WorldWideScience

Sample records for dysfunction confers resistance

  1. Central arterial stiffness and diastolic dysfunction are associated with insulin resistance and abdominal obesity in young women but polycystic ovary syndrome does not confer additional risk.

    Science.gov (United States)

    Rees, E; Coulson, R; Dunstan, F; Evans, W D; Blundell, H L; Luzio, S D; Dunseath, G; Halcox, J P; Fraser, A G; Rees, D A

    2014-09-01

    Are arterial stiffness, carotid intima-media thickness and diastolic dysfunction increased in young women with polycystic ovary syndrome (PCOS) independently of the effects of obesity? Insulin resistance and central obesity are associated with subclinical cardiovascular dysfunction in young women, but a diagnosis of PCOS does not appear to confer additional risk at this age. Some studies have shown that young women with PCOS may have increased measures of cardiovascular risk, including arterial stiffness, carotid intima-media thickness and myocardial dysfunction. However, it is difficult to establish how much of this risk is due to PCOS per se and how much is due to obesity and insulin resistance, which are common in PCOS and themselves associated with greater vascular risk. This cross-sectional study comprised 84 women with PCOS and 95 healthy volunteers, aged 16-45 years. The study was conducted in a university hospital. Subjects underwent a comprehensive assessment of body composition (including computed tomography (CT) assessment of visceral fat; VF), measurements of arterial stiffness (aortic pulse wave velocity; aPWV), common carotid intima-media thickness (ccIMT), diastolic function (longitudinal tissue velocity; e':a') and endocrinological measures. A sample size of 80 in each group gave 80% power for detecting a difference of 0.45 m/s in aPWV or a difference of 0.25 in e':a'. After adjustment for age and body mass index (BMI), PCOS subjects had a greater insulin response (insulin area under the curve-IAUC) following glucose challenge (adjusted difference [AD] 35 900 pmol min/l, P obesity. Obesity thus represents the greatest modifiable risk factor for cardiovascular disease in young women with PCOS and lifestyle measures which target weight reduction are critical. This study received no specific grant support from any funding body. The authors have no conflicts of interest to declare. © The Author 2014. Published by Oxford University Press on behalf of

  2. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  3. CONFERENCE REPORT ANTIRETROVIRAL RESISTANCE

    African Journals Online (AJOL)

    selection of NNRTI-resistant virus should therefore come as no surprise. The consequences of suboptimal nevirapine use are probably not unique to .... Africa) frequently has a natural polymorphism at codon 93 in the protease gene known as ...

  4. [Beyond immunopathogenesis. Insulin resistance and "epidermal dysfunction"].

    Science.gov (United States)

    Boehncke, W-H; Boehncke, S; Buerger, C

    2012-03-01

    Insulin is a central player in the regulation of metabolic as well as non-metabolic cells: inefficient signal transduction (insulin resistance) not only represents the cornerstone in the pathogenesis of type 2 diabetes mellitus, but also drives atherosclerosis through inducing endothelial dysfunction. Last but not least epidermal homeostasis depends on insulin. We summarize the effects of insulin on proliferation and differentiation of human keratinocytes as well as the relevance of cytokine-induced insulin resistance for alterations in epidermal homeostasis characteristic for psoriasis. Kinases involved in both insulin- as well as cytokine-receptor signaling represent potential targets for innovative therapeutics. Such small molecules would primarily normalize "epidermal dysfunction", thus complementing the immunomodulatory strategies of today's biologics.

  5. Clusterin confers gmcitabine resistance in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Wang Yaoguang

    2011-05-01

    Full Text Available Abstract Objective To measure clusterin expression in pancreatic cancer tissues and cell lines and to evaluate whether clusterin confers resistance to gmcitabine in pancreatic cancer cells. Methods Immunohistochemistry for clusterin was performed on 50 primary pancreatic cancer tissues and 25 matched backgrounds, and clusterin expression in 5 pancreatic cancer cell lines was quantified by Western blot and PT-PCR. The correlation between clusterin expression level and gmcitabine IC50 in pancreatic cancer cell lines was evaluated. The effect of an antisense oligonucleotide (ASO against clusterin(OGX-011 on gmcitabine resistance was evaluated by MTT assays. Xenograft model was used to demonstrate tumor growth. Results Pancreatic cancer tissues expressed significantly higher levels of clusterin than did normal pancreatic tissues (P P In vivo systemic administration of AS clusterin and gmcitabine significantly decreased the s.c. BxPC-3 tumor volume compared with mismatch control ODN plus gmcitabine. Conclusion Our finding that clusterin expression was significantly higher in pancreatic cancer than in normal pancreatic tissues suggests that clusterin may confer gmcitabine resistance in pancreatic cancer cells.

  6. Complement activation, endothelial dysfunction, insulin resistance and chronic heart failure

    DEFF Research Database (Denmark)

    Bjerre, M.; Kistorp, C.; Hansen, T.K.

    2010-01-01

    CRP), endothelial activation (soluble E-selectin, sEsel)), endothelial damage/dysfunction (von Willebrand factor, vWf) and insulin resistance (IR) and prognosis in CHF remains unknown. Design. We investigated the association(s) between plasma sMAC, hsCRP, sEsel, vWf and IR (assessed by homeostatic model assessment...

  7. Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis.

    Science.gov (United States)

    Cheng, Bo; Anea, Ciprian B; Yao, Lin; Chen, Feng; Patel, Vijay; Merloiu, Ana; Pati, Paramita; Caldwell, R William; Fulton, David J; Rudic, R Daniel

    2011-10-11

    The suprachiasmatic nucleus of the brain is the circadian center, relaying rhythmic environmental and behavioral information to peripheral tissues to control circadian physiology. As such, central clock dysfunction can alter systemic homeostasis to consequently impair peripheral physiology in a manner that is secondary to circadian malfunction. To determine the impact of circadian clock function in organ transplantation and dissect the influence of intrinsic tissue clocks versus extrinsic clocks, we implemented a blood vessel grafting approach to surgically assemble a chimeric mouse that was part wild-type (WT) and part circadian clock mutant. Arterial isografts from donor WT mice that had been anastamosed to common carotid arteries of recipient WT mice (WT:WT) exhibited no pathology in this syngeneic transplant strategy. Similarly, when WT grafts were anastamosed to mice with disrupted circadian clocks, the structural features of the WT grafts immersed in the milieu of circadian malfunction were normal and absent of lesions, comparable to WT:WT grafts. In contrast, aortic grafts from Bmal1 knockout (KO) or Period-2,3 double-KO mice transplanted into littermate control WT mice developed robust arteriosclerotic disease. These lesions observed in donor grafts of Bmal1-KO were associated with up-regulation in T-cell receptors, macrophages, and infiltrating cells in the vascular grafts, but were independent of hemodynamics and B and T cell-mediated immunity. These data demonstrate the significance of intrinsic tissue clocks as an autonomous influence in experimental models of arteriosclerotic disease, which may have implications with regard to the influence of circadian clock function in organ transplantation.

