WorldWideScience

Sample records for dyson representation

  1. Dyson shells: a retrospective

    Science.gov (United States)

    Bradbury, Robert J.

    2001-08-01

    More than 40 years have passed since Freeman Dyson suggested that advanced technological civilizations are likely to dismantle planets in their solar systems to harvest all of the energy their stars wastefully radiate into space. Clearly this was an idea that was ahead of its time. Since that time, dozens of SETI searches have been conducted and almost all of them have focused their attention on stars which by definition cannot be the advanced civilizations that Dyson envisioned. I will review the data that created the confusion between Dyson spheres and Dyson shells. The sources that disprove Dyson spheres while still allowing Dyson shells will be discussed. The use of outmoded ideas that have biased the few searches for Dyson Shells that have occurred will be pointed out. An update of the concept of Dyson shells to include our current knowledge of biotechnology, nanotechnology and computer science will be explored. Finally, an approach to setting limits on the abundance of Dyson shells in our galaxy using existing optical astronomical data and future optical satellites will be proposed.

  2. The Feynman-Dyson view

    International Nuclear Information System (INIS)

    Gill, Tepper L.

    2017-01-01

    This paper is a survey of our work on the mathematical foundations for the Feynman-Dyson program in quantum electrodynamics (QED). After a brief discussion of the history, we provide a representation theory for the Feynman operator calculus. This allows us to solve the general initial-value problem and construct the Dyson series. We show that the series is asymptotic, thus proving Dyson’s second conjecture for quantum electrodynamics. In addition, we show that the expansion may be considered exact to any finite order by producing the remainder term. This implies that every nonperturbative solution has a perturbative expansion. Using a physical analysis of information from experiment versus that implied by our models, we reformulate our theory as a sum over paths. This allows us to relate our theory to Feynman’s path integral, and to prove Dyson’s first conjecture that the divergences are in part due to a violation of Heisenberg’s uncertainly relations. As a by-product, we also prove Feynman’s conjecture about the relationship between the operator calculus and has path integral. Thus, providing the first rigorous justification for the Feynman formulation of quantum mechanics. (paper)

  3. The Feynman-Dyson view

    Science.gov (United States)

    Gill, Tepper L.

    2017-05-01

    This paper is a survey of our work on the mathematical foundations for the Feynman-Dyson program in quantum electrodynamics (QED). After a brief discussion of the history, we provide a representation theory for the Feynman operator calculus. This allows us to solve the general initial-value problem and construct the Dyson series. We show that the series is asymptotic, thus proving Dyson’s second conjecture for quantum electrodynamics. In addition, we show that the expansion may be considered exact to any finite order by producing the remainder term. This implies that every nonperturbative solution has a perturbative expansion. Using a physical analysis of information from experiment versus that implied by our models, we reformulate our theory as a sum over paths. This allows us to relate our theory to Feynman’s path integral, and to prove Dyson’s first conjecture that the divergences are in part due to a violation of Heisenberg’s uncertainly relations. As a by-product, we also prove Feynman’s conjecture about the relationship between the operator calculus and has path integral. Thus, providing the first rigorous justification for the Feynman formulation of quantum mechanics.

  4. Foundations for relativistic quantum theory. I. Feynman's operator calculus and the Dyson conjectures

    International Nuclear Information System (INIS)

    Gill, Tepper L.; Zachary, W.W.

    2002-01-01

    In this paper, we provide a representation theory for the Feynman operator calculus. This allows us to solve the general initial-value problem and construct the Dyson series. We show that the series is asymptotic, thus proving Dyson's second conjecture for quantum electrodynamics. In addition, we show that the expansion may be considered exact to any finite order by producing the remainder term. This implies that every nonperturbative solution has a perturbative expansion. Using a physical analysis of information from experiment versus that implied by our models, we reformulate our theory as a sum over paths. This allows us to relate our theory to Feynman's path integral, and to prove Dyson's first conjecture that the divergences are in part due to a violation of Heisenberg's uncertainly relations

  5. Gauge covariance of the fermion Schwinger–Dyson equation in QED

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shaoyang, E-mail: sjia@email.wm.edu [Physics Department, College of William & Mary, Williamsburg, VA 23187 (United States); Pennington, M.R., E-mail: michaelp@jlab.org [Physics Department, College of William & Mary, Williamsburg, VA 23187 (United States); Theory Center, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2017-06-10

    Any practical application of the Schwinger–Dyson equations to the study of n-point Green's functions in a strong coupling field theory requires truncations. In the case of QED, the gauge covariance, governed by the Landau–Khalatnikov–Fradkin transformations (LKFT), provides a unique constraint on such truncation. By using a spectral representation for the massive fermion propagator in QED, we are able to show that the constraints imposed by the LKFT are linear operations on the spectral densities. We formally define these group operations and show with a couple of examples how in practice they provide a straightforward way to test the gauge covariance of any viable truncation of the Schwinger–Dyson equation for the fermion 2-point function.

  6. Maverick genius the pioneering odyssey of Freeman Dyson

    CERN Document Server

    Schewe, Phillip F

    2013-01-01

    Scientist. Innovator. Rebel. For decades, Freeman Dyson has been regarded as one of the world’s most important thinkers. The Atlantic wrote, “In the range of his genius, Freeman Dyson is heir to Einstein – a visionary who has reshaped thinking in fields from math to astrophysics to medicine, and who has conceived nuclear-propelled spaceships designed to transport human colonists to distance planets.” Salon.com says that, “what sets Dyson apart among an elite group of scientists is the conscience and compassion he brings to his work.” Now, in this first complete biography of Dyson, author Phillip F. Schewe examines the life of a man whose accomplishments have shaped our world in many ways. From quantum physics to national defense, from space to biotechnology, Dyson’s work has cemented his position as a man whose influence goes far beyond the field of theoretical physics. It even won him the million dollar Templeton prize for his writing about science and religion. Recently, Dyson has made head...

  7. Crowdfunding isn’t just about money Mr Dyson

    OpenAIRE

    Cox, Joe

    2014-01-01

    Serial entrepreneur and inventor James Dyson has spoken out against crowdfunding, arguing that the emerging trend is no good for supporting meaningful inventions. However, Dyson may have overlooked some of the benefits to inventors besides simply raising cash.

  8. Characterization of echoes: A Dyson-series representation of individual pulses

    Science.gov (United States)

    Correia, Miguel R.; Cardoso, Vitor

    2018-04-01

    The ability to detect and scrutinize gravitational waves from the merger and coalescence of compact binaries opens up the possibility to perform tests of fundamental physics. One such test concerns the dark nature of compact objects: are they really black holes? It was recently pointed out that the absence of horizons—while keeping the external geometry very close to that of General Relativity—would manifest itself in a series of echoes in gravitational wave signals. The observation of echoes by LIGO/Virgo or upcoming facilities would likely inform us on quantum gravity effects or unseen types of matter. Detection of such signals is in principle feasible with relatively simple tools but would benefit enormously from accurate templates. Here we analytically individualize each echo waveform and show that it can be written as a Dyson series, for arbitrary effective potential and boundary conditions. We further apply the formalism to explicitly determine the echoes of a simple toy model: the Dirac delta potential. Our results allow to read off a few known features of echoes and may find application in the modeling for data analysis.

  9. TECHNOS Interview: Esther Dyson.

    Science.gov (United States)

    Raney, Mardell

    1997-01-01

    This interview with Esther Dyson, who is president and owner of EDventure Holdings which focuses on emerging information technology worldwide, discusses personal responsibility for technology; government's role; content ownership and intellectual property; Internet development; education and computers; parents' role in education; teacher…

  10. Dear Professor Dyson twenty years of correspondence between Freeman Dyson and undergraduate students on science, technology, society and life

    CERN Document Server

    Neuenschwander, Dwight E

    2016-01-01

    Freeman Dyson has designed nuclear reactors and bomb-powered spacecraft; he has studied the origins of life and the possibilities for the long-term future; he showed quantum mechanics to be consistent with electrodynamics and started cosmological eschatology; he has won international recognition for his work in science and for his work in reconciling science to religion; he has advised generals and congressional committees. An STS (Science, Technology, Society) curriculum or discussion group that engages topics such as nuclear policies, genetic technologies, environmental sustainability, the role of religion in a scientific society, and a hard look towards the future, would count itself privileged to include Professor Dyson as a class participant and mentor. In this book, STS topics are not discussed as objectified abstractions, but through personal stories. The reader is invited to observe Dyson's influence on a generation of young people as they wrestle with issues of science, technology, society, life in g...

  11. Dyson Orbitals, Quasi-Particle effects and Compton scattering

    OpenAIRE

    Barbiellini, B.; Bansil, A.

    2004-01-01

    Dyson orbitals play an important role in understanding quasi-particle effects in the correlated ground state of a many-particle system and are relevant for describing the Compton scattering cross section beyond the frameworks of the impulse approximation (IA) and the independent particle model (IPM). Here we discuss corrections to the Kohn-Sham energies due to quasi-particle effects in terms of Dyson orbitals and obtain a relatively simple local form of the exchange-correlation energy. Illust...

  12. Combinatorial Dyson-Schwinger equations and inductive data types

    Science.gov (United States)

    Kock, Joachim

    2016-06-01

    The goal of this contribution is to explain the analogy between combinatorial Dyson-Schwinger equations and inductive data types to a readership of mathematical physicists. The connection relies on an interpretation of combinatorial Dyson-Schwinger equations as fixpoint equations for polynomial functors (established elsewhere by the author, and summarised here), combined with the now-classical fact that polynomial functors provide semantics for inductive types. The paper is expository, and comprises also a brief introduction to type theory.

  13. Boson representations of the real symplectic group and their applications to the nuclear collective model

    International Nuclear Information System (INIS)

    Deenen, J.; Quesne, C.

    1985-01-01

    Both non-Hermitian Dyson and Hermitian Holstein--Primakoff representations of the Sp(2d,R) algebra are obtained when the latter is restricted to a positive discrete series irreducible representation 1 +n/2>. For such purposes, some results for boson representations, recently deduced from a study of the Sp(2d,R) partially coherent states, are combined with some standard techniques of boson expansion theories. The introduction of Usui operators enables the establishment of useful relations between the various boson representations. Two Dyson representations of the Sp(2d,R) algebra are obtained in compact form in terms of ν = d(d+1)/2 pairs of boson creation and annihilation operators, and of an extra U(d) spin, characterized by the irreducible representation [lambda 1 xxxlambda/sub d/]. In contrast to what happens when lambda 1 = xxx = lambda/sub d/ = lambda, it is shown that the Holstein--Primakoff representation of the Sp(2d,R) algebra cannot be written in such a compact form for a generic irreducible representation. Explicit expansions are, however, obtained by extending the Marumori, Yamamura, and Tokunaga method of boson expansion theories. The Holstein--Primakoff representation is then used to prove that, when restricted to the Sp(2d,R) irreducible representation 1 +n/2>, the dn-dimensional harmonic oscillator Hamiltonian has a U(ν) x SU(d) symmetry group

  14. Pinch technique for Schwinger-Dyson equations

    International Nuclear Information System (INIS)

    Binosi, Daniele; Papavassiliou, Joannis

    2007-01-01

    In the context of scalar QED we derive the pinch technique self-energies and vertices directly from the Schwinger-Dyson equations. After reviewing the perturbative construction, we discuss in detail the general methodology and the basic field-theoretic ingredients necessary for the completion of this task. The construction requires the simultaneous treatment of the equations governing the scalar self-energy and the fundamental interaction vertices. The resulting non-trivial rearrangement of terms generates dynamically the Schwinger-Dyson equations for the corresponding Green's functions of the background field method. The proof relies on the extensive use of the all-order Ward-identities satisfied by the full vertices of the theory and by the one-particle-irreducible kernels appearing in the usual skeleton expansion. The Ward identities for these latter quantities are derived formally, and several subtleties related to the structure of the multiparticle kernels are addressed. The general strategy for the generalization of the method in a non-Abelian context is briefly outlined, and some of the technical difficulties are discussed

  15. Hadronic bound states in SU(2) from Dyson-Schwinger equations

    Energy Technology Data Exchange (ETDEWEB)

    Vujinovic, Milan [Karl-Franzens-Universitaet Graz, Institut fuer Physik, Graz (Austria); Williams, Richard [Justus-Liebig-Universitaet Giessen, Institut fuer Theoretische Physik, Giessen (Germany)

    2015-03-01

    By using the Dyson-Schwinger/Bethe-Salpeter formalism in Euclidean spacetime, we calculate the ground state spectrum of J ≤ 1 hadrons in an SU(2) gauge theory with two fundamental fermions. We show that the rainbow-ladder truncation, commonly employed in QCD studies, is unsuitable for a description of an SU(2) theory. This we remedy by truncating at the level of the quark-gluon vertex Dyson-Schwinger equation in a diagrammatic expansion. Results obtained within this novel approach show good agreement with lattice studies. These findings emphasize the need to use techniques more sophisticated than rainbow-ladder when investigating generic strongly interacting gauge theories. (orig.)

  16. NOAA Ship Oscar Dyson Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Dyson Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  17. Are the Dyson rings around pulsars detectable?

    Science.gov (United States)

    Osmanov, Z.

    2018-04-01

    In the previous paper ring (Osmanov 2016) (henceforth Paper-I) we have extended the idea of Freeman Dyson and have shown that a supercivilization has to use ring-like megastructures around pulsars instead of a spherical shell. In this work we reexamine the same problem in the observational context and we show that facilities of modern infrared (IR) telescopes (Very Large Telescope Interferometer and Wide-field Infrared Survey Explorer (WISE)) might efficiently monitor the nearby zone of the solar system and search for the IR Dyson-rings up to distances of the order of 0.2 kpc, corresponding to the current highest achievable angular resolution, 0.001 mas. In this case the total number of pulsars in the observationally reachable area is about 64 +/- 21. We show that pulsars from the distance of the order of ~ 1 kpc are still visible for WISE as point-like sources but in order to confirm that the object is the neutron star, one has to use the ultraviolet telescopes, which at this moment cannot provide enough sensitivity.

  18. Resurgent transseries & Dyson-Schwinger equations

    Science.gov (United States)

    Klaczynski, Lutz

    2016-09-01

    We employ resurgent transseries as algebraic tools to investigate two self-consistent Dyson-Schwinger equations, one in Yukawa theory and one in quantum electrodynamics. After a brief but pedagogical review, we derive fixed point equations for the associated anomalous dimensions and insert a moderately generic log-free transseries ansatz to study the possible strictures imposed. While proceeding in various stages, we develop an algebraic method to keep track of the transseries' coefficients. We explore what conditions must be violated in order to stay clear of fixed point theorems to eschew a unique solution, if so desired, as we explain. An interesting finding is that the flow of data between the different sectors of the transseries shows a pattern typical of resurgence, i.e. the phenomenon that the perturbative sector of the transseries talks to the nonperturbative ones in a one-way fashion. However, our ansatz is not exotic enough as it leads to trivial solutions with vanishing nonperturbative sectors, even when logarithmic monomials are included. We see our result as a harbinger of what future work might reveal about the transseries representations of observables in fully renormalised four-dimensional quantum field theories and adduce a tentative yet to our mind weighty argument as to why one should not expect otherwise. This paper is considerably self-contained. Readers with little prior knowledge are let in on the basic reasons why perturbative series in quantum field theory eventually require an upgrade to transseries. Furthermore, in order to acquaint the reader with the language utilised extensively in this work, we also provide a concise mathematical introduction to grid-based transseries.

  19. Metric versus observable operator representation, higher spin models

    Science.gov (United States)

    Fring, Andreas; Frith, Thomas

    2018-02-01

    We elaborate further on the metric representation that is obtained by transferring the time-dependence from a Hermitian Hamiltonian to the metric operator in a related non-Hermitian system. We provide further insight into the procedure on how to employ the time-dependent Dyson relation and the quasi-Hermiticity relation to solve time-dependent Hermitian Hamiltonian systems. By solving both equations separately we argue here that it is in general easier to solve the former. We solve the mutually related time-dependent Schrödinger equation for a Hermitian and non-Hermitian spin 1/2, 1 and 3/2 model with time-independent and time-dependent metric, respectively. In all models the overdetermined coupled system of equations for the Dyson map can be decoupled algebraic manipulations and reduces to simple linear differential equations and an equation that can be converted into the non-linear Ermakov-Pinney equation.

  20. NOAA Ship Oscar Dyson Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Dyson Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  1. A Dyson-Schwinger approach to finite temperature QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Jens Andreas

    2011-10-26

    The different phases of quantum chromodynamics at finite temperature are studied. To this end the nonperturbative quark propagator in Matsubara formalism is determined from its equation of motion, the Dyson-Schwinger equation. A novel truncation scheme is introduced including the nonperturbative, temperature dependent gluon propagator as extracted from lattice gauge theory. In the first part of the thesis a deconfinement order parameter, the dual condensate, and the critical temperature are determined from the dependence of the quark propagator on the temporal boundary conditions. The chiral transition is investigated by means of the quark condensate as order parameter. In addition differences in the chiral and deconfinement transition between gauge groups SU(2) and SU(3) are explored. In the following the quenched quark propagator is studied with respect to a possible spectral representation at finite temperature. In doing so, the quark propagator turns out to possess different analytic properties below and above the deconfinement transition. This result motivates the consideration of an alternative deconfinement order parameter signaling positivity violations of the spectral function. A criterion for positivity violations of the spectral function based on the curvature of the Schwinger function is derived. Using a variety of ansaetze for the spectral function, the possible quasi-particle spectrum is analyzed, in particular its quark mass and momentum dependence. The results motivate a more direct determination of the spectral function in the framework of Dyson-Schwinger equations. In the two subsequent chapters extensions of the truncation scheme are considered. The influence of dynamical quark degrees of freedom on the chiral and deconfinement transition is investigated. This serves as a first step towards a complete self-consistent consideration of dynamical quarks and the extension to finite chemical potential. The goodness of the truncation is verified first

  2. A Dyson-Schwinger approach to finite temperature QCD

    International Nuclear Information System (INIS)

    Mueller, Jens Andreas

    2011-01-01

    The different phases of quantum chromodynamics at finite temperature are studied. To this end the nonperturbative quark propagator in Matsubara formalism is determined from its equation of motion, the Dyson-Schwinger equation. A novel truncation scheme is introduced including the nonperturbative, temperature dependent gluon propagator as extracted from lattice gauge theory. In the first part of the thesis a deconfinement order parameter, the dual condensate, and the critical temperature are determined from the dependence of the quark propagator on the temporal boundary conditions. The chiral transition is investigated by means of the quark condensate as order parameter. In addition differences in the chiral and deconfinement transition between gauge groups SU(2) and SU(3) are explored. In the following the quenched quark propagator is studied with respect to a possible spectral representation at finite temperature. In doing so, the quark propagator turns out to possess different analytic properties below and above the deconfinement transition. This result motivates the consideration of an alternative deconfinement order parameter signaling positivity violations of the spectral function. A criterion for positivity violations of the spectral function based on the curvature of the Schwinger function is derived. Using a variety of ansaetze for the spectral function, the possible quasi-particle spectrum is analyzed, in particular its quark mass and momentum dependence. The results motivate a more direct determination of the spectral function in the framework of Dyson-Schwinger equations. In the two subsequent chapters extensions of the truncation scheme are considered. The influence of dynamical quark degrees of freedom on the chiral and deconfinement transition is investigated. This serves as a first step towards a complete self-consistent consideration of dynamical quarks and the extension to finite chemical potential. The goodness of the truncation is verified first

  3. Large Wilson loop averages from the Schwinger-Dyson equation

    International Nuclear Information System (INIS)

    Xue Shesheng

    1987-01-01

    Using Schwinger-Dyson equations for the large Wilson loop in abelian lattice gauge theories, we evaluate the vacuum expectation values of the Wilson loop of sizes 1x2, 2x2, 2x3, and so on, from which the string tension is extracted. (orig.)

  4. On the representation of symmetry group transformation operators in the interaction picture

    International Nuclear Information System (INIS)

    Jorjadze, G.P.; Khvedelidze, A.M.; Kvinikhidze, A.H.

    1987-01-01

    The representation similar to that of Dyson, is obtained in the form of a chronologically (antichronologically) ordered exponent for operators of any symmetry group transformations of an interacting quantum field system. The exponent is given by an integral of the interaction Hamiltonian density in Dirac's picture. The domain of integration is determined by the symmetry transformation considered. 3 refs.; 2 figs

  5. Dyson-Schwinger equations: connecting small and large length-scales

    International Nuclear Information System (INIS)

    Roberts, C.

    1999-01-01

    The phenomenological application of Dyson-Schwinger equations to the calculation of meson properties observable at TJNAF is illustrated. Particular emphasis is given to the ability of this framework to unify long-range effects constrained by chiral symmetry with short-range effects prescribed by perturbation theory, and interpolate between them

  6. Dyson-Schwinger equations in quantum electrodynamics

    International Nuclear Information System (INIS)

    Slim, H.A.

    1981-01-01

    A quantum field theory is completely determined by the knowledge of its Green functions and this thesis is concerned with the Salam and Delbourgo approximation method for the determination of the Green functions. In chapter 2 a Lorentz covariant, canonical formulation for quantum electrodynamics is described. In chapter 3 the definition of the Green functions in quantum electrodynamics is given with a derivation of the Dyson-Schwinger equations. The Ward-Takahashi identities, which are a consequence of current conservation, are derived and finally renormalization is briefly mentioned and the equations for the renormalized quantities are given. The gauge transformations, changing the gauge-parameter, a, discussed in Chapter 2 for the field operators, also have implications for the Green functions, and these are worked out in Chapter 4 for the electron propagator, which is not gauge-invariant. Before developing the main approximation, a simple, non-relativistic model is studied in Chapter 5. It has the feature of being exactly solvable in a way which closely resembles the approximation method of Chapter 6 for relativistic quantum electrodynamics. There the Dyson-Schwinger equations for the electron and photon propagator are studied. In chapter 7, the Johnson-Baker-Willey program of finite quantum electrodynamics is considered, in connection with the Ansatz of Salam and Delbourgo, and the question of a possible fixed point of the coupling constant is considered. In the last chapter, some remarks are made about how the results of the approximation scheme can be improved. (Auth.)

  7. Gauge-invariant masses through Schwinger-Dyson equations

    International Nuclear Information System (INIS)

    Bashir, A.; Raya, A.

    2007-01-01

    Schwinger-Dyson equations (SDEs) are an ideal framework to study non-perturbative phenomena such as dynamical chiral symmetry breaking (DCSB). A reliable truncation of these equations leading to gauge invariant results is a challenging problem. Constraints imposed by Landau-Khalatnikov-Fradkin transformations (LKFT) can play an important role in the hunt for physically acceptable truncations. We present these constrains in the context of dynamical mass generation in QED in 2 + 1-dimensions

  8. Modified Hermitian treatment of Dyson boson expansion theory

    International Nuclear Information System (INIS)

    Kajiyama, Atsushi

    2009-01-01

    The Hermitian treatment of the Dyson-type boson expansion theory is reinvestigated with the aid of small-parameter expansion. A naive application of the Hermitization formula sometimes yields an unrealistic phase that spoils the conventional treatment. The complementary use of another formula having the form of the arithmetic mean can avoid that problem. This modification will improve the accuracy of the Hermitian treatment. (author)

  9. Renormalization of self-consistent Schwinger-Dyson equations at finite temperature

    International Nuclear Information System (INIS)

    Hees, H. van; Knoll, J.

    2002-01-01

    We show that Dyson resummation schemes based on Baym's Φ-derivable approximations can be renormalized with counter term structures solely defined on the vacuum level. First applications to the self-consistent solution of the sunset self-energy in φ 4 -theory are presented. (orig.)

  10. Commemorating John Dyson

    Science.gov (United States)

    Pittard, Julian M.

    2015-03-01

    John Dyson was born on the 7th January 1941 in Meltham Mills, West Yorkshire, England, and later grew up in Harrogate and Leeds. The proudest moment of John's early life was meeting Freddie Trueman, who became one of the greatest fast bowlers of English cricket. John used a state scholarship to study at Kings College London, after hearing a radio lecture by D. M. McKay. He received a first class BSc Special Honours Degree in Physics in 1962, and began a Ph.D. at the University of Manchester Department of Astronomy after being attracted to astronomy by an article of Zdenek Kopal in the semi-popular journal New Scientist. John soon started work with Franz Kahn, and studied the possibility that the broad emission lines seen from the Orion Nebula were due to flows driven by the photoevaporation of neutral globules embedded in a HII region. John's thesis was entitled ``The Age and Dynamics of the Orion Nebula`` and he passed his oral examination on 28th February 1966.

  11. Microscopic structure of an interacting boson model in terms of the dyson boson mapping

    International Nuclear Information System (INIS)

    Geyer, H.B.; Lee, S.Y.

    1982-01-01

    In an application of the generalized Dyson boson mapping to a shell model Hamiltonian acting in a single j shell, a clear distinction emerges between pair bosons and kinematically determined seniority bosons. As in the Otsuka-Arima-Iachello method it is found that the latter type of boson determines the structure of an interactive boson-model-like Hamiltonian for the single j-shell model. It is furthermore shown that the Dyson boson mapping formalism is equally well suited for investigating possible interactive boson-model-like structures in a multishell case, where dynamical considerations are expected to play a much more important role in determining the structure of physical bosons

  12. Correlation functions and Schwinger-Dyson equations for Penner's model

    International Nuclear Information System (INIS)

    Chair, N.; Panda, S.

    1991-05-01

    The free energy of Penner's model exhibits logarithmic singularity in the continuum limit. We show, however, that the one and two point correlators of the usual loop-operators do not exhibit logarithmic singularity. The continuum Schwinger-Dyson equations involving these correlation functions are derived and it is found that within the space of the corresponding couplings, the resulting constraints obey a Virasoro algebra. The puncture operator having the correct (logarithmic) scaling behaviour is identified. (author). 13 refs

  13. Heavy meson observables and Dyson-Schwinger equations

    International Nuclear Information System (INIS)

    Ivanov, M. A.

    1998-01-01

    Dyson-Schwinger equation (DSE) studies show that the b-quark mass-function is approximately constant, and that this is true to a lesser extent for the c-quark. This observation provides the basis for a study of the leptonic and semileptonic decays of heavy pseudoscalar mesons using a ''heavy-quark'' limit of the DSES, which, when exact, reduces the number of independent form factors. Semileptonic decays with light mesons in the final state are also accessible because the DSES provide a description of light-quark propagation characteristics and light-meson structure. A description of B-meson decays is straightforward, however, the study of decays involving the D-meson indicates that c-quark mass-corrections are quantitatively important

  14. Exact solutions of linearized Schwinger endash Dyson equation of fermion self-energy

    International Nuclear Information System (INIS)

    Zhou, B.

    1997-01-01

    The Schwinger endash Dyson equation of fermion self-energy in the linearization approximation is solved exactly in a theory with gauge and effective four-fermion interactions. Different expressions for the independent solutions, which, respectively, submit to irregular and regular ultraviolet boundary condition are derived and expounded. copyright 1997 American Institute of Physics

  15. Schwinger Dyson equations: Dynamical chiral symmetry breaking and confinement

    International Nuclear Information System (INIS)

    Roberts, C.D.

    1992-01-01

    A representative but not exhaustive review of the Schwinger-Dyson equation (SDE) approach to the nonperturbative study of QCD is presented. The main focus is the SDE for the quark self energy but studies of the gluon propagator and quark-gluon vertex are also discussed insofar as they are important to the quark SDE. The scope of this article is the application of these equations to the study of dynamical chiral symmetry breaking, quark confinement and the phenomenology of the spectrum and dynamics of QCD

  16. Resummation of the 1/N-expansion of the non-linear σ-model by Dyson-Schwinger equations

    International Nuclear Information System (INIS)

    Drouffe, J.M.; Flyvbjerg, H.

    1988-02-01

    Dyson-Schwinger equations for the O(N)-symmetric non-linear σ-model are derived and expanded in 1/N. A closed set of equations is obtained by keeping only the leading term and the first correction term in this expansion. These equations are solved numerically in 2 dimensions on square lattices of sizes 50x50 and 100x100. Results for the magnetic susceptibility and the mass gap are compared with predictions of the ordinary 1/N-expansion and with Monte Carlo results. The results obtained with the Dyson-Schwinger equations show the same scaling behavior as found in the Monte Carlo results. This is not the behavior predicted by the perturbative renormalization group. (orig.)

  17. The strong running coupling from an approximate gluon Dyson-Schwinger equation

    International Nuclear Information System (INIS)

    Alkofer, R.; Hauck, A.

    1996-01-01

    Using Mandelstam's approximation to the gluon Dyson-Schwinger equation we calculate the gluon self-energy in a renormalisation group invariant fashion. We obtain a non-perturbative Β function. The scaling behavior near the ultraviolet stable fixed point is in good agreement with perturbative QCD. No further fixed point for positive values of the coupling is found: α S increases without bound in the infrared

  18. Improved Dyson series expansion for steady-state quantum transport beyond the weak coupling limit: Divergences and resolution

    International Nuclear Information System (INIS)

    Thingna, Juzar; Zhou, Hangbo; Wang, Jian-Sheng

    2014-01-01

    We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process

  19. New Bessel-type function associated with SU(3) representation

    International Nuclear Information System (INIS)

    Tanimura, N.; Tanimura, O.

    1990-01-01

    A new set of functions that are given by the coefficients of the character expansion of the single-link action in the SU(3) lattice-gauge theory is studied. The function is specified by the indices λ and μ of the SU(3) representation of the Young tableau. From the Schwinger-Dyson variational method the recursion relations among the functions are derived. By combining the recursion relation and the relation of the differentiation, the linear differential equation of the sixth order for the function is derived. The properties of the function are discussed in detail in comparison with the functions in the SU(2) group

  20. Elliptic Determinantal Processes and Elliptic Dyson Models

    Science.gov (United States)

    Katori, Makoto

    2017-10-01

    We introduce seven families of stochastic systems of interacting particles in one-dimension corresponding to the seven families of irreducible reduced affine root systems. We prove that they are determinantal in the sense that all spatio-temporal correlation functions are given by determinants controlled by a single function called the spatio-temporal correlation kernel. For the four families {A}_{N-1}, {B}_N, {C}_N and {D}_N, we identify the systems of stochastic differential equations solved by these determinantal processes, which will be regarded as the elliptic extensions of the Dyson model. Here we use the notion of martingales in probability theory and the elliptic determinant evaluations of the Macdonald denominators of irreducible reduced affine root systems given by Rosengren and Schlosser.

  1. The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders

    International Nuclear Information System (INIS)

    Gurau, Razvan

    2012-01-01

    Random tensor models for a generic complex tensor generalize matrix models in arbitrary dimensions and yield a theory of random geometries. They support a 1/N expansion dominated by graphs of spherical topology. Their Schwinger Dyson equations, generalizing the loop equations of matrix models, translate into constraints satisfied by the partition function. The constraints have been shown, in the large N limit, to close a Lie algebra indexed by colored rooted D-ary trees yielding a first generalization of the Virasoro algebra in arbitrary dimensions. In this paper we complete the Schwinger Dyson equations and the associated algebra at all orders in 1/N. The full algebra of constraints is indexed by D-colored graphs, and the leading order D-ary tree algebra is a Lie subalgebra of the full constraints algebra.

  2. Random functions via Dyson Brownian Motion: progress and problems

    International Nuclear Information System (INIS)

    Wang, Gaoyuan; Battefeld, Thorsten

    2016-01-01

    We develope a computationally efficient extension of the Dyson Brownian Motion (DBM) algorithm to generate random function in C"2 locally. We further explain that random functions generated via DBM show an unstable growth as the traversed distance increases. This feature restricts the use of such functions considerably if they are to be used to model globally defined ones. The latter is the case if one uses random functions to model landscapes in string theory. We provide a concrete example, based on a simple axionic potential often used in cosmology, to highlight this problem and also offer an ad hoc modification of DBM that suppresses this growth to some degree.

  3. Random functions via Dyson Brownian Motion: progress and problems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gaoyuan; Battefeld, Thorsten [Institute for Astrophysics, University of Goettingen,Friedrich Hund Platz 1, D-37077 Goettingen (Germany)

    2016-09-05

    We develope a computationally efficient extension of the Dyson Brownian Motion (DBM) algorithm to generate random function in C{sup 2} locally. We further explain that random functions generated via DBM show an unstable growth as the traversed distance increases. This feature restricts the use of such functions considerably if they are to be used to model globally defined ones. The latter is the case if one uses random functions to model landscapes in string theory. We provide a concrete example, based on a simple axionic potential often used in cosmology, to highlight this problem and also offer an ad hoc modification of DBM that suppresses this growth to some degree.

  4. From the Dyson-Schwinger to the Transport Equation in the Background Field Gauge of QCD

    CERN Document Server

    Wang, Q; Stöcker, H; Greiner, W

    2003-01-01

    The non-equilibrium quantum field dynamics is usually described in the closed-time-path formalism. The initial state correlations are introduced into the generating functional by non-local source terms. We propose a functional approach to the Dyson-Schwinger equation, which treats the non-local and local source terms in the same way. In this approach, the generating functional is formulated for the connected Green functions and one-particle-irreducible vertices. The great advantages of our approach over the widely used two-particle-irreducible method are that it is much simpler and that it is easy to implement the procedure in a computer program to automatically generate the Feynman diagrams for a given process. The method is then applied to a pure gluon plasma to derive the gauge-covariant transport equation from the Dyson-Schwinger equation in the background covariant gauge. We discuss the structure of the kinetic equation and show its relationship with the classical one. We derive the gauge-covariant colli...

  5. The IR sector of QCD: lattice versus Schwinger-Dyson equations

    International Nuclear Information System (INIS)

    Binosi, Daniele

    2010-01-01

    Important information about the infrared dynamics of QCD is encoded in the behavior of its (of-shell) Green's functions, most notably the gluon and the ghost propagators. Due to recent improvements in the quality of lattice data and the truncation schemes employed for the Schwinger-Dyson equations we have now reached a point where the interplay between these two non-perturbative tools can be most fruitful. In this talk several of the above points will be reviewed, with particular emphasis on the implications for the ghost sector, the non-perturbative effective charge of QCD, and the Kugo-Ojima function.

  6. Color-superconductivity from a Dyson-Schwinger perspective

    International Nuclear Information System (INIS)

    Nickel, M.D.J.

    2007-01-01

    Color-superconducting phases of quantum chromodynamics at vanishing temperatures and high densities are investigated. The central object is the one-particle Green's function of the fermions, the so-called quark propagator. It is determined by its equation of motion, the Dyson-Schwinger equation. To handle Dyson-Schwinger equations a successfully applied truncation scheme in the vacuum is extended to finite densities and gradually improved. It is thereby guaranteed that analytical results at asymptotically large densities are reproduced. This way an approach that is capable to describe known results in the vacuum as well as at high densities is applied to densities of astrophysical relevance for the first time. In the first part of the thesis the framework of the investigations with focus on the extension to finite densities is outlined. Physical observables are introduced which can be extracted from the propagator. In the following a minimal truncation scheme is presented. To point out the complexity of our approach in comparison to phenomenological models of quantum chromodynamics the chirally unbroken phase is discussed first. Subsequently color-superconducting phases for massless quarks are investigated. Furthermore the role of finite quark masses and neutrality constraints at moderate densities is studied. In contrast to phenomenological models the so-called CFL phase is found to be the ground state for all relevant densities. In the following part the applicability of the maximum entropy method for the extraction of spectral functions from numerical results in Euclidean space-time is demonstrated. As an example the spectral functions of quarks in the chirally unbroken and color-superconducting phases are determined. Hereby the results of our approach are presented in a new light. For instance the finite width of the quasiparticles in the color-superconducting phase becomes apparent. In the final chapter of this work extensions of our truncation scheme in

  7. Color-superconductivity from a Dyson-Schwinger perspective

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, M.D.J.

    2007-12-20

    Color-superconducting phases of quantum chromodynamics at vanishing temperatures and high densities are investigated. The central object is the one-particle Green's function of the fermions, the so-called quark propagator. It is determined by its equation of motion, the Dyson-Schwinger equation. To handle Dyson-Schwinger equations a successfully applied truncation scheme in the vacuum is extended to finite densities and gradually improved. It is thereby guaranteed that analytical results at asymptotically large densities are reproduced. This way an approach that is capable to describe known results in the vacuum as well as at high densities is applied to densities of astrophysical relevance for the first time. In the first part of the thesis the framework of the investigations with focus on the extension to finite densities is outlined. Physical observables are introduced which can be extracted from the propagator. In the following a minimal truncation scheme is presented. To point out the complexity of our approach in comparison to phenomenological models of quantum chromodynamics the chirally unbroken phase is discussed first. Subsequently color-superconducting phases for massless quarks are investigated. Furthermore the role of finite quark masses and neutrality constraints at moderate densities is studied. In contrast to phenomenological models the so-called CFL phase is found to be the ground state for all relevant densities. In the following part the applicability of the maximum entropy method for the extraction of spectral functions from numerical results in Euclidean space-time is demonstrated. As an example the spectral functions of quarks in the chirally unbroken and color-superconducting phases are determined. Hereby the results of our approach are presented in a new light. For instance the finite width of the quasiparticles in the color-superconducting phase becomes apparent. In the final chapter of this work extensions of our truncation scheme in

  8. Dryson equations, Ward identities, and the infrared behavior of Yang-Mills theories. [Schwinger-Dyson equations, Slavnov-Taylor identities

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M.

    1979-01-01

    It was shown using the Schwinger-Dyson equations and the Slavnov-Taylor identities of Yang-Mills theory that no inconsistency arises if the gluon propagator behaves like (1/p/sup 2/)/sup 2/ for small p/sup 2/. To see whether the theory actually contains such singular long range behavior, a nonperturbative closed set of equations was formulated by neglecting the transverse parts of GAMMA and GAMMA/sub 4/ in the Schwinger-Dyson equations. This simplification preserves all the symmetries of the theory and allows the possibility for a singular low-momentum behavior of the gluon propagator. The justification for neglecting GAMMA/sup (T)/ and GAMMA/sub 4//sup (T)/ is not evident but it is expected that the present study of the resulting equations will elucidate this simplification, which leads to a closed set of equations.

  9. Schwinger-Dyson operator of Yang-Mills matrix models with ghosts and derivations of the graded shuffle algebra

    NARCIS (Netherlands)

    Krishnaswami, G.S.

    2008-01-01

    We consider large-N multi-matrix models whose action closely mimics that of Yang-Mills theory, including gauge-fixing and ghost terms. We show that the factorized Schwinger-Dyson loop equations, expressed in terms of the generating series of gluon and ghost correlations G( ), are quadratic equations

  10. Dyson-Schwinger equations and N = 4 SYM in Landau gauge

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Axel; Zitz, Stefan [University of Graz, Institute of Physics, NAWI Graz, Graz (Austria)

    2016-03-15

    N = 4 Super Yang-Mills theory is a highly constrained theory, and therefore a valuable tool to test the understanding of less constrained Yang-Mills theories. Our aim is to use it to test our understanding of both the Landau gauge beyond perturbation theory and the truncations of Dyson-Schwinger equations in ordinary Yang-Mills theories. We derive the corresponding equations within the usual one-loop truncation for the propagators after imposing the Landau gauge. We find a conformal solution in this approximation, which surprisingly resembles many aspects of ordinary Yang-Mills theories. We furthermore discuss which role the Gribov-Singer ambiguity in this context could play, should it exist in this theory. (orig.)

  11. Solving Schwinger-Dyson equations by truncation in zero-dimensional scalar quantum field theory

    International Nuclear Information System (INIS)

    Okopinska, A.

    1991-01-01

    Three sets of Schwinger-Dyson equations, for all Green's functions, for connected Green's functions, and for proper vertices, are considered in scalar quantum field theory. A truncation scheme applied to the three sets gives three different approximation series for Green's functions. For the theory in zero-dimensional space-time the results for respective two-point Green's functions are compared with the exact value calculated numerically. The best convergence of the truncation scheme is obtained for the case of proper vertices

  12. Collecting, Preserving, and Interpreting the History of Electronic Games: An Interview with Jon-Paul C. Dyson

    Science.gov (United States)

    American Journal of Play, 2017

    2017-01-01

    Jon-Paul C. Dyson is vice president for exhibits and director of the International Center for the History of Electronic Games (ICHEG) at The Strong. Trained as a cultural and intellectual historian, he joined The Strong in 1998 and has worked on and supervised the development of dozens of exhibits on play and video games. He initiated the museum's…

  13. The exact Laplacian spectrum for the Dyson hierarchical network.

    Science.gov (United States)

    Agliari, Elena; Tavani, Flavia

    2017-01-09

    We consider the Dyson hierarchical graph , that is a weighted fully-connected graph, where the pattern of weights is ruled by the parameter σ ∈ (1/2, 1]. Exploiting the deterministic recursivity through which is built, we are able to derive explicitly the whole set of the eigenvalues and the eigenvectors for its Laplacian matrix. Given that the Laplacian operator is intrinsically implied in the analysis of dynamic processes (e.g., random walks) occurring on the graph, as well as in the investigation of the dynamical properties of connected structures themselves (e.g., vibrational structures and relaxation modes), this result allows addressing analytically a large class of problems. In particular, as examples of applications, we study the random walk and the continuous-time quantum walk embedded in , the relaxation times of a polymer whose structure is described by , and the community structure of in terms of modularity measures.

  14. Mass current in 3He - A: Some exact representations and their London limit near zero temperature

    International Nuclear Information System (INIS)

    Malyshev, C.

    1995-09-01

    New representations for normal Green's function of the superfluid A-phase of helium-3 are obtained by an exact solution of the Dyson-Gor'kov equation. These representations result in new formulae for the mass current j-vector near zero temperature. Specific limiting cases for j-vector such ast the limit of lowest order in gradients, following the limit of zero temperature, and vice versa, are investigated. It is shown that the mass current previously known as j-vector = j-vector 0 , where j-vector 0 is an expression of first order in gradients, should be treated as a ''quasiclassical'' object in view of the approximations chosen. The parameter 1/χ implying the ''quasiclassics'', is a small quantity, as the London limit condition holds. Expansion of j-vector in powers of 1/χ is considered and first corrections to j-vector 0 are obtained at zero temperature, for two gauges of the order parameter. (author). 26 refs

  15. Estudi i modificació d’un difusor de ventilador tipus Dyson Air Multiplier

    OpenAIRE

    Soler Calderé, Roger

    2014-01-01

    [CATALÀ] El Dyson Air Multiplier és un tipus de ventilador de sobre taula sense aspes, que produeix un corrent d’aire continu. Per crear aquest corrent, l’aire és accelerat a través d’una obertura anular creant un cabal d’aire a alta velocitat. Aquest flux d’aire passa per una superfície aerodinàmica que canalitza la seva direcció i genera zones de baixa pressió. Aquest canvi de pressió aspira l’aire de l’entorn cap al corrent d’aire, augmentant el cabal mobilitzat. Per a realitzar el seu est...

  16. Delta and Omega electromagnetic form factors in a Dyson-Schwinger/Bethe-Salpeter approach

    Energy Technology Data Exchange (ETDEWEB)

    Diana Nicmorus, Gernot Eichmann, Reinhard Alkofer

    2010-12-01

    We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.

  17. Hadronic contribution to the muon g-2: A Dyson-Schwinger perspective

    Science.gov (United States)

    Goecke, T.; Fischer, C. S.; Williams, R.

    2012-04-01

    We summarize our results for hadronic contributions to the anomalous magnetic moment of the muon (aμ), the one from hadronic vacuum-polarization (HVP) and the light-by-light scattering contribution (LBL), obtained from the Dyson-Schwinger equations (DSEs) of QCD. In the case of HVP we find good agreement with model independent determinations from dispersion relations for aμHV P as well as for the Adler function with deviations well below the ten percent level. From this we conclude that the DSE approach should be capable of describing aμLBL with similar accuracy. We also present results for LBL using a resonance expansion of the quark-anti-quark T-matrix. Our preliminary value is aμLBL=(217±91)×10-11.

