WorldWideScience

Sample records for dysprosium ions

  1. Luminescent properties of dysprosium(Ⅲ) ions in LaAlO3 nanocrystallites

    Institute of Scientific and Technical Information of China (English)

    K. Lema(n)ski; P.J. Dere(n)

    2011-01-01

    The absorption and emission spectra as well as decay time profile of Dy3+ ions in LaAlO3 nanocrystals were analyzed.The crystal structure of LaAlO3 was confirmed from XRD measurement.The emission peaks from blue to red came from main emitting level of dysprosium 4F9/2 to the ground and other excited levels of Dy3+ ions.Cross relaxation process led to non-radiative quenching of luminescence,so that the lifetime of the 4F9/2 energy level ions decreased with increasing amount of doped Dy3+ ions.The cross relaxation transfer rates were experimentally determined as a function of Dy3+ concentration.

  2. Visible luminescence of dysprosium ions in oxyhalide lead borate glasses

    Science.gov (United States)

    Pisarska, Joanna; Żur, Lidia; Pisarski, Wojciech A.

    2011-08-01

    Visible luminescence of Dy 3+ ions in oxyhalide lead borate glasses was examined. Luminescence spectra show two intense bands at 480 nm and 573 nm due to 4F 9/2 → 6H 15/2 (blue) and 4F 9/2 → 6H 13/2 (yellow) transitions of Dy 3+. Luminescence decays from 4F 9/2 state and yellow-to-blue luminescence intensity ratios (Y/B) were analysed with PbX 2 (X = F, Cl) content. An introduction of PbX 2 to the borate glass results in the increasing of 4F 9/2 lifetime and the decreasing of yellow-to-blue luminescence intensity ratio, which is due to reduction of covalency between Dy 3+ and O 2-/X - ions.

  3. Photodissociation spectroscopy of the dysprosium monochloride molecular ion

    CERN Document Server

    Dunning, Alexander; Showalter, Steven J; Puri, Prateek; Kotochigova, Svetlana; Hudson, Eric R

    2015-01-01

    We have performed a combined experimental and theoretical study of the photodissociation cross section of the molecular ion DyCl$^+$. The cross section for the photon energy range 35,500 cm$^{-1}$ to 47,500 cm$^{-1}$ is measured using an integrated ion trap and time-of-flight mass spectrometer, and we observe a broad, asymmetric profile that is peaked near 43,000 cm$^{-1}$. The theoretical cross section is determined from electronic potentials and transition dipole moments calculated using the relativistic configuration-interaction valence-bond and coupled-cluster methods. The electronic structure of DyCl$^+$ is unprecedentedly complex due to the presence of multiple open electronic shells, including 4f$^{10}$ orbitals. The molecule has nine attractive potentials with ionically-bonded electrons and 99 repulsive potentials dissociating to a ground state Dy$^+$ ion and Cl atom. We explain the lack of symmetry in the cross section as due to multiple contributions from one-electron-dominated transitions between t...

  4. Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion

    Science.gov (United States)

    Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.

    2017-04-01

    The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.

  5. A comparison of the effects of symmetry and magnetoanisotropy on paramagnetic relaxation in related dysprosium single ion magnets.

    Science.gov (United States)

    Williams, Ursula J; Mahoney, Brian D; DeGregorio, Patrick T; Carroll, Patrick J; Nakamaru-Ogiso, Eiko; Kikkawa, James M; Schelter, Eric J

    2012-06-07

    Dysprosium complexes of the tmtaa(2-) ligand were synthesized and characterized by X-band EPR and magnetism studies. Both complexes demonstrate magnetoanisotropy and slow paramagnetic relaxation. Comparison of these compounds with the seminal phthalocyanine complex [Dy(Pc)(2)](-) shows the azaannulide complexes are more susceptible to relaxation through non-thermal pathways.

  6. Dysprosium Modification of Cobalt Ferrite Ionic Magnetic Fluids

    Institute of Scientific and Technical Information of China (English)

    JIANG Rong-li; LIU Yong-chao; GENG Quan-rong; ZHAO Wen-tao

    2005-01-01

    Dysprosium composite cobalt ferrite ionic magnetic fluids were prepared by precipitation in the presence of Tri-sodium citrate. Influence of dysprosium modification on magnetic property is studied. The result shows that magnetic response toward exterior magnetic field can be improved by adding Dy3+. Studies also show that the increase of reaction temperature may improve the modification effect of dysprosium. By adding dysprosium ions, the average diameter of the magnetic nanoparticles will be decreased evidently. It is clear that the particles appear as balls, Cobalt ferrite with sizes of 12-15 nm, rare earth composite cobalt ferrite with sizes of 6-8 nm.

  7. Dielectric relaxation in double potassium yttrium orthophosphate K 3Y(PO 4) 2 doped by praseodymium and dysprosium ions

    Science.gov (United States)

    Szulia, S.; Kosmowska, M.; Kołodziej, H. A.; Mizer, D.; Czupińska, G.

    2011-12-01

    We report the paper presents the results of electric properties of double potassium yttrium orthophosphates doped by lanthanide ions K 3Y( 1-x)Ln x(PO 4) 2 ( x = 0.01, 0.05, Ln = Pr 3+, Dy 3+). Electric permittivity and dielectric loss measurements have been performed on polycrystalline samples in the temperature range -50-120 °C and frequency range 1 kHz-1 MHz by means of HP 4282A impedance meter. The frequency and temperature dependence of electric properties were analyzed by theoretical models of dielectric relaxation in order to obtain information abut molecular dynamic of our solids in external electric field.

  8. Slow magnetic relaxation in a hydrogen-bonded 2D array of mononuclear dysprosium(III) oxamates.

    Science.gov (United States)

    Fortea-Pérez, Francisco R; Vallejo, Julia; Julve, Miguel; Lloret, Francesc; De Munno, Giovanni; Armentano, Donatella; Pardo, Emilio

    2013-05-01

    The reaction of N-(2,6-dimethylphenyl)oxamic acid with dysprosium(III) ions in a controlled basic media afforded the first example of a mononuclear lanthanide oxamate complex exhibiting a field-induced slow magnetic relaxation behavior typical of single-ion magnets (SIMs). The hydrogen-bond-mediated self-assembly of this new bifunctional dysprosium(III) SIM in the solid state provides a unique example of 2D hydrogen-bonded polymer with a herringbone net topology.

  9. Dysprosium-containing layered double hydroxides nanoparticles intercalated with biologically active species as an approach for theranostic systems

    KAUST Repository

    Arratia-Quijada, Jenny

    2015-10-23

    A layered double hydroxide structure including dysprosium cations was prepared by co-precipitation. The nanoparticles showed a linear relationship with the reciprocal relaxation spin-lattice (T1) time of water protons which is reflected as contrast in aqueous suspensions analyzed by magnetic resonance imaging. The interlayer space of dysprosium containing LDH was successfully intercalated with folate, ibuprofen and gallate ions, which are key molecules for recognition of some cancer cells and treatment of diseases. The paramagnetic property of the dysprosium-containing LDH detected in this work beside the ability to transport drugs open up the opportunity to design theranostic materials in a single crystal phase with nanometric dimensions.

  10. Dysprosium-containing layered double hydroxides nanoparticles intercalated with biologically active species as an approach for theranostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Arratia-Quijada, Jenny [Departamento de Ciencias de la Salud, Centro Universitario Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555, C.P. 48525, Tonalá, Jalisco (Mexico); Sánchez Jiménez, Cecilia [Departamento de Química, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Gurinov, Andrey [Research Resources Center for Magnetic Resonance, St. Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg (Russian Federation); NMR Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Pérez Centeno, Armando; Ceja Andrade, Israel [Departamento de Física, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Carbajal Arízaga, Gregorio Guadalupe, E-mail: gregoriocarbajal@yahoo.com.mx [Departamento de Química, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico)

    2016-01-15

    Graphical abstract: - Highlights: • LDH structure including dysprosium was prepared by co-precipitation. • LDH was capable to produce contrast in the T1 mode of MRI. • LDH were intercalated with folate, ibuprofen and gallate ions. - Abstract: A layered double hydroxide structure including dysprosium cations was prepared by co-precipitation. The nanoparticles showed a linear relationship with the reciprocal relaxation spin-lattice (T1) time of water protons which is reflected as contrast in aqueous suspensions analyzed by magnetic resonance imaging. The interlayer space of dysprosium containing LDH was successfully intercalated with folate, ibuprofen and gallate ions, which are key molecules for recognition of some cancer cells and treatment of diseases. The paramagnetic property of the dysprosium-containing LDH detected in this work beside the ability to transport drugs open up the opportunity to design theranostic materials in a single crystal phase with nanometric dimensions.

  11. Dysprosium magneto-optical traps

    CERN Document Server

    Youn, Seo Ho; Ray, Ushnish; Lev, Benjamin L

    2010-01-01

    Magneto-optical traps (MOTs) of highly magnetic lanthanides open the door to explorations of novel phases of strongly correlated matter such as lattice supersolids and quantum liquid crystals. We recently reported the first MOTs of the five high abundance isotopes of the most magnetic atom, dysprosium. Described here are details of the experimental technique employed for repumper-free Dy MOTs containing up to half a billion atoms. Extensive characterization of the MOTs' properties---population, temperature, loading, metastable decay dynamics, trap dynamics---is provided.

  12. On polymorphism of dysprosium trichloride

    Energy Technology Data Exchange (ETDEWEB)

    Zakiryanova, Irina D.; Khokhlov, Vladimir A.; Salyulev, Alexander B.; Korzun, Iraida V. [RAS Ural Branch, Ekaterinburg (Russian Federation). Institute of High-Temperature Electrochemistry

    2015-07-01

    For the first time, the structure of crystalline DyCl{sub 3} over a wide temperature range from room temperature to melting point was studied by Raman spectroscopy. The phonon modes (cm{sup -1}) of dysprosium trichloride (monoclinic crystal lattice of AlCl{sub 3} type, Z = 4, CN = 6) at room temperature are 257 (A{sub 1g}), 201 (E{sub g}), 112 (E{sub g}), 88 (A{sub 1g}), and 63 (E{sub g}). The monoclinic structure of the crystalline DyCl{sub 3} C{sub 2h}{sup 3} symmetry was found to remain constant over the studied temperature range. No polymorphic transformation in the solid state was detected. Gravimetry, calorimetry, and mass spectrometry have been used in addition to support the conclusions made on the basis of Raman spectroscopic data.

  13. Resonance ionization spectroscopy in dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D., E-mail: dstuder@uni-mainz.de; Dyrauf, P.; Naubereit, P.; Heinke, R.; Wendt, K. [Johannes Gutenberg-Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    We report on resonance ionization spectroscopy (RIS) of high-lying energy levels in dysprosium. We developed efficient excitation schemes and re-determined the first ionization potential (IP) via analysis of Rydberg convergences. For this purpose both two- and three-step excitation ladders were investigated. An overall ionization efficiency of 25(4) % could be demonstrated in the RISIKO mass separator of Mainz University, using a three-step resonance ionization scheme. Moreover, an extensive analysis of the even-parity 6sns- and 6snd-Rydberg-series convergences, measured via two-step excitation was performed. To account for strong perturbations in the observed s-series, the approach of multichannel quantum defect theory (MQDT) was applied. Considering all individual series limits we extracted an IP-value of 47901.76(5) cm{sup −1}, which agrees with the current literature value of 47901.7(6) cm{sup −1}, but is one order of magnitude more precise.

  14. The dysprosium-tin phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Eremenko, V.N.; Bulanova, M.V.; Martsenjuk, P.S. (I.N. Frantsevich Inst. for Problems of Materials Science, Kiev (Ukraine))

    1992-12-07

    The dysprosium-tin phase diagram was established by means of differential thermal, X-ray and microscopic analyses of 22 alloys. Seven intermetallic compounds were found to exist in the system. Dy[sub 5]Sn[sub 3] melts congruently at 1870 degC, and undergoes a polymorphous transformation at 1823 [+-] 6 degC. The intermetallics Dy[sub 5]Sn[sub 4], Dy[sub 11]Sn[sub 10], DySn, Dy[sub 4]Sn[sub 5], DySn[sub 2], DySn[sub 3] are formed peritectically at 1712 [+-]11, 1605 [+-]12, 1208 [+-]3, 1166 [+-]7, 1138 [+-]3 and 747 [+-]6 degC respectively. DySn[sub 3] exists in a narrow temperature range, in two polymorphous modifications. The transformation [beta]-DySn[sub 3] [yields] [alpha]-DySn[sub 3] occurs at 608 [+-] 12 degC, and at 499 [+-]2 degC [alpha]-DySn[sub 3] decomposes to DySn[sub 2] and the tin-rich melt. The dysprosium-rich eutectic crystallizes at 1204 [+-]10 degC and contains 13 at.% tin. The solid-state solubility of tin in dysprosium is about 3 at.%, and that of dysprosium in tin is negligible.

  15. Poly[[[μ3-N′-(carboxymethylethylenediamine-N,N,N′-triacetato]dysprosium(III] trihydrate

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhuang

    2010-11-01

    Full Text Available In the title coordination polymer, {[Dy(C10H13N2O8]·3H2O}n, the dysprosium(III ion is coordinated by two N atoms and six O atoms from three different (carboxymethylethylenediaminetriacetate ligands in a distorted square-antiprismatic geometry. The ligands connect the metal atoms, forming layers parallel to the ab plane. O—H...O hydrogen bonds further assemble adjacent layers into a three-dimensional supramolecular network.

  16. Towards a new measurement of parity violation in dysprosium

    CERN Document Server

    Leefer, N; Antypas, D; Budker, D

    2014-01-01

    The dysprosium parity violation experiment concluded nearly 17 years ago with an upper limit on weak interaction induced mixing of nearly degenerate, opposite parity states in atomic dysprosium. While that experiment was limited in sensitivity by statistics, a new apparatus constructed in the interim for radio-frequency spectroscopy is expected to provide significant improvements to the statistical sensitivity. Preliminary work from the new PV experiment in dysprosium is presented with a discussion of the current statistical sensitivity and outlook.

  17. Can a dysprosium shortage threaten green energy technologies?

    NARCIS (Netherlands)

    Hoenderdaal, S.; Tercero Espinoza, L.; Marschneider-Weidemann, F.; Crijns - Graus, Wina

    2013-01-01

    Dysprosium, one of the various rare earth elements, is currently for more than 99% mined in China. As China is reducing its exports, new mining projects outside of China are needed to sustain supply and meet future demands. Dysprosium is mainly used in permanent magnets to retain the magnet's streng

  18. Dysprosium selective potentiometric membrane sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Faridbod, Farnoush; Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-03-01

    A novel Dy(III) ion-selective PVC membrane sensor was made using a new synthesized organic compound, 3,4-diamino-N Prime -((pyridin-2-yl)methylene)benzohydrazide (L) as an excellent sensing element. The electrode showed a Nernstian slope of 19.8 {+-} 0.6 mV per decade in a wide concentration range of 1.0 Multiplication-Sign 10{sup -6}-1.0 Multiplication-Sign 10{sup -2} mol L{sup -1}, a detection limit of 5.5 Multiplication-Sign 10{sup -7} mol L{sup -1}, a short conditioning time, a fast response time (< 10 s), and high selectivity towards Dy(III) ion in contrast to other cations. The proposed sensor was successfully used as an indicator electrode in the potentiometric titration of Dy(III) ions with EDTA. The membrane sensor was also applied to the F{sup -} ion indirect determination of some mouth washing solutions and to the Dy{sup 3+} determination in binary mixtures. Highlights: Black-Right-Pointing-Pointer The novelty of this work is based on the high affinity of the ionophore toward the Dy{sup 3+} ions. Black-Right-Pointing-Pointer This technique is very simple, fast and inexpensive and it is not necessary to use sophisticated equipment. Black-Right-Pointing-Pointer The newly developed sensor is superior to the formerly reported Dy{sup 3+} sensors in terms of selectivity.

  19. Systematic study on surface and magnetostructural changes in Mn-substituted dysprosium ferrite by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Rekha, G. [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Tholkappiyan, R. [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Department of Physics, College of Science, UAE University, Al-Ain 15551 (United Arab Emirates); Vishista, K., E-mail: raovishista@gmail.com [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Hamed, Fathalla [Department of Physics, College of Science, UAE University, Al-Ain 15551 (United Arab Emirates)

    2016-11-01

    Highlights: • Garnet type Dy{sub 3}Fe{sub 5-x}Mn{sub x}O{sub 12} (x = 0–0.06) nanoparticles of 88.4–86.8 nm were synthesized by hydrothermal method. • The Dy, Mn, Fe and O elements in the ferrites were confirmed from XPS. • The multiple oxidation states of Fe and Mn ions, bonding energy and cationic distributions of the samples were examined by XPS. • The magnetic property shows ferromagnetic behavior from VSM technique. • The results from these studies are correlated with respect to Mn dopant. - Abstract: Dysprosium iron garnets are of scientific importance because of the wide range of magnetic properties that can be obtained in substituting dysprosium by a rare earth metal. In the present work, the effect of Mn substitution on magnetostructural changes in dysprosium ferrite nanoparticles is studied. Highly crystalline pure and Mn doped dysprosium ferrite nanoparticles were synthesized by hydrothermal method. The samples were calcined at 1100 °C for 2 h in air atmosphere which is followed by characterization using XRD, FT-IR analysis, SEM, XPS and VSM. The average crystallite size of synthesized samples were calculated by X-ray diffraction falls in the range of 88.4–86.8 nm and was found to be in cubic garnet structure. For further investigation of the structure and corresponding changes in the tetrahedral and octahedral stretching vibrational bonds, FT-IR was used. The synthesized samples consist of multiple oxidation (Fe{sup 3+} and Fe{sup 2+}) states for Fe ions and (Mn{sup 3+} and Mn{sup 2+}) Mn ions analyzed in three ways of Fe 2p and Mn 2p spectra from the XPS analysis. With respect to Mn dopant in Dy{sub 3}Fe{sub 5}O{sub 12}, the cationic distributions of elements were discussed from high resolution XPS spectra by peak position and shift, area, width. To find out the porous/void surface morphology of the sample, scanning electron microscopy was used. From XPS analysis, the presence of elements (Dy, Mn, Fe and O) and their composition in the

  20. Phenalenyl-based mononuclear dysprosium complexes

    Directory of Open Access Journals (Sweden)

    Yanhua Lan

    2016-07-01

    Full Text Available The phenalenyl-based dysprosium complexes [Dy(PLN2(HPLNCl(EtOH] (1, [Dy(PLN3(HPLN]·[Dy(PLN3(EtOH]·2EtOH (2 and [Dy(PLN3(H2O2]·H2O (3, HPLN being 9-hydroxy-1H-phenalen-1-one, have been synthesized. All compounds were fully characterized by means of single crystal X-ray analysis, paramagnetic 1H NMR, MALDI-TOF mass spectrometry, UV–vis spectrophotometry and magnetic measurements. Both static (dc and dynamic (ac magnetic properties of these complexes have been investigated, showing slow relaxation of magnetization, indicative of single molecule magnet (SMM behavior. Attempts to synthesize sublimable phenalenyl-based dysprosium complexes have been made by implementing a synthetic strategy under anhydrous conditions. The sublimed species were characterized and their thermal stability was confirmed. This opens up the possibility to deposit phenalenyl-based lanthanides complexes by sublimation onto surfaces, an important prerequisite for ongoing studies in molecular spintronics.

  1. Anisotropy in the Interaction of Ultracold Dysprosium

    CERN Document Server

    Kotochigova, Svetlana

    2011-01-01

    The nature of the interaction between ultracold atoms with a large orbital and spin angular momentum has attracted considerable attention. It was suggested that such interactions can lead to the realization of exotic states of highly correlated matter. Here, we report on a theoretical study of the competing anisotropic dispersion, magnetic dipole-dipole, and electric quadrupole-quadrupole forces between two dysprosium atoms. Each dysprosium atom has an orbital angular momentum L=6 and magnetic moment $\\mu=10\\mu_B$. We show that the dispersion coefficients of the ground state adiabatic potentials lie between 1865 a.u. and 1890 a.u., creating a non-negligible anisotropy with a spread of 25 a.u. and that the electric quadrupole-quadrupole interaction is weak compared to the other interactions. We also find that for interatomic separations $R< 50\\,a_0$ both the anisotropic dispersion and magnetic dipole-dipole potential are larger than the atomic Zeeman splittings for external magnetic fields of order 10 G to ...

  2. Exploration of dysprosium: the most critical element for Japan

    Science.gov (United States)

    Watanabe, Y.

    2012-04-01

    Dysprosium (Dy), one of the heavy rare earth elements, is used mainly as an additive for NdFeB permanent magnets which are installed in various modern industrial products such as voice coil motors in computers, factory automation machinery, hybrid and electric vehicles, home electronics, and wind turbine, to improve heat resistance of the magnets. Dy has been produced about 2,000t per year from the ores from ion adsorption type deposits in southern China. However, the produced amount of Dy was significantly reduced in 2011 in China due to reservation of heavy rare earth resources and protection of natural environment, resulting in soaring of Dy price in the world. In order to respond the increasing demand of Dy, unconventional supply sources are inevitably developed, in addition to heavy rare earth enriched ion adsorption type deposits outside China. Heavy rare earth elements including Dy are dominantly hosted in xenotime, fergusonite, zircon, eudialyte, keiviite, kainosite, iimoriite, etc. Concentration of xenotime is found in placer deposits in Malaysia and India, hydrothermal deposits associated with unconformity-type uranium mineralization (Athabasca basin in Canada, Western Australia), iron-oxide fluorite mineralization (South Africa) and Sn-bearing alkaline granite (Brazil). Zircon and fergusontie concentration is found as igneous and hydrothermal products in peralkaline syenite, alkaline granite and pegmatite (e.g., Nechalacho in Canada). Eudialyte concentration is found in some peralkaline syenite bodies in Greenland, Canada, Sweden and Russia. Among these sources, large Dy resources are estimated in the deposits hosted in peralkaline rocks (Nechalacho: 79,000t, Kvanefjeld: 49,000t, Norra Karr: 15,700t, etc.) compared to the present demand of Dy. Thus, Dy will be supplied from the deposits associated with peralkaline and alkaline deposits in future instead of ion adsorption type deposits in southern China.

  3. Long afterglow of trivalent dysprosium doped strontium aluminate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuan Ming, E-mail: dongshanisland@126.com [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); Ma, Qing-lan [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); School of Electronics and Information, Nantong University, Jiangsu 226019 (China)

    2015-04-15

    Trivalent dysprosium doped strontium aluminate (SrA1{sub 2}O{sub 4}:Dy{sup 3+}) was synthesized via the sol–gel combustion method to realize green afterglow in the absence of Eu{sup 2+} luminescent centers. The morphology, crystal structure, photoluminescence and long afterglow of the SrAl{sub 2}O{sub 4}:Dy{sup 3+} were characterized with scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and photoluminescence spectroscopy, respectively. The bluish-green photoluminescence of SrAl{sub 2}O{sub 4}:Dy{sup 3+} consists of a broad emission band centered at about 520 nm and two characteristic emissions of Dy{sup 3+} ions centered at 480 and 575 nm, respectively. The green afterglow of SrAl{sub 2}O{sub 4}:Dy{sup 3+} is a broad emission band centered at around 520 nm, and the lifetime extracted from afterglow decay is found to be 53 s. The mechanism on the green afterglow from SrAl{sub 2}O{sub 4}:Dy{sup 3+} is discussed in terms of the possible defect levels in the host. - Highlights: • Broad band long-lasting afterglow is observed in SrAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. • Characteristic emissions of Dy{sup 3+} ions are superimposed on the broad PL of phosphors. • Dy{sup 3+} ions can also act as luminescent centers in addition to electron traps. • A mechanism on long afterglow of SrAl{sub 2}O{sub 4}:Dy{sup 3+} is proposed without Eu{sup 2+} activator.

  4. Mixed (phthalocyaninato)(Schiff-base) di-dysprosium sandwich complexes. Effect of magnetic coupling on the SMM behavior.

    Science.gov (United States)

    Wang, Hailong; Liu, Chenxi; Liu, Tao; Zeng, Suyuan; Cao, Wei; Ma, Qi; Duan, Chunying; Dou, Jianmin; Jiang, Jianzhuang

    2013-11-21

    Reaction between Schiff-base ligand and half-sandwich complex M(Pc)(acac) led to the isolation of new sandwich-type mixed (phthalocyaninato)(Schiff-base) di-lanthanide compounds M2(Pc)2(L)H2O (M = Dy, Gd) (1, 2) [H2Pc = metal free phthalocyanine, Hacac = acetylacetone, H2L = N,N'-bis(3-methyloxysalicylidene)benzene-1,2-diamine] with the triple-decker molecular structure clearly revealed by single crystal X-ray diffraction analysis. For the comparative studies, sandwich triple-decker analogues with pure Schiff-base ligand M2(L)3H2O (M = Dy, Gd) (3, 4) were also prepared. Dynamic magnetic measurement result reveals the single-molecule magnet (SMM) nature of the di-dysprosium derivative 1, while the static magnetic investigation over both pure and the diamagnetic diluted samples of this compound discloses the interionic ferromagnetic coupling between the two dysprosium ions, which in turn effectively suppresses the QTM and enhances the energy barrier of this SMM. Nevertheless, comparative studies over the static magnetic properties of the di-dysprosium triple-decker complexes 1 and 3 indicate the stronger magnetic coupling between the two lanthanide ions in mixed (phthalocyaninato)(Schiff-base) species than in the pure Schiff-base triple-decker analogue, suggesting the special coordination sphere around the dysprosium ions in the former compound over the latter one on the more intense inter-ionic ferromagnetic coupling. As a very small step towards understanding the structure-property relationship, the present result will be surely helpful for the design and synthesis of the multinuclear lanthanide-based SMMs with good properties.

  5. First search for double $\\beta$ decay of dysprosium

    CERN Document Server

    Belli, P; Cappella, F; Cerulli, R; Danevich, F A; d'Angelo, S; Di Vacri, M L; Incicchitti, A; Laubenstein, M; Nagorny, S S; Nisi, S; Tolmachev, A V; Tretyak, V I; Yavetskiy, R P

    2011-01-01

    A search for double $\\beta$ decay of dysprosium was realized for the first time with the help of an ultra low-background HP Ge $\\gamma$ detector. After 2512 h of data taking with a 322 g sample of dysprosium oxide limits on double beta processes in $^{156}$Dy and $^{158}$Dy have been established on the level of $T_{1/2}\\geq 10^{14}-10^{16}$ yr. Possible resonant double electron captures in $^{156}$Dy and $^{158}$Dy were restricted on a similar level. As a by-product of the experiment we have measured the radioactive contamination of the Dy$_2$O$_3$ sample and set limits on the $\\alpha$ decay of dysprosium isotopes to the excited levels of daughter nuclei as $T_{1/2}\\geq 10^{15} - 10^{17}$ yr.

  6. Neutron resonance parameters of dysprosium isotopes using neutron capture yields

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kye, Y. U.; Cho, M. H. [POSTECH, Pohang (Korea, Republic of); Namkung, W. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Kim, G. N. [Kyungpook National University, Daegu (Korea, Republic of); Lee, M. W.; Kang, Y. R. [Dongnam Inst. Of Radiological and Medical Science, Busan (Korea, Republic of)

    2015-10-15

    Dysprosium is used in the field of nuclear reactor system because it has a very large thermal neutron absorption cross-section. The dysprosium alloyed with special stainless steels is attractive for control in nuclear reactor because of the ability to absorb neutrons readily without swelling or contracting over time and its high melting point. Dysprosium is also one of fission products from the thermal fission of {sup 234}U, {sup 233}U, and {sup 239}Pu. The fission products are accumulated in the reactor core by the burn-up of the nuclear fuel and the poison effect is increased. Therefore, it is required to understand how Dysprosium as both a poison and an absorbing material in the control rod has an effect on the neutron population in a nuclear reactor system over all energy regions. Neutron Capture experiments on Dy isotopes were performed at the electron linear accelerator (LINAC) facility of the Rensselear Polytechnic Institute (RPI) in the neutron energy region from 10 eV to 1 keV. Resonance parameters were extracted by fitting the neutron capture data using the SAMMY multilevel R-matrix Bayesian code.

  7. Properties of Polydisperse Tin-doped Dysprosium and Indium Oxides

    Directory of Open Access Journals (Sweden)

    Malinovskaya Tatyana

    2017-01-01

    Full Text Available The results of investigations of the complex permittivity, diffuse-reflectance, and characteristics of crystal lattices of tin-doped indium and dysprosium oxides are presented. Using the methods of spectroscopy and X-ray diffraction analysis, it is shown that doping of indium oxide with tin results in a significant increase of the components of the indium oxide complex permittivity and an appearance of the plasma resonance in its diffuse-reflectance spectra. This indicates the appearance of charge carriers with the concentration of more than 1021 cm−3 in the materials. On the other hand, doping of the dysprosium oxide with the same amount of tin has no effect on its optical and electromagnetic properties.

  8. Dysprosium titanate as an absorber material for control rods

    Science.gov (United States)

    Risovany, V. D.; Varlashova, E. E.; Suslov, D. N.

    2000-09-01

    Disprosium titanate is an attractive control rod material for the thermal neutron reactors. Its main advantages are: insignificant swelling, no out-gassing under neutron irradiation, rather high neutron efficiency, a high melting point (˜1870°C), non-interaction with the cladding at temperatures above 1000°C, simple fabrication and easily reprocessed non-radioactive waste. It can be used in control rods as pellets and powder. The disprosium titanate control rods have worked off in the MIR reactor for 17 years, in VVER-1000 - for 4 years without any operating problems. After post-irradiation examinations this type of control rod having high lifetime was recommended for the VVER and RBMK. The paper presents the examination results of absorber element dummies containing dysprosium titanate, irradiated in the SM reactor to the neutron fluence of 3.4×10 22 cm -2 ( E>0.1 MeV) and, also, the data on structure, thermal-physical properties of dysprosium titanate, efficiency of dysprosium titanate control rods.

  9. Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid

    Science.gov (United States)

    Berger, Claudia A.; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo

    2016-07-01

    The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important

  10. Single-molecule magnet behavior for an antiferromagnetically superexchange-coupled dinuclear dysprosium(III) complex.

    Science.gov (United States)

    Long, Jérôme; Habib, Fatemah; Lin, Po-Heng; Korobkov, Ilia; Enright, Gary; Ungur, Liviu; Wernsdorfer, Wolfgang; Chibotaru, Liviu F; Murugesu, Muralee

    2011-04-13

    A family of five dinuclear lanthanide complexes has been synthesized with general formula [Ln(III)(2)(valdien)(2)(NO(3))(2)] where (H(2)valdien = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine) and Ln(III) = Eu(III)1, Gd(III)2, Tb(III)3, Dy(III)4, and Ho(III)5. The magnetic investigations reveal that 4 exhibits single-molecule magnet (SMM) behavior with an anisotropic barrier U(eff) = 76 K. The step-like features in the hysteresis loops observed for 4 reveal an antiferromagnetic exchange coupling between the two dysprosium ions. Ab initio calculations confirm the weak antiferromagnetic interaction with an exchange constant J(Dy-Dy) = -0.21 cm(-1). The observed steps in the hysteresis loops correspond to a weakly coupled system similar to exchange-biased SMMs. The Dy(2) complex is an ideal candidate for the elucidation of slow relaxation of the magnetization mechanism seen in lanthanide systems.

  11. A comparative study of donor formation in dysprosium, holmium, and erbium implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Emtsev, V.V.; Emtsev, V.V. Jr.; Poloskin, D.S.; Shek, E.I.; Sobolev, N.A. [Division of Solid State Electronics, Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    1998-12-01

    Formation of donor centers in Czochralski grown silicon doped with dysprosium, holmium, and erbium is discussed. Donor states of three kinds are introduced in the implanted layers after annealing at T=700C. Shallow donor states with ionization energies between 20 and 40 meV are attributed to oxygen -related thermal donors. Other donor centers in the energy range of E{sub C}-(60...70) meV and E{sub C}-(100...120) meV appear to be dependent on dopants. After a 900C anneal strong changes in the donor formation are observed only in silicon doped with erbium. Instead of donors at E{sub C}-(118{+-}5) meV, new donor centres at E{sub C}-(145{+-}5) meV are formed. Reportedly, the latter ones are involved in the excitation process of the Er{sup 3+} ions with a characteristic luminescence line at {approx}1.54 {mu}m. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    Science.gov (United States)

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters.

  13. Dysprosium doping induced shape and magnetic anisotropy of Fe3-xDyxO4 (x=0.01-0.1) nanoparticles

    Science.gov (United States)

    Jain, Richa; Luthra, Vandna; Gokhale, Shubha

    2016-09-01

    The effect of dysprosium doping on evolution of structural and magnetic properties of magnetite (Fe3O4) nanoparticles is reported. A standard route of co-precipitation was used for the synthesis of undoped and doped magnetite nanoparticles Fe3-xDyxO4 (x=0.0-0.1). Transmission electron microscopy (TEM) shows formation of round shaped particles with diameter in the range of 8-14 nm for undoped sample. On doping beyond x=0.01, the formation of rod like structures is initiated along with the round shaped particles. The number of rods is found to increase with increasing doping concentration. Magnetic characterization using Vibrating Sample Magnetometer (VSM) revealed doping dependent magnetic properties which can be correlated with the crystallite size as determined from X-ray diffraction (XRD). Enhancement in the saturation magnetization in the initial stages of doping can be explained on the basis of incorporation of Dy3+ ions in the inverse spinel structure at the octahedral site in place of Fe3+ ions. Subsequent decrease in saturation magnetization observed beyond x=0.03 could be attributed to precipitation of excess Dy in form of dysprosium ferrite phase.

  14. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    Science.gov (United States)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S.; Guallini, F.; Vallazza, E.; Prest, M.

    2014-09-01

    Radiotherapy treatments with high-energy (>8 MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the "in vivo" dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  15. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S. [Medical Physics - Sant' Anna Hospital, Como (Italy); Guallini, F. [EL.SE s.r.l. (Italy); Vallazza, E. [INFN, Trieste (Italy); Prest, M. [University of Insubria, Como (Italy)

    2014-09-21

    Radiotherapy treatments with high-energy (>8MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the “in vivo” dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  16. Low Field Magnetic and Thermal Hysteresis in Antiferromagnetic Dysprosium

    Directory of Open Access Journals (Sweden)

    Iuliia Liubimova

    2017-06-01

    Full Text Available Magnetic and thermal hysteresis (difference in magnetic properties on cooling and heating have been studied in polycrystalline Dy (dysprosium between 80 and 250 K using measurements of the reversible Villari effect and alternating current (AC susceptibility. We argue that measurement of the reversible Villari effect in the antiferromagnetic phase is a more sensitive method to detect magnetic hysteresis than the registration of conventional B(H loops. We found that the Villari point, recently reported in the antiferromagnetic phase of Dy at 166 K, controls the essential features of magnetic hysteresis and AC susceptibility on heating from the ferromagnetic state: (i thermal hysteresis in AC susceptibility and in the reversible Villari effect disappears abruptly at the temperature of the Villari point; (ii the imaginary part of AC susceptibility is strongly frequency dependent, but only up to the temperature of the Villari point; (iii the imaginary part of the susceptibility drops sharply also at the Villari point. We attribute these effects observed at the Villari point to the disappearance of the residual ferromagnetic phase. The strong influence of the Villari point on several magnetic properties allows this temperature to be ranked almost as important as the Curie and Néel temperatures in Dy and likely also for other rare earth elements and their alloys.

  17. A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier.

    Science.gov (United States)

    Pugh, Thomas; Chilton, Nicholas F; Layfield, Richard A

    2016-09-05

    The single-molecule magnet (SMM) properties of the isocarbonyl-ligated dysprosium metallocene [Cp*2 Dy{μ-(OC)2 FeCp}]2 (1Dy ), which contains a rhombus-shaped Dy2 Fe2 core, are described. Combining a strong axial [Cp*](-) ligand field with a weak equatorial field consisting of the isocarbonyl ligands leads to an anisotropy barrier of 662 cm(-1) in zero applied field. The dominant thermal relaxation pathways in 1Dy involves at least the fourth-excited Kramers doublet, thus demonstrating that prominent SMM behavior can be observed for dysprosium in low-symmetry environments.

  18. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach.

    Science.gov (United States)

    Vukov, Oliver; Smith, D Scott; McGeer, James C

    2016-01-01

    The toxicological understanding of rare earth elements (REEs) in the aquatic environment is very limited but of increasing concern. The objective of this research is to compare the toxicological effect of the REE dysprosium to the freshwater invertebrates Daphnia pulex and Hyalella azteca and in the more sensitive organism, understand the toxicity modifying influence of Ca, Na, Mg, pH and dissolved organic matter (DOM). Standard methods (Environment Canada) were followed for testing and culture in media of intermediate hardness (60mg CaCO3 mg/L) at pH 7.8 with Ca at 0.5, Na 0.5, Mg 0.125 (mM) and 23°C. Acute toxicity tests were done with azteca and D. pulex revealed Hyalella to be 1.4 times more sensitive than Daphnia. Additions of Ca and Na but not Mg provided significant protection against Dy toxicity to Hyalella. Similarly, low pH was associated with reduction in toxicity. Exposures which were pH buffered with and without MOPS were significantly different and indicated that MOPS enhanced Dy toxicity. DOM also mitigated Dy toxicity. Biotic ligand based parameters (LogK values) were calculated based on free ion relationships as determined by geochemical equilibrium modeling software (WHAM ver. 7.02). The logK value for Dy(3+) toxicity to Hyalella was 7.75 while the protective influence of Ca and Na were 3.95 and 4.10, respectively. This study contributes data towards the development of site specific water quality guidelines and criteria for Dy and possibly REEs in general and offers insight into the complex bio-geochemical nature of this element.

  19. Malonate complexes of dysprosium: synthesis, characterization and application for LI-MOCVD of dysprosium containing thin films.

    Science.gov (United States)

    Milanov, Andrian P; Seidel, Rüdiger W; Barreca, Davide; Gasparotto, Alberto; Winter, Manuela; Feydt, Jürgen; Irsen, Stephan; Becker, Hans-Werner; Devi, Anjana

    2011-01-07

    A series of malonate complexes of dysprosium were synthesized as potential metalorganic precursors for Dy containing oxide thin films using chemical vapor deposition (CVD) related techniques. The steric bulkiness of the dialkylmalonato ligand employed was systematically varied and its influence on the resulting structural and physico-chemical properties that is relevant for MOCVD was studied. Single crystal X-ray diffraction analysis revealed that the five homoleptic tris-malonato Dy complexes (1-5) are dimers with distorted square-face bicapped trigonal-prismatic geometry and a coordination number of eight. In an attempt to decrease the nuclearity and increase the solubility of the complexes in various solvents, the focus was to react these dimeric complexes with Lewis bases such as 2,2'-biypridyl and pyridine (6-9). This resulted in monomeric tris-malonato mono Lewis base adduct complexes with improved thermal properties. Finally considering the ease of synthesis, the monomeric nature and promising thermal characteristics, the silymalonate adduct complex [Dy(dsml)(3)bipy] (8) was selected as single source precursor for growing DySi(x)O(y) thin films by liquid injection metalorganic chemical vapor deposition (LI-MOCVD) process. The as-deposited films were analyzed for their morphology and composition by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Rutherford backscattering (RBS) analysis and X-ray photoelectron spectroscopy.

  20. Low temperature spin reorientation in dysprosium iron garnet

    Energy Technology Data Exchange (ETDEWEB)

    Lahoubi, M; Younsi, W; Soltani, M L [Department of Physics, Badji-Mokhtar University, BP-12 Annaba, 23000 (Algeria); Voiron, J; Schmitt, D, E-mail: mlahoubi@gmail.co [Louis Neel Laboratory, CNRS-UJF, BP-166, 38042 Grenoble Cedex 9 (France)

    2009-03-01

    The spin reorientation (SR) phase transition in dysprosium iron garnet (Dy{sub 3}Fe{sub 5}O{sub 12} or DyIG) have been studied by specific heat C{sub p}(T) and high field magnetisation measurements M{sub T}(H) and M{sub H}(T) on single crystals at low temperature. A first order SR is observed with a sharp jump at T{sub SR} = 14.5+-0.5 K in the C{sub p}(T) curve which corresponds to a spontaneous change from the high temperature (HT) easy direction (111) to an (uuw) angular low temperature (LT) phases. Above T{sub SR}, the magnetic structure is described by the irreducible representation (IR) A{sub 2g} of the rhombohedral space group R 3 c. Below T{sub SR}, the magnetic structure changes in the monoclinic the space group C2/c with the IR A{sub g}. When the field H is kept aligned along the hard symmetry directions (100) and (110), we obtain respectively the variation of the angular positions theta(T) and theta'(T) from the total spontaneous magnetisation down to 1.5 K (theta = 39.23 deg. and theta' = 30.14 deg.) and the results are in good agreement with the previous observations in low fields. When the sample is allowed to rotate freely on itself, the critical field H{sub c}(T) between the HT(111) and the LT(uuw) angular phases permits us to precise the transition line up to 15 T and 40 K between the so called canted field induced (FI) and the associated collinear magnetic phases. The experimental magnetic phase diagram (MPD) is precisely determined in the (H{sub c}-T) plane and the domains of the existence and the stability of the two magnetic phases are specified.