  8. Sirtuin3 Dysfunction Is the Key Determinant of Skeletal Muscle Insulin Resistance by Angiotensin II.

    Directory of Open Access Journals (Sweden)

    Daniela Macconi

    Full Text Available Angiotensin II promotes insulin resistance. The mechanism underlying this abnormality, however, is still poorly defined. In a different setting, skeletal muscle metabolism and insulin signaling are regulated by Sirtuin3.Here, we investigate whether angiotensin II-induced insulin resistance in skeletal muscle is associated with Sirtuin3 dysregulation and whether pharmacological manipulation of Sirtuin3 confers protection.Parental and GLUT4-myc L6 rat skeletal muscle cells exposed to angiotensin II are used as in vitro models of insulin resistance. GLUT4 translocation, glucose uptake, intracellular molecular signals such as mitochondrial reactive oxygen species, Sirtuin3 protein expression and activity, along with its downstream targets and upstream regulators, are analyzed both in the absence and presence of acetyl-L-carnitine. The role of Sirtuin3 in GLUT4 translocation and intracellular molecular signaling is also studied in Sirtuin3-silenced as well as over-expressing cells.Angiotensin II promotes insulin resistance in skeletal muscle cells via mitochondrial oxidative stress, resulting in a two-fold increase in superoxide generation. In this context, reactive oxygen species open the mitochondrial permeability transition pore and significantly lower Sirtuin3 levels and activity impairing the cell antioxidant defense. Angiotensin II-induced Sirtuin3 dysfunction leads to the impairment of AMP-activated protein kinase/nicotinamide phosphoribosyltransferase signaling. Acetyl-L-carnitine, by lowering angiotensin II-induced mitochondrial superoxide formation, prevents Sirtuin3 dysfunction. This phenomenon implies the restoration of manganese superoxide dismutase antioxidant activity and AMP-activated protein kinase activation. Acetyl-L-carnitine protection is abrogated by specific Sirtuin3 siRNA.Our data demonstrate that angiotensin II-induced insulin resistance fosters mitochondrial superoxide generation, in turn leading to Sirtuin3 dysfunction. The

  9. Circuit resistance training improved endothelial dysfunction in obese aged women

    Directory of Open Access Journals (Sweden)

    Ignacio Rosety

    Full Text Available Introduction: It is widely accepted that obesity is associated with endothelial dysfunction. In a recent paper, we have also found circuit resistance training may reduce visceral fat in obese aged women. Accordingly, the current study was conducted to ascertain the effects of circuit resistance training on markers of endothelial dysfunction in this population group. Methods: In the present interventional study, a total of 48 obese aged women were recruited from the community. Twenty-four of them were randomly assigned to perform a 12-week resistance circuit training programme, 3-days per week. This training was circularly performed in 6 stations: arm curl, leg extension, seated row, leg curl, triceps extension and leg press. The Jamar handgrip electronic dynamometer was used to assess maximal handgrip strength of the dominant hand. Lastly, serum samples were analysed using an immunoassay (ELISA for endothelin-1, intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1. Results: When compared to baseline, resistance training significantly reduced serum levels of endothelin-1 (2.28 ± 0.7 vs. 1.98 ± 1.1 pg/ml; p = 0.019; d = 0.67 and ICAM-1 (290 ± 69 vs. 255 ± 76 ng/ml; p = 0.004; d = 0.92 in the experimental group. No significant changes in any of the tested outcomes were found in the control group. Conclusion: A short-term circuit resistance program improved endothelial dysfunction in aged obese women. Further studies on this topic are still required to consolidate this approach in clinical application.

  10. Amino acids conferring herbicide resistance in tobacco acetohydroxyacid synthase.

    Science.gov (United States)

    Le, Dung Tien; Choi, Jung-Do; Tran, Lam-Son Phan

    2010-01-01

    Acetohydroxyacid synthase (AHAS) (EC 4.1.3.18) is a target of commercially available herbicides such as sulfonylurea, imidazolinone, and triazolopyrimidine. In plants and microorganisms, AHAS catalyzes the first common reaction in the biosynthesis pathways leading to leucine, isoleucine and valine. Intensive studies using different approaches - including site-directed mutagenesis, molecular modeling and structural analysis - on plant AHAS-s have contributed to the understanding of the herbicide-AHAS interaction. Knowledge of the critical roles of amino acid residues of plant AHAS in conferring herbicide resistance will enable the creation of new herbicide-tolerant AHAS which could be used to develop herbicide-resistant transgenic plants. Moreover, such information will also elucidate design strategies for more efficient herbicides that could also kill weeds resistant to previously used AHAS-inhibiting herbicides. In this review, we summarize the results of intensive searches for amino acid residues and their substitutions that confer herbicide resistance in tobacco AHAS.

  11. Fitness cost of chromosomal drug resistance-conferring mutations.

    Science.gov (United States)

    Sander, Peter; Springer, Burkhard; Prammananan, Therdsak; Sturmfels, Antje; Kappler, Martin; Pletschette, Michel; Böttger, Erik C

    2002-05-01

    To study the cost of chromosomal drug resistance mutations to bacteria, we investigated the fitness cost of mutations that confer resistance to different classes of antibiotics affecting bacterial protein synthesis (aminocyclitols, 2-deoxystreptamines, macrolides). We used a model system based on an in vitro competition assay with defined Mycobacterium smegmatis laboratory mutants; selected mutations were introduced by genetic techniques to address the possibility that compensatory mutations ameliorate the resistance cost. We found that the chromosomal drug resistance mutations studied often had only a small fitness cost; compensatory mutations were not involved in low-cost or no-cost resistance mutations. When drug resistance mutations found in clinical isolates were considered, selection of those mutations that have little or no fitness cost in the in vitro competition assay seems to occur. These results argue against expectations that link decreased levels of antibiotic consumption with the decline in the level of resistance.

  12. Chromosomal Instability Confers Intrinsic Multidrug Resistance

    DEFF Research Database (Denmark)

    Lee, Alvin J. X.; Endesfelder, David; Rowan, Andrew J.

    2011-01-01

    their diploid parental cells only with increasing chromosomal heterogeneity and isogenic cell line models of CIN+ displayed multidrug resistance relative to their CIN- parental cancer cell line derivatives. In a meta-analysis of CRC outcome following cytotoxic treatment, CIN+ predicted worse progression......-free or disease-free survival relative to patients with CIN- disease. Our results suggest that stratifying tumor responses according to CIN status should be considered within the context of clinical trials to minimize the confounding effects of tumor CIN status on drug sensitivity. Cancer Res; 71(5); 1858-70. (c......Aneuploidy is associated with poor prognosis in solid tumors. Spontaneous chromosome missegregation events in aneuploid cells promote chromosomal instability (CIN) that may contribute to the acquisition of multidrug resistance in vitro and heighten risk for tumor relapse in animal models...

  13. Transgenic strategies to confer resistance against viruses in rice plants

    Directory of Open Access Journals (Sweden)

    Takahide eSasaya

    2014-01-01

    Full Text Available Rice (Oryza sativa L. is cultivated in more than 100 countries and supports nearly half of the world’s population. Developing efficient methods to control rice viruses is thus an urgent necessity because viruses cause serious losses in rice yield. Most rice viruses are transmitted by insect vectors, notably planthoppers and leafhoppers. Viruliferous insect vectors can disperse their viruses over relatively long distances, and eradication of the viruses is very difficult once they become widespread. Exploitation of natural genetic sources of resistance is one of the most effective approaches to protect crops from virus infection; however, only a few naturally occurring rice genes confer resistance against rice viruses. In an effort to improve control, many investigators are using genetic engineering of rice plants as a potential strategy to control viral diseases. Using viral genes to confer pathogen-derived resistance against crops is a well-established procedure, and the expression of various viral gene products has proved to be effective in preventing or reducing infection by various plant viruses since the 1990s. RNA-interference (RNAi, also known as RNA silencing, is one of the most efficient methods to confer resistance against plant viruses on their respective crops. In this article, we review the recent progress, mainly conducted by our research group, in transgenic strategies to confer resistance against tenuiviruses and reoviruses in rice plants. Our findings also illustrate that not all RNAi constructs against viral RNAs are equally effective in preventing virus infection and that it is important to identify the viral Achilles’ heel gene to target for RNAi attack when engineering plants.