  18. Lattice-QCD based Schwinger-Dyson approach for Chiral phase transition

    International Nuclear Information System (INIS)

    Iida, Hideaki; Oka, Makoto; Suganuma, Hideo

    2005-01-01

    Dynamical chiral-symmetry breaking in QCD is studied with the Schwinger-Dyson (SD) formalism based on lattice QCD data, i.e., LQCD-based SD formalism. We extract the SD kernel function K(p 2 ) in an Ansatzindependent manner from the lattice data of the quark propagator in the Landau gauge. As remarkable features, we find infrared vanishing and intermediate enhancement of the SD kernel function K(p 2 ). We apply the LQCD-based SD equation to thermal QCD with the quark chemical potential μ q . We find chiral symmetry restoration at T c ∼100MeV for μ q =0. The real part of the quark mass function decreases as T and μ q . At finite density, there appears the imaginary part of the quark mass function, which would lead to the width broadening of hadrons

  19. A covariant representation of the Ball–Chiu vertex

    International Nuclear Information System (INIS)

    Ahmadiniaz, Naser; Schubert, Christian

    2013-01-01

    In nonabelian gauge theory the three-gluon vertex function contains important structural information, in particular on infrared divergences, and is also an essential ingredient in the Schwinger–Dyson equations. Much effort has gone into analyzing its general structure, and at the one-loop level also a number of explicit computations have been done, using various approaches. Here we use the string-inspired formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in all cases. The vertex is computed fully off-shell and in dimensionally continued form, so that it can be used as a building block for higher-loop calculations. We find that the Bern–Kosower loop replacement rules, originally derived for the on-shell case, hold off-shell as well. We explain the relation of the structure of this representation to the low-energy effective action, and establish the precise connection with the standard Ball–Chiu decomposition of the vertex. This allows us also to predict that the vanishing of the completely antisymmetric coefficient function S of this decomposition is not a one-loop accident, but persists at higher-loop orders. The sum rule found by Binger and Brodsky, which leads to the vanishing of the one-loop vertex in N=4 SYM theory, in the present approach relates to worldline supersymmetry

  20. A covariant representation of the Ball–Chiu vertex

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadiniaz, Naser, E-mail: naser@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacán (Mexico); Dipartimento di Fisica, Università di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Schubert, Christian, E-mail: schubert@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacán (Mexico); Dipartimento di Fisica, Università di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Mühlenberg 1, D-14476 Potsdam (Germany)

    2013-04-21

    In nonabelian gauge theory the three-gluon vertex function contains important structural information, in particular on infrared divergences, and is also an essential ingredient in the Schwinger–Dyson equations. Much effort has gone into analyzing its general structure, and at the one-loop level also a number of explicit computations have been done, using various approaches. Here we use the string-inspired formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in all cases. The vertex is computed fully off-shell and in dimensionally continued form, so that it can be used as a building block for higher-loop calculations. We find that the Bern–Kosower loop replacement rules, originally derived for the on-shell case, hold off-shell as well. We explain the relation of the structure of this representation to the low-energy effective action, and establish the precise connection with the standard Ball–Chiu decomposition of the vertex. This allows us also to predict that the vanishing of the completely antisymmetric coefficient function S of this decomposition is not a one-loop accident, but persists at higher-loop orders. The sum rule found by Binger and Brodsky, which leads to the vanishing of the one-loop vertex in N=4 SYM theory, in the present approach relates to worldline supersymmetry.

  1. Low equation, pion-nucleon scattering, and Castillejo-Dalitz-Dyson pole

    International Nuclear Information System (INIS)

    Nakano, K.; Nogami, Y.

    1986-01-01

    We examine the p-wave πN scattering at medium energies by means of the Low equation with a view to determining the form factor of the πN interaction. Solutions of the equation with and without a Castillejo-Dalitz-Dyson (CDD) pole are used. The solution with no CDD pole corresponds to the old Chew-Low model, whereas the one with a CDD pole corresponds to the quark version of the Chew-Low model. The πN interaction form factor is determined so that the Δ resonance is well reproduced. We find that the solution with a CDD pole leads to a softer form factor but is not as soft as those expected from the nucleon size in the quark model. Using the solutions and form factors thus determined, we also examine the pionic contributions to the nucleon magnetic moment and the nucleon mass

  2. A New Comment on Dyson's Exposition of Feynman's Proof of Maxwell Equations

    International Nuclear Information System (INIS)

    Pombo, Claudia

    2009-01-01

    A paper by Dyson, published nearly two decades ago, describing Feynman's proof of Maxwell equations, has generated many comments, analysis, discussions and generalizations of the proof. Feynman's derivation is assumed to be based on two main sets of equations. One is supposed to be the second law of Newton and the other a set of basic commutation relations from quantum physics.Here we present a new comment on this paper, focusing mainly on the initial arguments and applying a new method of analysis and interpretation of physics, named observational realism. The present discussion does not alter the technical steps of Feynman, but do clarify their basis. We show that Newton's physics is not a starting point in Feynman's derivation, neither is quantum physics involved in it, but the foundations of relativity only.

  3. Multiplicative renormalizability and self-consistent treatments of the Schwinger-Dyson equations

    International Nuclear Information System (INIS)

    Brown, N.; Dorey, N.

    1989-11-01

    Many approximations to the Schwinger-Dyson equations place constraints on the renormalization constants of a theory. The requirement that the solutions to the equations be multiplicatively renormalizable also places constraints on these constants. Demanding that these two sets of constraints be compatible is an important test of the self-consistency of the approximations made. We illustrate this idea by considering the equation for the fermion propagator in massless quenched quantum electrodynamics, (QED), checking the consistency of various approximations. In particular, we show that the much used 'ladder' approximation is self-consistent, provided that the coupling constant is renormalized in a particular way. We also propose another approximation which satisfies this self-consistency test, but requires that the coupling be unrenormalized, as should be the case in the full quenched approximation. This new approximation admits an exact solution, which also satisfies the renormalization group equation for the quenched approximation. (author)

  4. Gauge-independent bifurcation to the chiral-symmetry-breaking solution of the Dyson-Schwinger equation in continuum QED

    International Nuclear Information System (INIS)

    Rembiesa, P.

    1990-01-01

    The Dyson-Schwinger equation for the fermion propagator can be effectively solved in the approximation of the small-momentum-transfer vertex function. There exists a critical value of the coupling constant above which the ordinary infrared-divergent solution for massless quantum electrodynamics bifurcates to another, massive solution. With a proper transverse part included in the vertex function, the bifurcation point is gauge independent, the new solution is finite in all gauges, and does not require momentum cutoffs of any kind

  5. The convergence radius of the chiral expansion in the Dyson-Schwinger approach

    International Nuclear Information System (INIS)

    Meissner, T.

    1994-01-01

    We determine the convergence radius m conv or the expansion in the current quark mass using the Dyson-Schwinger (DS) equation of QCD in the rainbow approximation. Within a Gaussian form for the gluon propagator D μ ν(p) ∼ δμνχ 2 e - Δ /p 2 we find that m conv increases with decreasing width Δ and increasing strength χ 2 . For those values of χ 2 and Δ, which provide the best known description of low energy hadronic phenomena, m conv lies around 2Λ QCD , which is big enough, that the chiral expansion in the strange sector converges. Our analysis also explains the rather low value of m conv ∼ 50...80 MeV in the Nambu-Jona-Lasinio model, which as itself can be regarded as a special case of the rainbow DS models, where the gluon propagator is a constant in momentum space

  6. Phase structure of hot and/or dense QCD with the Schwinger-Dyson equation

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Satoshi [Nagoya Univ., Nagoya, Aichi (Japan)

    2002-09-01

    We investigate the phase structure of the hot and/or dense QCD using the Schwinger-Dyson equation (SDE) with the improved ladder approximation in the Landau gauge. We solve the coupled SDE for the Majorana masses of the quark and antiquark (separately from the SDE for the Dirac mass) in the finite temperature and/or chemical potential region. The resultant phase structure is rather different from those by other analyses. In addition to this analysis we investigate the phase structure with the different two types of the SDE, in one of which the Majorana mass gap of the antiquark is neglected, while in the other of which the Majorana mass gap of the quark and that of the antiquark are set to be equal. The effect of the Debye mass of the gluon on the phase structure is also investigated. (author)

  7. Physical interpretation and evaluation of the Kohn-Sham and Dyson components of the epsilon-I relations between the Kohn-Sham orbital energies and the ionization potentials

    NARCIS (Netherlands)

    Gritsenko, O.V.; Braida, B.; Baerends, E.J.

    2003-01-01

    Theoretical and numerical insight was gained into the relations between the Kohn-Sham orbital energies and relaxed vertical ionization potentials. A connection was made between the Kohn-Sham and Dyson one-electron theories. It was established that the energies of the occupied KS orbitals are

  8. Velocity statistics for interacting edge dislocations in one dimension from Dyson's Coulomb gas model.

    Science.gov (United States)

    Jafarpour, Farshid; Angheluta, Luiza; Goldenfeld, Nigel

    2013-10-01

    The dynamics of edge dislocations with parallel Burgers vectors, moving in the same slip plane, is mapped onto Dyson's model of a two-dimensional Coulomb gas confined in one dimension. We show that the tail distribution of the velocity of dislocations is power law in form, as a consequence of the pair interaction of nearest neighbors in one dimension. In two dimensions, we show the presence of a pairing phase transition in a system of interacting dislocations with parallel Burgers vectors. The scaling exponent of the velocity distribution at effective temperatures well below this pairing transition temperature can be derived from the nearest-neighbor interaction, while near the transition temperature, the distribution deviates from the form predicted by the nearest-neighbor interaction, suggesting the presence of collective effects.

  9. Schwinger-Dyson loop equations as the w1+∞-like constraints for hermitian multi-matrix chain model at finite N

    International Nuclear Information System (INIS)

    Cheng, Yi-Xin

    1992-01-01

    The Schwinger-Dyson loop equations for the hermitian multi-matrix chain models at finite N, are derived from the Ward identities of the partition functional under the infinitesimal field transformations. The constraint operators W n (m) satisfy the w 1+∞ -like algebra up to a linear combination of the lower spin operators. We find that the all the higher spin constraints are reducible to the Virasoro-type constraints for all the matrix chain models. (author)

  10. Dyson-Schwinger equations for the non-linear σ-model

    International Nuclear Information System (INIS)

    Drouffe, J.M.; Flyvbjerg, H.

    1989-08-01

    Dyson-Schwinger equations for the O(N)-symmetric non-linear σ-model are derived. They are polynomials in N, hence 1/N-expanded ab initio. A finite, closed set of equations is obtained by keeping only the leading term and the first correction term in this 1/N-series. These equations are solved numerically in two dimensions on square lattices measuring 50x50, 100x100, 200x200, and 400x400. They are also solved analytically at strong coupling and at weak coupling in a finite volume. In these two limits the solution is asymptotically identical to the exact strong- and weak-coupling series through the first three terms. Between these two limits, results for the magnetic susceptibility and the mass gap are identical to the Monte Carlo results available for N=3 and N=4 within a uniform systematic error of O(1/N 3 ), i.e. the results seem good to O(1/N 2 ), though obtained from equations that are exact only to O(1/N). This is understood by seeing the results as summed infinite subseries of the 1/N-series for the exact susceptibility and mass gap. We conclude that the kind of 1/N-expansion presented here converges as well as one might ever hope for, even for N as small as 3. (orig.)

  11. Coupled Dyson-Schwinger equations and effects of self-consistency

    International Nuclear Information System (INIS)

    Wu, S.S.; Zhang, H.X.; Yao, Y.J.

    2001-01-01

    Using the σ-ω model as an effective tool, the effects of self-consistency are studied in some detail. A coupled set of Dyson-Schwinger equations for the renormalized baryon and meson propagators in the σ-ω model is solved self-consistently according to the dressed Hartree-Fock scheme, where the hadron propagators in both the baryon and meson self-energies are required to also satisfy this coupled set of equations. It is found that the self-consistency affects the baryon spectral function noticeably, if only the interaction with σ mesons is considered. However, there is a cancellation between the effects due to the σ and ω mesons and the additional contribution of ω mesons makes the above effect insignificant. In both the σ and σ-ω cases the effects of self-consistency on meson spectral function are perceptible, but they can nevertheless be taken account of without a self-consistent calculation. Our study indicates that to include the meson propagators in the self-consistency requirement is unnecessary and one can stop at an early step of an iteration procedure to obtain a good approximation to the fully self-consistent results of all the hadron propagators in the model, if an appropriate initial input is chosen. Vertex corrections and their effects on ghost poles are also studied

  12. Leading-order calculation of hadronic contributions to the Muon g-2 using the Dyson-Schwinger approach

    Science.gov (United States)

    Goecke, Tobias; Fischer, Christian S.; Williams, Richard

    2011-10-01

    We present a calculation of the hadronic vacuum polarisation (HVP) tensor within the framework of Dyson-Schwinger equations. To this end we use a well-established phenomenological model for the quark-gluon interaction with parameters fixed to reproduce hadronic observables. From the HVP tensor we compute both the Adler function and the HVP contribution to the anomalous magnetic moment of the muon, aμ. We find aμHVP = 6760 ×10-11 which deviates about two percent from the value extracted from experiment. Additionally, we make comparison with a recent lattice determination of aμHVP and find good agreement within our approach. We also discuss the implications of our result for a corresponding calculation of the hadronic light-by-light scattering contribution to aμ.

  13. Leading-order calculation of hadronic contributions to the Muon g-2 using the Dyson-Schwinger approach

    International Nuclear Information System (INIS)

    Goecke, Tobias; Fischer, Christian S.; Williams, Richard

    2011-01-01

    We present a calculation of the hadronic vacuum polarisation (HVP) tensor within the framework of Dyson-Schwinger equations. To this end we use a well-established phenomenological model for the quark-gluon interaction with parameters fixed to reproduce hadronic observables. From the HVP tensor we compute both the Adler function and the HVP contribution to the anomalous magnetic moment of the muon, a μ . We find a μ HVP =6760x10 -11 which deviates about two percent from the value extracted from experiment. Additionally, we make comparison with a recent lattice determination of a μ HVP and find good agreement within our approach. We also discuss the implications of our result for a corresponding calculation of the hadronic light-by-light scattering contribution to a μ .

  14. Leading-order calculation of hadronic contributions to the Muon g-2 using the Dyson-Schwinger approach

    Energy Technology Data Exchange (ETDEWEB)

    Goecke, Tobias [Institut fuer Theoretische Physik, Universitaet Giessen, 35392 Giessen (Germany); Fischer, Christian S., E-mail: christian.fischer@theo.physik.uni-giessen.de [Institut fuer Theoretische Physik, Universitaet Giessen, 35392 Giessen (Germany); Gesellschaft fuer Schwerionenforschung mbH, Planckstr. 1, D-64291 Darmstadt (Germany); Williams, Richard [Dept. Fisica Teorica I, Universidad Complutense, 28040 Madrid (Spain)

    2011-10-13

    We present a calculation of the hadronic vacuum polarisation (HVP) tensor within the framework of Dyson-Schwinger equations. To this end we use a well-established phenomenological model for the quark-gluon interaction with parameters fixed to reproduce hadronic observables. From the HVP tensor we compute both the Adler function and the HVP contribution to the anomalous magnetic moment of the muon, a{sub {mu}}. We find a{sub {mu}}{sup HVP}=6760x10{sup -11} which deviates about two percent from the value extracted from experiment. Additionally, we make comparison with a recent lattice determination of a{sub {mu}}{sup HVP} and find good agreement within our approach. We also discuss the implications of our result for a corresponding calculation of the hadronic light-by-light scattering contribution to a{sub {mu}.}

  15. Diffuse Matter from Star Forming Regions to Active Galaxies A Volume Honouring John Dyson

    CERN Document Server

    Hartquist, T W

    2006-01-01

    John Dyson has contributed to the study of the hydrodynamic processes that govern a wide variety of astrophysical sources which he has helped explain. In this volume dedicated to him, introductory reviews to a number of the key processes and to the sources themselves are given by leading experts. The mechanisms in which the multi-component natures of media affect their dynamics receive particular attention, but the roles of hydromagnetic effects are also highlighted. The importance of cosmic ray moderation and mass transfer between different thermal phases for cosmic ray moderation and mass transfer between different thermal phases for the evolution of flows are amongst the topics treated. The main types of regions considered include those where stars form, the circumstellar environments of evolved stars, the larger scale interstellar structures caused by the mass loss of stars, and those where the lines of AGNs form. The reviews complement one another and together provide a coherent introduction to the astro...

  16. Metastable states in the hierarchical Dyson model drive parallel processing in the hierarchical Hopfield network

    International Nuclear Information System (INIS)

    Agliari, Elena; Barra, Adriano; Guerra, Francesco; Galluzzi, Andrea; Tantari, Daniele; Tavani, Flavia

    2015-01-01

    In this paper, we introduce and investigate the statistical mechanics of hierarchical neural networks. First, we approach these systems à la Mattis, by thinking of the Dyson model as a single-pattern hierarchical neural network. We also discuss the stability of different retrievable states as predicted by the related self-consistencies obtained both from a mean-field bound and from a bound that bypasses the mean-field limitation. The latter is worked out by properly reabsorbing the magnetization fluctuations related to higher levels of the hierarchy into effective fields for the lower levels. Remarkably, mixing Amit's ansatz technique for selecting candidate-retrievable states with the interpolation procedure for solving for the free energy of these states, we prove that, due to gauge symmetry, the Dyson model accomplishes both serial and parallel processing. We extend this scenario to multiple stored patterns by implementing the Hebb prescription for learning within the couplings. This results in Hopfield-like networks constrained on a hierarchical topology, for which, by restricting to the low-storage regime where the number of patterns grows at its most logarithmical with the amount of neurons, we prove the existence of the thermodynamic limit for the free energy, and we give an explicit expression of its mean-field bound and of its related improved bound. We studied the resulting self-consistencies for the Mattis magnetizations, which act as order parameters, are studied and the stability of solutions is analyzed to get a picture of the overall retrieval capabilities of the system according to both mean-field and non-mean-field scenarios. Our main finding is that embedding the Hebbian rule on a hierarchical topology allows the network to accomplish both serial and parallel processing. By tuning the level of fast noise affecting it or triggering the decay of the interactions with the distance among neurons, the system may switch from sequential retrieval to

  17. Alien calculus and a Schwinger-Dyson equation: two-point function with a nonperturbative mass scale

    Science.gov (United States)

    Bellon, Marc P.; Clavier, Pierre J.

    2018-02-01

    Starting from the Schwinger-Dyson equation and the renormalization group equation for the massless Wess-Zumino model, we compute the dominant nonperturbative contributions to the anomalous dimension of the theory, which are related by alien calculus to singularities of the Borel transform on integer points. The sum of these dominant contributions has an analytic expression. When applied to the two-point function, this analysis gives a tame evolution in the deep euclidean domain at this approximation level, making doubtful the arguments on the triviality of the quantum field theory with positive β -function. On the other side, we have a singularity of the propagator for timelike momenta of the order of the renormalization group invariant scale of the theory, which has a nonperturbative relationship with the renormalization point of the theory. All these results do not seem to have an interpretation in terms of semiclassical analysis of a Feynman path integral.

  18. Regge behaviour and Bjorken scaling for deep-inelastic lepton-hadron scattering process

    International Nuclear Information System (INIS)

    Tran Huu Phat

    1976-01-01

    Within the framework of the Jost-Lehmann-Dyson (JLD) representation and the renormalization-group (RG) equation, it is shown that either the RG technique is not applicable to deep-inelastic phenomena or Regge behaviour and Bjorken scaling for structure functions do not coexist. (author)

  19. Energy-weighted sum rules for mesons in hot and dense matter

    NARCIS (Netherlands)

    Cabrera, D.; Polls, A.; Ramos, A.; Tolos Rigueiro, Laura

    2009-01-01

    We study energy-weighted sum rules of the pion and kaon propagator in nuclear matter at finite temperature. The sum rules are obtained from matching the Dyson form of the meson propagator with its spectral Lehmann representation at low and high energies. We calculate the sum rules for specific

  20. Phase diagram of two-color QCD in a Dyson-Schwinger approach

    Energy Technology Data Exchange (ETDEWEB)

    Buescher, Pascal Joachim

    2014-04-28

    We investigate two-color QCD with N{sub f}=2 at finite temperatures and chemical potentials using a Dyson-Schwinger approach. We employ two different truncations for the quark loop in the gluon DSE: one based on the Hard-Dense/Hard-Thermal Loop (HDTL) approximation of the quark loop and one based on the back-coupling of the full, self-consistent quark propagator (SCQL). We compare results for the different truncations with each other as well as with other approaches. As expected, we find a phase dominated by the condensation of quark-quark pairs. This diquark condensation phase overshadows the critical end point and first-order phase transition which one finds if diquark condensation is neglected. The phase transition from the phase without diquark condensation to the diquark-condensation phase is of second order. We observe that the dressing with massless quarks in the HDTL approximation leads to a significant violation of the Silver Blaze property and to a too small diquark condensate. The SCQL truncation, on the other hand, is found to reproduce all expected features of the μ-dependent quark condensates. Moreover, with parameters adapted to the situation in other approaches, we also find good to very good agreement with model and lattice calculations in all quark quantities. We find indictions that the physics in recent lattice calculations is likely to be driven solely by the explicit chiral symmetry breaking. Discrepancies w.r.t. the lattice are, however, observed in two quantities that are very sensitive to the screening of the gluon propagator, the dressed gluon propagator itself and the phase-transition line at high temperatures.

  1. Guide to precision calculations in Dyson close-quote s hierarchical scalar field theory

    International Nuclear Information System (INIS)

    Godina, J.J.; Meurice, Y.; Oktay, M.B.; Niermann, S.

    1998-01-01

    The goal of this article is to provide a practical method to calculate, in a scalar theory, accurate numerical values of the renormalized quantities which could be used to test any kind of approximate calculation. We use finite truncations of the Fourier transform of the recursion formula for Dyson close-quote s hierarchical model in the symmetric phase to perform high-precision calculations of the unsubtracted Green close-quote s functions at zero momentum in dimension 3, 4, and 5. We use the well-known correspondence between statistical mechanics and field theory in which the large cutoff limit is obtained by letting β reach a critical value β c (with up to 16 significant digits in our actual calculations). We show that the round-off errors on the magnetic susceptibility grow like (β c -β) -1 near criticality. We show that the systematic errors (finite truncations and volume) can be controlled with an exponential precision and reduced to a level lower than the numerical errors. We justify the use of the truncation for calculations of the high-temperature expansion. We calculate the dimensionless renormalized coupling constant corresponding to the 4-point function and show that when β→β c , this quantity tends to a fixed value which can be determined accurately when D=3 (hyperscaling holds), and goes to zero like [Ln(β c -β)] -1 when D=4. copyright 1998 The American Physical Society

  2. Processes of arbitrary order in quantum electrodynamics with a pair-creating external field

    International Nuclear Information System (INIS)

    Gitman, D.M.

    1977-01-01

    Dyson's perturbation theory analogue for quantum electrodynamical processes with arbitrary initial and final states in an external field creating pairs is discussed. The interaction with the field is taken into account exactly. The possibility of using Feynman diagrams, together with modified correspondence rules, for the representation of the above mentioned processes is demonstrated. (author)

  3. What is the trouble with Dyson-Schwinger equations?

    International Nuclear Information System (INIS)

    Kreimer, D.

    2004-01-01

    We discuss similarities and differences between Green Functions in Quantum Field Theory and polylogarithms. Both can be obtained as solutions of fixpoint equations which originate from an underlying Hopf algebra structure. Typically, the equation is linear for the polylog, and non-linear for Green Functions. We argue though that the crucial difference lies not in the non-linearity of the latter, but in the appearance of non-trivial representation theory related to transcendental extensions of the number field which governs the linear solution. An example is studied to illuminate this point

  4. TOPICAL REVIEW: Nonlinear aspects of the renormalization group flows of Dyson's hierarchical model

    Science.gov (United States)

    Meurice, Y.

    2007-06-01

    We review recent results concerning the renormalization group (RG) transformation of Dyson's hierarchical model (HM). This model can be seen as an approximation of a scalar field theory on a lattice. We introduce the HM and show that its large group of symmetry simplifies drastically the blockspinning procedure. Several equivalent forms of the recursion formula are presented with unified notations. Rigourous and numerical results concerning the recursion formula are summarized. It is pointed out that the recursion formula of the HM is inequivalent to both Wilson's approximate recursion formula and Polchinski's equation in the local potential approximation (despite the very small difference with the exponents of the latter). We draw a comparison between the RG of the HM and functional RG equations in the local potential approximation. The construction of the linear and nonlinear scaling variables is discussed in an operational way. We describe the calculation of non-universal critical amplitudes in terms of the scaling variables of two fixed points. This question appears as a problem of interpolation between these fixed points. Universal amplitude ratios are calculated. We discuss the large-N limit and the complex singularities of the critical potential calculable in this limit. The interpolation between the HM and more conventional lattice models is presented as a symmetry breaking problem. We briefly introduce models with an approximate supersymmetry. One important goal of this review is to present a configuration space counterpart, suitable for lattice formulations, of functional RG equations formulated in momentum space (often called exact RG equations and abbreviated ERGE).

  5. Running coupling constant of a gauge theory in the framework of the Schwinger-Dyson equation: Infrared behavior of three-dimensional quantum electrodynamics

    International Nuclear Information System (INIS)

    Kondo, K.

    1997-01-01

    We discuss how to define and obtain the running coupling of a gauge theory in the approach of the Schwinger-Dyson (SD) equation, in order to perform a nonperturbative study of the theory. For this purpose, we introduce the nonlocally generalized gauge fixing into the SD equation, which is used to define the running coupling constant (this method is applicable only to a gauge theory). Some advantages and the validity of this approach are exemplified in QED 3 . This confirms the slowing down of the rate of decrease of the running coupling and the existence of the nontrivial infrared fixed point (in the normal phase) of QED 3 , claimed recently by Aitchison and Mavromatos, without so many of their approximations. We also argue that the conventional approach is recovered by applying the (inverse) Landau-Khalatnikov transformation to the nonlocal gauge result. copyright 1997 The American Physical Society

  6. Bending space-time: a commentary on Dyson, Eddington and Davidson (1920) 'A determination of the deflection of light by the Sun's gravitational field'.

    Science.gov (United States)

    Longair, Malcolm

    2015-04-13

    The famous eclipse expedition of 1919 to Sobral, Brazil, and the island of Principe, in the Gulf of Guinea, led by Dyson, Eddington and Davidson was a turning point in the history of relativity, not only because of its importance as a test of Einstein's General Theory of Relativity, but also because of the intense public interest which was aroused by the success of the expedition. The dramatic sequence of events which occurred is reviewed, as well as the long-term impact of its success. The gravitational bending of electromagnetic waves by massive bodies is a subject of the greatest importance for contemporary and future astronomy, astrophysics and cosmology. Examples of the potential impact of this key tool of modern observational astronomy are presented. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  7. Inclusive electroproduction of hadrons in the fragmentation region of a virtual photon

    International Nuclear Information System (INIS)

    Kiselev, A.V.; Petrov, V.A.; Taranov, A.Yu.

    1978-01-01

    The purpose of the article is to use Jost-Leh'ann-Dyson representation for asymptotic behaviour studying of adron deep-non-elastic electrobirth inclusive process in a current fragmentation field. It is shown that inclusive electrobirth process in the field of vertual photon fragmentation posesses automodel hehaviour with logarithm presision in case when spectral functions have polynominal asympthotics at lambdasub(1,2)sup(2)→infinity

  8. A unification of boson expansion theories. (III) Applications

    International Nuclear Information System (INIS)

    Dobaczewski, J.

    1981-10-01

    A general scheme of constructing boson expansions that was proposed in earlier work is applied to a number or examples. The Fukutome expansion is obtained by considering the spinor representation of the SO(2N+1) group. Its hermitian, Holstein-Primakofr-type version is also derived. The generalized Dyson expansions for even and odd fermion systems are given in terms of two spinor representations of the SO(2N) group. For fixed fermion number systems the relevant boson expansions are obtained by considering the fundamental representations of SU(N) while for fixed seniority those of Sp(N) are concerned. The collective boson expansions corresponding to the Ginocchio model, the interacting boson model of Arima and Iachello and the Elliot model are given for the symmetric representations of SO(8) and SU(1+1) and any representation of SU(3)

  9. Behaviour of cross sections of exclusive and inclusive processes at high energies

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.; Petrov, V.A.

    1977-01-01

    The character of the functional dependence of the cross sections of exclusive and inclusive processes on the energy of colliding particles is established according to the basic theoretical principles of causality, spectrality and unitarity. The Jost-Lehmann-Dyson representation for multiparticle amplitudes and distribution functions (DF) of an inclusive process is deduced. The asymptotic behaviour of the multiparticle amplitudes and DF at high energies is established on the basis of the higly general assumptions concerning the singularity character of the Jost-Lehmann-Dyson spectral functions. The restrictions on the possible increase of the amplitudes and DF are imposed. The asymptotic formulae for the DF are discussed in connection with the hypotheses of the limiting fragmentation and scale invariance. The method developed for obtaining the amlitude asymptotics at high energies is applied to the amplitude of a binary process

  10. Factorizations and physical representations

    International Nuclear Information System (INIS)

    Revzen, M; Khanna, F C; Mann, A; Zak, J

    2006-01-01

    A Hilbert space in M dimensions is shown explicitly to accommodate representations that reflect the decomposition of M into prime numbers. Representations that exhibit the factorization of M into two relatively prime numbers: the kq representation (Zak J 1970 Phys. Today 23 51), and related representations termed q 1 q 2 representations (together with their conjugates) are analysed, as well as a representation that exhibits the complete factorization of M. In this latter representation each quantum number varies in a subspace that is associated with one of the prime numbers that make up M

  11. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study

    International Nuclear Information System (INIS)

    Schneider, M.; Wormit, M.; Dreuw, A.; Soshnikov, D. Yu.; Trofimov, A. B.; Holland, D. M. P.; Powis, I.; Antonsson, E.; Patanen, M.; Nicolas, C.; Miron, C.

    2015-01-01

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n 5 with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed

  12. Distinguishing Representations as Origin and Representations as Input: Roles for Individual Cells

    Directory of Open Access Journals (Sweden)

    Jonathan C.W. Edwards

    2016-09-01

    Full Text Available It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with meaning, interpretation or significance (semantic content. It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as representation it must provide an input to a ‘consumer’ in the street. The arguments presented draw on two principles – the neuron doctrine and the need for a venue for ‘presentation’ or ‘reception’ of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include ‘null’ elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right - some form of atomic propositional significance – since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming ‘scenarios’ comprising a molecular combination of ‘premises’ from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to ‘occurrent’ representations based on current neural activity. The concept of representations-as-input emphasises the need for a ‘consumer’ of a representation and the dependence of meaning on the co-relationships involved in an

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship OSCAR DYSON in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2014-03-03 to 2014-08-13 (NCEI Accession 0144980)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144980 includes Surface underway data collected from NOAA Ship OSCAR DYSON in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2014-03-03...

  14. Bending space–time: a commentary on Dyson, Eddington and Davidson (1920) ‘A determination of the deflection of light by the Sun's gravitational field’

    Science.gov (United States)

    Longair, Malcolm

    2015-01-01

    The famous eclipse expedition of 1919 to Sobral, Brazil, and the island of Principe, in the Gulf of Guinea, led by Dyson, Eddington and Davidson was a turning point in the history of relativity, not only because of its importance as a test of Einstein's General Theory of Relativity, but also because of the intense public interest which was aroused by the success of the expedition. The dramatic sequence of events which occurred is reviewed, as well as the long-term impact of its success. The gravitational bending of electromagnetic waves by massive bodies is a subject of the greatest importance for contemporary and future astronomy, astrophysics and cosmology. Examples of the potential impact of this key tool of modern observational astronomy are presented. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750149

  15. Multi-representation based on scientific investigation for enhancing students’ representation skills

    Science.gov (United States)

    Siswanto, J.; Susantini, E.; Jatmiko, B.

    2018-03-01

    This research aims to implementation learning physics with multi-representation based on the scientific investigation for enhancing students’ representation skills, especially on the magnetic field subject. The research design is one group pretest-posttest. This research was conducted in the department of mathematics education, Universitas PGRI Semarang, with the sample is students of class 2F who take basic physics courses. The data were obtained by representation skills test and documentation of multi-representation worksheet. The Results show gain analysis value of .64 which means some medium improvements. The result of t-test (α = .05) is shows p-value = .001. This learning significantly improves students representation skills.

  16. Representation in Memory.

    Science.gov (United States)

    Rumelhart, David E.; Norman, Donald A.

    This paper reviews work on the representation of knowledge from within psychology and artificial intelligence. The work covers the nature of representation, the distinction between the represented world and the representing world, and significant issues concerned with propositional, analogical, and superpositional representations. Specific topics…

  17. Attention and Representational Momentum

    OpenAIRE

    Hayes, Amy; Freyd, Jennifer J

    1995-01-01

    Representational momentum, the tendency for memory to be distorted in the direction of an implied transformation, suggests that dynamics are an intrinsic part of perceptual representations. We examined the effect of attention on dynamic representation by testing for representational momentum under conditions of distraction. Forward memory shifts increase when attention is divided. Attention may be involved in halting but not in maintaining dynamic representations.

  18. LGBT Representations on Facebook : Representations of the Self and the Content

    OpenAIRE

    Chu, Yawen

    2017-01-01

    The topic of LGBT rights has been increasingly discussed and debated over recent years. More and more scholars show their interests in the field of LGBT representations in media. However, not many studies involved LGBT representations in social media. This paper explores LGBT representations on Facebook by analysing posts on an open page and in a private group, including both representations of the self as the identity of sexual minorities, content that is displayed on Facebook and the simila...

  19. Representation Elements of Spatial Thinking

    Science.gov (United States)

    Fiantika, F. R.

    2017-04-01

    This paper aims to add a reference in revealing spatial thinking. There several definitions of spatial thinking but it is not easy to defining it. We can start to discuss the concept, its basic a forming representation. Initially, the five sense catch the natural phenomenon and forward it to memory for processing. Abstraction plays a role in processing information into a concept. There are two types of representation, namely internal representation and external representation. The internal representation is also known as mental representation; this representation is in the human mind. The external representation may include images, auditory and kinesthetic which can be used to describe, explain and communicate the structure, operation, the function of the object as well as relationships. There are two main elements, representations properties and object relationships. These elements play a role in forming a representation.

  20. Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations

    International Nuclear Information System (INIS)

    Ferrie, Christopher; Emerson, Joseph

    2008-01-01

    Several finite-dimensional quasi-probability representations of quantum states have been proposed to study various problems in quantum information theory and quantum foundations. These representations are often defined only on restricted dimensions and their physical significance in contexts such as drawing quantum-classical comparisons is limited by the non-uniqueness of the particular representation. Here we show how the mathematical theory of frames provides a unified formalism which accommodates all known quasi-probability representations of finite-dimensional quantum systems. Moreover, we show that any quasi-probability representation is equivalent to a frame representation and then prove that any such representation of quantum mechanics must exhibit either negativity or a deformed probability calculus. (fast track communication)

  1. Poetic representation

    DEFF Research Database (Denmark)

    Wulf-Andersen, Trine Østergaard

    2012-01-01

    , and dialogue, of situated participants. The article includes a lengthy example of a poetic representation of one participant’s story, and the author comments on the potentials of ‘doing’ poetic representations as an example of writing in ways that challenges what sometimes goes unasked in participative social...

  2. Understanding representations in design

    DEFF Research Database (Denmark)

    Bødker, Susanne

    1998-01-01

    Representing computer applications and their use is an important aspect of design. In various ways, designers need to externalize design proposals and present them to other designers, users, or managers. This article deals with understanding design representations and the work they do in design....... The article is based on a series of theoretical concepts coming out of studies of scientific and other work practices and on practical experiences from design of computer applications. The article presents alternatives to the ideas that design representations are mappings of present or future work situations...... and computer applications. It suggests that representations are primarily containers of ideas and that representation is situated at the same time as representations are crossing boundaries between various design and use activities. As such, representations should be carriers of their own contexts regarding...

  3. Covariant representations of nuclear *-algebras

    International Nuclear Information System (INIS)

    Moore, S.M.

    1978-01-01

    Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations

  4. Spectral correlations in Anderson insulating wires

    Science.gov (United States)

    Marinho, M.; Micklitz, T.

    2018-01-01

    We calculate the spectral level-level correlation function of Anderson insulating wires for all three Wigner-Dyson classes. A measurement of its Fourier transform, the spectral form factor, is within reach of state-of-the-art cold atom quantum quench experiments, and we find good agreement with recent numerical simulations of the latter. Our derivation builds on a representation of the level-level correlation function in terms of a local generating function which may prove useful in other contexts.

  5. Matsubara-Fradkin thermodynamical quantization of Podolsky electrodynamics

    International Nuclear Information System (INIS)

    Bonin, C. A.; Pimentel, B. M.

    2011-01-01

    In this work, we apply the Matsubara-Fradkin formalism and the Nakanishi's auxiliary field method to the quantization of the Podolsky electrodynamics in thermodynamic equilibrium. This approach allows us to write consistently the path integral representation for the partition function of gauge theories in a simple manner. Furthermore, we find the Dyson-Schwinger-Fradkin equations and the Ward-Fradkin-Takahashi identities for the Podolsky theory. We also write the most general form for the polarization tensor in thermodynamic equilibrium.

  6. Standard model of knowledge representation

    Science.gov (United States)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  7. Converting boundary representation solid models to half-space representation models for Monte Carlo analysis

    International Nuclear Information System (INIS)

    Davis, J. E.; Eddy, M. J.; Sutton, T. M.; Altomari, T. J.

    2007-01-01

    Solid modeling computer software systems provide for the design of three-dimensional solid models used in the design and analysis of physical components. The current state-of-the-art in solid modeling representation uses a boundary representation format in which geometry and topology are used to form three-dimensional boundaries of the solid. The geometry representation used in these systems is cubic B-spline curves and surfaces - a network of cubic B-spline functions in three-dimensional Cartesian coordinate space. Many Monte Carlo codes, however, use a geometry representation in which geometry units are specified by intersections and unions of half-spaces. This paper describes an algorithm for converting from a boundary representation to a half-space representation. (authors)

  8. The Past Is Present: Representations of Parents, Friends, and Romantic Partners Predict Subsequent Romantic Representations.

    Science.gov (United States)

    Furman, Wyndol; Collibee, Charlene

    2018-01-01

    This study examined how representations of parent-child relationships, friendships, and past romantic relationships are related to subsequent romantic representations. Two-hundred 10th graders (100 female; M age  = 15.87 years) from diverse neighborhoods in a Western U.S. city were administered questionnaires and were interviewed to assess avoidant and anxious representations of their relationships with parents, friends, and romantic partners. Participants then completed similar questionnaires and interviews about their romantic representations six more times over the next 7.5 years. Growth curve analyses revealed that representations of relationships with parents, friends, and romantic partners each uniquely predicted subsequent romantic representations across development. Consistent with attachment and behavioral systems theory, representations of romantic relationships are revised by representations and experiences in other relationships. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  9. Volta-Based Cells Materials Chemical Multiple Representation to Improve Ability of Student Representation

    Science.gov (United States)

    Helsy, I.; Maryamah; Farida, I.; Ramdhani, M. A.

    2017-09-01

    This study aimed to describe the application of teaching materials, analyze the increase in the ability of students to connect the three levels of representation and student responses after application of multiple representations based teaching materials chemistry. The method used quasi one-group pretest-posttest design to 71 students. The results showed the application of teaching materials carried 88% with very good category. A significant increase ability to connect the three levels of representation of students after the application of multiple representations based teaching materials chemistry with t-value > t-crit (11.402 > 1.991). Recapitulation N-gain pretest and posttest showed relatively similar for all groups is 0.6 criterion being achievement. Students gave a positive response to the application of multiple representations based teaching materials chemistry. Students agree teaching materials used in teaching chemistry (88%), and agrees teaching materials to provide convenience in connecting the three levels of representation (95%).

  10. Introduction to computer data representation

    CERN Document Server

    Fenwick, Peter

    2014-01-01

    Introduction to Computer Data Representation introduces readers to the representation of data within computers. Starting from basic principles of number representation in computers, the book covers the representation of both integer and floating point numbers, and characters or text. It comprehensively explains the main techniques of computer arithmetic and logical manipulation. The book also features chapters covering the less usual topics of basic checksums and 'universal' or variable length representations for integers, with additional coverage of Gray Codes, BCD codes and logarithmic repre

  11. Representation Discovery using Harmonic Analysis

    CERN Document Server

    Mahadevan, Sridhar

    2008-01-01

    Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu

  12. Embedded data representations

    DEFF Research Database (Denmark)

    Willett, Wesley; Jansen, Yvonne; Dragicevic, Pierre

    2017-01-01

    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles...

  13. Categorification and higher representation theory

    CERN Document Server

    Beliakova, Anna

    2017-01-01

    The emergent mathematical philosophy of categorification is reshaping our view of modern mathematics by uncovering a hidden layer of structure in mathematics, revealing richer and more robust structures capable of describing more complex phenomena. Categorified representation theory, or higher representation theory, aims to understand a new level of structure present in representation theory. Rather than studying actions of algebras on vector spaces where algebra elements act by linear endomorphisms of the vector space, higher representation theory describes the structure present when algebras act on categories, with algebra elements acting by functors. The new level of structure in higher representation theory arises by studying the natural transformations between functors. This enhanced perspective brings into play a powerful new set of tools that deepens our understanding of traditional representation theory. This volume exhibits some of the current trends in higher representation theory and the diverse te...

  14. Quiver representations

    CERN Document Server

    Schiffler, Ralf

    2014-01-01

    This book is intended to serve as a textbook for a course in Representation Theory of Algebras at the beginning graduate level. The text has two parts. In Part I, the theory is studied in an elementary way using quivers and their representations. This is a very hands-on approach and requires only basic knowledge of linear algebra. The main tool for describing the representation theory of a finite-dimensional algebra is its Auslander-Reiten quiver, and the text introduces these quivers as early as possible. Part II then uses the language of algebras and modules to build on the material developed before. The equivalence of the two approaches is proved in the text. The last chapter gives a proof of Gabriel’s Theorem. The language of category theory is developed along the way as needed.

  15. Representational Classroom Practices that Contribute to Students' Conceptual and Representational Understanding of Chemical Bonding

    Science.gov (United States)

    Hilton, Annette; Nichols, Kim

    2011-11-01

    Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their content-specific forms and functions, this might be avoided. The development of an understanding of and ability to use multiple representations is crucial to students' understanding of chemical bonding. This paper draws on data from a larger study involving two Year 11 chemistry classes (n = 27, n = 22). It explores the contribution of explicit instruction about multiple representations to students' understanding and representation of chemical bonding. The instructional strategies were documented using audio-recordings and the teacher-researcher's reflection journal. Pre-test-post-test comparisons showed an improvement in conceptual understanding and representational competence. Analysis of the students' texts provided further evidence of the students' ability to use multiple representations to explain macroscopic phenomena on the molecular level. The findings suggest that explicit instruction about representational form and function contributes to the enhancement of representational competence and conceptual understanding of bonding in chemistry. However, the scaffolding strategies employed by the teacher play an important role in the learning process. This research has implications for professional development enhancing teachers' approaches to these aspects of instruction around chemical bonding.

  16. Evolved Representation and Computational Creativity

    Directory of Open Access Journals (Sweden)

    Ashraf Fouad Hafez Ismail

    2001-01-01

    Full Text Available Advances in science and technology have influenced designing activity in architecture throughout its history. Observing the fundamental changes to architectural designing due to the substantial influences of the advent of the computing era, we now witness our design environment gradually changing from conventional pencil and paper to digital multi-media. Although designing is considered to be a unique human activity, there has always been a great dependency on design aid tools. One of the greatest aids to architectural design, amongst the many conventional and widely accepted computational tools, is the computer-aided object modeling and rendering tool, commonly known as a CAD package. But even though conventional modeling tools have provided designers with fast and precise object handling capabilities that were not available in the pencil-and-paper age, they normally show weaknesses and limitations in covering the whole design process.In any kind of design activity, the design worked on has to be represented in some way. For a human designer, designs are for example represented using models, drawings, or verbal descriptions. If a computer is used for design work, designs are usually represented by groups of pixels (paintbrush programs, lines and shapes (general-purpose CAD programs or higher-level objects like ‘walls’ and ‘rooms’ (purpose-specific CAD programs.A human designer usually has a large number of representations available, and can use the representation most suitable for what he or she is working on. Humans can also introduce new representations and thereby represent objects that are not part of the world they experience with their sensory organs, for example vector representations of four and five dimensional objects. In design computing on the other hand, the representation or representations used have to be explicitly defined. Many different representations have been suggested, often optimized for specific design domains

  17. Operator representations of frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Hasannasab, Marzieh

    2017-01-01

    of the properties of the operator T requires more work. For example it is a delicate issue to obtain a representation with a bounded operator, and the availability of such a representation not only depends on the frame considered as a set, but also on the chosen indexing. Using results from operator theory we show......The purpose of this paper is to consider representations of frames {fk}k∈I in a Hilbert space ℋ of the form {fk}k∈I = {Tkf0}k∈I for a linear operator T; here the index set I is either ℤ or ℒ0. While a representation of this form is available under weak conditions on the frame, the analysis...... that by embedding the Hilbert space ℋ into a larger Hilbert space, we can always represent a frame via iterations of a bounded operator, composed with the orthogonal projection onto ℋ. The paper closes with a discussion of an open problem concerning representations of Gabor frames via iterations of a bounded...