  1. Anisotropic magnetic properties of dysprosium iron garnet (DyIG)

    Energy Technology Data Exchange (ETDEWEB)

    Lahoubi, M; Younsi, W; Soltani, M-L [Department of Physics, Badji-Mokhtar University, BP 12 - 23000 Annaba (Algeria); Ouladdiaf, B, E-mail: mlahoubi@gmail.co [Institut Laue Langevin, BP 156 - 38042 Grenoble Cedex 9 (France)

    2010-01-01

    The magnetic properties of dysprosium iron garnet (DyIG) have been studied by performing high resolution powder neutron diffraction experiments and high dc fields magnetizations on single crystals. Among all the reflections (hkl) indexed in the nuclear cubic space group (CSG) Ia 3-bar d with h+k+l=2n and k=[000], the superstructure lines (hkl)* forbidden by the symmetry (222)* and (622)* are not observed in the patterns at all temperatures. The pattern at 130 K is well interpreted within the magnetic modes F belonging to the irreducible representation (IR) T{sub 1g} of the CSG and identified to the room temperature ferrimagnetic Neel model. The high magnetic field behavior of the spontaneous collinear magnetic structure (MS) along the easy axis (EA) <111> is isotropic. Below 130 K, the patterns exhibit additional magnetic superstructure lines. They are associated to the appearance of the spontaneous non collinear MS which is described in the subgroup of the CSG, R 3-bar c within the IR A{sub 2g}. A strong magnetization anisotropy (MA) is observed at 1.5 K in the low symmetry phases were the spin reorientation transition (SR) occur at T{sub RS}=14.5 K. The onset of MA is detected below two characteristic temperatures, Ta{sub 1}=125 K and Ta{sub 2}=75 K respectively to the hard axis (HA) <100> and <110>. Symmetry arguments are used in the framework of the theory of representation analysis (RA) applied to the subgroup of R 3-bar c, C2/c within the IR A{sub g}. It seems that this MA results essentially from the difference between the spontaneous non collinear MS and the field induced (FI) configurations. All results are discussed with previous neutrons studies.

  2. Photo-, cathodo- and thermoluminescent properties of dysprosium-doped HfO2 films deposited by ultrasonic spray pyrolysis.

    Science.gov (United States)

    Manríquez, R Reynoso; Góngora, J A I Díaz; Guzmán-Mendoza, J; Montalvo, T Rivera; Olguín, J C Guzmán; Ramírez, P V Cerón; García-Hipólito, M; Falcony, C

    2014-09-01

    In this work, the photoluminescent (PL), cathodoluminescent (CL) and thermoluminescent (TL) properties of hafnium oxide films doped with trivalent dysprosium ions are reported. The films were deposited on glass substrates at temperatures ranging from 300 to 600°C, using chlorides as precursor reagents. The surface morphology of films showed a veins shaped microstructure at low deposition temperatures, while at higher temperatures the formation of spherical particles was observed on the surface. X-ray diffraction showed the presence of HfO2 monoclinic phase in the films deposited at temperatures greater than 400°C. The PL and CL spectra of the doped films showed the highest emission band centered at 575nm corresponding to the transitions (4)F9/2→(6)H13/2, which is a characteristic transition of Dy(3+) ion. The greatest emission intensities were observed in samples doped with 1 atomic percent (at%) of DyCl3 in the precursor solution. Regarding the TL behavior, the glow curve of HfO2:Dy(+3) films exhibited spectrum with one broad band centered at about 150°C. The highest intensity TL response was observed on the films deposited at 500°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Effects of Dysprosium Oxide Doping on Microstructure and Properties of Barium Titanate Ceramic

    Institute of Scientific and Technical Information of China (English)

    Pu Yongping; Ren Huijun; Chen Wei; Chen Shoutian

    2005-01-01

    Different amounts of dysprosium oxide were incorporated into barium titanate powders synthesized by hydrothermal method. Relations of substitution behaviors and lattice parameters with solid-solubility were studied. Furthermore, the influences of dysprosium oxide doping fraction on grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength, were investigated via scanning electron microscope, X-ray diffraction and electric property tester. The results show that dysprosium oxide can restrain abnormal grain growth during sintering and that fine-grained and high density of barium titanate ceramic can result in excellent dielectric properties. As mass fraction of dysprosium oxide is 0.6%, the lattice parameters of grain increase to the maximum because of the lowest vacancy concentration. The electric property parameters are cited as following: dielectric constant (25 ℃) reaches 4100, the change in relative dielectric constant with temperature is -10% to 10% within the range of -15~100 ℃, breakdown electric field strength (alternating current) achieves 3.2 kV·mm-1, which can be used in manufacturing high voltage ceramic capacitors.

  4. Sandwich-type tetrakis(phthalocyaninato) dysprosium-cadmium quadruple-decker SMM.

    Science.gov (United States)

    Wang, Hailong; Qian, Kang; Wang, Kang; Bian, Yongzhong; Jiang, Jianzhuang; Gao, Song

    2011-09-14

    Homoleptic tetrakis[2,3,9,10,16,17,23,24-octa(butyloxy)phthalocyaninato] dysprosium-cadmium quadruple-decker complex 1 was isolated in relatively good yield of 43% from a simple one-pot reaction. This compound represents the first sandwich-type tetrakis(phthalocyaninato) rare earth-cadmium quadruple-decker SMM that has been structurally characterized.

  5. In situ characterization of the nitridation of dysprosium during mechanochemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J.; Osterberg, Daniel D.; Alanko, Gordon A.; Tamrakar, Sumit; Smith, Cole R.; Hurley, Michael F.; Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu

    2015-01-15

    Highlights: • A nitridation reaction in a high energy planetary ball mill was monitored in situ. • Dysprosium mononitride was synthesized from Dy at low temperatures in short times. • Ideal gas law and in situ temperature and pressure used to assess reaction extent. • It is proposed that reaction rate is proportional to the creation of new surface. - Abstract: Processing of advanced nitride ceramics traditionally requires long durations at high temperatures and, in some cases, in hazardous atmospheres. In this study, dysprosium mononitride (DyN) was rapidly formed from elemental dysprosium in a closed system at ambient temperatures. An experimental procedure was developed to quantify the progress of the nitridation reaction during mechanochemical processing in a high energy planetary ball mill (HEBM) as a function of milling time and intensity using in situ temperature and pressure measurements, SEM, XRD, and particle size analysis. No intermediate phases were formed. It was found that the creation of fresh dysprosium surfaces dictates the rate of the nitridation reaction, which is a function of milling intensity and the number of milling media. These results show clearly that high purity nitrides can be synthesized with short processing times at low temperatures in a closed system requiring a relatively small processing footprint.

  6. Dysprosium complexes with the tetraphenylporphyrin macrocyclic ligand; Complejos de disprosio con el ligante macrociclico tetrafenilporfirina

    Energy Technology Data Exchange (ETDEWEB)

    Martinez M, V.; Padilla, J.; Ramirez, F.M

    1992-04-15

    In this report, the results obtained on the synthesis, characterization and study of the chemical behavior of dysprosium complex with the acetylacetone chelating agent (Hacac) and the tetraphenylporphyrin macrocyclic ligand (H{sub 2}TFP) are given. Based on the literature but according to our necessities and interest, the appropriate methodology settled down from the synthesis of prime matters until the obtaining and characterization of the products. The acetyl acetonate complex was obtained of mono hydrated dysprosium [Dy(acac){sub 3}. H{sub 2}0] and trihydrated [Dy(acac){sub 3} .3 H{sub 2}0], the mono tetra phenyl porphyrinate [Dy(TFP)(acac). 2 ac] the double sandwich of the dysprosium porphyrinate [Dy(TFP){sub 2}] and the triple sandwich of the dysprosium porphyrinate [Dy(TFP){sub 3}. 2 TCB] (TCB = trichlorobenzene). Its were characterized by their melting points, solubility, IR, UV, TGA and DTA both first and besides the techniques already mentioned for NMR'H, RPE and Magnetic susceptibility the three last complexes. From the spectroscopic point of view, IR and RPE its suggested the existence of a complex of inverse mixed valence [Dy(TFP){sup 2-} (TFP) {sup 1-}] for the Dy(TFP){sub 2} as a result of the existence of the free radical (TFP' {sup 1-} and that it was not in none of the other porphyrin compounds. In the NMR'H spectra of the compounds were not observed signals in the region from 0 to 10 ppm that which shows that the dysprosium complexes in special those of the porphyrin type are highly paramagnetic and its could be used as displacement reagents, creators of images and contrast agents of great utility in these days in studies of NMR, technique today by today used in medical diagnoses. (Author)

  7. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    Science.gov (United States)

    Chiriac, L. B.; Trandafir, D. L.; Turcu, R. V. F.; Todea, M.; Simon, S.

    2016-11-01

    The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, 29Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T1 and RARE-T2 protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T2-weighted MRI contrast properties.

  8. Another challenge to paramagnetic relaxation theory: a study of paramagnetic proton NMR relaxation in closely related series of pyridine-derivatised dysprosium complexes.

    Science.gov (United States)

    Rogers, Nicola J; Finney, Katie-Louise N A; Senanayake, P Kanthi; Parker, David

    2016-02-14

    Measurements of the relaxation rate behaviour of two series of dysprosium complexes have been performed in solution, over the field range 1.0 to 16.5 Tesla. The field dependence has been modelled using Bloch-Redfield-Wangsness theory, allowing estimates of the electronic relaxation time, T1e, and the size of the magnetic susceptibility, μeff, to be made. Changes in relaxation rate of the order of 50% at higher fields were measured, following variation of the para-substituent in the single pyridine donor. The magnetic susceptibilities deviated unexpectedly from the free-ion values for certain derivatives in each series examined, in a manner that was independent of the electron-releasing/withdrawing ability of the pyridine substituent, suggesting that the polarisability of just one pyridine donor in octadenate ligands can play a significant role in defining the magnetic susceptibility anisotropy.

  9. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach

    Energy Technology Data Exchange (ETDEWEB)

    Vukov, Oliver, E-mail: vuko3930@mylaurier.ca [Biology Department, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Smith, D. Scott [Chemistry Department, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); McGeer, James C. [Biology Department, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada)

    2016-01-15

    The toxicological understanding of rare earth elements (REEs) in the aquatic environment is very limited but of increasing concern. The objective of this research is to compare the toxicological effect of the REE dysprosium to the freshwater invertebrates Daphnia pulex and Hyalella azteca and in the more sensitive organism, understand the toxicity modifying influence of Ca, Na, Mg, pH and dissolved organic matter (DOM). Standard methods (Environment Canada) were followed for testing and culture in media of intermediate hardness (60 mg CaCO{sub 3} mg/L) at pH 7.8 with Ca at 0.5, Na 0.5, Mg 0.125 (mM) and 23 °C. Acute toxicity tests were done with <24 h old neonates for 48 h in the case of D. pulex and with 2–9 days old offspring for 96 h tests with Hyalella. The potential protective effect of cationic competition was tested with Ca (0.5–2.0 mM), Na (0.5–2.0 mM) and Mg (0.125–0.5 mM). The effect of pH (6.5–8.0) and Suwannee River DOM complexation (at dissolved organic carbon (DOC) concentrations of 9 and 13 mg C/L) were evaluated. Dissolved Dy concentrations were lower than total (unfiltered) indicating precipitation, particularly at higher concentrations. Acute toxicity of Dy to H. azteca and D. pulex revealed Hyalella to be 1.4 times more sensitive than Daphnia. Additions of Ca and Na but not Mg provided significant protection against Dy toxicity to Hyalella. Similarly, low pH was associated with reduction in toxicity. Exposures which were pH buffered with and without MOPS were significantly different and indicated that MOPS enhanced Dy toxicity. DOM also mitigated Dy toxicity. Biotic ligand based parameters (Log K values) were calculated based on free ion relationships as determined by geochemical equilibrium modeling software (WHAM ver. 7.02). The log K value for Dy{sup 3+} toxicity to Hyalella was 7.75 while the protective influence of Ca and Na were 3.95 and 4.10, respectively. This study contributes data towards the development of site specific

  10. Dysprosium-Catalyzed Growth of Single-Walled Carbon Nanotube Arrays on Substrates

    Directory of Open Access Journals (Sweden)

    Qian Yong

    2009-01-01

    Full Text Available Abstract In this letter, we report that dysprosium is an effective catalyst for single-walled carbon nanotubes (SWNTs growth via a chemical vapor deposition (CVD process for the first time. Horizontally superlong well-oriented SWNT arrays on SiO2/Si wafer can be fabricated by EtOH-CVD under suitable conditions. The structure and properties are characterized by scanning electron microscopy, transition electron microscopy, Raman spectroscopy and atomic force microscopy. The results show that the SWNTs from dysprosium have better structural uniformity and better conductivity with fewer defects. This rare earth metal provides not only an alternative catalyst for SWNTs growth, but also a possible method to generate high percentage of superlong semiconducting SWNT arrays for various applications of nanoelectronic device.

  11. Direct Search for keV Sterile Neutrino Dark Matter with a Stable Dysprosium Target

    CERN Document Server

    Lasserre, T; Cribier, M; Merle, A; Mertens, S; Vivier, M

    2016-01-01

    We investigate a new method to search for keV-scale sterile neutrinos that could account for Dark Matter. Neutrinos trapped in our galaxy could be captured on stable $^{163}$Dy if their mass is greater than 2.83~keV. Two experimental realizations are studied, an integral counting of $^{163}$Ho atoms in dysprosium-rich ores and a real-time measurement of the emerging electron spectrum in a dysprosium-based detector. The capture rates are compared to the solar neutrino and radioactive backgrounds. An integral counting experiment using several kilograms of $^{163}$Dy could reach a sensitivity for the sterile-to-active mixing angle $\\sin^2\\theta_{e4}$ of $10^{-5}$ significantly exceeding current laboratory limits. Mixing angles as low as $\\sin^2\\theta_{e4} \\sim 10^{-7}$ / $\\rm m_{^{163}\\rm Dy}\\rm{(ton)}$ could possibly be explored with a real-time experiment.

  12. Preparation of Dysprosium Ferrite/Polyacrylamide Magnetic Composite Microsphere and Its Characterization

    Institute of Scientific and Technical Information of China (English)

    Hidehiro Kumazawa; Wang Zhifeng; Zhou Lanxiang; Zhang Hong; Li Yourong; Zhang Ming

    2005-01-01

    Using the technique of microemulsion polymerization with nano-reactor, dysprosium ferrite/polyacrylamide magnetic composite microsphere was prepared by one-step method in a single inverse microemulsion. The structure, average particle size, morphology of composite microsphere were characterized by FTIR, XRD, TEM and TGA. The magnetic responsibility of composite microsphere was also investigated. The results indicate that the magnetic composite microsphere possess high magnetic responsibility and suspension stability.

  13. {Delta}I = 2 energy staggering in normal deformed dysprosium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M.A.; Brown, T.B.; Archer, D.E. [Florida State Univ., Tallahassee, FL (United States)] [and others

    1996-12-31

    Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.

  14. Making two dysprosium atoms rotate - Einstein-de Haas effect revisited

    OpenAIRE

    Górecki, Wojciech; Rzążewski, Kazimierz

    2016-01-01

    We present a numerical study of the behaviour of two magnetic dipolar atoms trapped in a harmonic potential and exhibiting the standard Einstein-de Haas effect while subject to a time dependent homogeneous magnetic field. Using a simplified description of the short range interaction and the full expression for the dipole-dipole forces we show, that under experimentally realisable conditions two dysprosium atoms may be pumped to a high ($l>20$) value of the relative orbital angular momentum.

  15. Phosphor Dysprosium-Doped Layered Double Hydroxides Exchanged with Different Organic Functional Groups

    Directory of Open Access Journals (Sweden)

    David Ricardo Martínez Vargas

    2013-01-01

    Full Text Available The layers of a Zn/Al layered double hydroxide (LDH were doped with Dy3+ cations. Among some compositions, the Zn2+ : Al3+ : Dy3+ molar ratio equal to 30 : 9 : 1 presented a single crystalline phase. Organic anions with carboxylic, amino, sulfate, or phosphate functional groups were intercalated as single layers between LDH layers as confirmed by X-ray diffraction and infrared spectroscopy. Photoluminescence spectra of the nitrate intercalated LDH showed a wide emission band with strong intensity in the yellow region (around 574 nm, originated due to symmetry distortion of the octahedral coordination in dysprosium centers. Moreover, a broad red band emission was also detected apparently due to the presence of zinc oxide. The distorted symmetry of the dysprosium coordination environment, also confirmed by X-ray photoelectron spectroscopy analysis, was modified after the intercalation with phenyl phosphonate (PP, aspartate (Asp, adipate (Adip, and serinate (Ser anions; the emission as measured from PL spectra of these LDH was more intense in the blue region (ca. 486 nm, thus indicating an increase in symmetry of dysprosium octahedrons. The red emission band from zinc oxide kept the same intensity after intercalation of dodecyl sulfate (DDS. An additional emission of unknown origin at λ = 767 nm was present in all LDHs.

  16. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, L.B.; Trandafir, D.L. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Turcu, R.V.F. [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Todea, M. [Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics & National Magnetic Resonance Center, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania); Interdisciplinary Research Institute on Bio-Nano-Sciences & Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, RO-400084 (Romania)

    2016-11-01

    Highlights: • Dysprosium containing silica microparticles obtained by freeze and spray drying. • Higher structural units interconnection achieved in freeze vs. spray dried samples. • Dy occurance on the outermost layer of the microparticles evidenced by XPS. • Enhanced MRI contrast observed for freeze dried samples with 5% mol Dy{sub 2}O{sub 3}. - Abstract: The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, {sup 29}Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T{sub 1} and RARE-T{sub 2} protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T{sub 2}-weighted MRI contrast properties.

  17. An organometallic sandwich lanthanide single-ion magnet with an unusual multiple relaxation mechanism.

    Science.gov (United States)

    Jeletic, Matthew; Lin, Po-Heng; Le Roy, Jennifer J; Korobkov, Ilia; Gorelsky, Serge I; Murugesu, Muralee

    2011-12-07

    A dysprosium(III) sandwich complex, [Dy(III)(COT″)(2)Li(THF)(DME)], was synthesized using 1,4-bis(trimethylsilyl)cyclooctatetraenyl dianion (COT″). The complex behaves as a single-ion magnet and demonstrates unusual multiple relaxation modes. The observed relaxation pathways strongly depend on the applied static dc fields.

  18. Influence of exchange splitting on optical properties in gadolinium and dysprosium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, Yu.V.; Bolotin, G.A. (AN SSSR, Sverdlovsk. Inst. Fiziki Metallov)

    1984-12-01

    The temperature dependences of optical conductivity in gadolinium and dysprosium single crystals at the light wave vector polarization along a hexagonal axis and in the basis plane are considered. A substantial anisotropy of interzonal absorption has been found. The sample transition into magnetically ordered state is shown to be accompanied by the emergence of resonance absorption peaks in the near infrared spectral region. The manifestation of these peculiarities is associated with quantum electron transitions between the s-, d-f- interaction-split energy bands near the Fermi level. Main peculiarities of the experimental spectrum of gadolinium optical conductivity found their reflection in theoretically calculated dispersion dependence.

  19. Therapeutic application of dysprosium-165-FHMA in the treatment of rheumatoid knee effusions

    Energy Technology Data Exchange (ETDEWEB)

    English, R.J.; Zalutsky, M.; Venkatesan, P.; Sledge, C.B.

    1986-03-01

    Radiation synovectomy utilizing a variety of radionuclides has proven to be an effective technique in the treatment of rheumatoid arthritis. The recent introduction of the short-lived radionuclide, Dysprosium-165 (/sup 165/Dy), as a replacement for the longer-lived radiocolloids has reduced nontarget dosimetry caused by leakage of the agent from the articular cavity. A review of the methods and status of radiation synovectomy, and the application of /sup 165/Dy-ferric hydroxide macroaggregates (FHMA) as an alternative therapeutic agent is described.

  20. Properties of dysprosium-doped gallium lanthanum sulfide fiber amplifiers operating at 1.3 microm.

    Science.gov (United States)

    Samson, B N; Schweizer, T; Hewak, D W; Laming, R I

    1997-05-15

    In light of recent progress in the fabrication of gallium lanthanum sulfide (GaLaS) fibers, we have modeled the performance of dysprosium-doped GaLaS fiber amplifiers operating at 1.3 microm . Based on experimental data, we find that the incorporation of a codopant (terbium) in the fiber core significantly shortens the optimum amplifier length from >30 m to approximately 3 m . Such a device may be practical, given the fiber losses currently achieved in GaLaS fibers.

  1. Effect of dysprosium on the kinetics and structural transformations during the decomposition of the supersaturated solid solution in magnesium-samarium alloys

    Science.gov (United States)

    Rokhlin, L. L.; Luk'yanova, E. A.; Tabachkova, N. Yu.; Dobatkina, T. V.; Tarytina, I. E.; Korol'kova, I. G.

    2017-03-01

    The effect of dysprosium added in the amounts such that it does not form an individual phase in equilibrium with solid magnesium on the decomposition of the supersaturated magnesium solid solution in Mg-Sm alloys is studied. The presence of dysprosium in Mg-Sm alloys is found to retard the decomposition of the supersaturated magnesium solid solution and to increase the hardening effect upon aging. When these alloys are aged, dysprosium is partly retained in the magnesium solid solution and partly enters into the compositions of the phases that form during the decomposition of the solid solution and are characteristic of Mg-Sm alloys.

  2. Cyclic single-molecule magnets: from the odd-numbered heptanuclear to a dimer of heptanuclear dysprosium clusters.

    Science.gov (United States)

    Tian, Haiquan; Bao, Song-Song; Zheng, Li-Min

    2016-02-01

    A heptanuclear and a dimer of heptanuclear dysprosium clusters (Dy7 and Dy14) have been successfully synthesized by ingenious coalescence of the single and double pyrazinyl hydrazone as well as phosphonate ligands. The complexes feature the largest odd-numbered cyclic lanthanide clusters reported thus far. Both exhibit single molecule magnet behaviors at low temperature.

  3. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P. [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Gurinov, Andrey [Research Resources Center for Magnetic Resonance, Saint Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg (Russian Federation); Ortiz, Genaro Gabriel [Laboratorio Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano de Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Carbajal Arízaga, Gregorio Guadalupe, E-mail: gregoriocarbajal@yahoo.com.mx [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico)

    2015-03-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488 nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. - Highlights: • Hydroxyapatite functionalized with glucuronic acid reduced oxidative stress in rats. • Functionalization with folic acid reduced oxidative stress in rats. • Dysprosium doping does not affect the crystalline structure of hydroxyapatite. • Dysprosium doped particles are visible in fluorescent microscope. • Dysprosium doped particles act as MRI contrast agents.

  4. Tuning Slow Magnetic Relaxation in a Two-Dimensional Dysprosium Layer Compound through Guest Molecules.

    Science.gov (United States)

    Chen, Qi; Li, Jian; Meng, Yin-Shan; Sun, Hao-Ling; Zhang, Yi-Quan; Sun, Jun-Liang; Gao, Song

    2016-08-15

    A novel two-dimensional dysprosium(III) complex, [Dy(L)(CH3COO)]·0.5DMF·H2O·2CH3OH (1), has been successfully synthesized from a new pyridine-N-oxide (PNO)-containing ligand, namely, N'-(2-hydroxy-3-methoxybenzylidene)pyridine-N-oxidecarbohydrazide (H2L). Single-crystal X-ray diffraction studies reveal that complex 1 is composed of a dinuclear dysprosium subunit, which is further extended by the PNO part of the ligand to form a two-dimensional layer. Magnetic studies indicate that complex 1 shows well-defined temperature- and frequency-dependent signals under a zero direct-current (dc) field, typical of slow magnetic relaxation with an effective energy barrier Ueff of 33.6 K under a zero dc field. Interestingly, powder X-ray diffraction and thermogravimetric analysis reveal that compound 1 undergoes a reversible phase transition that is induced by the desorption and absorption of methanol and water molecules. Moreover, the desolvated sample [Dy(L)(CH3COO)]·0.5DMF (1a) also exhibits slow magnetic relaxation but with a higher anisotropic barrier of 42.0 K, indicating the tuning effect of solvent molecules on slow magnetic relaxation.

  5. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2016-01-22

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  6. Tuning the composition and magnetostructure of dysprosium iron garnets by Co-substitution: An XRD, FT-IR, XPS and VSM study

    Energy Technology Data Exchange (ETDEWEB)

    Tholkappiyan, R.; Vishista, K., E-mail: raovishista@gmail.com

    2015-10-01

    Graphical abstract: - Highlights: • Garnet type Dy{sub 3}Fe{sub 5−x}Co{sub x}O{sub 12} (x = 0–0.06) nanoparticles were synthesized by glycine assisted combustion method. • To investigate and confirm the phases in the synthesized ferrite nanoparticles by FT-IR and XRD analysis. • To investigate the compositional and oxidation state of the samples by X-ray photoelectron spectroscopy. • The detailed core level spectra of Dy 4d, Fe 2p, Co 2p and O 1s were analyzed using XPS. • The magnetic property was studied by VSM technique. - Abstract: We report the Co-substituting on the synthesis and properties of garnet type dysprosium ferrite nanoparticles by basic composition Dy{sub 3}Fe{sub 5−x}Co{sub x}O{sub 12} (x = 0–0.06) synthesized through glycine assisted combustion method. A possible formation mechanism of synthesized Dy{sub 3}Fe{sub 5−x}Co{sub x}O{sub 12} samples by controlling the synthesis process has been proposed. XRD, FT-IR, XPS and VSM studies were used to investigate the compositional and magnetostructural properties of the prepared nanoparticles. XRD results confirm that all the samples are single-phase cubic garnet structure with mean crystallite size of 97–105 nm obtained from Scherrer method and 95–102 nm from W–H method. FT-IR analysis shows the presence of three expected bands in the frequency limit of 450–600 cm{sup −1} attributed to metal–O stretching vibration in tetrahedral site of garnet structure. A typical survey spectrum from XPS results confirmed the presence of Dy, Fe, Co and O elements in the samples. This study also to characterize the different oxidation states of the samples by fitting the parameters of high resolution Dy 4d, Fe 2p, Co 2p and O 1s XPS spectra. The XPS data of Dy 4d spectrum show that Dy{sup 3+} ion occupy in dodecahedral (D) site. The XPS analysis of Fe 2p and Co 2p data suggests that (Fe{sup 3+} and Fe{sup 2+}), (Co{sup 3+} and Co{sup 2+}) are distributed in tetrahedral and octahedral sites

  7. A dysprosium-based metal-organic framework: Synthesis, characterization, crystal structure and interaction with calf thymus-DNA and bovine serum albumin

    Indian Academy of Sciences (India)

    Biplab Mondal; Buddhadeb Sen; Ennio Zangrando; Pabitra Chattopadhyay

    2014-07-01

    A dysprosium-based metallo-organic framework (MOF) containing calcium ions formulated as {Dy(pyda)3Ca1.5(H2O)6} · 5.5H2O (1) (H2pyda = pyridine-2,6-dicarboxylic acid) was solvothermally synthesized in ethanolic medium and characterized by physico-chemical and spectroscopic tools. A detailed structural analysis of the solid state structure of 1 by single crystal X-ray diffraction study showed a tricapped trigonal prism geometry for lanthanide in the [Dy(pyda)3]3− fragment. The mode of interaction of 1 with calf thymus- DNA and with protein bovine serum albumin (BSA) was investigated by using absorption and emission spectroscopic tools. The apparent association constant of complex 1 with CT-DNA was deduced from an absorption spectral study (b = 4.08 × 104 M-1). Spectral and viscosity measurements indicated a groove-binding mode of 1 with CT-DNA, and from spectroscopic study the formation of a metal complex-BSA adduct was assumed to be the result of the interaction of 1 with BSA.

  8. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    Science.gov (United States)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-04-01

    Magnetic ordering temperatures in heavy rare earth metal dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to a pressure of 69 GPa and a temperature of 10 K. Previous studies using magnetic susceptibility measurements at high pressures were able to track magnetic ordering temperature only till 7 GPa in the hexagonal close packed (hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. This is followed by a rapid increase in the magnetic ordering temperatures in the double hcp phase and finally leveling off in the distorted face centered cubic phase of Dy. Our studies reaffirm that 4f-shell remains localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.

  9. Electrochemical behaviour of dysprosium in the eutectic LiCl-KCl at W and Al electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Castrillejo, Y. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain)]. E-mail: ycastril@qa.uva.es; Bermejo, M.R. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Barrado, A.I. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Pardo, R. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Barrado, E. [Dpto de Quimica Analitica, Facultad de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Martinez, A.M. [Department of Materials Technology, Sem Saelands vei 6, 7491 Trondheim (Norway)

    2005-03-15

    The electrochemical behaviour of DyCl{sub 3} was studied in the eutectic LiCl-KCl at different temperatures. The cathodic reaction can be written:Dy(III)+3e-bar Dy(0)which can be divided in two very close cathodic steps:Dy(III)+1e-bar Dy(II)andDy(II)+2e-bar Dy(0)Transient electrochemical techniques, such as cyclic voltammetry, chronopotentiometry, and chronoamperometry were used in order to study the reaction mechanism and the transport parameters of electroactive species at a tungsten electrode. The results showed that in the eutectic LiCl-KCl, electrocrystallization of dysprosium seems to be the controlling electrochemical step. Chronoamperometric studies indicated instantaneous nucleation of dysprosium with three dimensional growth of the nuclei whatever the applied overpotential.Mass transport towards the electrode is a simple diffusion process, and the diffusion coefficient of the electroactive species, i.e. Dy(III), has been calculated. The validity of the Arrhenius law was also verified by plotting the variation of the logarithm of the diffusion coefficient versus 1/T.In addition, the electrode reactions of the LiCl-KCl-DyCl{sub 3} solutions at an Al wire were also investigated by cyclic voltammetry and open circuit chronopotentiometry. The redox potential of the Dy(III)/Dy couple at the Al electrode was observed at more positive potentials values than those at the inert electrode. This potential shift was thermodynamically analyzed by a lowering of activity of Dy in the metal phase due to the formation of intermetallic compounds.

  10. Structural, optical, thermal, mechanical and dielectric studies of Sulfamic acid single crystals: An influence of dysprosium (Dy3+) doping

    Science.gov (United States)

    Singh, Budhendra; Shkir, Mohd.; AlFaify, S.; Kaushal, Ajay; Nasani, Narendar; Bdikin, Igor; Shoukry, H.; Yahia, I. S.; Algarni, H.

    2016-09-01

    Sulfamic acid is a potential material that exhibits excellent optical properties. A good quality, pure and dysprosium (Dy3+) doped (2.5 and 5 mol %) Sulfamic acid (SA) single crystals were grown successfully by slow cooling method. Structural study revealed a slight change in its lattice parameters and volume, suggesting the successful incorporation of Dy3+ in crystal system. The existence of dysprosium in the system was also confirmed. Presence of various vibrational modes was confirmed. Optical transparency was found to have a significant effect with variation in the doping concentration. Furthermore, a marked enhancement in its mechanical parameters with doping was also identified by nanoindentation technique. Etching study was also performed on the grown crystals to study the etch-pit formation and growth mechanism. Effect of doping on the thermal stability was analysed. All the results were compared and discussed in detail to get insight of the effect of doping concentration on Sulfamic acid crystal.

  11. Optical trapping of ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities and van der Waals $C_6$ coefficients

    CERN Document Server

    Li, Hui; Dulieu, Olivier; Nascimbene, Sylvain; Lepers, Maxence

    2016-01-01

    The efficiency of optical trapping of ultracold atoms depend on the atomic dynamic dipole polarizability governing the atom-field interaction. In this article, we have calculated the real and imaginary parts of the dynamic dipole polarizability of dysprosium in the ground and first excited level. Due to the high electronic angular momentum of those two states, the polarizabilities possess scalar, vector and tensor contributions that we have computed, on a wide range of trapping wavelengths, using the sum-over-state formula. Using the same formalism, we have also calculated the $C_6$ coefficients characterizing the van der Waals interaction between two dysprosium atoms in the two lowest levels. We have computed the energies of excited states and the transition probabilities appearing in the sums, using a combination of \\textit{ab initio} and least-square-fitting techniques provided by the Cowan codes and extended in our group. Regarding the real part of the polarizability, for field frequencies far from atomic...

  12. Evaluating United States and world consumption of neodymium, dysprosium, terbium, and praseodymium in final products

    Science.gov (United States)

    Hart, Matthew

    This paper develops scenarios of future rare-earth-magnet metal (neodymium, dysprosium, terbium, and praseodymium) consumption in the permanent magnets used in wind turbines and hybrid electric vehicles. The scenarios start with naive base-case scenarios for growth in wind-turbine and hybrid-electric-vehicle sales over the period 2011 to 2020, using historical data for each good. These naive scenarios assume that future growth follows time trends in historical data and does not depend on any exogenous variable. Specifically, growth of each technological market follows historical time trends, and the amount of rare earths used per unit of technology remains fixed. The chosen reference year is 2010. Implied consumptions of the rare earth magnet metals are calculated from these scenarios. Assumptions are made for the material composition of permanent magnets, the market share of permanent-magnet wind turbines and vehicles, and magnet weight per unit of technology. Different scenarios estimate how changes in factors like the material composition of magnets, growth of the economy, and the price of a substitute could affect future consumption. Each scenario presents a different method for reducing rare earth consumption and could be interpreted as potential policy choices. In 2010, the consumption (metric tons, rare-earth-oxide equivalent) of each rare-earth-magnet metal was as follows. Total neodymium consumption in the world for both technologies was 995 tons; dysprosium consumption was 133 tons; terbium consumption was 50 tons; praseodymium consumption was zero tons. The base scenario for wind turbines shows there could be strong, exponential growth in the global wind turbine market. New U.S. sales of hybrid vehicles would decline (in line with the current economic recession) while non-U.S. sales increase through 2020. There would be an overall increase in the total amount of magnetic rare earths consumed in the world. Total consumption of each rare earth in the short

  13. Luminescence features of dysprosium and phosphorus oxide co-doped lithium magnesium borate glass

    Science.gov (United States)

    Hashim, S.; Mhareb, M. H. A.; Ghoshal, S. K.; Alajerami, Y. S. M.; Saripan, M. I.; Bradley, D. A.

    2017-08-01

    Lithium magnesium borate (LMB) glass system co-doped with the oxides of dysprosium (Dy2O3) and phosphorus (P2O5) were synthesized using melt-quenching method. Prepared samples were characterized using various techniques to determine the effects of co-dopants concentration variation on their thermoluminescence (TL) and photoluminescence (PL) properties. TL glow curves of LMB:0.5Dy sample revealed a single prominent peak at Tm=190 °C, where TL intensity was enhanced by a factor of 2.5 with the increase of P2O5 concentration up to 1 mol%. This enhancement was accompanied by a shift in Tm towards higher temperature. Good linearity in the range of 1-100 Gy with linear correlation coefficient of 0.998 was achieved. PL spectra displayed two significant peaks centred at 481 nm and 573 nm. These attractive luminescence features of the proposed glass system may be useful for the development of radiation dosimetry.

  14. Isolation of {sup 163}Ho from dysprosium target material by HPLC for neutrino mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Veronika; Taylor, Wayne A.; Nortier, Francois M.; Engle, Jonathan W.; Pollington, Anthony D.; Kunde, Gerd J.; Rabin, Michael W.; Birnbaum, Eva R. [Los Alamos National Laboratory, Los Alamos, NM (United States). Chemistry Div.; Barnhart, Todd E.; Nickles, Robert J. [Univ. Wisconsinn, Madison, WI (United States). Dept. of Medical Physics

    2015-07-01

    The rare earth isotope {sup 163}Ho is of interest for neutrino mass measurements. This report describes the isolation of {sup 163}Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, {sup 163}Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm{sup -3} α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized by MC-ICP-MS to determine the {sup 163}Ho/{sup 165}Ho ratio, {sup 163}Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4 x 10{sup 5} for Dy. The isolated Ho fraction contained 24.8 ± 1.3 ng of {sup 163}Ho corresponding to holmium recovery of 72 ± 3%.

  15. Optical trapping of ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities and van der Waals C 6 coefficients

    Science.gov (United States)

    Li, H.; Wyart, J.-F.; Dulieu, O.; Nascimbène, S.; Lepers, M.

    2017-01-01

    The efficiency of the optical trapping of ultracold atoms depends on the atomic dynamic dipole polarizability governing the atom-field interaction. In this article, we have calculated the real and imaginary parts of the dynamic dipole polarizability of dysprosium in the ground and first excited levels. Due to the high electronic angular momentum of those two states, the polarizabilities possess scalar, vector and tensor contributions that we have computed, on a wide range of trapping wavelengths, using the sum-over-state formula. Using the same formalism, we have also calculated the C 6 coefficients characterizing the van der Waals interaction between two dysprosium atoms in the two lowest levels. We have computed the energies of excited states and the transition probabilities appearing in the sums, using a combination of ab initio and least-square-fitting techniques provided by the Cowan codes and extended in our group. Regarding the real part of the polarizability, for field frequencies far from atomic resonances, the vector and tensor contributions are two-orders-of-magnitude smaller than the scalar contribution, whereas for the imaginary part, the vector and tensor contributions represent a noticeable fraction of the scalar contribution. Finally, our anisotropic C 6 coefficients are much smaller than those published in the literature.

  16. Dysprosium(III) complexes with a square-antiprism configuration featuring mononuclear single-molecule magnetic behaviours based on different β-diketonate ligands and auxiliary ligands.

    Science.gov (United States)

    Zhang, Sheng; Ke, Hongshan; Shi, Quan; Zhang, Jangwei; Yang, Qi; Wei, Qing; Xie, Gang; Wang, Wenyuan; Yang, Desuo; Chen, Sanping

    2016-03-28

    Three mononuclear dysprosium(III) complexes derived from three β-diketonate ligands, 4,4,4-trifluoro-1-(4-methylphenyl)-1,3-butanedione (tfmb), 4,4,4-trifluoro-1-(4-fluorophenyl)-1,3-butanedione (tffb) and 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione (tfnb) as well as auxiliary ligands, 5-nitro-1,10-phenanthroline (5-NO2-Phen), DMF and 2,2'-bipyridine (bpy) have been synthesized and structurally characterized, namely [Dy(5-NO2-Phen)(tfmb)3] (1), [Dy(DMF)2(tffb)3] (2) and [Dy(bpy)2(tfnb)3]·0.5(1,4-dioxane) (3). The metal ions in 1-3 adopt an approximately square-antiprismatic (SAP) coordination environment with D4d axial symmetry. The magnetic properties of 1-3 have been investigated, displaying weak out-of-phase AC signals under a zero-DC field. With an applied DC field of 1200 Oe, the quantum tunnelling of the magnetization was suppressed in 1-3 with the pre-exponential factor τ0 = 5.3 × 10(-7) s and the effective barrier ΔE/kB = 83 K for 1 as well as the pre-exponential factor τ0 = 3.09 × 10(-7) s and the effective barrier ΔE/kB = 39 K for 3. Interestingly, for the frequency dependence of the out-of-phase (χ'') of the AC susceptibility of 2, two slow relaxation of the magnetization processes occurred under the applied magnetic field of 1200 Oe, corresponding to the fast relaxation (FR) phase and slow relaxation (SR) phase, respectively. Arrhenius analysis gave the effective energy barrier (ΔE/kB) of 55 K and the pre-exponential factor (τ0) of 8.23 × 10(-12) for the SR. It is thus very likely that the FR process in complex 2 results from QTM enhanced by dipolar interactions between the Dy ions or the presence of the applied field. The structure-property relationship of some Dy(III) based mononuclear SMMs with the SAP configuration was further discussed.

  17. White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses

    Science.gov (United States)

    Luewarasirikul, N.; Kim, H. J.; Meejitpaisan, P.; Kaewkhao, J.

    2017-04-01

    Lanthanum calcium phosphate oxide and oxyfluoride glasses doped with dysprosium oxide were prepared by melt-quenching technique with chemical composition 20La2O3:10CaO:69P2O5:1Dy2O3 and 20La2O3:10CaF2:69P2O5:1Dy2O3. The physical, optical and luminescence properties of the glass samples were studied to evaluate their potential to using as luminescence materials for solid-state lighting applications. The density, molar volume and refractive index of the glass samples were carried out. The optical and luminescence properties were studied by investigating absorption, excitation, and emission spectra of the glass samples. The absorption spectra were investigated in the UV-Vis-NIR region from 300 to 2000 nm. The excitation spectra observed under 574 nm emission wavelength showed the highest peak centered at 349 nm (6H15/2 → 6P7/2). The emission spectra, excited with 349 nm excitation wavelength showed two major peaks corresponding to 482 nm blue emission (4F9/2 → 6H15/2) and 574 nm yellow emission (4F9/2 → 6H13/2). The experimental lifetime were found to be 0.539 and 0.540 for oxide and oxyfluoride glass sample, respectively. The x,y color coordinates under 349 nm excitation wavelength were (0.38, 0.43) for both glass samples, that be plotted in white region of CIE 1931 chromaticity diagram. The CCT values obtained from the glass samples are 4204 K for oxide glass and 4228 K for oxyfluoride glass corresponding to the commercial cool white light (3100-4500 K). Judd-Ofelt theory had also been employed to obtain the J-O parameters (Ω2, Ω4 and Ω6), oscillator strength, radiative transition possibility, stimulated emission cross section and branching ratio. The Ω2 > Ω4 > Ω6 trend of J-O parameters of both glass samples may indicate the good quality of a glass host for using as optical device application. Temperature dependence of emission spectra was studied from 300 K to 10 K and found that the intensity of the emission peak was found to be increased with

  18. Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium.

    Science.gov (United States)

    Hohensee, M A; Leefer, N; Budker, D; Harabati, C; Dzuba, V A; Flambaum, V V

    2013-08-02

    We report a joint test of local Lorentz invariance and the Einstein equivalence principle for electrons, using long-term measurements of the transition frequency between two nearly degenerate states of atomic dysprosium. We present many-body calculations which demonstrate that the energy splitting of these states is particularly sensitive to violations of both special and general relativity. We limit Lorentz violation for electrons at the level of 10(-17), matching or improving the best laboratory and astrophysical limits by up to a factor of 10, and improve bounds on gravitational redshift anomalies for electrons by 2 orders of magnitude, to 10(-8). With some enhancements, our experiment may be sensitive to Lorentz violation at the level of 9 × 10(-20).