  14. Major QTL Conferring Resistance to Rice Bacterial Leaf Streak

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Bacterial leaf streak (BLS) is one of the important limiting factors to rice production in southern China and other tropical and sub-tropical areas in Asia. Resistance to BLS was found to be a quantitative trait and no major resistant gene was located in rice until date. In the present study, a new major quantitative trait locus (QTL) conferring resistance to BLS was identified from a highly resistant variety Dular by the employment of Dular/Balilla (DB) and Dular/IR24 (DI) segregation populations and was designated qBLSR-11-1. This QTL was located between the simple sequence repeat (SSR) markers RM120 and RM441 on chromosome 11 and could account for 18.1-21.7% and 36.3% of the variance in DB and DI populations, respectively. The genetic pattern of rice resistance to BLS was discussed.

  15. Interferon-gamma confers resistance to experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Krakowski, M; Owens, T

    1996-01-01

    In experimental allergic encephalomyelitis (EAE), T cells infiltrate the central nervous system (CNS) and induce inflammation. These CD4+ T cells secrete interferon (IFN)-gamma, levels of which correlate with disease severity, and which is proposed to play a key role in disease induction. Many...... strains of mice are resistant to EAE. We have studied the effect of deletion of IFN-gamma on the ability to induce EAE in resistant BALB/c-backcrossed mice. As expected, only 0-6% of BALB/c or BALB/c-backcrossed mice developed EAE when immunized with myelin basic protein in adjuvant. Strikingly...... in the spinal cord. We thus demonstrate that lack of IFN-gamma converts an otherwise EAE-resistant mouse strain to become susceptible to disease. Therefore, in BALB/c mice, IFN-gamma confers resistance to EAE....

  16. Prolonged Fasting Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than Cause of Human Insulin Resistance

    NARCIS (Netherlands)

    Hoeks, J.; Herpen, N.A.; Mensink, M.R.; Moonen-Kornips, E.; Beurden, van D.; Hesselink, M.K.C.; Schrauwen, P.

    2010-01-01

    OBJECTIVE-Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we

  17. Prolonged Fasting Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than Cause of Human Insulin Resistance

    NARCIS (Netherlands)

    Hoeks, J.; Herpen, N.A.; Mensink, M.R.; Moonen-Kornips, E.; Beurden, van D.; Hesselink, M.K.C.; Schrauwen, P.

    2010-01-01

    OBJECTIVE-Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we em

  18. Proctection by Flavonal-Rich foods against vascular dysfunction and oxidative damage: 27th Hohenheim consensus conference

    NARCIS (Netherlands)

    Sies, H.; Hollman, P.C.H.; Grune, T.; Stahl, W.

    2012-01-01

    Criteria for assessing the purported protection by flavanol-rich foods against vascular dysfunction and oxidative damage to biomolecules was the subject of the 27th Hohenheim Consensus Conference held on July 11, 2011. State-of-the-art evidence was put into perspective, focusing on several questions

  19. Food supply confers calcifiers resistance to ocean acidification

    KAUST Repository

    Ramajo, Laura

    2016-01-18

    Invasion of ocean surface waters by anthropogenic CO2 emitted to the atmosphere is expected to reduce surface seawater pH to 7.8 by the end of this century compromising marine calcifiers. A broad range of biological and mineralogical mechanisms allow marine calcifiers to cope with ocean acidification, however these mechanisms are energetically demanding which affect other biological processes (trade-offs) with important implications for the resilience of the organisms against stressful conditions. Hence, food availability may play a critical role in determining the resistance of calcifiers to OA. Here we show, based on a meta-analysis of existing experimental results assessing the role of food supply in the response of organisms to OA, that food supply consistently confers calcifiers resistance to ocean acidification.

  20. Advances in Mapping Loci Conferring Resistance to Rice Sheath Blight and Mining Rhizoctonia solani Resistant Resources

    Institute of Scientific and Technical Information of China (English)

    ZENG Yu-xiang; JI Zhi-juan; MA Liang-yong; LI Xi-ming; YANG Chang-deng

    2011-01-01

    Sheath blight (SB) caused by Rhizoctonia solani is one of the three major diseases of rice,and now has become the most severe disease causing rice yield loss in China.Breeding and use of varieties resistant to SB is crucial in controlling the disease,but the advances achieved have been limited due to the lack of highly SB-resistant rice germplasm.Genetic analysis revealed that the SB resistance in rice was a typical quantitative trait controlled by multi-genes.Although many QTLs conferring resistance to SB have been identified in recent years,most of the QTLs only showed small effects and few of them have been evaluated for utilization potential.Many R.solani-resistant resources have been found in wild rice species,microorganisms and other plant species.It is already known that the SB-resistance could be improved in transgenic rice plants by genetic transformation.This paper reviewed the genetic mapping of loci associated with resistance to rice SB,the evaluation of the potential of resistance QTLs,and the resistant resources found in various organisms besides rice.To develop SB-resistant rice varieties,it is important to develop and explore new resistant rice germplasms,fine map and evaluate resistance QTLs,and also to pay attention to various bio-resources showing resistance to R.solani.

  1. Microvascular dysfunction as a link between obesity, insulin resistance and hypertension.

    Science.gov (United States)

    Karaca, Ü; Schram, M T; Houben, A J H M; Muris, D M J; Stehouwer, C D A

    2014-03-01

    Impaired microvascular dilatation from any cause and impaired insulin-mediated capillary recruitment in particular result in suboptimal delivery of glucose and insulin to skeletal muscle, and subsequently impairment of glucose disposal (insulin resistance). In addition, microvascular dysfunction, through functional and/or structural arteriolar and capillary drop-out, and arteriolar constriction, increases peripheral resistance and thus blood pressure. Microvascular dysfunction may thus constitute a pathway that links insulin resistance and hypertension. Overweight and obesity may be an important cause of microvascular dysfunction. Mechanisms linking overweight and obesity to microvascular dysfunction include changes in the secretion of adipokines leading to increased levels of free fatty acids and inflammatory mediators, and decreased levels of adiponectin all of which may impair endothelial insulin signaling. Microvascular dysfunction may thus constitute a new treatment target in the prevention of type 2 diabetes mellitus and hypertension. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoyuki [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Saotome, Masao, E-mail: msaotome@hama-med.ac.jp [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Funaki, Makoto [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Hayashi, Hideharu [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance

  3. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates.

    Science.gov (United States)

    Straimer, Judith; Gnädig, Nina F; Witkowski, Benoit; Amaratunga, Chanaki; Duru, Valentine; Ramadani, Arba Pramundita; Dacheux, Mélanie; Khim, Nimol; Zhang, Lei; Lam, Stephen; Gregory, Philip D; Urnov, Fyodor D; Mercereau-Puijalon, Odile; Benoit-Vical, Françoise; Fairhurst, Rick M; Ménard, Didier; Fidock, David A

    2015-01-23

    The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from ≤0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites.

  4. Overexpression of glutamine synthetases confers transgenic rice herbicide resistance

    Institute of Scientific and Technical Information of China (English)

    Sun Hui; Huang Qiman; Su Jin

    2005-01-01

    Glutamine synthetase (GS, E.C.6.3.1.2) is a key enzyme involved in the assimilation of inorganic nitrogen in higher plants and gram-negative microorganisms. GS is the targeting enzyme of a herbicide phosphinothricin (PPT) or Basta. In order to generate PPT-resistant transgenic rice via overexpression of GS, we constructed a plant expression vector p2GS harboring two different isoenzymes GS1 and GS2 cDNAs under the control of constitutive promoters of rice Act1 and maize Ubiquitin(Ubi) genes. The p2GS was introduced into rice genome by Agrobacterium-mediated transformation and confirmed by PCR and Southern blot hybridization. GS-transgene expression was first detected by Northern blot analyses. Results from Basta test indicated that GS-transgenic plants can tolerate as high as 0.3% Basta solution. In addition, our results also demonstrated that GS overexpression conferred transformed rice calli PPT resistance. Thus, GS cassette can serve as a selective marker gene instead of bar cassette for selection of PPT transformants.