  18. Group and representation theory

    CERN Document Server

    Vergados, J D

    2017-01-01

    This volume goes beyond the understanding of symmetries and exploits them in the study of the behavior of both classical and quantum physical systems. Thus it is important to study the symmetries described by continuous (Lie) groups of transformations. We then discuss how we get operators that form a Lie algebra. Of particular interest to physics is the representation of the elements of the algebra and the group in terms of matrices and, in particular, the irreducible representations. These representations can be identified with physical observables. This leads to the study of the classical Lie algebras, associated with unitary, unimodular, orthogonal and symplectic transformations. We also discuss some special algebras in some detail. The discussion proceeds along the lines of the Cartan-Weyl theory via the root vectors and root diagrams and, in particular, the Dynkin representation of the roots. Thus the representations are expressed in terms of weights, which are generated by the application of the elemen...

  19. Introduction to representation theory

    CERN Document Server

    Etingof, Pavel; Hensel, Sebastian; Liu, Tiankai; Schwendner, Alex

    2011-01-01

    Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a "holistic" introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic k...

  20. On Behavioral Equivalence of Rational Representations

    NARCIS (Netherlands)

    Trentelman, Harry L.; Willems, JC; Hara, S; Ohta, Y; Fujioka, H

    2010-01-01

    This article deals with the equivalence of representations of behaviors of linear differential systems In general. the behavior of a given linear differential system has many different representations. In this paper we restrict ourselves to kernel representations and image representations Two kernel

  1. Functional representations for quantized fields

    International Nuclear Information System (INIS)

    Jackiw, R.

    1988-01-01

    This paper provides information on Representing transformations in quantum theory bosonic quantum field theories: Schrodinger Picture; Represnting Transformations in Bosonic Quantum Field Theory; Two-Dimensional Conformal Transformations, Schrodinger picture representation, Fock space representation, Inequivalent Schrodinger picture representations; Discussion, Self-Dual and Other Models; Field Theory in de Sitter Space. Fermionic Quantum Field Theories: Schroedinger Picture; Schrodinger Picture Representation for Two-Dimensional; Conformal Transformations; Fock Space Dynamics in the Schrodinger Picture; Fock Space Evaluation of Anomalous Current and Conformal Commutators

  2. The protection of warranties and representations

    International Nuclear Information System (INIS)

    Spence, C.D.; Thusoo, N.

    1999-01-01

    Most acquisition contracts within the oil and gas industry consist of representations and warranties. The legal distinction between representations and warranties was explained as follows: a representation is a statement of fact made by the representor before making the contract, but a warranty is a statement of fact which forms part of the terms of the contract. The paper outlines the nature of a representation or warranty and explains why certain warranties are not given. The protection offered by representations and warranties in breach of contract cases is also explained. Suggestions are offered for increasing protection by representations and warranties. 22 refs

  3. Universality of correlations of levels with discrete statistics

    OpenAIRE

    Brezin, Edouard; Kazakov, Vladimir

    1999-01-01

    We study the statistics of a system of N random levels with integer values, in the presence of a logarithmic repulsive potential of Dyson type. This probleme arises in sums over representations (Young tableaux) of GL(N) in various matrix problems and in the study of statistics of partitions for the permutation group. The model is generalized to include an external source and its correlators are found in closed form for any N. We reproduce the density of levels in the large N and double scalin...

  4. SU(6) quadrupole phonon model for even and odd nuclei and the SU(3) limit

    Energy Technology Data Exchange (ETDEWEB)

    Paar, V; Brant, S [Zagreb Univ. (Yugoslavia). Prirodoslovno Matematicki Fakultet; Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica; Leander, G [Lund Inst. of Tech. (Sweden). Dept. of Mathematical Physics; Oak Ridge National Lab., TN (USA)); Vouk, M [Zagreb Univ. (Yugoslavia). Computing Centre SRCE

    1982-04-05

    Analogous to the equivalence between the SU(6) quadrupole-phonon model (TQM) and the interacting boson model (IBM), the equivalence is pointed out for odd systems between the SU(6) particle quadrupole-phonon coupling model (PTQM) and the interacting boson-fermion model (IBFM). PTQM is formulated starting from the Dyson representation for the odd system. Different aspects of the SU(3) limit of TQM and PTQM are studied; the quadrupole-phonon block structure of rotational bands in even and odd nuclei and analytic expressions based on the coherent state; signature effects generated in PTQM; electromagnetic properties and correction factors for PTQM; overlaps of the PTQM analogs of Nilsson states with Coriolis-coupled Nilsson states and the relation to the rotational model representation.

  5. Harmonic Analysis and Group Representation

    CERN Document Server

    Figa-Talamanca, Alessandro

    2011-01-01

    This title includes: Lectures - A. Auslander, R. Tolimeri - Nilpotent groups and abelian varieties, M Cowling - Unitary and uniformly bounded representations of some simple Lie groups, M. Duflo - Construction de representations unitaires d'un groupe de Lie, R. Howe - On a notion of rank for unitary representations of the classical groups, V.S. Varadarajan - Eigenfunction expansions of semisimple Lie groups, and R. Zimmer - Ergodic theory, group representations and rigidity; and, Seminars - A. Koranyi - Some applications of Gelfand pairs in classical analysis.

  6. Memetics of representation

    Directory of Open Access Journals (Sweden)

    Roberto De Rubertis

    2012-06-01

    Full Text Available This article will discuss about the physiological genesis of representation and then it will illustrate the developments, especially in evolutionary perspective, and it will show how these are mainly a result of accidental circumstances, rather than of deliberate intention of improvement. In particular, it will be argue that the representation has behaved like a meme that has arrived to its own progressive evolution coming into symbiosis with the different cultures in which it has spread, and using in this activity human work “unconsciously”. Finally it will be shown how in this action the geometry is an element key, linked to representation both to construct images using graphics operations and to erect buildings using concrete operations.

  7. Laboratory implementation of quantum-control-mechanism identification through Hamiltonian encoding and observable decoding

    International Nuclear Information System (INIS)

    Rey-de-Castro, R.; Rabitz, H.

    2010-01-01

    We report on the laboratory implementation of quantum-control-mechanism identification through Hamiltonian encoding and observable decoding (HE-OD). Over a sequence of experiments, HE-OD introduces a special encoded signature into the components of a previously determined control field expressed in a chosen representation. The outcome appears as a modulated signal in the controlled system observable. Decoding the modulated signal identifies the hierarchy of correlations between components of the control field in a particular representation. In cases where the initial quantum state and observable operator are fully known, then HE-OD can also identify the transition amplitudes of the various Dyson expansion orders contributing to the controlled dynamics. The basic principles of HE-OD are illustrated for second harmonic generation when the components of the field representation are simply taken as the pixels in the pulse shaper. The outcome of HE-OD agrees well with simulations, verifying the concept.

  8. Polynomial representations of GLn

    CERN Document Server

    Green, James A; Erdmann, Karin

    2007-01-01

    The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth.

  9. Polynomial representations of GLN

    CERN Document Server

    Green, James A

    1980-01-01

    The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth.

  10. Group representations

    CERN Document Server

    Karpilovsky, G

    1994-01-01

    This third volume can be roughly divided into two parts. The first part is devoted to the investigation of various properties of projective characters. Special attention is drawn to spin representations and their character tables and to various correspondences for projective characters. Among other topics, projective Schur index and projective representations of abelian groups are covered. The last topic is investigated by introducing a symplectic geometry on finite abelian groups. The second part is devoted to Clifford theory for graded algebras and its application to the corresponding theory

  11. Value Representations

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegaard; Petersen, Marianne Graves

    2011-01-01

    Stereotypic presumptions about gender affect the design process, both in relation to how users are understood and how products are designed. As a way to decrease the influence of stereotypic presumptions in design process, we propose not to disregard the aspect of gender in the design process......, as the perspective brings valuable insights on different approaches to technology, but instead to view gender through a value lens. Contributing to this perspective, we have developed Value Representations as a design-oriented instrument for staging a reflective dialogue with users. Value Representations...

  12. (Self)-representations on youtube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    This paper examines forms of self-representation on YouTube with specific focus on Vlogs (Video blogs). The analytical scope of the paper is on how User-generated Content on YouTube initiates a certain kind of audiovisual representation and a particular interpretation of reality that can...... be distinguished within Vlogs. This will be analysed through selected case studies taken from a representative sample of empirically based observations of YouTube videos. The analysis includes a focus on how certain forms of representation can be identified as representations of the self (Turkle 1995, Scannell...... 1996, Walker 2005) and further how these forms must be comprehended within a context of technological constrains, institutional structures and social as well as economical practices on YouTube (Burgess and Green 2009, Van Dijck 2009). It is argued that these different contexts play a vital part...

  13. Sinusoidal Representation of Acoustic Signals

    Science.gov (United States)

    Honda, Masaaki

    Sinusoidal representation of acoustic signals has been an important tool in speech and music processing like signal analysis, synthesis and time scale or pitch modifications. It can be applicable to arbitrary signals, which is an important advantage over other signal representations like physical modeling of acoustic signals. In sinusoidal representation, acoustic signals are composed as sums of sinusoid (sine wave) with different amplitudes, frequencies and phases, which is based on the timedependent short-time Fourier transform (STFT). This article describes the principles of acoustic signal analysis/synthesis based on a sinusoid representation with focus on sine waves with rapidly varying frequency.

  14. Can the hadron effective interaction be local in inclusive process

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvily, M.A.; Petrov, V.A.

    1974-01-01

    The behaviour of the inclusive spectrum fsub(ab→c) in the asymptotic region is discussed. On the basis of the Jost-Lehmann-Dyson representation it is shown that inclusive processes are described by some structure functions, depending only on ν, q 2 (ν=2psub(b)(psub(a)-psub(c)); q 2 =(psub(a)-psub(c)) 2 ) under certain restrictions on the J-L-D spectral functions. As these dynamical characteristics (structure functions) do not depend on the sum(psub(a)+psub(c)), the effective interaction of hadrons ''a'' and ''c'' is as if local

  15. Self-consistent Green’s-function technique for surfaces and interfaces

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1991-01-01

    We have implemented an efficient self-consistent Green’s-function technique for calculating ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method within the tight-binding representation. In this approach the interlayer interaction is extremely short...... ranged, and only a few layers close to the interface need be treated self-consistently via a Dyson equation. For semi-infinite jellium, the technique gives work functions and surface energies that are in excellent agreement with earlier calculations. For the bcc(110) surface of the alkali metals, we find...

  16. A Greenian approach to the solution of the Schroedinger equation for periodic lattice potentials

    International Nuclear Information System (INIS)

    Minelli, T.A.

    1976-01-01

    A modified structural Green's function (MSGF), exploiting all the information contained in the previously solved Schroedinger equation for the electron interacting with a single lattice site, has been introduced and used in order to obtain, from a Dyson-type equation, a kernel whose poles and residues give the E-vs.-k relation and, respectively, the Bloch functions. Such a formulation suggests an alternative technique for the approximate solution of the KKR equations. The MSGF formalism has been also used in order to determine the structure constants of a one-dimensional lattice in a general representation

  17. Remarks on the history of the terms "object representation" and "self representation".

    Science.gov (United States)

    May, Ulrike

    2005-01-01

    This paper reconstructs the history of the term "object representation" and "self representation". It seeks to show that "Objektrepräsentanz" was introduced by Fenichel in 1926, following on from Radó, in order to be able to integrate identification (and the superego) into metapsychology. Freud himself never used "Objektrepräsentanz". Fenichel's pioneering role is not discernible in the English literature mainly because of the diverging approaches used in the translation of this term (object representative versus object representation). It is generally acknowledged that "self representation" was first used by Hartmann but this paper suggests that it actually played a more crucial role in Jacobson's work than it did in Hartmann's. In addition, this paper sees the terms of self and object representation as a reflection of the paradigm change in the 1920s that ensued after the publication of Freud's "The Ego and the Id". In tracing the history of the terms, the significance of the Berlin Psychoanalytical Institute in the 1920s emerges as do the Berlin roots of the works written in the USA in the 1950s and 1960s by Edith Jacobson. She received her analytical training in Berlin. Fenichel was her analyst, Radó was one of her teachers, and she was closely involved with the work of her fellow analysts there.

  18. Multiple representations in physics education

    CERN Document Server

    Duit, Reinders; Fischer, Hans E

    2017-01-01

    This volume is important because despite various external representations, such as analogies, metaphors, and visualizations being commonly used by physics teachers, educators and researchers, the notion of using the pedagogical functions of multiple representations to support teaching and learning is still a gap in physics education. The research presented in the three sections of the book is introduced by descriptions of various psychological theories that are applied in different ways for designing physics teaching and learning in classroom settings. The following chapters of the book illustrate teaching and learning with respect to applying specific physics multiple representations in different levels of the education system and in different physics topics using analogies and models, different modes, and in reasoning and representational competence. When multiple representations are used in physics for teaching, the expectation is that they should be successful. To ensure this is the case, the implementati...

  19. Alternative approach to nuclear data representation

    International Nuclear Information System (INIS)

    Pruet, J.; Brown, D.; Beck, B.; McNabb, D.P.

    2006-01-01

    This paper considers an approach for representing nuclear data that is qualitatively different from the approach currently adopted by the nuclear science community. Specifically, we examine a representation in which complicated data is described through collections of distinct and self-contained simple data structures. This structure-based representation is compared with the ENDF and ENDL formats, which can be roughly characterized as dictionary-based representations. A pilot data representation for replacing the format currently used at LLNL is presented. Examples are given as is a discussion of promises and shortcomings associated with moving from traditional dictionary-based formats to a structure-rich or class-like representation

  20. On the phase space representations. 1

    International Nuclear Information System (INIS)

    Polubarinov, I.V.

    1978-01-01

    The Dirac representation theory deals usually with the amplitude formalism of the quantum theory. An introduction is given into a theory of some other representations, which are applicable in the density matrix formalism and can naturally be called phase space representations (PSR). They use terms of phase space variables (x and p simultaneously) and give a description, close to the classical phase space description. Definitions and algebraic properties are given in quantum mechanics for such PSRs as the Wigner representation, coherent state representation and others. Completeness relations of a matrix type are used as a starting point. The case of quantum field theory is also outlined

  1. Mobilities and Representations

    DEFF Research Database (Denmark)

    Thelle, Mikkel

    2017-01-01

    to consider how they and their peers are currently confronting representations of mobility. This is particularly timely given the growing academic focus on practices, material mediation, and nonrepresentational theories, as well as on bodily reactions, emotions, and feelings that, according to those theories......As the centerpiece of the eighth T2M yearbook, the following interview about representations of mobility signals a new and exciting focus area for Mobility in History. In future issues we hope to include reviews that grapple more with how mobilities have been imagined and represented in the arts......, literature, and film. Moreover, we hope the authors of future reviews will reflect on the ways they approached those representations. Such commentaries would provide valuable methodological insights, and we hope to begin that effort with this interview. We have asked four prominent mobility scholars...

  2. Post-representational cartography

    Directory of Open Access Journals (Sweden)

    Rob Kitchin

    2010-03-01

    Full Text Available Over the past decade there has been a move amongst critical cartographers to rethink maps from a post-representational perspective – that is, a vantage point that does not privilege representational modes of thinking (wherein maps are assumed to be mirrors of the world and automatically presumes the ontological security of a map as a map, but rather rethinks and destabilises such notions. This new theorisation extends beyond the earlier critiques of Brian Harley (1989 that argued maps were social constructions. For Harley a map still conveyed the truth of a landscape, albeit its message was bound within the ideological frame of its creator. He thus advocated a strategy of identifying the politics of representation within maps in order to circumnavigate them (to reveal the truth lurking underneath, with the ontology of cartographic practice remaining unquestioned.

  3. Generalized oscillator representations for Calogero Hamiltonians

    International Nuclear Information System (INIS)

    Tyutin, I V; Voronov, B L

    2013-01-01

    This paper is a natural continuation of the previous paper (Gitman et al 2011 J. Phys. A: Math. Theor. 44 425204), where oscillator representations for nonnegative Calogero Hamiltonians with coupling constant α ⩾ − 1/4 were constructed. In this paper, we present generalized oscillator representations for all Calogero Hamiltonians with α ⩾ − 1/4. These representations are generally highly nonunique, but there exists an optimum representation for each Hamiltonian. (comment)

  4. Equivalence of rational representations of behaviors

    NARCIS (Netherlands)

    Gottimukkala, Sasanka; Fiaz, Shaik; Trentelman, H.L.

    This article deals with the equivalence of representations of behaviors of linear differential systems. In general, the behavior of a given linear differential system has many different representations. In this paper we restrict ourselves to kernel and image representations. Two kernel

  5. Specialized mechanisms for theory of mind: are mental representations special because they are mental or because they are representations?

    Science.gov (United States)

    Cohen, Adam S; Sasaki, Joni Y; German, Tamsin C

    2015-03-01

    Does theory of mind depend on a capacity to reason about representations generally or on mechanisms selective for the processing of mental state representations? In four experiments, participants reasoned about beliefs (mental representations) and notes (non-mental, linguistic representations), which according to two prominent theories are closely matched representations because both are represented propositionally. Reaction times were faster and accuracies higher when participants endorsed or rejected statements about false beliefs than about false notes (Experiment 1), even when statements emphasized representational format (Experiment 2), which should have favored the activation of representation concepts. Experiments 3 and 4 ruled out a counterhypothesis that differences in task demands were responsible for the advantage in belief processing. These results demonstrate for the first time that understanding of mental and linguistic representations can be dissociated even though both may carry propositional content, supporting the theory that mechanisms governing theory of mind reasoning are narrowly specialized to process mental states, not representations more broadly. Extending this theory, we discuss whether less efficient processing of non-mental representations may be a by-product of mechanisms specialized for processing mental states. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  6. A generalized wavelet extrema representation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jian; Lades, M.

    1995-10-01

    The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.

  7. Qualitative aspects of representational competence among college chemistry students: Multiple representations and their role in the understanding of ideal gases

    Science.gov (United States)

    Madden, Sean Patrick

    This study examined the role of multiple representations of chemical phenomena, specifically, the temperature-pressure relationship of ideal gases, in the problem solving strategies of college chemistry students. Volunteers included students enrolled in a first semester general chemistry course at a western university. Two additional volunteers from the same university were asked to participate and serve as models of greater sophistication. One was a senior chemistry major; another was a junior science writing major. Volunteers completed an initial screening task involving multiple representations of concentration and dilution concepts. Based on the results of this screening instrument a smaller set of subjects were asked to complete a think aloud session involving multiple representations of the temperature-pressure relationship. Data consisted of the written work of the volunteers and transcripts from videotaped think aloud sessions. The data were evaluated by the researcher and two other graduate students in chemical education using a coding scheme (Kozma, Schank, Coppola, Michalchik, and Allen. 2000). This coding scheme was designed to identify essential features of representational competence and differences in uses of multiple representations. The results indicate that students tend to have a strong preference for one type of representation. Students scoring low on representational competence, as measured by the rubric, ignored important features of some representations or acknowledged them only superficially. Students scoring higher on representational competence made meaningful connections among representations. The more advanced students, those who rated highly on representational competence, tended to use their preferred representation in a heuristic manner to establish meaning for other representations. The more advanced students also reflected upon the problem at greater length before beginning work. Molecular level sketches seemed to be the most

  8. Representational Machines

    DEFF Research Database (Denmark)

    Photography not only represents space. Space is produced photographically. Since its inception in the 19th century, photography has brought to light a vast array of represented subjects. Always situated in some spatial order, photographic representations have been operatively underpinned by social...... to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...... possibilities, and genre distinctions. Presenting several distinct ways of producing space photographically, this book opens a new and important field of inquiry for photography research....

  9. Facilitating Mathematical Practices through Visual Representations

    Science.gov (United States)

    Murata, Aki; Stewart, Chana

    2017-01-01

    Effective use of mathematical representation is key to supporting student learning. In "Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014), "use and connect mathematical representations" is one of the effective Mathematics Teaching Practices. By using different representations, students examine concepts…

  10. Procedural Media Representation

    OpenAIRE

    Henrysson, Anders

    2002-01-01

    We present a concept for using procedural techniques to represent media. Procedural methods allow us to represent digital media (2D images, 3D environments etc.) with very little information and to render it photo realistically. Since not all kind of content can be created procedurally, traditional media representations (bitmaps, polygons etc.) must be used as well. We have adopted an object-based media representation where an object can be represented either with a procedure or with its trad...

  11. The abstract representations in speech processing.

    Science.gov (United States)

    Cutler, Anne

    2008-11-01

    Speech processing by human listeners derives meaning from acoustic input via intermediate steps involving abstract representations of what has been heard. Recent results from several lines of research are here brought together to shed light on the nature and role of these representations. In spoken-word recognition, representations of phonological form and of conceptual content are dissociable. This follows from the independence of patterns of priming for a word's form and its meaning. The nature of the phonological-form representations is determined not only by acoustic-phonetic input but also by other sources of information, including metalinguistic knowledge. This follows from evidence that listeners can store two forms as different without showing any evidence of being able to detect the difference in question when they listen to speech. The lexical representations are in turn separate from prelexical representations, which are also abstract in nature. This follows from evidence that perceptual learning about speaker-specific phoneme realization, induced on the basis of a few words, generalizes across the whole lexicon to inform the recognition of all words containing the same phoneme. The efficiency of human speech processing has its basis in the rapid execution of operations over abstract representations.

  12. Interactions between visual working memory representations.

    Science.gov (United States)

    Bae, Gi-Yeul; Luck, Steven J

    2017-11-01

    We investigated whether the representations of different objects are maintained independently in working memory or interact with each other. Observers were shown two sequentially presented orientations and required to reproduce each orientation after a delay. The sequential presentation minimized perceptual interactions so that we could isolate interactions between memory representations per se. We found that similar orientations were repelled from each other whereas dissimilar orientations were attracted to each other. In addition, when one of the items was given greater attentional priority by means of a cue, the representation of the high-priority item was not influenced very much by the orientation of the low-priority item, but the representation of the low-priority item was strongly influenced by the orientation of the high-priority item. This indicates that attention modulates the interactions between working memory representations. In addition, errors in the reported orientations of the two objects were positively correlated under some conditions, suggesting that representations of distinct objects may become grouped together in memory. Together, these results demonstrate that working-memory representations are not independent but instead interact with each other in a manner that depends on attentional priority.

  13. Representation

    National Research Council Canada - National Science Library

    Little, Daniel

    2006-01-01

    ...). The reason this is so is due to hierarchies that we take for granted. By hierarchies I mean that there is a layer of representation of us as individuals, as military professional, as members of a military unit and as citizens of an entire nation...

  14. L-functions and the oscillator representation

    CERN Document Server

    Rallis, Stephen

    1987-01-01

    These notes are concerned with showing the relation between L-functions of classical groups (*F1 in particular) and *F2 functions arising from the oscillator representation of the dual reductive pair *F1 *F3 O(Q). The problem of measuring the nonvanishing of a *F2 correspondence by computing the Petersson inner product of a *F2 lift from *F1 to O(Q) is considered. This product can be expressed as the special value of an L-function (associated to the standard representation of the L-group of *F1) times a finite number of local Euler factors (measuring whether a given local representation occurs in a given oscillator representation). The key ideas used in proving this are (i) new Rankin integral representations of standard L-functions, (ii) see-saw dual reductive pairs and (iii) Siegel-Weil formula. The book addresses readers who specialize in the theory of automorphic forms and L-functions and the representation theory of Lie groups. N

  15. Visual perception and verbal descriptions as sources for generating mental representations: Evidence from representational neglect.

    Science.gov (United States)

    Denis, Michel; Beschin, Nicoletta; Logie, Robert H; Della Sala, Sergio

    2002-03-01

    In the majority of investigations of representational neglect, patients are asked to report information derived from long-term visual knowledge. In contrast, studies of perceptual neglect involve reporting the contents of relatively novel scenes in the immediate environment. The present study aimed to establish how representational neglect might affect (a) immediate recall of recently perceived, novel visual layouts, and (b) immediate recall of novel layouts presented only as auditory verbal descriptions. These conditions were contrasted with reports from visual perception and a test of immediate recall of verbal material. Data were obtained from 11 neglect patients (9 with representational neglect), 6 right hemisphere lesion control patients with no evidence of neglect, and 15 healthy controls. In the perception, memory following perception, and memory following layout description conditions, the neglect patients showed poorer report of items depicted or described on the left than on the right of each layout. The lateralised error pattern was not evident in the non-neglect patients or healthy controls, and there was no difference among the three groups on immediate verbal memory. One patient showed pure representational neglect, with ceiling performance in the perception condition, but with lateralised errors for memory following perception or following verbal description. Overall, the results indicate that representational neglect does not depend on the presence of perceptual neglect, that visual perception and visual mental representations are less closely linked than has been thought hitherto, and that visuospatial mental representations have similar functional characteristics whether they are derived from visual perception or from auditory linguistic descriptive inputs.

  16. Young Children's Representations of Groups of Objects: The Relationship between Abstraction and Representation.

    Science.gov (United States)

    Kato, Yasuhiko; Kamii, Constance; Ozaki, Kyoko; Nagahiro, Mariko

    2002-01-01

    Interviews 60 Japanese children between the ages of 3 and 7 years to investigate the relationship between levels of abstraction and representation. Indicates that abstraction and representation are closely related. Implies that educators need to focus more on the mental relationships children make because the meaning children can give to…

  17. Hohenberg-Kohn theorem and non-V-representable densities

    International Nuclear Information System (INIS)

    Englisch, H.; Englisch, R.

    1983-01-01

    In the density-functional formalism of Hohenberg and Kohn, the variation is only allowed over the one-particle densities which are pure-state-V-representable (PS-V-representable). Levy and Lieb proved that not every ensemble-V-representable (E-V-representable) density is PS-V-representable. Since we show that the Hohenberg-Kohn formalism can be extended to a variation over E-V-representable densities for degenerated ground states, Levy's and Lieb's result is not a counterexample to the universality of the Hohenberg-Kohn theorem. The question whether every N-representable density is E-V-representable has remained open so far. Presenting examples of non-E-V-representable densities we answer this question in the negative. Thus the value of Levy's functional for the calculation of ground-state energies is obvious, since this functional only requires the N-representability of the densities. Therefore we transfer two approaches for the calculation of excited-state energies into the framework of Levy's formalism. (orig.)

  18. Representation theory of lattice current algebras

    International Nuclear Information System (INIS)

    Alekseev, A.Yu.; Eidgenoessische Technische Hochschule, Zurich; Faddeev, L.D.; Froehlich, L.D.; Schomerus, V.; Kyoto Univ.

    1996-04-01

    Lattice current algebras were introduced as a regularization of the left-and right moving degrees of freedom in the WZNW model. They provide examples of lattice theories with a local quantum symmetry U q (G). Their representation theory is studied in detail. In particular, we construct all irreducible representations along with a lattice analogue of the fusion product for representations of the lattice current algebra. It is shown that for an arbitrary number of lattice sites, the representation categories of the lattice current algebras agree with their continuum counterparts. (orig.)

  19. Cohen-Macaulay representations

    CERN Document Server

    Leuschke, Graham J

    2012-01-01

    This book is a comprehensive treatment of the representation theory of maximal Cohen-Macaulay (MCM) modules over local rings. This topic is at the intersection of commutative algebra, singularity theory, and representations of groups and algebras. Two introductory chapters treat the Krull-Remak-Schmidt Theorem on uniqueness of direct-sum decompositions and its failure for modules over local rings. Chapters 3-10 study the central problem of classifying the rings with only finitely many indecomposable MCM modules up to isomorphism, i.e., rings of finite CM type. The fundamental material--ADE/simple singularities, the double branched cover, Auslander-Reiten theory, and the Brauer-Thrall conjectures--is covered clearly and completely. Much of the content has never before appeared in book form. Examples include the representation theory of Artinian pairs and Burban-Drozd's related construction in dimension two, an introduction to the McKay correspondence from the point of view of maximal Cohen-Macaulay modules, Au...

  20. Operator representation for effective realistic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Dennis; Feldmeier, Hans; Neff, Thomas [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2013-07-01

    We present a method to derive an operator representation from the partial wave matrix elements of effective realistic nucleon-nucleon potentials. This method allows to employ modern effective interactions, which are mostly given in matrix element representation, also in nuclear many-body methods requiring explicitly the operator representation, for example ''Fermionic Molecular Dynamics'' (FMD). We present results for the operator representation of effective interactions obtained from the Argonne V18 potential with the Uenitary Correlation Operator Method'' (UCOM) and the ''Similarity Renormalization Group'' (SRG). Moreover, the operator representation allows a better insight in the nonlocal structure of the potential: While the UCOM transformed potential only shows a quadratic momentum dependence, the momentum dependence of SRG transformed potentials is beyond such a simple polynomial form.

  1. ABJM Wilson loops in arbitrary representations

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Honda, Masazumi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.

  2. ABJM Wilson loops in arbitrary representations

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Moriyama, Sanefumi; Okuyama, Kazumi

    2013-06-01

    We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.

  3. Mental Representation and Motor Imagery Training

    Directory of Open Access Journals (Sweden)

    Thomas eSchack

    2014-05-01

    Full Text Available Research in sports, dance and rehabilitation has shown that Basic Action Concepts (BACs are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, SDA-M (structural dimensional analysis of mental representation, to assess action-relevant representational structures that reflect the organization of BACs. The SDA-M reveals a strong relationship between cognitive representation and performance if complex actions are performed. We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke.

  4. Off-shell representations of maximally-extended supersymmetry

    International Nuclear Information System (INIS)

    Cox, P.H.

    1985-01-01

    A general theorem on the necessity of off-shell central charges in representations of maximally-extended supersymmetry (number of spinor charges - 4 x largest spin) is presented. A procedure for building larger and higher-N representations is also explored; a (noninteracting) N=8, maximum spin 2, off-shell representation is achieved. Difficulties in adding interactions for this representation are discussed

  5. Spatially variant morphological restoration and skeleton representation.

    Science.gov (United States)

    Bouaynaya, Nidhal; Charif-Chefchaouni, Mohammed; Schonfeld, Dan

    2006-11-01

    The theory of spatially variant (SV) mathematical morphology is used to extend and analyze two important image processing applications: morphological image restoration and skeleton representation of binary images. For morphological image restoration, we propose the SV alternating sequential filters and SV median filters. We establish the relation of SV median filters to the basic SV morphological operators (i.e., SV erosions and SV dilations). For skeleton representation, we present a general framework for the SV morphological skeleton representation of binary images. We study the properties of the SV morphological skeleton representation and derive conditions for its invertibility. We also develop an algorithm for the implementation of the SV morphological skeleton representation of binary images. The latter algorithm is based on the optimal construction of the SV structuring element mapping designed to minimize the cardinality of the SV morphological skeleton representation. Experimental results show the dramatic improvement in the performance of the SV morphological restoration and SV morphological skeleton representation algorithms in comparison to their translation-invariant counterparts.

  6. Distorted representation in visual tourism research

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg

    2016-01-01

    how photographic materialities, performativities and sensations contribute to new tourism knowledges. While highlighting the potential of distorted representation, the paper posits a cautionary note in regards to the influential role of academic journals in determining the qualities of visual data....... The paper exemplifies distorted representation through three impressionistic tales derived from ethnographic research on the European rail travel phenomenon: interrail.......Tourism research has recently been informed by non-representational theories to highlight the socio-material, embodied and heterogeneous composition of tourist experiences. These advances have contributed to further reflexivity and called for novel ways to animate representations...

  7. When data representation compromise data security

    DEFF Research Database (Denmark)

    Simonsen, Eivind Ortind; Dahl, Mads Ronald

    WHEN DATA REPRESENTATION COMPROMISE DATA SECURITY The workflow of transforming data into informative representations makes extensive usage of computers and software. Scientists have a conventional tradition for producing publications that include tables and graphs as data representations....... These representations can be used for multiple purposes such as publications in journals, teaching and conference material. But when created, stored and distributed in a digital form there is a risk of compromising data security. Data beyond the once used specifically to create the representation can be included...... on the internet over many years? A new legislation proposed in 2012 by the European Commission on protection of personal data will be implemented from 2015. The new law will impose sanction options ranging from a warning to a fine up to 100.000.000 EUR. We argue that this new law will lead to especially...

  8. The representations of Lie groups and geometric quantizations

    International Nuclear Information System (INIS)

    Zhao Qiang

    1998-01-01

    In this paper we discuss the relation between representations of Lie groups and geometric quantizations. A series of representations of Lie groups are constructed by geometric quantization of coadjoint orbits. Particularly, all representations of compact Lie groups, holomorphic discrete series of representations and spherical representations of reductive Lie groups are constructed by geometric quantizations of elliptic and hyperbolic coadjoint orbits. (orig.)

  9. Social representations about cancer

    Directory of Open Access Journals (Sweden)

    Andreja Cirila Škufca

    2003-09-01

    Full Text Available In this article we are presenting the results of the comparison study on social representations and causal attributions about cancer. We compared a breast cancer survivors group and control group without own experience of cancer of their own. Although social representations about cancer differ in each group, they are closely related to the concept of suffering, dying and death. We found differences in causal attribution of cancer. In both groups we found a category of risky behavior, which attributes a responsibility for a disease to an individual. Besides these factors we found predominate stress and psychological influences in cancer survivors group. On the other hand control group indicated factors outside the ones control e.g. heredity and environmental factors. Representations about a disease inside person's social space are important in co-shaping the individual process of coping with own disease. Since these representations are not always coherent with the knowledge of modern medicine their knowledge and appreciation in the course of treatment is of great value. We find the findingss of applied social psychology important as starting points in the therapeutic work with patients.

  10. Realization and elimination in rational representations of behaviors

    NARCIS (Netherlands)

    Gottimukkala, Sasanka V.; Trentelman, Hendrikus; Fiaz, Shaik

    This article deals with the relationship between rational representations of linear differential systems and their state representations. In particular we study the relationship between rational representations on the one hand, and output nulling and driving variable representations on the other. In

  11. Exploring the Structure of Spatial Representations

    Science.gov (United States)

    Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela

    2016-01-01

    It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory. PMID:27347681

  12. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  13. Using Integer Manipulatives: Representational Determinism

    Science.gov (United States)

    Bossé, Michael J.; Lynch-Davis, Kathleen; Adu-Gyamfi, Kwaku; Chandler, Kayla

    2016-01-01

    Teachers and students commonly use various concrete representations during mathematical instruction. These representations can be utilized to help students understand mathematical concepts and processes, increase flexibility of thinking, facilitate problem solving, and reduce anxiety while doing mathematics. Unfortunately, the manner in which some…

  14. International agreements on commercial representation

    OpenAIRE

    Slanař, Jan

    2014-01-01

    The purpose of the thesis is to describe the possibilities for fixing the position of a company in the market through contracts for commercial representation with a focus to finding legal and economic impact on the company that contracted for exclusive representation.

  15. Braid group representation on quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Ryan Kasyfil, E-mail: kasyfilryan@gmail.com [Department of Computational Sciences, Bandung Institute of Technology (Indonesia); Muchtadi-Alamsyah, Intan, E-mail: ntan@math.itb.ac.id [Algebra Research Group, Bandung Institute of Technology (Indonesia)

    2015-09-30

    There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.

  16. Impossibility Theorem in Proportional Representation Problem

    International Nuclear Information System (INIS)

    Karpov, Alexander

    2010-01-01

    The study examines general axiomatics of Balinski and Young and analyzes existed proportional representation methods using this approach. The second part of the paper provides new axiomatics based on rational choice models. New system of axioms is applied to study known proportional representation systems. It is shown that there is no proportional representation method satisfying a minimal set of the axioms (monotonicity and neutrality).

  17. Representational Thickness

    DEFF Research Database (Denmark)

    Mullins, Michael

    Contemporary communicational and informational processes contribute to the shaping of our physical environment by having a powerful influence on the process of design. Applications of virtual reality (VR) are transforming the way architecture is conceived and produced by introducing dynamic...... elements into the process of design. Through its immersive properties, virtual reality allows access to a spatial experience of a computer model very different to both screen based simulations as well as traditional forms of architectural representation. The dissertation focuses on processes of the current...... representation? How is virtual reality used in public participation and how do virtual environments affect participatory decision making? How does VR thus affect the physical world of built environment? Given the practical collaborative possibilities of immersive technology, how can they best be implemented...

  18. Congruence properties of induced representations

    DEFF Research Database (Denmark)

    Mayer, Dieter; Momeni, Arash; Venkov, Alexei

    In this paper we study representations of the projective modular group induced from the Hecke congruence group of level 4 with Selberg's character. We show that the well known congruence properties of Selberg's character are equivalent to the congruence properties of the induced representations...

  19. Knowledge Representation: A Brief Review.

    Science.gov (United States)

    Vickery, B. C.

    1986-01-01

    Reviews different structures and techniques of knowledge representation: structure of database records and files, data structures in computer programming, syntatic and semantic structure of natural language, knowledge representation in artificial intelligence, and models of human memory. A prototype expert system that makes use of some of these…

  20. Vietnamese Document Representation and Classification

    Science.gov (United States)

    Nguyen, Giang-Son; Gao, Xiaoying; Andreae, Peter

    Vietnamese is very different from English and little research has been done on Vietnamese document classification, or indeed, on any kind of Vietnamese language processing, and only a few small corpora are available for research. We created a large Vietnamese text corpus with about 18000 documents, and manually classified them based on different criteria such as topics and styles, giving several classification tasks of different difficulty levels. This paper introduces a new syllable-based document representation at the morphological level of the language for efficient classification. We tested the representation on our corpus with different classification tasks using six classification algorithms and two feature selection techniques. Our experiments show that the new representation is effective for Vietnamese categorization, and suggest that best performance can be achieved using syllable-pair document representation, an SVM with a polynomial kernel as the learning algorithm, and using Information gain and an external dictionary for feature selection.

  1. Exploring Middle School Students' Representational Competence in Science: Development and Verification of a Framework for Learning with Visual Representations

    Science.gov (United States)

    Tippett, Christine Diane

    Scientific knowledge is constructed and communicated through a range of forms in addition to verbal language. Maps, graphs, charts, diagrams, formulae, models, and drawings are just some of the ways in which science concepts can be represented. Representational competence---an aspect of visual literacy that focuses on the ability to interpret, transform, and produce visual representations---is a key component of science literacy and an essential part of science reading and writing. To date, however, most research has examined learning from representations rather than learning with representations. This dissertation consisted of three distinct projects that were related by a common focus on learning from visual representations as an important aspect of scientific literacy. The first project was the development of an exploratory framework that is proposed for use in investigations of students constructing and interpreting multimedia texts. The exploratory framework, which integrates cognition, metacognition, semiotics, and systemic functional linguistics, could eventually result in a model that might be used to guide classroom practice, leading to improved visual literacy, better comprehension of science concepts, and enhanced science literacy because it emphasizes distinct aspects of learning with representations that can be addressed though explicit instruction. The second project was a metasynthesis of the research that was previously conducted as part of the Explicit Literacy Instruction Embedded in Middle School Science project (Pacific CRYSTAL, http://www.educ.uvic.ca/pacificcrystal). Five overarching themes emerged from this case-to-case synthesis: the engaging and effective nature of multimedia genres, opportunities for differentiated instruction using multimodal strategies, opportunities for assessment, an emphasis on visual representations, and the robustness of some multimodal literacy strategies across content areas. The third project was a mixed

  2. Women and political representation.

    Science.gov (United States)

    Rathod, P B

    1999-01-01

    A remarkable progress in women's participation in politics throughout the world was witnessed in the final decade of the 20th century. According to the Inter-Parliamentary Union report, there were only eight countries with no women in their legislatures in 1998. The number of women ministers at the cabinet level worldwide doubled in a decade, and the number of countries without any women ministers dropped from 93 to 48 during 1987-96. However, this progress is far from satisfactory. Political representation of women, minorities, and other social groups is still inadequate. This may be due to a complex combination of socioeconomic, cultural, and institutional factors. The view that women's political participation increases with social and economic development is supported by data from the Nordic countries, where there are higher proportions of women legislators than in less developed countries. While better levels of socioeconomic development, having a women-friendly political culture, and higher literacy are considered favorable factors for women's increased political representation, adopting one of the proportional representation systems (such as a party-list system, a single transferable vote system, or a mixed proportional system with multi-member constituencies) is the single factor most responsible for the higher representation of women.

  3. General regression and representation model for classification.

    Directory of Open Access Journals (Sweden)

    Jianjun Qian

    Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.

  4. Finite-dimensional representations of the quantum superalgebra Uq[gl(2/2)] II: Nontypical representations at generic q

    International Nuclear Information System (INIS)

    Nguyen Anh Ky; Stoilova, N.I.

    1994-11-01

    The construction approach proposed in the previous paper Ref.1 allows us there and in the present paper to construct at generic deformation parameter q all finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)]. The finite-dimensional U q [gl(2/2)]-modules W q constructed in Ref.1 are either irreducible or indecomposable. If a module W q is indecomposable, i.e. when the condition (4.41) in Ref.1 does not hold, there exists an invariant maximal submodule of W q , to say I q k , such that the factor-representation in the factor-module W q /I q k is irreducible and called nontypical. Here, in this paper, indecomposable representations and nontypical finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)] are considered and classified as their module structures are analyzed and the matrix elements of all nontypical representations are written down explicitly. (author). 23 refs

  5. Lifts of matroid representations over partial fields

    NARCIS (Netherlands)

    Pendavingh, R.A.; Zwam, van S.H.M.

    2010-01-01

    There exist several theorems which state that when a matroid is representable over distinct fields F1,...,Fk , it is also representable over other fields. We prove a theorem, the Lift Theorem, that implies many of these results. First, parts of Whittle's characterization of representations of

  6. The semantic representation of prejudice and stereotypes.

    Science.gov (United States)

    Bhatia, Sudeep

    2017-07-01

    We use a theory of semantic representation to study prejudice and stereotyping. Particularly, we consider large datasets of newspaper articles published in the United States, and apply latent semantic analysis (LSA), a prominent model of human semantic memory, to these datasets to learn representations for common male and female, White, African American, and Latino names. LSA performs a singular value decomposition on word distribution statistics in order to recover word vector representations, and we find that our recovered representations display the types of biases observed in human participants using tasks such as the implicit association test. Importantly, these biases are strongest for vector representations with moderate dimensionality, and weaken or disappear for representations with very high or very low dimensionality. Moderate dimensional LSA models are also the best at learning race, ethnicity, and gender-based categories, suggesting that social category knowledge, acquired through dimensionality reduction on word distribution statistics, can facilitate prejudiced and stereotyped associations. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Computability and Representations of the Zero Set

    NARCIS (Netherlands)

    P.J. Collins (Pieter)

    2008-01-01

    htmlabstractIn this note we give a new representation for closed sets under which the robust zero set of a function is computable. We call this representation the component cover representation. The computation of the zero set is based on topological index theory, the most powerful tool for finding

  8. Factorial representations of path groups

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoegh-Krohn, R.; Testard, D.; Vershik, A.

    1983-11-01

    We give the reduction of the energy representation of the group of mappings from I = [ 0,1 ], S 1 , IRsub(+) or IR into a compact semi simple Lie group G. For G = SU(2) we prove the factoriality of the representation, which is of type III in the case I = IR

  9. Scientific Representation and Science Learning

    Science.gov (United States)

    Matta, Corrado

    2014-01-01

    In this article I examine three examples of philosophical theories of scientific representation with the aim of assessing which of these is a good candidate for a philosophical theory of scientific representation in science learning. The three candidate theories are Giere's intentional approach, Suárez's inferential approach and Lynch and…

  10. Anharmonic potential in the oscillator representation

    International Nuclear Information System (INIS)

    Dineykhan, M.; Efimov, G.V.

