where the possibility of interaction between two images at the insulator-semiconductor interface is utilized for image recognition, was derived.

  7. On the microstructure and interfacial properties of sputtered nickel thin film on Si (1 0 0)

    Indian Academy of Sciences (India)

    B Geetha Priyadarshini; S Aich; M Chakraborty

    2014-10-01

    Ni films of thickness ranging from 150 to 250 nm were deposited by DC magnetron sputtering on to Si (100) substrates maintained at room temperature and followed by post-annealing at 300 and 500 °C for 30 min. Other set of Ni films were deposited on to Si (1 0 0) substrates held at annealing temperature of 300 and 500 °C for 30 min. Microstructural investigation by field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM) revealed columnar morphology with voided boundaries for films deposited at room temperature and was retained after post-deposition annealing at higher temperatures. Nickel silicide formation with isosceles triangle diffusion front was confirmed by cross-sectional highresolution transmission electron microscopy (X-HRTEM) for post-annealed Ni films. Thin film deposited at high substrate temperatures having near-equiaxed structure found to be the best route to fabricate thin films without silicide formation.

  8. Controlling Nickel Sillicide Phase by Si Implantation Damage

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, M.; Turcotte-Tremblay, P; Gaudet, S; Coia, C; Roorda, S; Desjardins, P; Lavoie, C; Schiettekatte, F

    2009-01-01

    In the context of fabrication process of contacts in CMOS integrated circuits, we studied the effect of implantation-induced damage on the Ni silicide phase formation sequence. The device layers of Silicon-on-insulator samples were implanted with 30 or 60 keV Si ions at several fluences up to amorphization. Next, 10 or 30 nm Ni layers were deposited. The monitoring of annealing treatments was achieved with time-resolved X-ray diffraction (XRD) technique. Rutherford Backscattering Spectrometry and pole figure XRD were also used to characterize some intermediate phase formations. We show the existence of an implantation threshold (1 ions/nm{sup 2}) from where the silicidation behaviour changes significantly, the formation temperature of the disilicide namely shifting abruptly from 800 to 450 C. It is also found that the monosilicide formation onset temperature for the thinner Ni deposits increases linearly by about 30 C with the amount of damage.

  9. Growth studies of Ta-based films on Si with STM and XPS

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, W.; Fuelle, A.; Hildebrand, D. [University of Applied Science Zwickau, Dr.-Friedrichs-Ring 2A, 08056 Zwickau (Germany); Oswald, S.; Zier, M.; Wetzig, K. [IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany)

    2007-07-01

    The aim of the experiments was the characterization of the first stages of film growth on silicon substrates with scanning tunneling microscopy (STM) and angle-resolved X-ray photoelectron spectroscopy (ARXPS). Thin Ta films were deposited in situ by magnetron sputtering onto Si in the thickness range from less than one monolayer up to 10 nm. The results of the experiments show a formation of tantalum silicide at the interface to the substrate. The local current-voltage characteristics obtained by scanning tunneling spectroscopy (STS) measurements show that the first stages of tantalum silicide growth are characterized by island formation. The in situ STM results are in good agreement with those of the ARXPS investigations. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Enhancing the Superconducting Transition Temperature of BaSi2 by Structural Tuning

    Science.gov (United States)

    Flores-Livas, José A.; Debord, Régis; Botti, Silvana; San Miguel, Alfonso; Marques, Miguel A. L.; Pailhès, Stéphane

    2011-02-01

    We present a joint experimental and theoretical study of the superconducting phase of the layered binary silicide BaSi2. Compared with the AlB2 structure of graphite or diboridelike superconductors, in the hexagonal structure of binary silicides the sp3 arrangement of silicon atoms leads to corrugated sheets. Through a high-pressure synthesis procedure we are able to modify the buckling of these sheets, enhancing the superconducting transition temperature from 6 to 8.9 K when the silicon planes flatten out. By performing ab initio calculations based on density-functional theory we explain how the electronic and phonon properties are strongly affected by changes in the buckling. This mechanism is likely present in other intercalated layered superconductors, opening the way to the tuning of superconductivity through the control of internal structural parameters.