  19. Nonlinear optical properties of lutetium and dysprosium bisphthalocyanines at 1550 nm with femto- and nanosecond pulse excitation

    Science.gov (United States)

    Plekhanov, A. I.; Basova, T. V.; Parkhomenko, R. G.; Gürek, A. G.

    2017-02-01

    In this work, the nonlinear optical properties of unsubstituted lutetium (LuPc2) and dysprosium (DyPc2) bisphthalocyanines as well as octasubstituted Lu(PcR8)2 derivative with R=-S(C6H13) were studied at a wavelength of 1550 nm with 10 ns and 300 fs pulses. Based on Z-scan measurements the nonlinear absorption and refraction coefficient as well as the nature of nonlinear optical properties were analyzed for these materials. Open aperture Z-scan indicates strong two-photon absorption in all three bisphthalocyanines in nano- and femtosecond regimes. With good nonlinear optical coefficients, bisphthalocyanines of rare earth elements are expected to be promising materials for the creation of optical limiters.

  20. Spectroscopic data of the 1.8-, 2.9-, and 4.3- mu m transitions in dysprosium-doped gallium lanthanum sulfide glass

    Science.gov (United States)

    Schweizer, T.; Hewak, D. W.; Samson, B. N.; Payne, D. N.

    1996-10-01

    Infrared emission at 1.8, 2.9, and 4.3 mu m is measured in dysprosium-doped gallium lanthanum sulfide (Ga:La:S) glass excited at 815 nm. Emission cross sections were calculated by Judd-Ofelt analysis, the Fuchtbauer-Ladenburg equation, and the theory of McCumber. The sigma tau value for the 4.3- mu m transition is \\similar 4000 times larger in the Ga:La:S glass than in a dysprosium-doped LiYF4 crystal, which has lased on this transition. The large sigma tau value and the recently reported ability of Ga:La:S glass to be fabricated into fiber form show the potential for an efficient, low-threshold mid-infrared fiber laser. The fluorescence peak at 4.3 mu m coincides with the fundamental absorption of atmospheric carbon dioxide, making the glass a potential laser source for gas-sensing applications.

  1. Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass.

    Science.gov (United States)

    Schweizer, T; Hewak, D W; Samson, B N; Payne, D N

    1996-10-01

    Infrared emission at 1.8, 2.9, and 4.3 microm is measured in dysprosium-doped gallium lanthanum sulfide (Ga:La:S) glass excited at 815 nm. Emission cross sections were calculated by Judd-Ofelt analysis, the Füchtbauer- Ladenburg equation, and the theory of McCumber. The sigmatau value for the 4.3-microm transition is ~4000 times larger in the Ga:La:S glass than in a dysprosium-doped LiYF(4) crystal, which has lased on this transition. The large sigmatau value and the recently reported ability of Ga:La:S glass to be fabricated into fiber form show the potential for an efficient, low-threshold mid-infrared fiber laser. The f luorescence peak at 4.3 microm coincides with the fundamental absorption of atmospheric carbon dioxide, making the glass a potential laser source for gas-sensing applications.

  2. On-line complexation/cloud point preconcentration for the sensitive determination of dysprosium in urine by flow injection inductively coupled plasma-optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Claudia; Cerutti, Soledad; Silva, Maria F. [Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700, San Luis (Argentina); Olsina, Roberto A.; Martinez, Luis D. [Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700, San Luis (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Avda. Rivadavia 1917, CP C1033AAJJ, Buenos Aires (Argentina)

    2003-01-01

    An on-line dysprosium preconcentration and determination system based on the hyphenation of cloud point extraction (CPE) to flow injection analysis (FIA) associated with ICP-OES was studied. For the preconcentration of dysprosium, a Dy(III)-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex was formed on-line at pH 9.22 in the presence of nonionic micelles of PONPE-7.5. The micellar system containing the complex was thermostated at 30 C in order to promote phase separation, and the surfactant-rich phase was retained in a microcolumn packed with cotton at pH 9.2. The surfactant-rich phase was eluted with 4 mol L{sup -1} nitric acid at a flow rate of 1.5 mL min{sup -1}, directly in the nebulizer of the plasma. An enhancement factor of 50 was obtained for the preconcentration of 50 mL of sample solution. The detection limit value for the preconcentration of 50 mL of aqueous solution of Dy was 0.03 {mu}g L{sup -1}. The precision for 10 replicate determinations at the 2.0 {mu}g L{sup -1}Dy level was 2.2% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the preconcentration system for dysprosium was linear with a correlation coefficient of 0.9994 at levels near the detection limits up to at least 100 {mu}g L {sup -1}. The method was successfully applied to the determination of dysprosium in urine. (orig.)

  3. Synthesis and Crystal Structure of Tri-(2-mercaptopyridine N-oxide)bis(dimethyl sulfoxide) Dysprosium(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A range of rare earth metal complexes of 2-mercaptopyridine N-oxide (Hmpo) have been synthesized, and studied by elemental analysis and IR spectroscopic technique. Crystal structure of Dy(mpo)3(DMSO)2 (DMSO = dimethyl sulfoxide) has been determined. The complex crystallizes in the triclinic system, space group Pī with lattice parameters: a = 9.602(3), b = 9.803(3), c = 15.498(5)A, α= 89.51(1), β= 85.73(1), γ= 62.99(1)°, Dc = 1.787 g/cm3, C19H24N3O5S5Dy, Mr = 697.21, Z = 2, F(000) = 690, μ = 3.321mm-1, the final R = 0.0237 and wR = 0.0587 for 4116 reflections with I>σ2(I). The coordination number of dysprosium Ⅲ is eight, and its coordination geometry is a somewhat distorted square antiprism with O(3), O(4), O(5), S(3) and O(1), O(2), S(1), S(2) at the tetragonal bases (dihedral angle between their mean planes is 2.9(1)0). Around the Dy atom, three five-membered ring planes (Dy, O, N, C, S) make the dihedral angles of 74.42, 11.31 and 83.72, respectively.

  4. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    Science.gov (United States)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  5. Ferroelectric properties of dysprosium-doped Bi4Ti3O12 thin films crystallized in various atmospheres

    Institute of Scientific and Technical Information of China (English)

    CHENG Chuan-pin; TANG Ming-hua; YE Zhi; ZHOU Yic-hun; ZHENG Xue-jun; ZHONG Xiang-li; HU Zeng-shun

    2006-01-01

    Dysprosium-doped Bi4Ti3O12 (Bi3.4Dy0.6Ti3O12,BDT) ferroelectric thin films were deposited on Pt(111)/Ti/SiO2/Si(111) substrates by chemical solution deposition (CSD) and crystallized in nitrogen,air and oxygen atmospheres,respectively. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to identify the crystal structure,the surface and cross-section morphology of the deposited ferroelectric films. The results show that the crystallization atmosphere has significant effect on determining the crystallization and ferroelectric properties of the BDT films. The film crystallized in nitrogen at a relatively low temperature of 650 ℃,exhibits excellent crystallinity and ferroelectricity with a remanent polarization of 2Pr = 24.9 μC/cm2 and a coercive field of 144.5 kV/cm. While the films annealed in air and oxygen at 650 ℃ do not show good crystallinity and ferroelectricity until they are annealed at 700 ℃. The structure evolution and ferroelectric properties of BDT thin films annealed under different temperatures (600-750 ℃) were also investigated. The crystallinity of the BDT films is improved and the average grain size increases when the annealing temperature increases from 600 ℃ to 750 ℃ at an interval of 50 ℃. However,the polarization of the films is not monotonous function of the annealing temperature.

  6. Sensitive search for the temporal variation of the fine structure constant using radio-frequency E1 transitions in atomic dysprosium

    CERN Document Server

    Nguyen, A T; Lamoreaux, S K; Torgerson, J R

    2003-01-01

    It has been proposed that the radio-frequency electric-dipole (E1) transition between two nearly degenerate opposite-parity states in atomic dysprosium should be highly sensitive to possible temporal variation of the fine structure constant ($\\alpha$) [V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. A {\\bf 59}, 230 (1999)]. We discuss here an experimental realization of the proposed search, which involves monitoring the E1 transition frequency over a period of time using direct frequency counting techniques. We estimate that a statistical sensitivity of $|\\adota| \\sim 10^{-18}$/yr may be achieved and discuss possible systematic effects in such a measurement.

  7. Extraction liquide-solide de Dysprosium(III) par le charbon actif ferromagnétique

    OpenAIRE

    khiri, khaira

    2014-01-01

    L’extraction liquide-solide de Dy(III) a été faite par le charbon actif ferromagnétique, dans un milieu nitré. L’effet de pH initial, concentration initial en ion Dy(III), le temps de contact, la force ionique, la température, la masse et l’élution ont été étudiés. La capacité de sorption augmente avec l’augmentation de la concentration initiale en Dy(III), le pH et la température. L’isotherme de Freundlich décrit mieux le processus d’extraction, ainsi que le modèle cinétique de p...

  8. Luminescence of divalent europium activated spinels synthesized by combustion and the enhanced afterglow by dysprosium incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Haoyi, E-mail: manofchina@gmail.com; Jin, Yahong

    2016-05-01

    Herein we report a luminescent phenomenon of Eu{sup 2+} in the spinel MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} samples which are successfully synthesized via a combustion method. The XRD shows cubic spinel structure is obtained from the prepared samples. The mean crystal sizes estimated from XRD data are 30 and 10 nm for MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} respectively, and the large grain particles are the agglomeration of crystallites. The Eu{sup 2+} ions show a blue emission at around 480 nm and an afterglow phenomenon is observed after the removal of excitation. The afterglow spectrum of MgAl{sub 2}O{sub 4}: Eu{sup 2+}, Dy{sup 3+} shows two emissions at 480 and 520 nm while only one at 480 nm is observed in ZnAl{sub 2}O{sub 4}: Eu{sup 2+}, Dy{sup 3+}. The afterglow intensity and the persisting duration can be substantially enhanced by the Dy{sup 3+} incorporation because the trapping ability of the electron traps is reinforced. This is confirmed by the TL curves of the samples.

  9. Photo and cathodoluminescence characteristics of dysprosium doped yttrium oxide nanoparticles prepared by Polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Balderas-Xicohténcatl, R., E-mail: rbalderas@fis.cinvestav.mx [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07360, México, D.F. (Mexico); Martínez-Martínez, R. [Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Carretera a Acatlima Km. 2.5, Huajuapan de León, Oaxaca 69000 (Mexico); Rivera-Alvarez, Z.; Santoyo-Salazar, J.; Falcony, C. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, Apdo, Postal 14-470, Del. Gustavo A. Madero, C.P. 07360, México, D.F. (Mexico)

    2014-02-15

    The luminescent characteristics of Dy{sup 3+}-doped Y{sub 2}O{sub 3} nanopowders synthesized using the polyol method are reported. The Y{sub 2}O{sub 3} nanoparticles presented a cubic phase crystalline structure of Y{sub 2}O{sub 3} after an annealing treatment in oxygen ambient at temperatures above 600 °C. The averaged crystallite size determined from the X-ray diffraction peaks width was in the 20–32 nm range depending on the annealing temperature. Scanning and transmission electron microscopy studies indicate the formation of nanoparticle aggregates up to 175 nm in diameter. Photoluminescence and cathodoluminescence measurements show a predominant emission at 573 nm, which is attributed to the {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} of the Dy{sup 3+} ion. The luminescence emission dependence with the dopant concentration and post-annealing temperatures is discussed. -- Highlights: • Nanoparticles of Y{sub 2}O{sub 3}:Dy{sup 3+} have been successfully synthesized by the polyol method. • XRD shows a grain size from 20 to 32 nm which is in agreement with SEM and TEM. • Electronic micrographs indicate the formation agglomerates of ∼175 nm. • The method used in the synthesis is industrial scalable and a low cost. • CL emission is observed at naked eye.

  10. Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass

    Science.gov (United States)

    Gomes, Laércio; Librantz, André Felipe Henriques; Jackson, Stuart D.

    2010-03-01

    The primary excited state decay processes relating to the H613/2→H615/2˜3 μm laser transition in singly Dy3+-doped fluoride (ZBLAN) glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the F69/2, H67/2 energy levels at 1125 nm and F611/2, H69/2 energy levels at 1358 nm established that the energy levels above the H611/2 level, excluding the F49/2 level, are entirely quenched by multiphonon emission in ZBLAN glass. The H611/2 and H613/2 energy levels emit luminescence with peaks at ˜1700 and ˜2880 nm, respectively, but at low quantum (luminescence) efficiencies. The quantum efficiency of the H611/2 level and H613/2 level is ˜9×10-5 and ˜1.3×10-2, respectively, for [Dy3+]=0.5 mol % based on calculations of the radiative lifetimes using the Judd-Ofelt theory. Excited state absorption (ESA) was detected by monitoring the rise time of the 1700 nm luminescence after tuning the probe wavelength across the spectral range from 1100 to 1400 nm. As a result of nonradiative decay of the higher excited states, ESA contributes to the heating of ˜3 μm fiber lasers based on Dy3+-doped fluoride glass. For [Dy3+] up to 4 mol %, we found no evidence of energy transfer processes between Dy3+ ions that influence the decay characteristics of the H611/2 and H613/2 energy levels.

  11. Single-molecule magnet behavior in an octanuclear dysprosium(iii) aggregate inherited from helical triangular Dy3 SMM-building blocks.

    Science.gov (United States)

    Zhang, Li; Zhang, Peng; Zhao, Lang; Wu, Jianfeng; Guo, Mei; Tang, Jinkui

    2016-06-28

    An unprecedented octanuclear dysprosium(iii) cluster with the formula [Dy8L6(μ3-OH)4(μ2-CH3O)2(CH3OH)6(H2O)2]·6H2O·10CH3OH·2CH3CN () based on a nonlinearly tritopic aroylhydrazone ligand H3L has been isolated, realizing the successful linking of pairwise interesting triangular Dy3 SMMs. It is noteworthy that two enantiomers (Λ and Δ configurations) individually behaving as a coordination-induced chirality presented in the Dy3 helicate are connected in the meso Dy8 cluster. Remarkably, alternating-current magnetic susceptibility measurements revealed that the Dy8 cluster shows typical SMM behavior inherited from its Dy3 helical precursor. It is one of the rare polynuclear Lnn SMMs (n > 7) under zero dc field.

  12. Magnetic anisotropy in surface-supported single-ion lanthanide complexes

    CERN Document Server

    Stoll, Paul; Rolf, Daniela; Nickel, Fabian; Xu, Qingyu; Hartmann, Claudia; Umbach, Tobias R; Kopprasch, Jens; Ladenthin, Janina N; Schierle, Enrico; Weschke, Eugen; Czekelius, Constantin; Kuch, Wolfgang; Franke, Katharina J

    2016-01-01

    Single-ion lanthanide-organic complexes can provide stable magnetic moments with well-defined orientation for spintronic applications on the atomic level. Here, we show by a combined experimental approach of scanning tunneling microscopy and X-ray absorption spectroscopy that dysprosium-tris(1,1,1-trifluoro-4-(2-thienyl)-2,4butanedionate) (Dy(tta)$_3$) complexes deposited on a Au(111) surface undergo a molecular distortion, resulting in distinct crystal field symmetry imposed on the Dy ion. This leads to an easy-axis magnetization direction in the ligand plane. Furthermore, we show that tunneling electrons hardly couple to the spin excitations, which we ascribe to the shielded nature of the $4f$ electrons.

  13. Spin relaxation in antiferromagnetic Fe–Fe dimers slowed down by anisotropic DyIII ions

    Directory of Open Access Journals (Sweden)

    Valeriu Mereacre

    2013-11-01

    Full Text Available By using Mössbauer spectroscopy in combination with susceptibility measurements it was possible to identify the supertransferred hyperfine field through the oxygen bridges between DyIII and FeIII in a {Fe4Dy2} coordination cluster. The presence of the dysprosium ions provides enough magnetic anisotropy to “block” the hyperfine field that is experienced by the iron nuclei. This has resulted in magnetic spectra with internal hyperfine fields of the iron nuclei of about 23 T. The set of data permitted us to conclude that the direction of the anisotropy in lanthanide nanosize molecular clusters is associated with the single ion and crystal field contributions and 57Fe Mössbauer spectroscopy may be informative with regard to the the anisotropy not only of the studied isotope, but also of elements interacting with this isotope.

  14. Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and in vivo application

    Science.gov (United States)

    Tegafaw, Tirusew; Xu, Wenlong; Wasi Ahmad, Md; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho

    2015-09-01

    A new type of dual-mode T1 and T2 magnetic resonance imaging (MRI) contrast agent based on mixed lanthanide oxide nanoparticles was synthesized. Gd3+ (8S7/2) plays an important role in T1 MRI contrast agents because of its large electron spin magnetic moment resulting from its seven unpaired 4f-electrons, and Dy3+ (6H15/2) has the potential to be used in T2 MRI contrast agents because of its very large total electron magnetic moment: among lanthanide oxide nanoparticles, Dy2O3 nanoparticles have the largest magnetic moments at room temperature. Using these properties of Gd3+ and Dy3+ and their oxide nanoparticles, ultrasmall mixed gadolinium-dysprosium oxide (GDO) nanoparticles were synthesized and their potential to act as a dual-mode T1 and T2 MRI contrast agent was investigated in vitro and in vivo. The D-glucuronic acid coated GDO nanoparticles (davg = 1.0 nm) showed large r1 and r2 values (r2/r1 ≈ 6.6) and as a result clear dose-dependent contrast enhancements in R1 and R2 map images. Finally, the dual-mode imaging capability of the nanoparticles was confirmed by obtaining in vivo T1 and T2 MR images.

  15. Experimental and molecular dynamics studies of dysprosium(III) salt solutions for a better representation of the microscopic features used within the binding mean spherical approximation theory.

    Science.gov (United States)

    Ruas, Alexandre; Guilbaud, Philippe; Den Auwer, Christophe; Moulin, Christophe; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe

    2006-10-19

    This work is aimed at a predictive description of the thermodynamic properties of actinide(III) salt solutions at high concentration and 25 degrees C. A new solution of the binding mean spherical approximation (BIMSA) theory, based on the Wertheim formalism, for taking into account 1:1 and also 1:2 complex formation, is used to reproduce, from a simple procedure, experimental osmotic coefficient variation with concentration for three binary salt solutions of the same lanthanide(III) cation: dysprosium(III) perchlorate, nitrate, and chloride. The relevance of the fitted parameters is discussed, and their values are compared with available literature values. UV-vis/near-IR, time-resolved laser-induced fluorescence spectroscopy experiments, and molecular dynamics (MD) calculations were conducted for dilute to concentrated solutions (ca. 3 mol.kg-1) for a study of the microscopic behavior of DyCl3 binary solutions. Coupling MD calculations and extended X-ray absorption fine structure led to the determination of reliable distances. The MD results were used for a discussion of the parameters used in the BIMSA.

  16. Experimental and molecular dynamics studies of dysprosium(III) salt solutions for a better representation of the microscopic features used within the binding mean spherical approximation theory

    Energy Technology Data Exchange (ETDEWEB)

    Ruas, Alexandre; Guilbaud, Philippe; Den Auwer, Christophe; Moulin, Christophe; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe [DEN/DRCP/SCPS, CEA-Valrho Marcoule, BP 17171, 30207 Bagnols-sur-Ceze Cedex, DEN/DPC/SECR/LSRM, CEA-Saclay, Bat 391, BP 91191 Gif sur Yvette, Cedex (France); Laboratoire LI2C (UMR 7612), Universite Pierre et Marie Curie-Paris 6, Boite No. 51, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2006-07-01

    This work is aimed at a predictive description of the thermodynamic properties of actinide (III) salt solutions at high concentration and 25 deg. C. A new solution of the binding mean spherical approximation (BIMSA) theory, based on the Wertheim formalism, for taking into account 1: 1 and also 1: 2 complex formation, is used to reproduce, from a simple procedure, experimental osmotic coefficient variation with concentration for three binary salt solutions of the same lanthanide (III) cation: dysprosium (III) perchlorate, nitrate, and chloride. The relevance of the fitted parameters is discussed, and their values are compared with available literature values. UV-vis/near-IR, time-resolved laser-induced fluorescence spectroscopy experiments, and molecular dynamics (MD) calculations were conducted for dilute to concentrated solutions (ca. 3 mol, kg{sup -1}) for a study of the microscopic behavior of DyCl{sub 3} binary solutions. Coupling MD calculations and extended X-ray absorption fine structure led to the determination of reliable distances. The MD results were used for a discussion of the parameters used in the BIMSA. (authors)

  17. Elucidation of Dual Magnetic Relaxation Processes in Dinuclear Dysprosium(III) Phthalocyaninato Triple-Decker Single-Molecule Magnets Depending on the Octacoordination Geometry.

    Science.gov (United States)

    Katoh, Keiichi; Aizawa, Yu; Morita, Takaumi; Breedlove, Brian K; Yamashita, Masahiro

    2017-08-07

    When applying single-molecule magnets (SMMs) to spintronic devices, control of the quantum tunneling of the magnetization (QTM) as well as a spin-lattice interactions are important. Attempts have been made to use not only coordination geometry but also magnetic interactions between SMMs as an exchange bias. In this manuscript, dinuclear dysprosium(III) (Dy(III) ) SMMs with the same octacoordination geometry undergo dual magnetic relaxation processes at low temperature. In the dinuclear Dy(III) phthalocyaninato (Pc(2-) ) triple-decker type complex [(Pc)Dy(ooPc)Dy(Pc)] (1) (ooPc(2-) =2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyaninato) with a square-antiprismatic (SAP) geometry, the ground state is divided by the Zeeman effect, and level intersection occurs when a magnetic field is applied. Due to the ground state properties of 1, since the Zeeman diagram where the levels intersect in an Hdc of 2500 Oe, two kinds of QTM and direct processes occur. However, dinuclear Dy(III) -Pc systems with C4 geometry, which have a twist angle (ϕ) of less than 45° do not undergo dual magnetic relaxation processes. From magnetic field and temperature dependences, the dual magnetic relaxation processes were clarified. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M; Nur-E-Alam, M; Alameh, K [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027 (Australia); Premchander, P; Lee, Y T [Department of Information and Communications, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712 (Korea, Republic of); Kotov, V A [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 11 Mohovaya St, Moscow, 125009 (Russian Federation); Lee, Y P, E-mail: m.vasiliev@ecu.edu.au [Quantum Photonic Science Research Center, Department of Physics, Hanyang University, 133-791 (Korea, Republic of)

    2011-02-23

    We investigate the magneto-optic properties, crystal structure and annealing behaviour of nano-composite media with record-high magneto-optic quality exceeding the levels reported so far in sputtered iron-garnet films. Bi-substituted dysprosium-gallium iron-garnet films having excess bismuth oxide content are deposited using RF co-sputtering, and a range of garnet materials are crystallized using conventional oven-annealing processes. We report, for the first time ever, the results of optimization of thermal processing regimes for various high-performance magneto-optic iron-garnet compositions synthesized and describe the evolution of the optical and magneto-optical properties of garnet-Bi-oxide composite-material films occurring during the annealing processes. The crystallization temperature boundaries of the system (BiDy){sub 3}(FeGa){sub 5}O{sub 12} : Bi{sub 2}O{sub 3} are presented. We also report the results of x-ray diffraction and energy-dispersive x-ray spectroscopy studies of this recently developed class of high-performance magneto-optic composites. Our hypothesis of iron oxides being the cause of excess optical absorption in sputtered Bi-iron-garnet films is confirmed experimentally.

  19. Challenging lanthanide relaxation theory: erbium and thulium complexes that show NMR relaxation rates faster than dysprosium and terbium analogues.

    Science.gov (United States)

    Funk, Alexander M; Harvey, Peter; Finney, Katie-Louise N A; Fox, Mark A; Kenwright, Alan M; Rogers, Nicola J; Senanayake, P Kanthi; Parker, David

    2015-07-07

    Measurements of the proton NMR paramagnetic relaxation rates for several series of isostructural lanthanide(III) complexes have been performed in aqueous solution over the field range 1.0 to 16.5 Tesla. The field dependence has been modeled using Bloch-Redfield-Wangsness theory, allowing values for the electronic relaxation time, Tle and the magnetic susceptibility, μeff, to be estimated. Anomalous relaxation rate profiles were obtained, notably for erbium and thulium complexes of low symmetry 8-coordinate aza-phosphinate complexes. Such behaviour challenges accepted theory and can be interpreted in terms of changes in Tle values that are a function of the transient ligand field induced by solvent collision and vary considerably between Ln(3+) ions, along with magnetic susceptibilities that deviate significantly from free-ion values.

  20. Effect of Ligand Field Tuning on the SMM Behavior for Three Related Alkoxide-Bridged Dysprosium Dimers.

    Science.gov (United States)

    Peng, Yan; Mereacre, Valeriu; Baniodeh, Amer; Lan, Yanhua; Schlageter, Martin; Kostakis, George E; Powell, Annie K

    2016-01-04

    The synthesis and characterization of three Dy2 compounds, [Dy2(HL1)2(NO3)4] (1), [Dy2(L2)2(NO3)4] (2), and [Dy2(HL3)2(NO3)4] (3), formed using related tripodal ligands with a central tertiary amine bearing picolyl and alkoxy arms, 2-[(2-hydroxy-ethyl)-pyridin-2-ylmethylamino]-ethanol (H2L1), 2-(bis-pyridin-2-ylmethylamino)-ethanol (HL2), and 2-(bis-pyridin-2-ylmethylamino)-propane-1,3-diol (H2L3), are reported. The compounds are rare examples of alkoxide-bridged {Dy2} complexes and display capped square antiprism coordination geometry around each Dy(III) ion. Changes in the ligand field environment around the Dy(III) ions brought about through variations in the ligand donors can be gauged from the magnetic properties, with compounds 1 and 2 showing antiparallel coupling between the Dy(III) ions and 3 showing parallel coupling. Furthermore, slow relaxation of the magnetization typical of SMM behavior could be observed for compounds 2 and 3, suggesting that small variations in the ligand field can have a significant influence on the slow relaxation processes responsible for SMM behavior of Dy(III)-based systems.

  1. Global use structures of the magnetic materials neodymium and dysprosium. A scenario-based analysis of the effect of the diffusion of electromobility on the demand for rare earths; Globale Verwendungsstrukturen der Magnetwerkstoffe Neodym und Dysprosium. Eine szenariobasierte Analyse der Auswirkung der Diffusion der Elektromobilitaet auf den Bedarf an Seltenen Erden

    Energy Technology Data Exchange (ETDEWEB)

    Gloeser-Chahoud, Simon; Kuehn, Andre; Tercero Espinoza, Luis

    2016-06-15

    Neodymium-iron-boron magnets (NdFeB) have experienced a significant demand as the most powerful permanent magnet in recent years, especially for the manufacture of compact electric servomotors with high efficiency and high power density, especially for mobile applications in hybrid traction motors and electric vehicles or for electric bikes. However, NdFeB magnets are also increasingly being used in general mechanical engineering (conveying and pumping systems, tools, air conditioning systems, lift motors, etc.), in the small electric motors of conventional passenger cars or in the generators of large wind power plants with permanent magnetic direct drive. Nevertheless, there is still high uncertainty in the use structures of NdFeB magnets and the contained rare earth elements neodymium and dysprosium. An effective instrument for increasing the market transparency and the understanding of complex anthropogenic material cycles is the dynamic material flow modeling. In the present work paper, this instrument is used for an in-depth analysis of the use structures of NdFeB magnets and the contained rare earths on a global scale. The dynamic modeling of product usage cycles reveals today's usage structures and quantifies future magnetic quantities in obsolete product flows. It could be shown that the magnets in today's scrap volume are mainly contained in obsolete electronics applications such as hard disks (HDD), CD and DVD drives, which makes the recycling hardly seem to be economical due to the small magnets and the high material spread, but in the foreseeable future with larger magnetic quantities from synchronous servomotors and generators can be expected, which significantly increases the recycling potential. In a further step, the effect of the diffusion of alternative drives in the automotive market on the dysprosium requirement is analyzed using a system dynamics model and possible adaptation mechanisms in the form of different substitution effects in

  2. Slow Magnetic Relaxation Observed in Dysprosium Compounds Containing Unsupported Near-Linear Hydroxo- and Fluoro-Bridges.

    Science.gov (United States)

    Brunet, Gabriel; Habib, Fatemah; Korobkov, Ilia; Murugesu, Muralee

    2015-07-06

    The encapsulating N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) ligand was employed to isolate two novel Dy(III) compounds which contain rare bridging pathways for lanthanide systems. Compound 1, [Na2Dy(III)2(valdien)2(μ-OH)(dbm)2(H2O)2][Na2Dy(III)2(valdien)2(μ-OH)(NO3)2(dbm)2], where dbm(-) is dibenzoylmethanido, and compound 2, [Na3Dy(III)2(valdien)2(μ-F)(μ3-F)2(Cl)2(MeOH)2]n·0.5(MeOH)·(H2O), both exhibit linear lone hydroxo- and fluoro-bridges, respectively, between the metal centers. The unit cell of 1 comprises two discrete dinuclear molecules, which differ slightly, forming a cation-anion pair, while 2 forms a coordination polymer. The magnetic investigations indicate that both compounds display ferromagnetic coupling between the Dy(III) ions. Magnetic susceptibility measurements in the temperature range 1.8-300 K reveal that the Dy(III) ions in 1 are weakly coupled, resulting in a mononuclear single-molecule magnet-like behavior under an applied field. In the case of 2, the stronger coupling arising from the fluoride-bridge, leads to zero-field single-molecule magnet (SMM) behavior with a non-negligible anisotropy barrier (Ueff) of 42 K.

  3. The role of dysprosium on the structural and magnetic properties of (Nd1-xDyx)2Fe14B nanoparticles

    Science.gov (United States)

    Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid

    2017-02-01

    In current work, Nd2Fe14B nanoparticles was synthesized by sol-gel method. Dysprosium powders were added into Nd2Fe14B nanoparticles by mechanical alloying process in order to enhancement of coercivity. The phase analysis, structure, and magnetic properties of annealed (Nd1-xDyx)2Fe14B nanoparticles with different Dy-content (x=0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were investigated by employing X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive spectroscopy, field emission scanning electron microscope, transmission electron microscope and vibrating sample magnetometer techniques. The results showed that with an increase in Dy amounts, the coercivity of particles increased from 2.9 kOe to 13.4 kOe and then decreased to 5.6 kOe. By adding an optimum amount of Dy (x=0.4), the coercivity was significantly increased from 2.9 kOe to 13.4 kOe. The average particle size of annealed (Nd1-xDyx)2Fe14B nanoparticles was below 10 nm. Magnetization reversal studies indicate that the coercivity of milled and annealed (Nd1-xDyx)2Fe14B nanoparticles is controlled by the nucleation of reversed magnetic domains. The experimental results in the angular dependence of coercivity for (Nd1-xDyx)2Fe14B permanent magnets showed that the normalized coercivity of the permanent magnets Hc(θ)/Hc(0) increases from 1 to about 1.2-1.5 with increasing θ from 0 to about π/3, for x=0.4-0.6.

  4. Ion-Ion Neutralization.

    Science.gov (United States)

    1980-12-31

    plasma were identified using a downstream quadrupole mass spectrometer. In these experimento it is a simple matter to establish H+(H 2 0):f as the...pressure as predicted by the Thomson t2rnary mechanism whicK hzr been suownr to be valid experimentally at hiTh rrsurs (,han and Peron, 1:EI4 hereafter t...of NO , NO2 ions in various gases and the ternary recombination coefficients of these ions in the higher pres:;ure ( Thomson ) re"ie. Equation (5) cr>n

  5. Influence of dysprosium addition on the structural, morphological, electrical and magnetic properties of nano-crystalline W-type hexaferrites

    Indian Academy of Sciences (India)

    Ali-Sharbati; Javad-Mola Verdi Khani; G R Amiri; R Mousarezaei

    2015-02-01

    Dysporium (Dy)-substituted W-type barium hexaferrites were prepared by the citrate sol–gel-method. Crystalline structure, morphology, magnetic properties, DC resistivity and microwave absorption properties of BaNi2DyFe16−O27 ( = 0-0.9) were studied using X-ray diffraction, transmission electron microscope (TEM), vibrating sample magnetometer and vector network analyzer and sensitive source meter, respectively. Single-phase W-type barium hexaferrites, with a chemical composition of BaNi2DyFe16−O27 ( = 0-0.9), were formed by being heated at 1250°C for 4 h in air. The magnetic properties such as saturation magnetization (s), and coercivity (c) were calculated from hysteresis loops. Hysteresis loop measurements show that the coercivity values lie in the range of 530–560 Oe with increasing Dy content. It was also observed that magnetization decreases with the increase of Dy content. The DC resistivity was observed to increase from 0.83 × 107 to 6.92 × 107 cm with increasing Dy contents due to the unavailability of Fe3+ ions. Microwave absorption properties of hexaferrite (70 wt%)–acrylic resin (30 wt%) composites were measured by the standing-wave-ratio (SWR) method in the range from 12 to 20 GHz. For sample with = 0.6, a minimum reflection loss of −40 dB was obtained at 16.2 GHz for a layer of 1.7 mm in thickness. Sample with = 0.9 had wide bandwidth absorption in the frequency range of 13.5–18 GHz with reflection losses less than −15 dB. Meanwhile the minimum reflection point shifts toward higher frequency with the increase of Dy content.

  6. Generation of White Light from Dysprosium-Doped Strontium Aluminate Phosphor by a Solid-State Reaction Method

    Science.gov (United States)

    Sahu, Ishwar Prasad; Bisen, D. P.; Brahme, N.; Tamrakar, Raunak Kumar

    2016-04-01

    A single-host lattice, white light-emitting SrAl2O4:Dy3+ phosphor was synthesized by a solid-state reaction method. The crystal structure of prepared SrAl2O4:Dy3+ phosphor was in a monoclinic phase with space group P21. The chemical composition of the sintered SrAl2O4:Dy3+ phosphor was confirmed by the energy dispersive x-ray spectroscopy technique. Under ultra-violet excitation, the characteristic emissions of Dy3+ are peaking at 475 nm, 573 nm and 660 nm, originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 →&!nbsp; 6H13/2 and 4F9/2 → 6H11/2 in the 4f9 configuration of Dy3+ ions. Commission International de I'Eclairage color coordinates of SrAl2O4:Dy3+ are suitable for white light-emitting phosphor. In order to investigate the suitability of the samples as white color light sources for industrial uses, correlated color temperature (CCT) and color rendering index (CRI) values were calculated. Values of CCT and CRI were found well within the defined acceptable range. Mechanoluminescence (ML) intensity of SrAl2O4:Dy3+ phosphor increased linearly with increasing impact velocity of the moving piston. Thus, the present investigation indicates piezo-electricity was responsible for producing ML in sintered SrAl2O4:Dy3+ phosphor. Decay rates of the exponential decaying period of the ML curves do not change significantly with impact velocity. The photoluminescence and ML results suggest that the synthesized SrAl2O4:Dy3+ phosphor was useful for the white light-emitting diodes and stress sensor respectively.

  7. Magnetic Phase Transition of Nanocrystalline Bulk Metal Gadolinium and Dysprosium%纳米块体金属钆和镝的磁性相变分析

    Institute of Scientific and Technical Information of China (English)

    刘凤艳; 侯碧辉; 岳明; 王克军

    2011-01-01

    The magnetic properties of bulk nanocrystalline metal gadolinium (Gd) and dysprosium (Dy)samples were studied.The magnetization and Curie temperature TC of nanocrystalline Gd and Dy decreased usually as compared with the polycrystal.However,when the mean grain size was 10 nm, the Curie temperature Tc of nanocrystalline Dy increased to 100 K instead and there was an antiferromagnetic phase in nanocrystalline Gd.According to the calculation based on Ruderman-Kittel-Kasuya-Yosida exchange interaction, the exchange integral of the grain boundary atoms and crystalline surface atoms had its sign changed from plus to minus or vice versa, and there were three orderly phases in the steady state with the lowest energy, ferromagnetic phase, antiferromagnetic phase and fan phase.For the nanocrystals with mean grain size of 10 nm, the proportion of grain boundary to crystalline surface atoms was high, and as the result of superposition of the three phases, and there appeared a peak near the phase transition temperature for the nanocrystalline Gd.While for the Dy, the magnetization decreased gently with temperature, and showing a higher Curie temperature than in the case of the polycrystal.%对纳米晶钆(Gd)和镝(Dy)块体材料的磁性进行了研究.与多晶比较,通常纳米晶的磁化强度减小,居里温度TC降低,但平均粒径为10 nm的纳米晶Dy的居里温度TC反而升高到100 K,平均粒径为10 nm的纳米晶Gd中还存在明显的反铁磁相.通过RKKY交换作用的计算知道,晶面晶界处原子的交换积分会发生正负号的变化,能量最低的稳定状态对应三种有序相:铁磁相、反铁磁相和扇相,晶粒中在一定条件下出现三相共存.对于平均粒径为10 nm的纳米晶,晶面晶界处原子所占比例很大,三相叠加的结果,对于Gd,即是在相变点附近出现磁化强度尖峰;对于Dy,则是磁化强度随温度升高下降缓慢,表现为居里温度TC比多晶升高.

  8. Extension of the energy range of the experimental activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium up to 65 MeV

    CERN Document Server

    Tárkányi, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2016-01-01

    Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65 MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides $^{159}$Dy, $^{157}$Dy, $^{155}$Dy, $^{161}$Tb, $^{160}$Tb, $^{156}$Tb, $^{155}$Tb, $^{154m2}$Tb, $^{154m1}$Tb, $^{154g}$Tb, $^{153}$Tb, $^{152}$Tb and $^{151}$Tb are reported in the 36-65 MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013.

  9. Extension of the energy range of the experimental activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium up to 65MeV.

    Science.gov (United States)

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-04-01

    Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides (159)Dy, (157)Dy, (155)Dy, (161)Tb, (160)Tb, (156)Tb, (155)Tb, (154m2)Tb, (154m1)Tb, (154g)Tb, (153)Tb, (152)Tb and (151)Tb are reported in the 36-65MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013. Copyright © 2015. Published by Elsevier Ltd.

  10. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  11. The magnetocaloric effect in dysprosium

    Science.gov (United States)

    Benford, S. M.

    1979-01-01

    The magnetocaloric effect in polycrystalline Dy was measured in the 84-280-K range in measuring fields from 1 to 7 T. These adiabatic temperature changes reflect structural changes in Dy with applied field and temperature, and include the first magnetocaloric data for a helical antiferromagnet. Above the Neel point (179 K) a field increase always caused heating; below the Neel point fields less than about 2 T cause cooling for some values of initial temperature. The largest temperature increase with a 7 T field occurs at the Neel point and at fields below 2 T near the Curie point. For refrigeration purposes the optimal working region for a Dy cooling element is field dependent.

  12. Effect of Jahn-Teller Mn/sup 3 +/ ion on magnetic properties and spin-reorientation transitions in rare-earth orthoferrites

    Energy Technology Data Exchange (ETDEWEB)

    Kadomtseva, A.M.; Bostrem, I.G.; Krynetskij, I.B.; Moskvin, A.S.; Ovchinnikova, T.L.; Terziev, V.G. (Ural' skij Gosudarstvennyj Univ., Sverdlovsk (USSR))

    1982-08-01

    A magnetic behavior of manganese-substituted orthoferrites of dysprosium and erbium, for which various types of spin-reorientation transitions (Gsub(x)Fsub(z) ..-->.. Gsub(z)Fsub(x), Gsub(z) Fsub(x) ..-->.. Gsub(y), Gsub(x)Fsub(z) ..-->.. Gsub(y)) were observed, has been studied in the temperature range from 2 up to 600 K. The microscopic theoretical analysis of manganese-substituted orthoferrites has been carried out taking into account peculiarities of the Jahn-Teller effect for the impurity Mn/sup 3 +/ ion. It has been shown that the appearance of reorientation transitions from a weak-ferromagnetic state and antiferromagnetic one (the Morine type transition), observed during the replacement of a part of Fe/sup 3 +/ ions on Mn/sup 3 +/ ions, is connected with the fact, that one-ion anisotropy of Mn/sup 3 +/ stabilizes antiferromagnetic spin structure of Gy. In the (ac)-plane the one-ion Mn/sup 3 +/ anisotropy changes in the orthoferrite series stabilizing Gsub(x)Fsub(z) at the beginning of the series and Gsub(z)Fsub(x) at the end of it. The phase diagram of temperature reorientation as a function of Mn/sup 3 +/ ion concentration has been built up.

  13. Enhancement of the mechanoluminescence properties on Ca2MgSi2O7:Dy3+ phosphor by co-doping of charge compensator ions

    Science.gov (United States)

    Sahu, Ishwar Prasad

    2016-08-01

    In the present article, effect of charge compensator ions (R+ = Li+, Na+ and K+) on dysprosium-doped di-calcium magnesium di-silicate (Ca2MgSi2O7:Dy3+) phosphors were investigated. The Ca2MgSi2O7:Dy3+ and Ca2MgSi2O7:Dy3+, R+ phosphors, were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The peaks of mechanoluminescence (ML) intensity were increased linearly with increasing impact velocity of the moving piston. Thus, present investigation indicates that the piezoelectricity was responsible to produce ML in prepared phosphors. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity. Addition of charge compensator ions enhances the luminescence intensity of prepared Ca2MgSi2O7:Dy3+ phosphors, because they neutralize the charge generated by Dy3+ substitution for Ca2+ ions. The role of Li+ ions among all charge compensator ions (Na+ or K+) used was found to be most effective for enhanced Dy3+ ion emission. These ML materials can be used in the devices such as stress sensor, fracture sensor, impact sensor, damage sensors, safety management monitoring system and fuse system for army warheads.