    1994-01-01

    In the non relativistic and relativized Schroedinger equation the Wick ordering method called the oscillator representation is proposed to calculate the energy spectrum for a wide class of potentials allowing the existence of a bound state. The oscillator representation method gives a unique regular way to describe and calculate the energy levels of ground as well as orbital and radial excitation states for a wide class of potentials. The results of the zeroth approximation oscillator representation are in good agreement with the exact values for the anharmonic potentials. The oscillator representation method was applied to the relativized Schroedinger equation too. The perturbation series converges fairly fast, i.e., the highest perturbation corrections over the interaction Hamiltonian are small enough. 29 refs.; 4 tabs. (author)

  11. Knot invariants and higher representation theory

    CERN Document Server

    Webster, Ben

    2018-01-01

    The author constructs knot invariants categorifying the quantum knot variants for all representations of quantum groups. He shows that these invariants coincide with previous invariants defined by Khovanov for \\mathfrak{sl}_2 and \\mathfrak{sl}_3 and by Mazorchuk-Stroppel and Sussan for \\mathfrak{sl}_n. The author's technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is \\mathfrak{sl}_n, the author shows that these categories agree with certain subcategories of parabolic category \\mathcal{O} for \\mathfrak{gl}_k.

  12. Local normality properties of some infrared representations

    International Nuclear Information System (INIS)

    Doplicher, S.; Spera, M.

    1983-01-01

    We consider the positive energy representations of the algebra of quasilocal observables for the free massless Majorana field described in preceding papers. We show that by an appropriate choice of the (partially) occupied one particle modes we can find irreducible, type IIsub(infinite) or IIIsub(lambda) representations in this class which are unitarily equivalent to the vacuum representation when restricted to any forward light cone and disjoint from it when restricted to any backward light cone, or conversely. We give an elementary explicit proof of local normality of each representation in the above class. (orig.)

  13. (Self)-representations on youtube

    OpenAIRE

    Simonsen, Thomas Mosebo

    2011-01-01

    This paper examines forms of self-representation on YouTube with specific focus on Vlogs (Video blogs). The analytical scope of the paper is on how User-generated Content on YouTube initiates a certain kind of audiovisual representation and a particular interpretation of reality that can be distinguished within Vlogs. This will be analysed through selected case studies taken from a representative sample of empirically based observations of YouTube videos. The analysis includes a focus on how ...

  14. Shared Representations and the Translation Process

    DEFF Research Database (Denmark)

    Schaeffer, Moritz; Carl, Michael

    2015-01-01

    The purpose of the present chapter is to investigate automated processing during translation. We provide evidence from a translation priming study which suggests that translation involves activation of shared lexico-semantic and syntactical representations, i.e., the activation of features of both...... source and target language items which share one single cognitive representation. We argue that activation of shared representations facilitates automated processing. The chapter revises the literal translation hypothesis and the monitor model (Ivir 1981; Toury 1995; Tirkkonen-Condit 2005), and re...

  15. Shared Representations and the Translation Process

    DEFF Research Database (Denmark)

    Schaeffer, Moritz; Carl, Michael

    2013-01-01

    The purpose of the present paper is to investigate automated processing during translation. We provide evidence from a translation priming study which suggests that translation involves activation of shared lexico-semantic and syntactical representations, i.e., the activation of features of both...... source and target language items which share one single cognitive representation. We argue that activation of shared representations facilitates automated processing. The paper revises the literal translation hypothesis and the monitor model (Ivir 1981; Toury 1995; Tirkkonen-Condit 2005), and re...

  16. Representation and redistribution in federations.

    Science.gov (United States)

    Dragu, Tiberiu; Rodden, Jonathan

    2011-05-24

    Many of the world's most populous democracies are political unions composed of states or provinces that are unequally represented in the national legislature. Scattered empirical studies, most of them focusing on the United States, have discovered that overrepresented states appear to receive larger shares of the national budget. Although this relationship is typically attributed to bargaining advantages associated with greater legislative representation, an important threat to empirical identification stems from the fact that the representation scheme was chosen by the provinces. Thus, it is possible that representation and fiscal transfers are both determined by other characteristics of the provinces in a specific country. To obtain an improved estimate of the relationship between representation and redistribution, we collect and analyze provincial-level data from nine federations over several decades, taking advantage of the historical process through which federations formed and expanded. Controlling for a variety of country- and province-level factors and using a variety of estimation techniques, we show that overrepresented provinces in political unions around the world are rather dramatically favored in the distribution of resources.

  17. Representations for Supporting Students' Context Awareness

    DEFF Research Database (Denmark)

    Demetriadis, Stavros N.; Papadopoulos, Pantelis M.

    2005-01-01

    The context of the specific situation where knowledge is applied affects significantly the problem solving process by forcing people to negotiate and reconsider the priorities of their mental representations and problem solving operators, in relation to this process. In this work we argue...... that students’ context awareness can significantly be enhanced by the use of appropriate external representations which guide them to activate context inducing cognitive processes. By embedding such representations in a case based learning environment we expect to guide students’ processing of the rich...... in contextual information material, in a way that improves both their context awareness and metacontextual competence. After presenting a context model, we discuss the design of such representations based on this model and explain why we expect that their use in a learning situation would enhance context...

  18. On the Benefits of Divergent Search for Evolved Representations

    DEFF Research Database (Denmark)

    Lehman, Joel; Risi, Sebastian; Stanley, Kenneth O

    2012-01-01

    Evolved representations in evolutionary computation are often fragile, which can impede representation-dependent mechanisms such as self-adaptation. In contrast, evolved representations in nature are robust, evolvable, and creatively exploit available representational features. This paper provide...

  19. Spectral representations of neutron-star equations of state

    International Nuclear Information System (INIS)

    Lindblom, Lee

    2010-01-01

    Methods are developed for constructing spectral representations of cold (barotropic) neutron-star equations of state. These representations are faithful in the sense that every physical equation of state has a representation of this type and conversely every such representation satisfies the minimal thermodynamic stability criteria required of any physical equation of state. These spectral representations are also efficient, in the sense that only a few spectral coefficients are generally required to represent neutron-star equations of state quiet accurately. This accuracy and efficiency is illustrated by constructing spectral fits to a large collection of 'realistic' neutron-star equations of state.

  20. Jazz talks: representations & self-representations of African American music and its musicians from bebop to free jazz

    OpenAIRE

    Mazman, Alper

    2010-01-01

    The main focus of this thesis is the representation of jazz music and its musicians, and the ways in which American (black and white) critics, novelists, and musicians interpret this music from the development of bebop to free jazz. My aim is to reveal the complexities of the dialogue between white and black representations of jazz, as well as among the self-representations of African American musicians. To this end, I discuss the discourses of jazz that are embedded within the broader cultur...

  1. A polygon soup representation for free viewpoint video

    Science.gov (United States)

    Colleu, T.; Pateux, S.; Morin, L.; Labit, C.

    2010-02-01

    This paper presents a polygon soup representation for multiview data. Starting from a sequence of multi-view video plus depth (MVD) data, the proposed representation takes into account, in a unified manner, different issues such as compactness, compression, and intermediate view synthesis. The representation is built in two steps. First, a set of 3D quads is extracted using a quadtree decomposition of the depth maps. Second, a selective elimination of the quads is performed in order to reduce inter-view redundancies and thus provide a compact representation. Moreover, the proposed methodology for extracting the representation allows to reduce ghosting artifacts. Finally, an adapted compression technique is proposed that limits coding artifacts. The results presented on two real sequences show that the proposed representation provides a good trade-off between rendering quality and data compactness.

  2. METHODS FOR THE REPRESENTATION OF THE HELICOIDAL SURFACE

    Directory of Open Access Journals (Sweden)

    SCURTU Liviu-Iacob

    2017-05-01

    Full Text Available In this paper there are presented the graphical methods to determine the parameters of an helicoidal stairs. The first part of this paper shows the used methods to generate the helicoidal curves using descriptive geometry methods. It has represented the state of the art of the generation of a helical surface studies. The second part of this study shows the helical stairs surface representation using descriptive geometry methods. For the representation of the helicoidal stairs are used two projections, the front and top view. A method of the stairs representation is solved using CAD modelling dedicated software. Following the helical surface representation in both methods, has been achieved a comparative study by using two representation methods. Conclusions about these two representation methods are presented in the end of this paper.

  3. Locally analytic vectors in representations of locally

    CERN Document Server

    Emerton, Matthew J

    2017-01-01

    The goal of this memoir is to provide the foundations for the locally analytic representation theory that is required in three of the author's other papers on this topic. In the course of writing those papers the author found it useful to adopt a particular point of view on locally analytic representation theory: namely, regarding a locally analytic representation as being the inductive limit of its subspaces of analytic vectors (of various "radii of analyticity"). The author uses the analysis of these subspaces as one of the basic tools in his study of such representations. Thus in this memoir he presents a development of locally analytic representation theory built around this point of view. The author has made a deliberate effort to keep the exposition reasonably self-contained and hopes that this will be of some benefit to the reader.

  4. Pioneers of representation theory

    CERN Document Server

    Curtis, Charles W

    1999-01-01

    The year 1897 was marked by two important mathematical events: the publication of the first paper on representations of finite groups by Ferdinand Georg Frobenius (1849-1917) and the appearance of the first treatise in English on the theory of finite groups by William Burnside (1852-1927). Burnside soon developed his own approach to representations of finite groups. In the next few years, working independently, Frobenius and Burnside explored the new subject and its applications to finite group theory. They were soon joined in this enterprise by Issai Schur (1875-1941) and some years later, by Richard Brauer (1901-1977). These mathematicians' pioneering research is the subject of this book. It presents an account of the early history of representation theory through an analysis of the published work of the principals and others with whom the principals' work was interwoven. Also included are biographical sketches and enough mathematics to enable readers to follow the development of the subject. An introductor...

  5. On Representation in Information Theory

    Directory of Open Access Journals (Sweden)

    Joseph E. Brenner

    2011-09-01

    Full Text Available Semiotics is widely applied in theories of information. Following the original triadic characterization of reality by Peirce, the linguistic processes involved in information—production, transmission, reception, and understanding—would all appear to be interpretable in terms of signs and their relations to their objects. Perhaps the most important of these relations is that of the representation-one, entity, standing for or representing some other. For example, an index—one of the three major kinds of signs—is said to represent something by being directly related to its object. My position, however, is that the concept of symbolic representations having such roles in information, as intermediaries, is fraught with the same difficulties as in representational theories of mind. I have proposed an extension of logic to complex real phenomena, including mind and information (Logic in Reality; LIR, most recently at the 4th International Conference on the Foundations of Information Science (Beijing, August, 2010. LIR provides explanations for the evolution of complex processes, including information, that do not require any entities other than the processes themselves. In this paper, I discuss the limitations of the standard relation of representation. I argue that more realistic pictures of informational systems can be provided by reference to information as an energetic process, following the categorial ontology of LIR. This approach enables naïve, anti-realist conceptions of anti-representationalism to be avoided, and enables an approach to both information and meaning in the same novel logical framework.

  6. Conceptual Understanding and Representation Quality through Multi-representation Learning on Newton Law Content

    Directory of Open Access Journals (Sweden)

    Suci Furwati

    2017-08-01

    Full Text Available Abstract: Students who have good conceptual acquisition will be able to represent the concept by using multi representation. This study aims to determine the improvement of students' understanding of the concept of Newton's Law material, and the quality of representation used in solving problems on Newton's Law material. The results showed that the concept acquisition of students increased from the average of 35.32 to 78.97 with an effect size of 2.66 (strong and N-gain of 0.68 (medium. The quality of each type of student representation also increased from level 1 and level 2 up to level 3. Key Words: concept aquisition, represetation quality, multi representation learning, Newton’s Law Abstrak: Siswa yang memiliki penguasaan konsep yang baik akan mampu merepresentasikan konsep dengan menggunakan multi representasi. Penelitian ini bertujuan untuk mengetahui peningkatan pemahaman konsep siswa SMP pada materi Hukum Newton, dan kualitas representasi yang digunakan dalam menyelesaikan masalah pada materi Hukum Newton. Hasil penelitian menunjukkan bahwa penguasaan konsep siswa meningkat dari rata-rata 35,32 menjadi 78,97 dengan effect size sebesar 2,66 (kuat dan N-gain sebesar 0,68 (sedang. Kualitas tiap jenis representasi siswa juga mengalami peningkatan dari level 1 dan level 2 naik menjadi level 3. Kata kunci: hukum Newton, kualitas representasi, pemahaman konsep, pembelajaran multi representasi

  7. Representations of G+++ and the role of space-time

    International Nuclear Information System (INIS)

    Kleinschmidt, A.; West, P.

    2004-01-01

    We consider the decomposition of the adjoint and fundamental representations of very extended Kac-Moody algebras G+++ with respect to their regular A type subalgebra which, in the corresponding non-linear realisation, is associated with gravity. We find that for many very extended algebras almost all the A type representations that occur in the decomposition of the fundamental representations also occur in the adjoint representation of G+++ . In particular, for E 8 +++ , this applies to all its fundamental representations. However, there are some important examples, such as A N-3 +++ , where this is not true and indeed the adjoint representation contains no generator that can be identified with a space-time translation. We comment on the significance of these results for how space-time can occur in the non-linear realisation based on G+++ . Finally we show that there is a correspondence between the A representations that occur in the fundamental representation associated with the very extended node and the adjoint representation of G+++ which is consistent with the interpretation of the former as charges associated with brane solutions. (author)

  8. 48 CFR 2009.570-4 - Representation.

    Science.gov (United States)

    2010-10-01

    ... type required by the organizational conflicts of interest representation provisions has previously been... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Organizational Conflicts of Interest 2009.570-4 Representation... whether situations or relationships exist which may constitute organizational conflicts of interest with...

  9. Public Library Representations and Internet Appropriations

    Directory of Open Access Journals (Sweden)

    Paula Sequeiros

    2013-11-01

    Full Text Available May the changes in the representations of the public library be propitiated by readers' appropriations of the Internet? To answer this question, a theoretically-driven and empirically-based research was developed in a public library in Portugal, combining the analysis of documents uses, the ethnography of space and Internet use, of social relations developed while reading, with the analysis of representations of the public library. No clear-cut association emerged between social-demographics or user profiles, and representations, in general. No disruptive Internet "impact" was found: Internet use may contribute to reinforce traditional representations of the library, while it may also update and democratise other representations. If the library and the Internet are represented as synonymous, the former does not make sense without the latter; but an Internet widespread and intensive use conflicts with the image of an institution dedicated to high-brow culture. Changes in uses of the public library are, instead, clearly associated with new types of readers, which in their turn reflect changes in urban social composition. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1401141

  10. Coherent State Projection Operator Representation of Symplectic Transformations as a Loyal Representation of Symplectic Group

    Science.gov (United States)

    Fan, Hong-Yi; Chen, Jun-Hua

    2002-08-01

    We find that the coherent state projection operator representation of symplectic transformation constitutes a loyal group representation of symplectic group. The result of successively applying squeezing operators on number state can be easily derived. The project supported by National Natural Science Foundation of China under Grant No. 10575057 and the President Foundation of the Chinese Academy of Sciences

  11. The ARES High-level Intermediate Representation

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Nicholas David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The LLVM intermediate representation (IR) lacks semantic constructs for depicting common high-performance operations such as parallel and concurrent execution, communication and synchronization. Currently, representing such semantics in LLVM requires either extending the intermediate form (a signi cant undertaking) or the use of ad hoc indirect means such as encoding them as intrinsics and/or the use of metadata constructs. In this paper we discuss a work in progress to explore the design and implementation of a new compilation stage and associated high-level intermediate form that is placed between the abstract syntax tree and when it is lowered to LLVM's IR. This highlevel representation is a superset of LLVM IR and supports the direct representation of these common parallel computing constructs along with the infrastructure for supporting analysis and transformation passes on this representation.

  12. Diabatic and adiabatic representations for atomic collision processes

    International Nuclear Information System (INIS)

    Delos, J.B.; Thorson, W.R.

    1979-01-01

    A consistent general definition of diabatic representations has not previously been given, even though many practical examples of such representations have been constructed for specific problems. Such a definition is provided in this paper. Beginning with a classical trajectory formulation, we describe the form and behavior of velocity-dependent couplings in slow collisions, including the effects of electron-translation factors (ETF's). We compare the couplings arising from atomic representations and atomic ETF's with those arising from molecular representations and ''switching function'' ETF's. We show that a unique set of switching functions makes the two descriptions identical in their effects. We then show that an acceptable general definition of a diabatic representation is provided by the condition P+A=0, where P is the usual nonadiabatic coupling matrix and A represents corrections to it arising from electron translation factors (ETF's). Two distinct types of diabatic representation result, depending on the definition taken for A. States that undergo no deformation are called F diabatic; those that have no velocity-dependent couplings are called M diabatic. Finally, we discuss the properties of representations that are partially diabatic and partially adiabatic, and we give some rules for the construction of representations that should be nearly optimal for describing many types of collision processes

  13. Representations of Multiple-Valued Logic Functions

    CERN Document Server

    Stankovic, Radomir S

    2012-01-01

    Compared to binary switching functions, multiple-valued functions offer more compact representations of the information content of signals modeled by logic functions and, therefore, their use fits very well in the general settings of data compression attempts and approaches. The first task in dealing with such signals is to provide mathematical methods for their representation in a way that will make their application in practice feasible.Representation of Multiple-Valued Logic Functions is aimed at providing an accessible introduction to these mathematical techniques that are necessary for ap

  14. Death representation of caregivers in hospice.

    Science.gov (United States)

    Andruccioli, Jessica; Russo, Maria Maffia; Bruschi, Angela; Pedrabissi, Luigi; Sarti, Donatella; Monterubbianesi, Maria Cristina; Rossi, Sabina; Rocconi, Sabina; Raffaeli, William

    2012-11-01

    In this study, we investigated caregiver's death representation in hospice. The results presented here are a further analysis of the data collected in our previous study, concerning the evaluation of the caregiver in hospice. The data analysis of 24 caregivers of patients hospitalized in Rimini Hospice (Italy) underlined that caregivers avoiding death representation of the patient admitted to hospice had fewer protective factors (52.3%) and more risk factors (47.7%) than caregivers nonavoiding (66.5% and 33.5%, respectively). Caregivers avoiding death representation, moreover, experienced a greater distress (58%) than those nonavoiding (42%).

  15. Representation

    Science.gov (United States)

    2006-09-01

    two weeks to arrive. Source: http://beergame.mit.edu/ Permission Granted – MIT Supply Chain Forum 2005 Professor Sterman –Sloan School of...Management - MITSource: http://web.mit.edu/jsterman/www/ SDG /beergame.html Rules of Engagement The MIT Beer Game Simulation 04-04 Slide Number 10 Professor...Sterman –Sloan School of Management - MITSource: http://web.mit.edu/jsterman/www/ SDG /beergame.html What is the Significance of Representation

  16. Social representations of female orgasm.

    Science.gov (United States)

    Lavie-Ajayi, Maya; Joffe, Hélène

    2009-01-01

    This study examines women's social representations of female orgasm. Fifty semi-structured interviews were conducted with British women. The data were thematically analysed and compared with the content of female orgasm-related writing in two women's magazines over a 30-year period. The results indicate that orgasm is deemed the goal of sex with emphasis on its physiological dimension. However, the women and the magazines graft onto this scientifically driven representation the importance of relational and emotive aspects of orgasm. For the women, particularly those who experience themselves as having problems with orgasm, the scientifically driven representations induce feelings of failure, but are also resisted. The findings highlight the role played by the social context in women's subjective experience of their sexual health.

  17. Exploration of solids based on representation systems

    Directory of Open Access Journals (Sweden)

    Publio Suárez Sotomonte

    2011-01-01

    Full Text Available This article refers to some of the findings of a research project implemented as a teaching strategy to generate environments for the learning of platonic and archimedean solids, with a group of eighth grade students. This strategy was based on the meaningful learning approach and on the use of representation systems using the ontosemiotic approach in mathematical education, as a framework for the construction of mathematical concepts. This geometry teaching strategy adopts the stages of exploration, representation-modeling, formal construction and study of applications. It uses concrete, physical and tangible materials for origami, die making, and structures for the construction of threedimensional solids considered external tangible solid representation systems, as well as computer based educational tools to design dynamic geometry environments as intangible external representation systems.These strategies support both the imagination and internal systems of representation, fundamental to the comprehension of geometry concepts.

  18. Court representation in Russia before 1917 (historical aspect

    Directory of Open Access Journals (Sweden)

    Konstantin V. Ilyashenko

    2015-12-01

    Full Text Available Objective basing on the research and analysis of the legislation historical legal sources and other materials to study the process of formation and development of the institution of legal representation in Russia before 1917. Methods the theoretical basis of research is the works of Russian scientists on various aspects of formation development and functioning of the institution of legal representation in Russia from ancient times till 1917. The methodological basis of the research is general scientific methods historical formallogical system and general logical methods analysis synthesis induction and deduction synthesis analogy abstraction. Historicallegal formallegal logicallegal comparative legal methods were applied in the study. The author used the retrospective approach to the study of the issues of legal representation in Russia. Results basing on analysis of normative legal acts regulating relations in the sphere of judicial representation and various doctrinal sources the author has examined the process of the formation and development of the legal representation institution in Russia before 1917 raised the question of providing legal assistance in prerevolutionary Russia. An analogy is drawn between the prerevolutionary legal regulation of the legal representation institution and the modern legislation regulating this legal institution. The conclusion is made about the inadequacy of prerevolutionary legislation regulating relations in the sphere of judicial representation as well as the modern legal regulation of relations in this sphere. It is established that the judicial reform of 1864 improved regulation in this sphere but still did not solve all the problems in this area. The relevance of the study is due to the topicality and the constitutional importance of legal representation for the entire Russian society the need to examine the origins of this legal phenomenon as well as the fact that the institution of legal representation

  19. Uniformly bounded representations of the Lorentz groups

    International Nuclear Information System (INIS)

    Brega, A.O.

    1982-01-01

    For the Lorentz group G = SO/sub e/(n + 1, 1)(ngreater than or equal to 2) the author constructs a family of uniformly bounded representations by means of analytically continuing a certain normalization of the unitary principal series. The method the author uses relies on an analysis of various operators under a Mellin transform and extends earlier work of E.N. Wilson. In a series of papers Kunze and Stein initiated the theory of uniformly bounded representations of semisimple Lie groups; the starting point is the unitary principal series T(sigma,s) obtained in a certain subgroup M of G and a purely imaginary number s. From there Kunze and Stein constructed families of representations R(sigma,s) depending analytically on a parameter s in a domain D of C containing the imaginary axis which are unitarily equilvalent to T(sigma,s) for s contained in the set of imaginary numbers and whose operator norms are uniformly bounded for each s in D. In the case of the Lorentz groups SO/sub e/(n + 1, 1)(ngreater than or equal to2) and the trivial representation 1 of M, E.N. Wilson obtained such a family R(1,s) for the domain D = [s contained in the set of C: absolute value Re(s) Vertical Bar2]. For this domain D and for any representation sigma of M the author provides a family R(sigma,s) of uniformly bounded representations analytically continuing T(sigma,s), thereby generalizing Wilson's work. The author has also investigated certain symmetry properties of the representations R(sigma,s) under the action of the Weyl group. The trivial representation is Weyl group invariant and the family R(1,s) obtained by Wilson satisfies R(1,s) = R(1,-s) reflecting this. Obtained was the analogous result R(sigma,s) = R(sigma,-s) for some well known representations sigma that are Weyl group invariant. This involves the explicit computation of certain constants arising in the Fourier transforms of intertwining operators

  20. Octonionic matrix representation and electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Chanyal, B. C. [Kumaun University, S. S. J. Campus, Almora (India)

    2014-12-15

    Keeping in mind the important role of octonion algebra, we have obtained the electromagnetic field equations of dyons with an octonionic 8 x 8 matrix representation. In this paper, we consider the eight - dimensional octonionic space as a combination of two (external and internal) four-dimensional spaces for the existence of magnetic monopoles (dyons) in a higher-dimensional formalism. As such, we describe the octonion wave equations in terms of eight components from the 8 x 8 matrix representation. The octonion forms of the generalized potential, fields and current source of dyons in terms of 8 x 8 matrix are discussed in a consistent manner. Thus, we have obtained the generalized Dirac-Maxwell equations of dyons from an 8x8 matrix representation of the octonion wave equations in a compact and consistent manner. The generalized Dirac-Maxwell equations are fully symmetric Maxwell equations and allow for the possibility of magnetic charges and currents, analogous to electric charges and currents. Accordingly, we have obtained the octonionic Dirac wave equations in an external field from the matrix representation of the octonion-valued potentials of dyons.

  1. Additive and polynomial representations

    CERN Document Server

    Krantz, David H; Suppes, Patrick

    1971-01-01

    Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz

  2. On the spinor representation

    Energy Technology Data Exchange (ETDEWEB)

    Hoff da Silva, J.M.; Rogerio, R.J.B. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Villalobos, C.H.C. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil); Rocha, Roldao da [Universidade Federal do ABC-UFABC, Centro de Matematica, Computacao e Cognicao, Santo Andre (Brazil)

    2017-07-15

    A systematic study of the spinor representation by means of the fermionic physical space is accomplished and implemented. The spinor representation space is shown to be constrained by the Fierz-Pauli-Kofink identities among the spinor bilinear covariants. A robust geometric and topological structure can be manifested from the spinor space, wherein the first and second homotopy groups play prominent roles on the underlying physical properties, associated to fermionic fields. The mapping that changes spinor fields classes is then exemplified, in an Einstein-Dirac system that provides the spacetime generated by a fermion. (orig.)

  3. Special functions and the theory of group representations

    CERN Document Server

    Vilenkin, N Ja

    1968-01-01

    A standard scheme for a relation between special functions and group representation theory is the following: certain classes of special functions are interpreted as matrix elements of irreducible representations of a certain Lie group, and then properties of special functions are related to (and derived from) simple well-known facts of representation theory. The book combines the majority of known results in this direction. In particular, the author describes connections between the exponential functions and the additive group of real numbers (Fourier analysis), Legendre and Jacobi polynomials and representations of the group SU(2), and the hypergeometric function and representations of the group SL(2,R), as well as many other classes of special functions.

  4. The Interaction between Semantic Representation and Episodic Memory.

    Science.gov (United States)

    Fang, Jing; Rüther, Naima; Bellebaum, Christian; Wiskott, Laurenz; Cheng, Sen

    2018-02-01

    The experimental evidence on the interrelation between episodic memory and semantic memory is inconclusive. Are they independent systems, different aspects of a single system, or separate but strongly interacting systems? Here, we propose a computational role for the interaction between the semantic and episodic systems that might help resolve this debate. We hypothesize that episodic memories are represented as sequences of activation patterns. These patterns are the output of a semantic representational network that compresses the high-dimensional sensory input. We show quantitatively that the accuracy of episodic memory crucially depends on the quality of the semantic representation. We compare two types of semantic representations: appropriate representations, which means that the representation is used to store input sequences that are of the same type as those that it was trained on, and inappropriate representations, which means that stored inputs differ from the training data. Retrieval accuracy is higher for appropriate representations because the encoded sequences are less divergent than those encoded with inappropriate representations. Consistent with our model prediction, we found that human subjects remember some aspects of episodes significantly more accurately if they had previously been familiarized with the objects occurring in the episode, as compared to episodes involving unfamiliar objects. We thus conclude that the interaction with the semantic system plays an important role for episodic memory.

  5. Geometric Representations for Discrete Fourier Transforms

    Science.gov (United States)

    Cambell, C. W.

    1986-01-01

    Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.

  6. Computer simulation as representation of knowledge in education

    International Nuclear Information System (INIS)

    Krekic, Valerija Pinter; Namestovski, Zolt

    2009-01-01

    According to Aebli's operative method (1963) and Bruner's (1974) theory of representation the development of the process of thinking in teaching has the following phases - levels of abstraction: manipulation with specific things (specific phase), iconic representation (figural phase), symbolic representation (symbolic phase). Modern information technology has contributed to the enrichment of teaching and learning processes, especially in the fields of natural sciences and mathematics and those of production and technology. Simulation appears as a new possibility in the representation of knowledge. According to Guetzkow (1972) simulation is an operative representation of reality from a relevant aspect. It is about a model of an objective system, which is dynamic in itself. If that model is material it is a simple simulation, if it is abstract it is a reflective experiment, that is a computer simulation. This present work deals with the systematization and classification of simulation methods in the teaching of natural sciences and mathematics and of production and technology with special retrospective view on computer simulations and exemplar representation of the place and the role of this modern method of cognition. Key words: Representation of knowledge, modeling, simulation, education

  7. Inequivalent coherent state representations in group field theory

    Science.gov (United States)

    Kegeles, Alexander; Oriti, Daniele; Tomlin, Casey

    2018-06-01

    In this paper we propose an algebraic formulation of group field theory and consider non-Fock representations based on coherent states. We show that we can construct representations with an infinite number of degrees of freedom on compact manifolds. We also show that these representations break translation symmetry. Since such representations can be regarded as quantum gravitational systems with an infinite number of fundamental pre-geometric building blocks, they may be more suitable for the description of effective geometrical phases of the theory.

  8. Social representation of the kinesiotherapist profession

    Directory of Open Access Journals (Sweden)

    Beatrice ABALAŞE

    2017-03-01

    Full Text Available The scientific approach is focused on identifying the social representation of the profession of physical therapist referring to mental images of social reality to a group consensus meeting. The goal of research identifies social representation of the profession of physical therapist, on the premise that students of the Faculty of Physical Education and Sport have made a social representation of the profession of physical therapist in accordance with the description of the occupation of COR. Working method was based on the questionnaire. Interpretation of results, the first two items of the questionnaire was done through word association technique, developed by P. Verges (1 and an alternative method for determining the structure and organization of elements representation proposed by. C. Havârneanu (2. Qualitative analysis reveals that students’ specialization Physical Therapy and Special Motricity believes that a therapist uses therapy as a strategy to work, and it must be applied professionally. Respondents considered, as shown in the data collected, that this profession is subject to skills, education, cognitive baggage, all sending to knowledge, experience and passion. The core refers to the complex representation obtained thanks cognitive process by which individuals or groups in familiar transforms abstract and it integrates knowledge of their system.

  9. Representations and Relations

    Czech Academy of Sciences Publication Activity Database

    Koťátko, Petr

    2014-01-01

    Roč. 21, č. 3 (2014), s. 282-302 ISSN 1335-0668 Institutional support: RVO:67985955 Keywords : representation * proposition * truth-conditions * belief-ascriptions * reference * externalism * fiction Subject RIV: AA - Philosophy ; Religion

  10. How initial representations shape coupled learning processes

    DEFF Research Database (Denmark)

    Puranam, Phanish; Swamy, M.

    2016-01-01

    Coupled learning processes, in which specialists from different domains learn how to make interdependent choices among alternatives, are common in organizations. We explore the role played by initial representations held by the learners in coupled learning processes using a formal agent-based model....... We find that initial representations have important consequences for the success of the coupled learning process, particularly when communication is constrained and individual rates of learning are high. Under these conditions, initial representations that generate incorrect beliefs can outperform...... one that does not discriminate among alternatives, or even a mix of correct and incorrect representations among the learners. We draw implications for the design of coupled learning processes in organizations. © 2016 INFORMS....

  11. Technology Focus: Multi-Representational Approaches to Equation Solving

    Science.gov (United States)

    Garofalo, Joe; Trinter, Christine

    2009-01-01

    Most mathematical functions can be represented in numerous ways. The main representations typically addressed in school, often referred to as "the big three," are graphical, algebraic, and numerical representations, but there are others as well (e.g., diagrams, words, simulations). These different types of representations "often illuminate…

  12. Integral Representations of the Catalan Numbers and Their Applications

    Directory of Open Access Journals (Sweden)

    Feng Qi

    2017-08-01

    Full Text Available In the paper, the authors survey integral representations of the Catalan numbers and the Catalan–Qi function, discuss equivalent relations between these integral representations, supply alternative and new proofs of several integral representations, collect applications of some integral representations, and present sums of several power series whose coefficients involve the Catalan numbers.

  13. Improving Representational Competence with Concrete Models

    Science.gov (United States)

    Stieff, Mike; Scopelitis, Stephanie; Lira, Matthew E.; DeSutter, Dane

    2016-01-01

    Representational competence is a primary contributor to student learning in science, technology, engineering, and math (STEM) disciplines and an optimal target for instruction at all educational levels. We describe the design and implementation of a learning activity that uses concrete models to improve students' representational competence and…

  14. Connectivity in the regular polytope representation

    NARCIS (Netherlands)

    Thompson, R.J.; Van Oosterom, P.J.M.

    2009-01-01

    In order to be able to draw inferences about real world phenomena from a representation expressed in a digital computer, it is essential that the representation should have a rigorously correct algebraic structure. It is also desirable that the underlying algebra be familiar, and provide a close

  15. Dynamic representations on the interactive whiteboard

    NARCIS (Netherlands)

    van der Meij, Hans; van der Meij, Jan; de Vries, Erica; Scheiter, Katharina

    2012-01-01

    In this study we assessed whether presenting dynamic representations on an IWB would lead to better learning gains compared to presenting static representations. Participants were 7-8 year old primary school children learning about views (N = 151) and the water cycle (N = 182). The results showed

  16. ON REGRESSION REPRESENTATIONS OF STOCHASTIC-PROCESSES

    NARCIS (Netherlands)

    RUSCHENDORF, L; DEVALK, [No Value

    We construct a.s. nonlinear regression representations of general stochastic processes (X(n))n is-an-element-of N. As a consequence we obtain in particular special regression representations of Markov chains and of certain m-dependent sequences. For m-dependent sequences we obtain a constructive

  17. Coordinate, Momentum and Dispersion operators in Phase space representation

    International Nuclear Information System (INIS)

    Rakotoson, H.; Raoelina Andriambololona; Ranaivoson, R.T.R.; Raboanary, R.

    2017-07-01

    The aim of this paper is to present a study on the representations of coordinate, momentum and dispersion operators in the framework of a phase space representation of quantum mechanics that we have introduced and studied in previous works. We begin in the introduction section with a recall about the concept of representation of operators on wave function spaces. Then, we show that in the case of the phase space representation the coordinate and momentum operators can be represented either with differential operators or with matrices. The explicit expressions of both the differential operators and matrices representations are established. Multidimensional generalization of the obtained results are performed and phase space representation of dispersion operators are given.

  18. Violence against women: adolescents’ social representations

    Directory of Open Access Journals (Sweden)

    Ana Márcia de Almeida Rezende

    2018-02-01

    Full Text Available Violence against women in affectionate intimate relationships is a serious problem that causes damages to its victims. In the social imaginary there are ways of thinking and representations that tend to trivialize this type of violence, considering it a natural practice. In this sense, this article brings a study that aimed to know the social representations elaborated by adolescents on violence against women in affectionate relationships. Data were collected through a semi-structured interview conducted with 22 adolescents, and analyzed through the content analysis technique (BARDIN, 2011. The results revealed that the adolescents represent violence against women objectified in an everyday phenomenon, which happens even in their families. They have also elaborated social representations anchored in patriarchy, in which men use violence as means to dominate partners. It was observed the need for preventive work that would make adolescents aware of patriarchal ideologies present in the society, helping them to construct social representations based on respect and gender equity.

  19. Paired structures in knowledge representation

    DEFF Research Database (Denmark)

    Montero, J.; Bustince, H.; Franco de los Ríos, Camilo

    2016-01-01

    In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here...... of the relationships between several existing knowledge representation formalisms, providing a basis from which more expressive models can be later developed....

  20. Analytical properties and behaviour of scattering amplitude at high energies in the localizable quantum field theory

    International Nuclear Information System (INIS)

    Lazur, V.Yu.; Khimich, I.V.

    1977-01-01

    Analytical properties of the elastic πN-scattering amplitude in in the cos THETA are proved in the Lehmann ellipse. The instrument for establishing analytical properties of the scattering amplitude in the cos THETA is the Jost-Lehmann-Dyson integral representation proved in terms of the localizable quantum field theory containing the strictly localizable theory and theory of moderate growth as particular cases. On this basis the Greenberg-Low restriction is obtained in frames of this class theories for the πN-scattering amplitude. This result gives a possibility to prove the ordinary dispersion relations with a finite number of subtraction in frames of the localizable quantum field theory

  1. Behavior of the S parameter in the crossover region between walking and QCD-like regimes of an SU(N) gauge theory

    International Nuclear Information System (INIS)

    Kurachi, Masafumi; Shrock, Robert

    2006-01-01

    We consider a vectorial, confining SU(N) gauge theory with a variable number, N f , of massless fermions transforming according to the fundamental representation. Using the Schwinger-Dyson and Bethe-Salpeter equations, we calculate the S parameter in terms of the current-current correlation functions. We focus on values of N f such that the theory is in the crossover region between the regimes of walking behavior and QCD-like (nonwalking) behavior. Our calculations indicate that the contribution to S from a given fermion decreases as one moves from the QCD-like to the walking regimes. The implications of this result for technicolor theories are discussed

  2. Weighted Discriminative Dictionary Learning based on Low-rank Representation

    International Nuclear Information System (INIS)

    Chang, Heyou; Zheng, Hao

    2017-01-01

    Low-rank representation has been widely used in the field of pattern classification, especially when both training and testing images are corrupted with large noise. Dictionary plays an important role in low-rank representation. With respect to the semantic dictionary, the optimal representation matrix should be block-diagonal. However, traditional low-rank representation based dictionary learning methods cannot effectively exploit the discriminative information between data and dictionary. To address this problem, this paper proposed weighted discriminative dictionary learning based on low-rank representation, where a weighted representation regularization term is constructed. The regularization associates label information of both training samples and dictionary atoms, and encourages to generate a discriminative representation with class-wise block-diagonal structure, which can further improve the classification performance where both training and testing images are corrupted with large noise. Experimental results demonstrate advantages of the proposed method over the state-of-the-art methods. (paper)

  3. Numerical Magnitude Representations Influence Arithmetic Learning

    Science.gov (United States)

    Booth, Julie L.; Siegler, Robert S.

    2008-01-01

    This study examined whether the quality of first graders' (mean age = 7.2 years) numerical magnitude representations is correlated with, predictive of, and causally related to their arithmetic learning. The children's pretest numerical magnitude representations were found to be correlated with their pretest arithmetic knowledge and to be…

  4. Representations of the Magnitudes of Fractions

    Science.gov (United States)

    Schneider, Michael; Siegler, Robert S.

    2010-01-01

    We tested whether adults can use integrated, analog, magnitude representations to compare the values of fractions. The only previous study on this question concluded that even college students cannot form such representations and instead compare fraction magnitudes by representing numerators and denominators as separate whole numbers. However,…

  5. A Possible Neural Representation of Mathematical Group Structures.

    Science.gov (United States)

    Pomi, Andrés

    2016-09-01

    Every cognitive activity has a neural representation in the brain. When humans deal with abstract mathematical structures, for instance finite groups, certain patterns of activity are occurring in the brain that constitute their neural representation. A formal neurocognitive theory must account for all the activities developed by our brain and provide a possible neural representation for them. Associative memories are neural network models that have a good chance of achieving a universal representation of cognitive phenomena. In this work, we present a possible neural representation of mathematical group structures based on associative memory models that store finite groups through their Cayley graphs. A context-dependent associative memory stores the transitions between elements of the group when multiplied by each generator of a given presentation of the group. Under a convenient election of the vector basis mapping the elements of the group in the neural activity, the input of a vector corresponding to a generator of the group collapses the context-dependent rectangular matrix into a virtual square permutation matrix that is the matrix representation of the generator. This neural representation corresponds to the regular representation of the group, in which to each element is assigned a permutation matrix. This action of the generator on the memory matrix can also be seen as the dissection of the corresponding monochromatic subgraph of the Cayley graph of the group, and the adjacency matrix of this subgraph is the permutation matrix corresponding to the generator.

  6. Teaching with Concrete and Abstract Visual Representations: Effects on Students' Problem Solving, Problem Representations, and Learning Perceptions

    Science.gov (United States)

    Moreno, Roxana; Ozogul, Gamze; Reisslein, Martin

    2011-01-01

    In 3 experiments, we examined the effects of using concrete and/or abstract visual problem representations during instruction on students' problem-solving practice, near transfer, problem representations, and learning perceptions. In Experiments 1 and 2, novice students learned about electrical circuit analysis with an instructional program that…

  7. Visual representation of spatiotemporal structure

    Science.gov (United States)

    Schill, Kerstin; Zetzsche, Christoph; Brauer, Wilfried; Eisenkolb, A.; Musto, A.

    1998-07-01

    The processing and representation of motion information is addressed from an integrated perspective comprising low- level signal processing properties as well as higher-level cognitive aspects. For the low-level processing of motion information we argue that a fundamental requirement is the existence of a spatio-temporal memory. Its key feature, the provision of an orthogonal relation between external time and its internal representation, is achieved by a mapping of temporal structure into a locally distributed activity distribution accessible in parallel by higher-level processing stages. This leads to a reinterpretation of the classical concept of `iconic memory' and resolves inconsistencies on ultra-short-time processing and visual masking. The spatial-temporal memory is further investigated by experiments on the perception of spatio-temporal patterns. Results on the direction discrimination of motion paths provide evidence that information about direction and location are not processed and represented independent of each other. This suggests a unified representation on an early level, in the sense that motion information is internally available in form of a spatio-temporal compound. For the higher-level representation we have developed a formal framework for the qualitative description of courses of motion that may occur with moving objects.

  8. A representation independent propagator. Pt. 1. Compact Lie groups

    International Nuclear Information System (INIS)

    Tome, W.A.

    1995-01-01

    Conventional path integral expressions for propagators are representation dependent. Rather than having to adapt each propagator to the representation in question, it is shown that for compact Lie groups it is possible to introduce a propagator that is representation independent. For a given set of kinematical variables this propagator is a single function independent of any particular choice of fiducial vector, which monetheless, correctly propagates each element of the coherent state representation associated with these kinematical variables. Although the configuration space is in general curved, nevertheless the lattice phase-space path integral for the representation independent propagator has the form appropriate to flat space. To illustrate the general theory a representation independent propagator is explicitly constructed for the Lie group SU(2). (orig.)

  9. The heterogeneity of mental representation: Ending the imagery debate.

    Science.gov (United States)

    Pearson, Joel; Kosslyn, Stephen M

    2015-08-18

    The possible ways that information can be represented mentally have been discussed often over the past thousand years. However, this issue could not be addressed rigorously until late in the 20th century. Initial empirical findings spurred a debate about the heterogeneity of mental representation: Is all information stored in propositional, language-like, symbolic internal representations, or can humans use at least two different types of representations (and possibly many more)? Here, in historical context, we describe recent evidence that humans do not always rely on propositional internal representations but, instead, can also rely on at least one other format: depictive representation. We propose that the debate should now move on to characterizing all of the different forms of human mental representation.

  10. Naturalising Representational Content

    Science.gov (United States)

    Shea, Nicholas

    2014-01-01

    This paper sets out a view about the explanatory role of representational content and advocates one approach to naturalising content – to giving a naturalistic account of what makes an entity a representation and in virtue of what it has the content it does. It argues for pluralism about the metaphysics of content and suggests that a good strategy is to ask the content question with respect to a variety of predictively successful information processing models in experimental psychology and cognitive neuroscience; and hence that data from psychology and cognitive neuroscience should play a greater role in theorising about the nature of content. Finally, the contours of the view are illustrated by drawing out and defending a surprising consequence: that individuation of vehicles of content is partly externalist. PMID:24563661

  11. Drawings as Representations of Children's Conceptions

    Science.gov (United States)

    Ehrlen, Karin

    2009-01-01

    Drawings are often used to obtain an idea of children's conceptions. Doing so takes for granted an unambiguous relation between conceptions and their representations in drawings. This study was undertaken to gain knowledge of the relation between children's conceptions and their representation of these conceptions in drawings. A theory of…

  12. Student Teachers' Knowledge about Chemical Representations

    Science.gov (United States)

    Taskin, Vahide; Bernholt, Sascha; Parchmann, Ilka

    2017-01-01

    Chemical representations serve as a communication tool not only in exchanges between scientists but also in chemistry lessons. The goals of the present study were to measure the extent of student teachers' knowledge about chemical representations, focusing on chemical formulae and structures in particular, and to explore which factors related to…

  13. Knowledge representation and use. II. Representations

    Energy Technology Data Exchange (ETDEWEB)

    Lauriere, J L

    1982-03-01

    The use of computers is less and less restricted to numerical and data processing. On the other hand, current software mostly contains algorithms on universes with complete information. The paper discusses a different family of programs: expert systems are designed as aids in human reasoning in various specific areas. Symbolic knowledge manipulation, uncertain and incomplete deduction capabilities, natural communication with humans in non-procedural ways are their essential features. This part is mainly a reflection and a debate about the various modes of acquisition and representation of human knowledge. 32 references.

  14. Non-commutative flux representation for loop quantum gravity

    Science.gov (United States)

    Baratin, A.; Dittrich, B.; Oriti, D.; Tambornino, J.