  5. Reaching consensus on drug resistance conferring mutations (Part 1

    Directory of Open Access Journals (Sweden)

    Daniela M Cirillo

    2016-01-01

    A user-friendly interface designed for nonexpert or expert operability.A standardized and validated analysis pipeline for variant analyses of M. tuberculosis next-generation sequencing (NGS data.Access to data beyond the published literature with dynamic and iterative updates of new data generated by global surveillance and clinical trials.A well-developed legal structure to ensure intellectual property rights and data ownership remain with contributors.A structured data-sharing architecture to restrict access to sensitive or unpublished data sets.Metadata standardization using CDISC: supports global, platform-independent data standards that enable information system interoperability.An emphasis on data quality and rigorous, expert curation with multiple quality control checks for whole-genome sequencing and other metadata.Validation of NGS analysis output by an expert committee with grading of resistance conferring mutations based on rigorous statistical standards.Regulatory-compliant analysis pipeline and database architecture. Successful execution of such an extensive database platform requires substantial collaboration from scientists investigating the genetic basis for drug resistance worldwide, and from developers with expertise in database design and implementation.

  6. Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders.

    Science.gov (United States)

    Janus, A; Szahidewicz-Krupska, E; Mazur, G; Doroszko, A

    2016-01-01

    Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. The insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting one of these pathologies with pleiotropic treatment exerts beneficial effect on another one. Combined and expletive treatment of hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. This paper summarises the common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular inflammatory reaction at molecular level and analyses the potential pleiotropic effects of drugs used currently in management of cardiovascular disease, metabolic syndrome, and diabetes.

  7. Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders

    Directory of Open Access Journals (Sweden)

    A. Janus

    2016-01-01

    Full Text Available Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. The insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting one of these pathologies with pleiotropic treatment exerts beneficial effect on another one. Combined and expletive treatment of hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. This paper summarises the common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular inflammatory reaction at molecular level and analyses the potential pleiotropic effects of drugs used currently in management of cardiovascular disease, metabolic syndrome, and diabetes.

  8. Academic Conferences: Representative and Resistant Sites for Higher Education Research

    Science.gov (United States)

    Henderson, Emily F.

    2015-01-01

    The overarching argument made in this article is twofold. Firstly, academic conferences are posited as sites for higher education research. Secondly, the well-recognised emotional and social processes of conferences are used to make space at the boundaries of higher education research for psychosocial analysis. The article theorises conferences in…

  9. The Plasmid-Encoded Regulator Activates Factors Conferring Lysozyme Resistance on Enteropathogenic Escherichia coli Strains▿

    Science.gov (United States)

    Salinger, Nina; Kokona, Bashkim; Fairman, Robert; Okeke, Iruka N.

    2009-01-01

    We demonstrate that enhanced lysozyme resistance of enteropathogenic Escherichia coli requires the plasmid-encoded regulator, Per, and is mediated by factors outside the locus for enterocyte effacement. EspC, a Per-activated serine protease autotransporter protein, conferred enhanced resistance on nonpathogenic E. coli, and a second Per-regulated, espC-independent lysozyme resistance mechanism was identified. PMID:18997020

  10. The plasmid-encoded regulator activates factors conferring lysozyme resistance on enteropathogenic Escherichia coli strains.

    Science.gov (United States)

    Salinger, Nina; Kokona, Bashkim; Fairman, Robert; Okeke, Iruka N

    2009-01-01

    We demonstrate that enhanced lysozyme resistance of enteropathogenic Escherichia coli requires the plasmid-encoded regulator, Per, and is mediated by factors outside the locus for enterocyte effacement. EspC, a Per-activated serine protease autotransporter protein, conferred enhanced resistance on nonpathogenic E. coli, and a second Per-regulated, espC-independent lysozyme resistance mechanism was identified.

  11. Dysfunctional Striatal Systems in Treatment-Resistant Schizophrenia.

    Science.gov (United States)

    White, Thomas P; Wigton, Rebekah; Joyce, Dan W; Collier, Tracy; Fornito, Alex; Shergill, Sukhwinder S

    2016-04-01

    The prevalence of treatment-resistant schizophrenia points to a discrete illness subtype, but to date its pathophysiologic characteristics are undetermined. Information transfer from ventral to dorsal striatum depends on both striato-cortico-striatal and striato-nigro-striatal subcircuits, yet although the functional integrity of the former appears to track improvement of positive symptoms of schizophrenia, the latter have received little experimental attention in relation to the illness. Here, in a sample of individuals with schizophrenia stratified by treatment resistance and matched controls, functional pathways involving four foci along the striatal axis were assessed to test the hypothesis that treatment-resistant and non-refractory patients would exhibit contrasting patterns of resting striatal connectivity. Compared with non-refractory patients, treatment-resistant individuals exhibited reduced connectivity between ventral striatum and substantia nigra. Furthermore, disturbance to corticostriatal connectivity was more pervasive in treatment-resistant individuals. The occurrence of a more distributed pattern of abnormality may contribute to the failure of medication to treat symptoms in these individuals. This work strongly supports the notion of pathophysiologic divergence between individuals with schizophrenia classified by treatment-resistance criteria.

  12. Mutations in the Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL Confer Multidrug Resistance

    Directory of Open Access Journals (Sweden)

    Gregory LaMonte

    2016-07-01

    Full Text Available Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL are associated with parasite resistance to the imidazolopiperazines, a potent class of novel antimalarial compounds that display both prophylactic and transmission-blocking activity, in addition to activity against blood-stage parasites. Here, we show that pfcarl encodes a protein, with a predicted molecular weight of 153 kDa, that localizes to the cis-Golgi apparatus of the parasite in both asexual and sexual blood stages. Utilizing clustered regularly interspaced short palindromic repeat (CRISPR-mediated gene introduction of 5 variants (L830V, S1076N/I, V1103L, and I1139K, we demonstrate that mutations in pfcarl are sufficient to generate resistance against the imidazolopiperazines in both asexual and sexual blood-stage parasites. We further determined that the mutant PfCARL protein confers resistance to several structurally unrelated compounds. These data suggest that PfCARL modulates the levels of small-molecule inhibitors that affect Golgi-related processes, such as protein sorting or membrane trafficking, and is therefore an important mechanism of resistance in malaria parasites.

  13. Pulmonary arterial dysfunction in insulin resistant obese Zucker rats

    Directory of Open Access Journals (Sweden)

    Cogolludo Angel

    2011-04-01

    Full Text Available Abstract Background Insulin resistance and obesity are strongly associated with systemic cardiovascular diseases. Recent reports have also suggested a link between insulin resistance with pulmonary arterial hypertension. The aim of this study was to analyze pulmonary vascular function in the insulin resistant obese Zucker rat. Methods Large and small pulmonary arteries from obese Zucker rat and their lean counterparts were mounted for isometric tension recording. mRNA and protein expression was measured by RT-PCR or Western blot, respectively. KV currents were recorded in isolated pulmonary artery smooth muscle cells using the patch clamp technique. Results Right ventricular wall thickness was similar in obese and lean Zucker rats. Lung BMPR2, KV1.5 and 5-HT2A receptor mRNA and protein expression and KV current density were also similar in the two rat strains. In conductance and resistance pulmonary arteries, the similar relaxant responses to acetylcholine and nitroprusside and unchanged lung eNOS expression revealed a preserved endothelial function. However, in resistance (but not in conductance pulmonary arteries from obese rats a reduced response to several vasoconstrictor agents (hypoxia, phenylephrine and 5-HT was observed. The hyporesponsiveness to vasoconstrictors was reversed by L-NAME and prevented by the iNOS inhibitor 1400W. Conclusions In contrast to rat models of type 1 diabetes or other mice models of insulin resistance, the obese Zucker rats did not show any of the characteristic features of pulmonary hypertension but rather a reduced vasoconstrictor response which could be prevented by inhibition of iNOS.