  14. A highly sensitive CaF{sub 2}:Dy nanophosphor as an efficient low energy ion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bhadane, Mahesh S.; Hareesh, K.; Dahiwale, S.S.; Sature, K.R. [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Patil, B.J. [Department of Physics, Abasaheb Garware College, Pune 411004 (India); Asokan, K.; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Bhoraskar, V.N. [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-11-01

    Highlights: • CaF{sub 2}:Dy nanophosphor synthesized by chemical co-precipitation route. • Phosphors are irradiated by H, Ar and N low energy ions at different fluences. • LEBI irradiated phosphors are characterized by XRD, TEM, FTIR and PL spectroscopy. • First time report to LEIB irradiated for thermoluminescence dosimetric applications. - Abstract: Dysprosium doped calcium fluoride (CaF{sub 2}:Dy) powers synthesized by co-precipitation method were irradiated with low energy ion beams (LEIB) viz. 100 keV H, 200 keV Ar and 350 keV N beams at different fluences and demonstrated for low energy ion dosimetric application. X-ray Diffraction and Transmission electron microscopy revealed the formation of highly crystalline cubic structured particles with size ∼45–50 nm. FTIR spectra of the CaF{sub 2}:Dy samples show changes of some bonds such as N–O asymmetric, C–F bonding and C–H aromatic contain stretching mode after LEIB irradiation. The thermoluminescence (TL) glow curve peaks were observed at 207 °C for Ar ion, at 203 °C for H ion and at 216 °C and 270 °C for N ion. It has been found that CaF{sub 2}:Dy nanophosphor shows a linear response with minimum fading for all the ion species. Computerized Glow Curve Deconvolution was performed for TL curve of high fluence ion irradiated nanophosphor to estimate the trapping parameters and the respective figure of merit (FOM) found to be very appropriate for all the nanophosphor. These results indicated that the CaF{sub 2}:Dy can be used as a low energy ion detector or dose.

  15. Ion Chromatography.

    Science.gov (United States)

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  16. Ion focusing

    Energy Technology Data Exchange (ETDEWEB)

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2017-01-17

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  17. Sol-gel-derived hybrid materials multi-doped with rare-earth metal ions

    Science.gov (United States)

    Zelazowska, E.; Rysiakiewicz-Pasek, E.; Borczuch-Laczka, M.; Cholewa-Kowalska, K.

    2012-06-01

    Four different hybrid organic-inorganic materials based on TiO2-SiO2 matrices with organic additives and doped with rare-earth metal ions (III) from the group of europium, cerium, terbium, neodymium, dysprosium and samarium, were synthesized by sol-gel method. Tetraethyl orthosilicate, titanium (IV) isopropoxide and organic compounds, such as butyl acrylate, butyl methacrylate, ethyl acetoacetate, ethylene glycol dimethacrylate, ethyl acetate, propylene carbonate, organic solvents and certain inorganic salts were used in the synthesis. The inorganic part of the sols, which were used in the synthesis of all the hybrid materials, was prepared separately and then the organic parts were added. The materials obtained were aged for three weeks at room temperature and then heated in an electric oven for three hours at temperatures of 80 °C-150 °C. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDX); X-ray diffraction (XRD); Fourier transform infrared spectroscopy (KBr technique); 29Si magic-angle spinning nuclear magnetic resonance; and fluorescence spectroscopy were used for the examination of morphology, microstructure and luminescence properties, respectively. Photoluminescence properties with relatively intense narrow emission lines of Tb, Eu, Dy, Nd, Sm respectively to the RE-ions doping, were observed for all the hybrid materials.

  18. ION VATAMANU

    Directory of Open Access Journals (Sweden)

    l. Povar

    2012-12-01

    Full Text Available Ion Vatamanu was a chemist, writer and public figure. He was equally passionate about both his chosen fields of activity: chemistry and poetry. Chemistry, with its perfect equilibrium of logic and precision, provided inspiration for lyrical creativity, whereas poetry writing enlivened his imagination and passion for chemistry. He loved his parents. He adored his wife Elena, whom he often gifted a sea of flowers. He loved his daughters Mihaela, Mariana, and Leontina. He loved life, and he loved people.

  19. Microstructure and dielectric properties of dysprosium-doped barium titanate ceramics Microestrutura e propriedades dielétricas de cerâmicas de titanato de bário dopado com disprósio

    Directory of Open Access Journals (Sweden)

    Y. Pu

    2005-09-01

    Full Text Available The substitution behavior and lattice parameter of barium titanate between solid_solubility with a dopant concentration in the range of 0.25 to 1.5 mol% are studied. The influences of dysprosium-doped fraction on the grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength, are investigated via scanning electronic microscopy, X-ray diffraction and electric property tester. The results show that, at a dysprosium concentration of 0.75 mol%, the abnormal grain growth is inhibited and the lattice parameters of grain rise up to the maximum because of the lowest vacancy concentration. In addition, the finegrain and high density of barium titanate ceramic result in its excellent dielectric properties. The relative dielectric constant (25 °C reaches to 4100. The temperature coefficient of the capacitance varies from -10 to 10% within the temperature range of -15 °C -100 °C, and the breakdown electric field strength (alternating current achieves 3.2 kV/mm. These data suggest that our barium titanate could be used in the manufacture of high voltage ceramic capacitors.Foram estudados o comportamento da substituição e o parâmetro de rede de titanato de bário da solubilidade sólida com uma concentração de dopante na faixa 0,25-1,5 mol%. As influências da fração do dopante disprósio no tamanho de grão e nas propriedades dielétricas da cerâmica de titanato de bário, incluindo constante dielétrica e rigidez dielétrica foram investigadas por meio de microscopia eletrônica de varredura, difração de raios X e teste de propriedades elétricas. Os resultados mostram que a uma concentração de disprósio de 0,75 mol% o crescimento anormal de grão é inibido e os parâmetros de rede aumentam até um máximo devido a menor concentração de vacâncias. Além disso, as cerâmicas de grãos pequenos e alta densidade resultam em excelentes propriedades dielétricas. A

  20. Neodymium Dysprosium Modified Starch- coated Magnetic Fluid Preparation of Ferrite%淀粉包覆镝钕改性铁氧体磁性液体的制备

    Institute of Scientific and Technical Information of China (English)

    林穗云; 周育辉

    2011-01-01

    In this paper, in order to obtain the ferrite magnetic fluids of higher saturation magnetic intensity with simple technology, nanometer magnetite ( Fe3O4 ) particles ware prepared by chemical co - precipitation. And to a certain proportion of Dysprosium Neodymium ferrite magnetic fluids on the modification, we selected starch prepara- tion for the relief of water - based coating of rare earth iron oxide magnetic fluid composites. We also investigated the amount of Nd - Dy, the amount of coating agent, reaction temperature, coating temperature on the performance of the products and the effects of particle size, and its preliminary characterization was also performed . Through experiment,we summed up, under n (Fe) : [ n ( Nd3+ ) + n ( Dy3+ ) ] = 30:1 and n ( Fe3 + ) : n ( Fe2 + ) = 1.70 ~ 1. 75, the ratio for use of dysprosium and neodymium is n(Dy3+ ) : n(Nd3+ ) =4:1, 25%NH3 · H2O(A. R. ) as precipitating agent and pH value conditioner; the reacting system temperature was controlled in 35 ℃, and the pH value was adjusted to 9 ~ 11 ; the best dosage of starch as the relief is O. 0050g each 6OraL magnetic fluids, the temperature of surfactant was controlled in 50℃ and the pH value was adjusted to 2 ~ 3. In such system under the conditions of a water - based rare - earth compound Nd Dy Fe Magnetic, fluid magnetic oxygen was higher than or- dinary water- based ferrite.%为制备工艺简单且饱和磁化强度高的磁流体,本文采用化学共沉淀法制得了纳米磁性Fe304粒子.然后以一定比例的镝钕对铁氧体磁流体改性,选择淀粉为包覆剂制备水基稀土复合铁氧磁流体.考察了镝钕的用量、包覆剂的用量、反应温度、包覆温度等因素对产物粒径及性能的影响,并对其进行了初步的性能表征.实验总结出适宜的条件:在n(Fe):[n(Nd3+)+n(Dy3+)]=30:1,n(Fe3+):n(Fe2+)=1.70~1.75

  1. Electron Beam Ion Sources

    OpenAIRE

    Zschornacka, G.; Schmidt, M.; Thorn, A.

    2014-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviole...

  2. Studies of heavy-ion reactions and transuranic nuclei. Progress report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W.U.

    1993-08-01

    This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in {sup 32}S + {sup 118,124}Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction {sup 197}Au+{sup 208}Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction {sup 209}Bi+{sup 136}Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral {sup 209}Bi+{sup 136}Xe Collisions at E{sub lab}/A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray {mu}{sup {minus}} with a Muon Telescope.

  3. Emission from Divalent Dysprosium (Dy2+ )in Crystalline Strontium Tetraborate%晶态四硼酸锶中二价镝的发射

    Institute of Scientific and Technical Information of China (English)

    许武; Peterson; J; R

    2001-01-01

    Emission spectra from SrB4O7 doped with Dy2O3 and heated in air have been recorded at room temperature. A change in oxidation state from Dy3+ to Dy2+ was observed. Optimum production of Dy2+ ion occurs when the sample is heated in air at about 650℃. Two broad emission bands centered in the vicinity of 550 and 660nm have been observed from the sample under the excitation of 457.9nm. It is suggested that these bands are due to Dy2 + ion emission from the 5d band into the ground state 4f level (5I8). Several conditions promoting the reduction of Dy3+ion in this matrix are discussed. To aid the reduction of Dy3+ ion, we have also prepared SrB4O7 doped with Dy2O3 in Ar/H2 (4 % ) atmosphere and compared the optical characteristics of Dy2 + ion in these samples with those from the samples prepared in air. The range of g-element reducibility and stabilization in SrB4O7 has been extended from Tm2+[ E0 (Tm3+/Tm2+) = -2.3V] to Dy2+ [E0(Dy3+/Dy2 +) = -2.6V] in the present work; however, the limit of this facile reduction process has not been determined yet.%在室温下测量了在空气中灼烧掺杂Dy2O3的SrB4O7的发射光谱.观测到了由Dy3+到Dy2+氧化态的变化.经优化,当在空气中灼烧温度为650℃时为产生Dy2+的最佳温度.在457.9nm的激发下测出了两个峰位分别位于550和660nm的宽发射带.我们认为这两个宽发射带是由Dy2+离子由5d态向4f基态能级(5I8)跃迁产生的.讨论了几个有益于在这种基质中还原Dy3+离子的条件.为了实现Dy3+离子的还原,我们还在Ar/H2(4%)气氛中制备了Dy2O3掺杂的SrB4O7,比较了这种样品和在空气中所制备的样品的光学特性.本文还对标志SrB4O7还原性和稳定性的g-因子由Tm2+的[Eo(Tm3+/Tm2+=-2.3V]推导出Dy2+的[E0(Dy3+/Dy2+)=-2.6V],但对这种还原过程的局限性尚未确定.

  4. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fraction...... of the generated ions. The ion extractor is surrounded by a space charge (810) formed at least in part by the extracted ions. The ion extractor includes a biased electrode (806) forming an interface with an insulator (808). The interface is customized to form a strongly curved potential distribution (812......) in the space-charge surrounding the ion extractor. The strongly curved potential distribution focuses the extracted ions towards an opening (814) on a surface of the biased electrode thereby resulting in an ion beam....

  5. Instrumentation: Ion Chromatography.

    Science.gov (United States)

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  6. Multicolor photoluminescence and energy transfer properties of dysprosium and europium-doped Gd{sub 2}O{sub 3} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanxia; Liu, Guixia, E-mail: liuguixia22@163.com; Wang, Jinxian; Dong, Xiangting; Yu, Wensheng

    2015-11-15

    In this study, a series of Gd{sub 2}O{sub 3}: Ln{sup 3+} (Ln = Dy, Eu) submicrospheres were successfully prepared by a hydrothermal method and a subsequent higher temperature pyrolysis. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectrometer (EDS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM) were utilized to characterize the as-prepared samples. The precursor sample thoroughly decomposed into Gd{sub 2}O{sub 3} submicrospheres with a diameter of about 550 nm after calcination. Under UV excitation, the samples exhibit multicolor emissions including yellow-green, yellow, red as well as white, moreover, the Dy{sup 3+} ions acted as donors can transfer the energy to Eu{sup 3+} served as acceptors in Gd{sub 2}O{sub 3}: Dy{sup 3+}, Eu{sup 3+} system. The interaction between Dy{sup 3+} ions and Eu{sup 3+} ions is verified to be phonon-assisted electric quadrupole–quadrupole interaction. Multicolor luminescence including white light emission can be obtained through varying the content of Eu{sup 3+} or adopting different excitation wavelengths in Dy{sup 3+} and Eu{sup 3+} co-doped Gd{sub 2}O{sub 3} system. The energy transfer efficiency reaches 88.2% when the doped concentration of Eu{sup 3+} is 0.035. The CIE chromaticity diagram directly reveals the variability of the hue of the as-prepared samples. Besides, the as-prepared samples exhibit paramagnetic properties at room temperature. This type of color-tunable luminescence phosphors has promising applications in the fields of photoelectronic devices and biomedical science. - Graphical abstract: Tunable multicolor emissions and energy transfer properties of lanthanides (Ln{sup 3+}, Ln{sup 3+} = Dy{sup 3+}, Eu{sup 3+}) doped cubic Gd{sub 2}O{sub 3} submicrospheres prepared by hydrothermal method and a subsequent calcination. - Highlights: • The as-prepared samples can exhibit multicolor emissions.

  7. Constraining and Tuning the Coordination Geometry of a Lanthanide Ion in Metal-Organic Frameworks: Approach toward a Single-Molecule Magnet.

    Science.gov (United States)

    Liu, Ke; Li, Huanhuan; Zhang, Xuejing; Shi, Wei; Cheng, Peng

    2015-11-01

    It is available to constrain and tune the coordination geometries around lanthanide ions in metal-organic frameworks (MOFs) for the study of single-molecule-magnet (SMM) behavior. A series of Dy(III)-MOFs are synthesized via a solvothermal method by using furan-2,5-dicarboxylic acid (H2FDA) as the ligand. {[Dy2(FDA)3(DMF)2]·1.5DMF}n (1) and [Dy2(FDA)3(DMF)2(CH3OH)]n (2) show similar three-dimensional structures, but the coordination geometries around the dysprosium(III) ions in 1 and 2 exhibit different deviations from ideal square antiprism (D4d symmetry) because of the coordinated solvent molecules. Slow relaxation of the magnetization can be observed for both complexes, indicative of SMM behavior. The effective energy barriers for 1 and 2 can be obtained from alternating-current susceptibility measurements by applying an external 2000 Oe direct-current field. MOF 2 possesses a less distorted D4d coordination sphere and gives a higher effective energy barrier (Ueff) than that of MOF 1. Their diamagnetic Y(III)-diluted samples 1@Y and 2@Y exhibit similar relationships between the geometries and Ueff values, demonstrating that the magnetization relaxation is mainly from the symmetry-related single-ion behavior.

  8. ION GUN

    Science.gov (United States)

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  9. Ion funnel ion trap and process

    Science.gov (United States)

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  10. 表面修饰对镝铁氧体纳米磁粒子的合成及其磁性能的影响%Effect of Surface Modification on Formation and Magnetic Property of Dysprosium Ferrite Nanomagnetic Particles

    Institute of Scientific and Technical Information of China (English)

    陈静; 张茂润; 邓真娟

    2011-01-01

    利用湿化学法制备镝铁氧体纳米磁粒子时,用适量的阴离子表面活性剂进行表面修饰,能够有效地控制磁粒子的粒径,同时避免干燥时产生硬团聚.文章介绍了用月桂酸、月桂酸钠、正十二烷基硫酸钠对磁粒子进行表面修饰的研究结果,探讨了三者及其用量对磁粒子的形成及磁性能的影响.借助X射线衍射仪(XRD)、透射电镜(TEM)、振动样品磁强计(VSM)、红外光谱仪(IR)对产物的性能进行了表征.结果表明,用月桂酸修饰后的产物具有Fe3O4磁粒子的晶型结构且结晶度高、磁性能优异、平均粒径约16nm;用月桂酸钠、正十二烷基硫酸钠修饰后的产物不具有Fe3O4磁粒子的晶型结构,结晶度低且磁性能差.%When wet chemical method are use to prepare dysprosium-doped ferrite magnetic nanoparticles, right a-mount of anionic surfactant were doped as surface modification, which can effectively control the size of magnetic particles, and avoid producing hard reunion when dry out. This paper introduces the research results of magnetic particle surface modification by using lauric acid, laurel acid sodium and lauryl sodium sulfate, discusses the effect of lauric acid, laurel acid sodium and lauryl sodium sulfate and their dosages on the formation of magnetic and its magnetic property. The properties of the product can be characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), infrared spectrometer (IR). The results showed that the product modified with lauric acid have a crystalline structure of Fe3O4 magnetic particles and high crystallin-ity, excellent magnetic properties. The average particle size is about 16 nm; the product modified with laurel acid sodium and lauryl sodium sulfate does not have the crystalline structure of Fe3O4 magnetic particles, with low crystal-linity and low magnetic property.

  11. A negative ion source for alkali ions

    NARCIS (Netherlands)

    Vermeer, A.; Zwol, N.A. van

    1980-01-01

    An ion source is described which delivers negative alkali ions. With this source, which consists of a duoplasmatron and a charge exchange canal with alkali vapour, negative Li, Na and K ions are produced. The oven in which alkali metals are evaporated can reach temperatures up to 575°C.

  12. A negative ion source for alkali ions

    NARCIS (Netherlands)

    Vermeer, A.; Zwol, N.A. van

    1980-01-01

    An ion source is described which delivers negative alkali ions. With this source, which consists of a duoplasmatron and a charge exchange canal with alkali vapour, negative Li, Na and K ions are produced. The oven in which alkali metals are evaporated can reach temperatures up to 575°C.

  13. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  14. Microfabricated ion frequency standard

    Science.gov (United States)

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  15. Multicusp ion sources (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N. (Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States))

    1994-04-01

    During the last decade, different types of multicusp ion sources, such as high current, high concentration H[sup +], H[sup +][sub 2], or N[sup +] ion sources, negative ion sources, radio-frequency-driven sources, and high charge state ion sources have been developed at the Lawrence Berkeley Laboratory. This article reviews the history of the research and development of these ion sources and their applications.

  16. Ion sources for ion implantation technology (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Shigeki, E-mail: sakai-shigeki@nissin.co.jp; Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki [Nissin Ion Equipment co., ltd, 575 Kuze-Tonoshiro-cho Minami-ku, Kyoto 601-8205 (Japan)

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  17. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  18. Ions and light

    CERN Document Server

    Bowers, Michael T

    2013-01-01

    Gas Phase Ion Chemistry, Volume 3: Ions and Light discusses how ions are formed by electron impact, ion-molecule reactions, or electrical discharge. This book discusses the use of light emitted by excited molecules to characterize either the chemistry that formed the excited ion, the structure of the excited ion, or both.Organized into 10 chapters, this volume begins with an overview of the extension of the classical flowing afterglow technique to include infrared and chemiluminescence and laser-induced fluorescence detection. This text then examines the experiments involving molecules that ar

  19. Production and ion-ion cooling of highly charged ions in electron string ion source.

    Science.gov (United States)

    Donets, D E; Donets, E D; Donets, E E; Salnikov, V V; Shutov, V B; Syresin, E M

    2009-06-01

    The scheme of an internal injection of Au atoms into the working space of the "Krion-2" electron string ion source (ESIS) was applied and tested. In this scheme Au atoms are evaporated from the thin tungsten wire surface in vicinity of the source electron string. Ion beams with charge states up to Au51+ were produced. Ion-ion cooling with use of C and O coolant ions was studied. It allowed increasing of the Au51+ ion yield by a factor of 2. Ions of Kr up to charge state 28+ were also produced in the source. Electron strings were first formed with injection electron energy up to 6 keV. Methods to increase the ESIS ion output are discussed.

  20. Ion mobility spectrometry

    CERN Document Server

    Eiceman, GA

    2005-01-01

    Key Developments for Faster, More Precise Detection Capabilities Driven by the demand for the rapid and advanced detection of explosives, chemical and biological warfare agents, and narcotics, ion mobility spectrometry (IMS) undergone significant refinements in technology, computational capabilities, and understanding of the principles of gas phase ion chemistry and mobility. Beginning with a thorough discussion of the fundamental theories and physics of ion mobility, Ion Mobility Spectrometry, Second Edition describes the recent advances in instrumentation and newly

  1. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  2. Ion trap simulation tools.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  3. [Development of metal ions analysis by ion chromatography].

    Science.gov (United States)

    Yu, Hong; Wang, Yuxin

    2007-05-01

    Analysis of metal ions by ion chromatography, including cation-exchange ion chromatography, anion-exchange ion chromatography and chelation ion chromatography, is reviewed. The cation-exchange ion chromatography is a main method for the determination of metal ions. Stationary phases in cation-exchange ion chromatography are strong acid cation exchanger (sulfonic) and weak acid cation exchanger (carboxylic). Alkali metal ions, alkaline earth metal ions, transition metal ions, rare earth metal ions, ammonium ions and amines can be analyzed by cation-exchange ion chromatography with a suitable detector. The anion-exchange ion chromatography is suitable for the separation and analysis of alkaline earth metal ions, transition metal ions and rare earth metal ions. The selectivity for analysis of metal ions with anion-exchange ion chromatography is good. Simultaneous determination of metal ions and inorganic anions can be achieved using anion-exchange ion chromatography. Chelation ion chromatography is suitable for the determination of trace metal ions in complex matrices. A total of 125 references are cited.

  4. High Density Ion Implanted Contiguous Disk Bubble Technology.

    Science.gov (United States)

    1985-09-01

    of 0.504pm. A second melt producing films of (Sm1 2Lu 1.7Tm0 . 1( FeGa )5O1 2) was also developed for sub- micron bubbles. Data from films typical of the...Dysprosium film composition was to be (Sm0 .3 Dyl.1 Gd 0 .4Lu0 .7( FeGa ) 50 2) which would have magnetostriction coefficients of -2.8x10 6 and a mismatch of

  5. Ion channels in asthma.

    Science.gov (United States)

    Valverde, Miguel A; Cantero-Recasens, Gerard; Garcia-Elias, Anna; Jung, Carole; Carreras-Sureda, Amado; Vicente, Rubén

    2011-09-23

    Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.

  6. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  7. Crater formation by single ions, cluster ions and ion "showers"

    CERN Document Server

    Djurabekova, Flyura; Timko, Helga; Nordlund, Kai; Calatroni, Sergio; Taborelli, Mauro; Wuensch, Walter

    2011-01-01

    The various craters formed by giant objects, macroscopic collisions and nanoscale impacts exhibit an intriguing resemblance in shapes. At the same time, the arc plasma built up in the presence of sufficiently high electric fields at close look causes very similar damage on the surfaces. Although the plasma–wall interaction is far from a single heavy ion impact over dense metal surfaces or the one of a cluster ion, the craters seen on metal surfaces after a plasma discharge make it possible to link this event to the known mechanisms of the crater formations. During the plasma discharge in a high electric field the surface is subject to high fluxes (~1025 cm-2s-1) of ions with roughly equal energies typically of the order of a few keV. To simulate such a process it is possible to use a cloud of ions of the same energy. In the present work we follow the effect of such a flux of ions impinging the surface in the ‘‘shower’’ manner, to find the transition between the different mechanisms of crater formati...

  8. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  9. Ion sources for heavy ion fusion (invited)

    Science.gov (United States)

    Yu, Simon S.; Eylon, S.; Chupp, W.; Henestroza, E.; Lidia, S.; Peters, C.; Reginato, L.; Tauschwitz, A.; Grote, D.; Deadrick, F.

    1996-03-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K+ ions of 950 mA peak from a 6.7 in. curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of ±0.2% over 1 μs. The measured normalized edge emittance of less than 1 π mm mrad is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described.

  10. Negative ions in liquid helium

    Science.gov (United States)

    Khrapak, A. G.; Schmidt, W. F.

    2011-05-01

    The structure of negative ions in liquid 4He is analyzed. The possibility of cluster or bubble formation around impurity ions of both signs is discussed. It is shown that in superfluid helium, bubbles form around negative alkaline earth metal ions and clusters form around halogen ions. The nature of "fast" and "exotic" negative ions is also discussed. It is assumed that "fast" ions are negative ions of helium excimer molecules localized inside bubbles. "Exotic" ions are stable negative impurity ions, which are always present in small amounts in gas discharge plasmas. Bubbles or clusters with radii smaller the radius of electron bubbles develop around these ions.

  11. The acrylonitrile dimer ion

    Science.gov (United States)

    Ervasti, Henri K.; Jobst, Karl J.; Burgers, Peter C.; Ruttink, Paul J. Ae; Terlouw, Johan K.

    2007-04-01

    Large energy barriers prohibit the rearrangement of solitary acrylonitrile ions, CH2CHCN+, into their more stable hydrogen-shift isomers CH2CCNH+ or CHCH-CNH+. This prompted us to examine if these isomerizations occur by self-catalysis in acrylonitrile dimer ions. Such ions, generated by chemical ionization experiments of acrylonitrile with an excess of carbon dioxide, undergo five dissociations in the [mu]s time frame, as witnessed by peaks at m/z 53, 54, 79, 80 and 105 in their metastable ion mass spectrum. Collision experiments on these product ions, deuterium labeling, and a detailed computational analysis using the CBS-QB3 model chemistry lead to the following conclusions: (i) the m/z 54 ions are ions CH2CHCNH+ generated by self-protonation in ion-dipole stabilized hydrogen-bridged dimer ions [CH2CHCN...H-C(CN)CH2]+ and [CH2CHCN...H-C(H)C(H)CN]+; the proton shifts in these ions are associated with a small reverse barrier; (ii) dissociation of the H-bridged ions into CH2CCNH+ or CHCH-CNH+ by self-catalysis is energetically feasible but kinetically improbable: experiment shows that the m/z 53 ions are CH2CHCN+ ions, generated by back dissociation; (iii) the peaks at m/z 79, 80 and 105 correspond with the losses of HCN, C2H2 and H, respectively. The calculations indicate that these ions are generated from dimer ions that have adopted the (much more stable) covalently bound "head-to-tail" structure [CH2CHCN-C(H2)C(H)CN]+; experiments indicate that the m/z 79 (C5H5N) and m/z 105 (C6H6N2) ions have linear structures but the m/z 80 (C4H4N2) ions consist of ionized pyrimidine in admixture with its stable pyrimidine-2-ylidene isomer. Acrylonitrile is a confirmed species in interstellar space and our study provides experimental and computational evidence that its dimer radical cation yields the ionized prebiotic pyrimidine molecule.

  12. Materials analysis fast ions

    CERN Document Server

    Denker, A; Rauschenberg, J; Röhrich, J; Strub, E

    2006-01-01

    Materials analysis with ion beams exploits the interaction of ions with the electrons and nuclei in the sample. Among the vast variety of possible analytical techniques available with ion beams we will restrain to ion beam analysis with ion beams in the energy range from one to several MeV per mass unit. It is possible to use either the back-scattered projectiles (RBS – Rutherford Back Scattering) or the recoiled atoms itself (ERDA – Elastic Recoil Detection Analysis) from the elastic scattering processes. These techniques allow the simultaneous and absolute determination of stoichiometry and depth profiles of the detected elements. The interaction of the ions with the electrons in the sample produces holes in the inner electronic shells of the sample atoms, which recombine and emit X-rays characteristic for the element in question. Particle Induced X-ray Emission (PIXE) has shown to be a fast technique for the analysis of elements with an atomic number above 11.

  13. Correlation ion mobility spectroscopy

    Science.gov (United States)

    Pfeifer, Kent B.; Rohde, Steven B.

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  14. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  15. Peristaltic ion source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.

    1995-08-01

    Conventional ion sources generate energetic ion beams by accelerating the plasma-produced ions through a voltage drop at the extractor, and since it is usual that the ion beam is to propagate in a space which is at ground potential, the plasma source is biased at extractor voltage. For high ion beam energy the plasma source and electrical systems need to be raised to high voltage, a task that adds considerable complexity and expense to the total ion source system. The authors have developed a system which though forming energetic ion beams at ground potential as usual, operates with the plasma source and electronics at ground potential also. Plasma produced by a nearby source streams into a grided chamber that is repetitively pulsed from ground to high positive potential, sequentially accepting plasma into its interior region and ejecting it energetically. They call the device a peristaltic ion source. In preliminary tests they`ve produced nitrogen and titanium ion beams at energies from 1 to 40 keV. Here they describe the philosophy behind the approach, the test embodiment that they have made, and some preliminary results.

  16. Ion Source DECRIS-3

    CERN Document Server

    Efremov, A; Lebedev, A N; Loginov, V N; Yazvitsky, N Yu

    1999-01-01

    The ECR ion source DECRIS-3 is the copy of the mVINIS ion source which was designed and built in Dubna for the TESLA Accelerator Installation (Belgrade, Yugoslavia) in 1997. The assembly of the source was completely finished in the end of 1998 and then it was installed at the FLNR ECR test bench. The source was successfully tested with some gases and metals by using the MIVOC technique. In nearest future the source will be capable of ECR plasma heating using two different frequencies simultaneously. We are also going to use the DECRIS-3 ion source to design 1+ -> n+ technique for the DRIBs (Dubna Radioactive Ion Beams) project.

  17. Heavy ion storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  18. Cold Strontium Ion Source for Ion Interferometry

    Science.gov (United States)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  19. Ion channels in toxicology.

    Science.gov (United States)

    Restrepo-Angulo, Iván; De Vizcaya-Ruiz, Andrea; Camacho, Javier

    2010-08-01

    Ion channels play essential roles in human physiology and toxicology. Cardiac contraction, neural transmission, temperature sensing, insulin release, regulation of apoptosis, cellular pH and oxidative stress, as well as detection of active compounds from chilli, are some of the processes in which ion channels have an important role. Regulation of ion channels by several chemicals including those found in air, water and soil represents an interesting potential link between environmental pollution and human diseases; for instance, de novo expression of ion channels in response to exposure to carcinogens is being considered as a potential tool for cancer diagnosis and therapy. Non-specific binding of several drugs to ion channels is responsible for a huge number of undesirable side-effects, and testing guidelines for several drugs now require ion channel screening for pharmaceutical safety. Animal toxins targeting human ion channels have serious effects on the population and have also provided a remarkable tool to study the molecular structure and function of ion channels. In this review, we will summarize the participation of ion channels in biological processes extensively used in toxicological studies, including cardiac function, apoptosis and cell proliferation. Major findings on the adverse effects of drugs on ion channels as well as the regulation of these proteins by different chemicals, including some pesticides, are also reviewed. Association of ion channels and toxicology in several biological processes strongly suggests these proteins to be excellent candidates to follow the toxic effects of xenobiotics, and as potential early indicators of life-threatening situations including chronic degenerative diseases.

  20. Metal Ions in Unusual Valency States.

    Science.gov (United States)

    Sellers, Robin M.

    1981-01-01

    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  1. Where do ions solvate?

    Indian Academy of Sciences (India)

    Yan Levin

    2005-06-01

    We study a simple model of ionic solvation inside a water cluster. The cluster is modeled as a spherical dielectric continuum. It is found that unpolarizable ions always prefer the bulk solvation. On the other hand, for polarizable ions, there exists a critical value of polarization above which surface solvation becomes energetically favorable for large enough water clusters.

  2. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  3. Microfabricated cylindrical ion trap

    Science.gov (United States)

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  4. Ion mobility sensor system

    Science.gov (United States)

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  5. Lipid Ion Channels

    CERN Document Server

    Heimburg, Thomas

    2010-01-01

    The interpretation electrical phenomena in biomembranes is usually based on the assumption that the experimentally found discrete ion conduction events are due to a particular class of proteins called ion channels while the lipid membrane is considered being an inert electrical insulator. The particular protein structure is thought to be related to ion specificity, specific recognition of drugs by receptors and to macroscopic phenomena as nerve pulse propagation. However, lipid membranes in their chain melting regime are known to be highly permeable to ions, water and small molecules, and are therefore not always inert. In voltage-clamp experiments one finds quantized conduction events through protein-free membranes in their melting regime similar to or even undistinguishable from those attributed to proteins. This constitutes a conceptual problem for the interpretation of electrophysiological data obtained from biological membrane preparations. Here, we review the experimental evidence for lipid ion channels...

  6. Ion-by-ion Cooling efficiencies

    CERN Document Server

    Gnat, Orly

    2011-01-01

    We present ion-by-ion cooling efficiencies for low-density gas. We use Cloudy (ver. 08.00) to estimate the cooling efficiencies for each ion of the first 30 elements (H-Zn) individually. We present results for gas temperatures between 1e4 and 1e8K, assuming low densities and optically thin conditions. When nonequilibrium ionization plays a significant role the ionization states deviate from those that obtain in collisional ionization equilibrium (CIE), and the local cooling efficiency at any given temperature depends on specific non-equilibrium ion fractions. The results presented here allow for an efficient estimate of the total cooling efficiency for any ionic composition. We also list the elemental cooling efficiencies assuming CIE conditions. These can be used to construct CIE cooling efficiencies for non-solar abundance ratios, or to estimate the cooling due to elements not explicitly included in any nonequilibrium computation. All the computational results are listed in convenient online tables.

  7. Laser ion source for high brightness heavy ion beam

    Science.gov (United States)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  8. Ion channels in inflammation.

    Science.gov (United States)

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  9. Polarized negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

  10. Ion optics of RHIC electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Kuznetsov, G. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  11. Visible light emitting Ln{sup 3+} ion (Ln=Sm, Eu and Dy) as a structural probe: A case study with SrZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Santosh K., E-mail: santufrnd@gmail.com [Radiochemistry Division, Bhabha Atomic Research Centre (India); Yadav, A.K.; Bhattacharya, D.; Jha, S.N. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085 (India); Natarajan, V. [Radiochemistry Division, Bhabha Atomic Research Centre (India)

    2015-08-15

    Undoped and various rare earth ion doped SrZrO{sub 3} (SZO) perovskite based phosphors have been synthesized using the gel-combustion technique employing citric acid as a fuel. The phase purity of the sample is confirmed by the X-ray diffraction (XRD) technique. It was observed that average particle size of perovskite particle was around 100 nm. In order to probe the local structure and symmetry around lanthanide ions in SrZrO{sub 3}, detailed experimental investigation has been carried out. X-ray absorption near edge fine (XANES) measurements along with their respective emission spectroscopy confirm that on doping lanthanide ion; in cases they were found to get stabilized as trivalent species. Extensive time resolved emission spectroscopy (TRES) on doped samples shows that on doping Sm{sup 3+} in SZO; an efficient energy transfer takes place and Sm{sup 3+} ions are localized both in Sr and Zr positions of SZO. PL decay time shows the presence of two life time values in case of nanocrystalline SrZrO{sub 3}:Sm{sup 3+}: (i) Sm{sup 3+} at Zr{sup 4+} site (τ=500 µs) and (ii) Sm{sup 3+} at Sr{sup 2+} site (τ=1.2 ms) in the ratio of 3:1. Based on TRES for europium doped sample, it was inferred that, two different types of Eu{sup 3+} ions were present in the SZO matrix. The first type was a long lived species present at relatively higher symmetric site of 'Sr{sup 2+}' and the second was a short lived species present at relatively lower symmetric 'Zr{sup 4+}' site which gets selectively excited at 296 nm. Dysprosium ion specifically occupies Zr{sup 4+} site only in SZO. EXAFS studies supported the TRES results. - Highlights: • Site occupancy of lanthanide. • Time resolved emission is explored. • XANES is used for oxidation state determination. • EXAFS for local structure investigation.

  12. IN MEMORIAM ION VATAMANU

    Directory of Open Access Journals (Sweden)

    S.P. Palii

    2012-12-01

    Full Text Available A dreamer in his creative solitude, an objective and lucid analyst of history and contemporaneity, an energetic and decisive leader with an uncanny ability for crisis management – all these describe Ion Vatamanu. His wife Elena and daughters Mihaela, Mariana, Leontina treasure a personal universe in which the magical spark of Ion Vatamanu’s love and joy of life meld the everyday in and out of poetry. Ion Vatamanu’s instantaneous connection to the audiences and deeply felt words still touch the hearts of his many colleagues and friends. Downloads: 2

  13. Collective Ion Acceleration.

    Science.gov (United States)

    1980-01-01

    Bostick, Appl. Phys. Lett. 35, 296 (1979). 3. S. Humphries, R.N. Sudan, and IV. Condit, Appl. Phys. Lett. 26, 667 (1975). 4. D.S. Prono , J.M. Creedon, I...and to provide a good ion depenently by Creedon, Smith, and Prono ." In both source at the second anode A2. The ion flux from the of these approaches...and Ion Beam Research and Technology, (Ith- Let. 37, 1236 (1977). ac, New York,1977), Vol. 11, p. 819. 72. D. S. Prono , J. W. Shearer, and X J. Briggs

  14. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G

    1993-01-01

    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  15. Ion sound instability driven by ion beam

    CERN Document Server

    Koshkarov, O; Kaganovich, I D; Ilgisonis, V I

    2014-01-01

    In many natural and laboratory conditions, plasmas are often in the non-equilibrium state due to presence of stationary flows, when one particle species (or a special group, such as group of high energy particles, i.e. beam) is mowing with respect to the other plasma components. Such situations are common for a number of different plasma application such as diagnostics with emissive plasma probes, plasma electronics devices and electric propulsion devices. The presence of plasma flows often lead to the instabilities in such systems and subsequent development of large amplitude perturbations. The goal of this work is to develop physical insights and numerical tools for studies of stability of the excitation of the ion sound waves by the ion beam in the configuration similar to the plasma Pierce diode. This systems, in some limiting cases, reduce to mathematically similar equations originally proposed for Pierce instability. The finite length effect are crucial for this instability which generally belong to the...

  16. Ion specificities of artificial macromolecules.

    Science.gov (United States)

    Liu, Lvdan; Kou, Ran; Liu, Guangming

    2016-12-21

    Artificial macromolecules are well-defined synthetic polymers, with a relatively simple structure as compared to naturally occurring macromolecules. This review focuses on the ion specificities of artifical macromolecules. Ion specificities are influenced by solvent-mediated indirect ion-macromolecule interactions and also by direct ion-macromolecule interactions. In aqueous solutions, the role of water-mediated indirect ion-macromolecule interactions will be discussed. The addition of organic solvents to aqueous solutions significantly changes the ion specificities due to the formation of water-organic solvent complexes. For direct ion-macromolecule interactions, we will discuss specific ion-pairing interactions for charged macromolecules and specific ion-neutral site interactions for uncharged macromolecules. When the medium conditions change from dilute solutions to crowded environments, the ion specificities can be modified by either the volume exclusion effect, the variation of dielectric constant, or the interactions between ions, macromolecules, and crowding agents.

  17. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  18. [Particle therapy: carbon ions].

    Science.gov (United States)

    Pommier, Pascal; Hu, Yi; Baron, Marie-Hélène; Chapet, Olivier; Balosso, Jacques

    2010-07-01

    Carbon ion therapy is an innovative radiation therapy. It has been first proposed in the forties by Robert Wilson, however the first dedicated centres for human care have been build up only recently in Japan and Germany. The interest of carbon ion is twofold: 1) the very sharp targeting of the tumour with the so called spread out Bragg peak that delivers most of the beam energy in the tumour and nothing beyond it, sparing very efficiently the healthy tissues; 2) the higher relative biological efficiency compared to X rays or protons, able to kill radioresistant tumour cells. Both properties make carbon ions the elective therapy for non resectable radioresistant tumours loco-regionally threatening. The technical and clinical experience accumulated during the recent decades is summarized in this paper along with a detailed presentation of the elective indications. A short comparison between conventional radiotherapy and hadrontherapy is proposed for the indications which are considered as priority for carbon ions.

  19. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  20. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  1. Atomic negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Brage, T.

    1991-12-31

    We review some of the recent progress in the studies of alkaline-earth, negative ions. Computations of autodetachment rates, electron affinities and transition wavelengths are discussed and some new and improved results are given.

  2. Atomic negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Brage, T.

    1991-01-01

    We review some of the recent progress in the studies of alkaline-earth, negative ions. Computations of autodetachment rates, electron affinities and transition wavelengths are discussed and some new and improved results are given.

  3. On the photo-luminescence properties of sol–gel derived undoped and Dy{sup 3+} ion doped nanocrystalline Scheelite type AMoO{sub 4} (A = Ca, Sr and Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Paramananda [Department of Physics, Pondicherry University, Pondicherry 605014 (India); Gupta, Santosh K., E-mail: santufrnd@gmail.com [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Natarajan, V. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Padmaraj, O. [Department of Physics, Pondicherry University, Pondicherry 605014 (India); Satyanarayana, N., E-mail: nallanis2011@gmail.com [Department of Physics, Pondicherry University, Pondicherry 605014 (India); Venkateswarlu, M. [R & D Amara Raja Batteries Ltd., Karakambadi 517501, AP (India)

    2015-04-15

    Nanocrystalline Scheelite type Dy doped AMoO{sub 4} [where A = Ba, Sr and Ca] samples were prepared by acrylamide assisted sol–gel process and characterized by XRD, FT-Raman, FTIR, SEM and photoluminescence (PL). PL of undoped sample shows blue/green emission in CaMoO{sub 4} and SrMoO{sub 4} but multicolour visible emission leading to near white light in BaMoO{sub 4} nanoparticles; the origin of which is explained. It was observed that on doping 0.5 mol% of Dy{sup 3+} in molybdate samples complete energy transfer takes place in case of SrMoO{sub 4} and BaMoO{sub 4}, but host contributed substantially in Dy doped BaMoO{sub 4} sample, resulting in biexponential decay. It was also observed that symmetry around Dy{sup 3+} decreases as the size of alkaline earth ion increases. Due to combined blue, yellow and red colour emission in dysprosium doped sample; all samples showed near white light emission under UV and near UV excitation.