  11. Effects of Ti, Al and Hf on niobium silcides formation in the Nb-Si in situ composites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The effects of alloying elements Ti, Al and Hf on niobium silicides formation in the Nb-Si in situ composites have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The binary, ternary and multicomponent alloys have been fabricated by vacuum non-consumable arc melting method. The results show that Ti tends to stabilize Nb3Si phase, while Al promotes the direct formation of β-Nb5Si3 phase with a tetrahedral D8m structure. Exceptionally, it seems that Hf is beneficial to the formation of γ-Nb5Si3 phase with a hexangular D88 structure. For the multicomponent Nb-Si in situ composites, the cooperative effects of different elements on niobium silicides formation basically maintain the character of ternary system.

  12. Isothermal and cyclic oxidation resistance of pack siliconized Mo-Si-B alloy

    Science.gov (United States)

    Majumdar, Sanjib

    2017-08-01

    Oxidation behaviour of MoSi2 coated Mo-9Si-8B-0.75Y (at.%) alloy has been investigated at three critical temperatures including 750, 900 and 1400 °C in static air. Thermogravimetric analysis (TGA) data indicates a remarkable improvement in the oxidation resistance of the silicide coated alloy in both isothermal and cyclic oxidation tests. The cross-sectional scanning electron microscopy and energy dispersive spectroscopic analysis reveal the occurrence of internal oxidation particularly at the crack fronts formed in the outer MoSi2 layer during thermal cycling. The dominant oxidation mechanisms at 750-900 °C and 1400 °C are identified. Development of MoB inner layer further improves the oxidation resistance of the silicide coated alloy.

  13. Atomic structure and electronic states of extended defects in silicon

    CERN Document Server

    Riedel, F; Schröter, W

    2002-01-01

    Defects in silicon like dislocations, grain boundaries, silicide precipitates, etc. are spatially extended and associated with a large number of electronic states in the band gap. Our knowledge on the relation between atomic structure and electronic states of these extended defects presently starts to grow by applying high-resolution electron microscopy (HRTEM) and deep level transient spectroscopy (DLTS) in combination with numerical simulations. While by means of HRTEM details of structure can be studied, DLTS has been shown to allow for a classification of extended defect states into bandlike and localized. Moreover, this method opens the perspective to distinguish between trap-like and recombination-like electrical activity. In this paper, we emphasize the particular role of nickel and copper silicide precipitates, since in their cases structural features could be successfully related to specific DLTS line characteristics. Rapid quenching from high diffusion temperatures prevents decoration of platelet-sh...

  14. Nanoamorphous carbon-based photonic crystal infrared emitters

    Energy Technology Data Exchange (ETDEWEB)

    Norwood, Robert A. (Tucson, AZ); Skotheim, Terje (Tucson, AZ)

    2011-12-13

    Provided is a tunable radiation emitting structure comprising: a nanoamorphous carbon structure having a plurality of relief features provided in a periodic spatial configuration, wherein the relief features are separated from each other by adjacent recessed features, and wherein the nanoamorphous carbon comprises a total of from 0 to 60 atomic percent of one or more dopants of the dopant group consisting of: transition metals, lanthanoids, electro-conductive carbides, silicides and nitrides. In one embodiment, a dopant is selected from the group consisting of: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La and other lanthanides, Hf, Ta, W, Rh, Os, Ir, Pt, Au, and Hg. In one embodiment, a dopant is selected from the group consisting of: electro-conductive carbides (like Mo.sub.2C), silicides (like MoSi.sub.2) and nitrides (like TiN).