  14. The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice.

    Science.gov (United States)

    Krattinger, Simon G; Sucher, Justine; Selter, Liselotte L; Chauhan, Harsh; Zhou, Bo; Tang, Mingzhi; Upadhyaya, Narayana M; Mieulet, Delphine; Guiderdoni, Emmanuel; Weidenbach, Denise; Schaffrath, Ulrich; Lagudah, Evans S; Keller, Beat

    2016-05-01

    The wheat gene Lr34 confers durable and partial field resistance against the obligate biotrophic, pathogenic rust fungi and powdery mildew in adult wheat plants. The resistant Lr34 allele evolved after wheat domestication through two gain-of-function mutations in an ATP-binding cassette transporter gene. An Lr34-like fungal disease resistance with a similar broad-spectrum specificity and durability has not been described in other cereals. Here, we transformed the resistant Lr34 allele into the japonica rice cultivar Nipponbare. Transgenic rice plants expressing Lr34 showed increased resistance against multiple isolates of the hemibiotrophic pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Host cell invasion during the biotrophic growth phase of rice blast was delayed in Lr34-expressing rice plants, resulting in smaller necrotic lesions on leaves. Lines with Lr34 also developed a typical, senescence-based leaf tip necrosis (LTN) phenotype. Development of LTN during early seedling growth had a negative impact on formation of axillary shoots and spikelets in some transgenic lines. One transgenic line developed LTN only at adult plant stage which was correlated with lower Lr34 expression levels at seedling stage. This line showed normal tiller formation and more importantly, disease resistance in this particular line was not compromised. Interestingly, Lr34 in rice is effective against a hemibiotrophic pathogen with a lifestyle and infection strategy that is different from obligate biotrophic rusts and mildew fungi. Lr34 might therefore be used as a source in rice breeding to improve broad-spectrum disease resistance against the most devastating fungal disease of rice.

  15. Sympathetic activation and endothelial dysfunction in polycystic ovary syndrome are not explained by either obesity or insulin resistance.

    Science.gov (United States)

    Lambert, Elisabeth A; Teede, Helena; Sari, Carolina Ika; Jona, Eveline; Shorakae, Soulmaz; Woodington, Kiri; Hemmes, Robyn; Eikelis, Nina; Straznicky, Nora E; De Courten, Barbora; Dixon, John B; Schlaich, Markus P; Lambert, Gavin W

    2015-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition underpinned by insulin resistance and associated with increased risk of obesity, type 2 diabetes and adverse cardiovascular risk profile. Previous data suggest autonomic imbalance [elevated sympathetic nervous system (SNS) activity and decreased heart rate variability (HRV)] as well as endothelial dysfunction in PCOS. However, it is not clear whether these abnormalities are driven by obesity and metabolic disturbance or whether they are independently related to PCOS. We examined multiunit and single-unit muscle SNS activity (by microneurography), HRV (time and frequency domain analysis) and endothelial function [ischaemic reactive hyperaemia index (RHI) using the EndoPAT device] in 19 overweight/obese women with PCOS (BMI: 31·3 ± 1·5 kg/m(2), age: 31·3 ± 1·6 years) and compared them with 21 control overweight/obese women (BMI: 33·0 ± 1·4 kg/m(2), age: 28·2 ± 1·6 years) presenting a similar metabolic profile (fasting total, HDL and LDL cholesterol, glucose, triglycerides, insulin sensitivity and blood pressure). Women with PCOS had elevated multiunit muscle SNS activity (41 ± 2 vs 33 ± 3 bursts per 100 heartbeats, P obesity and metabolic disturbances. Sympathetic activation and endothelial dysfunction may confer greater cardiovascular risk in women with PCOS. © 2015 John Wiley & Sons Ltd.

  16. Microvascular dysfunction: an emerging pathway in the pathogenesis of obesity-related insulin resistance.

    Science.gov (United States)

    Muris, Dennis M J; Houben, Alfons J H M; Schram, Miranda T; Stehouwer, Coen D A

    2013-03-01

    The prevalence of type 2 diabetes mellitus (T2DM) and its major risk factor, obesity, has reached epidemic proportions in Western society. How obesity leads to insulin resistance and subsequent T2DM is incompletely understood. It has been established that insulin can redirect blood flow in skeletal muscle from non-nutritive to nutritive capillary networks, without increasing total blood flow. This results in a net increase of the overall number of perfused nutritive capillary networks and thereby increases insulin-mediated glucose uptake by skeletal muscle. This process, referred to as functional (nutritive) capillary recruitment, has been shown to be endothelium-dependent and to require activation of the phosphatidylinositol-kinase (PI3K) pathway in the endothelial cell. Several studies have demonstrated that these processes are impaired in states of microvascular dysfunction. In obesity, changes in several adipokines are likely candidates to influence insulin signaling pathways in endothelial cells, thereby causing microvascular dysfunction. Microvascular dysfunction, in turn, impairs the timely access of glucose and insulin to their target tissues, and may therefore be an additional cause of insulin resistance. Thus, microvascular dysfunction may be a key feature in the development of obesity-related insulin resistance. In the present review, we will discuss the evidence for this emerging role for the microcirculation as a possible link between obesity and insulin resistance.

  17. Effect of endurance versus resistance training on quadriceps muscle dysfunction in COPD

    DEFF Research Database (Denmark)

    Iepsen, Ulrik Winning; Munch, Gregers Druedal Wibe; Rugbjerg, Mette

    2016-01-01

    INTRODUCTION: Exercise is an important countermeasure to limb muscle dysfunction in COPD. The two major training modalities in COPD rehabilitation, endurance training (ET) and resistance training (RT), may both be efficient in improving muscle strength, exercise capacity, and health-related quali...

  18. A novel resistance gene, lnu(H), confers resistance to lincosamides inriemerella anatipestiferCH-2.

    Science.gov (United States)

    Luo, Hong-Yan; Liu, Ma-Feng; Wang, Ming-Shu; Zhao, Xin-Xin; Jia, Ren-Yong; Chen, Shun; Sun, Kun-Feng; Yang, Qiao; Wu, Ying; Chen, Xiao-Yue; Biville, Francis; Zou, Yuan-Feng; Jing, Bo; Cheng, An-Chun; Zhu, De-Kang

    2017-08-23

    The Gram-negative bacteria Riemerella anatipestifer CH-2 is resistant to lincosamide (the MIC value of lincomycin is 128 µg/ml). The G148_1775 gene of R. anatipestifer CH-2, designated lnu(H), encodes a 260-amino-acid protein with ≤ 41% identity to other reported lincosamide nucleotidyltransferases. The E. coli Rosetta (DE3) containing pBAD24-lnu(H) plasmid showed 4- and 2-fold increases in lincomycin and clindamycin MICs, respectively. A kinetic assay of the purified Lnu(H) enzyme for lincomycin and clindamycin showed that the protein could inactive lincosamides. Mass spectrometry analysis results demonstrated that the Lnu(H) enzyme catalyzed adenylation of lincosamides. In addition, the lnu(H) gene deletion strain exhibited 512- and 32-fold decreases in lincomycin and clindamycin MICs, respectively. Wild-type level of lincosamide resistance could be restored by complementation with a shuttle plasmid carrying the lnu(H) gene. The transformant ATCC 11845 (lnu(H)) acquired by natural transformation also exhibited high-level lincosamide resistance. Moreover, of the R. anatipestifer field isolates, 32% (56/175) were positive for the lnu(H) gene by PCR. In conclusion, Lnu(H) is a novel lincosamide nucleotidyltransferase, which inactivates lincomycin and clindamycin by nucleotidylation, thus conferring high-level of lincosamide resistance to R. anatipestifer CH-2. Copyright © 2017. Published by Elsevier B.V.