    2011-09-01

    The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by sstarf-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.

  15. Representational momentum in memory for pitch.

    Science.gov (United States)

    Freyd, J J; Kelly, M H; DeKay, M L

    1990-11-01

    When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.

  16. In defense of abstract conceptual representations.

    Science.gov (United States)

    Binder, Jeffrey R

    2016-08-01

    An extensive program of research in the past 2 decades has focused on the role of modal sensory, motor, and affective brain systems in storing and retrieving concept knowledge. This focus has led in some circles to an underestimation of the need for more abstract, supramodal conceptual representations in semantic cognition. Evidence for supramodal processing comes from neuroimaging work documenting a large, well-defined cortical network that responds to meaningful stimuli regardless of modal content. The nodes in this network correspond to high-level "convergence zones" that receive broadly crossmodal input and presumably process crossmodal conjunctions. It is proposed that highly conjunctive representations are needed for several critical functions, including capturing conceptual similarity structure, enabling thematic associative relationships independent of conceptual similarity, and providing efficient "chunking" of concept representations for a range of higher order tasks that require concepts to be configured as situations. These hypothesized functions account for a wide range of neuroimaging results showing modulation of the supramodal convergence zone network by associative strength, lexicality, familiarity, imageability, frequency, and semantic compositionality. The evidence supports a hierarchical model of knowledge representation in which modal systems provide a mechanism for concept acquisition and serve to ground individual concepts in external reality, whereas broadly conjunctive, supramodal representations play an equally important role in concept association and situation knowledge.

  17. Personal neglect-a disorder of body representation?

    Science.gov (United States)

    Baas, Ulrike; de Haan, Bianca; Grässli, Tanja; Karnath, Hans-Otto; Mueri, René; Perrig, Walter J; Wurtz, Pascal; Gutbrod, Klemens

    2011-04-01

    The cognitive mechanisms underlying personal neglect are not well known. One theory postulates that personal neglect is due to a disorder of contralesional body representation. In the present study, we have investigated whether personal neglect is best explained by impairments in the representation of the contralesional side of the body, in particular, or a dysfunction of the mental representation of the contralesional space in general. For this, 22 patients with right hemisphere cerebral lesions (7 with personal neglect, 15 without personal neglect) and 13 healthy controls have been studied using two experimental tasks measuring representation of the body and extrapersonal space. In the tasks, photographs of left and right hands as well as left and right rear-view mirrors presented from the front and the back had to be judged as left or right. Our results show that patients with personal neglect made more errors when asked to judge stimuli of left hands and left rear-view mirrors than either patients without personal neglect or healthy controls. Furthermore, regression analyses indicated that errors in interpreting left hands were the best predictor of personal neglect, while other variables such as extrapersonal neglect, somatosensory or motor impairments, or deficits in left extrapersonal space representation had no predictive value of personal neglect. These findings suggest that deficient body representation is the major mechanism underlying personal neglect. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Supervised Filter Learning for Representation Based Face Recognition.

    Directory of Open Access Journals (Sweden)

    Chao Bi

    Full Text Available Representation based classification methods, such as Sparse Representation Classification (SRC and Linear Regression Classification (LRC have been developed for face recognition problem successfully. However, most of these methods use the original face images without any preprocessing for recognition. Thus, their performances may be affected by some problematic factors (such as illumination and expression variances in the face images. In order to overcome this limitation, a novel supervised filter learning algorithm is proposed for representation based face recognition in this paper. The underlying idea of our algorithm is to learn a filter so that the within-class representation residuals of the faces' Local Binary Pattern (LBP features are minimized and the between-class representation residuals of the faces' LBP features are maximized. Therefore, the LBP features of filtered face images are more discriminative for representation based classifiers. Furthermore, we also extend our algorithm for heterogeneous face recognition problem. Extensive experiments are carried out on five databases and the experimental results verify the efficacy of the proposed algorithm.

  19. An Axiomatic Representation of System Dynamics

    CERN Document Server

    Baianu, I

    2004-01-01

    An axiomatic representation of system dynamics is introduced in terms of categories, functors, organismal supercategories, limits and colimits of diagrams. Specific examples are considered in Complex Systems Biology, such as ribosome biogenesis and Hormonal Control in human subjects. "Fuzzy" Relational Structures are also proposed for flexible representations of biological system dynamics and organization.

  20. Power, privilege and disadvantage: Intersectionality theory and political representation

    Directory of Open Access Journals (Sweden)

    Eline Severs

    2017-06-01

    Full Text Available This article critically reviews the extant literature on social group representation and clarifies the advantages of intersectionality theory for studying political representation. It argues that the merit of intersectionality theory can be found in its ontology of power. Intersectionality theory is founded on a relational conception of political power that locates the constitution of power relations within social interactions, such as political representation. As such, intersectionality theory pushes scholarship beyond studying representation inequalities —that are linked to presumably stable societal positions— to also consider the ways in which political representation (recreates positions of privilege and disadvantage.

  1. Discrimination and the aim of proportional representation

    DEFF Research Database (Denmark)

    Lippert-Rasmussen, Kasper

    2008-01-01

    Many organizations, companies, and so on are committed to certain representational aims as regards the composition of their workforce. One motivation for such aims is the assumption that numerical underrepresentation of groups manifests discrimination against them. In this article, I articulate...... representational aims in a way that best captures this rationale. My main claim is that the achievement of such representational aims is reducible to the elimination of the effects of wrongful discrimination on individuals and that this very important concern is, in principle, compatible with the representation...... of discrimination against numerically overrepresented groups, or overlook the innocently different ambitions of some numerically underrepresented groups. In relation to the latter point, I appeal to the fact that many luck egalitarians think justice should be ambition sensitive (but endowment insensitive). Also...

  2. Representations of Disability: School and Its Cultural Effects

    Science.gov (United States)

    Medeghini, Roberto; Fornasa, Walter; Vadalà, Giuseppe

    School plays a significant role in cultural production where representations of difference and disability are very important: educational and pedagogical practices (implicit and explicit) help to form cultural and social representations of the world and, consequently, to confirm some stereotypes too. In this regard the study of social representations linked in with disability assumes some importance: in fact disability becomes a difference excluded from educational and social dynamics as well as from full participation in citizenship. This research will try to draw some dominant social representations about differences and disability, through analysis of young university students stories and memories.

  3. Functional representations of integrable hierarchies

    International Nuclear Information System (INIS)

    Dimakis, Aristophanes; Mueller-Hoissen, Folkert

    2006-01-01

    We consider a general framework for integrable hierarchies in Lax form and derive certain universal equations from which 'functional representations' of particular hierarchies (such as KP, discrete KP, mKP, AKNS), i.e. formulations in terms of functional equations, are systematically and quite easily obtained. The formalism genuinely applies to hierarchies where the dependent variables live in a noncommutative (typically matrix) algebra. The obtained functional representations can be understood as 'noncommutative' analogues of 'Fay identities' for the KP hierarchy

  4. Phase space representations for spin23

    International Nuclear Information System (INIS)

    Polubarinov, I.V.

    1991-01-01

    General properties of spin matrices and density ones are considered for any spin s. For spin 2 3 phase space representations are constructed. Representations, similar to the Bell one, for the correlator of projections of two spins 2 3 in the singlet state are found. Quantum analogs of the Bell inequality are obtained. 14 refs

  5. Preon representations and composite models

    International Nuclear Information System (INIS)

    Kang, Kyungsik

    1982-01-01

    This is a brief report on the preon models which are investigated by In-Gyu Koh, A. N. Schellekens and myself and based on complex, anomaly-free and asymptotically free representations of SU(3) to SU(8), SO(4N+2) and E 6 with no more than two different preons. Complete list of the representations that are complex anomaly-free and asymptotically free has been given by E. Eichten, I.-G. Koh and myself. The assumptions made about the ground state composites and the role of Fermi statistics to determine the metaflavor wave functions are discussed in some detail. We explain the method of decompositions of tensor products with definite permutation properties which has been developed for this purpose by I.-G. Koh, A.N. Schellekens and myself. An example based on an anomaly-free representation of the confining metacolor group SU(5) is discussed

  6. An introduction to quiver representations

    CERN Document Server

    Derksen, Harm

    2017-01-01

    This book is an introduction to the representation theory of quivers and finite dimensional algebras. It gives a thorough and modern treatment of the algebraic approach based on Auslander-Reiten theory as well as the approach based on geometric invariant theory. The material in the opening chapters is developed starting slowly with topics such as homological algebra, Morita equivalence, and Gabriel's theorem. Next, the book presents Auslander-Reiten theory, including almost split sequences and the Auslander-Reiten transform, and gives a proof of Kac's generalization of Gabriel's theorem. Once this basic material is established, the book goes on with developing the geometric invariant theory of quiver representations. The book features the exposition of the saturation theorem for semi-invariants of quiver representations and its application to Littlewood-Richardson coefficients. In the final chapters, the book exposes tilting modules, exceptional sequences and a connection to cluster categories. The book is su...

  7. Vivid Representations and Their Effects

    Directory of Open Access Journals (Sweden)

    Kengo Miyazono

    2018-04-01

    Full Text Available Sinhababu’s Humean Nature contains many interesting and important ideas, but in this short commentary I focus on the idea of vivid representations. Sinhababu inherits his idea of vivid representations from Hume’s discussions, in particular his discussion of calm and violent passions. I am sympathetic to the idea of developing Hume’s insight that has been largely neglected by philosophers. I believe that Sinhababu and Hume are on the right track. What I do in this short commentary is to raise some questions about the details. The aim of asking these questions is not to challenge Sinhababu’s proposal (at least his main ideas, but rather to point at some interesting issues arising out of his proposal. The questions are about (1 the nature of vividness, (2 the effects of vivid representations, and (3 Sinhababu’s account of alief cases.

  8. SLE local martingales in logarithmic representations

    International Nuclear Information System (INIS)

    Kytölä, Kalle

    2009-01-01

    A space of local martingales of SLE-type growth processes forms a representation of Virasoro algebra, but apart from a few simplest cases, not much is known about this representation. The purpose of this paper is to exhibit examples of representations where L 0 is not diagonalizable—a phenomenon characteristic of logarithmic conformal field theory. Furthermore, we observe that the local martingales bear a close relation to the fusion product of the boundary changing fields. Our examples reproduce first of all many familiar logarithmic representations at certain rational values of the central charge. In particular we discuss the case of SLE κ=6 describing the exploration path in critical percolation and its relation to the question of operator content of the appropriate conformal field theory of zero central charge. In this case one encounters logarithms in a probabilistically transparent way, through conditioning on a crossing event. But we also observe that some quite natural SLE variants exhibit logarithmic behavior at all values of κ, thus at all central charges and not only at specific rational values

  9. Majority members' feelings about political representation of muslim immigrants

    NARCIS (Netherlands)

    Verkuyten, Maykel; Hindriks, Paul; Coenders, Marcel

    2016-01-01

    In three survey experimental studies among national samples of the native Dutch, we examined feelings towards Muslim immigrants' political party representation. The strategy of disengagement (reject political representation) was evaluated most positively, followed by the descriptive representation

  10. On the equivalence of GPD representations

    International Nuclear Information System (INIS)

    Müller, Dieter; Semenov-Tian-Shansky, Kirill

    2016-01-01

    Phenomenological representations of generalized parton distributions (GPDs) implementing the non-trivial field theoretical requirements are employed in the present day strategies for extracting of hadron structure information encoded in GPDs from the observables of hard exclusive reactions. Showing out the equivalence of various GPD representations can help to get more insight into GPD properties and allow to build up flexible GPD models capable of satisfactory description of the whole set of available experimental data. Below we review the mathematical aspects of establishing equivalence between the the double partial wave expansion of GPDs in the conformal partial waves and in the t-channel SO(3) partial waves and the double distribution representation of GPDs

  11. Understanding as Integration of Heterogeneous Representations

    Science.gov (United States)

    Martínez, Sergio F.

    2014-03-01

    The search for understanding is a major aim of science. Traditionally, understanding has been undervalued in the philosophy of science because of its psychological underpinnings; nowadays, however, it is widely recognized that epistemology cannot be divorced from psychology as sharp as traditional epistemology required. This eliminates the main obstacle to give scientific understanding due attention in philosophy of science. My aim in this paper is to describe an account of scientific understanding as an emergent feature of our mastering of different (causal) explanatory frameworks that takes place through the mastering of scientific practices. Different practices lead to different kinds of representations. Such representations are often heterogeneous. The integration of such representations constitute understanding.

  12. Constructing visual representations

    DEFF Research Database (Denmark)

    Huron, Samuel; Jansen, Yvonne; Carpendale, Sheelagh

    2014-01-01

    tangible building blocks. We learned that all participants, most of whom had little experience in visualization authoring, were readily able to create and talk about their own visualizations. Based on our observations, we discuss participants’ actions during the development of their visual representations......The accessibility of infovis authoring tools to a wide audience has been identified as a major research challenge. A key task in the authoring process is the development of visual mappings. While the infovis community has long been deeply interested in finding effective visual mappings......, comparatively little attention has been placed on how people construct visual mappings. In this paper, we present the results of a study designed to shed light on how people transform data into visual representations. We asked people to create, update and explain their own information visualizations using only...

  13. Superalgebras, their quantum deformations and the induced representation method

    International Nuclear Information System (INIS)

    Nguyen Anh Ky.

    1996-08-01

    In this paper some introductory concepts and basic definitions of the Lie superalgebras and their quantum deformations are exposed. Especially the induced representation methods in both cases are described. Up to now, based on the Kac representation theory we have succeeded in constructing representations of several higher rank superalgebras. When representations of quantum superalgebras are concerned, we develop a method which can be applied not only to the one-parametric quantum deformations but also to the multi-parametric ones. Here, being illustrations of the above-mentioned methods, the superalgebra gl(2/1) and its (one-parametric) quantum deformation U q [gl(2/1)] are considered as their finite-dimensional representations are investigated in detail and constructed explicitly. Also, it is shown that the finite-dimensional representations obtained constitute classes of all irreducible (typical and non-typical) finite-dimensional representations of gl(2/1) and U q [gl(2/1)]. Some of the detailed results may be simple but they are given for the first time. (author). 64 refs

  14. Bridge: Intelligent Tutoring with Intermediate Representations

    Science.gov (United States)

    1988-05-01

    Research and Development Center and Psychology Department University of Pittsburgh Pittsburgh, PA. 15260 The Artificial Intelligence and Psychology...problem never introduces more than one unfamiliar plan. Inteligent Tutoring With Intermediate Representations - Bonar and Cunniigbam 4 You must have a... Inteligent Tutoring With ntermediate Representations - Bonar and Cunningham 7 The requirements are specified at four differcnt levels, corresponding to

  15. Usage of semantic representations in recognition memory.

    Science.gov (United States)

    Nishiyama, Ryoji; Hirano, Tetsuji; Ukita, Jun

    2017-11-01

    Meanings of words facilitate false acceptance as well as correct rejection of lures in recognition memory tests, depending on the experimental context. This suggests that semantic representations are both directly and indirectly (i.e., mediated by perceptual representations) used in remembering. Studies using memory conjunction errors (MCEs) paradigms, in which the lures consist of component parts of studied words, have reported semantic facilitation of rejection of the lures. However, attending to components of the lures could potentially cause this. Therefore, we investigated whether semantic overlap of lures facilitates MCEs using Japanese Kanji words in which a whole-word image is more concerned in reading. Experiments demonstrated semantic facilitation of MCEs in a delayed recognition test (Experiment 1), and in immediate recognition tests in which participants were prevented from using phonological or orthographic representations (Experiment 2), and the salient effect on individuals with high semantic memory capacities (Experiment 3). Additionally, analysis of the receiver operating characteristic suggested that this effect is attributed to familiarity-based memory judgement and phantom recollection. These findings indicate that semantic representations can be directly used in remembering, even when perceptual representations of studied words are available.

  16. Poincaré Embeddings for Learning Hierarchical Representations

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Abstracts: Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, while complex symbolic datasets often exhibit a latent hierarchical structure, state-of-the-art methods typically do not account for this property. In this talk, I will discuss a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an n-dimensional Poincaré ball. Due to the underlying hyperbolic geometry, this allows us to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. We introduce an efficient algorithm to learn the embeddings based on Riemannian optimization and show experimentally that Poincaré embeddings outperform Euclidean embeddings significantly on data with latent hierarchies, both in terms of representation capacity and in terms of generalization ability.      &...

  17. Representations of Lie algebras and partial differential equations

    CERN Document Server

    Xu, Xiaoping

    2017-01-01

    This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students.  Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...

  18. [Social and cultural representations in epilepsy awareness].

    Science.gov (United States)

    Arborio, Sophie

    2015-01-01

    Representations relating to epilepsy have evolved over the centuries, but the manifestations of epilepsy awaken archaic images linked to death, violence and disgust. Indeed, the generalised epileptic seizure symbolises a rupture with the surrounding environment, "informs it", through the loss of social codes which it causes. The social and cultural context, as well as medical knowledge, influences the representations of the disease. As a result, popular knowledge is founded on the social and cultural representations of a given era, in a given society. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Theory of the unitary representations of compact groups

    International Nuclear Information System (INIS)

    Burzynski, A.; Burzynska, M.

    1979-01-01

    An introduction contains some basic notions used in group theory, Lie group, Lie algebras and unitary representations. Then we are dealing with compact groups. For these groups we show the problem of reduction of unitary representation of Wigner's projection operators, Clebsch-Gordan coefficients and Wigner-Eckart theorem. We show (this is a new approach) the representations reduction formalism by using superoperators in Hilbert-Schmidt space. (author)

  20. Stochastic Analysis of Gaussian Processes via Fredholm Representation

    Directory of Open Access Journals (Sweden)

    Tommi Sottinen

    2016-01-01

    Full Text Available We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions, stochastic differential equations, and maximum likelihood estimations.

  1. Representations of Nets of C*-Algebras over S 1

    Science.gov (United States)

    Ruzzi, Giuseppe; Vasselli, Ezio

    2012-11-01

    In recent times a new kind of representations has been used to describe superselection sectors of the observable net over a curved spacetime, taking into account the effects of the fundamental group of the spacetime. Using this notion of representation, we prove that any net of C*-algebras over S 1 admits faithful representations, and when the net is covariant under Diff( S 1), it admits representations covariant under any amenable subgroup of Diff( S 1).

  2. Representational constraints on children's suggestibility.

    Science.gov (United States)

    Ceci, Stephen J; Papierno, Paul B; Kulkofsky, Sarah

    2007-06-01

    In a multistage experiment, twelve 4- and 9-year-old children participated in a triad rating task. Their ratings were mapped with multidimensional scaling, from which euclidean distances were computed to operationalize semantic distance between items in target pairs. These children and age-mates then participated in an experiment that employed these target pairs in a story, which was followed by a misinformation manipulation. Analyses linked individual and developmental differences in suggestibility to children's representations of the target items. Semantic proximity was a strong predictor of differences in suggestibility: The closer a suggested distractor was to the original item's representation, the greater was the distractor's suggestive influence. The triad participants' semantic proximity subsequently served as the basis for correctly predicting memory performance in the larger group. Semantic proximity enabled a priori counterintuitive predictions of reverse age-related trends to be confirmed whenever the distance between representations of items in a target pair was greater for younger than for older children.

  3. Digital models for architectonical representation

    Directory of Open Access Journals (Sweden)

    Stefano Brusaporci

    2011-12-01

    Full Text Available Digital instruments and technologies enrich architectonical representation and communication opportunities. Computer graphics is organized according the two phases of visualization and construction, that is modeling and rendering, structuring dichotomy of software technologies. Visualization modalities give different kinds of representations of the same 3D model and instruments produce a separation between drawing and image’s creation. Reverse modeling can be related to a synthesis process, ‘direct modeling’ follows an analytic procedure. The difference between interactive and not interactive applications is connected to the possibilities offered by informatics instruments, and relates to modeling and rendering. At the same time the word ‘model’ describes different phenomenon (i.e. files: mathematical model of the building and of the scene; raster representation and post-processing model. All these correlated different models constitute the architectonical interpretative model, that is a simulation of reality made by the model for improving the knowledge.

  4. Asymptotical representation of discrete groups

    International Nuclear Information System (INIS)

    Mishchenko, A.S.; Mohammad, N.

    1995-08-01

    If one has a unitary representation ρ: π → U(H) of the fundamental group π 1 (M) of the manifold M then one can do may useful things: 1. To construct a natural vector bundle over M; 2. To construct the cohomology groups with respect to the local system of coefficients; 3. To construct the signature of manifold M with respect to the local system of coefficients; and others. In particular, one can write the Hirzebruch formula which compares the signature with the characteristic classes of the manifold M, further based on this, find the homotopy invariant characteristic classes (i.e. the Novikov conjecture). Taking into account that the family of known representations is not sufficiently large, it would be interesting to extend this family to some larger one. Using the ideas of A.Connes, M.Gromov and H.Moscovici a proper notion of asymptotical representation is defined. (author). 7 refs

  5. Minimal representations and Freudenthal triple systems

    International Nuclear Information System (INIS)

    Olive, D.

    2004-01-01

    Unitary representations of noncompact Lie groups have long been sought in physics. The first nice concrete construction was found by Dirac in connection with the anti-de Sitter group. Some subsequent generalizations will be described, in particular the minimal representation thought to be relevant to realising duality in supergravity superstring theories. A relation to Freudenthal triple systems will be described. (author)

  6. Pattern of mathematic representation ability in magnetic electricity problem

    Science.gov (United States)

    Hau, R. R. H.; Marwoto, P.; Putra, N. M. D.

    2018-03-01

    The mathematic representation ability in solving magnetic electricity problem gives information about the way students understand magnetic electricity. Students have varied mathematic representation pattern ability in solving magnetic electricity problem. This study aims to determine the pattern of students' mathematic representation ability in solving magnet electrical problems.The research method used is qualitative. The subject of this study is the fourth semester students of UNNES Physics Education Study Program. The data collection is done by giving a description test that refers to the test of mathematical representation ability and interview about field line topic and Gauss law. The result of data analysis of student's mathematical representation ability in solving magnet electric problem is categorized into high, medium and low category. The ability of mathematical representations in the high category tends to use a pattern of making known and asked symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representation in the medium category tends to use several patterns of writing the known symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representations in the low category tends to use several patterns of making known symbols, writing equations, substituting quantities into equations, performing calculations and final answer.

  7. Concepts, ontologies, and knowledge representation

    CERN Document Server

    Jakus, Grega; Omerovic, Sanida; Tomažic, Sašo

    2013-01-01

    Recording knowledge in a common framework that would make it possible to seamlessly share global knowledge remains an important challenge for researchers. This brief examines several ideas about the representation of knowledge addressing this challenge. A widespread general agreement is followed that states uniform knowledge representation should be achievable by using ontologies populated with concepts. A separate chapter is dedicated to each of the three introduced topics, following a uniform outline: definition, organization, and use. This brief is intended for those who want to get to know

  8. Employee Representation and Board Size in the Nordic Countries

    DEFF Research Database (Denmark)

    Thomsen, Steen; Rose, Caspar; Kronborg, Dorte

    2016-01-01

    Several European countries have mandatory employee representation on company boards, but the consequences for corporate governance are debated. We use employee representation rules in the otherwise quite similar Nordic countries (Denmark, Finland, Norway, and Sweden) to elicit information...... on shareholder preferences for employee representation and board size. We find that shareholders tend to choose board structures that minimize the proportion of employee representatives. In Denmark and Norway employee representation depends on board size, and shareholders choose board sizes that minimize...

  9. Content-adaptive pyramid representation for 3D object classification

    DEFF Research Database (Denmark)

    Kounalakis, Tsampikos; Boulgouris, Nikolaos; Triantafyllidis, Georgios

    2016-01-01

    In this paper we introduce a novel representation for the classification of 3D images. Unlike most current approaches, our representation is not based on a fixed pyramid but adapts to image content and uses image regions instead of rectangular pyramid scales. Image characteristics, such as depth...... and color, are used for defining regions within images. Multiple region scales are formed in order to construct the proposed pyramid image representation. The proposed method achieves excellent results in comparison to conventional representations....

  10. 28 CFR 301.304 - Representation of claimant.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Representation of claimant. 301.304 Section 301.304 Judicial Administration FEDERAL PRISON INDUSTRIES, INC., DEPARTMENT OF JUSTICE INMATE ACCIDENT COMPENSATION Compensation for Work-Related Physical Impairment or Death § 301.304 Representation...

  11. Statutory representation of an entrepreneur in business transactions

    OpenAIRE

    Jareš, Jiří

    2012-01-01

    1 1. Summary This dissertation deals with statutory representation of an entrepreneur. At the start are defined key concepts as entrepreneur, entrepreneurship, in case of legal persons described particular legal forms, difference between acting of physical and legal persons. In the next part are described ways of acting of entrepreneur, direct and indirect representation, contractual and legal representation, There is also explained the difference between acting and decision-making. There is ...

  12. LOCALLY REFINED SPLINES REPRESENTATION FOR GEOSPATIAL BIG DATA

    Directory of Open Access Journals (Sweden)

    T. Dokken

    2015-08-01

    Full Text Available When viewed from distance, large parts of the topography of landmasses and the bathymetry of the sea and ocean floor can be regarded as a smooth background with local features. Consequently a digital elevation model combining a compact smooth representation of the background with locally added features has the potential of providing a compact and accurate representation for topography and bathymetry. The recent introduction of Locally Refined B-Splines (LR B-splines allows the granularity of spline representations to be locally adapted to the complexity of the smooth shape approximated. This allows few degrees of freedom to be used in areas with little variation, while adding extra degrees of freedom in areas in need of more modelling flexibility. In the EU fp7 Integrating Project IQmulus we exploit LR B-splines for approximating large point clouds representing bathymetry of the smooth sea and ocean floor. A drastic reduction is demonstrated in the bulk of the data representation compared to the size of input point clouds. The representation is very well suited for exploiting the power of GPUs for visualization as the spline format is transferred to the GPU and the triangulation needed for the visualization is generated on the GPU according to the viewing parameters. The LR B-splines are interoperable with other elevation model representations such as LIDAR data, raster representations and triangulated irregular networks as these can be used as input to the LR B-spline approximation algorithms. Output to these formats can be generated from the LR B-spline applications according to the resolution criteria required. The spline models are well suited for change detection as new sensor data can efficiently be compared to the compact LR B-spline representation.

  13. Characterizing representational learning: A combined simulation and tutorial on perturbation theory

    Directory of Open Access Journals (Sweden)

    Antje Kohnle

    2017-11-01

    Full Text Available Analyzing, constructing, and translating between graphical, pictorial, and mathematical representations of physics ideas and reasoning flexibly through them (“representational competence” is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of Washington style tutorials both have affordances to support representational learning. This article describes work to characterize students’ spontaneous use of representations before and after working with a combined simulation and tutorial on first-order energy corrections in the context of quantum-mechanical time-independent perturbation theory. Data were collected from two institutions using pre-, mid-, and post-tests to assess short- and long-term gains. A representational competence level framework was adapted to devise level descriptors for the assessment items. The results indicate an increase in the number of representations used by students and the consistency between them following the combined simulation tutorial. The distributions of representational competence levels suggest a shift from perceptual to semantic use of representations based on their underlying meaning. In terms of activity design, this study illustrates the need to support students in making sense of the representations shown in a simulation and in learning to choose the most appropriate representation for a given task. In terms of characterizing representational abilities, this study illustrates the usefulness of a framework focusing on perceptual, syntactic, and semantic use of representations.

  14. Characterizing representational learning: A combined simulation and tutorial on perturbation theory

    Science.gov (United States)

    Kohnle, Antje; Passante, Gina

    2017-12-01

    Analyzing, constructing, and translating between graphical, pictorial, and mathematical representations of physics ideas and reasoning flexibly through them ("representational competence") is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of Washington style tutorials both have affordances to support representational learning. This article describes work to characterize students' spontaneous use of representations before and after working with a combined simulation and tutorial on first-order energy corrections in the context of quantum-mechanical time-independent perturbation theory. Data were collected from two institutions using pre-, mid-, and post-tests to assess short- and long-term gains. A representational competence level framework was adapted to devise level descriptors for the assessment items. The results indicate an increase in the number of representations used by students and the consistency between them following the combined simulation tutorial. The distributions of representational competence levels suggest a shift from perceptual to semantic use of representations based on their underlying meaning. In terms of activity design, this study illustrates the need to support students in making sense of the representations shown in a simulation and in learning to choose the most appropriate representation for a given task. In terms of characterizing representational abilities, this study illustrates the usefulness of a framework focusing on perceptual, syntactic, and semantic use of representations.

  15. Representation of Aloneness in Forever Alone Guy Comic Strips

    Directory of Open Access Journals (Sweden)

    Pricillia Chandra

    2017-01-01

    Full Text Available This study aims to discuss the representation of aloneness in Forever Alone Guy comic strips. The purpose of this research is to find out how the meaning of aloneness is constructed in the representation of Forever Alone Guy through the theory of representation described by Stuart Hall (1997, 2013. In the theory suggested by Hall, it is described that there are two ways to be done in creating representation. Those ways are through language/sign and mental representation. The mental representation is the only way used in this research with a reason that this analysis focuses to the stigmas attached to the concept of aloneness. The analysis shows that the construction of meaning is done through embedding clusters of negative stigmas to the three entities: single, alone and lonely. Thus, through the analysis, it can be concluded that the dominant meaning which represents being single and alone as the ‘imperfect’ condition plays an important role in the construction of the meaning

  16. Features of common representations of suiciders in young people

    Directory of Open Access Journals (Sweden)

    I. B. Bovina

    2013-04-01

    Full Text Available We discuss the first phase results of a research project dedicated to study of suicide representations in youth. In the framework of structural approach to social representations, we study features of structure and content of social representations of suiciders in two groups of young people (the criterion for group allocation was their acquaintance with people who has suicide attempts. Our sample (N = 106 consisted of representatives of several youth groups (students and working youths with specialized secondary, higher or incomplete higher education, aged 18 to 35 years (M = 23,48 years, SD = 4,36 years: 67 women and 39 men. The 1st group includes respondents personally acquainted with suicide attempters (44 respondents, the 2nd group – respondents without such experience. The subject of research were common representations of suiciders. We tested assumptions about the specificity of protective functions of social representations, as well as consistency of representations in the two groups of respondents.

  17. The Koslowski-Sahlmann representation: quantum configuration space

    Science.gov (United States)

    Campiglia, Miguel; Varadarajan, Madhavan

    2014-09-01

    The Koslowski-Sahlmann (KS) representation is a generalization of the representation underlying the discrete spatial geometry of loop quantum gravity (LQG), to accommodate states labelled by smooth spatial geometries. As shown recently, the KS representation supports, in addition to the action of the holonomy and flux operators, the action of operators which are the quantum counterparts of certain connection dependent functions known as ‘background exponentials’. Here we show that the KS representation displays the following properties which are the exact counterparts of LQG ones: (i) the abelian * algebra of SU(2) holonomies and ‘U(1)’ background exponentials can be completed to a C* algebra, (ii) the space of semianalytic SU(2) connections is topologically dense in the spectrum of this algebra, (iii) there exists a measure on this spectrum for which the KS Hilbert space is realized as the space of square integrable functions on the spectrum, (iv) the spectrum admits a characterization as a projective limit of finite numbers of copies of SU(2) and U(1), (v) the algebra underlying the KS representation is constructed from cylindrical functions and their derivations in exactly the same way as the LQG (holonomy-flux) algebra except that the KS cylindrical functions depend on the holonomies and the background exponentials, this extra dependence being responsible for the differences between the KS and LQG algebras. While these results are obtained for compact spaces, they are expected to be of use for the construction of the KS representation in the asymptotically flat case.

  18. Context Representation and Fusion: Advancements and Opportunities

    Directory of Open Access Journals (Sweden)

    Asad Masood Khattak

    2014-05-01

    Full Text Available The acceptance and usability of context-aware systems have given them the edge of wide use in various domains and has also attracted the attention of researchers in the area of context-aware computing. Making user context information available to such systems is the center of attention. However, there is very little emphasis given to the process of context representation and context fusion which are integral parts of context-aware systems. Context representation and fusion facilitate in recognizing the dependency/relationship of one data source on another to extract a better understanding of user context. The problem is more critical when data is emerging from heterogeneous sources of diverse nature like sensors, user profiles, and social interactions and also at different timestamps. Both the processes of context representation and fusion are followed in one way or another; however, they are not discussed explicitly for the realization of context-aware systems. In other words most of the context-aware systems underestimate the importance context representation and fusion. This research has explicitly focused on the importance of both the processes of context representation and fusion and has streamlined their existence in the overall architecture of context-aware systems’ design and development. Various applications of context representation and fusion in context-aware systems are also highlighted in this research. A detailed review on both the processes is provided in this research with their applications. Future research directions (challenges are also highlighted which needs proper attention for the purpose of achieving the goal of realizing context-aware systems.

  19. Spectral representation of infimum of bounded quantum observables

    International Nuclear Information System (INIS)

    Shen Jun; Wu Junde

    2009-01-01

    In 2006, Gudder [Math. Slovaca 56, 573 (2006)] introduced a logic order on bounded quantum observable set S(H). In 2007, Pulmannova and Vincekova [Math Slovaca 57, 589 (2007)] proved that for each subset D of S(H), the infimum of D exists with respect to the logic order. In 2008, Liu and Wu [J. Math. Phys. 49, 073521 (2008)] found a representation of the infimum A and B for A,B is an element of S(H), and by using the limit methods, they gave out a representation for the infimum of D. But, that representation is complicated. In this paper, we present a simpler spectral representation for the infimum of D with respect to the logic order.

  20. On network representations of antennas inside resonating environments

    Directory of Open Access Journals (Sweden)

    F. Gronwald

    2007-06-01

    Full Text Available We discuss network representations of dipole antennas within electromagnetic cavities. It is pointed out that for a given configuration these representations are not unique. For an efficient evaluation a network representation should be chosen such that it involves as few network elements as possible. The field theoretical analogue of this circumstance is the possibility to express electromagnetic cavities' Green's functions by representations which exhibit different convergence properties. An explicit example of a dipole antenna within a rectangular cavity clarifies the corresponding interrelation between network theory and electromagnetic field theory. As an application, current spectra are calculated for the case that the antenna is nonlinearly loaded and subject to a two-tone excitation.

  1. A Social Representations Perspective on Information Systems Implementation

    DEFF Research Database (Denmark)

    Gal, Uri; Berente, Nicholas

    2008-01-01

    Abstract: Purpose - The purpose of this paper is to advocate a "social representations" approach to the study of socio-cognitive processes during information systems (IS) implementation as an alternative to the technological frames framework. Design/methodology/approach - The paper demonstrates how......, it may lead to symptomatic explanations of IS implementation. Alternatively, using the theory of social representations can offer more fundamental causal explanations of IS implementation processes. Research limitations/implications - IS researchers are encouraged to use a social representations approach...... social representations theory can improve research outcomes by applying it to three recent studies that employed the technological frames framework. Findings - It is found that because the technological frames framework is overly technologically centered, temporally bounded, and individually focused...

  2. Hollywood’s Representation of Iran

    Directory of Open Access Journals (Sweden)

    Abdollah Givian

    2010-01-01

    Full Text Available Dissimilarities among the reality and what is represented in media caused to efforts to explain how-ness and why-ness of what is called media representation of the world. Therefore, media representation has been on board in Cultural and Media Studies. Cultural Study presupposes that what should one focus on in exploring media texts are the underneath ideological and social elements, and their influence on the audience’s views. Hollywood, among other media productions, enjoys a distinguished, unique status in representing the world. The present study reviews “a discourse-within-a-discourse”. In the other words, Iran’s representation would be explored as a part of representing Orient (or Islam in the western media. Here, Hollywood –as a media-within-mass-media- represents American Media in general. Reviewing movies produced in Hollywood within which Iran is represented, she is represented as the “subaltern other”. Thus, it could be said that Hollywood generally works in the “neo-racist” theoretical framework. In this study, 3 theoretical traditions; namely the Cultural Studies, Post-Colonial Studies, and Film Theory have been applied. The central “representation” concept in the present study is a combined derivation of Michel Foucault and Stewart Hall’s theories. Then, Edward Said’s ideas in Post-Colonial Studies would be explored. And finally, Film Theory would help to apply the concept of representation besides the Post-Colonial Studies in Film Studies.

  3. An XML Representation for Crew Procedures

    Science.gov (United States)

    Simpson, Richard C.

    2005-01-01

    NASA ensures safe operation of complex systems through the use of formally-documented procedures, which encode the operational knowledge of the system as derived from system experts. Crew members use procedure documentation on the ground for training purposes and on-board space shuttle and space station to guide their activities. Investigators at JSC are developing a new representation for procedures that is content-based (as opposed to display-based). Instead of specifying how a procedure should look on the printed page, the content-based representation will identify the components of a procedure and (more importantly) how the components are related (e.g., how the activities within a procedure are sequenced; what resources need to be available for each activity). This approach will allow different sets of rules to be created for displaying procedures on a computer screen, on a hand-held personal digital assistant (PDA), verbally, or on a printed page, and will also allow intelligent reasoning processes to automatically interpret and use procedure definitions. During his NASA fellowship, Dr. Simpson examined how various industries represent procedures (also called business processes or workflows), in areas such as manufacturing, accounting, shipping, or customer service. A useful method for designing and evaluating workflow representation languages is by determining their ability to encode various workflow patterns, which depict abstract relationships between the components of a procedure removed from the context of a specific procedure or industry. Investigators have used this type of analysis to evaluate how well-suited existing workflow representation languages are for various industries based on the workflow patterns that commonly arise across industry-specific procedures. Based on this type of analysis, it is already clear that existing workflow representations capture discrete flow of control (i.e., when one activity should start and stop based on when other

  4. Neural Representation. A Survey-Based Analysis of the Notion

    Directory of Open Access Journals (Sweden)

    Oscar Vilarroya

    2017-08-01

    Full Text Available The word representation (as in “neural representation”, and many of its related terms, such as to represent, representational and the like, play a central explanatory role in neuroscience literature. For instance, in “place cell” literature, place cells are extensively associated with their role in “the representation of space.” In spite of its extended use, we still lack a clear, universal and widely accepted view on what it means for a nervous system to represent something, on what makes a neural activity a representation, and on what is re-presented. The lack of a theoretical foundation and definition of the notion has not hindered actual research. My aim here is to identify how active scientists use the notion of neural representation, and eventually to list a set of criteria, based on actual use, that can help in distinguishing between genuine or non-genuine neural-representation candidates. In order to attain this objective, I present first the results of a survey of authors within two domains, place-cell and multivariate pattern analysis (MVPA research. Based on the authors’ replies, and on a review of neuroscientific research, I outline a set of common properties that an account of neural representation seems to require. I then apply these properties to assess the use of the notion in two domains of the survey, place-cell and MVPA studies. I conclude by exploring a shift in the notion of representation suggested by recent literature.

  5. Materials Driven Architectural Design and Representation

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    This paper aims to outline a framework for a deeper connection between experimentally obtained material knowledge and architectural design. While materials and architecture in the process of realisation are tightly connected, architectural design and representation are often distanced from...... another role in relation to architectural production. It is, in this paper, the intention to point at material research as an active initiator in explorative approaches to architectural design methods and architectural representation. This paper will point at the inclusion of tangible and experimental...... material research in the early phases of architectural design and to that of the architectural set of tools and representation. The paper will through use of existing research and the author’s own material research and practice suggest a way of using a combination of digital drawing, digital fabrication...

  6. Mental Representations Formed From Educational Website Formats

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth T. Cady; Kimberly R. Raddatz; Tuan Q. Tran; Bernardo de la Garza; Peter D. Elgin

    2006-10-01

    The increasing popularity of web-based distance education places high demand on distance educators to format web pages to facilitate learning. However, limited guidelines exist regarding appropriate writing styles for web-based distance education. This study investigated the effect of four different writing styles on reader’s mental representation of hypertext. Participants studied hypertext written in one of four web-writing styles (e.g., concise, scannable, objective, and combined) and were then administered a cued association task intended to measure their mental representations of the hypertext. It is hypothesized that the scannable and combined styles will bias readers to scan rather than elaborately read, which may result in less dense mental representations (as identified through Pathfinder analysis) relative to the objective and concise writing styles. Further, the use of more descriptors in the objective writing style will lead to better integration of ideas and more dense mental representations than the concise writing style.

  7. Lax representations for matrix short pulse equations

    Science.gov (United States)

    Popowicz, Z.

    2017-10-01

    The Lax representation for different matrix generalizations of Short Pulse Equations (SPEs) is considered. The four-dimensional Lax representations of four-component Matsuno, Feng, and Dimakis-Müller-Hoissen-Matsuno equations are obtained. The four-component Feng system is defined by generalization of the two-dimensional Lax representation to the four-component case. This system reduces to the original Feng equation, to the two-component Matsuno equation, or to the Yao-Zang equation. The three-component version of the Feng equation is presented. The four-component version of the Matsuno equation with its Lax representation is given. This equation reduces the new two-component Feng system. The two-component Dimakis-Müller-Hoissen-Matsuno equations are generalized to the four-parameter family of the four-component SPE. The bi-Hamiltonian structure of this generalization, for special values of parameters, is defined. This four-component SPE in special cases reduces to the new two-component SPE.

  8. Multiscale wavelet representations for mammographic feature analysis

    Science.gov (United States)

    Laine, Andrew F.; Song, Shuwu

    1992-12-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  9. Social representations: a theoretical approach in health

    Directory of Open Access Journals (Sweden)

    Isaiane Santos Bittencourt

    2011-03-01

    Full Text Available Objective: To present the theory of social representations, placing its epistemology and knowing the basic concepts of its approach as a structural unit of knowledge for health studies. Justification: The use of this theory comes from the need to understand social eventsunder the lens of the meanings constructed by the community. Data Synthesis: This was a descriptive study of literature review, which used as a source of data collection the classical authors of social representations supported by articles from electronic search at Virtual Health Library (VHL. The definition and discussion of collected data enabled to introduce two themes, versed on the history and epistemology of representations and on the structuralapproach of representations in health studies. Conclusion: This review allowed highlight the importance of locating the objects of study with regard to contextual issues of individual and collective histories, valuing the plurality of relations, to come closer to reality that is represented by the subjects.

  10. Knowledge Representation Using Multilevel Flow Model in Expert System

    International Nuclear Information System (INIS)

    Wang, Wenlin; Yang, Ming

    2015-01-01

    As for the knowledge representation, of course, there are a great many methods available for knowledge representation. These include frames, causal models, and many others. This paper presents a novel method called Multilevel Flow Model (MFM), which is used for knowledge representation in G2 expert system. Knowledge representation plays a vital role in constructing knowledge bases. Moreover, it also has impact on building of generic fault model as well as knowledge bases. The MFM is particularly useful to describe system knowledge concisely as domain map in expert system when domain experts are not available

  11. The endoscopic classification of representations orthogonal and symplectic groups

    CERN Document Server

    Arthur, James

    2013-01-01

    Within the Langlands program, endoscopy is a fundamental process for relating automorphic representations of one group with those of another. In this book, Arthur establishes an endoscopic classification of automorphic representations of orthogonal and symplectic groups G. The representations are shown to occur in families (known as global L-packets and A-packets), which are parametrized by certain self-dual automorphic representations of an associated general linear group GL(N). The central result is a simple and explicit formula for the multiplicity in the automorphic discrete spectrum of G

  12. Knowledge Representation Using Multilevel Flow Model in Expert System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenlin; Yang, Ming [Harbin Engineering University, Harbin (China)

    2015-05-15

    As for the knowledge representation, of course, there are a great many methods available for knowledge representation. These include frames, causal models, and many others. This paper presents a novel method called Multilevel Flow Model (MFM), which is used for knowledge representation in G2 expert system. Knowledge representation plays a vital role in constructing knowledge bases. Moreover, it also has impact on building of generic fault model as well as knowledge bases. The MFM is particularly useful to describe system knowledge concisely as domain map in expert system when domain experts are not available.

  13. EMR-based medical knowledge representation and inference via Markov random fields and distributed representation learning.