  15. An approach to growth of Fe-Si multilayers with controlled composition profile-a way to exchange coupled thin films.

    Science.gov (United States)

    Gouralnik, A S; Pustovalov, E V; Lin, K-W; Chuvilin, A L; Chusovitina, S V; Dotsenko, S A; Cherednichenko, A I; Plotnikov, V S; Ivanov, V A; Belokon, V I; Tkachenko, I A; Galkin, N G

    2017-03-17

    The growth, composition and structure of sandwich structures (Fe-rich layer/Si-rich layer/Fe-rich silicide layer) grown on a Si(111) surface were studied by a few complementary microscopic and spectroscopic techniques with high spatial resolution. Intermixing at the Fe/Si and Si/Fe interfaces is demonstrated. Fe-rich layers grown directly on the Si(111) surface are crystalline and have abrupt but rough interfaces at both sides. The succeeding layers are disordered and their interfaces are fuzzy. The distributions of Fe and Si within the layers are laterally non-uniform. The reproducible fabrication of thin non-magnetic silicide spacers of predetermined thickness is demonstrated. Sandwich structures with such spacers exhibit exchange coupling between ferromagnetic Fe-rich layers.

  16. Process-oriented microstructure evolution of V{sub ss}-V{sub 3}Si-V{sub 5}SiB{sub 2}; Prozessabhaengige Mikrostrukturausbildung von V{sub ss}-V{sub 3}Si-V{sub 5}SiB{sub 2}-Werkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Manja; Koeppe-Grabow, Birte [Magdeburg Univ. (Germany)

    2017-05-15

    Vanadium silicide alloys are potentially interesting high temperature materials, since they combine high mechanical strength at temperatures of up to 1 000 C with a low density. In this study, the microstructures of innovative V-Si-B high temperature materials are examined using different analytical methods. The selected V-9Si-13B model alloy was manufactured using a powder metallurgical process route as well as an ingot metallurgical process. The alloys show a vanadium solid solution phase as well as the high-strength silicide phases V{sub 3}Si and V{sub 5}SiB{sub 2}. Especially for the powder metallurgically fabricated alloy, showing finely dispersed phases, the quantification of microstructural constituents is difficult. The phases, however, can be separated from one another via computer tomography.

  17. Accident-tolerant oxide fuel and cladding

    Energy Technology Data Exchange (ETDEWEB)

    Mariani, Robert D.

    2017-05-30

    Systems and methods for accident tolerant oxide fuel. One or more disks can be placed between fuel pellets comprising UO.sub.2, wherein such disks possess a higher thermal conductivity material than that of the UO.sub.2 to provide enhanced heat rejection thereof. Additionally, a cladding coating comprising zircaloy coated with a material that provides stability and high melting capability can be provided. The pellets can be configured as annular pellets having an annulus filled with the higher thermal conductivity material. The material coating the zircaloy can be, for example, Zr.sub.5Si.sub.4 or another silicide such as, for example, a Zr-Silicide that limits corrosion. The aforementioned higher thermal conductivity material can be, for example, Si, Zr.sub.xSi.sub.y, Zr, or Al.sub.2O.sub.3.

  18. Twisting phonons in complex crystals with quasi-one-dimensional substructures.

    Science.gov (United States)

    Chen, Xi; Weathers, Annie; Carrete, Jesús; Mukhopadhyay, Saikat; Delaire, Olivier; Stewart, Derek A; Mingo, Natalio; Girard, Steven N; Ma, Jie; Abernathy, Douglas L; Yan, Jiaqiang; Sheshka, Raman; Sellan, Daniel P; Meng, Fei; Jin, Song; Zhou, Jianshi; Shi, Li

    2015-04-15

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain the low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.