  19. Liver alanine aminotransferase, insulin resistance and endothelial dysfunction in normotriglyceridaemic subjects with type 2 diabetes mellitus

    NARCIS (Netherlands)

    Schindhelm, RK; Diamant, M; Bakker, SJL; van Dijk, RAJM; Scheffer, PG; Teerlink, T; Kostense, PJ; Heine, RJ

    2005-01-01

    Background Plasma levels of liver transaminases, including alanine aminotransferase (ALT), are elevated in most cases of nonalcoholic fatty liver disease (NAFLD). Elevated ALT levels are associated with insulin resistance, and subjects with NAFLD have features of the metabolic syndrome that confer h

  20. An Arabidopsis thaliana ABC transporter that confers kanamycin resistance in transgenic plants does not endow resistance to Escherichia coli

    OpenAIRE

    Burris, Kellie; Mentewab, Ayalew; Ripp, Steven; Stewart, C. Neal

    2007-01-01

    Summary Concerns have been raised about potential horizontal gene transfer (HGT) of antibiotic resistance markers (ARMs) from transgenic plants to bacteria of medical and environmental importance. All ARMs used in transgenic plants have been bacterial in origin, but it has been recently shown that an Arabidopsis thaliana ABC transporter, Atwbc19, confers kanamycin resistance when overexpressed in transgenic plants. Atwbc19 was evaluated for its ability to transfer kanamycin resistance to Esch...

  1. Invasive assessment of coronary microvascular dysfunction in hypertrophic cardiomyopathy: the index of microvascular resistance

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Barrios, Alejandro, E-mail: aleklos@hotmail.com [Cardiology Department, Jerez Hospital, Jerez (Spain); Camacho-Jurado, Francisco [Cardiology Department, Punta Europa Hospital, Algeciras (Spain); Díaz-Retamino, Enrique; Gamaza-Chulián, Sergio; Agarrado-Luna, Antonio; Oneto-Otero, Jesús; Del Rio-Lechuga, Ana; Benezet-Mazuecos, Javier [Cardiology Department, Jerez Hospital, Jerez (Spain)

    2015-10-15

    Summary: We present a review of microvascular dysfunction in hypertrophic cardiomyopathy (HCM) and an interesting case of a symptomatic familial HCM patient with inducible ischemia by single photon emission computed tomography. Coronary angiography revealed normal epicardial arteries. Pressure wire measurements of fractional flow reserve (FFR), coronary flow reserve (CFR) and index of microvascular resistance (IMR) demonstrated a significant microcirculatory dysfunction. This is the first such case that documents this abnormality invasively using the IMR. The measurement of IMR, a novel marker of microcirculatory dysfunction, provides novel insights into the pathophysiology of this condition. - Highlights: • Microvascular dysfunction is a common feature in hypertrophic cardiomyopathy (HCM) and represents a strong predictor of unfavorable outcome and cardiovascular mortality. • The index of microvascular resistance (IMR) is a new method for invasively assessing the state of the coronary microcirculation using a single pressure-temperature sensor-tipped coronary wire. • However assessment of IMR in HCM has not been previously reported. We report a case in which microvascular dysfunction is assessed by IMR. This index may be useful in future researches of HCM.

  2. Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in oocytes play a role?

    Science.gov (United States)

    Turner, Nigel; Robker, Rebecca L

    2015-01-01

    Insulin resistance is a key defect associated with obesity, type 2 diabetes and other metabolic diseases. While a number of factors have been suggested to cause defects in insulin action, there is a very strong association between inappropriate lipid deposition in insulin target tissues and the development of insulin resistance. In recent times, a large number of studies have reported changes in markers of mitochondrial metabolism in insulin-resistant individuals, leading to the theory that defects in mitochondrial substrate oxidation are responsible for the buildup of lipid intermediates and the development of insulin resistance. The primary support for the mitochondrial theory of insulin resistance comes from studies in skeletal muscle; however, there is recent evidence in murine models that mitochondrial dysfunction in oocytes may also play a role. Oocytes from obese or insulin-resistant mice have been shown to exhibit abnormalities in many different mitochondrial parameters, including mitochondrial morphology and membrane potential. Here we review the findings regarding the link between mitochondrial dysfunction and insulin resistance, and propose that abnormalities in mitochondrial metabolism in oocytes may predispose to the development of obesity and insulin resistance and thus contribute to the inter-generational programming of metabolic disease. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum.

    Science.gov (United States)

    Schnippenkoetter, Wendelin; Lo, Clive; Liu, Guoquan; Dibley, Katherine; Chan, Wai Lung; White, Jodie; Milne, Ricky; Zwart, Alexander; Kwong, Eunjung; Keller, Beat; Godwin, Ian; Krattinger, Simon G; Lagudah, Evans

    2017-11-01

    The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low-expressing single copy Lr34res genotype that conferred partial resistance. Pathogen-induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24-72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4-reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24-h post-inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3-deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Marked sympathetic activation and baroreflex dysfunction in true resistant hypertension.

    Science.gov (United States)

    Grassi, Guido; Seravalle, Gino; Brambilla, Gianmaria; Pini, Claudio; Alimento, Marina; Facchetti, Rita; Spaziani, Domenico; Cuspidi, Cesare; Mancia, Giuseppe

    2014-12-20

    An increase in sympathetic drive to the heart and the peripheral circulation characterizes mild and severe essential hypertension. However, it remains unsettled whether sympathetic cardiovascular influences are potentiated in true resistant hypertension (RHT). In 32 RHT patients treated with 4.6 ± 0.3 drugs (mean ± SEM) and aged 58.6 ± 2.1 years, 35 non-resistant treated hypertensives (HT) and 19 normotensive controls (NT), all age-matched with RHT, we measured clinic, 24-hour ambulatory and beat-to-beat blood pressures (BP), heart rate (HR, EKG), muscle sympathetic nerve traffic (MSNA, microneurography) and spontaneous baroreflex MSNA-sensitivity. BP values were markedly greater in RHT patients than in NT and HT (172.2 ± 1.7/100.7 ± 1.2 vs 132.1 ± 1.3/82.1 ± 0.9 and 135.5 ± 1.2/83.6 ± 0.9 mmHg, P < 0.01). This was paralleled by a significant and marked increase in MSNA (87.8 ± 2.0 vs 46.8 ± 2.6 and 59.3 ± 1.7 and bursts/100 heartbeats, P < 0.01). In multiple regression analysis the MSNA increase observed in RHT was significantly related to hemodynamic, hormonal and metabolic variables. It was also significantly related to plasma aldosterone values as well as spontaneous baroreflex MSNA-sensitivity, which were the variables that at the multivariate analysis were more closely related to the adrenergic activation of RHT after adjustment for confounders, including antihypertensive treatment (r(2)partial=0.04405 and r(2)partial=0.00878, P<0.05 for both). These data represent the first evidence that RHT is a state of marked adrenergic overdrive, greater for magnitude than that detectable in HT. They also suggest that impaired baroreflex mechanisms, along with hemodynamic and neurohumoral factors, may be responsible for the phenomenon. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Paradoxical Sleep Deprivation Causes Cardiac Dysfunction and the Impairment Is Attenuated by Resistance Training

    Science.gov (United States)

    Giampá, Sara Quaglia de Campos; Mônico-Neto, Marcos; de Mello, Marco Tulio; Souza, Helton de Sá; Tufik, Sergio; Lee, Kil Sun; Koike, Marcia Kiyomi; dos Santos, Alexandra Alberta; Antonio, Ednei Luiz; Serra, Andrey Jorge; Tucci, Paulo José Ferreira