    Science.gov (United States)

    Zhao, Chao; Jiang, Jingchi; Guan, Yi; Guo, Xitong; He, Bin

    2018-05-01

    Electronic medical records (EMRs) contain medical knowledge that can be used for clinical decision support (CDS). Our objective is to develop a general system that can extract and represent knowledge contained in EMRs to support three CDS tasks-test recommendation, initial diagnosis, and treatment plan recommendation-given the condition of a patient. We extracted four kinds of medical entities from records and constructed an EMR-based medical knowledge network (EMKN), in which nodes are entities and edges reflect their co-occurrence in a record. Three bipartite subgraphs (bigraphs) were extracted from the EMKN, one to support each task. One part of the bigraph was the given condition (e.g., symptoms), and the other was the condition to be inferred (e.g., diseases). Each bigraph was regarded as a Markov random field (MRF) to support the inference. We proposed three graph-based energy functions and three likelihood-based energy functions. Two of these functions are based on knowledge representation learning and can provide distributed representations of medical entities. Two EMR datasets and three metrics were utilized to evaluate the performance. As a whole, the evaluation results indicate that the proposed system outperformed the baseline methods. The distributed representation of medical entities does reflect similarity relationships with respect to knowledge level. Combining EMKN and MRF is an effective approach for general medical knowledge representation and inference. Different tasks, however, require individually designed energy functions. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Transformations in the Visual Representation of a Figural Pattern

    Science.gov (United States)

    Montenegro, Paula; Costa, Cecília; Lopes, Bernardino

    2018-01-01

    Multiple representations of a given mathematical object/concept are one of the biggest difficulties encountered by students. The aim of this study is to investigate the impact of the use of visual representations in teaching and learning algebra. In this paper, we analyze the transformations from and to visual representations that were performed…

  15. Community representation in hospital decision making: a literature review.

    Science.gov (United States)

    Murray, Zoë

    2015-06-01

    Advancing quality in health services requires structures and processes that are informed by consumer input. Although this agenda is well recognised, few researchers have focussed on the establishment and maintenance of customer input throughout the structures and processes used to produce high-quality, safe care. We present an analysis of literature outlining the barriers and enablers involved in community representation in hospital governance. The review aimed to explore how community representation in hospital governance is achieved. Studies spanning 1997-2012 were analysed using Donabedian' s model of quality systems as a guide for categories of interest: structure, in relation to administration of quality; process, which is particularly concerned with cooperation and culture; and outcome, considered, in this case, to be the achievement of effective community representation on quality of care. There are limited published studies on community representation in hospital governance in Australia. What can be gleaned from the literature is: 1) quality subcommittees set up to assist Hospital Boards are a key structure for involving community representation in decision making around quality of care, and 2) there are a number of challenges to effectively developing the process of community representation in hospital governance: ambiguity and the potential for escalated indecision; inadequate value and consideration given to it by decision makers resulting in a lack of time and resources needed to support the community engagement strategy (time, facilitation, budgets); poor support and attitude amongst staff; and consumer issues, such as feeling isolated and intimidated by expert opinion. The analysis indicates that: quality subcommittees set up to assist boards are a key structure for involving community representation in decision making around quality of care. There are clearly a number of challenges to effectively developing the process of community representation in

  16. The Schrödinger representation and its relation to the holomorphic representation in linear and affine field theory

    International Nuclear Information System (INIS)

    Oeckl, Robert

    2012-01-01

    We establish a precise isomorphism between the Schrödinger representation and the holomorphic representation in linear and affine field theory. In the linear case, this isomorphism is induced by a one-to-one correspondence between complex structures and Schrödinger vacua. In the affine case we obtain similar results, with the role of the vacuum now taken by a whole family of coherent states. In order to establish these results we exhibit a rigorous construction of the Schrödinger representation and use a suitable generalization of the Segal-Bargmann transform. Our construction is based on geometric quantization and applies to any real polarization and its pairing with any Kähler polarization.

  17. Object representations in visual memory: evidence from visual illusions.

    Science.gov (United States)

    Ben-Shalom, Asaf; Ganel, Tzvi

    2012-07-26

    Human visual memory is considered to contain different levels of object representations. Representations in visual working memory (VWM) are thought to contain relatively elaborated information about object structure. Conversely, representations in iconic memory are thought to be more perceptual in nature. In four experiments, we tested the effects of two different categories of visual illusions on representations in VWM and in iconic memory. Unlike VWM that was affected by both types of illusions, iconic memory was immune to the effects of within-object contextual illusions and was affected only by illusions driven by between-objects contextual properties. These results show that iconic and visual working memory contain dissociable representations of object shape. These findings suggest that the global properties of the visual scene are processed prior to the processing of specific elements.

  18. Covariant representations of massless Fermi fields

    International Nuclear Information System (INIS)

    Borek, R.

    1983-01-01

    The author shows in the framework of algebraic quantum field theory that representations of the quasi-local algebra of a free, massless spinor field exist which fulfil two axioms of von Neumann. Furthermore, the current algebra of a charged, massless fermion is considered. Finally, representations with the spectral condition of a charged, massless fermion and the quasi-local algebra of a free, massless Majorana particle are constructed. (HSI) [de

  19. Hierarchical object class representation using holes and notches

    Energy Technology Data Exchange (ETDEWEB)

    Osbourn, G.C.

    1989-01-01

    A general representation approach is described which employs a hierarchy of holes and notches. A matching procedure is also described which allows non-ideal image hierarchies to be matched to class representations. The representation and matching methods are demonstrated on a set of handgun photographs. Examples of handguns which are different in detail are shown to exhibit the same class characteristics, while other similarly shaped objects are correctly distinguished from the handgun class. 6 refs., 8 figs.

  20. Knowledge Representation and Ontologies

    Science.gov (United States)

    Grimm, Stephan

    Knowledge representation and reasoning aims at designing computer systems that reason about a machine-interpretable representation of the world. Knowledge-based systems have a computational model of some domain of interest in which symbols serve as surrogates for real world domain artefacts, such as physical objects, events, relationships, etc. [1]. The domain of interest can cover any part of the real world or any hypothetical system about which one desires to represent knowledge for com-putational purposes. A knowledge-based system maintains a knowledge base, which stores the symbols of the computational model in the form of statements about the domain, and it performs reasoning by manipulating these symbols. Applications can base their decisions on answers to domain-relevant questions posed to a knowledge base.

  1. Taking representation seriously: rethinking bioethics through Clint Eastwood's Million Dollar Baby.

    Science.gov (United States)

    Braswell, Harold

    2011-06-01

    In this article, I propose a new model for understanding the function of representation in bioethics. Bioethicists have traditionally judged representations according to a mimetic paradigm, in which representations of bioethical dilemmas are assessed based on their correspondence to the "reality" of bioethics itself. In this article, I argue that this mimetic paradigm obscures the interaction between representation and reality and diverts bioethicists from analyzing the tensions in the representational object itself. I propose an anti-mimetic model of representation that is attuned to how representations can both maintain and potentially subvert dominant conceptions of bioethics. I illustrate this model through a case study of Clint Eastwood's film Million Dollar Baby. By focusing attention on the film's lack of adherence bioethical procedures and medical science, critics missed how an analysis of its representational logic provides a means of reimagining both bioethics and medical practice. In my conclusion, I build off this case study to assess how an incorporation of representational studies can deepen-and be deepened by-recent calls for interdisciplinarity in bioethics.

  2. Neural Representations of Physics Concepts.

    Science.gov (United States)

    Mason, Robert A; Just, Marcel Adam

    2016-06-01

    We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, there was commonality in participants' neural representation of physics; a classifier trained on data from all but one participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed brain systems. © The Author(s) 2016.

  3. Part-based deep representation for product tagging and search

    Science.gov (United States)

    Chen, Keqing

    2017-06-01

    Despite previous studies, tagging and indexing the product images remain challenging due to the large inner-class variation of the products. In the traditional methods, the quantized hand-crafted features such as SIFTs are extracted as the representation of the product images, which are not discriminative enough to handle the inner-class variation. For discriminative image representation, this paper firstly presents a novel deep convolutional neural networks (DCNNs) architect true pre-trained on a large-scale general image dataset. Compared to the traditional features, our DCNNs representation is of more discriminative power with fewer dimensions. Moreover, we incorporate the part-based model into the framework to overcome the negative effect of bad alignment and cluttered background and hence the descriptive ability of the deep representation is further enhanced. Finally, we collect and contribute a well-labeled shoe image database, i.e., the TBShoes, on which we apply the part-based deep representation for product image tagging and search, respectively. The experimental results highlight the advantages of the proposed part-based deep representation.

  4. Advanced Time-Frequency Representation in Voice Signal Analysis

    Directory of Open Access Journals (Sweden)

    Dariusz Mika

    2018-03-01

    Full Text Available The most commonly used time-frequency representation of the analysis in voice signal is spectrogram. This representation belongs in general to Cohen's class, the class of time-frequency energy distributions. From the standpoint of properties of the resolution spectrogram representation is not optimal. In Cohen class representations are known which have a better resolution properties. All of them are created by smoothing the Wigner-Ville'a (WVD distribution characterized by the best resolution, however, the biggest harmful interference. Used smoothing functions decide about a compromise between the properties of resolution and eliminating harmful interference term. Another class of time-frequency energy distributions is the affine class of distributions. From the point of view of readability of analysis the best properties are known so called Redistribution of energy caused by the use of a general methodology referred to as reassignment to any time-frequency representation. Reassigned distributions efficiently combine a reduction of the interference terms provided by a well adapted smoothing kernel and an increased concentration of the signal components.

  5. [The fragmentation of representational space in schizophrenia].

    Science.gov (United States)

    Plagnol, A; Oïta, M; Montreuil, M; Granger, B; Lubart, T

    2003-01-01

    Existent neurocognitive models of schizophrenia converge towards a core of impairments involving working memory, context processing, action planning, controlled and intentional processing. However, the emergence of this core remains itself difficult to explain and more specific hypotheses do not explain the heterogeneity of schizophrenia. To overcome these limits, we propose a new paradigm based on representational theory from cognitive science. Some recent developments of this theory enable us to describe a subjective universe as a representational space which is displayed from memory. We outline a conceptual framework to construct such a representational space from analogical -representations that can be activated in working memory and are connected to a network of symbolic structures. These connections are notably made through an analytic process of the analogical fragments, which involves the attentional focus. This framework allows us to define rigorously some defense processes in response to traumatic tensions that are expressed on the representational space. The fragmentation of representational space is a consequence of a defensive denial based on an impairment of the analytic process. The fragmentation forms some parasitic areas in memory which are excluded from the main part of the representational space and disturb information processing. The key clinical concepts of paranoid syndromes can be defined in this conceptual framework: mental automatism, delusional intuition, acute destructuration, psychotic dissociation, and autistic withdrawal. We show that these syndromes imply each other, which in return increases the fragmentation of the representational space. Some new concepts emerge naturally in this framework, such as the concept of "suture" which is defined as a link between a parasitic area and the main representational space. Schizophrenia appears as a borderline case of fragmentation of the representational space. This conceptual framework is

  6. Action representation: crosstalk between semantics and pragmatics.

    Science.gov (United States)

    Prinz, Wolfgang

    2014-03-01

    Marc Jeannerod pioneered a representational approach to movement and action. In his approach, motor representations provide both, declarative knowledge about action and procedural knowledge for action (action semantics and action pragmatics, respectively). Recent evidence from language comprehension and action simulation supports the claim that action pragmatics and action semantics draw on common representational resources, thus challenging the traditional divide between declarative and procedural action knowledge. To account for these observations, three kinds of theoretical frameworks are discussed: (i) semantics is grounded in pragmatics, (ii) pragmatics is anchored in semantics, and (iii) pragmatics is part and parcel of semantics. © 2013 Elsevier Ltd. All rights reserved.

  7. 37 CFR 2.17 - Recognition for representation.

    Science.gov (United States)

    2010-07-01

    ..., registrant, or party (e.g., a corporate officer or general partner of a partnership). In the case of joint..., DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Representation by Attorneys Or Other Authorized Persons § 2.17 Recognition for representation. (a) Authority to practice in trademark cases. Only an...

  8. Generalized mechanics as a representation of the ordinary mechanics

    International Nuclear Information System (INIS)

    Knapecz, G.

    1974-01-01

    It is shown that the generalized mechanics of one masspoint may be interpreted as a special representation of the ordinary mechanics of a system of masspoints. The hormorphism of both representations is shown in the case of two masspoints coupled by a harmonic force. The new representation is applied in the special relativic meachanics of mass-points. (author)

  9. The Extent of Membership Representation and Non-Representation on the IASB

    Directory of Open Access Journals (Sweden)

    Alistair Brown

    2008-06-01

    affiliation of members, Internet access, and gender composition over a five-year period. The results of the study show that over the period 2001-2005 representation on a four IASB committees was dominated by male members from high Internet access regions of the United States of America.

  10. Political Representation in Africa: Towards a Conceptual Framework*

    African Journals Online (AJOL)

    sulaiman.adebowale

    2006-08-29

    Aug 29, 2006 ... Political representation as a central component of democratic ... require attention from African scholars, civil society, political leaders and policy- ..... and their constituents' attitudes to representation, from style of doing poli-.

  11. Action simulation: time course and representational mechanisms

    Science.gov (United States)

    Springer, Anne; Parkinson, Jim; Prinz, Wolfgang

    2013-01-01

    The notion of action simulation refers to the ability to re-enact foreign actions (i.e., actions observed in other individuals). Simulating others' actions implies a mirroring of their activities, based on one's own sensorimotor competencies. Here, we discuss theoretical and experimental approaches to action simulation and the study of its representational underpinnings. One focus of our discussion is on the timing of internal simulation and its relation to the timing of external action, and a paradigm that requires participants to predict the future course of actions that are temporarily occluded from view. We address transitions between perceptual mechanisms (referring to action representation before and after occlusion) and simulation mechanisms (referring to action representation during occlusion). Findings suggest that action simulation runs in real-time; acting on newly created action representations rather than relying on continuous visual extrapolations. A further focus of our discussion pertains to the functional characteristics of the mechanisms involved in predicting other people's actions. We propose that two processes are engaged, dynamic updating and static matching, which may draw on both semantic and motor information. In a concluding section, we discuss these findings in the context of broader theoretical issues related to action and event representation, arguing that a detailed functional analysis of action simulation in cognitive, neural, and computational terms may help to further advance our understanding of action cognition and motor control. PMID:23847563

  12. Diatomic molecule vibrational potentials: Accuracy of representations

    International Nuclear Information System (INIS)

    Engelke, R.

    1978-01-01

    A method is presented for increasing the radius of convergence of certain representations of diatomic molecule vibrational potentials. The method relies on using knowledge of the analytic structure of such potentials to the maximum when attempting to approximate them. The known singular point (due to the centrifugal and/or Coulomb potentials) at zero internuclear separation should be included in its exact form in an approximate representation. The efficacy of this idea is tested [using Peek's ''exact'' numerical Born-Oppenheimer potential for the (1ssigma/sub g/) 2 Σ + /sub g/ state of H + 2 as a test problem] when the representational form is the series of (1) Dunham, (2) Simons, Parr, and Finlan, (3) Thakkar, and (4) Ogilvie-Tipping, and also (5) when the form is a [2, 2] or a [3, 3] Pade approximant. Significant improvements in accuracy are obtained in some of these cases, particularly on the inner wall of the potential. A comparison of the effectiveness of the five methods is made both with and without the origin behavior being included exactly. This is useful in itself as no comprehensive accuracy comparison of the standard representations seems to have appeared in the literature. The Ogilvie-Tipping series, corrected at the origin for singular behavior, is the best representation presently available for states analogous to the (1ssigma/sub g/) 2 Σ + /sub g/ state of H + 2

  13. Basic-level and superordinate-like categorical representations in early infancy.

    Science.gov (United States)

    Behl-Chadha, G

    1996-08-01

    A series of experiments using the paired-preference procedure examined 3- to 4-month-old infants' ability to form perceptually based categorical representations in the domains of natural kinds and artifacts and probed the underlying organizational structure of these representations. Experiments 1 and 2 found that infants could form categorical representations for chairs that excluded exemplars of couches, beds, and tables and also for couches that excluded exemplars of chairs, beds, and tables. Thus, the adult-like exclusivity shown by infants in the categorization of various animal pictures at the basic-level extends to the domain of artifacts as well--an ecologically significant ability given the numerous artifacts that populate the human environment. Experiments 3 and 4 examined infants' ability to form superordinate-like or global categorical representations for mammals and furniture. It was found that infants could form a global representation for mammals that included novel mammals and excluded other non-mammalian animals such as birds and fish as well as items from cross-ontological categories such as furniture. In addition, it was found that infants formed a representation for furniture that included novel categories of furniture and excluded exemplars from the cross-ontological category of mammals; however, it was less clear if infants' global representation for furniture also excluded other artifacts such as vehicles and thus the category of furniture may have been less exclusively represented. Overall, the present findings, by showing the availability of perceptually driven basic and superordinate-like representations in early infancy that closely correspond to adult conceptual categories, underscore the importance of these early representations for later conceptual representations.

  14. Symposium on Singularities, Representation of Algebras, and Vector Bundles

    CERN Document Server

    Trautmann, Günther

    1987-01-01

    It is well known that there are close relations between classes of singularities and representation theory via the McKay correspondence and between representation theory and vector bundles on projective spaces via the Bernstein-Gelfand-Gelfand construction. These relations however cannot be considered to be either completely understood or fully exploited. These proceedings document recent developments in the area. The questions and methods of representation theory have applications to singularities and to vector bundles. Representation theory itself, which had primarily developed its methods for Artinian algebras, starts to investigate algebras of higher dimension partly because of these applications. Future research in representation theory may be spurred by the classification of singularities and the highly developed theory of moduli for vector bundles. The volume contains 3 survey articles on the 3 main topics mentioned, stressing their interrelationships, as well as original research papers.

  15. [The effect of goal framing on the activation of affective representations].

    Science.gov (United States)

    Takehashi, Hiroki; Karasawa, Kaori

    2007-10-01

    Guided by regulatory focus theory, this study examined the effects of goal framing on the subjective experience of affect and the accessibility of affective representations. Study I examined lay persons' beliefs concerning the relationship between goal framing and certain kinds of affective experiences. The results indicated that a promotion focus was associated with happiness and disappointment, whereas a prevention focus was associated with relaxation and tension. Study 2 examined the effect of goal framing on the activation of affective representations, and found that a promotion focus activated both gain-related representations (happy and disappointment) and loss-related representations (relaxation and tension), whereas a prevention focus activated only loss-related representations. These results suggest that goal framing activates particular affective representations, and the activated affective representations may influence the interpretation of positive or negative experiences. The discussion considered the function of the activation of affective representations as a mediator between goal framing and its cognitive and behavioral consequences.

  16. Heuristics and representational change in two-move matchstick arithmetic tasks

    Directory of Open Access Journals (Sweden)

    Michael Öllinger

    2006-01-01

    Full Text Available Insight problems are problems where the problem solver struggles to find a solution until * aha! * the solution suddenly appears. Two contemporary theories suggest that insight problems are difficult either because problem solvers begin with an incorrect representation of the problem, or that problem solvers apply inappropriate heuristics to the problem. The relative contributions of representational change and inappropriate heuristics on the process of insight problem solving was studied with a task that required the problem solver to move two matchsticks in order to transform an incorrect arithmetic statement into a correct one. Problem solvers (N = 120 worked on two different types of two-move matchstick arithmetic problems that both varied with respect to the effectiveness of heuristics and to the degree of a necessary representational change of the problem representation. A strong influence of representational change on solution rates was found whereas the influence of heuristics hadminimal effects on solution rates. That is, the difficulty of insight problems within the two-move matchstick arithmetic domain is governed by the degree of representational change required. A model is presented that details representational change as the necessary condition for ensuring that appropriate heuristics can be applied on the proper problem representation.

  17. An evaluation of space time cube representation of spatiotemporal patterns.

    Science.gov (United States)

    Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine

    2009-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.

  18. Thinking together with material representations

    DEFF Research Database (Denmark)

    Stege Bjørndahl, Johanne; Fusaroli, Riccardo; Østergaard, Svend

    2014-01-01

    of an experiment. Qualitative micro-analyses of the group interactions motivate a taxonomy of different roles that the material representations play in the joint epistemic processes: illustration, elaboration and exploration. Firstly, the LEGO blocks were used to illustrate already well-formed ideas in support......-down and bottom-up cognitive processes and division of cognitive labor.......How do material representations such as models, diagrams and drawings come to shape and aid collective, epistemic processes? This study investigated how groups of participants spontaneously recruited material objects (in this case LEGO blocks) to support collective creative processes in the context...

  19. Constitutionalising the Right Legal Representation at CCMA ...

    African Journals Online (AJOL)

    Recently, the issue of legal representation at internal disciplinary hearings and CCMA arbitrations has been a fervent topic of labour law discourse in South Africa. While the courts have consistently accepted the common law principle that there is no absolute right to legal representation at tribunals other than courts of law, ...

  20. Supersymmetric vector multiplets in nonadjoint representations of SO(N)

    International Nuclear Information System (INIS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2007-01-01

    In the conventional formulation of N=1 supersymmetry, a vector multiplet is supposed to be in the adjoint representation of a given gauge group. We present a new formulation with a vector multiplet in the nonadjoint representation of SO(N) gauge group. Our basic algebra is [T I ,T J ]=f IJK T K , [T I ,U i ]=-(T I ) ij U j , [U i ,U j ]=-(T I ) ij T I , where T I are the generators of SO(N), while U i are the new ''generators'' in certain nonadjoint real representation R of SO(N). We use here the word generator in the broader sense of the word. Such a representation can be any real representation of SO(N) with the positive definite metric, satisfying (T I ) ij =-(T I ) ji and (T I ) [ij| (T I ) |k]l ≡0. The first nontrivial examples are the spinorial 8 S and conjugate spinorial 8 C representations of SO(8) consistent with supersymmetry. We further couple the system to chiral multiplets and show that a Higgs mechanism can give positive definite (mass) 2 to the new gauge fields for U i . We show an analogous system working with N=1 supersymmetry in 10D, and thereby N=4 system in 4D interacting with extra multiplets in the representation R. We also perform superspace reformulation as an independent confirmation

  1. Students' Understanding of External Representations of the Potassium Ion Channel Protein, Part I: Affordances and Limitations of Ribbon Diagrams, Vines, and Hydrophobic/Polar Representations

    Science.gov (United States)

    Harle, Marissa; Towns, Marcy H.

    2012-01-01

    Research on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This project focuses on students' understanding of three external representations of the potassium ion channel protein. This is part I of a two-part study, which focuses on the affordances and…

  2. Learning Document Semantic Representation with Hybrid Deep Belief Network

    Directory of Open Access Journals (Sweden)

    Yan Yan

    2015-01-01

    it is also an effective way to remove noise from the different document representation type; the DBN can enhance extract abstract of the document in depth, making the model learn sufficient semantic representation. At the same time, we explore different input strategies for semantic distributed representation. Experimental results show that our model using the word embedding instead of single word has better performance.

  3. Rethinking democracy and representation: a proposal to extend the democratic canon

    Directory of Open Access Journals (Sweden)

    Alejandro Monsiváis Carrillo

    2013-01-01

    Full Text Available Rethinking political representation is necessary to understand many contemporary democratic challenges. However, a widely accepted view states that democracy and representation are two irreconcilable principles, thus hindering the theoretical assessment of political representation's democratic relevance. According to this view, what democracy needs is more popular participation; instead, representation involves elitism and political detachment. In this paper I will argue that such a view is inaccurate. Through the reconstruction of the democratic ideal, and the discussion of the concept of political representation, I intend to show that processes of political authorization, accountability and public justification are both elements of political representation and expression of democratic politics.

  4. A Distributional Representation Model For Collaborative Filtering

    OpenAIRE

    Junlin, Zhang; Heng, Cai; Tongwen, Huang; Huiping, Xue

    2015-01-01

    In this paper, we propose a very concise deep learning approach for collaborative filtering that jointly models distributional representation for users and items. The proposed framework obtains better performance when compared against current state-of-art algorithms and that made the distributional representation model a promising direction for further research in the collaborative filtering.

  5. Parts, Cavities, and Object Representation in Infancy

    Science.gov (United States)

    Hayden, Angela; Bhatt, Ramesh S.; Kangas, Ashley; Zieber, Nicole

    2011-01-01

    Part representation is not only critical to object perception but also plays a key role in a number of basic visual cognition functions, such as figure-ground segregation, allocation of attention, and memory for shapes. Yet, virtually nothing is known about the development of part representation. If parts are fundamental components of object shape…

  6. Transformations and representations supporting spatial perspective taking

    Science.gov (United States)

    Yu, Alfred B.; Zacks, Jeffrey M.

    2018-01-01

    Spatial perspective taking is the ability to reason about spatial relations relative to another’s viewpoint. Here, we propose a mechanistic hypothesis that relates mental representations of one’s viewpoint to the transformations used for spatial perspective taking. We test this hypothesis using a novel behavioral paradigm that assays patterns of response time and variation in those patterns across people. The results support the hypothesis that people maintain a schematic representation of the space around their body, update that representation to take another’s perspective, and thereby to reason about the space around their body. This is a powerful computational mechanism that can support imitation, coordination of behavior, and observational learning. PMID:29545731

  7. Surveyable Representations, the "Lecture on Ethics", and Moral Philosophy

    Directory of Open Access Journals (Sweden)

    Benjamin De Mesel

    2014-12-01

    Full Text Available I argue that it is possible and useful for moral philosophy to provide surveyable representations (as the later Wittgenstein understands the concept of moral vocabulary. I proceed in four steps. First, I present two dominant interpretations of the concept “surveyable representation”. Second, I use these interpretations as a background against which I present my own interpretation. Third, I use my interpretation to support the claim that Wittgenstein’s “Lecture on Ethics” counts as an example of a surveyable representation. I conclude that, since the lecture qualifies as a surveyable representation, it is possible to provide surveyable representations of moral vocabulary. Fourth, I argue that it is useful for contemporary moral philosophy to provide surveyable representations, because it may help to dissolve problems in current debates. I provide an example of such a debate, namely, the debate between cognitivists and non-cognivitists.

  8. A Representation Theorem for Guilt Aversion

    OpenAIRE

    Jensen, Martin Kaae; Kozlovskaya, Maria

    2016-01-01

    Guilt aversion has been shown to play an important role in economic decision-making. In this paper, we take an axiomatic approach to guilt by deducing a utility representation from a list of easily interpretable assumptions on an agent's preferences. It turns out that our logarithmic representation can mitigate the problem of multiplicity of equilibria to which psychological games are prone. We apply the model in three well-known games and show that its predictions are consistent with experim...

  9. Representation Theory of Algebraic Groups and Quantum Groups

    CERN Document Server

    Gyoja, A; Shinoda, K-I; Shoji, T; Tanisaki, Toshiyuki

    2010-01-01

    Invited articles by top notch expertsFocus is on topics in representation theory of algebraic groups and quantum groupsOf interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics

  10. On squares of representations of compact Lie algebras

    International Nuclear Information System (INIS)

    Zeier, Robert; Zimborás, Zoltán

    2015-01-01

    We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the sum of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems

  11. On squares of representations of compact Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Zeier, Robert, E-mail: robert.zeier@ch.tum.de [Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching (Germany); Zimborás, Zoltán, E-mail: zimboras@gmail.com [Department of Computer Science, University College London, Gower St., London WC1E 6BT (United Kingdom)

    2015-08-15

    We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the sum of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.

  12. Hierarchical Representation Learning for Kinship Verification.

    Science.gov (United States)

    Kohli, Naman; Vatsa, Mayank; Singh, Richa; Noore, Afzel; Majumdar, Angshul

    2017-01-01

    Kinship verification has a number of applications such as organizing large collections of images and recognizing resemblances among humans. In this paper, first, a human study is conducted to understand the capabilities of human mind and to identify the discriminatory areas of a face that facilitate kinship-cues. The visual stimuli presented to the participants determine their ability to recognize kin relationship using the whole face as well as specific facial regions. The effect of participant gender and age and kin-relation pair of the stimulus is analyzed using quantitative measures such as accuracy, discriminability index d' , and perceptual information entropy. Utilizing the information obtained from the human study, a hierarchical kinship verification via representation learning (KVRL) framework is utilized to learn the representation of different face regions in an unsupervised manner. We propose a novel approach for feature representation termed as filtered contractive deep belief networks (fcDBN). The proposed feature representation encodes relational information present in images using filters and contractive regularization penalty. A compact representation of facial images of kin is extracted as an output from the learned model and a multi-layer neural network is utilized to verify the kin accurately. A new WVU kinship database is created, which consists of multiple images per subject to facilitate kinship verification. The results show that the proposed deep learning framework (KVRL-fcDBN) yields the state-of-the-art kinship verification accuracy on the WVU kinship database and on four existing benchmark data sets. Furthermore, kinship information is used as a soft biometric modality to boost the performance of face verification via product of likelihood ratio and support vector machine based approaches. Using the proposed KVRL-fcDBN framework, an improvement of over 20% is observed in the performance of face verification.

  13. Assessment of representational competence in kinematics

    Science.gov (United States)

    Klein, P.; Müller, A.; Kuhn, J.

    2017-06-01

    A two-tier instrument for representational competence in the field of kinematics (KiRC) is presented, designed for a standard (1st year) calculus-based introductory mechanics course. It comprises 11 multiple choice (MC) and 7 multiple true-false (MTF) questions involving multiple representational formats, such as graphs, pictures, and formal (mathematical) expressions (1st tier). Furthermore, students express their answer confidence for selected items, providing additional information (2nd tier). Measurement characteristics of KiRC were assessed in a validation sample (pre- and post-test, N =83 and N =46 , respectively), including usefulness for measuring learning gain. Validity is checked by interviews and by benchmarking KiRC against related measures. Values for item difficulty, discrimination, and consistency are in the desired ranges; in particular, a good reliability was obtained (KR 20 =0.86 ). Confidence intervals were computed and a replication study yielded values within the latter. For practical and research purposes, KiRC as a diagnostic tool goes beyond related extant instruments both for the representational formats (e.g., mathematical expressions) and for the scope of content covered (e.g., choice of coordinate systems). Together with the satisfactory psychometric properties it appears a versatile and reliable tool for assessing students' representational competency in kinematics (and of its potential change). Confidence judgments add further information to the diagnostic potential of the test, in particular for representational misconceptions. Moreover, we present an analytic result for the question—arising from guessing correction or educational considerations—of how the total effect size (Cohen's d ) varies upon combination of two test components with known individual effect sizes, and then discuss the results in the case of KiRC (MC and MTF combination). The introduced method of test combination analysis can be applied to any test comprising

  14. Assessment of representational competence in kinematics

    Directory of Open Access Journals (Sweden)

    P. Klein

    2017-06-01

    Full Text Available A two-tier instrument for representational competence in the field of kinematics (KiRC is presented, designed for a standard (1st year calculus-based introductory mechanics course. It comprises 11 multiple choice (MC and 7 multiple true-false (MTF questions involving multiple representational formats, such as graphs, pictures, and formal (mathematical expressions (1st tier. Furthermore, students express their answer confidence for selected items, providing additional information (2nd tier. Measurement characteristics of KiRC were assessed in a validation sample (pre- and post-test, N=83 and N=46, respectively, including usefulness for measuring learning gain. Validity is checked by interviews and by benchmarking KiRC against related measures. Values for item difficulty, discrimination, and consistency are in the desired ranges; in particular, a good reliability was obtained (KR20=0.86. Confidence intervals were computed and a replication study yielded values within the latter. For practical and research purposes, KiRC as a diagnostic tool goes beyond related extant instruments both for the representational formats (e.g., mathematical expressions and for the scope of content covered (e.g., choice of coordinate systems. Together with the satisfactory psychometric properties it appears a versatile and reliable tool for assessing students’ representational competency in kinematics (and of its potential change. Confidence judgments add further information to the diagnostic potential of the test, in particular for representational misconceptions. Moreover, we present an analytic result for the question—arising from guessing correction or educational considerations—of how the total effect size (Cohen’s d varies upon combination of two test components with known individual effect sizes, and then discuss the results in the case of KiRC (MC and MTF combination. The introduced method of test combination analysis can be applied to any test

  15. Uncertainty representation of grey numbers and grey sets.

    Science.gov (United States)

    Yang, Yingjie; Liu, Sifeng; John, Robert

    2014-09-01

    In the literature, there is a presumption that a grey set and an interval-valued fuzzy set are equivalent. This presumption ignores the existence of discrete components in a grey number. In this paper, new measurements of uncertainties of grey numbers and grey sets, consisting of both absolute and relative uncertainties, are defined to give a comprehensive representation of uncertainties in a grey number and a grey set. Some simple examples are provided to illustrate that the proposed uncertainty measurement can give an effective representation of both absolute and relative uncertainties in a grey number and a grey set. The relationships between grey sets and interval-valued fuzzy sets are also analyzed from the point of view of the proposed uncertainty representation. The analysis demonstrates that grey sets and interval-valued fuzzy sets provide different but overlapping models for uncertainty representation in sets.

  16. Canonical forms of tensor representations and spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Cummins, C.J.

    1986-01-01

    An algorithm for constructing canonical forms for any tensor representation of the classical compact Lie groups is given. This method is used to find a complete list of the symmetry breaking patterns produced by Higgs fields in the third-rank antisymmetric representations of U(n), SU(n) and SO(n) for n<=7. A simple canonical form is also given for kth-rank symmetric tensor representations. (author)

  17. LPS: a rule-based, schema-oriented knowledge representation system

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, Y; Mitsuya, Y; Nakajima, S; Ura, S

    1981-01-01

    A new knowledge representation system called LPS is presented. The global control structure of LPS is rule-based, but the local representational structure is schema-oriented. The present version of LPS was designed to increase the understandability of representation while keeping time efficiency reasonable. Pattern matching through slot-networks and meta-actions from among the implemented facilities of LPS, are especially described in detail. 7 references.

  18. Cognitive Dissonance as an Instructional Tool for Understanding Chemical Representations

    Science.gov (United States)

    Corradi, David; Clarebout, Geraldine; Elen, Jan

    2015-01-01

    Previous research on multiple external representations (MER) indicates that sequencing representations (compared with presenting them as a whole) can, in some cases, increase conceptual understanding if there is interference between internal and external representations. We tested this mechanism by sequencing different combinations of scientific…

  19. Indicators that influence prospective mathematics teachers representational and reasoning abilities

    Science.gov (United States)

    Darta; Saputra, J.

    2018-01-01

    Representational and mathematical reasoning ability are very important ability as basic in mathematics learning process. The 2013 curriculum suggests that the use of a scientific approach emphasizes higher order thinking skills. Therefore, a scientific approach is required in mathematics learning to improve ability of representation and mathematical reasoning. The objectives of this research are: (1) to analyze representational and reasoning abilities, (2) to analyze indicators affecting the ability of representation and mathematical reasoning, (3) to analyze scientific approaches that can improve the ability of representation and mathematical reasoning. The subject of this research is the students of mathematics prospective teachers in the first semester at Private Higher Education of Bandung City. The research method of this research was descriptive analysis. The research data were collected using reasoning and representation tests on sixty-one students. Data processing was done by descriptive analysis specified based on the indicators of representation ability and mathematical reasoning that influenced it. The results of this first-year study showed that students still had many weaknesses in reasoning and mathematical representation that were influenced by the ability to understand the indicators of both capabilities. After observing the results of the first-year research, then in the second and third year, the development of teaching materials with a scientific approach in accordance with the needs of prospective students was planned.

  20. Learning modulation of odor representations: new findings from Arc-indexed networks

    Directory of Open Access Journals (Sweden)

    Qi eYuan

    2014-12-01

    Full Text Available We first review our understanding of odor representations in rodent olfactory bulb and anterior piriform cortex. We then consider learning-induced representation changes. Finally we describe the perspective on network representations gained from examining Arc-indexed odor networks of awake rats. Arc-indexed networks are sparse and distributed, consistent with current views. However Arc provides representations of repeated odors. Arc-indexed repeated odor representations are quite variable. Sparse representations are assumed to be compact and reliable memory codes. Arc suggests this is not necessarily the case. The variability seen is consistent with electrophysiology in awake animals and may reflect top down-cortical modulation of context. Arc-indexing shows that distinct odors share larger than predicted neuron pools. These may be low-threshold neuronal subsets.Learning’s effect on Arc-indexed representations is to increase the stable or overlapping component of rewarded odor representations. This component can decrease for similar odors when their discrimination is rewarded. The learning effects seen are supported by electrophysiology, but mechanisms remain to be elucidated.

  1. Interparental conflict and adolescents' self-representations: The role of emotional insecurity.

    Science.gov (United States)

    Silva, Carla Sofia; Calheiros, Maria Manuela; Carvalho, Helena

    2016-10-01

    Adolescents' signs of emotional insecurity in the context of interparental conflict (IC) - emotional reactivity, internal representations (i.e., constructive/destructive; spillover) and behavioral responses (i.e., withdrawal; inhibition; involvement) - were examined as mediators in the relation between IC and adolescents' self-representations. Self-reported measures were filled out by 221 Portuguese adolescents (59.3% girls; Mage = 12.91), attending public elementary and secondary schools. IC predicted less favorable self-representations. Adolescents' emotional reactivity and withdrawal mediated the relation between IC and emotional and physical appearance self-representations, while conflict spillover representations and constructive family representations mediated associations between IC and instrumental self-representations. This study emphasizes the importance of interparental conflict and adolescent emotional insecurity in the construction of their self-representations, having important theoretical and practical implications. It highlights the value of analyzing the specific role of several emotional insecurity dimensions, and informs practitioners' work aimed at promoting constructive conflict and adaptive emotional regulation skills. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  2. Diffeomorphism Group Representations in Relativistic Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Goldin, Gerald A. [Rutgers Univ., Piscataway, NJ (United States); Sharp, David H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-20

    We explore the role played by the di eomorphism group and its unitary representations in relativistic quantum eld theory. From the quantum kinematics of particles described by representations of the di eomorphism group of a space-like surface in an inertial reference frame, we reconstruct the local relativistic neutral scalar eld in the Fock representation. An explicit expression for the free Hamiltonian is obtained in terms of the Lie algebra generators (mass and momentum densities). We suggest that this approach can be generalized to elds whose quanta are spatially extended objects.

  3. Blocks of tame representation type and related algebras

    CERN Document Server

    Erdmann, Karin

    1990-01-01

    This monograph studies algebras that are associated to blocks of tame representation type. Over the past few years, a range of new results have been obtained and a comprehensive account of these is provided here to- gether with some new proofs of known results. Some general theory of algebras is also presented, as a means of understanding the subject. The book is addressed to researchers and graduate students interested in the links between representations of finite-dimensional algebras and modular group representation theory. The basic properties of modules and finite-dimensional algebras are assumed known.

  4. Boundary representation modelling techniques

    CERN Document Server

    2006-01-01

    Provides the most complete presentation of boundary representation solid modelling yet publishedOffers basic reference information for software developers, application developers and users Includes a historical perspective as well as giving a background for modern research.

  5. Graph Regularized Auto-Encoders for Image Representation.

    Science.gov (United States)

    Yiyi Liao; Yue Wang; Yong Liu

    2017-06-01

    Image representation has been intensively explored in the domain of computer vision for its significant influence on the relative tasks such as image clustering and classification. It is valuable to learn a low-dimensional representation of an image which preserves its inherent information from the original image space. At the perspective of manifold learning, this is implemented with the local invariant idea to capture the intrinsic low-dimensional manifold embedded in the high-dimensional input space. Inspired by the recent successes of deep architectures, we propose a local invariant deep nonlinear mapping algorithm, called graph regularized auto-encoder (GAE). With the graph regularization, the proposed method preserves the local connectivity from the original image space to the representation space, while the stacked auto-encoders provide explicit encoding model for fast inference and powerful expressive capacity for complex modeling. Theoretical analysis shows that the graph regularizer penalizes the weighted Frobenius norm of the Jacobian matrix of the encoder mapping, where the weight matrix captures the local property in the input space. Furthermore, the underlying effects on the hidden representation space are revealed, providing insightful explanation to the advantage of the proposed method. Finally, the experimental results on both clustering and classification tasks demonstrate the effectiveness of our GAE as well as the correctness of the proposed theoretical analysis, and it also suggests that GAE is a superior solution to the current deep representation learning techniques comparing with variant auto-encoders and existing local invariant methods.

  6. Tracking Typological Traits of Uralic Languages in Distributed Language Representations

    DEFF Research Database (Denmark)

    Bjerva, Johannes; Augenstein, Isabelle

    2018-01-01

    Although linguistic typology has a long history, computational approaches have only recently gained popularity. The use of distributed representations in computational linguistics has also become increasingly popular. A recent development is to learn distributed representations of language...... for model transfer between Uralic languages in deep neural networks. We then investigate which typological features are encoded in these representations by attempting to predict features in the World Atlas of Language Structures, at various stages of fine-tuning of the representations. We focus on Uralic...

  7. Evaluation, Use, and Refinement of Knowledge Representations through Acquisition Modeling

    Science.gov (United States)

    Pearl, Lisa

    2017-01-01

    Generative approaches to language have long recognized the natural link between theories of knowledge representation and theories of knowledge acquisition. The basic idea is that the knowledge representations provided by Universal Grammar enable children to acquire language as reliably as they do because these representations highlight the…

  8. Narrative representations of caregivers and self in maltreated pre-schoolers.

    Science.gov (United States)

    Toth, S L; Cicchetti, D; Macfie, J; Maughan, A; VanMeenen, K

    2000-12-01

    This study examined narrative representations of parents and of self, as well as child behavior during the assessment, in maltreated (N = 56) and demographically comparable non-maltreated (N = 37) pre-school-aged children in a one-year longitudinal study. Maltreated children evidenced more negative representations of parents and of self at Time 2, including the juxta-position of both a negative and a grandiose self. Over time there was a marginal interaction such that maltreated children portrayed fewer disciplining parent representations and nonmaltreated children portrayed more. Also over time, maltreated children portrayed marginally more grandiose self-representations and nonmaltreated children fewer. Furthermore, maltreated children demonstrated less responsivity to the examiner over time and nonmaltreated children demonstrated more. The deleterious effects of maltreatment on representations of self and of others, especially as development proceeds, are discussed, and the importance of providing attachment-informed intervention prior to the consolidation of these negative representations is highlighted.

  9. Orthogonality relations and supercharacter formulas of U(m|n) representations

    International Nuclear Information System (INIS)

    Alfaro, J.; Medina, R.; Urrutia, L.F.

    1997-01-01

    In this paper we obtain the orthogonality relations for the supergroup U(m|n), which are remarkably different from the ones for the U(N) case. We extend our results for ordinary representations, obtained some time ago, to the case of complex conjugated and mixed representations. Our results are expressed in terms of the Young tableaux notation for irreducible representations. We use the supersymmetric Harish - Chandra - Itzykson endash Zuber integral and the character expansion technique as mathematical tools for deriving these relations. As a byproduct we also obtain closed expressions for the supercharacters and dimensions of some particular irreducible U(m|n) representations. A new way of labeling the U(m|n) irreducible representations in terms of m+n numbers is proposed. Finally, as a corollary of our results, new identities among the dimensions of the irreducible representations of the unitary group U(N) are presented. copyright 1997 American Institute of Physics

  10. Representations of quantum algebras and combinatorics of Young tableaux

    CERN Document Server

    Ariki, Susumu

    2002-01-01

    Among several tools used in studying representations of quantum groups (or quantum algebras) are the notions of Kashiwara's crystal bases and Lusztig's canonical bases. Mixing both approaches allows us to use a combinatorial approach to representations of quantum groups and to apply the theory to representations of Hecke algebras. The primary goal of this book is to introduce the representation theory of quantum groups using quantum groups of type A_{r-1}^{(1)} as a main example. The corresponding combinatorics, developed by Misra and Miwa, turns out to be the combinatorics of Young tableaux. The second goal of this book is to explain the proof of the (generalized) Leclerc-Lascoux-Thibon conjecture. This conjecture, which is now a theorem, is an important breakthrough in the modular representation theory of the Hecke algebras of classical type. The book contains most of the nonstandard material necessary to get acquainted with this new rapidly developing area. It can be used as a good entry point into the stu...

  11. Integrating Globality and Locality for Robust Representation Based Classification

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2014-01-01

    Full Text Available The representation based classification method (RBCM has shown huge potential for face recognition since it first emerged. Linear regression classification (LRC method and collaborative representation classification (CRC method are two well-known RBCMs. LRC and CRC exploit training samples of each class and all the training samples to represent the testing sample, respectively, and subsequently conduct classification on the basis of the representation residual. LRC method can be viewed as a “locality representation” method because it just uses the training samples of each class to represent the testing sample and it cannot embody the effectiveness of the “globality representation.” On the contrary, it seems that CRC method cannot own the benefit of locality of the general RBCM. Thus we propose to integrate CRC and LRC to perform more robust representation based classification. The experimental results on benchmark face databases substantially demonstrate that the proposed method achieves high classification accuracy.