  19. Enhanced Thermoelectric Properties of W- and Fe-Substituted MnSi γ

    Science.gov (United States)

    Ghodke, Swapnil; Hiroishi, Naoya; Yamamoto, Akio; Ikuta, Hiroshi; Matsunami, Masaharu; Takeuchi, Tsunehiro

    2016-10-01

    We have investigated the effect of heavy-element (W) substitution on the thermoelectric properties of higher manganese silicide (HMS). Samples were prepared by arc melting followed by liquid quenching, where the latter assisted in achieving higher solubility for tungsten. We observed that Mn34.6W1.8Si63.6 was a p-type material, whereas simultaneous substitution of 12 at.% Fe made the higher manganese silicide an n-type material. The optimal carrier concentration was obtained by simultaneous substitution of Fe and W for Mn atoms. Although the samples were metastable, we successfully obtained bulk samples by a low-temperature (970 K), high-pressure (>100 MPa), long-duration sintering process. The lattice thermal conductivity was effectively reduced by W substitution, and the ZT value was improved to above 0.5 for both n- and p-type samples.

  20. Interface behaviour and electrical performance of ruthenium Schottky contact on 4H-SiC after argon annealing

    Indian Academy of Sciences (India)

    Kinnock V munthali; Chris Theron; F Danie Auret; Sergio M M Coelho

    2015-06-01

    Rutherford backscattering spectrometry (RBS) analysis, carried out at various annealing temperatures, of a thin film of ruthenium on n-type four-hexagonal silicon carbide (4H-SiC) showed the evidence of ruthenium oxidation, ruthenium silicide formation and diffusion of ruthenium into silicon carbide starting from an annealing temperature of 400° C. Ruthenium oxidation was more pronounced, and ruthenium and silicon interdiffusion was very deep after annealing at 800° C. Raman analysis of some samples also showed ruthenium silicide formation and oxidation. The Schottky barrier diodes showed very good linear capacitance–voltage characteristics and excellent forward current–voltage characteristics, despite the occurrence of the chemical reactions and interdiffusion of ruthenium and silicon at ruthenium–silicon–carbide interface, up to an annealing temperature of 800° C.

  1. Vacuum Electron-Beam Evaporation of Fe Nanocrystals on Si3N4 Buffer Layer for carbon Nanotube Growth

    Institute of Scientific and Technical Information of China (English)

    万青; 王太宏; 林成鲁

    2003-01-01

    Vacuum electron-beam evaporated iron nanocrystal is used for the growth of carbon nanotubes. Atomic force microscopy and Raman scattering studies reveal the formation of beta-iron silicide islands on bare silicon substrate after annealing at 700°C in N2 ambient. In order to eliminate the influence of iron-silicon interaction, Si3N4 buffer layer with the thickness of 80 nm is used. This technical route prevents effectively the formation of iron silicide and improves the quality of the iron nanocrystals. Using these iron nanocrystals with high density (about 7 × 1010/cm2) as catalyst, high-density multiwall carbon nanotubes are synthesized on Si3N4/Si substrate.

  2. On the state of Mn impurity implanted in Si

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, A. F., E-mail: rmdp@girmet.ru [State Institute for Rare Metals (Russian Federation); Bublik, V. T. [Moscow State Institute of Steel and Alloys (Russian Federation); Vdovin, V. I. [Institute for Chemical Problems of Microelectronics (Russian Federation); Agafonov, Yu. A. [Russian Academy of Sciences, Institute of Microelectronics, Technology, and High Purity Materials (Russian Federation); Balagurov, L. A. [State Institute for Rare Metals (Russian Federation); Zinenko, V. I. [Russian Academy of Sciences, Institute of Microelectronics, Technology, and High Purity Materials (Russian Federation); Kulemanov, I. V. [State Institute for Rare Metals (Russian Federation); Shcherbachev, K. D. [Moscow State Institute of Steel and Alloys (Russian Federation)

    2009-07-15

    The state of manganese impurity in implanted silicon at implantation doses of up to 5 x 10{sup 16} cm{sup -2} has been investigated by X-ray diffraction and transmission electron microscopy. It is established that, after short-term vacuum annealing at 850{sup o}C, most of the implanted manganese impurities are in microinclusions up to 20 nm in size formed by a tetragonal silicide phase of the Mn{sub 15}Si{sub 26} type.