  4. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  5. Miniaturized Ion Mobility Spectrometer

    Science.gov (United States)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  6. Radio frequency ion source

    CERN Document Server

    Shen Guan Ren; Gao Fu; LiuNaiYi

    2001-01-01

    The study on Radio Frequency Ion Source is mainly introduced, which is used for CIAE 600kV ns Pulse Neutron Generator; and obtained result is also presented. The RF ion source consists of a diameter phi 25 mm, length 200 mm, coefficient of expansion =3.5 mA, beam current on target >=1.5 mA, beam spot =100 h.

  7. 2010 ion run: completed!

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    After a very fast switchover from protons to lead ions, the LHC has achieved performances that allowed the machine to exceed both peak and integrated luminosity by a factor of three. Thanks to this, experiments have been able to produce high-profile results on ion physics almost immediately, confirming that the LHC was able to keep its promises for ions as well as for protons.   First direct observation of jet quenching. A seminar on 2 December was the opportunity for the ALICE, ATLAS and CMS collaborations to present their first results on ion physics in front of a packed auditorium. These results are important and are already having a major impact on the understanding of the physics processes that involve the basic constituents of matter at high energies. In the ion-ion collisions, the temperature is so high that partons (quarks and gluons), which are usually constrained inside the nucleons, are deconfined to form a highly dense and hot soup known as quark-gluon plasma (QGP). The existence of ...

  8. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  9. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  10. Operation of ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In 2001, ECR ion source was operated for HIRFL about 5138 hours and 8 species of ion beams, such as ~(12)C~(4+), ~(12)C~(5+), ~(36)Ar~(11+),~(13)C~(4+),~(40)Ca~(11+),~(40)Ar~(11+),~(56)Fe~(10+) and ~(18)O~(6+) were provided. Among these ions,~(56)Fe~(10+)is a new ion beam. In this period, 14 experiments of heavy ion physics application and nuclear research were finished.

  11. Clues From Pluto's Ions

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    Nearly a year ago, in July 2015, the New Horizons spacecraft passed by the Pluto system. The wealth of data amassed from that flyby is still being analyzed including data from the Solar Wind Around Pluto (SWAP) instrument. Recent examination of this data has revealedinteresting new information about Plutos atmosphere and how the solar wind interacts with it.A Heavy Ion TailThe solar wind is a constant stream of charged particles released by the Sun at speeds of around 400 km/s (thats 1 million mph!). This wind travels out to the far reaches of the solar system, interacting with the bodies it encounters along the way.By modeling the SWAP detections, the authors determine the directions of the IMF that could produce the heavy ions detected. Red pixels represent IMF directions permitted. No possible IMF could reproduce the detections if the ions are nitrogen (bottom panels), and only retrograde IMF directions can produce the detections if the ions are methane. [Adapted from Zirnstein et al. 2016]New Horizons data has revealed that Plutos atmosphere leaks neutral nitrogen, methane, and carbon monoxide molecules that sometimes escape its weak gravitational pull. These molecules become ionized and are subsequently picked up by the passing solar wind, forming a tail of heavy ions behind Pluto. The details of the geometry and composition of this tail, however, had not yet been determined.Escaping MethaneIn a recent study led by Eric Zirnstein (Southwest Research Institute), the latest analysis of data from the SWAP instrument on board New Horizons is reported. The team used SWAPs ion detections from just after New Horizons closest approach to Pluto to better understand how the heavy ions around Pluto behave, and how the solar wind interacts with Plutos atmosphere.In the process of analyzing the SWAP data, Zirnstein and collaborators first establish what the majority of the heavy ions picked up by the solar wind are. Models of the SWAP detections indicate they are unlikely

  12. Molecular ion photofragment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bustamente, S.W.

    1983-11-01

    A new molecular ion photofragment spectrometer is described which features a supersonic molecular beam ion source and a radio frequency octapole ion trap interaction region. This unique combination allows several techniques to be applied to the problem of detecting a photon absorption event of a molecular ion. In particular, it may be possible to obtain low resolution survey spectra of exotic molecular ions by using a direct vibrational predissociation process, or by using other more indirect detection methods. The use of the spectrometer is demonstrated by measuring the lifetime of the O/sub 2//sup +/(/sup 4/..pi../sub u/) metastable state which is found to consist of two main components: the /sup 4/..pi../sub 5/2/ and /sup 4/..pi../sub -1/2/ spin components having a long lifetime (approx. 129 ms) and the /sup 4/..pi../sub 3/2/ and /sup 4/..pi../sub 1/2/ spin components having a short lifetime (approx. 6 ms).

  13. A Multicusp Ion Source for Radioactive Ion Beams

    Science.gov (United States)

    Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.

    1997-05-01

    In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.

  14. Cassini observations of ion cyclotron waves and ions anisotropy

    Science.gov (United States)

    Crary, F. J.; Dols, V. J.; Cassidy, T. A.; Tokar, R. L.

    2013-12-01

    In Saturn's equatorial, inner magnetosphere, the production of fresh ions in a pick-up distribution generates ion cyclotron waves. These waves are a sensitive indicator of fresh plasma production, but the quantitative relation between wave properties and ionization rates is nontrivial. We present a combined analysis of Cassini MAG and CAPS data, from a variety of equatorial orbits between 2005 and 2012. Using the MAG data, we determine the amplitude and peak frequency of ion cyclotron waves. From the CAPS data we extract the parallel and perpendicular velocity distribution of water group ions. We compare these results with hybrid simulations of the ion cyclotron instability and relate the observed wave amplitudes and ion velocity distributions to the production rate of pickup ions. The resulting relation between wave and plasma properties will allow us to infer ion production rates even at times when no direct ion measurements are available.

  15. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    Science.gov (United States)

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density.

  16. Experimental study of particle formation by ion-ion recombination

    Science.gov (United States)

    Nagato, Kenkichi; Nakauchi, Masataka

    2014-10-01

    Particle formation by ion-ion recombination has been studied using an ion-ion recombination drift tube (IIR-DT). IIR-DT uses two DC corona ionizers to produce positive and negative ions at the ends of the drift tube. The ions of different polarity move in opposite directions along the electric field in the drift tube. We observed significant particle formation using ions generated in purified air containing H2O, SO2, and NH3. Particle formation was suppressed when no drift field was applied. We also observed few particles when we used a single discharge (positive or negative only). These results clearly show that particle formation observed in the IIR-DT was caused by nucleation by ion-ion recombination. Positive and negative ion species produced by corona ionizers were investigated using an atmospheric pressure ionization mass spectrometer. The ions involved in the particle formation were suggested to include H3O+(H2O)n and NH4+(H2O)n for positive ions and sulfur-based ions such as SO5-, SO5-NO2, and HSO4- for negative ions.

  17. Luminescence behavior of Dy 3+ ions in lead borate glasses

    Science.gov (United States)

    Pisarska, Joanna

    2009-10-01

    Dy-doped lead borate glasses were studied. The luminescence spectra showed two characteristic bands at 480 and 573 nm due to 4F 9/2- 6H 15/2 (blue) and 4F 9/2- 6H 13/2 (yellow) transitions of Dy 3+. The yellow/blue luminescence of trivalent dysprosium was analyzed as a function of the B 2O 3/PbO ratios, the activator (Dy 3+) and the PbX 2 (X = F, Cl, Br) content.

  18. Heterometallic octanuclear RE(III)3Ni(II)5 (RE = Dy(III), Gd(III) and Y(III)) clusters with slow magnetic relaxation for the dysprosium derivative.

    Science.gov (United States)

    Wang, Huiyu; Ke, Hongshan; Lin, Shuang-Yan; Guo, Yang; Zhao, Lang; Tang, Jinkui; Li, Yun-Hui

    2013-04-21

    Reactions of rare earth benzoate and nickel perchlorate with a Schiff-base ligand, 2-([(2-hydroxyphenyl)imino]methyl) phenol (H2L), in the presence of triethylamine yielded three heterobimetallic octanuclear clusters of general formula [RE3Ni5L5(PhCOO)3(μ3-OH)5(μ3-OCH3)(CH3OH)4(H2O)]·xCH3OH·yH2O (RE = Dy(III), x = 4, y = 4 (1), RE = Gd(III), x = 5, y = 4 (2), RE = Y(III), x = 5, y = 3 (3)). Single-crystal X-ray diffraction reveals that the metal core of each cluster consists of two distorted [RE2Ni2O4] cubane-like moieties and a heterobimetallic triangular [RE2NiO2] unit, with RE ions arranged in a typical triangular fashion. Variable-temperature solid state magnetic susceptibilities of these complexes were measured in the temperature range 2-300 K and the results indicate that an overall ferromagnetic interaction among the metal ions is operative for compounds 2 and 3. Under zero external field, the Dy3Ni5 compound shows a frequency dependence of the out-of-phase (χ'') signals, which indicates slow relaxation of the magnetization.

  19. Poly[(6-carboxypicolinato-κ3O2,N,O6(μ3-pyridine-2,6-dicarboxylato-κ5O2,N,O6:O2′:O6′dysprosium(III

    Directory of Open Access Journals (Sweden)

    Xu Li

    2009-11-01

    Full Text Available In the title complex, [Dy(C7H3NO4(C7H4NO4]n, one of the ligands is fully deprotonated while the second has lost only one H atom. Each DyIII ion is coordinated by six O atoms and two N atoms from two pyridine-2,6-dicarboxylate and two 6-carboxypicolinate ligands, displaying a bicapped trigonal-prismatic geometry. The average Dy—O bond distance is 2.40 Å, some 0.1Å longer than the corresponding Ho—O distance in the isotypic holmium complex. Adjacent DyIII ions are linked by the pyridine-2,6-dicarboxylate ligands, forming a layer in (100. These layers are further connected by π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.827 (3 Å] and C—H...O hydrogen-bonding interactions, assembling a three-dimensional supramolecular network. Within each layer, there are other π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.501 (2 Å] and O—H...O and C—H...O hydrogen-bonding interactions, which further stabilize the structure.

  20. ION-1 technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Halbig, J.K.; Caine, J.C.

    1985-07-01

    The portable gamma-ray and neutron detector electronics (ION-1) gives a digital readout of the current-mode response produced by gamma rays in an ion chamber and of amplification and scaling of pulses received from a neutron detector. The primary application is the measurement of gamma-ray and neutron activity of irradiated reactor fuels stored at a reactor or at a storage pond away from a reactor. ION-1 is the first such instrument to use a design that allows communication of procedures, response, and results between instrument and inspector. It prompts the inspector through procedures, carries out programmed measurement steps, calculates results and error estimates, and performs internal diagnostic checks. This Technical Manual describes adjustment procedures and limited technical information that enable the inspector to troubleshoot at the board level. 5 figs., 10 tabs.

  1. Laser ion source for isobaric heavy ion collider experiment.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  2. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  3. Oxygen ion conductors

    Directory of Open Access Journals (Sweden)

    Stephen J Skinner

    2003-03-01

    A very interesting subgroup of this class of materials are the oxides that display oxygen ion conductivity. As well as the intrinsic interest in these materials, there has been a continued drive for their development because of the promise of important technological devices such as the solid oxide fuel cell (SOFC, oxygen separation membranes, and membranes for the conversion of methane to syngas1. All of these devices offer the potential of enormous commercial and ecological benefits provided suitable high performance materials can be developed. In this article we will review the materials currently under development for application in such devices with particular reference to some of the newly discovered oxide ion conductors.

  4. Microwave Discharge Ion Sources

    CERN Document Server

    Celona, L

    2013-01-01

    This chapter describes the basic principles, design features and characteristics of microwave discharge ion sources. A suitable source for the production of intense beams for high-power accelerators must satisfy the requirements of high brightness, stability and reliability. The 2.45 GHz off-resonance microwave discharge sources are ideal devices to generate the required beams, as they produce multimilliampere beams of protons, deuterons and singly charged ions. A description of different technical designs will be given, analysing their performance, with particular attention being paid to the quality of the beam, especially in terms of its emittance.

  5. Advanced penning ion source

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, Thomas; Ji, Qing; Persaud, Arun; Sy, Amy V.

    2016-11-01

    This disclosure provides systems, methods, and apparatus for ion generation. In one aspect, an apparatus includes an anode, a first cathode, a second cathode, and a plurality of cusp magnets. The anode has a first open end and a second open end. The first cathode is associated with the first open end of the anode. The second cathode is associated with the second open end of the anode. The anode, the first cathode, and the second cathode define a chamber. The second cathode has an open region configured for the passage of ions from the chamber. Each cusp magnet of the plurality of cusp magnets is disposed along a length of the anode.

  6. Uranyl ion coordination

    Science.gov (United States)

    Evans, H.T.

    1963-01-01

    A review of the known crystal structures containing the uranyl ion shows that plane-pentagon coordination is equally as prevalent as plane-square or plane-hexagon. It is suggested that puckered-hexagon configurations of OH - or H2O about the uranyl group will tend to revert to plane-pentagon coordination. The concept of pentagonal coordination is invoked for possible explanations of the complex crystallography of the natural uranyl hydroxides and the unusual behavior of polynuclear ions in hydrolyzed uranyl solutions.

  7. Interferometry with Strontium Ions

    Science.gov (United States)

    Jackson, Jarom; Lambert, Enoch; Otterstrom, Nils; Jones, Tyler; Durfee, Dallin

    2014-05-01

    We describe progress on a cold ion matter-wave interferometer. Cold Strontium atoms are extracted from an LVIS. The atoms will be photo-ionized with a two-photon transition to an auto-ionizing state in the continuum. The ions will be split and recombined using stimulated Raman transitions from a pair of diode lasers injection locked to two beams from a master laser which have been shifted up and down by half the hyperfine splitting. We are developing laser instrumentation for this project including a method to prevent mode-hopping by analyzing laser frequency noise, and an inexpensive, robust wavelength meter. Supported by NSF Award No. 1205736.

  8. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  9. Analytical applications of ion exchangers

    CERN Document Server

    Inczédy, J

    1966-01-01

    Analytical Applications of Ion Exchangers presents the laboratory use of ion-exchange resins. This book discusses the development in the analytical application of ion exchangers. Organized into 10 chapters, this book begins with an overview of the history and significance of ion exchangers for technical purposes. This text then describes the properties of ion exchangers, which are large molecular water-insoluble polyelectrolytes having a cross-linked structure that contains ionic groups. Other chapters consider the theories concerning the operation of ion-exchange resins and investigate th

  10. Ion-Acoustic Instabilities in a Multi-Ion Plasma

    Directory of Open Access Journals (Sweden)

    Noble P. Abraham

    2013-01-01

    Full Text Available We have, in this paper, studied the stability of the ion-acoustic wave in a plasma composed of hydrogen, positively and negatively charged oxygen ions, and electrons, which approximates very well the plasma environment around a comet. Modelling each cometary component (H+, O+, and O− by a ring distribution, we find that ion-acoustic waves can be generated at frequencies comparable to the hydrogen ion plasma frequency. The dispersion relation has been solved both analytically and numerically. We find that the ratio of the ring speed (u⊥s to the thermal spread (vts modifies the dispersion characteristics of the ion-acoustic wave. The contrasting behaviour of the phase velocity of the ion-acoustic wave in the presence of O− ions for u⊥s>vts (and vice versa can be used to detect the presence of negatively charged oxygen ions and also their thermalization.

  11. Ion-dust streaming instability with non-Maxwellian ions

    Energy Technology Data Exchange (ETDEWEB)

    Kählert, Hanno, E-mail: kaehlert@theo-physik.uni-kiel.de [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, 24098 Kiel (Germany)

    2015-07-15

    The influence of non-Maxwellian ions on the ion-dust streaming instability in a complex plasma is investigated. The ion susceptibility employed for the calculations self-consistently accounts for the acceleration of the ions by a homogeneous background electric field and their collisions with neutral gas particles via a Bhatnagar-Gross-Krook collision term [e.g., A. V. Ivlev et al., Phys. Rev. E 71, 016405 (2005)], leading to significant deviations from a shifted Maxwellian distribution. The dispersion relation and the properties of the most unstable mode are studied in detail and compared with the Maxwellian case. The largest deviations occur at low to intermediate ion-neutral damping. In particular, the growth rate of the instability for ion streaming below the Bohm speed is found to be lower than in the case of Maxwellian ions, yet remains on a significant level even for fast ion flows above the Bohm speed.

  12. Ion Mass Determination

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (100) is described for determining the mass of ions, the apparatus configured to hold a plasma (101 ) having a plasma potential. The apparatus (100) comprises an electrode (102) having a surface extending in a surface plane and an insulator (104) interfacing with the electrode (102...

  13. Ion implantation in polymers

    Science.gov (United States)

    Wintersgill, M. C.

    1984-02-01

    An introductory overview will be given of the effects of ion implantation on polymers, and certain areas will be examined in more detail. Radiation effects in general and ion implantation in particular, in the field of polymers, present a number of contrasts with those in ionic crystals, the most obvious difference being that the chemical effects of both the implanted species and the energy transfer to the host may profoundly change the nature of the target material. Common effects include crosslinking and scission of polymer chains, gas evolution, double bond formation and the formation of additional free radicals. Research has spanned the chemical processes involved, including polymerization reactions achievable only with the use of radiation, to applied research dealing both with the effects of radiation on polymers already in commercial use and the tailoring of new materials to specific applications. Polymers are commonly divided into two groups, in describing their behavior under irradiation. Group I includes materials which form crosslinks between molecules, whereas Group II materials tend to degrade. In basic research, interest has centered on Group I materials and of these polyethylene has been studied most intensively. Applied materials research has investigated a variety of polymers, particularly those used in cable insulation, and those utilized in ion beam lithography of etch masks. Currently there is also great interest in enhancing the conducting properties of polymers, and these uses would tend to involve the doping capabilities of ion implantation, rather than the energy deposition.

  14. Photo ion spectrometer

    Science.gov (United States)

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  15. Anodes sliced with ions

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    2006-01-01

    A detailed image of a complex fuel-cell anode structure, obtained through ion-beam milling, SEM imaging and advanced digital reconstruction, yields an accurate description of the three-dimensional structure, and enables correct prediction of the electrode's properties

  16. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...

  17. Ion transport from plasma ion source at ISOLTRAP

    CERN Document Server

    Steinsberger, Timo Pascal

    2017-01-01

    In this report, my work as CERN Summer Student at the ISOLTRAP experiment at ISOLDE is described. A new plasma ion source used as oine source for calibration and implemented before my arrival was commissioned and transportation settings for the produced ions to the ion traps were found. The cyclotron frequencies of 40Ar and the xenon isotopes 129-132Xe were measured using time-of-flight and phase-imaging ion-cyclotron-resonance mass spectroscopy.

  18. Compact RF ion source for industrial electrostatic ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  19. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  20. Lithium ion sources

    Science.gov (United States)

    Roy, Prabir K.; Greenway, Wayne G.; Grote, Dave P.; Kwan, Joe W.; Lidia, Steven M.; Seidl, Peter A.; Waldron, William L.

    2014-01-01

    A 10.9 cm diameter lithium alumino-silicate ion source has been chosen as a source of ˜100mA lithium ion current for the Neutralized Drift Compression Experiment (NDCX-II) at LBNL. Research and development was carried out on lithium alumino-silicate ion sources prior to NDCX-II source fabrication. Space-charge-limited emission with the current density exceeding 1 mA/cm2 was measured with 0.64 cm diameter lithium alumino-silicate ion sources at 1275 °C. The beam current density is less for the first 10.9 cm diameter NDCX-II source, and it may be due to an issue of surface coverage. The lifetime of a thin coated (on a tungsten substrate) source is varied, roughly 40-50 h, when pulsed at 0.05 Hz and with pulse length of 6μs each, i.e., a duty factor of 3×10-7, at an operating temperature of 1250-1275 °C. The 10.9 cm diameter source lifetime is likely the same as of a 0.64 cm source, but the lifetime of a source with a 2 mm diameter (without a tungsten substrate) is 10-15 h with a duty factor of 1 (DC extraction). The lifetime variation is dependent on the amount of deposition of β-eucryptite mass, and the surface temperature. The amount of mass deposition does not significantly alter the current density. More ion source work is needed to improve the large source performance.

  1. Lithium ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K., E-mail: pkroy@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, California CA-94720 (United States); Greenway, Wayne G. [Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, California CA-94720 (United States); Grote, Dave P. [Lawrence Livermore National Laboratory LLC, CA-94550 (United States); Kwan, Joe W.; Lidia, Steven M.; Seidl, Peter A.; Waldron, William L. [Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, California CA-94720 (United States)

    2014-01-01

    A 10.9 cm diameter lithium alumino-silicate ion source has been chosen as a source of ∼100mA lithium ion current for the Neutralized Drift Compression Experiment (NDCX-II) at LBNL. Research and development was carried out on lithium alumino-silicate ion sources prior to NDCX-II source fabrication. Space-charge-limited emission with the current density exceeding 1 mA/cm{sup 2} was measured with 0.64 cm diameter lithium alumino-silicate ion sources at 1275 °C. The beam current density is less for the first 10.9 cm diameter NDCX-II source, and it may be due to an issue of surface coverage. The lifetime of a thin coated (on a tungsten substrate) source is varied, roughly 40–50 h, when pulsed at 0.05 Hz and with pulse length of 6μs each, i.e., a duty factor of 3×10{sup −7}, at an operating temperature of 1250–1275 °C. The 10.9 cm diameter source lifetime is likely the same as of a 0.64 cm source, but the lifetime of a source with a 2 mm diameter (without a tungsten substrate) is 10–15 h with a duty factor of 1 (DC extraction). The lifetime variation is dependent on the amount of deposition of β-eucryptite mass, and the surface temperature. The amount of mass deposition does not significantly alter the current density. More ion source work is needed to improve the large source performance.

  2. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  3. Device for separating non-ions from ions

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Yehia M.; Smith, Richard D.

    2017-01-31

    A device for separating non-ions from ions is disclosed. The device includes a plurality of electrodes positioned around a center axis of the device and having apertures therein through which the ions are transmitted. An inner diameter of the apertures varies in length. At least a portion of the center axis between the electrodes is non-linear.

  4. Unstable Electrostatic Ion Cyclotron Waves Exited by an Ion Beam

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Electrostatic ion cyclotron waves were observed in a quiescent cesium plasma into which a low‐energy beam of sodium ions was injected. The instability appeared when the beam velocity was above 12 times the ion thermal velocity. The waves propagated along the magnetic field with a velocity somewhat...

  5. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  6. Prolonging coherence in trapped ions

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available The authors study pulse sequences that dynamically decouple 9Be+ ions from their decohering environment. The noise environment the ions see is artificially synthesized to emulate a variety of physical systems. By incorporating measurement feedback...

  7. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  8. Membranes in lithium ion batteries.

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-07-04

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  9. Observations of Collective Ion Acceleration.

    Science.gov (United States)

    1981-01-01

    possible benefit can be listed. In cancer therapy, radiation produced by ion beams may be more selectively directed into tumors. Ion beams in spallation...34Autoresonant Accelerator Concept," Phys. Rev. Lett. 31, 1234 (1973). 50. S. Humphries, J. J. Lee, and R. N. Sudan, "Generation of Incense Pulsed Ion Beams

  10. Macroreticular chelating ion-exchangers.

    Science.gov (United States)

    Hirsch, R F; E Gancher, R; Russo, F R

    1970-06-01

    Two macroreticular chelating ion-exchangers have been prepared and characterized. One contains the iminodiacetate group and the second contains the arsonate group as the ion-exchanging site. The macroreticular resins show selectivities among metal ions similar to those of the commercially available naicroreticular chelating resins. Chromatographie separations on the new resins are rapid and sharp.

  11. An ion-optical bench for testing ion source lenses

    Science.gov (United States)

    Stoffels, J. J.; Ells, D. R.

    1988-06-01

    An ion-optical bench has been designed and constructed to obtain experimental data on the focusing properties of ion lenses in three dimensions. The heart of the apparatus is a position-sensitive detector (PSD) that gives output signals proportional to the x and y positions of each ion impact. The position signals can be displayed on an oscilloscope screen and analyzed by a two-parameter pulse-height analyzer, thereby giving a visual picture of the ion beam cross section and intensity distribution. The PSD itself is mounted on a track and is movable during operation from a position immediately following the ion lens to 30 cm away. This enables the rapid collection of accurate data on the intensity distribution and divergence angles of ions leaving the source lens. Examples of ion lens measurements are given.

  12. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  13. Ion-ion reactions for charge reduction of biopolymer at atmospheric pressure ambient

    Institute of Scientific and Technical Information of China (English)

    Yue Ming Zhou; Jian Hua Ding; Xie Zhang; Huan Wen Chen

    2007-01-01

    Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.

  14. Improving Ion Computed Tomography

    DEFF Research Database (Denmark)

    Hansen, David Christoffer

    2014-01-01

    -HIT, og de blev tilpasset eksperimentelle tværsnit. Modellerne passede godt med eksperimentelle målinger af kernefragmentation af kulstof i vand, hvorimod der var større afvigelser for neon. I tidligere undersøgelser af ion CT med ioner tungere end brint har dosis altid været meget høj, i flere tilfælde...... der normalt bruges ved røntgen CT, gav både helium og kulstof CT billeder med højere opløsning og mindre støj. Et alternativ til ion CT er "dual energy CT", dvs røntgen CT ved to forskellige bølgelængder. Dette giver også mulighed for en bedre bestemmelse af partiklernes rækkevidde, og der blev derfor...

  15. Trapping ions with lasers

    CERN Document Server

    Cormick, Cecilia; Morigi, Giovanna

    2010-01-01

    This work theoretically addresses the trapping an ionized atom with a single valence electron by means of lasers, analyzing qualitatively and quantitatively the consequences of the net charge of the particle. In our model, the coupling between the ion and the electromagnetic field includes the charge monopole and the internal dipole, within a multipolar expansion of the interaction Hamiltonian. Specifically, we perform a Power-Zienau-Woolley transformation, taking into account the motion of the center of mass. The net charge produces a correction in the atomic dipole which is of order $m_e/M$ with $m_e$ the electron mass and $M$ the total mass of the ion. With respect to neutral atoms, there is also an extra coupling to the laser field which can be approximated by that of the monopole located at the position of the center of mass. These additional effects, however, are shown to be very small compared to the dominant dipolar trapping term.

  16. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  17. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    an inspiring speech at the MIT Physics of Computation 1st Conference in 1981, Feynman proposed the development of a computer that would obey the...on ion trap based 36 quantum computing for physics and computer science students would include lecture notes, slides, lesson plans, a syllabus...reading lists, videos, demonstrations, and laboratories. 37 LIST OF REFERENCES [1] R. P. Feynman , “Simulating physics with computers,” Int. J

  18. Cooled Ion Frequency Standard.

    Science.gov (United States)

    2014-09-26

    when the cooling laser is turned off, the ions are heated by: (1) background gas collisions and (2) a plasma heating process which may be " resonant ...causes heating in our Penning traps. One way resonant particle transport is mediated is by misalignm.nt between the trap’s magnetic and electric axis...using computer solutions. The trap of Fig. 1 is noteworthy because although the inner surfaces of the trap are machined with simple conical cuts, the

  19. Novel laser ion sources

    CERN Document Server

    Fournier, P; Kugler, H; Lisi, N; Scrivens, R; Rodríguez, F V; Düsterer, S; Sauerbrey, R; Schillinger, H; Theobald, W; Veisz, L; Tisch, J W G; Smith, R A

    2000-01-01

    Development in the field of high-power laser systems with repetition rates of several Hz and energies of few joules is highly active and opening, giving new possibilities for the design of laser ions sources. Preliminary investigations on the use of four different laser and target configurations are presented: (1) A small CO/sub 2/ laser (100 mJ, 10.6 mu m) focused onto a polyethylene target to produce C ions at 1 Hz repetition rate (CERN). (2) An excimer XeCl laser (6 J, 308 nm) focused onto solid targets (Frascati). (3) A femtosecond Ti: sapphire laser (250 mJ, 800 nm) directed onto a solid targets (Jena). (4) A picosecond Nd: yttrium-aluminum-garnet (0.3 J, 532 nm) focused into a dense medium of atomic clusters and onto solid targets (London). The preliminary experimental results and the most promising schemes will be discussed with respect to the scaling of the production of high numbers of highly charged ions. Different lasers are compared in terms of current density at 1 m distance for each charge state...

  20. Ion channeling revisited

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corona, Aldo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nguyen, Anh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  1. Ion Collision, Theory

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Anil K.

    2013-09-11

    The outcome of a collision between an ion and neutral species depends on the chemical and physical properties of the two reactants, their relative velocities, and the impact parameter of their trajectories. These include elastic and inelastic scattering of the colliding particles, charge transfer (including dissociative charge transfer), atom abstraction, complex formation and dissociation of the colliding ion. Each of these reactions may be characterized in terms of their energy-dependent rate coefficients, cross sections and reaction kinetics. A theoretical framework that emphasizes simple models and classical mechanics is presented for these processes. Collision processes are addressed in two categories of low-energy and high-energy collisions. Experiments under thermal or quasi-thermal conditions–swarms, drift tubes, chemical ionization and ion cyclotron resonance are strongly influenced by long-range forces and often involve collisions in which atom exchange and extensive energy exchange are common characteristics. High-energy collisions are typically impulsive, involve short-range intermolecular forces and are direct, fast processes.

  2. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  3. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    Energy Technology Data Exchange (ETDEWEB)

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  4. Characterization of ion dynamics in structures for lossless ion manipulations.

    Science.gov (United States)

    Tolmachev, Aleksey V; Webb, Ian K; Ibrahim, Yehia M; Garimella, Sandilya V B; Zhang, Xinyu; Anderson, Gordon A; Smith, Richard D

    2014-09-16

    Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radiofrequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radiofrequency (RF) "rung" electrodes, bordered by DC "guard" electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be "soft" in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply static or transient electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling high quality ion mobility separations.

  5. Ion sources for energy extremes of ion implantation.

    Science.gov (United States)

    Hershcovitch, A; Johnson, B M; Batalin, V A; Kropachev, G N; Kuibeda, R P; Kulevoy, T V; Kolomiets, A A; Pershin, V I; Petrenko, S V; Rudskoy, I; Seleznev, D N; Bugaev, A S; Gushenets, V I; Litovko, I V; Oks, E M; Yushkov, G Yu; Masunov, E S; Polozov, S M; Poole, H J; Storozhenko, P A; Svarovski, A Ya

    2008-02-01

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P(2+) [8.6 pmA (particle milliampere)], P(3+) (1.9 pmA), and P(4+) (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb(3+)Sb(4+), Sb(5+), and Sb(6+) respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  6. Electron string ion sources for carbon ion cancer therapy accelerators

    CERN Document Server

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  7. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    Energy Technology Data Exchange (ETDEWEB)

    Segal, M. J., E-mail: mattiti@gmail.com [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); University of Cape Town, Rondebosch, Cape Town 7700 (South Africa); Bark, R. A.; Thomae, R. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A. [Joint Institute for Nuclear Research, Joloit-Curie 6, 141980 Dubna, Moscow Region (Russian Federation)

    2016-02-15

    An assembly for a commercial Ga{sup +} liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga{sup +} ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga{sup +} and Au{sup +} ion beams will be reported as well.

  8. Negative Ion Confinement in the Multicusp Ion Source

    Science.gov (United States)

    Khodadadi Azadboni, Fatemeh; Sedaghatizade, Mahmood

    2010-04-01

    To optimize the negative ion source and generate intense beams of negative ions, understanding of transport properties of both electrons and negative ions is indispensable. Transport process of negative hydrogen ions (H-) in a multicusp H- source, has been simulated by three-dimensional Femlab simulation software. Multipolar plasma confinement is known to result in enhanced plasma density, homogeneous plasma of a large volume, and quiescent plasmas. The effect of plasma confinement by applying multi-polar magnetic field was investigated. Results are obtained for ten different configurations of permanent magnet and discussed. Full line cusps are found to give optimum plasma density. Negative ions created on the sidewall hardly can reach the center of the source due to trapping by the multicusp magnetic field. As a result, H- ions created on the sidewall do not have a significant effect on the H- current.

  9. Ion binding to biological macromolecules.

    Science.gov (United States)

    Petukh, Marharyta; Alexov, Emil

    2014-11-01

    Biological macromolecules carry out their functions in water and in the presence of ions. The ions can bind to the macromolecules either specifically or non-specifically, or can simply to be a part of the water phase providing physiological gradient across various membranes. This review outlines the differences between specific and non-specific ion binding in terms of the function and stability of the corresponding macromolecules. Furthermore, the experimental techniques to identify ion positions and computational methods to predict ion binding are reviewed and their advantages compared. It is indicated that specifically bound ions are relatively easier to be revealed while non-specifically associated ions are difficult to predict. In addition, the binding and the residential time of non-specifically bound ions are very much sensitive to the environmental factors in the cells, specifically to the local pH and ion concentration. Since these characteristics differ among the cellular compartments, the non-specific ion binding must be investigated with respect to the sub-cellular localization of the corresponding macromolecule.

  10. Charge Breeding of Radioactive Ions

    CERN Document Server

    Wenander, F J C

    2013-01-01

    Charge breeding is a technique to increase the charge state of ions, in many cases radioactive ions. The singly charged radioactive ions, produced in an isotope separator on-line facility, and extracted with a low kinetic energy of some tens of keV, are injected into a charge breeder, where the charge state is increased to Q. The transformed ions are either directed towards a dedicated experiment requiring highly charged ions, or post-accelerated to higher beam energies. In this paper the physics processes involved in the production of highly charged ions will be introduced, and the injection and extraction beam parameters of the charge breeder defined. A description of the three main charge-breeding methods is given, namely: electron stripping in gas jet or foil; external ion injection into an electron-beam ion source/trap (EBIS/T); and external ion injection into an electron cyclotron resonance ion source (ECRIS). In addition, some preparatory devices for charge breeding and practical beam delivery aspects ...

  11. Ion Channels in Neurological Disorders.

    Science.gov (United States)

    Kumar, Pravir; Kumar, Dhiraj; Jha, Saurabh Kumar; Jha, Niraj Kumar; Ambasta, Rashmi K

    2016-01-01

    The convergent endeavors of the neuroscientist to establish a link between clinical neurology, genetics, loss of function of an important protein, and channelopathies behind neurological disorders are quite intriguing. Growing evidence reveals the impact of ion channels dysfunctioning in neurodegenerative disorders (NDDs). Many neurological/neuromuscular disorders, viz, Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, and age-related disorders are caused due to altered function or mutation in ion channels. To maintain cell homeostasis, ion channels are playing a crucial role which is a large transmembrane protein. Further, these channels are important as it determines the membrane potential and playing critically in the secretion of neurotransmitter. Behind NDDs, losses of pathological proteins and defective ion channels have been reported and are found to aggravate the disease symptoms. Moreover, ion channel dysfunctions are eliciting a range of symptoms, including memory loss, movement disabilities, neuromuscular sprains, and strokes. Since the possible mechanistic role played by aberrant ion channels, their receptor and associated factors in neurodegeneration remained elusive; therefore, it is a challenging task for the neuroscientist to implement the therapeutics for targeting NDDs. This chapter reviews the potential role of the ion channels in membrane physiology and brain homeostasis, where ion channels and their associated factors have been characterized with their functional consequences in neurological diseases. Moreover, mechanistic role of perturbed ion channels has been identified in various NDDs, and finally, ion channel modulators have been investigated for their therapeutic intervention in treating common NDDs.

  12. Gas and metal ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Oaks, E. [High Current Electronics Institute, Tomsk (Russian Federation)]|[State Academy of Control System and Radioelectronics, Tomsk (Russian Federation); Yushkov, G. [High Current Electronics Institute, Tomsk (Russian Federation)

    1996-08-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of {approximately} 10{sup 17} cm{sup {minus}2} in some tens of minutes. So the average ion current density at the surface under treatment should be over 10{sup {minus}5} A/cm{sup 2}. The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from {approximately}1 kV (for the ion source used for surface sputtering) to {approximately}100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation).

  13. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  14. Ion channels in plants

    Science.gov (United States)

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels.1 He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula,1,2 known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC).1 PMID:23221742

  15. Carbon Ion Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Herrmann, Rochus;

    On the importance of choice of target size for selective boosting of hypoxic tumor subvolumina in carbon ion therapy Purpose: Functional imaging methods in radiotherapy are maturing and can to some extent uncover radio resistant structures found within a tumour entity. Selective boost of identified...... size and PTV position. Methods: Several treatment plans are produced with TRiP, using a 256x256x256 mm3 water phantom and SOBP optimization on physical dose. Box formed PTV volumes between 0.15 - 1010 cm3, and PTV positions ranging from 3 cm to 200 cm depth (relative...

  16. Surface Production of Ions

    Science.gov (United States)

    1992-05-26

    Hill, New York 1938) p. 60-64. 21. S. Dushman, Scientific Foundations of Vacuum Technique, Second Edition (John Wiley & Sons, New York, 1962) p. 91...hydrogen atom (or H + ion) from a metal surface is of funda- Liouville equation, whose solution involves the coupling ma- ’ Jonh . mental interest both from a...Appi. Phys. 50 (4), April 1979 IsB Chapman Glow Discharge Processes John Wiley and Sons New York, 1980 pp 114-115. -H. L. Cui, J. Vac. Sci. Tech. A 9

  17. A novel planar ion funnel design for miniature ion optics

    Science.gov (United States)

    Chaudhary, A.; van Amerom, Friso H. W.; Short, R. T.

    2014-10-01

    The novel planar ion funnel (PIF) design presented in this article emphasizes simple fabrication, assembly, and operation, making it amenable to extreme miniaturization. Simulations performed in SIMION 8.0 indicate that ion focusing can be achieved by using a gradient of electrostatic potentials on concentric metal rings in a plane. A prototype was fabricated on a 35 × 35 mm custom-designed printed circuit board (PCB) with a center hole for ions to pass through and a series of concentric circular metal rings of increasing diameter on the front side of the PCB. Metal vias on the PCB electrically connected each metal ring to a resistive potential divider that was soldered on the back of the PCB. The PIF was tested at 5.5 × 10-6 Torr in a vacuum test setup that was equipped with a broad-beam ion source on the front and a micro channel plate (MCP) ion detector on the back of the PIF. The ion current recorded on the MCP anode during testing indicated a 23× increase in the ion transmission through the PIF when electric potentials were applied to the rings. These preliminary results demonstrate the functionality of a 2D ion funnel design with a much smaller footprint and simpler driving electronics than conventional 3D ion funnels. Future directions to improve the design and a possible micromachining approach to fabrication are discussed in the conclusions.

  18. Electron beam ion source and electron beam ion trap (invited).

    Science.gov (United States)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  19. Electron beam ion source and electron beam ion trap (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  20. Enhanced secondary ion emission with a bismuth cluster ion source

    Science.gov (United States)

    Nagy, G.; Walker, A. V.

    2007-04-01

    We have investigated the mechanism of secondary ion yield enhancement using Bin+ (n = 1-6) primary ions and three different samples - dl-phenylalanine, Irganox 1010 and polystyrene - adsorbed on Al, Si and Ag substrates. The largest changes in secondary ion yields are observed for Bi2+ and Bi3+ primary ions. Smaller increases in secondary ion yield are found using Bi4+, Bi5+ and Bi6+ projectiles. The secondary ion yield enhancements are generally larger on Si than on Al. Using Bin+ structures obtained from density functional theory (DFT) calculations we demonstrate that the yield enhancements cannot be explained by an increase in the deposited energy density (energy per area) into the substrate. These data show that the mechanism of Bin+ sputtering is very similar to that for Aun+ primary ion beams. When a polyatomic primary ion strikes the substrate, its constituent atoms are likely to remain near to each other, and so a substrate atom can be struck simultaneously by multiple atoms. The action of these multiple concerted impacts leads to efficient energy transfer in the near surface region and an increase in the number of secondary ions ejected from the surface. Such concerted impacts involve one, two or three projectile atoms, which explains well the nonlinear yield enhancements observed going from Bi+ to Bi2+ to Bi3+.

  1. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  2. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  3. Negative hydrogen ion production mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  4. Negative hydrogen ion production mechanisms

    Science.gov (United States)

    Bacal, M.; Wada, M.

    2015-06-01

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  5. Rectangular ion funnel: a new ion funnel interface for structures for lossless ion manipulations.

    Science.gov (United States)

    Chen, Tsung-Chi; Webb, Ian K; Prost, Spencer A; Harrer, Marques B; Norheim, Randolph V; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D

    2015-01-06

    Structures for lossless ion manipulations (SLIM) have recently demonstrated the ability for near lossless ion focusing, transfer, and trapping in subatmospheric pressure regions. While lossless ion manipulations are advantageously applied to the applications of ion mobility separations and gas phase reactions, ion introduction through ring electrode ion funnels or more conventional ion optics to SLIM can involve discontinuities in electric fields or other perturbations that result in ion losses. In this work, we developed and investigated a new funnel design that aims to seamlessly couple to SLIM at the funnel exit. This rectangular ion funnel (RIF) was initially evaluated by ion simulations, fabricated utilizing printed circuit board technology, and tested experimentally. The RIF was integrated to a SLIM-time of flight (TOF) MS system, and the operating parameters, including RF, DC bias of the RIF electrodes, and electric fields for effectively interfacing with a SLIM, were characterized. The RIF provided a 2-fold sensitivity increase without significant discrimination over a wide m/z range and well matched to that of SLIM, along with greatly improved SLIM operational stability.