    2016-01-01

    Background Paradoxical sleep deprivation activates the sympathetic nervous system and the hypothalamus-pituitary-adrenal axis, subsequently interfering with the cardiovascular system. The beneficial effects of resistance training are related to hemodynamic, metabolic and hormonal homeostasis. We hypothesized that resistance training can prevent the cardiac remodeling and dysfunction caused by paradoxical sleep deprivation. Methods Male Wistar rats were distributed into four groups: control (C), resistance training (RT), paradoxical sleep deprivation for 96 hours (PSD96) and both resistance training and sleep deprivation (RT/PSD96). Doppler echocardiograms, hemodynamics measurements, cardiac histomorphometry, hormonal profile and molecular analysis were evaluated. Results Compared to the C group, PSD96 group had a higher left ventricular systolic pressure, heart rate and left atrium index. In contrast, the left ventricle systolic area and the left ventricle cavity diameter were reduced in the PSD96 group. Hypertrophy and fibrosis were also observed. Along with these alterations, reduced levels of serum testosterone and insulin-like growth factor-1 (IGF-1), as well as increased corticosterone and angiotensin II, were observed in the PSD96 group. Prophylactic resistance training attenuated most of these changes, except angiotensin II, fibrosis, heart rate and concentric remodeling of left ventricle, confirmed by the increased of NFATc3 and GATA-4, proteins involved in the pathologic cardiac hypertrophy pathway. Conclusions Resistance training effectively attenuates cardiac dysfunction and hormonal imbalance induced by paradoxical sleep deprivation. PMID:27880816

  6. Paradoxical Sleep Deprivation Causes Cardiac Dysfunction and the Impairment Is Attenuated by Resistance Training.

    Science.gov (United States)

    Giampá, Sara Quaglia de Campos; Mônico-Neto, Marcos; de Mello, Marco Tulio; Souza, Helton de Sá; Tufik, Sergio; Lee, Kil Sun; Koike, Marcia Kiyomi; Dos Santos, Alexandra Alberta; Antonio, Ednei Luiz; Serra, Andrey Jorge; Tucci, Paulo José Ferreira; Antunes, Hanna Karen Moreira

    2016-01-01

    Paradoxical sleep deprivation activates the sympathetic nervous system and the hypothalamus-pituitary-adrenal axis, subsequently interfering with the cardiovascular system. The beneficial effects of resistance training are related to hemodynamic, metabolic and hormonal homeostasis. We hypothesized that resistance training can prevent the cardiac remodeling and dysfunction caused by paradoxical sleep deprivation. Male Wistar rats were distributed into four groups: control (C), resistance training (RT), paradoxical sleep deprivation for 96 hours (PSD96) and both resistance training and sleep deprivation (RT/PSD96). Doppler echocardiograms, hemodynamics measurements, cardiac histomorphometry, hormonal profile and molecular analysis were evaluated. Compared to the C group, PSD96 group had a higher left ventricular systolic pressure, heart rate and left atrium index. In contrast, the left ventricle systolic area and the left ventricle cavity diameter were reduced in the PSD96 group. Hypertrophy and fibrosis were also observed. Along with these alterations, reduced levels of serum testosterone and insulin-like growth factor-1 (IGF-1), as well as increased corticosterone and angiotensin II, were observed in the PSD96 group. Prophylactic resistance training attenuated most of these changes, except angiotensin II, fibrosis, heart rate and concentric remodeling of left ventricle, confirmed by the increased of NFATc3 and GATA-4, proteins involved in the pathologic cardiac hypertrophy pathway. Resistance training effectively attenuates cardiac dysfunction and hormonal imbalance induced by paradoxical sleep deprivation.

  7. Exploiting mitochondrial dysfunction for effective elimination of imatinib-resistant leukemic cells.

    Directory of Open Access Journals (Sweden)

    Jérome Kluza

    Full Text Available Challenges today concern chronic myeloid leukemia (CML patients resistant to imatinib. There is growing evidence that imatinib-resistant leukemic cells present abnormal glucose metabolism but the impact on mitochondria has been neglected. Our work aimed to better understand and exploit the metabolic alterations of imatinib-resistant leukemic cells. Imatinib-resistant cells presented high glycolysis as compared to sensitive cells. Consistently, expression of key glycolytic enzymes, at least partly mediated by HIF-1α, was modified in imatinib-resistant cells suggesting that imatinib-resistant cells uncouple glycolytic flux from pyruvate oxidation. Interestingly, mitochondria of imatinib-resistant cells exhibited accumulation of TCA cycle intermediates, increased NADH and low oxygen consumption. These mitochondrial alterations due to the partial failure of ETC were further confirmed in leukemic cells isolated from some imatinib-resistant CML patients. As a consequence, mitochondria generated more ROS than those of imatinib-sensitive cells. This, in turn, resulted in increased death of imatinib-resistant leukemic cells following in vitro or in vivo treatment with the pro-oxidants, PEITC and Trisenox, in a syngeneic mouse tumor model. Conversely, inhibition of glycolysis caused derepression of respiration leading to lower cellular ROS. In conclusion, these findings indicate that imatinib-resistant leukemic cells have an unexpected mitochondrial dysfunction that could be exploited for selective therapeutic intervention.

  8. Microvascular dysfunction: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension.

    Science.gov (United States)

    De Boer, Michiel P; Meijer, Rick I; Wijnstok, Nienke J; Jonk, Amy M; Houben, Alphons J; Stehouwer, Coen D; Smulders, Yvo M; Eringa, Etto C; Serné, Erik H

    2012-01-01

    The intertwined epidemics of obesity and related disorders such as hypertension, insulin resistance, type 2 diabetes, and subsequent cardiovascular disease pose a major public health challenge. To meet this challenge, we must understand the interplay between adipose tissue and the vasculature. Microvascular dysfunction is important not only in the development of obesity-related target-organ damage but also in the development of cardiovascular risk factors such as hypertension and insulin resistance. The present review examines the role of microvascular dysfunction as an explanation for the associations among obesity, hypertension, and impaired insulin-mediated glucose disposal. We also discuss communicative pathways from adipose tissue to the microcirculation. © 2011 John Wiley & Sons Ltd.

  9. Lack of prognostic role of endothelial dysfunction in subcutaneous small resistance arteries of hypertensive patients.

    Science.gov (United States)

    Rizzoni, Damiano; Porteri, Enzo; De Ciuceis, Carolina; Boari, Gianluca E M; Zani, Francesca; Miclini, Marco; Paiardi, Silvia; Tiberio, Guido A M; Giulini, Stefano M; Muiesan, Maria Lorenza; Castellano, Maurizio; Rosei, Enrico Agabiti

    2006-05-01

    The presence of endothelial dysfunction in the coronary circulation or in the brachial artery has been found to be associated with a greater incidence of cardiovascular events. However, no data are presently available about the prognostic role of endothelial dysfunction in human small resistance arteries. Ninety subjects were included in the present study. They were: 10 normotensive subjects, 36 patients with essential hypertension, 10 patients with phaeochromocytoma, 11 patients with primary aldosteronism, 10 patients with renovascular hypertension, and 13 normotensive patients with non-insulin-dependent diabetes mellitus (NIDDM). All subjects were submitted to a biopsy of subcutaneous fat from the gluteal or the anterior abdominal region. Small resistance arteries were dissected and mounted on an isometric myograph, and the concentration-response curves to acetylcholine (from 10 to 10 mol/l) (endothelium-dependent vasodilatation) and sodium nitroprusside (from 10 to 10 mol/l) (endothelium-independent vasodilatation) after precontraction of the vessels with norepinephrine were evaluated. The subjects were re-evaluated (by clinical visits or telephone interviews) after an average follow-up time of 5.5 years. Twenty-nine subjects had a documented fatal or non-fatal cardiovascular event (5.87%/year). The endothelium-dependent vasodilatation in the subcutaneous small arteries was similar in subjects with or without cardiovascular events. Also, endothelium-independent vasodilatation to sodium nitroprusside was similar in the two groups. Similar results were obtained by subdividing patients in the different subgroups (essential hypertension, secondary hypertension, etc.). Our results indicate that endothelial dysfunction in the microcirculation does not predict cardiovascular events. It is possible that a prognostic role of endothelial dysfunction may be observed when other vascular districts prone to atherosclerosis are evaluated, or it might be detected only in

  10. Insulin resistance and associated dysfunction of resistance vessels and arterial hypertension

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Møller, Søren

    2005-01-01

    vascular resistance, high arterial compliance, increased cardiac output, secondary activation of counterregulatory systems (renin-angiotensin-aldosterone system, sympathetic nervous system, release of vasopressin), and resistance to vasopressors. The vasodilatory state is mediated through adrenomedullin...