  3. High Temperature Ordered Intermetallic Alloys

    Science.gov (United States)

    1991-01-02

    Fisica , Barcelona. Spain; S. Gialanella, University 03.17 AN INVESTIGATION OF PHASE STABILITY IN THE of Cambridge. Department of Materials Science...Department de Kaufman, University of Florida, Department of Materials Science and Fisica , Barzc’ona, Spain. and R.W. Cahn, University of Cambridge...CR. Clayton and A. Peter Jardine. NIOBIUM SILICIDE POWDER COMPOSITES. Rama i. Nekkanti. Stale University of New York at Stony Brook. Deparinment of

  4. Thin films and buried interfaces characterization with X-ray standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S. [CNR, Rome (Italy). Istituto Elettronica Stato Solido

    1996-09-01

    The X-ray standing wave techniques is a powerful, non destructive method to study interfaces at the atomic level. Its basic features are described here together with the peculiarities of its applications to epitaxial films and buried interfaces. As examples of applications, experiments carried out on Si/silicide interfaces, on GaAs/InAs/GaAs buried interfaces and on Si/Ge superlattices are shown.

  5. Transmission electron microscopy study on silicon nitride/stainless steel bonded interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Poza, P. [Departamento de Ciencia e Ingenieria de los Materiales, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain); Miranzo, P. [Institute of Ceramics and Glass, CSIC, Campus de Cantoblanco, 28049 Madrid (Spain); Osendi, M.I. [Institute of Ceramics and Glass, CSIC, Campus de Cantoblanco, 28049 Madrid (Spain)], E-mail: miosendi@icv.csic.es

    2008-11-28

    The reaction zone of a diffusion bonded Si{sub 3}N{sub 4}/stainlees steel (ss) interface formed at 1100 deg. C was analyzed by transmission electron microscopy and X-ray diffraction (XRD). Besides the formation of various iron silicides, iron nitride and chromium nitride phases detected by XRD, Cr{sub 3}Ni{sub 5}Si{sub 2} crystals were identified at the interface by TEM.

  6. Columnar growth of CoSi2 on Si(111), Si(100) and Si(110) by molecular beam epitaxy

    Science.gov (United States)

    Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin

    1990-01-01

    Codeposition of silicon and cobalt on heated silicon substrates in ratios several times the silicide stoichiometry is found to result in epitaxial columns of CoSi2 surrounded by a matrix of epitaxial silicon. For (111)-oriented wafers, nearly cylindrical columns are formed, where both columns and surrounding silicon are defect free, as deduced from transmission electron microscopy. Independent control of the column diameter and separation is possible, and diameters of 27-135 nm have been demonstrated.

  7. Military Handbook: Electrostatic Discharge Control Handbook for Protection of Electrical and Electronic Parts, Assemblies and Equipment (Excluding Electrically Initiated Explosive Devices (Metric)

    Science.gov (United States)

    2007-11-02

    dispersive X- ray analysis of two of the oxide rupture sites showed aluminum (alloyed gate 46 MIL-HDBK-263B APPENDIX C metallization) in one case and...device is very effective for various CMOS processes ranging from 2 um abrupt junctions to 1 Am lightly doped drain ( LDD ) junctions with silicided...the ease of evenly dispersing the active ingredients across the surfaces being treated. Surfactants, for static electricity control, consist of

  8. Waveguide design for mid- and far-infrared p-Si/SiGe quantum cascade lasers

    Science.gov (United States)

    Ikonic, Z.; Kelsall, R. W.; Harrison, P.

    2004-01-01

    Design considerations are presented for waveguides to be used in p-Si/SiGe based quantum cascade lasers operating in the mid- and far-infrared wavelength ranges. Modal losses and confinement factors are calculated for both TM and TE modes in conventional double metal clad structures, metal-highly doped semiconductor layer structures and also in novel metal-metal silicide structures. Guidelines for choosing the confinement and contact layer parameters are given.