  12. Freeform surface descriptions. Part I: Mathematical representations

    Science.gov (United States)

    Broemel, Anika; Lippmann, Uwe; Gross, Herbert

    2017-10-01

    Optical systems can benefit strongly from freeform surfaces; however, the choice of the right surface representation is not trivial and many aspects must be considered. In this work, we discuss the general approach classical globally defined representations, as well as the basic mathematics and properties of the most commonly used descriptions and present a new description developed by us for describing freeform surfaces.

  13. Klein Topological Field Theories from Group Representations

    Directory of Open Access Journals (Sweden)

    Sergey A. Loktev

    2011-07-01

    Full Text Available We show that any complex (respectively real representation of finite group naturally generates a open-closed (respectively Klein topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring.

  14. Process and representation in multiple-cue judgment

    OpenAIRE

    Olsson, Anna-Carin

    2002-01-01

    This thesis investigates the cognitive processes and representations underlying human judgment in a multiple-cue judgment task. Several recent models assume that people have several qualitatively distinct and competing levels of knowledge representations (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Erickson & Kruschke, 1998; Nosofsky, Palmeri, & McKinley, 1994; Sloman, 1996). The most successful cognitive models in categorization and multiple-cue judgment are, respectively, exe...

  15. Algebraic and analytic methods in representation theory

    CERN Document Server

    Schlichtkrull, Henrik

    1996-01-01

    This book is a compilation of several works from well-recognized figures in the field of Representation Theory. The presentation of the topic is unique in offering several different points of view, which should makethe book very useful to students and experts alike.Presents several different points of view on key topics in representation theory, from internationally known experts in the field

  16. Some nonunitary, indecomposable representations of the Euclidean algebra e(3)

    International Nuclear Information System (INIS)

    Douglas, Andrew; De Guise, Hubert

    2010-01-01

    The Euclidean group E(3) is the noncompact, semidirect product group E(3)≅R 3 x SO(3). It is the Lie group of orientation-preserving isometries of three-dimensional Euclidean space. The Euclidean algebra e(3) is the complexification of the Lie algebra of E(3). We construct three distinct families of finite-dimensional, nonunitary representations of e(3) and show that each representation is indecomposable. The representations of the first family are explicitly realized as subspaces of the polynomial ring F[X,Y,Z] with the action of e(3) given by differential operators. The other families are constructed via duals and tensor products of the representations within the first family. We describe subrepresentations, quotients and duals of these indecomposable representations.

  17. Profile of biology prospective teachers’ representation on plant anatomy learning

    Science.gov (United States)

    Ermayanti; Susanti, R.; Anwar, Y.

    2018-04-01

    This study aims to obtaining students’ representation ability in understanding the structure and function of plant tissues in plant anatomy course. Thirty students of The Biology Education Department of Sriwijaya University were involved in this study. Data on representation ability were collected using test and observation. The instruments had been validated by expert judgment. Test scores were used to represent students’ ability in 4 categories: 2D-image, 3D-image, spatial, and verbal representations. The results show that students’ representation ability is still low: 2D-image (40.0), 3D-image (25.0), spatial (20.0), and verbal representation (45.0). Based on the results of this study, it is suggested that instructional strategies be developed for plant anatomy course.

  18. Non-Hermitian Heisenberg representation

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2015-01-01

    Roč. 379, č. 36 (2015), s. 2013-2017 ISSN 0375-9601 Institutional support: RVO:61389005 Keywords : quantum mechanics * Non-Hermitian representation of observables * Generalized Heisenberg equations Subject RIV: BE - Theoretical Physics Impact factor: 1.677, year: 2015

  19. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...

  20. Non-Representational Theory

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2016-01-01

    Dette kapitel gennemgår den såkaldte ”Non-Representational Theory” (NRT), der primært er kendt fra den Angelsaksiske humangeografi, og som særligt er blevet fremført af den engelske geograf Nigel Thrift siden midten af 2000 årtiet. Da positionen ikke kan siges at være specielt homogen vil kapitlet...

  1. On push-forward representations in the standard gyrokinetic model

    International Nuclear Information System (INIS)

    Miyato, N.; Yagi, M.; Scott, B. D.

    2015-01-01

    Two representations of fluid moments in terms of a gyro-center distribution function and gyro-center coordinates, which are called push-forward representations, are compared in the standard electrostatic gyrokinetic model. In the representation conventionally used to derive the gyrokinetic Poisson equation, the pull-back transformation of the gyro-center distribution function contains effects of the gyro-center transformation and therefore electrostatic potential fluctuations, which is described by the Poisson brackets between the distribution function and scalar functions generating the gyro-center transformation. Usually, only the lowest order solution of the generating function at first order is considered to explicitly derive the gyrokinetic Poisson equation. This is true in explicitly deriving representations of scalar fluid moments with polarization terms. One also recovers the particle diamagnetic flux at this order because it is associated with the guiding-center transformation. However, higher-order solutions are needed to derive finite Larmor radius terms of particle flux including the polarization drift flux from the conventional representation. On the other hand, the lowest order solution is sufficient for the other representation, in which the gyro-center transformation part is combined with the guiding-center one and the pull-back transformation of the distribution function does not appear

  2. On push-forward representations in the standard gyrokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Miyato, N., E-mail: miyato.naoaki@jaea.go.jp; Yagi, M. [Japan Atomic Energy Agency, 2-116 Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Scott, B. D. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-01-15

    Two representations of fluid moments in terms of a gyro-center distribution function and gyro-center coordinates, which are called push-forward representations, are compared in the standard electrostatic gyrokinetic model. In the representation conventionally used to derive the gyrokinetic Poisson equation, the pull-back transformation of the gyro-center distribution function contains effects of the gyro-center transformation and therefore electrostatic potential fluctuations, which is described by the Poisson brackets between the distribution function and scalar functions generating the gyro-center transformation. Usually, only the lowest order solution of the generating function at first order is considered to explicitly derive the gyrokinetic Poisson equation. This is true in explicitly deriving representations of scalar fluid moments with polarization terms. One also recovers the particle diamagnetic flux at this order because it is associated with the guiding-center transformation. However, higher-order solutions are needed to derive finite Larmor radius terms of particle flux including the polarization drift flux from the conventional representation. On the other hand, the lowest order solution is sufficient for the other representation, in which the gyro-center transformation part is combined with the guiding-center one and the pull-back transformation of the distribution function does not appear.

  3. Representations for the extreme zeros of orthogonal polynomials

    NARCIS (Netherlands)

    van Doorn, Erik A.; van Foreest, Nicky D.; Zeifman, Alexander I.

    2009-01-01

    We establish some representations for the smallest and largest zeros of orthogonal polynomials in terms of the parameters in the three-terms recurrence relation. As a corollary we obtain representations for the endpoints of the true interval of orthogonality. Implications of these results for the

  4. Multiple Representations and Connections with the Sierpinski Triangle

    Science.gov (United States)

    Kirwan, J. Vince; Tobias, Jennifer M.

    2014-01-01

    To understand multiple representations in algebra, students must be able to describe relationships through a variety of formats, such as graphs, tables, pictures, and equations. NCTM indicates that varied representations are "essential elements in supporting students' understanding of mathematical concepts and relationships" (NCTM…

  5. On functional representations of the conformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Rosten, Oliver J.

    2017-07-15

    Starting with conformally covariant correlation functions, a sequence of functional representations of the conformal algebra is constructed. A key step is the introduction of representations which involve an auxiliary functional. It is observed that these functionals are not arbitrary but rather must satisfy a pair of consistency equations corresponding to dilatation and special conformal invariance. In a particular representation, the former corresponds to the canonical form of the exact renormalization group equation specialized to a fixed point whereas the latter is new. This provides a concrete understanding of how conformal invariance is realized as a property of the Wilsonian effective action and the relationship to action-free formulations of conformal field theory. Subsequently, it is argued that the conformal Ward Identities serve to define a particular representation of the energy-momentum tensor. Consistency of this construction implies Polchinski's conditions for improving the energy-momentum tensor of a conformal field theory such that it is traceless. In the Wilsonian approach, the exactly marginal, redundant field which generates lines of physically equivalent fixed points is identified as the trace of the energy-momentum tensor. (orig.)

  6. Social representations and normative beliefs of aging.

    Science.gov (United States)

    Torres, Tatiana de Lucena; Camargo, Brigido Vizeu; Boulsfield, Andréa Barbará; Silva, Antônia Oliveira

    2015-12-01

    This study adopted the theory of social representations as a theoretical framework in order to characterize similarities and differences in social representations and normative beliefs of aging for different age groups. The 638 participants responded to self-administered questionnaire and were equally distributed by sex and age. The results show that aging is characterized by positive stereotypes (knowledge and experience); however, retirement is linked to aging, but in a negative way, particularly for men, involving illness, loneliness and disability. When age was considered, it was verified that the connections with the representational elements became more complex for older groups, showing social representation functionality, largely for the elderly. Adulthood seems to be preferred and old age is disliked. There were divergences related to the perception of the beginning of life phases, especially that of old age. Work was characterized as the opposite of aging, and it revealed the need for actions intended for the elderly and retired workers, with post-retirement projects. In addition, it suggests investment in public policies that encourage intergenerational contact, with efforts to reduce intolerance and discrimination based on age of people.

  7. Multi-representation ability of students on the problem solving physics

    Science.gov (United States)

    Theasy, Y.; Wiyanto; Sujarwata

    2018-03-01

    Accuracy in representing knowledge possessed by students will show how the level of student understanding. The multi-representation ability of students on the problem solving of physics has been done through qualitative method of grounded theory model and implemented on physics education student of Unnes academic year 2016/2017. Multiforms of representation used are verbal (V), images/diagrams (D), graph (G), and mathematically (M). High and low category students have an accurate use of graphical representation (G) of 83% and 77.78%, and medium category has accurate use of image representation (D) equal to 66%.

  8. Convolution-based classification of audio and symbolic representations of music

    DEFF Research Database (Denmark)

    Velarde, Gissel; Cancino Chacón, Carlos; Meredith, David

    2018-01-01

    We present a novel convolution-based method for classification of audio and symbolic representations of music, which we apply to classification of music by style. Pieces of music are first sampled to pitch–time representations (piano-rolls or spectrograms) and then convolved with a Gaussian filter......-class composer identification, methods specialised for classifying symbolic representations of music are more effective. We also performed experiments on symbolic representations, synthetic audio and two different recordings of The Well-Tempered Clavier by J. S. Bach to study the method’s capacity to distinguish...

  9. Refinement of Representation Theorems for Context-Free Languages

    Science.gov (United States)

    Fujioka, Kaoru

    In this paper, we obtain some refinement of representation theorems for context-free languages by using Dyck languages, insertion systems, strictly locally testable languages, and morphisms. For instance, we improved the Chomsky-Schützenberger representation theorem and show that each context-free language L can be represented in the form L = h (D ∩ R), where D is a Dyck language, R is a strictly 3-testable language, and h is a morphism. A similar representation for context-free languages can be obtained, using insertion systems of weight (3, 0) and strictly 4-testable languages.

  10. Parent and child asthma illness representations: a systematic review.

    Science.gov (United States)

    Sonney, Jennifer T; Gerald, Lynn B; Insel, Kathleen C

    2016-06-01

    The purpose of this article is to synthesize the current literature on parent and child asthma illness representations and their consequent impact on parent-child asthma shared management. This systematic review was conducted in concordance with the PRISMA statement. An electronic search of five computerized databases (PubMed, PsycINFO, CINAHL, Cochrane, and EMBASE) was conducted using the following key words: asthma, illness representation, and child. Due to the limited number of articles identified, the search was broadened to include illness perceptions as well. Studies were included if they were specific to asthma and included parent and/or child asthma illness representations or perception, were published after 2000, and available in English. Fifteen articles were selected for inclusion. All of the articles are descriptive studies that used cross-sectional designs. Seven of the studies used parent and child participants, eight used parents only, and none used only child participants. None of the selected studies describe child asthma illness representations, and only three describe parental asthma illness representations. Domains of illness representations, including symptoms, timeline, consequences, cause, and controllability were described in the remaining articles. Symptoms and controllability appear to have the most influence on parental asthma management practices. Parents prefer symptomatic or intermittent asthma management and frequently cite concerns regarding daily controller medication use. Parents also primarily rely on their own objective symptom observations rather than the child's report of symptoms. Asthma illness representations are an important area of future study to better understand parent-child shared asthma management.

  11. An introduction to group representation theory

    CERN Document Server

    Keown, R D M

    1975-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  12. The Representation of Polysemy: MEG Evidence

    OpenAIRE

    Pylkkänen, Liina; Llinás, Rodolfo; Murphy, Gregory L.

    2006-01-01

    Most words in natural language are polysemous; i.e., they can be used in more than one way. For example, paper can be used to refer to a substance made out of wood pulp or to a daily publication printed on that substance. Even though virtually every sentence contains polysemy, there is little agreement as to how polysemy is represented in the mental lexicon. Do different uses of polysemous words involve access to a single representation or do our minds store distinct representations for each ...

  13. The Spatial Politics of Spatial Representation

    DEFF Research Database (Denmark)

    Olesen, Kristian; Richardson, Tim

    2011-01-01

    spatial planning in Denmark reveals how fuzzy spatial representations and relational spatial concepts are being used to depoliticise strategic spatial planning processes and to camouflage spatial politics. The paper concludes that, while relational geography might play an important role in building......This paper explores the interplay between the spatial politics of new governance landscapes and innovations in the use of spatial representations in planning. The central premise is that planning experiments with new relational approaches become enmeshed in spatial politics. The case of strategic...

  14. Student representational competence and self-assessment when solving physics problems

    Directory of Open Access Journals (Sweden)

    Noah D. Finkelstein

    2005-10-01

    Full Text Available Student success in solving physics problems is related to the representational format of the problem. We study student representational competence in two large-lecture algebra-based introductory university physics courses with approximately 600 participants total. We examined student performance on homework problems given in four different representational formats (mathematical, pictorial, graphical, verbal, with problem statements as close to isomorphic as possible. In addition to the homeworks, we examine students’ assessment of representations by providing follow-up quizzes in which they chose between various problem formats. As a control, some parts of the classes were assigned a random-format follow-up quiz. We find that there are statistically significant performance differences between different representations of nearly isomorphic statements of quiz and homework problems. We also find that allowing students to choose which representational format they use improves student performance under some circumstances and degrades it in others. Notably, one of the two courses studied shows much greater performance differences between the groups that received a choice of format and those that did not, and we consider possible causes. Overall, we observe that student representational competence is tied to both micro- and macrolevel features of the task and environment.

  15. Acoustic and Lexical Representations for Affect Prediction in Spontaneous Conversations.

    Science.gov (United States)

    Cao, Houwei; Savran, Arman; Verma, Ragini; Nenkova, Ani

    2015-01-01

    In this article we investigate what representations of acoustics and word usage are most suitable for predicting dimensions of affect|AROUSAL, VALANCE, POWER and EXPECTANCY|in spontaneous interactions. Our experiments are based on the AVEC 2012 challenge dataset. For lexical representations, we compare corpus-independent features based on psychological word norms of emotional dimensions, as well as corpus-dependent representations. We find that corpus-dependent bag of words approach with mutual information between word and emotion dimensions is by far the best representation. For the analysis of acoustics, we zero in on the question of granularity. We confirm on our corpus that utterance-level features are more predictive than word-level features. Further, we study more detailed representations in which the utterance is divided into regions of interest (ROI), each with separate representation. We introduce two ROI representations, which significantly outperform less informed approaches. In addition we show that acoustic models of emotion can be improved considerably by taking into account annotator agreement and training the model on smaller but reliable dataset. Finally we discuss the potential for improving prediction by combining the lexical and acoustic modalities. Simple fusion methods do not lead to consistent improvements over lexical classifiers alone but improve over acoustic models.

  16. Representations of handicaped in the portuguese press: hegemony and emancipation

    Directory of Open Access Journals (Sweden)

    Patrícia Neca

    2012-12-01

    Full Text Available The purpose of this study is to describe and analyze what are the representations that three Portuguese general-interest newspapers - Diário de Notícias, Jornal de Notícias and Público - construct and convey about people with disabilities. The analysis was guided by the perspective of social representations, on the assumption that the views conveyed by the press are shared by society and affect the public opinion. A total of 220 articles about disabilities, published in November and December between 2004 and 2009 where analyzed. The results show that there is little questioning in the newspapers regarding issues related with disability and that there are different representations mediated by different newspapers. Diário de Notícias and Público convey hegemonic representations, in other words, don´t discuss the disability issues and show the group as homogeneous, incompetent and object of social policies, thus blocking the appearance of new representations. Jornal de Notícias convey emancipated representations, this is, opens space to the debate of the new ideas, showing disabled people as competent, mainly in articles about awareness raising and physical disability. This debate enhances the appearance of new representations. Regarding mental disability, it appears associated to the stereotype of incompetence, in all the newspapers analyzed.

  17. Advances in visual representation of molecular potentials.

    Science.gov (United States)

    Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-06-01

    The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.

  18. On the coordinate representation of NLO BFKL

    International Nuclear Information System (INIS)

    Fadin, V.S.; Fiore, R.; Papa, A.

    2007-01-01

    The 'non-Abelian' part of the quark contribution to the BFKL kernel in the next-to-leading order (NLO) is found in the coordinate representation by direct transfer of the contribution from the momentum representation where it was calculated before. The results obtained are used for the examination of conformal properties of the NLO BFKL kernel and of the relation between the BFKL and color dipole approaches

  19. Spatiotemporal representation of cardiac vectorcardiogram (VCG signals

    Directory of Open Access Journals (Sweden)

    Yang Hui

    2012-03-01

    Full Text Available Abstract Background Vectorcardiogram (VCG signals monitor both spatial and temporal cardiac electrical activities along three orthogonal planes of the body. However, the absence of spatiotemporal resolution in conventional VCG representations is a major impediment for medical interpretation and clinical usage of VCG. This is especially so because time-domain features of 12-lead ECG, instead of both spatial and temporal characteristics of VCG, are widely used for the automatic assessment of cardiac pathological patterns. Materials and methods We present a novel representation approach that captures critical spatiotemporal heart dynamics by displaying the real time motion of VCG cardiac vectors in a 3D space. Such a dynamic display can also be realized with only one lead ECG signal (e.g., ambulatory ECG through an alternative lag-reconstructed ECG representation from nonlinear dynamics principles. Furthermore, the trajectories are color coded with additional dynamical properties of space-time VCG signals, e.g., the curvature, speed, octant and phase angles to enhance the information visibility. Results In this investigation, spatiotemporal VCG signal representation is used to characterize various spatiotemporal pathological patterns for healthy control (HC, myocardial infarction (MI, atrial fibrillation (AF and bundle branch block (BBB. The proposed color coding scheme revealed that the spatial locations of the peak of T waves are in the Octant 6 for the majority (i.e., 74 out of 80 of healthy recordings in the PhysioNet PTB database. In contrast, the peak of T waves from 31.79% (117/368 of MI subjects are found to remain in Octant 6 and the rest (68.21% spread over all other octants. The spatiotemporal VCG signal representation is shown to capture the same important heart characteristics as the 12-lead ECG plots and more. Conclusions Spatiotemporal VCG signal representation is shown to facilitate the characterization of space-time cardiac

  20. A Subdivision-Based Representation for Vector Image Editing.

    Science.gov (United States)

    Liao, Zicheng; Hoppe, Hugues; Forsyth, David; Yu, Yizhou

    2012-11-01

    Vector graphics has been employed in a wide variety of applications due to its scalability and editability. Editability is a high priority for artists and designers who wish to produce vector-based graphical content with user interaction. In this paper, we introduce a new vector image representation based on piecewise smooth subdivision surfaces, which is a simple, unified and flexible framework that supports a variety of operations, including shape editing, color editing, image stylization, and vector image processing. These operations effectively create novel vector graphics by reusing and altering existing image vectorization results. Because image vectorization yields an abstraction of the original raster image, controlling the level of detail of this abstraction is highly desirable. To this end, we design a feature-oriented vector image pyramid that offers multiple levels of abstraction simultaneously. Our new vector image representation can be rasterized efficiently using GPU-accelerated subdivision. Experiments indicate that our vector image representation achieves high visual quality and better supports editing operations than existing representations.

  1. Gender Representation in Elementary Level, African Language Textbooks

    Directory of Open Access Journals (Sweden)

    Antonia Folarin Schleicher

    2004-01-01

    Full Text Available Foreign language learners' perceptions and understanding of a target culture(s are affected by the infonnation presented by their teacher(s, textbooks and other instructional materials. This paper focuses on an analysis of gender representation in elementary level, African language textbooks, with a specific concentration on Hausa, Swahili, Yoruba, and Zulu textbooks. Although the study of gender representation in textbooks is not new (see Blankenship, 1984; Clausen, 1982; Neussel, 1977 and others, relatively few authors have focused on gender representation in foreign language textbooks (Graci, 1989; Rifkin, 1998. This study seeks to extend the work of these scholars into the field of African languages. As a result, the present analysis focuses on (1 establishing criteria for evaluating African language textbooks for gender representation; (2 applying these criteria to seventeen different, elementary level, African language textbooks to create a basis for a comparative case study; (3 presenting the findings of a detailed analysis; and ( 4 utilizing the findings to formulate guidelines for future textbook writers.

  2. Indigenous participation and representation in Venezuelan electoral processes

    Directory of Open Access Journals (Sweden)

    Luis Fernando ANGOSTO FERRÁNDEZ

    2012-06-01

    Full Text Available This article examines the Venezuelan regional elections of 2008 as a contextual event for the analysis of electoral strategies and results associated with the indigenous representation. Three factors intertwined in the electoral moment are analyzed: 1. the existence of minimum guaranteed representation for indigenous population in legislative organs; 2. the participation of indigenous candidates and electors; 3. the maneuvers of political parties and civil organizations that attempt to channel and/or benefit from such indigenous representation and participation. The description of the electoral context facilitates the identification of factors that, beyond the normative structure of the State, condition the agency of individuals and parties involved in electoral processes. Among those factors are the symbolic value of indigeneity in the current process of national identity re-definition, the interest of political parties in controlling the vote of the indigenous representation and the tendency towards the consolidation of professionalized elites within the indigenous activism.

  3. Morality constrains the default representation of what is possible.

    Science.gov (United States)

    Phillips, Jonathan; Cushman, Fiery

    2017-05-02

    The capacity for representing and reasoning over sets of possibilities, or modal cognition, supports diverse kinds of high-level judgments: causal reasoning, moral judgment, language comprehension, and more. Prior research on modal cognition asks how humans explicitly and deliberatively reason about what is possible but has not investigated whether or how people have a default, implicit representation of which events are possible. We present three studies that characterize the role of implicit representations of possibility in cognition. Collectively, these studies differentiate explicit reasoning about possibilities from default implicit representations, demonstrate that human adults often default to treating immoral and irrational events as impossible, and provide a case study of high-level cognitive judgments relying on default implicit representations of possibility rather than explicit deliberation.

  4. A new representation for ground states and its Legendre transforms

    International Nuclear Information System (INIS)

    Cedillo, A.

    1994-01-01

    The ground-state energy of an electronic system is a functional of the number of electrons (N) and the external potential (v): E = E(N,V), this is the energy representation for ground states. In 1982, Nalewajski defined the Legendre transforms of this representation, taking advantage of the strict concavity of E with respect to their variables (concave respect v and convex respect N), and he also constructed a scheme for the reduction of derivatives of his representations. Unfortunately, N and the electronic density (p) were the independent variables of one of these representations, but p depends explicitly on N. In this work, this problem is avoided using the energy per particle (ε) as the basic variables, and the Legendre transformations can be defined. A procedure for the reduction of derivatives is generated for the new four representations and, in contrast to the Nalewajski's procedure, it only includes derivatives of the four representations. Finally, the reduction of derivatives is used to test some relationships between the hardness and softness kernels

  5. Focusing on Presentation Instead of Representation: Perspectives on Representational and Non-Representational Language-Games for Educational History and Theory

    Science.gov (United States)

    Fendler, Lynn; Smeyers, Paul

    2015-01-01

    Debates in science seem to depend on referential language-games, but in other senses they do not. This article addresses non-representational theory. It is a branch of newer approaches to cultural geography that strive to get a handle on spatial relationships not by representing them, but rather by presenting them. In this case, present connotes…

  6. Using Distributed Representations to Disambiguate Biomedical and Clinical Concepts

    OpenAIRE

    Tulkens, Stéphan; Šuster, Simon; Daelemans, Walter

    2016-01-01

    In this paper, we report a knowledge-based method for Word Sense Disambiguation in the domains of biomedical and clinical text. We combine word representations created on large corpora with a small number of definitions from the UMLS to create concept representations, which we then compare to representations of the context of ambiguous terms. Using no relational information, we obtain comparable performance to previous approaches on the MSH-WSD dataset, which is a well-known dataset in the bi...

  7. Quantum control and representation theory

    International Nuclear Information System (INIS)

    Ibort, A; Perez-Pardo, J M

    2009-01-01

    A new notion of controllability for quantum systems that takes advantage of the linear superposition of quantum states is introduced. We call such a notion von Neumann controllability, and it is shown that it is strictly weaker than the usual notion of pure state and operator controllability. We provide a simple and effective characterization of it by using tools from the theory of unitary representations of Lie groups. In this sense, we are able to approach the problem of control of quantum states from a new perspective, that of the theory of unitary representations of Lie groups. A few examples of physical interest and the particular instances of compact and nilpotent dynamical Lie groups are discussed

  8. Narcissism and relational representations among psychiatric outpatients.

    Science.gov (United States)

    Kealy, David; Ogrodniczuk, John S; Joyce, Anthony S; Steinberg, Paul I; Piper, William E

    2015-06-01

    Pathological narcissism is associated with maladaptive interpersonal behavior, although less is known regarding the internal relational representations of narcissistic patients. The authors examined the relationship between pathological narcissism and two constructs that reflect internal representations of relational patterns: quality of object relations and attachment style. Patients attending a psychiatric day treatment program (N = 218) completed measures of narcissism, general psychiatric distress, and attachment style in terms of attachment avoidance and anxiety. A semistructured interview was used to assess quality of object relations. Multiple regression analysis was conducted, controlling for general psychiatric distress. Pathological narcissism was associated with anxious attachment, but not with avoidant attachment. Narcissism was also associated with lower levels of quality of object relations. The implications of these results are discussed in terms of internal representations of self-other relations.

  9. A course in finite group representation theory

    CERN Document Server

    Webb, Peter

    2016-01-01

    This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.

  10. Multiple External Representations: Bridges or Barriers to Climate Literacy?

    Science.gov (United States)

    Holzer, M. A.

    2012-12-01

    The continuous barrage of science related headlines and other media sources warn us of the need to heed the imperative for a science literate society. Climate change, genetics, evolution are a few of the charged and complex scientific topics requiring public understanding of the science to fully grasp the enormous reach of these topics in our daily lives. For instance, our global climate is changing as evidenced by the analysis of Earth observing satellite data, in-situ data, and proxy data records. How we as a global society decide to address the needs associated with a changing climate are contingent upon having a population that understands how the climate system functions, and can therefore make informed decisions on how to mitigate the effects of climate change. Communication in science relies heavily on the use of multiple representations to support the claims presented. However, these multiple representations require spatial and temporal skills to interpret information portrayed in them, and how a person engages with complex text and the multiple representations varies with the level of expertise one has with the content area. For example, a climatologist will likely identify anomalous data more quickly than a novice when presented with a graph of temperature change over time. These representations are used throughout textbooks as well as popular reading materials such as newspapers and magazines without much consideration for how a reader engages with complex text, diagrams, images, and graphs. If the ability to read and interact with scientific text found in popular literature is perceived as a worthy goal of scientific literacy, then it is imperative that readers understand the relationship between multiple representations and the text while interacting with the science literature they are reading. For example, in climate related articles multiple representations not only support the content, but they are part of the content not to be overlooked by a

  11. Unpacking physics representations: Towards an appreciation of disciplinary affordance

    Directory of Open Access Journals (Sweden)

    Tobias Fredlund

    2014-12-01

    Full Text Available This theoretical article problematizes the access to disciplinary knowledge that different physics representations have the possibility to provide; that is, their disciplinary affordances. It is argued that historically such access has become increasingly constrained for students as physics representations have been rationalized over time. Thus, the case is made that such rationalized representations, while powerful for communication from a disciplinary point of view, manifest as learning challenges for students. The proposal is illustrated using a vignette from a student discussion in the physics laboratory about circuit connections for an experimental investigation of the charging and discharging of a capacitor. It is concluded that in order for students to come to appreciate the disciplinary affordances of representations, more attention needs to be paid to their “unpacking.” Building on this conclusion, two questions are proposed that teachers can ask themselves in order to begin to unpack the representations that they use in their teaching. The paper ends by proposing directions for future research in this area.

  12. Robust Face Recognition Via Gabor Feature and Sparse Representation

    Directory of Open Access Journals (Sweden)

    Hao Yu-Juan

    2016-01-01

    Full Text Available Sparse representation based on compressed sensing theory has been widely used in the field of face recognition, and has achieved good recognition results. but the face feature extraction based on sparse representation is too simple, and the sparse coefficient is not sparse. In this paper, we improve the classification algorithm based on the fusion of sparse representation and Gabor feature, and then improved algorithm for Gabor feature which overcomes the problem of large dimension of the vector dimension, reduces the computation and storage cost, and enhances the robustness of the algorithm to the changes of the environment.The classification efficiency of sparse representation is determined by the collaborative representation,we simplify the sparse constraint based on L1 norm to the least square constraint, which makes the sparse coefficients both positive and reduce the complexity of the algorithm. Experimental results show that the proposed method is robust to illumination, facial expression and pose variations of face recognition, and the recognition rate of the algorithm is improved.

  13. Turning Symbolic: The representation of motion direction in working memory

    Directory of Open Access Journals (Sweden)

    Tal eSeidel Malkinson

    2016-02-01

    Full Text Available What happens to the representation of a moving stimulus when it is no longer present and its motion direction has to be maintained in working memory (WM? Is the initial, sensorial representation maintained during the delay period or is there another representation, at a higher level of abstraction? It is also feasible that multiple representations may co-exist in WM, manifesting different facets of sensory and more abstract features.To that end, we investigated the mnemonic representation of motion direction in a series of three psychophysical experiments, using a delayed motion-discrimination task (relative clockwisecounter-clockwise judgment. First, we show that a change in the dots' contrast polarity does not hamper performance. Next, we demonstrate that performance is unaffected by relocation of the Test stimulus in either retinotopic or spatiotopic coordinate frames. Finally, we show that an arrow-shaped cue presented during the delay interval between the Sample and Test stimulus, biases performance towards the direction of the arrow, although the cue itself is non-informative (it has no predictive value of the correct answer. These results indicate that the representation of motion direction in WM is independent of the physical features of the stimulus (polarity or position and has non-sensorial abstract qualities. It is plausible that an abstract mnemonic trace might be activated alongside a more basic, analogue representation of the stimulus. We speculate that the specific sensitivity of the mnemonic representation to the arrow-shaped symbol may stem from the long term learned association between direction and the hour in the clock.

  14. The representation of neutron polarization

    International Nuclear Information System (INIS)

    Byrne, J.

    1979-01-01

    Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)

  15. Paired structures and bipolar knowledge representation

    DEFF Research Database (Denmark)

    Montero, Javier; Bustince, Humberto; Franco, Camilo

    In this strictly positional paper we propose a general approach to bipolar knowledge representation, where the meaning of concepts can be modelled by examining their decomposition into opposite and neutral categories. In particular, it is the semantic relationship between the opposite categories...... and at the same time the type of neutrality rising in between opposites. Based on this first level of bipolar knowledge representation, paired structures in fact offer the means to characterize a specific bipolar valuation scale depending on the meaning of the concept that has to be verified. In this sense...

  16. Gender Representations: Reaching Beyond the Limits We Make.

    Science.gov (United States)

    Enciso, Patricia; Rogers, Theresa; Marshall, Elizabeth; Tyson, Cynthia; Jenkins, Christine; Brown, Jacqueline; Core, Elizabeth; Cordova, Carmen; Youngsteadt-Parish, Denise; Robinson, Dwan

    1999-01-01

    Describes 15 children's books (published in 1998 or 1999) that offer diverse representations of gender. Discusses them in tandem with landmark children's books in categories of picture books (from traditional tales to contemporary and historical representations), series books (fitting into and breaking the mold), and chapter books (navigating…

  17. Minutia-pair spectral representations for fingerprint template protection

    NARCIS (Netherlands)

    Stanko, T.; Skoric, B.

    2017-01-01

    We introduce a new fixed-length representation of fingerprint minutiae, for use in template protection. It is similar to the `spectral minutiae' representation of Xu et al. but is based on coordinate differences between pairs of minutiae. Our technique has the advantage that it does not discard the

  18. Propositional matrices as alternative representation of truth values ...

    African Journals Online (AJOL)

    The paper considered the subject of representation of truth values in symbolic logic. An alternative representation was given based on the rows and columns properties of matrices, with the operations involving the logical connectives subjected to the laws of algebra of propositions. Matrices of various propositions detailing ...

  19. Changes in the representation of women and minorities in biomedical careers.

    Science.gov (United States)

    Myers, Samuel L; Fealing, Kaye Husbands

    2012-11-01

    To examine how efforts and policies to increase diversity affect the relative representation of women and of minority groups within medicine and related science fields. The authors of this report used data from the Current Population Survey March Supplement (a product of the U.S. Census Bureau and the Bureau of Labor Statistics that tracks race, ethnicity, and employment) to compute the representation ratios of persons employed in biology, chemistry, and medicine from 1968 to 2009 (inclusive). They derived the representation ratios by computing the ratio of the conditional probability that a member of a given group is employed in a specific skilled science field to the overall probability of employment in that field. Their analysis tested for differences in representation ratios among racial, gender, and ethnic groups and across time among those employed as biologists, chemists, and medical doctors. Representation ratios rose for white females, whose percentage increase in medicine was larger than for any other racial/ethnic group. The representation ratios fell for Hispanics in biology, chemistry, and medicine. The representation ratio rose for African Americans, whose highest percentage increase occurred in biology. Asian Americans, who had the highest representation ratios in all three disciplines, saw a decline in their relative representation in medicine. The authors have demonstrated that all groups do not benefit equally from diversity initiatives and that competition across related fields can confound efforts to increase diversity in medicine.

  20. Invariant recognition drives neural representations of action sequences.

    Directory of Open Access Journals (Sweden)

    Andrea Tacchetti

    2017-12-01

    Full Text Available Recognizing the actions of others from visual stimuli is a crucial aspect of human perception that allows individuals to respond to social cues. Humans are able to discriminate between similar actions despite transformations, like changes in viewpoint or actor, that substantially alter the visual appearance of a scene. This ability to generalize across complex transformations is a hallmark of human visual intelligence. Advances in understanding action recognition at the neural level have not always translated into precise accounts of the computational principles underlying what representations of action sequences are constructed by human visual cortex. Here we test the hypothesis that invariant action discrimination might fill this gap. Recently, the study of artificial systems for static object perception has produced models, Convolutional Neural Networks (CNNs, that achieve human level performance in complex discriminative tasks. Within this class, architectures that better support invariant object recognition also produce image representations that better match those implied by human and primate neural data. However, whether these models produce representations of action sequences that support recognition across complex transformations and closely follow neural representations of actions remains unknown. Here we show that spatiotemporal CNNs accurately categorize video stimuli into action classes, and that deliberate model modifications that improve performance on an invariant action recognition task lead to data representations that better match human neural recordings. Our results support our hypothesis that performance on invariant discrimination dictates the neural representations of actions computed in the brain. These results broaden the scope of the invariant recognition framework for understanding visual intelligence from perception of inanimate objects and faces in static images to the study of human perception of action sequences.

  1. Domestic violence against women: representations of health professionals 1

    Science.gov (United States)

    Gomes, Vera Lúcia de Oliveira; Silva, Camila Daiane; de Oliveira, Denize Cristina; Acosta, Daniele Ferreira; Amarijo, Cristiane Lopes

    2015-01-01

    Abstract Objective: to analyze the representations about domestic violence against women, among health professionals of Family Health Units. Method: qualitative study based on the Theory of Social Representations. Data were collected by means of evocations and interviews, treating them in the Ensemble de Programmes Pemettant L'Analyse des Evocations software - EVOC and content analysis. Results: nurses, physicians, nursing technicians and community health agents participated. The evocations were answered by 201 professionals and, of these, 64 were interviewed. The central core of this representation, comprised by the terms "aggression", "physical-aggression", "cowardice" and "lack of respect", which have negative connotations and were cited by interviewees. In the contrast zone, comprised by the terms "abuse", "abuse-power", "pain", "humiliation", "impunity", "suffering", "sadness" and "violence", two subgroups were identified. The first periphery contains the terms "fear", evoked most often, followed by "revolt", "low self-esteem" and "submission", and in the second periphery "acceptance" and "professional support". Conclusion: this is a structured representation since it contains conceptual, imagetic and attitudinal elements. The subgroups were comprised by professionals working in the rural area and by those who had completed their professional training course in or after 2004. These presented a representation of violence different from the representation of the general group, although all demonstrated a negative connotation of this phenomenon. PMID:26444175

  2. Meet the 'entangled' fieldworker - Distorted (re)presentations in tourism research

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg

    how photographic materialities, performativities and sensations contribute to new tourism knowledges. While highlighting the potential of distorted representation, the paper posits a cautionary note in regards to the influential role of academic journals in determining the qualities of visual data....... The paper exemplifies distorted representation through three impressionistic tales derived from ethnographic research on the European rail travel phenomenon, InterRail.......Tourism research has recently been informed by non-representational theories to highlight the socio-material, embodied and heterogeneous composition of tourist experiences. These advances have contributed to further reflexivity and called for novel ways to animate representations...

  3. Roma Minority in Romania and its Media Representation

    Directory of Open Access Journals (Sweden)

    Gabriela Creţu

    2014-11-01

    Full Text Available The aim of this paper is to put into light main aspects of the relationship between the image of Roma as perceived by the majority of population and its representation in the Romanian press from 1990 until 2006. The representation of Roma is considered a cause and, in the same time, a consequence of the identity problem of this population as an ethnic group, on one side, and of its social status, on the other side. The situation of Roma in the Romanian society, the modalities of Roma portrayal in press and the factors that influence its representation are addressed in the paper.

  4. Renormalization in the complete Mellin representation of Feynman amplitudes

    International Nuclear Information System (INIS)

    Calan, C. de; David, F.; Rivasseau, V.

    1981-01-01

    The Feynmann amplitudes are renormalized in the formalism of the CM representation. This Mellin-Barnes type integral representation, previously introduced for the study of asymptotic behaviours, is shown to have the following interesting property: in contrast with the usual subtraction procedures, the renormalization leaves the CM intergrand unchanged, and only results into translations of the integration path. The explicit CM representation of the renormalized amplitudes is given. In addition, the dimensional regularization and the extension to spinor amplitudes are sketched. (orig.)

  5. Uncovering Mental Representations with Markov Chain Monte Carlo

    Science.gov (United States)

    Sanborn, Adam N.; Griffiths, Thomas L.; Shiffrin, Richard M.

    2010-01-01

    A key challenge for cognitive psychology is the investigation of mental representations, such as object categories, subjective probabilities, choice utilities, and memory traces. In many cases, these representations can be expressed as a non-negative function defined over a set of objects. We present a behavioral method for estimating these…

  6. Studying Action Representation in Children via Motor Imagery

    Science.gov (United States)

    Gabbard, Carl

    2009-01-01

    The use of motor imagery is a widely used experimental paradigm for the study of cognitive aspects of action planning and control in adults. Furthermore, there are indications that motor imagery provides a window into the process of action representation. These notions complement internal model theory suggesting that such representations allow…

  7. Parent Trigger Policies, Representation, and the Public Good

    Science.gov (United States)

    Allen, Ann; Saultz, Andrew

    2015-01-01

    Using theories of representation and democratic education, this article examines the impetus of parent trigger policies in the United States and their potential effects on public good goals for public education. The article also uses theories of representation and responsible democratic governance to assess the parent trigger policies, or what are…

  8. Stable Kernel Representations as Nonlinear Left Coprime Factorizations

    NARCIS (Netherlands)

    Paice, A.D.B.; Schaft, A.J. van der

    1994-01-01

    A representation of nonlinear systems based on the idea of representing the input-output pairs of the system as elements of the kernel of a stable operator has been recently introduced. This has been denoted the kernel representation of the system. In this paper it is demonstrated that the kernel

  9. Evaluation of Chemical Representations in Physical Chemistry Textbooks

    Science.gov (United States)

    Nyachwaya, James M.; Wood, Nathan B.

    2014-01-01

    That different levels of representation are important for complete understanding of chemistry is an accepted fact in the chemistry education community. This study sought to uncover types of representations used in given physical chemistry textbooks. Textbooks play a central role in the teaching and learning of science (chemistry), and in some…

  10. Speculations on the representation of architecture in virtual reality

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars; Bundgård, Ture Slot

    2017-01-01

    to the visual field of perception. However, this should not necessarily imply an acceptance of the dominance of vision over the other senses, and the much-criticized retinal architecture with its inherent loss of plasticity. Recent neurology studies indicate that 3D representation models in virtual reality......This paper discusses the present and future possibilities of representation models of architecture in new media such as virtual reality, seen in the broader context of tradition, perception, and neurology. Through comparative studies of real and virtual scenarios using eye tracking, the paper...... are less demanding on the brain’s working memory than 3D models seen on flat two-dimensional screens. This paper suggests that virtual reality representational architectural models can, if used correctly, significantly improve the imaginative role of architectural representation....

  11. The Problem of Representation

    Science.gov (United States)

    Tervo, Juuso

    2012-01-01

    In "Postphysical Vision: Art Education's Challenge in an Age of Globalized Aesthetics (AMondofesto)" (2008) and "Beyond Aesthetics: Returning Force and Truth to Art and Its Education" (2009), jan jagodzinski argued for politics that go "beyond" representation--a project that radically questions visual culture…

  12. Holistic face representation is highly orientation-specific.

    Science.gov (United States)

    Rosenthal, Gideon; Levakov, Gidon; Avidan, Galia

    2017-09-29

    It has long been argued that face processing requires disproportionate reliance on holistic processing (HP), relative to that required for nonface object recognition. Nevertheless, whether the holistic nature of face perception is achieved via a unique internal representation or by the employment of an automated attention mechanism is still debated. Previous studies had used the face inversion effect (FIE), a unique face-processing marker, or the face composite task, a gold standard paradigm measuring holistic processing, to examine the validity of these two different hypotheses, with some studies combining the two paradigms. However, the results of such studies remain inconclusive, particularly pertaining to the issue of the two proposed HP mechanisms-an internal representation as opposed to an automated attention mechanism. Here, using the complete composite paradigm design, we aimed to examine whether face rotation yields a nonlinear or a linear drop in HP, thus supporting an account that face processing is based either on an orientation-dependent internal representation or on automated attention. Our results reveal that even a relatively small perturbation in face orientation (30 deg away from upright) already causes a sharp decline in HP. These findings support the face internal representation hypothesis and the notion that the holistic processing of faces is highly orientation-specific.

  13. Visual Representations of DNA Replication: Middle Grades Students' Perceptions and Interpretations

    Science.gov (United States)

    Patrick, Michelle D.; Carter, Glenda; Wiebe, Eric N.

    2005-01-01

    Visual representations play a critical role in the communication of science concepts for scientists and students alike. However, recent research suggests that novice students experience difficulty extracting relevant information from representations. This study examined students' interpretations of visual representations of DNA replication. Each…

  14. An exploration of the relations between external representations and working memory.

    Directory of Open Access Journals (Sweden)

    Jiajie Zhang

    Full Text Available It is commonly hypothesized that external representations serve as memory aids and improve task performance by means of expanding the limited capacity of working memory. However, very few studies have directly examined this memory aid hypothesis. By systematically manipulating how information is available externally versus internally in a sequential number comparison task, three experiments were designed to investigate the relation between external representations and working memory. The experimental results show that when the task requires information from both external representations and working memory, it is the interaction of information from the two sources that determines task performance. In particular, when information from the two sources does not match well, external representations hinder instead of enhance task performance. The study highlights the important role the coordination among different representations plays in distributed cognition. The general relations between external representations and working memory are discussed.

  15. Artistic Representation: Promoting Student Creativity and Self-Reflection

    Science.gov (United States)

    Autry, Linda L.; Walker, Mary E.