  6. Electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, M.A. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  7. Ion-atom hybrid systems

    CERN Document Server

    Willitsch, Stefan

    2014-01-01

    The study of interactions between simultaneously trapped cold ions and atoms has emerged as a new research direction in recent years. The development of ion-atom hybrid experiments has paved the way for investigating elastic, inelastic and reactive collisions between these species at very low temperatures, for exploring new cooling mechanisms of ions by atoms and for implementing new hybrid quantum systems. The present lecture reviews experimental methods, recent results and upcoming developments in this emerging field.

  8. Bucharest heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceausescu, V.; Dobrescu, S.; Duma, M.; Indreas, G.; Ivascu, M.; Papureanu, S.; Pascovici, G.; Semenescu, G.

    1986-02-15

    The heavy ion accelerator facility of the Heavy Ion Physics Department at the Institute of Physics and Nuclear Engineering in Bucharest is described. The Tandem accelerator development and the operation of the first stage of the heavy ion postaccelerating system are discussed. Details are given concerning the resonance cavities, the pulsing system matching the dc beam to the RF cavities and the computer control system.

  9. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  10. Experimental investigation of ion-ion recombination at atmospheric conditions

    Directory of Open Access Journals (Sweden)

    A. Franchin

    2015-02-01

    Full Text Available We present the results of laboratory measurements of the ion-ion recombination coefficient at different temperatures, relative humidities and concentrations of ozone and sulfur dioxide. The experiments were carried out using the Cosmics Leaving OUtdoor Droplets (CLOUD chamber at CERN, the walls of which are made of conductive material, making it possible to measure small ions. We produced ions in the chamber using a 3.5 GeV c−1 beam of positively-charged pions (π+ from the CERN Proton Synchrotron (PS and with galactic cosmic rays, when the PS was switched off. The range of the ion production rate varied from 2 to 100 cm−3s−1, covering the typical range of ionization throughout the troposphere. The temperature ranged from −55 to 20 °C, the relative humidity from 0 to 70%, the SO2 concentration from 0 to 40 ppb, and the ozone concentration from 200 to 700 ppb. At 20 °C and 40% RH, the retrieved ion-ion recombination coefficient was (2.3 ± 0.7 × 10−6cm3s−1. We observed no dependency of the ion-ion recombination coefficient on ozone concentration and a weak variation with sulfur dioxide concentration. However, we found a strong dependency of the ion-ion recombination coefficient on temperature. We compared our results with three different models and found an overall agreement for temperatures above 0 °C, but a disagreement at lower temperatures. We observed a strong dependency of the recombination coefficient on relative humidity, which has not been reported previously.

  11. Pattern formation with trapped ions

    CERN Document Server

    Lee, Tony E

    2010-01-01

    We propose an experiment to study collective behavior in a nonlinear medium of trapped ions. Using laser cooling and heating and an anharmonic trap potential, one can turn an ion into a nonlinear van der Pol-Duffing oscillator. A chain of ions interacting electrostatically has stable plane waves for all parameters. The system also behaves like an excitable medium, since a sufficiently large perturbation generates a travelling pulse. Small chains exhibit multistability and limit cycles. We account for noise from spontaneous emission in the amplitude equation and find that the patterns are observable for realistic experimental parameters. The tunability of ion traps makes them an exciting setting to study nonequilibrium statistical physics.

  12. The Toledo heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Haar, R.R. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Beideck, D.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Curtis, L.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Kvale, T.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Sen, A. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Schectman, R.M. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Stevens, H.W. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States))

    1993-06-01

    The recently installed 330 kV electrostatic positive ion accelerator at the University of Toledo is described. Experiments have been performed using ions ranging from H[sup +] to Hg[sup 2+] and exotic molecules such as HeH[sup +]. Most of these experiments involve the beam-foil studies of the lifetimes of excited atomic states and the apparatus used for these experiments is also described. Another beamline is available for ion-implantation. The Toledo heavy ion accelerator facility welcomes outside users. (orig.)

  13. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  14. Study on Magnetic Responsibility of Rare Earth Ferrite/Polyacrylamide Magnetic Microsphere

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Wang Zhifeng; Zhang Hong; Dai Shaojun; Qiu Guanming; Okamoto Hiroshi

    2005-01-01

    In inverse microemulsion, rare earth ferrite/polyacrylamide magnetic microsphere were prepared and their magnetic responsibility were studied by magnetic balance. Results indicate that the magnetic responsibility of microsphere relates to magnetic moment of rare earth ion, and it can be improved by the addition of dysprosium ion of high magnetic moment. Dysprosium content has an effect on magnetic responsibility of dysprosium ferrite/polyacrylamide magnetic microsphere. The microsphere displays strong magnetic responsibility when the molar ratio of Dy3+/iron is 0.20.

  15. Poly[hexaaquatri-μ-malonato-didysprosium(III

    Directory of Open Access Journals (Sweden)

    Mei Yang

    2008-07-01

    Full Text Available The title compound, [Dy2(C3H2O43(H2O6]n, forms a coordination polymeric structure comprising hydrated dysprosium ions and malonate ligands. In the asymmetric unit, there are one dysprosium ion, one and a half malonate ligands, and three water molecules. Each DyIII atom is coordinated by six O atoms from four malonate ligands and by three water molecules, and displays a tricapped trigonal–prismatic coordination geometry. The malonate ligands adopt two types of coordination mode, linking dysprosium centres to form a three-dimensional coordination polymer. The extensive network of hydrogen bonds in this polymer enhances the structural stability.

  16. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu. [High Current Electronics Institute, Siberian Branch of Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S. [Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Dugin, S.; Alexeyenko, O. [State Scientific Center of the Russian Federation State Research Institute for Chemistry and Technology of Organoelement Compounds, Moscow (Russian Federation)

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  17. Vaporization wave model for ion-ion central collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, M.; Giansiracusa, G.; Piccitto, G. (Catania Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Catania (Italy))

    1983-09-24

    We propose a simple model for central or nearly central ion-ion collisions at intermediate energies. It is based on the ''vaporization wave model'' developed by Bennett for macroscopic objects. The model offers a simple explanation of the observed deuteron/proton abundancy ratio as a function of the beam energy.

  18. Vaporization wave model for ion-ion central collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, M.; Giansiracusa, G.; Piccitto, G. (Catania Univ. (Italy). Ist. di Fisica)

    1983-09-24

    A simple model for central or nearly central ion-ion collisions at intermediate energies is proposed. It is based on the ''vaporization wave model'' developed by Bennet for macroscopic objects. The model offers a simple explanation of the observed deuteron/proton abundancy ratio as a function of the beam energy.

  19. Nonlinear Evolution of the Ion-Ion Beam Instability

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.

    1982-01-01

    The criterion for the existence of vortexlike ion phase-space configurations, as obtained by a standard pseudopotential method, is found to coincide with the criterion for the linear instability for two (cold) counterstreaming ion beams. A nonlinear equation is derived, which demonstrates...

  20. Ion-Bombardment of X-Ray Multilayer Coatings - Comparison of Ion Etching and Ion Assisted Deposition

    NARCIS (Netherlands)

    Puik, E. J.; van der Wiel, M. J.; Zeijlemaker, H.; Verhoeven, J.

    1991-01-01

    The effects of two forms of ion bombardment treatment on the reflectivity of multilayer X-ray coatings were compared: ion etching of the metal layers, taking place after deposition, and ion bombardment during deposition, the so-called ion assisted deposition. The ion beam was an Ar+ beam of 200 eV,

  1. Effects of ion/ion proton transfer reactions on conformation of gas-phase cytochrome c ions.

    Science.gov (United States)

    Zhao, Qin; Schieffer, Gregg M; Soyk, Matthew W; Anderson, Timothy J; Houk, R S; Badman, Ethan R

    2010-07-01

    Positive ions from cytochrome c are studied in a 3-D ion trap/ion mobility (IM)/quadrupole-time-of-flight (TOF) instrument with three independent ion sources. The IM separation allows measurement of the cross section of the ions. Ion/ion reactions in the 3-D ion trap that remove protons cause the cytochrome c ions to refold gently without other degradation of protein structure, i.e., fragmentation or loss of heme group or metal ion. The conformation(s) of the product ions generated by ion/ion reactions in a given charge state are similar regardless of whether the cytochrome c ions are originally in +8 or +9 charge states. In the lower charge states (+1 to +5) cytochrome c ions made by the ion/ion reaction yield a single IM peak with cross section of approximately 1110 to 1180 A(2), even if the original +8 ion started with multiple conformations. The conformation expands slightly when the charge state is reduced from +5 to +1. For product ions in the +6 to +8 charge states, ions created from higher charge states (+9 to +16) by ion/ion reaction produce more compact conformation(s) in somewhat higher abundances compared with those produced directly by the electrospray ionization (ESI) source. For ions in intermediate charge states that have a variety of resolvable conformers, the voltage used to inject the ions into the drift tube, and the voltage and duration of the pulse that extracts ions from the ion trap, can affect the observed abundances of various conformers.

  2. Negative chlorine ions from multicusp radio frequency ion source for heavy ion fusion applications

    Science.gov (United States)

    Hahto, S. K.; Hahto, S. T.; Kwan, J. W.; Leung, K. N.; Grisham, L. R.

    2003-06-01

    Use of high mass atomic neutral beams produced from negative ions as drivers for inertial confinement fusion has been suggested recently. Best candidates for the negative ions would be bromine and iodine with sufficiently high mass and electron affinity. These materials require a heated vapor ion source. Chlorine was selected for initial testing because it has similar electron affinity to those of bromine and iodine, and is available in gaseous form. An experiment was set up by the Plasma and Ion Source Technology Group in Lawrence Berkeley National Laboratory to measure achievable current densities and other beam parameters by using a rf driven multicusp ion source [K. N. Leung, Rev. Sci. Instrum. 65, 1165 (1994); Q. Ji et al., Rev. Sci. Instrum. 73, 822 (2002)]. Current density of 45 mA/cm2 was achieved with 99.5% of the beam as atomic negative chlorine at 2.2 kW of rf power. An electron to negative ion ratio as low as 7 to 1 was observed, while the ratio of positive and negative chlorine ion currents was 1.3. This in addition to the fact that the front plate biasing had almost no effect to the negative chlorine ion and electron currents indicates that a very high percentage of the negative charge in the extraction area of the ion source was in form of Cl- ions. A comparison of positive and negative chlorine ion temperatures was conducted with the pepper pot emittance measurement technique and very similar transverse temperature values were obtained for positive and negative chlorine ions.

  3. Complex Ion Dynamics in Carbonate Lithium-Ion Battery Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Mitchell T.; Bhatia, Harsh; Gyulassy, Attila G.; Draeger, Erik W.; Pascucci, Valerio; Bremer, Peer-Timo; Lordi, Vincenzo; Pask, John E.

    2017-03-16

    Li-ion battery performance is strongly influenced by ionic conductivity, which depends on the mobility of the Li ions in solution, and is related to their solvation structure. In this work, we have performed first-principles molecular dynamics (FPMD) simulations of a LiPF6 salt solvated in different Li-ion battery organic electrolytes. We employ an analytical method using relative angles from successive time intervals to characterize complex ionic motion in multiple dimensions from our FPMD simulations. We find different characteristics of ionic motion on different time scales. We find that the Li ion exhibits a strong caging effect due to its strong solvation structure, while the counterion, PF6– undergoes more Brownian-like motion. Our results show that ionic motion can be far from purely diffusive and provide a quantitative characterization of the microscopic motion of ions over different time scales.

  4. New Developments of a Laser Ion Source for Ion Synchrotrons

    CERN Document Server

    Kondrashev, S; Konukov, K; Sharkov, B Yu; Shumshurov, A V; Camut, O; Chamings, J A; Kugler, H; Scrivens, R; Charushin, A; Makarov, K; Satov, Yu; Smakovskii, Yu

    2004-01-01

    Laser Ion Sources (LIS) are well suited to filling synchrotron rings with highly charged ions of almost any element in a single turn injection mode. We report the first measurements of the LIS output parameters for Pb27+ ions generated by the new 100 J/1 Hz Master Oscillator - Power Amplifier CO2-laser system. A new LIS has been designed, built and tested at CERN, as an ion source for ITEP-TWAC accelerator/accumulator facility, and as a possible future source for an upgrade of the Large Hadron Collider (LHC) injector chain. The use of the LIS based on 100 J/1 Hz CO2-laser together with the new ion LINAC, as injector for ITEP-TWAC project, is discussed..

  5. Ion-conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard L.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2016-06-21

    An ion conducting polymeric composition mixture comprises a copolymer of styrene and vinylbenzyl-R.sub.s. R.sub.s is selected from the group consisting of imidazoliums and pyridiniums. The composition contains 10%-90% by weight of vinylbenzyl-R.sub.s. The composition can further comprise a polyolefin comprising substituted polyolefins, a polymer comprising cyclic amine groups, a polymer comprising at least one of a phenylene group and a phenyl group, a polyamide, and/or the reaction product of a constituent having two carbon-carbon double bonds. The composition can be in the form of a membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  6. Optical Barium Ion Qubit

    CERN Document Server

    Yum, Dahyun; Dutta, Tarun; Mukherjee, Manas

    2016-01-01

    We demonstrate an optical single qubit based on 6S1/2 to 5D5/2 quadrupole transition of a single Ba+ ion operated by diode based lasers only. The resonance wavelength of the 6S1/2 to 5D5/2 quadrupole transition is about 1762 nm which suitably falls close to the U-band of the telecommunication wavelength. Thus this qubit is a naturally attractive choice towards implementation of quantum repeater or quantum networks using existing telecommunication networks. We observe continuous bit-flip oscillations at a rate of about 250 kHz which is fast enough for the qubit operation as compared to the measured coherence time of over 3 ms. We also present a technique to quantify the bit-flip error in each qubit NOT gate operation.

  7. Ion-proton pulsars

    Science.gov (United States)

    Jones, P. B.

    2016-07-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  8. Ion-conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2017-02-28

    An ion conducting polymeric composition mixture comprises a copolymer of styrene and vinylbenzyl-R.sub.s. R.sub.s is selected from the group consisting of imidazoliums, pyridiniums, pyrazoliums, pyrrolidiniums, pyrroliums, pyrimidiums, piperidiniums, indoliums, and triaziniums. The composition contains 10%-90% by weight of vinylbenzyl-R.sub.s. The composition can further comprise a polyolefin comprising substituted polyolefins, a polymer comprising cyclic amine groups, a polymer comprising at least one of a phenylene group and a phenyl group, a polyamide, and/or the reaction product of a constituent having two carbon-carbon double bonds. The composition can be in the form of a membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  9. Ion-proton pulsars

    CERN Document Server

    Jones, P B

    2016-01-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  10. Nanobeam production with the multicusp ion source

    Science.gov (United States)

    Lee, Y.; Ji, Q.; Leung, K. N.; Zahir, N.

    2000-02-01

    A 1.8-cm-diam multicusp ion source to be used for focused ion beam applications has been tested for Xe, He, Ne, Ar, and Kr ions. The extractable ion and electron currents were measured. The extractable ion current is similar for all these ion species except for Ne+, but the extractable electron current behaves quite differently. The multicusp ion source will be used with a combined extractor-collimator electrode system that can provide a few hundred nA of Xe+ or Kr+ ions. Ion optics computation indicates that these beams can be further focused with an electrostatic column to a beam spot size of ˜100 nm.

  11. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.

    1984-01-01

    The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...

  12. Ion beams in materials processing and analysis

    CERN Document Server

    Schmidt, Bernd

    2012-01-01

    This book covers ion beam application in modern materials research, offering the basics of ion beam physics and technology and a detailed account of the physics of ion-solid interactions for ion implantation, ion beam synthesis, sputtering and nano-patterning.

  13. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I d

  14. Quantum computing with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.

    1998-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  15. Ion-selective electrodes, 3

    Energy Technology Data Exchange (ETDEWEB)

    Pungor, E. (ed.)

    1981-01-01

    Thirty-two papers which were presented at the Third Symposium on Ion-Selective Electrodes are presented in this Proceedings. These papers dealt with standardization, fabrication, chemical properties of ion-selective electrodes and their application. Selected papers have been abstracted and indexed separately for the data base. (ATT)

  16. Energetic ions in ITER plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pinches, S. D. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul-lez-Durance Cedex (France); Chapman, I. T.; Sharapov, S. E. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Lauber, Ph. W. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Boltzmanstraße 2, D-85748 Garching (Germany); Oliver, H. J. C. [H H Wills Physics Laboratory, University of Bristol, Royal Fort, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shinohara, K. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Tani, K. [Nippon Advanced Technology Co., Ltd, Naka, Ibaraki 311-0102 (Japan)

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  17. SPS Ion Induced Desorption Experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This experiment will give a study about the induced desorption from heavy ion (Indium ion run from week 45 in SPS T4-H8 area) impacting LHC type graphite collimator. 4 different samples are located in the 4 chambers 90° one to each other: pure graphite, graphite with copper coating, graphite with NEG coating, 316LN stainless steal (reference).

  18. Hooded arc ion-source

    CERN Multimedia

    1972-01-01

    The positioning system for the hooded arc ion-source, shown prior to mounting, consists of four excentric shafts to locate the ion-source and central electrodes. It will be placed on the axis of the SC and introduced into the vacuum tank via the air locks visible in the foreground.

  19. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  20. Ion guiding in alumina capillaries

    DEFF Research Database (Denmark)

    Juhász, Z.; Sulik, B.; Biri, S.

    2009-01-01

    Transmission of a few keV impact energy Ne ions through capillaries in anodic alumina membranes has been studied with different ion counting methods using an energy dispersive electrostatic spectrometer, a multichannel plate (MCP) array and sensitive current-measurement. In the present work, we...

  1. Cryogenic silicon surface ion trap

    CERN Document Server

    Niedermayr, Michael; Kumph, Muir; Partel, Stefan; Edlinger, Johannes; Brownnutt, Michael; Blatt, Rainer

    2014-01-01

    Trapped ions are pre-eminent candidates for building quantum information processors and quantum simulators. They have been used to demonstrate quantum gates and algorithms, quantum error correction, and basic quantum simulations. However, to realise the full potential of such systems and make scalable trapped-ion quantum computing a reality, there exist a number of practical problems which must be solved. These include tackling the observed high ion-heating rates and creating scalable trap structures which can be simply and reliably produced. Here, we report on cryogenically operated silicon ion traps which can be rapidly and easily fabricated using standard semiconductor technologies. Single $^{40}$Ca$^+$ ions have been trapped and used to characterize the trap operation. Long ion lifetimes were observed with the traps exhibiting heating rates as low as $\\dot{\\bar{n}}=$ 0.33 phonons/s at an ion-electrode distance of 230 $\\mu$m. These results open many new avenues to arrays of micro-fabricated ion traps.

  2. Energetic ions in ITER plasmas

    Science.gov (United States)

    Pinches, S. D.; Chapman, I. T.; Lauber, Ph. W.; Oliver, H. J. C.; Sharapov, S. E.; Shinohara, K.; Tani, K.

    2015-02-01

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma ( r / a > 0.5 ) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  3. Analyzing ion distributions around DNA.

    Science.gov (United States)

    Lavery, Richard; Maddocks, John H; Pasi, Marco; Zakrzewska, Krystyna

    2014-07-01

    We present a new method for analyzing ion, or molecule, distributions around helical nucleic acids and illustrate the approach by analyzing data derived from molecular dynamics simulations. The analysis is based on the use of curvilinear helicoidal coordinates and leads to highly localized ion densities compared to those obtained by simply superposing molecular dynamics snapshots in Cartesian space. The results identify highly populated and sequence-dependent regions where ions strongly interact with the nucleic and are coupled to its conformational fluctuations. The data from this approach is presented as ion populations or ion densities (in units of molarity) and can be analyzed in radial, angular and longitudinal coordinates using 1D or 2D graphics. It is also possible to regenerate 3D densities in Cartesian space. This approach makes it easy to understand and compare ion distributions and also allows the calculation of average ion populations in any desired zone surrounding a nucleic acid without requiring references to its constituent atoms. The method is illustrated using microsecond molecular dynamics simulations for two different DNA oligomers in the presence of 0.15 M potassium chloride. We discuss the results in terms of convergence, sequence-specific ion binding and coupling with DNA conformation.

  4. Bundle Security Protocol for ION

    Science.gov (United States)

    Burleigh, Scott C.; Birrane, Edward J.; Krupiarz, Christopher

    2011-01-01

    This software implements bundle authentication, conforming to the Delay-Tolerant Networking (DTN) Internet Draft on Bundle Security Protocol (BSP), for the Interplanetary Overlay Network (ION) implementation of DTN. This is the only implementation of BSP that is integrated with ION.

  5. Ion sources for cyclotron applications

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N.; Bachman, D.A.; McDonald, D.S.; Young, A.T.

    1992-07-01

    The use of a multicusp plasma generator as an ion source has many advantages. The development of both positive and negative ion beams based on the multicusp source geometry is presented. It is shown that these sources can be operated at steady state or cw mode. As a result they are very suitable for cyclotron operations.

  6. Ion bombardment of polyimide films

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, B. J.; Vasile, M. J.

    1989-07-01

    Surface modification techniques such as wet chemical etching, oxidizing flames, and plasma treatments (inert ion sputtering and reactive ion etching) have been used to change the surface chemistry of polymers and improve adhesion. With an increase in the use of polyimides for microelectronic applications, the technique of ion sputtering to enhance polymer-to-metal adhesion is receiving increased attention. For this study, the argon-ion bombardment surfaces of pyromellitic dianhydride and oxydianiline (PMDA--ODA) and biphenyl tetracarboxylic dianhydride and phenylene diamine (BPDA--PDA) polyimide films were characterized with x-ray photoelectron spectroscopy (XPS) as a function of ion dose. Graphite and high-density polyethylene were also examined by XPS for comparison of C 1/ital s/ peak width and binding-energy assignments. Results indicate that at low ion doses the surface of the polyimide does not change chemically, although adsorbed species are eliminated. At higher doses the chemical composition is altered and is dramatically reflected in the C 1/ital s/ spectra where graphiticlike structures become evident and the prominent carbonyl peak is reduced significantly. Both polyimides demonstrate similar chemical changes after heavy ion bombardment. Atomic composition of PMDA--ODA and BPDA--PDA polymers are almost identical after heavy ion bombardment.

  7. Lithium ion storage between graphenes

    Directory of Open Access Journals (Sweden)

    Chan Yue

    2011-01-01

    Full Text Available Abstract In this article, we investigate the storage of lithium ions between two parallel graphene sheets using the continuous approximation and the 6-12 Lennard-Jones potential. The continuous approximation assumes that the carbon atoms can be replaced by a uniform distribution across the surface of the graphene sheets so that the total interaction potential can be approximated by performing surface integrations. The number of ion layers determines the major storage characteristics of the battery, and our results show three distinct ionic configurations, namely single, double, and triple ion forming layers between graphenes. The number densities of lithium ions between the two graphenes are estimated from existing semi-empirical molecular orbital calculations, and the graphene sheets giving rise to the triple ion layers admit the largest storage capacity at all temperatures, followed by a marginal decrease of storage capacity for the case of double ion layers. These two configurations exceed the maximum theoretical storage capacity of graphite. Further, on taking into account the charge-discharge property, the double ion layers are the most preferable choice for enhanced lithium storage. Although the single ion layer provides the least charge storage, it turns out to be the most stable configuration at all temperatures. One application of the present study is for the design of future high energy density alkali batteries using graphene sheets as anodes for which an analytical formulation might greatly facilitate rapid computational results.

  8. RHIC heavy ion operations performance

    CERN Document Server

    Satogata, T; Ferrone, R; Pilat, F

    2006-01-01

    The Relativistic Heavy Ion Collider (RHIC) completed its fifth year of operation in 2005, colliding copper ion beams with ps=200 GeV/u and 62.4 GeV/u[1]. Previous heavy ion runs have collided gold ions at ps=130 GeV/u, 200 GeV/u, and 62.4 GeV/u[2], and deuterons and gold ions at ps=200 GeV/u[3]. This paper discusses operational performance statistics of this facility, including Cu- Cu delivered luminosity, availability, calendar time spent in physics stores, and time between physics stores. We summarize the major factors affecting operations efficiency, and characterize machine activities between physics stores.

  9. The ATLAS positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs.

  10. Logic Gates with Ion Transistors

    CERN Document Server

    Grebel, Haim

    2016-01-01

    Electronic logic gates are the basic building blocks of every computing and micro controlling system. Logic gates are made of switches, such as diodes and transistors. Ion-selective, ionic switches may emulate electronic switches [1-8]. If we ever want to create artificial bio-chemical circuitry, then we need to move a step further towards ion-logic circuitry. Here we demonstrate ion XOR and OR gates with electrochemical cells, and specifically, with two wet-cell batteries. In parallel to vacuum tubes, the batteries were modified to include a third, permeable and conductive mid electrode (the gate), which was placed between the anode and cathode in order to affect the ion flow through it. The key is to control the cell output with a much smaller biasing power, as demonstrated here. A successful demonstration points to self-powered ion logic gates.

  11. Ion chamber based neutron detectors

    Science.gov (United States)

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  12. Nanofriction in cold ion traps.

    Science.gov (United States)

    Benassi, A; Vanossi, A; Tosatti, E

    2011-01-01

    Sliding friction between crystal lattices and the physics of cold ion traps are so far non-overlapping fields. Two sliding lattices may either stick and show static friction or slip with dynamic friction; cold ions are known to form static chains, helices or clusters, depending on the trapping conditions. Here we show, based on simulations, that much could be learnt about friction by sliding, through, for example, an electric field, the trapped ion chains over a corrugated potential. Unlike infinite chains, in which the theoretically predicted Aubry transition to free sliding may take place, trapped chains are always pinned. Yet, a properly defined static friction still vanishes Aubry-like at a symmetric-asymmetric structural transition, found for decreasing corrugation in both straight and zig-zag trapped chains. Dynamic friction is also accessible in ringdown oscillations of the ion trap. Long theorized static and dynamic one-dimensional friction phenomena could thus become accessible in future cold ion tribology.

  13. Apparatus and method of dissociating ions in a multipole ion guide

    Science.gov (United States)

    Webb, Ian K.; Tang, Keqi; Smith, Richard D.; Ibrahim, Yehia M.; Anderson, Gordon A.

    2014-07-08

    A method of dissociating ions in a multipole ion guide is disclosed. A stream of charged ions is supplied to the ion guide. A main RF field is applied to the ion guide to confine the ions through the ion guide. An excitation RF field is applied to one pair of rods of the ion guide. The ions undergo dissociation when the applied excitation RF field is resonant with a secular frequency of the ions. The multipole ion guide is, but not limited to, a quadrupole, a hexapole, and an octopole.

  14. Response of thermal ions to electromagnetic ion cyclotron waves

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  15. Response of thermal ions to electromagnetic ion cyclotron waves

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.

    1994-10-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  16. Energy spread of ion beams generated in multicusp ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Sarstedt, M.; Herz, P.; Kunkel, W.B. [and others

    1995-04-01

    For the production of future microelectronics devices, various alternate methods are currently being considered to replace the presently used method of lithography with ion beam lithography. One of these methods is the Ion Projection Lithography (IPL), which aims at the possibility of projecting sub-0.25 {mu}m patterns of a stencil mask onto a wafer substrate. In order to keep the chromatic aberrations below 25 nm, an ion source which delivers a beam with energy spread of less than 3 eV is desired. For this application, multicusp ion sources are being considered. We measure the longitudinal energy spread of the plasma ions by using a two-grid electrostatic energy analyzer. The energy spread of the extracted beam is measured by a high-voltage retarding-field energy analyzer. In order to obtain the transverse ion temperature, a parallel-plate scanner is being set up to study the beam emittance. In this paper, comparisons are made for different ion source configurations.

  17. Numerical Simulation Multicomponent Ion Beam Transport form ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    MaLei; SongMingtao; ZhangZimin; CaoYun

    2003-01-01

    In order to simulate the transport of multi-components ion beam extracted from an ECR ion source, we have developed a multi-charged ion beam transport program named MCIBS 1.0. The program is dedicated to numerical simulation of the behavior of highly-charged ion beam and optimization of beam optics in transport lines and is realized on a PC with Windows user interface of Microsoft Visual Basic. Among all the ions with different charge states in the beam, the exchanges of electrons between highly charged ions and low charged ions or neutral,atoms of residual gas are taken into account by using classical Molecular Over-barrier Model and Monte Carlo method. An advanced Windows graphical interface makes it; comfortable and friendly for the user to operate in an interactive mode. The present program is used for the numerical calculation and optimization of beam optics in a transport line consisting of various magnetic elements, such as dipole magnet, quadrupole and so on. It is possible to simultaneously simulate 200,000 particles, in a transport line of 340 m at most, and show every particle orbit. Beam cross section graphics and emittance phase pictures can be also shown at any position in the transport line.

  18. Ions kinematics in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2004-06-01

    In this study, I have tried to provide a better understanding of the dynamics of ions inside an electrostatic ion beam trap. The electrostatic ion trap allows to store ions moving between two electrostatic mirrors. Although the trap has been developed already seven years ago, no direct measurement of the transversal velocity distribution of the ions has been performed. Such quantity is central for understanding the conditions under which a beam should be produced (mainly emittance) in order to be trapped by such a device. The data I have obtained during the course of this work are based on an experimental technique which relies on the direct imaging of the particles exiting the trap, as well as on numerical simulations of the ion trajectories inside the trap. I have personally been involved in the hardware development of the imaging system, the data acquisition and analysis of the data as well as il all numerical calculations presented here. These results allow us to obtain, for the first time, experimental information on the transverse phase space of the trap, and contribute to the overall understanding of the ion motion in this system. (author)

  19. Ion Rings for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation

  20. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  1. Development of a microwave ion source for ion implantations

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N., E-mail: Nbk-Takahashi@shi.co.jp; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T. [Technology Research Center, Sumitomo Heavy Industries Ltd., Yokosuka, Kanagawa 237-8555 (Japan)

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  2. Characterization of a DAPI-RIT-DAPI System for Gas-Phase Ion/Molecule and Ion/Ion Reactions

    Science.gov (United States)

    Lin, Ziqing; Tan, Lei; Garimella, Sandilya; Li, Linfan; Chen, Tsung-Chi; Xu, Wei; Xia, Yu; Ouyang, Zheng

    2014-01-01

    The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10-1 Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.

  3. Characterization of a DAPI-RIT-DAPI system for gas-phase ion/molecule and ion/ion reactions.

    Science.gov (United States)

    Lin, Ziqing; Tan, Lei; Garimella, Sandilya; Li, Linfan; Chen, Tsung-Chi; Xu, Wei; Xia, Yu; Ouyang, Zheng

    2014-01-01

    The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10(-1) Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.

  4. Rearrangement reactions in ion-ion and ion-atom collisions: results and problems

    Energy Technology Data Exchange (ETDEWEB)

    Presnyakov, L.P. [Lebedev Physical Institute, Moscow (Russian Federation); Tawara, H.

    1997-01-01

    Recent experimental and theoretical results are discussed for ionic collisions with large cross sections at intermediate and small energies of the relative motion. Single- and double-electron removal from H{sup -} ions in slow collisions with other ions is considered in more details. The theoretical methods are discussed from the viewpoint of general requirements of scattering theory. (author)

  5. The DCU laser ion source.

    Science.gov (United States)

    Yeates, P; Costello, J T; Kennedy, E T

    2010-04-01

    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I approximately 10(8)-10(11) W cm(-2)) and fluences (F=0.1-3.9 kJ cm(-2)) from a Q-switched ruby laser (full-width half-maximum pulse duration approximately 35 ns, lambda=694 nm) were used to generate a copper plasma. In "basic operating mode," laser generated plasma ions are electrostatically accelerated using a dc HV bias (5-18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I approximately 600 microA for Cu(+) to Cu(3+) ions were recorded. The maximum collected charge reached 94 pC (Cu(2+)). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L=48 mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a "continuous einzel array" were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at "high pressure." In "enhanced operating mode," peak currents of 3.26 mA (Cu(2+)) were recorded. The collected currents of more highly charged ions (Cu(4+)-Cu(6+)) increased considerably in this mode of operation.

  6. Ion clearing in an ERL

    Science.gov (United States)

    Hoffstaetter, Georg H.; Liepe, Matthias

    2006-02-01

    The rest-gas in the beam-pipe of a particle accelerator is readily ionized by effects like collisions, synchrotron radiation and field emission. Positive ions are attracted to electron beams and create a nonlinear potential in the vicinity of the beam which can lead to beam halo, particle loss, optical errors or transverse and longitudinal instabilities. In an energy recovery linac (ERL) where beam-loss has to be minimal, and where beam positions and emittances have to be very stable in time, these ion effects have to be avoided. Here we investigate three measures of avoiding ion accumulation: (a) A long gap between linac bunch trains that allows ions to drift out of the beam region, a measure regularly applied in linacs; (b) a short ion clearing gap in the beam that leads to a time varying beam potential and produces large excited oscillations of ions around the electron beam, a measure regularly applied in storage rings; (c) Clearing electrodes that create a sufficient voltage to draw ions out of the beam potential, a measure used for DC electron beams and for antiproton beams. For the parameters of the X-ray ERL planned at Cornell University we show that method (a) cannot be applied, method (b) is technically cumbersome, and (c) should be most easily applicable.

  7. Electrically Switched Cesium Ion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  8. LHC Report: Ion Age

    CERN Multimedia

    John Jowett for the LHC team

    2013-01-01

    The LHC starts the New Year facing a new challenge: proton-lead collisions in the last month before the shutdown in mid-February.    Commissioning this new and almost unprecedented mode of collider operation is a major challenge both for the LHC and its injector chain. Moreover, it has to be done very quickly to achieve a whole series of physics goals, requiring modifications of the LHC configuration, in a very short time. These include a switch of the beam directions halfway through the run, polarity reversals of the ALICE spectrometer magnet and Van der Meer scans.    The Linac3 team kept the lead source running throughout the end-of-year technical stop, and recovery of the accelerator complex was very quick. New proton and lead beams were soon ready, with a bunch filling pattern that ensures they will eventually match up in the LHC. The LEIR machine has even attained a new ion beam intensity record.  On Friday 11 January the first single bunches o...

  9. Semiconductor Ion Implanters

    Science.gov (United States)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  10. The Pickup Ion Composition Spectrometer

    Science.gov (United States)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  11. Ion beam measurements at the superconducting ECR ion source SECRAL

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Jan; Rossbach, Jon; Lang, Ralf; Maimone, Fabio; Spaedtke, Peter; Tinschert, Klaus [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Sun, Liangting; Cao, Yun; Zhao, Hongwei [Institute of Modern Physics, Lanzhou, GS (China)

    2009-08-15

    Measurement of the charge-state distribution, the beam profile, the beam emittance of the named ion source are presented. Furthermore computer simulations of the magnetic flux-density distribution in this source are described. (HSI)

  12. Streaming instability in negative ion plasma

    Science.gov (United States)

    Kumar, Ajith; Mathew, Vincent

    2017-09-01

    The streaming instability in an unmagnetized negative ion plasma has been studied by computational and theoretical methods. A one dimensional electrostatic Particle In Cell Simulation and fluid dynamical description of negative ion plasma showed that, if the positive ions are having a relative streaming velocity, four different wave modes corresponding to Langmuir wave, fast and slow ion waves and ion acoustic waves are produced. Below a critical wave number, instead of two distinct fast and slow ion waves, we observed a coupled wave mode. The value of the critical wave number is strongly determined by the ion streaming velocity. The thermal velocities of electrons and ions influence the growth rate of instability.

  13. Ion Exchange and Liquid Column Chromatography.

    Science.gov (United States)

    Walton, Harold F.

    1980-01-01

    Emphasizes recent advances in principles and methodology in ion exchange and chromatography. Two tables list representative examples for inorganic ions and organic compounds. Cites 544 references. (CS)

  14. Laser ion source studies at CERN

    CERN Document Server

    Tambini, J

    1995-01-01

    The plasma produced when a powerful laser pulse is focused onto a target surface in vacuum can provide a copious source of highly charged ions. Ions can then be extracted from the plasma to form a high current, short pulse length ion beam. Experimental laser ion sources have been the subject of investigation in medical physics and particle accelerator applications; a laser ion source is an option for the injection system of heavy ions for the Large Hadron Collider at CERN where a high intensity lead ion beam is required. This paper describes work carried out at CERN to develop a CO2 laser ion source.

  15. Plasma ion sources and ion beam technology inmicrofabrications

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lili [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  16. Ion channels in neuronal survival

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The study of ion channels represents one of the most active fields in neuroscience research in China.In the last 10 years,active research in various Chinese neuroscience institutions has sought to understand the mechanisms responsible for sensory processing,neural development and neurogenesis,neural plasticity,as well as pathogenesis.In addition,extensive studies have been directed to measure ion channel activity,structure-function relationships,as well as many other biophysical and biochemical properties.This review focuses on the progress achieved in the investigation of ion channels in neuronal survival during the past 10 years in China.

  17. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  18. Ion Outflow at Mars Using MEX Ion And Electron Data

    Science.gov (United States)

    Fowler, C. M.; Andersson, L.; Frahm, R. A.; Lundin, R. N.

    2013-12-01

    It is widely believed that Mars once hosted a significant amount of water on its surface that is no longer present. Identifying and constraining various escape channels for the Martian atmosphere into space is critical in helping determine the evolution of the planet and its water content. Previous authors have looked for significant ion escape at Mars. Using higher energy (10-50eV) ion data from the ESA MEX spacecraft, significant ion escape was observed in the northern hemisphere but not in the southern. One possible explanation that has been put forward to explain this is that the magnetic crustal fields located primarily in the southern hemisphere at Mars trap ions and recycle them back to the planet as Mars rotates from day to night. Here we propose a different escape channel previously not considered for ions. Estimations suggest that the proposed channel contains at least three times as many ions in the southern hemisphere as in the northern. During strong solar wind compression events this channel could potentially contain as many ions as observed flowing tail ward in nominal solar wind conditions. Data also suggest that differences between northern and southern hemispheres are in part dependent on the ion energies analyzed and provide information regarding the relative importance of physical processes present there. Particle tracing simulations support the data analysis and demonstrate the possibility of this escape channel. The results and implications of these studies are presented along with discussion of the importance of various factors involved in the data analysis and simulations.

  19. Fully variational average atom model with ion-ion correlations.

    Science.gov (United States)

    Starrett, C E; Saumon, D

    2012-02-01

    An average atom model for dense ionized fluids that includes ion correlations is presented. The model assumes spherical symmetry and is based on density functional theory, the integral equations for uniform fluids, and a variational principle applied to the grand potential. Starting from density functional theory for a mixture of classical ions and quantum mechanical electrons, an approximate grand potential is developed, with an external field being created by a central nucleus fixed at the origin. Minimization of this grand potential with respect to electron and ion densities is carried out, resulting in equations for effective interaction potentials. A third condition resulting from minimizing the grand potential with respect to the average ion charge determines the noninteracting electron chemical potential. This system is coupled to a system of point ions and electrons with an ion fixed at the origin, and a closed set of equations is obtained. Solution of these equations results in a self-consistent electronic and ionic structure for the plasma as well as the average ionization, which is continuous as a function of temperature and density. Other average atom models are recovered by application of simplifying assumptions.

  20. Ion coalescence of neutron encoded TMT 10-plex reporter ions.

    Science.gov (United States)

    Werner, Thilo; Sweetman, Gavain; Savitski, Maria Fälth; Mathieson, Toby; Bantscheff, Marcus; Savitski, Mikhail M

    2014-04-01

    Isobaric mass tag-based quantitative proteomics strategies such as iTRAQ and TMT utilize reporter ions in the low mass range of tandem MS spectra for relative quantification. The recent extension of TMT multiplexing to 10 conditions has been enabled by utilizing neutron encoded tags with reporter ion m/z differences of 6 mDa. The baseline resolution of these closely spaced tags is possible due to the high resolving power of current day mass spectrometers. In this work we evaluated the performance of the TMT10 isobaric mass tags on the Q Exactive Orbitrap mass spectrometers for the first time and demonstrated comparable quantification accuracy and precision to what can be achieved on the Orbitrap Elite mass spectrometers. However, we discovered, upon analysis of complex proteomics samples on the Q Exactive Orbitrap mass spectrometers, that the proximate TMT10 reporter ion pairs become prone to coalescence. The fusion of the different reporter ion signals into a single measurable entity has a detrimental effect on peptide and protein quantification. We established that the main reason for coalescence is the commonly accepted maximum ion target for MS2 spectra of 1e6 on the Q Exactive instruments. The coalescence artifact was completely removed by lowering the maximum ion target for MS2 spectra from 1e6 to 2e5 without any losses in identification depth or quantification quality of proteins.

  1. Main magnetic focus ion source with the radial extraction of ions

    CERN Document Server

    Ovsyannikov, V P

    2015-01-01

    In the main magnetic focus ion source, atomic ions are produced in the local ion trap created by the rippled electron beam in focusing magnetic field. Here we present the novel modification of the room-temperature hand-size device, which allows the extraction of ions in the radial direction perpendicular to the electron beam across the magnetic field. The detected X-ray emission evidences the production of Ir$^{44+}$ and Ar$^{16+}$ ions. The ion source can operate as the ion trap for X-ray spectroscopy, as the ion source for the production of highly charged ions and also as the ion source of high brightness.