  9. Understanding Solidification Based Grain Refinement in Steels

    Science.gov (United States)

    2014-12-18

    interatomic spacing along [uvw]s, and 0 = the angle between the [uvwjjand [uvw]n.^’ Work on the grain refinement of aluminum and magnesium alloys has found...chemistry ternary plot from ASPEX system. The author found some evidence of reactions occurring with some rare earth oxide or sulfide inclusions and... sulfide .^^"^^ Another approach would be to react a sample of misch metal or rare earth silicide at elevated temperatures to form the desired oxide or

  10. Advances in Rare Earth Application to Semiconductor Materials and Devices

    Institute of Scientific and Technical Information of China (English)

    屠海令

    2004-01-01

    The development of rare earths (RE) applications to semiconductor materials and devices is reviewed. The recent advances in RE doped silicon light emitting diodes (LED) and display materials are described. The various technologies of incorporating RE into semiconductor materials and devices are presented. The RE high dielectric materials, RE silicides and the phase transition of RE materials are also discussed. Finally, the paper describes the prospects of the RE application to semiconductor industry.

  11. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  12. Sensitization of High Density Silver Azide to Stab Initiation

    Science.gov (United States)

    1983-05-01

    minimise differential effects of pressing load between compositions, and to study 20:1 admixtures. The grit action of aluminium oxide was also studied, this...and 20:1 silver azide- aluminium oxide readily pressed at 240 MPa then re-pressed at 560 MPa. The effect of grit concentration was investigated for...silicide (entry 3) performs significantly better than aluminium oxide (entry 8) at 20:1 by weight pressed at 560 MPa, despite the much greater hardness

  13. Fabrication and Characterization of UN-USix Nuclear Fuel

    OpenAIRE

    Raftery, Alicia Marie

    2015-01-01

    In this thesis, UN-U3Si2 nuclear fuel was fabricated using spark plasma sintering and characterized to analyze the microstructure and crystal structure of the resulting pellets. This work was done in collaboration with accident tolerant fuel research, an effort which aims at developing nuclear fuel with superior safety and performance compared to currently used oxide fuels. Uranium silicide was manufactured by arc melting to produce U3Si2 and uranium mononitride was synthesized by using the h...

  14. Investigation of the {Fe}/{Si} interface and its phase transformations

    Science.gov (United States)

    Fanciulli, M.; Degroote, S.; Weyer, G.; Langouche, G.

    1997-04-01

    Thin 57Fe films (3-10 Å) have been grown by molecular beam epitaxy (MBE) on (7 × 7) reconstructed Si(111) and (2 × 1) reconstructed Si(001) surfaces and by e-gun evaporation on an H-terminated Si(111) surface. Conversion electron Mössbauer spectroscopy (CEMS) with high statistical accuracy and resolution allowed a detailed microscopic investigation of the silicide formation mechanism and of the structural phase transformations upon annealing.

  15. Self-Propagating High-Temperature Synthesis of Titanium Carbosilicide and Electrically Conductive Composite Coatings on its Basis

    Science.gov (United States)

    Shulpekov, A. M.; Lepakova, O. K.; Golobokov, N. N.; Dyukarev, M. A.

    2017-09-01

    Titanium carbosilicide is obtained by the method of self-propagating high-temperature synthesis with titanium and ferrosilicon (with silicon content of 80 mass %) used as initial products. Addition of TiSi2 to the endproduct with the subsequent heat treatment allows the content of titanium silicide to be increased. The materials based on titanium carbosilicide provide electroconductivity of polymer composite coatings at temperatures exceeding 350°C.

  16. Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels

    Science.gov (United States)

    Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.

    2010-03-16

    An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.