    2011-01-01

    The authors conducted a qualitative study on the use of artistic representation to promote students' creativity and enhance their ability to self-reflect. The researchers used self-reflection articles about artistic representation and responses to a questionnaire at the end of the semester. Three overarching themes, as seen through the lens of the…

  16. The Representation of Abstract Words: Why Emotion Matters

    Science.gov (United States)

    Kousta, Stavroula-Thaleia; Vigliocco, Gabriella; Vinson, David P.; Andrews, Mark; Del Campo, Elena

    2011-01-01

    Although much is known about the representation and processing of concrete concepts, knowledge of what abstract semantics might be is severely limited. In this article we first address the adequacy of the 2 dominant accounts (dual coding theory and the context availability model) put forward in order to explain representation and processing…

  17. Translation among Symbolic Representations in Problem-Solving. Revised.

    Science.gov (United States)

    Shavelson, Richard J.; And Others

    This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…

  18. Deep supervised, but not unsupervised, models may explain IT cortical representation.

    Directory of Open Access Journals (Sweden)

    Seyed-Mahdi Khaligh-Razavi

    2014-11-01

    Full Text Available Inferior temporal (IT cortex in human and nonhuman primates serves visual object recognition. Computational object-vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the internal representations of computational models can explain the IT representation. Here we investigate a wide range of computational model representations (37 in total, testing their categorization performance and their ability to account for the IT representational geometry. The models include well-known neuroscientific object-recognition models (e.g. HMAX, VisNet along with several models from computer vision (e.g. SIFT, GIST, self-similarity features, and a deep convolutional neural network. We compared the representational dissimilarity matrices (RDMs of the model representations with the RDMs obtained from human IT (measured with fMRI and monkey IT (measured with cell recording for the same set of stimuli (not used in training the models. Better performing models were more similar to IT in that they showed greater clustering of representational patterns by category. In addition, better performing models also more strongly resembled IT in terms of their within-category representational dissimilarities. Representational geometries were significantly correlated between IT and many of the models. However, the categorical clustering observed in IT was largely unexplained by the unsupervised models. The deep convolutional network, which was trained by supervision with over a million category-labeled images, reached the highest categorization performance and also best explained IT, although it did not fully explain the IT data. Combining the features of this model with appropriate weights and adding linear combinations that maximize the margin between animate and inanimate objects and between faces and other objects yielded a representation that fully explained our IT data. Overall, our results suggest that explaining

  19. Algorithmic foundation of multi-scale spatial representation

    CERN Document Server

    Li, Zhilin

    2006-01-01

    With the widespread use of GIS, multi-scale representation has become an important issue in the realm of spatial data handling. However, no book to date has systematically tackled the different aspects of this discipline. Emphasizing map generalization, Algorithmic Foundation of Multi-Scale Spatial Representation addresses the mathematical basis of multi-scale representation, specifically, the algorithmic foundation.Using easy-to-understand language, the author focuses on geometric transformations, with each chapter surveying a particular spatial feature. After an introduction to the essential operations required for geometric transformations as well as some mathematical and theoretical background, the book describes algorithms for a class of point features/clusters. It then examines algorithms for individual line features, such as the reduction of data points, smoothing (filtering), and scale-driven generalization, followed by a discussion of algorithms for a class of line features including contours, hydrog...

  20. Clinical implications of self-representations

    Indian Academy of Sciences (India)

    2016-01-15

    Jan 15, 2016 ... self has become an important focus in cognitive neuroscience in ... However, this 'motivational' evolutionary psychology approach to etiology is somewhat circular .... dependent development of self-representations aptly:.

  1. Speculations on the representation of architecture in virtual reality

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars; Bundgård, Ture Slot

    2017-01-01

    to the visual field of perception. However, this should not necessarily imply an acceptance of the dominance of vision over the other senses, and the much-criticized retinal architecture with its inherent loss of plasticity. Recent neurology studies indicate that 3D representation models in virtual reality...... are less demanding on the brain’s working memory than 3D models seen on flat two-dimensional screens. This paper suggests that virtual reality representational architectural models can, if used correctly, significantly improve the imaginative role of architectural representation....

  2. Sparse Representation Based SAR Vehicle Recognition along with Aspect Angle

    Directory of Open Access Journals (Sweden)

    Xiangwei Xing

    2014-01-01

    Full Text Available As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC has attracted much attention in synthetic aperture radar (SAR automatic target recognition (ATR recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA, in which the correlation between the vehicle’s aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle’s aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.

  3. An algebraic formulation of quantum electrodynamics. [Fermi method, Schroedinger representation, Weylalgebra

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, J M

    1975-01-01

    A reappraisal of electromagnetic field theories is made and an account is given of the radiation gauge, Gupta-Bleuler and Fermi methods of quantitising the electromagnetic fields. The Weyl algebra of the vector potential is constructed and the Fermi method is then related to a certain representation of the algebra. The representation is specified by a generating functional for a state on the algebra. The Weyl algebra of the physical field is then constructed as a factor algebra. The Schroedinger representation of the algebra is then studied and it was found that the Fermi method is just a generalization of this representation to an infinite number of degrees of freedom. The Schroedinger representation of Fermi method is constructed.

  4. Time representations in social science.

    Science.gov (United States)

    Schulz, Yvan

    2012-12-01

    Time has long been a major topic of study in social science, as in other sciences or in philosophy. Social scientists have tended to focus on collective representations of time, and on the ways in which these representations shape our everyday experiences. This contribution addresses work from such disciplines as anthropology, sociology and history. It focuses on several of the main theories that have preoccupied specialists in social science, such as the alleged "acceleration" of life and overgrowth of the present in contemporary Western societies, or the distinction between so-called linear and circular conceptions of time. The presentation of these theories is accompanied by some of the critiques they have provoked, in order to enable the reader to form her or his own opinion of them.

  5. Berry phase in Heisenberg representation

    Science.gov (United States)

    Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.

    1994-01-01

    We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.

  6. Analysis of graphic representations of activity theory in international journals

    Directory of Open Access Journals (Sweden)

    Marco André Mazzarotto

    2016-05-01

    Full Text Available Activity theory is a relevant framework for the Design field, and their graphic representations are cognitive artifacts that aid the understanding, use and communication of this theory. However, there is a lack of consistency around the graphics and labels used in these representations. Based on this, the aim of this study was to identify, analyze and evaluate these differences and propose a representation that aims to be more suitable for the theory. For this, uses as method a literature review based on Engeström (2001 and its three generations of visual models, combined with graphical analysis of representations collected in a hundred papers from international journals.

  7. Going beyond representational anthropology

    DEFF Research Database (Denmark)

    Winther, Ida Wentzel

    Going beyond representational anthropology: Re-presenting bodily, emotional and virtual practices in everyday life. Separated youngsters and families in Greenland Greenland is a huge island, with a total of four high-schools. Many youngsters (age 16-18) move far away from home in order to get...

  8. Reflection on Political Representation

    DEFF Research Database (Denmark)

    Kusche, Isabel

    2017-01-01

    This article compares how Members of Parliament in the United Kingdom and Ireland reflect on constituency service as an aspect of political representation. It differs from existing research on the constituency role of MPs in two regards. First, it approaches the question from a sociological viewp...

  9. Electron propagator calculations on the ionization energies of CrH -, MnH - and FeH -

    Science.gov (United States)

    Lin, Jyh-Shing; Ortiz, J. V.

    1990-08-01

    Electron propagator calculations with unrestricted Hartree-Fock reference states yield the ionization energies of the title anions. Spin contamination in the anionic reference state is small, enabling the use of second-and third-order self-energies in the Dyson equation. Feynman-Dyson amplitudes for these ionizations are essentially identical to canonical spin-orbitals. For most of the final states, these consist of an antibonding combination of an sp metal hybrid, polarized away from the hydrogen, and hydroegen s functions. In one case, the Feynman-Dyson amplitude consists of nonbonding d functions. Calculated ionization energies are within 0.5 eV of experiment.

  10. Representation of numerical magnitude in math-anxious individuals.

    Science.gov (United States)

    Colomé, Àngels

    2018-01-01

    Larger distance effects in high math-anxious individuals (HMA) performing comparison tasks have previously been interpreted as indicating less precise magnitude representation in this population. A recent study by Dietrich, Huber, Moeller, and Klein limited the effects of math anxiety to symbolic comparison, in which they found larger distance effects for HMA, despite equivalent size effects. However, the question of whether distance effects in symbolic comparison reflect the properties of the magnitude representation or decisional processes is currently under debate. This study was designed to further explore the relation between math anxiety and magnitude representation through three different tasks. HMA and low math-anxious individuals (LMA) performed a non-symbolic comparison, in which no group differences were found. Furthermore, we did not replicate previous findings in an Arabic digit comparison, in which HMA individuals showed equivalent distance effects to their LMA peers. Lastly, there were no group differences in a counting Stroop task. Altogether, an explanation of math anxiety differences in terms of less precise magnitude representation is not supported.

  11. Representation and integration of sociological knowledge using knowledge graphs

    NARCIS (Netherlands)

    Popping, R; Strijker, [No Value

    1997-01-01

    The representation and integration of sociological knowledge using knowledge graphs, a specific kind of semantic network, is discussed. Knowledge it systematically searched this reveals. inconsistencies, reducing superfluous research and knowledge, and showing gaps in a theory. This representation

  12. Attention to memory: orienting attention to sound object representations.

    Science.gov (United States)

    Backer, Kristina C; Alain, Claude

    2014-01-01

    Despite a growing acceptance that attention and memory interact, and that attention can be focused on an active internal mental representation (i.e., reflective attention), there has been a paucity of work focusing on reflective attention to 'sound objects' (i.e., mental representations of actual sound sources in the environment). Further research on the dynamic interactions between auditory attention and memory, as well as its degree of neuroplasticity, is important for understanding how sound objects are represented, maintained, and accessed in the brain. This knowledge can then guide the development of training programs to help individuals with attention and memory problems. This review article focuses on attention to memory with an emphasis on behavioral and neuroimaging studies that have begun to explore the mechanisms that mediate reflective attentional orienting in vision and more recently, in audition. Reflective attention refers to situations in which attention is oriented toward internal representations rather than focused on external stimuli. We propose four general principles underlying attention to short-term memory. Furthermore, we suggest that mechanisms involved in orienting attention to visual object representations may also apply for orienting attention to sound object representations.

  13. THE FORMATION OF SOCIAL REPRESENTATIONS OF TRUST IN ADOLESCENCE

    Directory of Open Access Journals (Sweden)

    Svetlana Dzahotovna Gurieva

    2017-04-01

    Full Text Available In adolescence, there is a reorganization of social relationships, so the study of social representations of adolescents about trust as the basis of relations and their formation is of high scientific and practical significance. The result presented article is to analyze the social representations of trust among teenagers in St. Petersburg. The study involved 70 people between the ages of 12 to 17 years (average age 14.6. The authors used a method of interviews, questionnaires, and projective techniques. The results of content analysis, using mathematical and statistical analysis showed the formation of social representations of confidence in adolescence. Goal. The article is devoted the theme of developmental and social psychology. The study focused on the social representations of trust among adolescents. The authors aim to study the formation process of social representations of data. Method and methodology of work. The authors used the method of interviews, questionnaires and projective techniques. Processing of results was carried out using content analysis and statistical analysis. Results. The results showed features of formation of social notions of trust in adolescence, their relationship with age and gender.

  14. Wavelets for Sparse Representation of Music

    DEFF Research Database (Denmark)

    Endelt, Line Ørtoft; Harbo, Anders La-Cour

    2004-01-01

    We are interested in obtaining a sparse representation of music signals by means of a discrete wavelet transform (DWT). That means we want the energy in the representation to be concentrated in few DWT coefficients. It is well-known that the decay of the DWT coefficients is strongly related...... to the number of vanishing moments of the mother wavelet, and to the smoothness of the signal. In this paper we present the result of applying two classical families of wavelets to a series of musical signals. The purpose is to determine a general relation between the number of vanishing moments of the wavelet...

  15. Data Representation, Coding, and Communication Standards.

    Science.gov (United States)

    Amin, Milon; Dhir, Rajiv

    2015-06-01

    The immense volume of cases signed out by surgical pathologists on a daily basis gives little time to think about exactly how data are stored. An understanding of the basics of data representation has implications that affect a pathologist's daily practice. This article covers the basics of data representation and its importance in the design of electronic medical record systems. Coding in surgical pathology is also discussed. Finally, a summary of communication standards in surgical pathology is presented, including suggested resources that establish standards for select aspects of pathology reporting. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Higher representations and multijet resonances at the LHC

    International Nuclear Information System (INIS)

    Kumar, Jason; Thomas, Brooks; Rajaraman, Arvind

    2011-01-01

    The CMS Collaboration has recently conducted a search for trijet resonances in multijet events at the LHC. Motivated in part by this analysis, we examine the phenomenology of exotic particles transforming under higher representations of SU(3) color, focusing on those representations which intrinsically prohibit decays to fewer than three jets. We determine the LHC discovery reach for a particle transforming in a representation of this sort and discuss several additional theoretical and phenomenological constraints which apply to such a particle. Furthermore, we demonstrate that such a particle can provide a consistent explanation for a trijet excess (an invariant-mass peak of roughly 375 GeV) observed in the recent CMS study.

  17. Reliability in the Location of Hindlimb Motor Representations in Fischer-344 Rats

    Science.gov (United States)

    Frost, Shawn B.; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J.

    2014-01-01

    Object The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for locating cortical motor representations of the hindlimb reliably. Methods Intracortical Microstimulation (ICMS) techniques were used to derive detailed maps of the hindlimb motor representations in six adult Fischer-344 rats. Results The organization of the hindlimb movement representation, while variable across individuals in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and postero-lateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 +/− 0.50 mm2. Superimposing individual maps revealed an overlapping area measuring 0.35 mm2, indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25–3.75 mm posterior to Bregma, with an average center location ~ 2.6 mm posterior to Bregma. Likewise, the hindlimb representation was found 1–3.25 mm lateral to the midline, with an average center location ~ 2 mm lateral to midline. Conclusions The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to Bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being used increasingly in the development of brain-computer interfaces for restoration of function after spinal cord injury. PMID:23725395

  18. Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra

    CERN Document Server

    Pitsch, Wolfgang; Zarzuela, Santiago

    2016-01-01

    This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...

  19. The representation of knowledge within model-based control systems

    International Nuclear Information System (INIS)

    Weygand, D.P.; Koul, R.

    1987-01-01

    Representation of knowledge in artificially intelligent systems is discussed. Types of knowledge that might need to be represented in AI systems are listed, and include knowledge about objects, events, knowledge about how to do things, and knowledge about what human beings know (meta-knowledge). The use of knowledge in AI systems is discussed in terms of acquiring and retrieving knowledge and reasoning about known facts. Different kinds of reasonings or representations are ghen described with some examples given. These include formal reasoning or logical representation, which is related to mathematical logic, production systems, which are based on the idea of condition-action pairs (production), procedural reasoning, which uses pre-formed plans to solve problems, frames, which provide a structure for representing knowledge in an organized manner, direct analogical representations, which represent knowledge in such a manner that permits some observation without deduction

  20. Specifying Geographic Information - Ontology, Knowledge Representation, and Formal Constraints

    DEFF Research Database (Denmark)

    Christensen, Jesper Vinther

    2007-01-01

    as in the private sector. The theoretical background is the establishment of a representational system, which ontologically comprises a representation of notions in the "real world" and notions which include the representation of these. Thus, the thesis leans towards a traditional division between modeling...... of domains and conceptualization of these. The thesis contributes a formalization of what is understood by domain models and conceptual models, when the focus is on geographic information. Moreover, it is shown how specifications for geographic information are related to this representational system...... of requirements and rules, building on terms from the domain and concept ontologies. In combination with the theoretical basis the analysis is used for developing an underlying model of notions, which defines the individual elements in a specification and the relations between them. In the chapters of the thesis...

  1. Interactive Shape Modeling using a Skeleton-Mesh Co-Representation

    DEFF Research Database (Denmark)

    Bærentzen, Jacob Andreas; Abdrashitov, Rinat; Singh, Karan

    2014-01-01

    We introduce the Polar-Annular Mesh representation (PAM). A PAM is a mesh-skeleton co-representation designed for the modeling of 3D organic, articulated shapes. A PAM represents a manifold mesh as a partition of polar (triangle fans) and annular (rings of quads) regions. The skeletal topology of...... a PAM to a quad-only mesh. We further present a PAM-based multi-touch sculpting application in order to demonstrate its utility as a shape representation for the interactive modeling of organic, articulated figures as well as for editing and posing of pre-existing models....

  2. Student Representation in University Decision Making: Good Reasons, a New Lens?

    Science.gov (United States)

    Luescher-Mamashela, Thierry M.

    2013-01-01

    This article outlines the main cases for and related objections against student representation in university governance found in the relevant literature, and proposes a way in which variations in student representation within institutions may be understood and justified. It contextualises the modern origins of student representation in the…

  3. Explaining Variability: Numerical Representations in 4- to 8-Year-Old Children

    Science.gov (United States)

    Friso-van den Bos, Ilona; Kolkman, Meijke E.; Kroesbergen, Evelyn H.; Leseman, Paul P. M.

    2014-01-01

    The present study aims to examine relations between number representations and various sources of individual differences within early stages of development of number representations. The mental number line has been found to develop from a logarithmic to a more linear representation. Sources under investigation are counting skills and executive…

  4. Bridging the Gap: Possible Roles and Contributions of Representational Momentum

    Directory of Open Access Journals (Sweden)

    Timothy L. Hubbard

    2006-01-01

    Full Text Available Memory for the position of a moving target is often displaced in the direction of anticipated motion, and this has been referred to as representational momentum. Such displacement might aid spatial localization by bridging the gap between perception and action, and might reflect a second-order isomorphism between subjective consequences of environmentally invariant physical principles and the functional architecture of mental representation that can be modulated by an observer’s expectations (e.g., that a moving target will change its heading or by the presence of nontarget stimuli (e.g., landmarks. Representational momentum and related types of displacement reflect properties of the world and properties of mental representation, and so a consideration of representational momentum and related types of displacement contribute an important component of contemporary psychophysics, and also broaden the reach of psychophysics to include numerous topics not usually considered within psychophysics (e.g., naive physics, boundary extension, flash-lag effect, aesthetics, mental imagery.

  5. Network Analysis of Students' Use of Representations in Problem Solving

    Science.gov (United States)

    McPadden, Daryl; Brewe, Eric

    2016-03-01

    We present the preliminary results of a study on student use of representations in problem solving within the Modeling Instruction - Electricity and Magnetism (MI-E&M) course. Representational competence is a critical skill needed for students to develop a sophisticated understanding of college science topics and to succeed in their science courses. In this study, 70 students from the MI-E&M, calculus-based course were given a survey of 25 physics problem statements both pre- and post- instruction, covering both Newtonian Mechanics and Electricity and Magnetism (E&M). For each problem statement, students were asked which representations they would use in that given situation. We analyze the survey results through network analysis, identifying which representations are linked together in which contexts. We also compare the representation networks for those students who had already taken the first-semester Modeling Instruction Mechanics course and those students who had taken a non-Modeling Mechanics course.

  6. Associative learning changes cross-modal representations in the gustatory cortex.

    Science.gov (United States)

    Vincis, Roberto; Fontanini, Alfredo

    2016-08-30

    A growing body of literature has demonstrated that primary sensory cortices are not exclusively unimodal, but can respond to stimuli of different sensory modalities. However, several questions concerning the neural representation of cross-modal stimuli remain open. Indeed, it is poorly understood if cross-modal stimuli evoke unique or overlapping representations in a primary sensory cortex and whether learning can modulate these representations. Here we recorded single unit responses to auditory, visual, somatosensory, and olfactory stimuli in the gustatory cortex (GC) of alert rats before and after associative learning. We found that, in untrained rats, the majority of GC neurons were modulated by a single modality. Upon learning, both prevalence of cross-modal responsive neurons and their breadth of tuning increased, leading to a greater overlap of representations. Altogether, our results show that the gustatory cortex represents cross-modal stimuli according to their sensory identity, and that learning changes the overlap of cross-modal representations.

  7. Graded contractions of Jordan algebras and of their representations

    International Nuclear Information System (INIS)

    Kashuba, Iryna; Patera, JirI

    2003-01-01

    Contractions of Jordan algebras and Jordan superalgebras which preserve a chosen grading are defined and studied. Simultaneous grading of Jordan algebras and their representation spaces is used to develop a theory of grading, preserving contractions of representations of Jordan algebras

  8. Are C-reps contextual representations? A reply to Brewin and Burgess.

    Science.gov (United States)

    Pearson, David G

    2014-03-01

    Brewin and Burgess (2013) argue that our recent papers investigating the role of contextual representations in intrusive memories do not pose a challenge to dual-representation theory as originally claimed (Pearson, 2012; Pearson, Ross, & Webster, 2012). Here I point out that their alternative explanation for our results can be rejected using data already published in both papers. I also argue that their definition of what constitutes a contextual representation renders their revised dual-representation theory incompatible with experimental results that have previously been argued in the literature to support it. Valuable though their contribution is, it does not impact on our main conclusion that abstract contextual representations serve to increase intrusive memories for traumatic material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Functional relationship between cognitive representations of movement directions and visuomotor adaptation performance.

    Science.gov (United States)

    Lex, Heiko; Weigelt, Matthias; Knoblauch, Andreas; Schack, Thomas

    2012-12-01

    The aim of our study was to explore whether or not different types of learners in a sensorimotor task possess characteristically different cognitive representations. Participants' sensorimotor adaptation performance was measured with a pointing paradigm which used a distortion of the visual feedback in terms of a left-right reversal. The structure of cognitive representations was assessed using a newly established experimental method, the Cognitive Measurement of Represented Directions. A post hoc analysis revealed inter-individual differences in participants' adaptation performance, and three different skill levels (skilled, average, and poor adapters) have been defined. These differences in performance were correlated with the structure of participants' cognitive representations of movement directions. Analysis of these cognitive representations revealed performance advantages for participants possessing a global cognitive representation of movement directions (aligned to cardinal movement axes), rather than a local representation (aligned to each neighboring direction). Our findings are evidence that cognitive representation structures play a functional role in adaptation performance.

  10. Conformal-Based Surface Morphing and Multi-Scale Representation

    Directory of Open Access Journals (Sweden)

    Ka Chun Lam

    2014-05-01

    Full Text Available This paper presents two algorithms, based on conformal geometry, for the multi-scale representations of geometric shapes and surface morphing. A multi-scale surface representation aims to describe a 3D shape at different levels of geometric detail, which allows analyzing or editing surfaces at the global or local scales effectively. Surface morphing refers to the process of interpolating between two geometric shapes, which has been widely applied to estimate or analyze deformations in computer graphics, computer vision and medical imaging. In this work, we propose two geometric models for surface morphing and multi-scale representation for 3D surfaces. The basic idea is to represent a 3D surface by its mean curvature function, H, and conformal factor function λ, which uniquely determine the geometry of the surface according to Riemann surface theory. Once we have the (λ, H parameterization of the surface, post-processing of the surface can be done directly on the conformal parameter domain. In particular, the problem of multi-scale representations of shapes can be reduced to the signal filtering on the λ and H parameters. On the other hand, the surface morphing problem can be transformed to an interpolation process of two sets of (λ, H parameters. We test the proposed algorithms on 3D human face data and MRI-derived brain surfaces. Experimental results show that our proposed methods can effectively obtain multi-scale surface representations and give natural surface morphing results.

  11. Semantic Knowledge Representation (SKR) API

    Data.gov (United States)

    U.S. Department of Health & Human Services — The SKR Project was initiated at NLM in order to develop programs to provide usable semantic representation of biomedical free text by building on resources...

  12. Narrative, memory and social representations: a conversation between history and social psychology.

    Science.gov (United States)

    Jovchelovitch, Sandra

    2012-12-01

    This paper explores relations between narrative, memory and social representations by examining how social representations express the ways in which communities deal with the historical past. Drawing on a case study of social representations of the Brazilian public sphere, it shows how a specific narrative of origins re-invents history as a useful mythological resource for defending identity, building inter-group solidarity and maintaining social cohesion. Produced by a time-travelling dialogue between multiple sources, this historical narrative is functional both to transform, to stabilise and give resilience to specific social representations of public life. The Brazilian case shows that historical narratives, which tend to be considered as part of the stable core of representational fields, are neither homogenous nor consensual but open polyphasic platforms for the construction of alternative, often contradictory, representations. These representations do not go away because they are ever changing and situated, recruit multiple ways of thinking and fulfil functions of identity, inter-group solidarity and social cohesion. In the disjunction between historiography and the past as social representation are the challenges and opportunities for the dialogue between historians and social psychologists.

  13. Representation of the Category of Emotiveness in Shakespeare’s Sonnets

    Directory of Open Access Journals (Sweden)

    Ольга Евгеньевна Филимонова

    2015-12-01

    Full Text Available The article analyzes the linguistic means of representing the cognitive category of emotiveness in 154 Shakespeare’s sonnets. Lexical and stylistic means of nominating, describing and expressing emotions are studied. Emotive situations of the rational representation of emotions, or reflections over emotions are identified. The emotive density of the sonnets is analyzed. The mosaic emotive density with multiple subject of emotional state is described. The representation of polar emotions is analyzed. Explicit and implicit ways of representing emotions are studied. The explicit representation of emotions by means of nomination and expression and the implicit representation of emotions by metaphors are shown to be most common in Shakespeare’s sonnets.

  14. Children's representations of multiple family relationships: organizational structure and development in early childhood.

    Science.gov (United States)

    Schermerhorn, Alice C; Cummings, E Mark; Davies, Patrick T

    2008-02-01

    The authors examine mutual family influence processes at the level of children's representations of multiple family relationships, as well as the structure of those representations. From a community sample with 3 waves, each spaced 1 year apart, kindergarten-age children (105 boys and 127 girls) completed a story-stem completion task, tapping representations of multiple family relationships. Structural equation modeling with autoregressive controls indicated that representational processes involving different family relationships were interrelated over time, including links between children's representations of marital conflict and reactions to conflict, between representations of security about marital conflict and parent-child relationships, and between representations of security in father-child and mother-child relationships. Mixed support was found for notions of increasing stability in representations during this developmental period. Results are discussed in terms of notions of transactional family dynamics, including family-wide perspectives on mutual influence processes attributable to multiple family relationships.

  15. Number theory via Representation theory

    Indian Academy of Sciences (India)

    2014-11-09

    Number theory via Representation theory. Eknath Ghate. November 9, 2014. Eightieth Annual Meeting, Chennai. Indian Academy of Sciences1. 1. This is a non-technical 20 minute talk intended for a general Academy audience.

  16. Unilateral vestibular loss impairs external space representation.

    Directory of Open Access Journals (Sweden)

    Liliane Borel

    Full Text Available The vestibular system is responsible for a wide range of postural and oculomotor functions and maintains an internal, updated representation of the position and movement of the head in space. In this study, we assessed whether unilateral vestibular loss affects external space representation. Patients with Menière's disease and healthy participants were instructed to point to memorized targets in near (peripersonal and far (extrapersonal spaces in the absence or presence of a visual background. These individuals were also required to estimate their body pointing direction. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (one week and one month after the operation, and healthy participants were tested at similar times. Unilateral vestibular loss impaired the representation of both the external space and the body pointing direction: in the dark, the configuration of perceived targets was shifted toward the lesioned side and compressed toward the contralesioned hemifield, with higher pointing error in the near space. Performance varied according to the time elapsed after neurotomy: deficits were stronger during the early stages, while gradual compensation occurred subsequently. These findings provide the first demonstration of the critical role of vestibular signals in the representation of external space and of body pointing direction in the early stages after unilateral vestibular loss.

  17. Human action recognition using trajectory-based representation

    Directory of Open Access Journals (Sweden)

    Haiam A. Abdul-Azim

    2015-07-01

    Full Text Available Recognizing human actions in video sequences has been a challenging problem in the last few years due to its real-world applications. A lot of action representation approaches have been proposed to improve the action recognition performance. Despite the popularity of local features-based approaches together with “Bag-of-Words” model for action representation, it fails to capture adequate spatial or temporal relationships. In an attempt to overcome this problem, a trajectory-based local representation approaches have been proposed to capture the temporal information. This paper introduces an improvement of trajectory-based human action recognition approaches to capture discriminative temporal relationships. In our approach, we extract trajectories by tracking the detected spatio-temporal interest points named “cuboid features” with matching its SIFT descriptors over the consecutive frames. We, also, propose a linking and exploring method to obtain efficient trajectories for motion representation in realistic conditions. Then the volumes around the trajectories’ points are described to represent human actions based on the Bag-of-Words (BOW model. Finally, a support vector machine is used to classify human actions. The effectiveness of the proposed approach was evaluated on three popular datasets (KTH, Weizmann and UCF sports. Experimental results showed that the proposed approach yields considerable performance improvement over the state-of-the-art approaches.

  18. Representations of stem cell clinics on Twitter.

    Science.gov (United States)

    Kamenova, Kalina; Reshef, Amir; Caulfield, Timothy

    2014-12-01

    The practice of travelling abroad to receive unproven and unregulated stem cell treatments has become an increasingly problematic global phenomenon known as 'stem cell tourism'. In this paper, we examine representations of nine major clinics and providers of such treatments on the microblogging network Twitter. We collected and conducted a content analysis of Twitter posts (n = 363) by these establishments and by other users mentioning them, focusing specifically on marketing claims about treatment procedures and outcomes, discussions of safety and efficacy of stem cell transplants, and specific representations of patients' experiences. Our analysis has shown that there were explicit claims or suggestions of benefits associated with unproven stem cell treatments in approximately one third of the tweets and that patients' experiences, whenever referenced, were presented as invariably positive and as testimonials about the efficacy of stem cell transplants. Furthermore, the results indicated that the tone of most tweets (60.2 %) was overwhelmingly positive and there were rarely critical discussions about significant health risks associated with unproven stem cell therapies. When placed in the context of past research on the problems associated with the marketing of unproven stem cell therapies, this analysis of representations on Twitter suggests that discussions in social media have also remained largely uncritical of the stem cell tourism phenomenon, with inaccurate representations of risks and benefits for patients.

  19. Social justice representations of students and teachers in Spain

    Directory of Open Access Journals (Sweden)

    Sainz Vanesa

    2016-01-01

    Full Text Available In this empirical study, we designed a questionnaire that seeks to analyse the representation that Spanish students and teachers have about Social Justice. The questionnaire includes a set of different dilemmas about social justice issues, especially in educational context The questions equitably represent three fundamental dimensions in social justice: Representation, Redistribution and Recognition. The questionnaire for students has 30 dilemmas and for teachers has 39 ones. The instrument has been applied to a sample of teachers and students of secondary education in 17 secondary public schools of different Spanish Communities Autonomous. The results show a good reliability of our instrument and differences in social justice conceptions regarding level of education, age and gender. These results show a developmental and gender trend and differences between students and teachers in the accessibility to the three dimensions of Social Justice: Representation, Recognition and Representation.

  20. Reducibility of quantum representations of mapping class groups

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Fjelstad, Jens

    2010-01-01

    that the quantum representations of all the mapping class groups built from the modular tensor category are reducible. In particular, for SU(N) we get reducibility for certain levels and ranks. For the quantum SU(2) Reshetikhin–Turaev theory we construct a decomposition for all even levels. We conjecture...... this decomposition is a complete decomposition into irreducible representations for high enough levels....

  1. Representation of human behaviour in probabilistic safety analysis

    International Nuclear Information System (INIS)

    Whittingham, R.B.

    1991-01-01

    This paper provides an overview of the representation of human behaviour in probabilistic safety assessment. Human performance problems which may result in errors leading to accidents are considered in terms of methods of identification using task analysis, screening analysis of critical errors, representation and quantification of human errors in fault trees and event trees and error reduction measures. (author) figs., tabs., 43 refs

  2. Building blocks of topological quantum chemistry: Elementary band representations

    Science.gov (United States)

    Cano, Jennifer; Bradlyn, Barry; Wang, Zhijun; Elcoro, L.; Vergniory, M. G.; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2018-01-01

    The link between chemical orbitals described by local degrees of freedom and band theory, which is defined in momentum space, was proposed by Zak several decades ago for spinless systems with and without time reversal in his theory of "elementary" band representations. In a recent paper [Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268] we introduced the generalization of this theory to the experimentally relevant situation of spin-orbit coupled systems with time-reversal symmetry and proved that all bands that do not transform as band representations are topological. Here we give the full details of this construction. We prove that elementary band representations are either connected as bands in the Brillouin zone and are described by localized Wannier orbitals respecting the symmetries of the lattice (including time reversal when applicable), or, if disconnected, describe topological insulators. We then show how to generate a band representation from a particular Wyckoff position and determine which Wyckoff positions generate elementary band representations for all space groups. This theory applies to spinful and spinless systems, in all dimensions, with and without time reversal. We introduce a homotopic notion of equivalence and show that it results in a finer classification of topological phases than approaches based only on the symmetry of wave functions at special points in the Brillouin zone. Utilizing a mapping of the band connectivity into a graph theory problem, we show in companion papers which Wyckoff positions can generate disconnected elementary band representations, furnishing a natural avenue for a systematic materials search.

  3. The representation of knowledge within model-based control systems

    International Nuclear Information System (INIS)

    Weygand, D.P.; Koul, R.

    1987-01-01

    The ability to represent knowledge is often considered essential to build systems with reasoning capabilities. In computer science, a good solution often depends on a good representation. The first step in development of most computer applications is selection of a representation for the input, output, and intermediate results that the program will operate upon. For applications in artificial intelligence, this initial choice of representation is especially important. This is because the possible representational paradigms are diverse and the forcing criteria for the choice are usually not clear in the beginning. Yet, the consequences of an inadequate choice can be devastating in the later state of a project if it is discovered that critical information cannot be encoded within the chosen representational paradigm. Problems arise when designing representational systems to support any kind of Knowledge-Base System, that is a computer system that uses knowledge to perform some task. The general case of knowledge-based systems can be thought of as reasoning agents applying knowledge to achieve goals. Artificial Intelligence (AI) research involves building computer systems to perform tasks of perception and reasoning, as well as storage and retrieval of data. The problem of automatically perceiving large patterns in data is a perceptual task that begins to be important for many expert systems applications. Most of AI research assumes that what needs to be represented is known a priori; an AI researcher's job is just figuring out how to encode the information in the system's data structure and procedures. 10 refs

  4. Qualitative Knowledge Representations for Intelligent Nuclear Power Plants

    International Nuclear Information System (INIS)

    Cha, Kyoungho; Huh, Young H.

    1993-01-01

    Qualitative Physics(QP) has systematically been approached to qualitative modeling of physical systems for recent two decades. Designing intelligent systems for NPP requires an efficient representation of qualitative knowledge about the behavior and structure of NPP or its components. A novel representation of qualitative knowledge also enables intelligent systems to derive meaningful conclusions from incomplete or uncertain knowledge of a plant behavior. We look mainly into representative QP works on nuclear applications and the representation of qualitative knowledge for the diagnostic model, the qualitative simulation of a mental model of NPP operator, and the qualitative interpretation of the measured raw data from NPP. We present the challenging areas for QP applications in nuclear industry. QP technology will make NPP more intelligent

  5. Vector coherent state representations and their inner products

    International Nuclear Information System (INIS)

    Rowe, D J

    2012-01-01

    Several advances have extended the power and versatility of coherent state theory to the extent that it has become a vital tool in the representation theory of Lie groups and their Lie algebras. Representative applications are reviewed and some new developments are introduced. The examples given are chosen to illustrate special features of the scalar and vector coherent state constructions and how they work in practical situations. Comparisons are made with Mackey's theory of induced representations. For simplicity, we focus on square integrable (discrete series) unitary representations although many of the techniques apply more generally, with minor adjustment. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (review)

  6. Groupoid extensions of mapping class representations for bordered surfaces

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Bene, Alex; Penner, Robert

    2009-01-01

    by explicit formulae depending upon six essential cases, and the kernel and image of the groupoid representation are computed. Furthermore, this provides groupoid extensions of any representation of the mapping class group that factors through its action on the fundamental group of the surface including...

  7. Representational Technologies and Learner Problem-Solving Strategies in Chemistry

    Science.gov (United States)

    McCollum, Brett; Sepulveda, Ana; Moreno, Yuritzel

    2016-01-01

    Learning within the sciences is often considered through a quantitative lens, but acquiring proficiency with the symbolic representations in chemistry is arguably more akin to language learning. Representational competencies are central to successful communication of chemical information including molecular composition, structure, and properties.…

  8. A Conceptual Schema Language for the Management of Multiple Representations of Geographic Entities

    DEFF Research Database (Denmark)

    Friis-Christensen, A.; Jensen, Christian Søndergaard; Nytun, J.P.

    2005-01-01

    Multiple representation of geographic information occurs when a real-world entity is represented more than once in the same or different databases. This occurs frequently in practice, and it invariably results in the occurrence of inconsistencies among the different representations of the same...... entity. In this paper, we propose an approach to the modeling of multiply represented entities, which is based on the relationships among the entities and their representations. Central to our approach is the Multiple Representation Schema Language that, by intuitive and declarative means, is used...... to specify rules that match objects representing the same entity, maintain consistency among these representations, and restore consistency if necessary. The rules configure a Multiple Representation Management System, the aim of which is to manage multiple representations over a number of autonomous...

  9. Developing young adults' representational competence through infographic-based science news reporting

    Science.gov (United States)

    Gebre, Engida H.; Polman, Joseph L.

    2016-12-01

    This study presents descriptive analysis of young adults' use of multiple representations in the context of science news reporting. Across one semester, 71 high school students, in a socioeconomically diverse suburban secondary school in Midwestern United States, participated in activities of researching science topics of their choice and producing infographic-based science news for possible online publication. An external editor reviewed their draft infographics and provided comments for subsequent revision. Students also provided peer feedback to the draft version of infographics using an online commentary tool. We analysed the nature of representations students used as well as the comments from peer and the editor feedback. Results showed both students' capabilities and challenges in learning with representations in this context. Students frequently rely on using certain kinds of representations that are depictive in nature, and supporting their progress towards using more abstract representations requires special attention and identifying learning gaps. Results also showed that students were able to determine representational adequacy in the context of providing peer feedback. The study has implication for research and instruction using infographics as expressive tools to support learning.

  10. Schroedinger representation in quantum field theory

    International Nuclear Information System (INIS)

    Luescher, M.

    1985-01-01

    Until recently, the Schroedinger representation in quantum field theory had not received much attention, even more so because there were reasons to believe that in the presence of interactions it did not exist in a mathematically well-defined sense. When Symanzik set out to solve this problem, he was motivated by a special 2-dimensional case, the relativistic string model, in which the Schroedinger wave functionals are the primary objects of physical interest. Also, he knew that if it were possible to demonstrate the existence of the Schroedinger representation, the (then unproven) ultraviolet finiteness of the Casimir force in renormalizable quantum field theories would probably follow. (orig./HSI)

  11. Knowledge representation and natural language processing

    Energy Technology Data Exchange (ETDEWEB)

    Weischedel, R.M.

    1986-07-01

    In principle, natural language and knowledge representation are closely related. This paper investigates this by demonstrating how several natural language phenomena, such as definite reference, ambiguity, ellipsis, ill-formed input, figures of speech, and vagueness, require diverse knowledge sources and reasoning. The breadth of kinds of knowledge needed to represent morphology, syntax, semantics, and pragmatics is surveyed. Furthermore, several current issues in knowledge representation, such as logic versus semantic nets, general-purpose versus special-purpose reasoners, adequacy of first-order logic, wait-and-see strategies, and default reasoning, are illustrated in terms of their relation to natural language processing and how natural language impact the issues.

  12. Baikov-Lee representations of cut Feynman integrals

    International Nuclear Information System (INIS)

    Harley, Mark; Moriello, Francesco; Schabinger, Robert M.

    2017-01-01

    We develop a general framework for the evaluation of d-dimensional cut Feynman integrals based on the Baikov-Lee representation of purely-virtual Feynman integrals. We implement the generalized Cutkosky cutting rule using Cauchy’s residue theorem and identify a set of constraints which determine the integration domain. The method applies equally well to Feynman integrals with a unitarity cut in a single kinematic channel and to maximally-cut Feynman integrals. Our cut Baikov-Lee representation reproduces the expected relation between cuts and discontinuities in a given kinematic channel and furthermore makes the dependence on the kinematic variables manifest from the beginning. By combining the Baikov-Lee representation of maximally-cut Feynman integrals and the properties of periods of algebraic curves, we are able to obtain complete solution sets for the homogeneous differential equations satisfied by Feynman integrals which go beyond multiple polylogarithms. We apply our formalism to the direct evaluation of a number of interesting cut Feynman integrals.

  13. Abstraction/Representation Theory for heterotic physical computing.

    Science.gov (United States)

    Horsman, D C

    2015-07-28

    We give a rigorous framework for the interaction of physical computing devices with abstract computation. Device and program are mediated by the non-logical representation relation; we give the conditions under which representation and device theory give rise to commuting diagrams between logical and physical domains, and the conditions for computation to occur. We give the interface of this new framework with currently existing formal methods, showing in particular its close relationship to refinement theory, and the implications for questions of meaning and reference in theoretical computer science. The case of hybrid computing is considered in detail, addressing in particular the example of an Internet-mediated social machine, and the abstraction/representation framework used to provide a formal distinction between heterotic and hybrid computing. This forms the basis for future use of the framework in formal treatments of non-standard physical computers. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Mathematical Representation Ability by Using Project Based Learning on the Topic of Statistics

    Science.gov (United States)

    Widakdo, W. A.

    2017-09-01

    Seeing the importance of the role of mathematics in everyday life, mastery of the subject areas of mathematics is a must. Representation ability is one of the fundamental ability that used in mathematics to make connection between abstract idea with logical thinking to understanding mathematics. Researcher see the lack of mathematical representation and try to find alternative solution to dolve it by using project based learning. This research use literature study from some books and articles in journals to see the importance of mathematical representation abiliy in mathemtics learning and how project based learning able to increase this mathematical representation ability on the topic of Statistics. The indicators for mathematical representation ability in this research classifies namely visual representation (picture, diagram, graph, or table); symbolize representation (mathematical statement. Mathematical notation, numerical/algebra symbol) and verbal representation (written text). This article explain about why project based learning able to influence student’s mathematical representation by using some theories in cognitive psychology, also showing the example of project based learning that able to use in teaching statistics, one of mathematics topic that very useful to analyze data.

  15. Linear Numerical-Magnitude Representations Aid Children's Memory for Numbers

    Science.gov (United States)

    Thompson, Clarissa A.; Siegler, Robert S.

    2010-01-01

    We investigated the relation between children's numerical-magnitude representations and their memory for numbers. Results of three experiments indicated that the more linear children's magnitude representations were, the more closely their memory of the numbers approximated the numbers presented. This relation was present for preschoolers and…

  16. A General Representation Theorem for Integrated Vector Autoregressive Processes

    DEFF Research Database (Denmark)

    Franchi, Massimo

    We study the algebraic structure of an I(d) vector autoregressive process, where d is restricted to be an integer. This is useful to characterize its polynomial cointegrating relations and its moving average representation, that is to prove a version of the Granger representation theorem valid...

  17. Cognitive Representation in Ethnophaulisms and Illusory Correlation in Stereotyping.

    Science.gov (United States)

    Mullen, Brian; Johnson, Craig

    1995-01-01

    Extends previous research by examining developing stereotypes for novel ethnic groups as indicators of cognitive representations. Results from three studies confirmed that in the absence of any preconceived cognitive representations of, or valuative responses toward, these novel groups, more salient groups are subject to greater prototype…

  18. 45 CFR 1639.4 - Permissible representation of eligible clients.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Permissible representation of eligible clients... CORPORATION WELFARE REFORM § 1639.4 Permissible representation of eligible clients. Recipients may represent an individual eligible client who is seeking specific relief from a welfare agency. [62 FR 30766...

  19. Generating Cognitive Dissonance in Student Interviews through Multiple Representations

    Science.gov (United States)

    Linenberger, Kimberly J.; Bretz, Stacey Lowery

    2012-01-01

    This study explores what students understand about enzyme-substrate interactions, using multiple representations of the phenomenon. In this paper we describe our use of the 3 Phase-Single Interview Technique with multiple representations to generate cognitive dissonance within students in order to uncover misconceptions of enzyme-substrate…

  20. Making Implicit Multivariable Calculus Representations Explicit: A Clinical Study

    Science.gov (United States)

    McGee, Daniel; Moore-Russo, Deborah; Martinez-Planell, Rafael

    2015-01-01

    Reviewing numerous textbooks, we found that in both differential and integral calculus textbooks the authors commonly assume that: (i) students can generalize associations between representations in two dimensions to associations between representations of the same mathematical concept in three dimensions on their own; and (ii) explicit…