  2. Sampling of ions at atmospheric pressure: ion transmission and ion energy studied by simulation and experiment

    Science.gov (United States)

    Große-Kreul, Simon; Hübner, Simon; Benedikt, Jan; von Keudell, Achim

    2016-04-01

    Mass spectrometry of ions from atmospheric pressure plasmas is a challenging diagnostic method that has been applied to a large variety of cold plasma sources in the past. However, absolute densities can usually not be obtained, moreover, the process of sampling of ions and neutrals from such a plasma inherently influences the measured composition. These issues are studied in this contribution by a combination of experimental and numerical methods. Different numerical domains are sequentially coupled to calculate the ion transmission from the source to the mass analyzer. It is found that the energy of the sampled ions created by a radio-frequency microplasma operated in a He-N2 mixture at atmospheric pressure is of the order of 0.1 eV and that it depends linearly on the ion mass in good agreement with the expectation for seeded particles accelerated in a supersonic expansion. Moreover, the measured ion energy distribution from an afterglow of an atmospheric pressure plasma can be reproduced on basis of the particle trajectories in the sampling system. Eventually, an estimation of the absolute flux of ions to the detector is deduced.

  3. Oxidation of methionine residues in polypeptide ions via gas-phase ion/ion chemistry.

    Science.gov (United States)

    Pilo, Alice L; McLuckey, Scott A

    2014-06-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M + H + O](+)), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M + H + O](+) product is observed at a much greater abundance than the proton transfer product (viz., [M + H](+)). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to 'label' methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.

  4. Ion bombardment in RF photoguns

    Energy Technology Data Exchange (ETDEWEB)

    Pozdeyev,E.; Kayran, D.; Litvinenko, V. N.

    2009-05-04

    A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the Rf field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment.

  5. Emissive Ion Thruster -EMIT Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A propulsion system is proposed that is based on acceleration of ions emitted from a thin, solid-state electrochemical ceramic membrane. This technology would...

  6. Ion Atmosphere Near Nucleic Acids

    Science.gov (United States)

    Mohanty, Udayan

    2015-03-01

    We will discuss all­atom structure based model that explicitly includes ionic effects, i.e., electrostatic interactions with explicit magnesium ions and implicit KCl that allow us to carry out explicit solvent molecular dynamics simulations of adenine riboswitch and SAM­I riboswitch. Our predictions for the excess ions around the riboswitch, and the magnesium­RNA interaction free energy will be compared with experimental data. We will provide upper and lower bounds for preferential interaction coefficient, a statistical mechanical quantity that is a measure of excess ion atmosphere around a polyelectrolyte. We will discuss the role of surface charge density of mobile ions from added salt in determining the counterion release entropy associated with chain collapse. Finally, the Poisson's ratio of oligomeric DNA will be determined. (Work done in collaboration with R. Hayes, J. Noel, P. Whitford, S. Hennelly, J. Onuchic, and K. Sanbonmatsu.) Work supported by fellowship from John Simon Guggenheim Memorial Foundation.

  7. Quantum logic with molecular ions

    CERN Document Server

    Wolf, Fabian; Heip, Jan C; Gebert, Florian; Shi, Chunyan; Schmidt, Piet O

    2015-01-01

    Laser spectroscopy of cold and trapped molecular ions is a powerful tool for fundamental physics, including the determination of fundamental constants, the laboratory test for their possible variation, and the search for a possible electric dipole moment of the electron. Optical clocks based on molecular ions sensitive to some of these effects are expected to achieve uncertainties approaching the $10^{-18}$ level. While the complexity of molecular structure facilitates these applications, the absence of cycling transitions poses a challenge for direct laser cooling, quantum state control, and detection. Previously employed state detection techniques based on photo-dissociation or chemical reactions are destructive and therefore inefficient. Here we experimentally demonstrate non-destructive state detection of a single trapped molecular ion through its strong Coulomb coupling to a well-controlled co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force(ODF) changes the internal state...

  8. Ion Cyclotron Resonance Facility (ICR)

    Data.gov (United States)

    Federal Laboratory Consortium — his facility is charged with developing and exploiting the unique capabilities of Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, and leads the...

  9. Ion-ion Recombination and Chemiion Concentrations In Aircraft Exhaust

    Science.gov (United States)

    Turco, R. P.; Yu, F.

    Jet aircraft emit large quantities of ultrafine volatile aerosols, as well as soot parti- cles, into the environment. To determine the long-term effects of these emissions, a better understanding of the mechanisms that control particle formation and evolution is needed, including the number and size dispersion. A recent explanation for aerosol nucleation in a jet wake involves the condensation of sulfuric acid vapor, and cer- tain organic compounds, onto charged molecular clusters (chemiions) generated in the engine combustors (Yu and Turco, 1997). Massive charged aggregates, along with sulfuric acid and organic precursor vapors, have been detected in jet plumes under cruise conditions. In developing the chemiion nucleation theory, Yu and Turco noted that ion-ion recombination in the engine train and jet core should limit the chemiion emission index to 1017/kg-fuel. This value is consistent with ion-ion recombination coefficients of 1×10-7 cm3/s over time scales of 10-2 s. However, the evolution of the ions through the engine has not been adequately studied. The conditions at the combustor exit are extreme-temperatures approach 1500 K, and pressures can reach 30 atmospheres. In this presentation, we show that as the combustion gases expand and cool, two- and three-body ion-ion recombination processes control the chemiion concentration. The concepts of mutual neutralization and Thomson recombination are first summarized, and appropriate temperature and pressure dependent recombination rate coefficients are derived for the aircraft problem. A model for ion losses in jet exhaust is then formulated using an "invariance" principle discussed by Turco and Yu (1997) in the context of a coagulating aerosol in an expanding plume. This recombina- tion model is applied to estimate chemiion emission indices for a range of operational engine conditions. The predicted ion emission rates are found to be consistent with observations. We discuss the sources of variance in chemiion

  10. Separators for Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    G.C.Li; H.P.Zhang; Y.P.Wu

    2007-01-01

    1 Results A separator for rechargeable batteries is a microporous membrane placed between electrodes of opposite polarity, keeping them apart to prevent electrical short circuits and at the same time allowing rapid transport of lithium ions that are needed to complete the circuit during the passage of current in an electrochemical cell, and thus plays a key role in determining the performance of the lithium ion battery. Here provides a comprehensive overview of various types of separators for lithium io...

  11. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  12. Ion selectivity of graphene nanopores

    OpenAIRE

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-01-01

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores prefer...

  13. Ion association in natural brines

    Science.gov (United States)

    Truesdell, A.H.; Jones, B.F.

    1969-01-01

    Natural brines, both surface and subsurface, are highly associated aqueous solutions. Ion complexes in brines may be ion pairs in which the cation remains fully hydrated and the bond between the ions is essentially electrostatic, or coordination complexes in which one or more of the hydration water molecules are replaced by covalent bonds to the anion. Except for Cl-, the major simple ions in natural brines form ion pairs; trace and minor metals in brines form mainly coordination complexes. Limitations of the Debye-Hu??ckel relations for activity coefficients and lack of data on definition and stability of all associated species in concentrated solutions tend to produce underestimates of the degree of ion association, except where the brines contain a very high proportion of Cl-. Data and calculations on closed basin brines of highly varied composition have been coupled with electrode measurements of single-ion activities in an attempt to quantify the degree of ion association. Such data emphasize the role of magnesium complexes. Trace metal contents of closed basin brines are related to complexes formed with major anions. Alkaline sulfo- or chlorocarbonate brines (western Great Basin) carry significant trace metal contents apparently as hydroxides or hydroxy polyions. Neutral high chloride brines (Bonneville Basin) are generally deficient in trace metals. With a knowledge of the thermodynamic properties of a natural water, many possible reactions with other phases (solids, gases, other liquids) may be predicted. A knowledge of these reactions is particularly important in the study of natural brines which may be saturated with many solid phases (silicates, carbonates, sulfates, etc.), which may have a high pH and bring about dissolution of other phases (silica, amphoteric hydroxides, CO2, etc.), and which because of their high density may form relatively stable interfaces with dilute waters. ?? 1969.

  14. Heavy ion therapy: Bevalac epoch

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)

  15. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  16. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  17. Ion Bernstein wave heating research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki.

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW's that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

  18. Ion Bernstein wave heating research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW`s low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much_lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW`s that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW`s can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

  19. Ion mixing and phase diagrams

    Science.gov (United States)

    Lau, S. S.; Liu, B. X.; Nicolet, M.-A.

    1983-05-01

    Interactions induced by ion irradiation are generally considered to be non-equilibrium processes, whereas phase diagrams are determined by phase equilibria. These two entities are seemingly unrelated. However, if one assumes that quasi-equilibrium conditions prevail after the prompt events, subsequent reactions are driven toward equilibrium by thermodynamical forces. Under this assumption, ion-induced reactions are related to equilibrium and therefore to phase diagrams. This relationship can be seen in the similarity that exists in thin films between reactions induced by ion irradiation and reactions induced by thermal annealing. In the latter case, phase diagrams have been used to predict the phase sequence of stable compound formation, notably so in cases of silicide formation. Ion-induced mixing not only can lead to stable compound formation, but also to metastable alloy formation. In some metal-metal systems, terminal solubilities can be greatly extended by ion mixing. In other cases, where the two constituents of the system have different crystal structures, extension of terminal solubility from both sides of the phase diagram eventually becomes structurally incompatible and a glassy (amorphous) mixture can form. The composition range where this bifurcation is likely to occur is in the two-phase regions of the phase diagram. These concepts are potentially useful guides in selecting metal pairs that from metallic glasses by ion mixing. In this report, phenomenological correlation between stable (and metastable) phase formation and phase diagram is discussed in terms of recent experimental data.

  20. Response of thermal ions to electromagnetic ion cyclotron waves

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.J. [Johns Hopkins Univ., Laurel, MD (United States); Fuselier, S.A. [Lockheed Palo Alto Research Lab., CA (United States)

    1994-10-01

    Electromagnetic ion cyclotron waves generated by 10-50 keV protons in the Earth`s equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. The authors examine H{sup +} and He{sup +} distribution functions from {approx} 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicularly heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90{degrees} pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He{sup +} temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He{sup +} ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He{sup +} distributions are consistent with a gyroresonant interaction off the equator. The concentration of He{sup +} relative to H{sup +} is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He{sup +} accounts for the apparent increase in relative He{sup +} concentration by increasing the proportion of He{sup +} detected by the ion instrument. 35 refs., 8 figs., 1 tab.

  1. Dysprosium-free melt-spun permanent magnets.

    Science.gov (United States)

    Brown, D N; Wu, Z; He, F; Miller, D J; Herchenroeder, J W

    2014-02-12

    Melt-spun NdFeB powders can be formed into a number of different types of permanent magnet for a variety of applications in electronics, automotive and clean technology industries. The melt-spinning process produces flake powder with a fine uniform array of nanoscale Nd2Fe14B grains. These powders can be net-shape formed into isotropic polymer-bonded magnets or hot formed into fully dense magnets. This paper discusses the influence of heavy rare earth elements and microstructure on the magnetic performance, thermal stability and material cost of NdFeB magnets. Evidence indicates that melt-spun nanocrystalline NdFeB magnets are less dependent on heavy rare earth elements for high-temperature performance than the alternative coarser-grained sintered NdFeB magnets. In particular, hot-pressed melt-spun magnets are an attractive low-cost solution for applications that require thermal stability up to 175-200 °C.

  2. Structural and magnetic study of dysprosium substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemaunt, E-mail: hvatsal@gmail.com [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Srivastava, R.C. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Pal Singh, Jitendra [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Negi, P. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Agrawal, H.M. [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Das, D. [UGC-DAE CSR Kolkata Centre, Kolkata 700098 (India); Hwa Chae, Keun [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of)

    2016-03-01

    The present work investigates the magnetic behavior of Dy{sup 3+} substituted cobalt ferrite nanoparticles. X-ray diffraction studies reveal presence of cubic spinel phases in these nanoparticles. Raman spectra of these nanoparticles show change in intensity of Raman bands, which reflects cation redistribution in cubic spinel lattice. Saturation magnetization and coercivity decrease with increase of Dy{sup 3+}concentration in these nanoparticles. Room temperature Mössbauer measurements show the cation redistribution in these nanoparticles and corroborates the results obtained from Raman Spectroscopic measurements. Decrease in magnetization of Dy{sup 3+} substituted cobalt ferrite is attributed to the reduction in the magnetic interaction and cation redistribution. - Highlights: • Slight decrease in crystallite size after Dy{sup 3+} doping. • Saturation magnetization and coercivity decrease after Dy{sup 3+} doping. • Mössbauer measurements show the cation redistribution in the samples.

  3. Dysprosium Acetylacetonato Single-Molecule Magnet Encapsulated in Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ryo Nakanishi

    2016-12-01

    Full Text Available Dy single-molecule magnets (SMMs, which have several potential uses in a variety of applications, such as quantum computing, were encapsulated in multi-walled carbon nanotubes (MWCNTs by using a capillary method. Encapsulation was confirmed by using transmission electron microscopy (TEM. In alternating current magnetic measurements, the magnetic susceptibilities of the Dy acetylacetonato complexes showed clear frequency dependence even inside the MWCNTs, meaning that this hybrid can be used as magnetic materials in devices.

  4. Microscopic study of neutron-rich dysprosium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Carlos E. [Universidad Veracruzana, Facultad de Fisica e Inteligencia Artificial, Xalapa (Mexico); Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Apartado Postal 70-542, Mexico D.F. (Mexico); Velazquez, Victor [Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Apartado Postal 70-542, Mexico D.F. (Mexico); Lerma, Sergio [Universidad Veracruzana, Facultad de Fisica e Inteligencia Artificial, Xalapa (Mexico)

    2013-01-15

    Microscopic studies in heavy nuclei are very scarce due to large valence spaces involved. This computational problem can be avoided by means of the use of symmetry-based models. Ground-state, {gamma} and {beta} bands, and their B(E2) transition strengths in {sup 160-168}Dy isotopes, are studied in the framework of the pseudo-SU(3) model which includes the preserving symmetry Q . Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized. Additionally, three rotor-like terms are considered, whose free parameters, fixed for all members of the chain, are used to fine tune the moment of inertia of rotational bands and the band head of {gamma} and {beta} bands. The model succesfully describes in a systematic way rotational features in these nuclei and allows to extrapolate toward the midshell nucleus {sup 170}Dy. The results presented show that it is possible to study a full chain of isotopes or isotones in the region with the present model. (orig.)

  5. FTIR and Electrical Study of Dysprosium Doped Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hemaunt Kumar

    2014-01-01

    Full Text Available We have studied the role of Dy3+ doping on the XRD, TEM, FTIR, and dielectric and electrical properties of CoFe2O4 at room temperature. Cubic spinel phase of CoFe2−xDyxO4 (x = 0.00, 0.05, 0.10, and 0.15 was synthesized by using different sintering temperatures (300, 500, 700, and 900°C. The two absorption bands ν1 and ν2 are observed in Fourier transform infrared spectroscopy (FTIR spectra corresponding to the tetrahedral and octahedral sites, which show signature of spinel structure of the sample. For the sample sintered at 300°C, the dielectric constant is almost unchanged with the frequency at the particular concentrations of x = 0.00 and 0.05. Similar result is obtained for the sample sintered at 500°C (x = 0.10, 0.15, 700°C (x = 0.05, 0.10, and 0.15, and 900°C (x = 0.05, 0.10. An increase in the dielectric constant was observed for the undoped cobalt ferrite sintered at 500, 700, and 900°C. The values of electrical resistivity of the materials vary from ~105 to 109 Ω-cm.

  6. Adsorption of D113 Resin for Dysprosium(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The adsorption behavior and mechanism of D113 resin for Dy(Ⅲ) was investigated by using the method of resin adsorption. Experimental results show that the optimum medium pH of adsorption of D113 resin for Dy3+ is pH=6.00 in the HAc-NaAc medium. The static adsorption capacity of D113 resin for Dy3+chemical analysis and IR spectra.

  7. 1300-nm gain obtained with dysprosium-doped chloride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Page, R.H.; Schaffers, K.I.; Beach, R.J.; Payne, S.A.; Krupke, W.F.

    1996-03-01

    Dy{sup 3+} - doped chloride crystals have high 1300-nm emission quantum yields. Pump - probe experiments on La Cl{sub 3}:Dy{sup 3+} demonstrate optical gain consistent with predictions based on spectroscopic cross sections and lifetimes.

  8. Microscopic study of neutron-rich Dysprosium isotopes

    CERN Document Server

    Vargas, Carlos E; Lerma, Sergio; 10.1140/epja/i2013-13004-1

    2013-01-01

    Microscopic studies in heavy nuclei are very scarce due to large valence spaces involved. This computational problem can be avoided by means of the use of symmetry based models. Ground-state, gamma and beta-bands, and their B(E2) transition strengths in 160-168Dy isotopes, are studied in the framework of the pseudo-SU(3) model which includes the preserving symmetry Q.Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized. Additionally, three rotor-like terms are considered whose free parameters, fixed for all members of the chain are used to fine tune the moment of inertia of rotational bands and the band-head of gamma and beta-bands. The model succesfully describes in a systematic way rotational features in these nuclei and allows to extrapolate toward the midshell nucleus 170Dy. The results presented show that it is possible to study full chain of isotopes or isotones in the region with the present model.

  9. MAGNETIC FIELD INDUCED FIRST-ORDER TRANSITIONS IN DYSPROSIUM ORTHOFERRITE

    OpenAIRE

    Eremenko, V.; Gnatchenko, S.; Kharchenko, N.; Lebedev, P.; Piotrowski, K; Szymczak, H.; Szymczak, R.

    1988-01-01

    New type of magnetic first-order phase transition induced by external magnetic field applied in the ab-plane in DyFeO3 is investigated using different magnetooptic techniques. The phenomenological model of this transition is proposed. The phase diagram in H-T plane has been obtained for various H orientation in the ab-plane.

  10. Multicusp sources for ion beam lithography applications

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N.; Herz, P.; Kunkel, W.B.; Lee, Y.; Perkins, L.; Pickard, D.; Sarstedt, M.; Weber, M.; Williams, M.D.

    1995-05-01

    Application of the multicusp source for Ion Projection Lithography is described. It is shown that the longitudinal energy spread of the positive ions at the extraction aperture can be reduced by employing a magnetic filter. The advantages of using volume-produced H{sup {minus}} ions for ion beam lithography is also discussed.

  11. Multicusp sources for ion beam lithography applications

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N.; Herz, P.; Kunkel, W.B.; Lee, Y.; Perkins, L.; Pickard, D.; Sarstedt, M.; Weber, M.; Williams, M.D. [Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)

    1995-11-01

    Application of the multicusp source for ion projection lithography is described. It is shown that the longitudinal energy spread of the positive ions at the extraction aperture can be reduced by employing a magnetic filter. The advantages of using volume-produced H{sup {minus}} ions for ion beam lithography are also discussed. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

  12. IonControl v. 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-15

    The IonControl software is a set of python scripts and Field-Programmable-Gate-Array (FPGA) code designed to control a trapped ion research experiment. It enables one to generate the pulses (time resolution: 20ns) necessary to control the quantum states of trapped ions and allows one to collect and analyze measurement results from trapped ion systems.

  13. Controllability of intense-laser ion acceleration

    Institute of Scientific and Technical Information of China (English)

    Shigeo; Kawata; Toshihiro; Nagashima; Masahiro; Takano; Takeshi; Izumiyama; Daiki; Kamiyama; Daisuke; Barada; Qing; Kong; Yan; Jun; Gu; Ping; Xiao; Wang; Yan; Yun; Ma; Wei; Ming; Wang; Wu; Zhang; Jiang; Xie; Huiran; Zhang; Dongbo; Dai

    2014-01-01

    An ion beam has the unique feature of being able to deposit its main energy inside a human body to kill cancer cells or inside material. However, conventional ion accelerators tend to be huge in size and cost. In this paper, a future intenselaser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, and the ion particle energy control. In the study, each component is designed to control the ion beam quality by particle simulations. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical-density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser–target interaction.

  14. Orthogonal ion injection apparatus and process

    Science.gov (United States)

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  15. A sensitive fluorescent sensor of lanthanide ions

    CERN Document Server

    Bekiari, V; Lianos, P

    2003-01-01

    A fluorescent probe bearing a diazostilbene chromophore and a benzo-15-crown-5 ether moiety is a very efficient sensor of lanthanide ions. The ligand emits strong fluorescence only in the presence of specific ions, namely lanthanide ions, while the emission wavelength is associated with a particular ion providing high sensitivity and resolution.

  16. Identification and Manipulations of Impurity Ions in Magnesium Ion Plasma

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; Dubin, D. H. E.

    2011-10-01

    A nominally ``pure'' Mg24+ ion plasma accumulates impurity ions over periods of hours to days by charge exchange with residual background gas (P ~10-10 Torr) in a Penning-Malmberg trap. We use thermal cyclotron spectroscopy (TCS) to identify ion impurities, and observe spatial separation at low temperatures. TCS consists of applying rf bursts at the impurity cyclotron frequencies, with LIF measurement of the majority species heating due to collisions with the heated impurites. We find that for short bursts the heating is proportional to the burst amplitude squared, and to the square of the burst duration, as predicted by a simple single particle model. We spatially separate the impurities from the Magnesium ions by two different techniques: a) With laser cooling to T ions at larger radii. We typically observe a 5-20% ``hole'' in the center of the Mg plasma where the ``dark'' lower-mass impurities reside; and we directly observe the Mg25 and Mg26 at the outer edge of the Mg24 column. b) Resonant laser pressure in the z-direction pushes on the Mg24, and the species separates longitudinally when this laser force is greater than the mass-dependent centrifugal force. Supported by NSF PHY-0903877 and DOE DE-SC0002451.

  17. Observations of strong ion-ion correlations in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T., E-mail: ma8@llnl.gov; Pak, A.; Landen, O. L.; Le Pape, S.; Turnbull, D.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Fletcher, L.; Galtier, E.; Hastings, J.; Lee, H. J.; Nagler, B.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chapman, D. A. [Plasma Physics Group, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Falcone, R. W. [Physics Department, University of California, Berkeley, California 94720 (United States); Fortmann, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G.; White, T. G. [University of Oxford, Clarendon Laboratory, Oxford OX1 3PU (United Kingdom); Neumayer, P. [Extreme Matter Institute, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Vorberger, J. [Max Planck Institut für Physik komplexer Systeme, Nötthnizer Straße 38, 01187 Dresden (Germany); and others

    2014-05-15

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ∼3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å{sup −1}. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

  18. Ion trapping for quantum information processing

    Institute of Scientific and Technical Information of China (English)

    WAN Jin-yin; WANG Yu-zhu; LIU Liang

    2007-01-01

    In this paper we have reviewed the recent pro-gresses on the ion trapping for quantum information process-ing and quantum computation. We have first discussed the basic principle of quantum information theory and then fo-cused on ion trapping for quantum information processing.Many variations, especially the techniques of ion chips, have been investigated since the original ion trap quantum compu-tation scheme was proposed. Full two-dimensional control of multiple ions on an ion chip is promising for the realization of scalable ion trap quantum computation and the implemen-tation of quantum networks.

  19. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  20. Modification of graphene by ion beam

    Science.gov (United States)

    Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J.

    2017-09-01

    Ion induced defect generation in graphene was analyzed using Raman spectroscopy. A single layer graphene membrane produced by chemical vapor deposition (CVD) on copper foil and then transferred on glass substrate was subjected to helium, carbon, nitrogen, argon and krypton ions bombardment at energies from the range 25 keV to 100 keV. A density of ion induced defects and theirs mean size were estimated by using Raman measurements. Increasing number of defects generated by ion with increase of ion mass and decrease of ion energy was observed. Dependence of ion defect efficiency (defects/ion) on ion mass end energy was proportional to nuclear stopping power simulated by SRIM. No correlation between ion defect efficiency and electronic stopping power was observed.

  1. Dual mode ion mobility spectrometer and method for ion mobility spectrometry

    Science.gov (United States)

    Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2007-08-21

    Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.

  2. Desorption of cluster ions from solid Ne by low-energy ion impact.

    Science.gov (United States)

    Tachibana, T; Fukai, K; Koizumi, T; Hirayama, T

    2010-12-01

    We investigated Ne(+) ions and Ne(n)(+) (n = 2-20) cluster ions desorbed from the surface of solid Ne by 1.0 keV Ar(+) ion impact. Kinetic energy analysis shows a considerably narrower energy distribution for Ne(n)(+) (n ≥ 3) ions than for Ne(n)(+) (n = 1, 2) ions. The dependence of ion yields on Ne film thickness indicates that cluster ions (n ≥ 3) are desorbed only from relatively thick films. We conclude that desorbed ions grow into large cluster ions during the outflow of deep bulk atoms to the vacuum.

  3. Telecloning Quantum States with Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We propose a scheme for telecloning quantum states with trapped ions. The scheme is based on a single ion interacting with a single laser pulse. In the protocol, an ion is firstly measured to determine whether the telecloning succeeds or not, and then another ion is detected to complete the whole procedure. The required experimental techniques are within the scope of what can be obtained in the ion-trap setup.

  4. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    Science.gov (United States)

    Khazanov, George V.

    2002-01-01

    A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.

  5. DIFFUSIVITY OF ARRE EARTH ION IN POROUS ION EXCHANGE RESINS

    Institute of Scientific and Technical Information of China (English)

    LingDaren; LiuYucheng; 等

    1997-01-01

    The self-diffusion of Eu3+ ion in porous resins D72 and D751 was studied by isotope exchange reaction.Applying Kataoka's bidisperse pore model,the intraparticle effective diffusivity De were resolved into a solid diffusivity Dg and a macropore diffusivity Dp.The experiments show that De.Dp and Dg all increase with the increase of reaction temperature;the response Dp and Dg of D751 resin is smaller than that of D72 resin;the diffusivity of Eu3+ ion in solution is larger than Dp,which leads to the conclusion that the diffusion of ion in the pore of resin can not completely be equal to that in solution.

  6. Novel Ion Trap Design for Strong Ion-Cavity Coupling

    Directory of Open Access Journals (Sweden)

    Alejandro Márquez Seco

    2016-04-01

    Full Text Available We present a novel ion trap design which facilitates the integration of an optical fiber cavity into the trap structure. The optical fibers are confined inside hollow electrodes in such a way that tight shielding and free movement of the fibers are simultaneously achievable. The latter enables in situ optimization of the overlap between the trapped ions and the cavity field. Through numerical simulations, we systematically analyze the effects of the electrode geometry on the trapping characteristics such as trap depths, secular frequencies and the optical access angle. Additionally, we simulate the effects of the presence of the fibers and confirm the robustness of the trapping potential. Based on these simulations and other technical considerations, we devise a practical trap configuration that isviable to achieve strong coupling of a single ion.

  7. Proton-bound cluster ions in ion mobility spectrometry.

    Science.gov (United States)

    Ewing, R G; Eiceman, G A; Stone, J A

    1999-10-28

    Gaseous oxygen and nitrogen bases, both singly and as binary mixtures, have been introduced into ion mobility spectrometers to study the appearance of protonated molecules, and proton-bound dimers and trimers. At ambient temperature it was possible to simultaneously observe, following the introduction of molecule A, comparable intensities of peaks ascribable to the reactant ion (H2O)nH+, the protonated molecule AH+ and AH+ H2O, and the symmetrical proton bound dimer A2H+. Mass spectral identification confirmed the identifications and also showed that the majority of the protonated molecules were hydrated and that the proton-bound dimers were hydrated to a much lesser extent. No significant peaks ascribable to proton-bound trimers were obtained no matter how high the sample concentration. Binary mixtures containing molecules A and B, in some cases gave not only the peaks unique to the individual compounds but also peaks due to asymmetrical proton bound dimers AHB+. Such ions were always present in the spectra of mixtures of oxygen bases but were not observed for several mixtures of oxygen and nitrogen bases. The dimers, which were not observable, notable for their low hydrogen bond strengths, must have decomposed in their passage from the ion source to the detector, i.e. in a time less than approximately 5 ms. When the temperature was lowered to -20 degrees C, trimers, both homogeneous and mixed, were observed with mixtures of alcohols. The importance of hydrogen bond energy, and hence operating temperature, in determining the degree of solvation of the ions that will be observed in an ion mobility spectrometer is stressed. The possibility is discussed that a displacement reaction involving ambient water plays a role in the dissociation.

  8. Ion trap system for radioactive ions at JYFL

    Energy Technology Data Exchange (ETDEWEB)

    Kolhinen, V.S.; Jokinen, A.; Rinta-Antila, S.; Szerypo, J. [University of Jyvaeskylae, Department of Physics (Finland); Aeystoe, J. [CERN, Geneva (Switzerland)

    2001-07-01

    The goal of the ion trap project in Jyvaeskylae is to improve the quality of radioactive beams at IGISOL (Ion Guide Isotope Separator On-Line), in terms of transverse emittance, energy spread and purity. This improvement is achieved with an aid of an RFQ cooler/buncher and a mass-selective cylindrical Penning trap (mass resolving power up to 10{sup 5}). Their final purpose is to produce cooled isobarically pure beams of exotic radioactivities mainly of exotic neutron-rich isotopes from fission (including refractory elements). In the Penning trap ions are confined in three dimensions in a superposition of static quadrupole electric and homogeneous magnetic fields. The magnetic field confines the ions in two dimensions in a plane perpendicular to the field direction. A confinement in the third, magnetic field direction (parallel to the trap axis) is done by a quadrupole electric field. The Penning trap system in Jyvaeskylae (JYFLTRAP) will contain two cylindrical Penning traps placed inside the same superconducting magnet (B=7 T). The first, purification trap, will accept cooled (continuous or bunched) beams from the RFQ cooler/buncher and perform the isobaric purification. The latter is - done using a combination of a buffer gas cooling and an azimuthal quadrupole RF-field providing mass- dependent centering of ions. This, in turn, allows mass-selective ejection of ions in short pulses. Clean monoisotopic bunched beams will be delivered for the nuclear spectroscopy studies, collinear laser spectroscopy experiments and precise nuclear mass measurements (10{sup -7} precision). The latter will be performed in the second, precision Penning trap (author)

  9. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 • Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The

  10. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  11. Marine Toxins Targeting Ion Channels

    Directory of Open Access Journals (Sweden)

    Hugo R. Arias

    2006-04-01

    Full Text Available Abstract: This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs, as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs, are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV, Ca2+ (CaV, and K+ (KV channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR, and the ATP-activated (P2XnR receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+, whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−. In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers of ion channel functions to treat or to alleviate a specific

  12. Industrial ion sources broadbeam gridless ion source technology

    CERN Document Server

    Zhurin, Viacheslav V

    2012-01-01

    Due to the large number of uses of ion sources in academia and industry, those who utilize these sources need up to date and coherent information to keep themselves abreast of developments and options, and to chose ideal solutions for quality and cost-effectiveness. This book, written by an author with a strong industrial background and excellent standing, is the comprehensive guide users and developers of ion sources have been waiting for. Providing a thorough refresher on the physics involved, this resource systematically covers the source types, components, and the operational parameters.

  13. Characterization of ISOLDE ion source and ion source chemistry

    CERN Document Server

    Barbeau, Marion

    2014-01-01

    This report presents results of measurements made with the ISOLDE OFF-LINE mass separator [1]. The first part shows measurements of the ionization characteristics of noble gases in a VADIS ion source. The goal of the measurements was to determine the dependency of the extractable current of first and second noble gases ions with the electron energy. In the second part, investigation on in-target chemistry are presented. Here, the effect of injected sulfur hexafluoride ($SF_6$) on the release of oxygen from aluminium oxide ($Al_2 O_3$) was studied.

  14. Cold Ion Escape from Mars

    Science.gov (United States)

    Fränz, M.; Dubinin, E.; Wei, Y.; Morgan, D.; Andrews, D.; Barabash, S.; Lundin, R.; Fedorov, A.

    2013-09-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express in combination with the MARSIS radar experiment. We first compare calculations of the mean ion flux observed by ASPERA-3 alone with previously published results. We then combine observations of the cold ion velocity by ASPERA-3 with observations of the cold plasma density by MARSIS since ASPERA-3 misses the cold core of the ion distribution. We show that the mean density of the nightside plasma observed by MARSIS is about two orders higher than observed by ASPERA-3 (Fig.1). Combining both datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars (Fig. 2). At a distance of about 0.5 R_M the flux settles at a constant value (Fig. 3) which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  15. Heavy-ion nucleus scattering

    CERN Document Server

    Rahman, M A; Haque, S

    2003-01-01

    Heavy ion-nucleus scattering is an excellent laboratory to probe high spin phenomena, exotic nuclei and for the analysis of various exit channels. The Strong Absorption Model or the generalized diffraction models, which are semi-classical in nature, have been employed in the description of various heavy ion-nucleus scattering phenomena with reasonable success. But one needs to treat the deflection function (scattering angles) quantum mechanically in the Wave Mechanical picture for the appropriate description of the heavy-ion nucleus scattering phenomena. We have brought the mathematics for the cross-section of the heavy-ion nucleus scattering to an analytic expression taking account of the deflection function (scattering angles) quantum mechanically. sup 9 Be, sup 1 sup 6 O, sup 2 sup 0 Ne and sup 3 sup 2 S heavy-ion beams elastic scattering from sup 2 sup 8 Si, sup 2 sup 4 Mg and sup 4 sup 0 Ca target nuclei at various projectile energies over the range 20-151 MeV have been analysed in terms of the 2-paramet...

  16. Cholesterol binding to ion channels

    Directory of Open Access Journals (Sweden)

    Irena eLevitan

    2014-02-01

    Full Text Available Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions.

  17. Results of heavy ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R. [Lawrence Berkeley Lab., CA (United States). Life Sciences Div.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.

  18. Nonlinear ion trap stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Bogdan M; Visan, Gina G, E-mail: bmihal@infim.r [Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomistilor Str. Nr. 409, 077125 Magurele-Bucharest, Jud. Ilfov (Romania)

    2010-09-01

    This paper investigates the dynamics of an ion confined in a nonlinear Paul trap. The equation of motion for the ion is shown to be consistent with the equation describing a damped, forced Duffing oscillator. All perturbing factors are taken into consideration in the approach. Moreover, the ion is considered to undergo interaction with an external electromagnetic field. The method is based on numerical integration of the equation of motion, as the system under investigation is highly nonlinear. Phase portraits and Poincare sections show that chaos is present in the associated dynamics. The system of interest exhibits fractal properties and strange attractors. The bifurcation diagrams emphasize qualitative changes of the dynamics and the onset of chaos.

  19. Micron-focused ion beamlets

    Science.gov (United States)

    Chowdhury, Abhishek; Bhattacharjee, Sudeep

    2010-05-01

    A multiple beam electrode system (MBES) is used to provide focused ion beamlets of elements from a compact microwave plasma. In this study, a honeycomb patterned plasma electrode with micron size apertures for extracting ion beamlets is investigated. The performance of the MBES is evaluated with the help of two widely adopted and commercially available beam simulation tools, AXCEL-INP and SIMION, where the input parameters are obtained from our experiments. A simple theoretical model based upon electrostatic ray optics is employed to compare the results of the simulations. It is found that the results for the beam focal length agree reasonably well. Different geometries are used to optimize the beam spot size and a beam spot ˜5-10 μm is obtained. The multiple ion beamlets will be used to produce microfunctional surfaces on soft matter like polymers. Additionally, the experimental set-up and plans are presented in the light of above applications.

  20. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  1. Tachyon Physics with Trapped Ions

    CERN Document Server

    Lee, Tony E; Cheng, Xiao-Hang; Lamata, Lucas; Solano, Enrique

    2015-01-01

    It has been predicted that particles with imaginary mass, called tachyons, would be able to travel faster than the speed of light. So far, there has not been any experimental evidence for tachyons in either natural or engineered systems. Here, we propose how to experimentally simulate Dirac tachyons with trapped ions. Quantum measurement on a Dirac particle simulated by a trapped ion causes it to have an imaginary mass so that it may travel faster than the effective speed of light. We show that a Dirac tachyon must have spinor-motion entanglement in order to be superluminal. We also show that it exhibits significantly more Klein tunneling than a normal Dirac particle. We provide numerical simulations with realistic ion systems and show that our scheme is feasible with current technology.

  2. Miniature Bipolar Electrostatic Ion Thruster

    Science.gov (United States)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  3. Improvement of penning ion sources

    CERN Document Server

    Bizyukov, A A; Kashaba, A Y; Sereda, K N

    2000-01-01

    It is shown that the loss of a longitudinal symmetry of magnetic field distribution in respect to the centre of the Penning discharge system causes change of electrostatic potential distribution in the discharge gap leads to appearance of asymmetry of current magnitude to the cathodes of the Penning cell,change of magnitude of current density and energy distribution of the ion beam extracted in a longitudinal direction.The use of an inhomogeneous magnetic field which is longitudinally asymmetrical concerning electrodes of the system allows to increase current efficiency of Penning ion sources from 0,2 to 0,55.

  4. Hydration of highly charged ions.

    Science.gov (United States)

    Hofer, Thomas S; Weiss, Alexander K H; Randolf, Bernhard R; Rode, Bernd M

    2011-08-01

    Based on a series of ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulations, the broad spectrum of structural and dynamical properties of hydrates of trivalent and tetravalent ions is presented, ranging from extreme inertness to immediate hydrolysis. Main group and transition metal ions representative for different parts of the periodic system are treated, as are 2 threefold negatively charged anions. The results show that simple predictions of the properties of the hydrates appear impossible and that an accurate quantum mechanical simulation in cooperation with sophisticated experimental investigations seems the only way to obtain conclusive results.

  5. Rotation sensing with trapped ions

    CERN Document Server

    Campbell, W C

    2016-01-01

    We present a protocol for using trapped ions to measure rotations via matter-wave Sagnac interferometry. The trap allows the interferometer to enclose a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without losing contrast. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, thermal states with many phonons should be sufficient for operation.

  6. Nanobeam production with the multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Ji, Q. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Leung, K. N. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Zahir, N. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    2000-02-01

    A 1.8-cm-diam multicusp ion source to be used for focused ion beam applications has been tested for Xe, He, Ne, Ar, and Kr ions. The extractable ion and electron currents were measured. The extractable ion current is similar for all these ion species except for Ne{sup +}, but the extractable electron current behaves quite differently. The multicusp ion source will be used with a combined extractor-collimator electrode system that can provide a few hundred nA of Xe{sup +} or Kr{sup +} ions. Ion optics computation indicates that these beams can be further focused with an electrostatic column to a beam spot size of {approx}100 nm. (c) 2000 American Institute of Physics.

  7. Ion Implantation and Synthesis of Materials

    CERN Document Server

    Nastasi, Michael

    2006-01-01

    Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification, such as ion-beam mixing, stresses, and sputtering, are also described.

  8. Resonance methods in quadrupole ion traps

    Science.gov (United States)

    Snyder, Dalton T.; Peng, Wen-Ping; Cooks, R. Graham

    2017-01-01

    The quadrupole ion trap is widely used in the chemical physics community for making measurements on dynamical systems, both intramolecular (e.g. ion fragmentation reactions) and intermolecular (e.g. ion/molecule reactions). In this review, we discuss linear and nonlinear resonances in quadrupole ion traps, an understanding of which is critical for operation of these devices and interpretation of the data which they provide. The effect of quadrupole field nonlinearity is addressed, with important implications for promoting fragmentation and achieving unique methods of mass scanning. Methods that depend on ion resonances (i.e. matching an external perturbation with an ion's induced frequency of motion) are discussed, including ion isolation, ion activation, and ion ejection.

  9. Ion channels in development and cancer.

    Science.gov (United States)

    Bates, Emily

    2015-01-01

    Ion channels have emerged as regulators of developmental processes. In model organisms and in people with mutations in ion channels, disruption of ion channel function can affect cell proliferation, cell migration, and craniofacial and limb patterning. Alterations of ion channel function affect morphogenesis in fish, frogs, mammals, and flies, demonstrating that ion channels have conserved roles in developmental processes. One model suggests that ion channels affect proliferation and migration through changes in cell volume. However, ion channels have not explicitly been placed in canonical developmental signaling cascades until recently. This review gives examples of ion channels that influence developmental processes, offers a potential underlying molecular mechanism involving bone morphogenetic protein (BMP) signaling, and finally explores exciting possibilities for manipulating ion channels to influence cell fate for regenerative medicine and to impact disease.

  10. Ion-Beam-Excited Electrostatic Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  11. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    P Kumar; G Rodrigues; U K Rao; C P Safvan; D Kanjilal; A Roy

    2002-11-01

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  12. Fast ion-atom and ion-molecule collisions

    CERN Document Server

    2013-01-01

    The principal goal of this book is to provide state-of-the art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this fiel...

  13. Ion-Beam-Excited, Electrostatic, Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  14. Recombination characteristics of therapeutic ion beams on ion chamber dosimetry

    Science.gov (United States)

    Matsufuji, Naruhiro; Matsuyama, Tetsuharu; Sato, Shinji; Kohno, Toshiyuki

    2016-09-01

    In heavy ion radiotherapy, ionization chambers are regarded as a standard for determining the absorbed dose given to patients. In ion dosimetry, it is necessary to correct the radiation quality, which depends on the initial recombination effect. This study reveals for the radiation quality dependence of the initial recombination in air in ion dosimetry. Ionization charge was measured for the beams of protons at 40-160 MeV, carbon at 21-400 MeV/n, and iron at 23.5-500 MeV/n using two identical parallel-plate ionization chambers placed in series along the beam axis. The downstream chamber was used as a monitor operated with a constant applied voltage, while the other chamber was used for recombination measurement by changing the voltage. The ratio of the ionization charge measured by the two ionization chambers showed a linear relationship with the inverse of the voltage in the high-voltage region. The initial recombination factor was estimated by extrapolating the obtained linear relationship to infinite voltage. The extent of the initial recombination was found to increase with decreasing incident energy or increasing atomic number of the beam. This behavior can be explained with an amorphous track structure model: the increase of ionization density in the core region of the track due to decreasing kinetic energy or increasing atomic number leads to denser initial ion production and results in a higher recombination probability. For therapeutic carbon ion beams, the extent of the initial recombination was not constant but changed by 0.6% even in the target region. This tendency was quantitatively well reproduced with the track-structure based on the initial recombination model; however, the transitional change in the track structure is considered to play an important role in further understanding of the characteristics of the initial recombination.