  17. Utilizing Interfaces for Nano- and Micro-scale Control of Thermal Conductivity

    Science.gov (United States)

    2015-08-17

    performance of these promising materials by 50%. Ballmilling and spark plasma sintering (SPS) processes were investigated to try to lower the thermal...samples fabricated through the spark plasma sintering”, Mater Renew Sustain Energy, 3, 31-1 31-6 (2014). DOI: 10.1007/s40243-014-0031-8 9. O. Sologub...Takao Mori, Gordon Research Conference in Solid State Chemistry, “Development of nov el borides, silicides, sulfides, and nitrides as effective

  18. Manhattan Project Technical Series The Chemistry of Uranium (I) Chapters 1-10

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitch, E. I. [Argonne National Laboratory (ANL), Argonne, IL (United States); Katz, J. J. [Argonne National Laboratory (ANL), Argonne, IL (United States)

    1946-09-30

    This constitutes Chapters 1 through 10. inclusive, of The Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Nuclear Properties of Uranium; Properties of the Uranium Atom; Uranium in Nature; Extraction of Uranium from Ores and Preparation of Uranium Metal; Physical Properties of Uranium Metal; Chemical Properties of Uranium Metal; Intermetallic Compounds and Alloy systems of Uranium; the Uranium-Hydrogen System; Uranium Borides, Carbides, and Silicides; Uranium Nitrides, Phosphides, Arsenides, and Antimonides.

  19. Effect of thermal exposure on microstructure and tensile properties of laser deposited Ti60A alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ali [Engineering Research Center of Ministry of Education on Laser Direct Manufacturing for Large Metallic Components, School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191 (China); Liu, Dong, E-mail: liudong.buaa@gmail.com [Engineering Research Center of Ministry of Education on Laser Direct Manufacturing for Large Metallic Components, School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191 (China); Wang, Huaming [Engineering Research Center of Ministry of Education on Laser Direct Manufacturing for Large Metallic Components, School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191 (China)

    2013-02-01

    A near {alpha} high-temperature titanium alloy Ti60A (Ti5.54Al3.38Sn3.34Zr0.37Mo0.46Si) was fabricated by laser melting deposition (LMD) manufacturing process. Room-temperature tensile properties before and after 600 Degree-Sign C/100 h thermal exposure were evaluated. Microstructural changes and tensile fracture characteristics were examined by OM, SEM and TEM equipped with EDX. Results indicate that {alpha} lamellae coarsening and the precipitation of incoherent silicides and coherent Ti{sub 3}Al in the alloys after thermal exposure cause the degradation of tensile properties. The silicides are confirmed to be hexagonal quasi-S{sub 2} type (TiZr{sub 0.3}){sub 6}Si{sub 3}, with a=0.71 nm and c=0.37 nm by electron diffraction analysis. Compared to wrought Ti60A alloy with coarse Widmanstatten microstructure, laser deposited Ti60A alloy with fine basket-weave microstructure exhibits slightly higher strength and ductility after thermal exposure. The effect of thermal exposure on tensile properties related to the precipitation of Ti{sub 3}Al and silicides is discussed.

  20. Thermophysical properties of USi to 1673 K

    Science.gov (United States)

    White, J. T.; Nelson, A. T.; Dunwoody, J. T.; Byler, D. D.; McClellan, K. J.

    2016-04-01

    Consideration of uranium silicide compounds as candidate nuclear reactor fuels requires the accurate knowledge of their thermophysical properties as a function of temperature. Stoichiometric USi has received little attention in the literature with regard to property characterization. This absence of data prevents modeling and simulation communities from predicting performance of uranium silicide fuels that are either nominally USi itself, or are designed with other uranium silicide phases but may include appreciable fractions of USi introduced as a result of the fuel synthesis or fabrication process. This study was undertaken to quantify the thermal expansion coefficient, specific heat capacity, thermal diffusivity, and thermal conductivity of USi from ambient conditions to just below the peritectic decomposition of the compound. Stoichiometric samples that were prepared by arc melting and powder metallurgical routes for thermophysical property measurements exhibited 94% USi phase, with the balance being U3Si5 phase that likely formed during the solidification process. An energetic phase transformation was observed at 723 K, which is attributed to the inclusion of the secondary U3Si5 phase.