  15. Nonlinear dust-ion-acoustic waves in a multi-ion plasma with trapped electrons

    Indian Academy of Sciences (India)

    S S Duha; B Shikha; A A Mamun

    2011-08-01

    A dusty multi-ion plasma system consisting of non-isothermal (trapped) electrons, Maxwellian (isothermal) light positive ions, warm heavy negative ions and extremely massive charge fluctuating stationary dust have been considered. The dust-ion-acoustic solitary and shock waves associated with negative ion dynamics, Maxwellian (isothermal) positive ions, trapped electrons and charge fluctuating stationary dust have been investigated by employing the reductive perturbation method. The basic features of such dust-ion-acoustic solitary and shock waves have been identified. The implications of our findings in space and laboratory dusty multi-ion plasmas are discussed.

  16. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  17. A fast beam-ion instability

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, G.V. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    The ionization of residual gas by an electron beam in an accelerator generates ions that can resonantly couple to the beam through a wave propagating in the beam-ion system. Results of the study of a beam-ion instability are presented for a multi-bunch train taking into account the decoherence of ion oscillations due to the ion frequency spread and spatial variation of the ion frequency. It is shown that the combination of both effects can substantially reduce the growth rate of the instability. (author)

  18. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    Directory of Open Access Journals (Sweden)

    E.G. Morozov

    2012-06-01

    Full Text Available The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity that leads to disease cyanosis [1]. Therefore removal of nitrite ions from water has received increased attention. The paper discusses an innovative wastewater treatment technology from the nitrite ion with hypochlorite produced during electrolysis.

  19. Infrared spectroscopy of weakly bound molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lisa I-Ching

    1988-11-01

    The infrared spectra of a series of hydrated hydronium cluster ions and of protonated ethane ion are presented. A tandem mass spectrometer is ideally suited to obtaining the spectra of such weakly bound molecular ions. Traditional absorption spectroscopy is not feasible in these situations, so the techniques described in this thesis make use of some consequence of photon absorption with higher sensitivity than simply attenuation of laser power. That consequence is dissociation. By first mass selecting the parent ion under study and then mass selecting the fragment ion formed from dissociation, the near unit detection efficiency of ion counting methods has been used to full advantage.

  20. Microfabricated linear Paul-Straubel ion trap

    Science.gov (United States)

    Mangan, Michael A.; Blain, Matthew G.; Tigges, Chris P.; Linker, Kevin L.

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  1. The physics of Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.; Cocke, C.L.

    1990-01-01

    There are 13 Electron Beam Ion Sources in operation which produce highly charged ions, up to Th[sup 80+] and Xe[sup 53+]. Most of the sources are used to study these ions under electron impact or when recombining with gaseous or solid targets. That provides an insight into the atomic physics of these highly charged ions and into the physics of the plasma in which such ions can be found. This paper reviews the present knowledge of atomic processes, important in the production of such ions with an EBIS.

  2. The physics of Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.; Cocke, C.L.

    1990-12-31

    There are 13 Electron Beam Ion Sources in operation which produce highly charged ions, up to Th{sup 80+} and Xe{sup 53+}. Most of the sources are used to study these ions under electron impact or when recombining with gaseous or solid targets. That provides an insight into the atomic physics of these highly charged ions and into the physics of the plasma in which such ions can be found. This paper reviews the present knowledge of atomic processes, important in the production of such ions with an EBIS.

  3. Ion implanted dielectric elastomer circuits

    Science.gov (United States)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  4. Inorganic ion composition in Tardigrada

    DEFF Research Database (Denmark)

    Halberg, Kenneth Agerlin; Larsen, Kristine Wulff; Jørgensen, Aslak

    2013-01-01

    are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis....

  5. Ion Temperature Measurements in SSPX

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, D W; Hill, D N; McLean, H S

    2001-08-24

    The Ion Doppler Spectrometer instrument on the Sustained Spheromak Physics experiment is described, along with background about it's operation. Results are presented from recent experimental runs, and the data is compared to the results of simple statistical models of heat exchange in two species gasses.

  6. Improved Ion-Channel Biosensors

    Science.gov (United States)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  7. Focused ion beams in biology.

    Science.gov (United States)

    Narayan, Kedar; Subramaniam, Sriram

    2015-11-01

    A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions.

  8. Ion transport across transmembrane pores

    NARCIS (Netherlands)

    Leontiadou, Hari; Mark, Alan E.; Marrink, Siewert-Jan

    2007-01-01

    To study the pore-mediated transport of ionic species across a lipid membrane, a series of molecular dynamics simulations have been performed of a dipalmitoyl-phosphatidyl-choline bilayer containing a preformed water pore in the presence of sodium and chloride ions. It is found that the stability of

  9. Thomson parabola ion energy analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James A [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Letzring, Samuel A [Los Alamos National Laboratory; Lopez, Frank E [Los Alamos National Laboratory; Offermann, Dustin T [Los Alamos National Laboratory; Oertel, John A [Los Alamos National Laboratory; Mastrosimone, Dino [UNIV OF ROCHESTER

    2010-01-01

    A new, versatile Thomson parabola ion energy (TPIE) analyzer has been designed and constructed for use at the OMEGA-EP facility. Multi-MeV ions from EP targets are transmitted through a W pinhole into a (5- or 8-kG) magnetic field and subsequently through a parallel electric field of up to 30 kV/cm. The ion drift region may have a user-selected length of 10, 50, or 80 cm. With the highest fields, 500-Me V C{sup 6+} and C{sup 5+} may be resolved. TPIE is TIM-mounted at OMEGA-EP and is qualified in all existing TIMs. The instrument runs on pressure-interlocked 15-VDC power available in EP TIM carts. It may be inserted to within several inches of the target to attain sufficient flux for a measurement. For additional flux control, the user may select a square-aperture W pinhole of 0.004-inch or 0.010-inch. The detector consists of CR-39 backed by an image plate. The fully relativistic design code and design features are discussed. Ion spectral results from first use at OMEGA-EP are expected.

  10. Barium Ions for Quantum Computation

    CERN Document Server

    Dietrich, M R; Bowler, R; Kurz, N; Salacka, J S; Shu, G; Blinov, B B

    2009-01-01

    Individually trapped 137Ba+ in an RF Paul trap is proposed as a qubit ca ndidate, and its various benefits are compared to other ionic qubits. We report the current experimental status of using this ion for quantum computation. Fut ure plans and prospects are discussed.

  11. Quantum Games in ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Buluta, Iulia Maria [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: noa@lyman.q.t.u-tokyo.ac.jp; Fujiwara, Shingo [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: fujiwara@lyman.q.t.u-tokyo.ac.jp; Hasegawa, Shuichi [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: hasegawa@q.t.u-tokyo.ac.jp

    2006-10-09

    We propose a general, scalable framework for implementing two-choices-multiplayer Quantum Games in ion traps. In particular, we discuss two famous examples: the Quantum Prisoners' Dilemma and the Quantum Minority Game. An analysis of decoherence due to intensity fluctuations in the applied laser fields is also provided.

  12. Ferritin Protein Nanocage Ion Channels

    Science.gov (United States)

    Tosha, Takehiko; Behera, Rabindra K.; Ng, Ho-Leung; Bhattasali, Onita; Alber, Tom; Theil, Elizabeth C.

    2012-01-01

    Ferritin protein nanocages, self-assembled from four-α-helix bundle subunits, use Fe2+ and oxygen to synthesize encapsulated, ferric oxide minerals. Ferritin minerals are iron concentrates stored for cell growth. Ferritins are also antioxidants, scavenging Fenton chemistry reactants. Channels for iron entry and exit consist of helical hairpin segments surrounding the 3-fold symmetry axes of the ferritin nanocages. We now report structural differences caused by amino acid substitutions in the Fe2+ ion entry and exit channels and at the cytoplasmic pores, from high resolution (1.3–1.8 Å) protein crystal structures of the eukaryotic model ferritin, frog M. Mutations that eliminate conserved ionic or hydrophobic interactions between Arg-72 and Asp-122 and between Leu-110 and Leu-134 increase flexibility in the ion channels, cytoplasmic pores, and/or the N-terminal extensions of the helix bundles. Decreased ion binding in the channels and changes in ordered water are also observed. Protein structural changes coincide with increased Fe2+ exit from dissolved, ferric minerals inside ferritin protein cages; Fe2+ exit from ferritin cages depends on a complex, surface-limited process to reduce and dissolve the ferric mineral. High concentrations of bovine serum albumin or lysozyme (protein crowders) to mimic the cytoplasm restored Fe2+ exit in the variants to wild type. The data suggest that fluctuations in pore structure control gating. The newly identified role of the ferritin subunit N-terminal extensions in gating Fe2+ exit from the cytoplasmic pores strengthens the structural and functional analogies between ferritin ion channels in the water-soluble protein assembly and membrane protein ion channels gated by cytoplasmic N-terminal peptides. PMID:22362775

  13. Transmission secondary ion mass spectrometry using 5 MeV C60+ ions

    Science.gov (United States)

    Nakajima, K.; Nagano, K.; Suzuki, M.; Narumi, K.; Saitoh, Y.; Hirata, K.; Kimura, K.

    2014-03-01

    In the secondary ion mass spectrometry (SIMS), use of cluster ions has an advantage of producing a high sensitivity of intact large molecular ions over monatomic ions. This paper presents further yield enhancement of the intact biomolecular ions by measuring the secondary ions emitted in the forward direction. Phenylalanine amino acid films deposited on self-supporting thin Si3N4 films were bombarded with 5 MeV C60 ions. Secondary ions emitted in the forward and backward directions were measured. The yield of intact phenylalanine molecular ions emitted in the forward direction is significantly enhanced compared to the backward direction while fragment ions are suppressed. This suggests a large potential of using transmission cluster ion SIMS for the analysis of biological materials.

  14. Single ion implantation in semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Niepelt, Raphael; Johannes, Andreas; Gnauck, Martin; Slowik, Irma; Geburt, Sebastian; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet, Jena (Germany)

    2011-07-01

    Ion implantation is well established as a standard doping technique for semiconductor nanowires. The concentration of dopant atoms per area is typically determined by total beam current monitoring during the irradiation. However, at extremely low ion fluencies, it is not possible to distinguish the exact number of implanted ions in a nanometer sized structure, as the ions are distributed statistically over the irradiated area that is usually far wider than the nanostructure of interest. In our experiments we implanted electrically contacted semiconductor nanostructures that were connected to a preamplifier/amplifier setup. As with every impinging ion a certain amount of energy is deposited inside the material, one can detect signals directly induced by the ion implantation and the nanostructures themselves can act as a radiation sensor. This leads to a countable and very precisely adjustable ion dose during the implantation down to doping with single ions.

  15. Scaling ion traps for quantum computing

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available The design, fabrication and preliminary testing of a chipscale, multi-zone, surface electrode ion trap is reported. The modular design and fabrication techniques used are anticipated to advance scalability of ion trap quantum computing architectures...

  16. Oxford ion-trap quantum computing project.

    Science.gov (United States)

    Lucas, D M; Donald, C J S; Home, J P; McDonnell, M J; Ramos, A; Stacey, D N; Stacey, J-P; Steane, A M; Webster, S C

    2003-07-15

    We describe recent progress in the development of an ion-trap quantum information processor. We discuss the choice of ion species and describe recent experiments on read-out for a ground-state qubit and photoionization trap loading.

  17. Process in high energy heavy ion acceleration

    Science.gov (United States)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  18. On a cryogenic noble gas ion catcher

    CERN Document Server

    Dendooven, P; Purushothaman, S

    2006-01-01

    In-situ purification of the gas used as stopping medium in a noble gas ion catcher by operating the device at low temperatures of 60 to 150 K was investigated. Alpha-decay recoil ions from a 223Ra source served as energetic probes. The combined ion survival and transport efficiencies for 219Rn ions saturated below about 90 K, reaching 28.7(17) % in helium, 22.1(13) % in neon, and 17.0(10) % in argon. These values may well reflect the charge exchange and stripping cross sections during the slowing down of the ions, and thus represent a fundamental upper limit for the efficiency of noble gas ion catcher devices. We suggest the cryogenic noble gas ion catcher as a technically simpler alternative to the ultra-high purity noble gas ion catcher operating at room temperature.

  19. Control System of the H~- Ion Source

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The control system is of primary importance to the accelerator operation. This paper presents a brief introduction to the new ion source control system. The research is to build a new H- ion source based on

  20. Laser ion source with solenoid field

    Science.gov (United States)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  1. Divergent Field Annular Ion Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work investigates an approach that would allow an annular ion engine geometry to achieve ion beam currents approaching the Child-Langmuir limit. In this...

  2. Coulomb crystallization of highly charged ions

    National Research Council Canada - National Science Library

    Schmöger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; López-Urrutia, J R Crespo

    2015-01-01

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs...

  3. Additive Manufacturing of Ion Thruster Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Plasma Controls will manufacture and test a set of ion optics for electric propulsion ion thrusters using additive manufacturing technology, also known as 3D...

  4. Specification For ST-5 Li Ion Battery

    Science.gov (United States)

    Castell, Karen D.; Day, John H. (Technical Monitor)

    2000-01-01

    This Specification defines the general requirements for rechargeable Space Flight batteries intended for use in the ST-5 program. The battery chemistry chosen for this mission is lithium ion (Li-Ion).

  5. All-optical ion generation for ion trap loading

    CERN Document Server

    Sheridan, Kevin; Keller, Matthias; 10.1007/s00340-011-4563-7

    2011-01-01

    We have investigated the all-optical generation of ions by photo-ionisation of atoms generated by pulsed laser ablation. A direct comparison between a resistively heated oven source and pulsed laser ablation is reported. Pulsed laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium flux, corresponding to atomic beams produced with oven temperatures greater than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to produce a thermal load more than one order of magnitude smaller than the oven source. The atomic beam distributions obey Maxwell-Boltzmann statistics with most probable speeds corresponding to temperatures greater than 2200 K. Below a threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is composed exclusively of ground state atoms. For higher fluences ions and excited atoms are generated.

  6. Development of laser ion source for heavy ion applications

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Shinji, E-mail: shibuya@aec-beam.co.jp [Accelerator Engineering Corporation, 3-8-5 Konakadai, Inage-ku, Chiba 263-0043 (Japan); Hattori, Toshiyuki, E-mail: thattori@nr.titech.ac.jp [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Hayashizaki, Noriyosu, E-mail: nhayashi@nr.titech.ac.jp [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Kashiwagi, Hirotsugu, E-mail: hirotsugu.kashiwagi@jaea.go.jp [Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Maruyama, Toshiyuki, E-mail: t-maruyama@toyama-jp.com [Toyama Co., Ltd., 4-13-16 Hibarigaoka, Zama-shi, Kanagawa 252-0003 (Japan); Mochizuki, Tetsuro, E-mail: Mochizuki@toyama-jp.com [Toyama Co., Ltd., 4-13-16 Hibarigaoka, Zama-shi, Kanagawa 252-0003 (Japan); Momota, Sadao, E-mail: momota.sadao@kochi-tech.ac.jp [Kochi University of Technology, 185 Tosa-yamada-cyo, Kami-shi, Kochi 782-8502 (Japan); Nakagawa, Jun, E-mail: nakagawa@toyama-jp.com [Toyama Co., Ltd., 4-13-16 Hibarigaoka, Zama-shi, Kanagawa 252-0003 (Japan); Takeuchi, Takeshi, E-mail: aec2g@nirs.go.jp [Accelerator Engineering Corporation, 3-8-5 Konakadai, Inage-ku, Chiba 263-0043 (Japan)

    2011-12-15

    We have been developing a high-performance laser ion source (LIS) for practical applications since 2009. Ideally, the LIS should generate a carbon beam with a peak current of 20 mA and a pulse duration of over 1 {mu}s. We selected a Nd:YAG laser with a Gaussian-coupled resonator as the laser source based on our experience of generating high-charge-state ion beams. This laser can produce fundamental pulses with a power of 650 mJ and durations of about 6 ns. The graphite target used is 10 cm high and 10 cm in diameter, as it can be irradiated with up to 10{sup 5} laser shots. The maximum extraction voltage was designed to be 50 kV. We have already finished designing the LIS and we commenced fabrication. We intend to measure the source performance by performing plasma and beam tests up to the end of March 2011.

  7. Cluster Ions and Atmospheric Processes

    Science.gov (United States)

    D'Auria, R.; Turco, R. P.

    We investigate the properties and possible roles of naturally occurring ions under at- mospheric conditions. Among other things, the formation of stable charged molecular clusters represents the initial stages of aerosol nucleation [e.g., Keesee and Castle- man, 1982], while the conversion of vapor to aggregates is the first step in certain atmospheric phase transitions [e.g. Hamill and Turco, 2000]. We analyze the stability and size distributions of common ionic clusters by solving the differential equations describing their growth and loss. The necessary reaction rate coefficients are deter- mined using kinetic and thermodynamic data. The latter are derived from direct labo- ratory measurements of equilibrium constants, from the classical charged liquid drop model applied to large aggregates (i.e., the Thomson model [Thomson, 1906]), and from quantum mechanical calculations of the thermodynamic potentials associated with the cluster structures. This approach allows us to characterize molecular clusters across the entire size range from true molecular species to larger aggregates exhibiting macroscopic behavior [D'Auria, 2001]. Cluster systems discussed in this talk include the proton hydrates (PHs) and nitrate-water and nitrate-nitric acid series [D'Auria and Turco, 2001]. These ions have frequently been detected in the stratosphere and tropo- sphere [e.g., Arnold et al., 1977; Viggiano and Arnold, 1981]. We show how the pro- posed hybrid cluster model can be extended to a wide range of ion systems, including non-proton hydrates (NPHs), mixed-ligand clusters such as nitrate-water-nitric acid and sulfate-sulfuric acid-water, as well as more exotic species containing ammonia, pyridine and other organic compounds found on ions [e.g., Eisele, 1988; Tanner and Eisele, 1991]. References: Arnold, F., D. Krankowsky and K. H. Marien, First mass spectrometric measurements of posi- tive ions in the stratosphere, Nature, 267, 30-32, 1977. D'Auria, R., A study of ionic

  8. Multicusp sources for ion beam projection lithography

    Science.gov (United States)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Vujic, J.; Williams, M. D.; Wutte, D.; Zahir, N.

    1998-02-01

    Multicusp ion sources are capable of producing positive and negative ions with good beam quality and low energy spread. The ion energy spread of multicusp sources has been measured by three different techniques. The axial ion energy spread has been reduced by introducing a magnetic filter inside the multicusp source chamber which adjusts the plasma potential distribution. The axial energy spread is further reduced by optimizing the source configuration. Values as low as 0.8 eV have been achieved.

  9. Mass spectrometry in a multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Mullan, A.A. (Applied Physical Science, University of Ulster, Coleraine (Northern Ireland)); Graham, W.G. (Physics Department, Queen' s University, Belfast, (Northern Ireland))

    1990-08-05

    Mass spectrometry has been used for the detection of positive and negative ions in a multicusp ion source operating with both hydrogen and deuterium gas. The mass spectrometer operation has been optimized and it is shown that applying ion extraction voltages can disturb the discharge. Using this technique combined with a Langmuir probe technique we are able to study the positive ionic fractions present when operating with both gases (and the negative ion densities.)

  10. Chaotic ion motion in magnetosonic plasma waves

    Science.gov (United States)

    Varvoglis, H.

    1984-01-01

    The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.

  11. Production of translationally cold barium monohalide ions

    CERN Document Server

    DePalatis, M V

    2013-01-01

    We have produced sympathetically cooled barium monohalide ions BaX$^+$ (X = F, Cl, Br) by reacting trapped, laser cooled Ba$^+$ ions with room temperature gas phase neutral halogen-containing molecules. Reaction rates for two of these (SF$_6$ and CH$_3$Cl) have been measured and are in agreement with classical models. BaX$^+$ ions are promising candidates for cooling to the rovibrational ground state, and our method presents a straightforward way to produce these polar molecular ions.

  12. The ANSTO high energy heavy ion microprobe

    Science.gov (United States)

    Siegele, Rainer; Cohen, David D.; Dytlewski, Nick

    1999-10-01

    Recently the construction of the ANSTO High Energy Heavy Ion Microprobe (HIMP) at the 10 MV ANTARES tandem accelerator has been completed. The high energy heavy ion microprobe focuses not only light ions at energies of 2-3 MeV, but is also capable of focusing heavy ions at high energies with ME/ q2 values up to 150 MeV amu and greater. First performance tests and results are reported here.

  13. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  14. Rational Design of Metal Ion Sequestering Agents

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth N.; Xu, Jide; Gramer, Christine

    1999-06-01

    This project addresses the fundamental issues and requirements for developing hazardous metal ion separation technologies applicable to the treatment and disposal of radioactive waste. Our research encompasses the following areas: the design and synthesis of metal ion specific sequestering ligands, structural and thermodynamic investigations of these ligand and the complexes formed with targeted metal ions, and the development and incorporation of these ligands into applied separation technologies as highly effective materials for hazardous metal ion decontamination.

  15. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    OpenAIRE

    E. G. Morozov; V.M. Nikol`skii; T.V. Saprunova; A.A. Yakovlev

    2012-01-01

    The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity t...

  16. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  17. Ion-batterier - "The Next Generation"

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Becker, Jacob; Shen, Yanbin;

    2014-01-01

    Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på.......Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på....

  18. Ion-batterier - "The Next Generation"

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Becker, Jacob; Shen, Yanbin

    2014-01-01

    Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på.......Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på....

  19. Heavy ions: Report from Relativistic Heavy Ion Collider

    Indian Academy of Sciences (India)

    Sonia Kabana

    2012-10-01

    We review selected highlights from the experiments at the Relativistic Heavy Ion Collider (RHIC) exploring the QCD phase diagram. A wealth of new results appeared recently from RHIC due to major recent upgrades, like for example the $\\Upsilon$ suppression in central nucleus-nucleus collisions which has been discovered recently in both RHIC and LHC. Furthermore, we discuss RHIC results from the beam energy scan (BES) program aiming to search for a possible critical point and to map out the QCD phase diagram.

  20. Energy landscapes for mobile ions in ion conducting solids

    Indian Academy of Sciences (India)

    S Adams

    2006-11-01

    Structure property function relationships provide valuable guidelines in the systematic development of advanced functional materials with tailored properties. It is demonstrated that an augmented bond valence approach can be effectively used to establish such relationships for solid electrolytes. A bond valence analysis of local structure models for disordered systems or interfaces based on reverse Monte Carlo (RMC) fits or molecular dynamics (MD) simulations yields quantitative predictions of the ion transport characteristics. As demonstrated here for a range of metaphosphate and diborate glasses, the complete description of the energy landscape for mobile ions also provides an effective tool for achieving a more detailed understanding of ion transport in glasses. The investigation of time evolutions can be included, if the bond valence analysis is based on MD trajectories. In principle, this allows quantifying the time and temperature dependence of pathway characteristics, provided that a suitable empirical force-field is available. For the example of LiPO3, the remaining differences between simulated and experimental structures are investigated and a compensation method is discussed.

  1. Drift wave in pair-ion plasma

    Indian Academy of Sciences (India)

    Samiran Ghosh; Nikhil Chakrabarti; Manoranjan Khan; M R Gupta

    2013-02-01

    The conditions for the existence of low-frequency electrostatic drift wave in pair-ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.

  2. Ion heat transport studies in JET

    DEFF Research Database (Denmark)

    Mantica, P; Angioni, C; Baiocchi, B

    2011-01-01

    Detailed experimental studies of ion heat transport have been carried out in JET exploiting the upgrade of active charge exchange spectroscopy and the availability of multi-frequency ion cyclotron resonance heating with 3He minority. The determination of ion temperature gradient (ITG) threshold a...

  3. Pharmaceutical Applications of Ion-Exchange Resins

    Science.gov (United States)

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  4. Electron beam ion traps and their applications

    Institute of Scientific and Technical Information of China (English)

    ZOU Ya-Ming; Roger HUTTON

    2003-01-01

    A brief introduction to the historical background and current status of electron beam ion traps (EBITs)is presented. The structure and principles of an EBIT for producing highly charged ions are described. Finally,EBITs as a potential tool in hot-plasma diagnostics and in studying frontier problems of highly charged ion physicsare discussed.

  5. Ion-exchange chromatographic protein refolding

    NARCIS (Netherlands)

    Freydell, E.; Wielen, van der L.; Eppink, M.H.M.; Ottens, M.

    2010-01-01

    The application of ion-exchange (IEX) chromatography to protein refolding (IExR) has been successfully proven, as supported by various studies using different model proteins, ion-exchange media and flow configurations. Ion-exchange refolding offers a relatively high degree of process

  6. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van Veldhoven, E.; Chen, P.; Sidorkin, V; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2009-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  7. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van veldhoven, E.; Chen, P.; Sidorkin, V.; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2010-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  8. The mean excitation energy of atomic ions

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Oddershede, Jens

    2015-01-01

    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum...

  9. Negative Halogen Ions for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85 – 90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams.

  10. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van veldhoven, E.; Chen, P.; Sidorkin, V.; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2010-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  11. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van Veldhoven, E.; Chen, P.; Sidorkin, V; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2009-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  12. Performance of an inverted ion source

    Energy Technology Data Exchange (ETDEWEB)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Araujo, W. W. R.; Spirin, R. E. [Institute of Physics, University of Sao Paulo, C.P. 66318, CEP 05315-970, Sao Paulo S.P. (Brazil); Oks, E. M. [State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Brown, I. G. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2013-02-15

    Whereas energetic ion beams are conventionally produced by extracting ions (say, positive ions) from a plasma that is held at high (positive) potential, with ion energy determined by the potential drop through which the ions fall in the beam formation electrode system, in the device described here the plasma and its electronics are held at ground potential and the ion beam is formed and injected energetically into a space maintained at high (negative) potential. We refer to this configuration as an 'inverted ion source.' This approach allows considerable savings both technologically and economically, rendering feasible some ion beam applications, in particular small-scale ion implantation, that might otherwise not be possible for many researchers and laboratories. We have developed a device of this kind utilizing a metal vapor vacuum arc plasma source, and explored its operation and beam characteristics over a range of parameter variation. The downstream beam current has been measured as a function of extraction voltage (5-35 kV), arc current (50-230 A), metal ion species (Ti, Nb, Au), and extractor grid spacing and beamlet aperture size (3, 4, and 5 mm). The downstream ion beam current as measured by a magnetically-suppressed Faraday cup was up to as high as 600 mA, and with parametric variation quite similar to that found for the more conventional metal vapor vacuum arc ion source.

  13. Recent progress in heavy ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.J.

    1977-03-01

    A summary is given of the progress during the last several years in the technology of sources of high charge state positive heavy ions and negative heavy ions. Subjects covered include recent results in ECR and EBIS source development and comparison of various source types for high charge state heavy ions.

  14. Trapping and Sympathetic Cooling of Boron Ions

    CERN Document Server

    Rugango, Rene; Shu, Gang; Brown, Kenneth R

    2016-01-01

    We demonstrate the trapping and sympathetic cooling of B$^{+}$ ions in a Coulomb crystal of laser-cooled Ca$^{+}$, We non-destructively confirm the presence of the both B$^+$ isotopes by resonant excitation of the secular motion. The B$^{+}$ ions are loaded by ablation of boron and the secular excitation spectrum also reveals features consistent with ions of the form B$_{n}^{+}$.

  15. Ion-exchange chromatographic protein refolding

    NARCIS (Netherlands)

    Freydell, E.; Wielen, van der L.; Eppink, M.H.M.; Ottens, M.

    2010-01-01

    The application of ion-exchange (IEX) chromatography to protein refolding (IExR) has been successfully proven, as supported by various studies using different model proteins, ion-exchange media and flow configurations. Ion-exchange refolding offers a relatively high degree of process intensification

  16. Characterization of the internal ion environment of biofilms based on charge density and shape of ion.

    Science.gov (United States)

    Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao

    2015-12-01

    Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment.

  17. ELECTRON TRANSFER COLLISION OF NEON IONS WITH Ne IN A RF ION TRAP

    Institute of Scientific and Technical Information of China (English)

    满宝元; 王象泰; 等

    1995-01-01

    The pulsed electron beam rf ion stroage system is used to study neon ions electron transfer,The rate coefficients for electron transfer of the neon ions with the neon gas are measured.the results are better than those in other ion storage system.

  18. The first experimental results on laser ion loading into superconducting ECR ion source at RIKEN

    CERN Document Server

    Arzumanyan, G M; Shirkov, G D; Yano, Y

    2002-01-01

    The first experimental results on ions and neutrals injection by means of laser ablation from metal targets into the RIKEN 18 GHz superconducting electron cyclotron resonance ion source (SC ECRIS) are presented. Pulsed aluminium ion currents up to Al sup 8 sup + were generated in the source. The difference in pulse shapes of various charge states of the extracted ion currents is registered

  19. Effects of metal ion adduction on the gas-phase conformations of protein ions.

    Science.gov (United States)

    Flick, Tawnya G; Merenbloom, Samuel I; Williams, Evan R

    2013-11-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca(2+), is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution.

  20. Measurement of negative ion density in a pulsed multicusp negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Coonan, B.; Mellon, K.N.; Hopkins, M.B. (Dublin City University, Dublin (Ireland))

    1992-10-05

    The production of negative ion beams for use in neutral beam injection heating has become an important area of research in recent years. This paper discusses the negative ion densities measured in a pulsed multicusp volume ion source using photodetachment diagnostic technique. A pulse modulated negative ion source is being used as an alternative to the tandem source and an increase in negative ion extracted current has previously been observed by Hopkins and Mellon. Work with photodetachment quoted in this paper shows an increase in negative ion density during the post discharge similar to previous results obtained using an accelerator to extract the negative ions.

  1. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  2. Envelope Soliton in Multi-ion Plasma and Ion-Ion Hybrid Wave Excited by Energetic Electron Beam

    Institute of Scientific and Technical Information of China (English)

    WANG De-Yu; HUANG Guang-Li

    2001-01-01

    Another envelope soliton event below the H+ gyrofrequency and localized density depletion has been discoveredin the low auroral region (~1760 kin) by the Freja satellite. This envelope soliton has a characteristic frequencyat ~190 Hz, which is also close to the resonance frequency of hydrogen ion-oxygen ion hybrid wave. This event iscorrelated in time with the observations of the sharp increase of the ratio of oxygen ion density to hydrogen andwith the electron energization along the magnetic field. A theoretical model on the ion-ion hybrid wave excitedby an energetic electron beam has also been presented. It is found that the ion-ion hybrid wave is mainly excitedby the Cherenkov instability in the auroral region.

  3. Ion channels-related diseases.

    Science.gov (United States)

    Dworakowska, B; Dołowy, K

    2000-01-01

    There are many diseases related to ion channels. Mutations in muscle voltage-gated sodium, potassium, calcium and chloride channels, and acetylcholine-gated channel may lead to such physiological disorders as hyper- and hypokalemic periodic paralysis, myotonias, long QT syndrome, Brugada syndrome, malignant hyperthermia and myasthenia. Neuronal disorders, e.g., epilepsy, episodic ataxia, familial hemiplegic migraine, Lambert-Eaton myasthenic syndrome, Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia may result from dysfunction of voltage-gated sodium, potassium and calcium channels, or acetylcholine- and glycine-gated channels. Some kidney disorders, e.g., Bartter's syndrome, policystic kidney disease and Dent's disease, secretion disorders, e.g., hyperinsulinemic hypoglycemia of infancy and cystic fibrosis, vision disorders, e.g., congenital stationary night blindness and total colour-blindness may also be linked to mutations in ion channels.

  4. Semiholography for heavy ion collisions

    Science.gov (United States)

    Mukhopadhyay, Ayan; Preis, Florian

    2017-03-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  5. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan

    2016-01-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  6. Relativistic heavy-ion collisions

    CERN Document Server

    Bhalerao, Rajeev S

    2014-01-01

    The field of relativistic heavy-ion collisions is introduced to the high-energy physics students with no prior knowledge in this area. The emphasis is on the two most important observables, namely the azimuthal collective flow and jet quenching, and on the role fluid dynamics plays in the interpretation of the data. Other important observables described briefly are constituent quark number scaling, ratios of particle abundances, strangeness enhancement, and sequential melting of heavy quarkonia. Comparison is made of some of the basic heavy-ion results obtained at LHC with those obtained at RHIC. Initial findings at LHC which seem to be in apparent conflict with the accumulated RHIC data are highlighted.

  7. Ion selectivity of graphene nanopores

    Science.gov (United States)

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-04-01

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K+ cations over Cl- anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations. Surprisingly, the observed K+/Cl- selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.

  8. Composite oxygen ion transport element

    Science.gov (United States)

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  9. Ion Polarization Scheme for MEIC

    CERN Document Server

    Kondratenko, A M; Filatov, Yu N; Derbenev, Ya S; Lin, F; Morozov, V S; Zhang, Y

    2016-01-01

    The choice of a figure 8 shape for the booster and collider rings of MEIC opens wide possibilities for preservation of the ion polarization during beam acceleration as well as for control of the polarization at the collider's interaction points. As in the case of accelerators with Siberian snakes, the spin tune is energy independent but is equal to zero instead of one half. The figure-8 topology eliminates the effect of arcs on the spin motion. There appears a unique opportunity to control the polarization of any particle species including deuterons, using longitudinal fields of small integrated strength (weak solenoids). Contrary to existing schemes, using weak solenoids in figure-8 colliders, one can control the polarization at the interaction points without essentially any effect on the beam's orbital characteristics. A universal scheme for control of the polarization using weak solenoids provides an elegant solution to the problem of ion acceleration completely eliminating resonant beam depolarization. It...

  10. Ion channelopathies and migraine pathogenesis.

    Science.gov (United States)

    Albury, Cassie L; Stuart, Shani; Haupt, Larisa M; Griffiths, Lyn R

    2017-08-01

    Migraine is a common neurological disorder that affects approximately 12-20% of the general adult population. Migraine pathogenesis is complex and not wholly understood. Molecular genetic investigations, imaging and biochemical studies, have unveiled a number of interconnected neurological pathways which seem to have a cause and effect component integral to its cause. Much weight of migraine attack initiation can be placed on the initial trigger and the pathways involved in its neuronal counter reaction. Ion channels play a large role in the generation, portrayal and mitigation of the brains response to external triggers. Several genetic studies have identified and implicated a number of ion channelopathy genes which may contribute to this generalised process. This review will focus on the genetics of migraine with particular emphasis placed on the potentially important role genes HEPH (responsible for iron transport and homeostasis) and KCNK18 (important for the transport and homeostasis of potassium) play in migraine cause.

  11. Heavy Ion Physics in CMS

    CERN Document Server

    Baur, G; Chatrchyan, Serguei; Contardo, Didier; Damgov, Jordan; De Min, Alberto; Denegri, Daniel; Drapier, Olivier; Geist, Walter; Genchev, Vladimir; Haroutunian, Roger; Hayrapetyan, M G; Hencken, K; Jenkovszky, L L; Kartvelishvili, Vakhtang; Kharlov, Yuri; Kodolova, Olga; Kotlinski, Danek; Kruglov, Nikolai A; Kva, R

    2000-01-01

    This note summarizes the CMS potential for Heavy Ions Collisions studies. The main physics topic is the study of Y to muon pair decays in view of Y family supression studies, with a detailed discussion of muon reconstruction efficiencies and purities in conditions of central Pb-Pb collisions. We also discuss energy flow and impact parameter measurements, the observability of continuum muon pairs and of Z to mu + mu decays, and of jets and hard direct photons as a means to study jet quenching. We also discuss pA interactions as well as gamma-gamma physics. The instrumental specificities of CMS for heavy ion running are discussed, including trigger and data acquisition aspects.

  12. Timescales in heavy ion collisions

    CERN Document Server

    Lisa, Mike

    2016-01-01

    The study of high energy collisions between heavy nuclei is a field unto itself, distinct from nuclear and particle physics. A defining aspect of heavy ion physics is the importance of a bulk, self-interacting system with a rich space-time substructure. I focus on the issue of timescales in heavy ion collisions, starting with proof from low-energy collisions that femtoscopy can, indeed, measure very long timescales. I then discuss the relativistic case, where detailed measurements over three orders of magnitude in energy reveal a timescale increase that might be due to a first-order phase transition. I discuss also consistency in evolution timescales as determined from traditional longitudinal sizes and a novel analysis using shape information.

  13. Cryogenic ion chemistry and spectroscopy.

    Science.gov (United States)

    Wolk, Arron B; Leavitt, Christopher M; Garand, Etienne; Johnson, Mark A

    2014-01-21

    The use of mass spectrometry in macromolecular analysis is an incredibly important technique and has allowed efficient identification of secondary and tertiary protein structures. Over 20 years ago, Chemistry Nobelist John Fenn and co-workers revolutionized mass spectrometry by developing ways to non-destructively extract large molecules directly from solution into the gas phase. This advance, in turn, enabled rapid sequencing of biopolymers through tandem mass spectrometry at the heart of the burgeoning field of proteomics. In this Account, we discuss how cryogenic cooling, mass selection, and reactive processing together provide a powerful way to characterize ion structures as well as rationally synthesize labile reaction intermediates. This is accomplished by first cooling the ions close to 10 K and condensing onto them weakly bound, chemically inert small molecules or rare gas atoms. This assembly can then be used as a medium in which to quench reactive encounters by rapid evaporation of the adducts, as well as provide a universal means for acquiring highly resolved vibrational action spectra of the embedded species by photoinduced mass loss. Moreover, the spectroscopic measurements can be obtained with readily available, broadly tunable pulsed infrared lasers because absorption of a single photon is sufficient to induce evaporation. We discuss the implementation of these methods with a new type of hybrid photofragmentation mass spectrometer involving two stages of mass selection with two laser excitation regions interfaced to the cryogenic ion source. We illustrate several capabilities of the cryogenic ion spectrometer by presenting recent applications to peptides, a biomimetic catalyst, a large antibiotic molecule (vancomycin), and reaction intermediates pertinent to the chemistry of the ionosphere. First, we demonstrate how site-specific isotopic substitution can be used to identify bands due to local functional groups in a protonated tripeptide designed to

  14. Ion thermal effects on slow mode solitary waves in plasmas with two adiabatic ion species

    Energy Technology Data Exchange (ETDEWEB)

    Nsengiyumva, F., E-mail: franco.nseng@gmail.com; Hellberg, M. A., E-mail: hellberg@ukzn.ac.za; Mace, R. L., E-mail: macer@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2015-09-15

    Using both the Sagdeev and Korteweg-de Vries (KdV) methods, ion thermal effects on slow mode ion acoustic solitons and double layers are investigated in a plasma with two adiabatic positive ion species. It is found that reducing the gap between the two ion thermal speeds by increasing the relative temperature of the cool ions increases the typical soliton/double layer speeds for all values of the ion-ion density ratio and reduces the range in the density ratio that supports double layers. The effect of increasing the relative cool ion temperature on the soliton/double layer amplitudes depends on the relative densities. For lower values of the ion density ratio, an increase in cool ion temperature leads to a significant decrease in soliton/double layer amplitude, so one may find that solitons of all permissible speeds lie within the range of KdV theory.

  15. Influence of ion species ratio on grid-enhanced plasma source ion implantation

    Institute of Scientific and Technical Information of China (English)

    Wang Jiu-Li; Zhang Gu-Ling; Liu Yuan-Fu; Wang You-Nian; Liu Chi-Zi; Yang Si-Ze

    2004-01-01

    @@ Grid-enhanced plasma source ion implantation (GEPSII) is a newly proposed technique to modify the inner-surface properties of a cylindrical bore. In this paper, a two-ion fluid model describing nitrogen molecular ions N2+ and atomic ions N+ is used to investigate the ion sheath dynamics between the grid electrode and the inner surface of a cylindrical bore during the GEPSII process, which is an extension of our previous calculations in which only N2+ was considered.Calculations are concentrated on the results of ion dose and impact energy on the target for different ion species ratios in the core plasma. The calculated results show that more atomic ions N+ in the core plasma can raise the ion impact energy and reduce the ion dose on the target.

  16. Development of the RF Ion Sources for Focused Ion Beam Accelerators

    Directory of Open Access Journals (Sweden)

    V. Voznyi

    2014-01-01

    Full Text Available The paper presents the results of investigations of ion sources developed in the IAP of NAS of Ukraine for generation of high brightness ion beams with small energy spread. A series of RF ion sources operated at the frequency of 27.12 MHz were studied: the inductive RF ion source, the helicon ion source, the multi-cusp RF ion source, and the sputter type RF source of metal ions. A global model and transformer model were applied for calculation of RF source plasma parameters. Ion energy spread, ion mass, and ion current density of some sources were measured in the wide range of RF power, extraction voltage and gas pres-sure.

  17. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    Energy Technology Data Exchange (ETDEWEB)

    L. Grisham and J.W. Kwan

    2008-08-12

    Some years ago it was suggested that halogen negative ions [1] could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  18. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, L.R.; Kwan, J.W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  19. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  20. Electrically controlled cesium ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, M. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    Several sites within the DOE complex (Savannah River, Idaho, Oak Ridge and Hanford) have underground storage tanks containing high-level waste resulting from nuclear engineering activities. To facilitate final disposal of the tank waste, it is advantageous to separate and concentrate the radionuclides for final immobilization in a vitrified glass matrix. This task proposes a new approach for radionuclide separation by combining ion exchange (IX) and electrochemistry to provide a selective and economic separation method.