  11. Novel Cytomegalovirus UL54 DNA Polymerase Gene Mutations Selected In Vitro That Confer Brincidofovir Resistance

    Science.gov (United States)

    Ercolani, Ronald J.; Lanier, E. Randall

    2016-01-01

    Eight in vitro selection experiments under brincidofovir pressure elicited the known cytomegalovirus DNA polymerase amino acid substitutions N408K and V812L and the novel exonuclease domain substitutions D413Y, E303D, and E303G, which conferred ganciclovir and cidofovir resistance with 6- to 11-fold resistance to brincidofovir or 17-fold when E303G was combined with V812L. The new exonuclease domain I resistance mutations selected under brincidofovir pressure add to the single instance previously reported and show the expected patterns of cross-resistance. PMID:27044553

  12. Characterization of Halomonas Varabilis Strain HTG7 Conferring Glyphosate Resistance

    Institute of Scientific and Technical Information of China (English)

    Liu Zhu(刘柱); Liang Aimin; Ping Shuzhen; Zhang Wei; Chen Ming; Yang Zhirong; Lin Min

    2004-01-01

    Bcterial strain HTG7 is isolated from extremely glyphosate-polluted soil. It is identified as Halomonas Varabilis. It can tolerate in 500 m mol/L glyphosate concentration. Physiological characterization of strain HTG7 shows that the optimum pH and temperature are 7.0 and 30℃, respectively. It grows well in the NaCl concentrations ranging from 0% to 10%. A plasmid pACYC184 carrying a 3.5 kb DNA fragment, which confers increased glyphosate tolerance, is cloned. The DNA fragment is able to complement with an E.coli auxotrophic aroA mutant.

  13. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance.

    Science.gov (United States)

    Lacombe, Séverine; Rougon-Cardoso, Alejandra; Sherwood, Emma; Peeters, Nemo; Dahlbeck, Douglas; van Esse, H Peter; Smoker, Matthew; Rallapalli, Ghanasyam; Thomma, Bart P H J; Staskawicz, Brian; Jones, Jonathan D G; Zipfel, Cyril

    2010-04-01

    Plant diseases cause massive losses in agriculture. Increasing the natural defenses of plants may reduce the impact of phytopathogens on agricultural productivity. Pattern-recognition receptors (PRRs) detect microbes by recognizing conserved pathogen-associated molecular patterns (PAMPs). Although the overall importance of PAMP-triggered immunity for plant defense is established, it has not been used to confer disease resistance in crops. We report that activity of a PRR is retained after its transfer between two plant families. Expression of EFR (ref. 4), a PRR from the cruciferous plant Arabidopsis thaliana, confers responsiveness to bacterial elongation factor Tu in the solanaceous plants Nicotiana benthamiana and tomato (Solanum lycopersicum), making them more resistant to a range of phytopathogenic bacteria from different genera. Our results in controlled laboratory conditions suggest that heterologous expression of PAMP recognition systems could be used to engineer broad-spectrum disease resistance to important bacterial pathogens, potentially enabling more durable and sustainable resistance in the field.

  14. Conference on Fire Resistant Materials: A compilation of presentations and papers

    Science.gov (United States)

    Kourtides, D. A. (Editor); Johnson, G. A. (Editor)

    1979-01-01

    The proceedings of the NASA IRE Resistant Materials Engineering (FIREMEN) Program held at Boeing Commercial Airplane Company, Seattle, Washington, on March 1-2, 1979 are reported. The conference was to discuss the results of research by the National Aeronautics and Space Administration in the field of aircraft fire safety and fire-resistant materials. The program topics include the following: (1) large-scale testing; (2) fire toxicology; (3) polymeric materials; and (4) fire modeling.

  15. Conference on Fire Resistant Materials (FIREMEN): A compilation of presentations and papers

    Science.gov (United States)

    Kourtides, D. A. (Editor)

    1978-01-01

    The proceedings of the NASA Fire Resistant Materials Engineering (FIREMEN) Program held at Ames Research Center on April, 13, 14, 1978 are reported. The purpose of the conference was to discuss the results of NASA in the field of aircraft fire safety and fire resistant materials. The program components include the following: (1) large-scale testing; (2) fire toxicology; (3) polymeric materials; and (4) bibliography related and/or generated from the program.

  16. Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles?

    Science.gov (United States)

    Rieusset, J

    2015-11-01

    Mitochondria and the endoplasmic reticulum (ER) regulate numerous cellular processes, and are critical contributors to cellular and whole-body homoeostasis. More important, mitochondrial dysfunction and ER stress are both closely associated with hepatic and skeletal muscle insulin resistance, thereby playing crucial roles in altered glucose homoeostasis in type 2 diabetes mellitus (T2DM). The accumulated evidence also suggests a potential interrelationship between alterations in both types of organelles, as mitochondrial dysfunction could participate in activation of the unfolded protein response, whereas ER stress could influence mitochondrial function. The fact that mitochondria and the ER are physically and functionally interconnected via mitochondria-associated membranes (MAMs) supports their interrelated roles in the pathophysiology of T2DM. However, the mechanisms that coordinate the interplay between mitochondrial dysfunction and ER stress, and its relevance to the control of glucose homoeostasis, are still unknown. This review evaluates the involvement of mitochondria and ER independently in the development of peripheral insulin resistance, as well as their potential roles in the disruption of organelle crosstalk at MAM interfaces in the alteration of insulin signalling. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Defining the structural requirements for a helix in 23 S ribosomal RNA that confers erythromycin resistance

    DEFF Research Database (Denmark)

    Douthwaite, S; Powers, T; Lee, J Y

    1989-01-01

    deletion mutants show a sensitive phenotype. Deletions that extend into the base-pairing between GCC1208 and GGU1240 result in non-functional 23 S RNAs, which consequently do not confer resistance. A number of phylogenetically conserved nucleotides have been shown to be non-essential for 23 S RNA function...

  18. C-Phycocyanin Confers Protection against Oxalate-Mediated Oxidative Stress and Mitochondrial Dysfunctions in MDCK Cells

    Science.gov (United States)

    Farooq, Shukkur M.; Boppana, Nithin B.; Asokan, Devarajan; Sekaran, Shamala D.; Shankar, Esaki M.; Li, Chunying; Gopal, Kaliappan; Bakar, Sazaly A.; Karthik, Harve S.; Ebrahim, Abdul S.

    2014-01-01

    Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis. PMID:24691130

  19. Two genes conferring resistance to Pythium stalk rot in maize inbred line Qi319.

    Science.gov (United States)

    Song, Feng-Jing; Xiao, Ming-Gang; Duan, Can-Xing; Li, Hong-Jie; Zhu, Zhen-Dong; Liu, Bao-Tao; Sun, Su-Li; Wu, Xiao-Fei; Wang, Xiao-Ming

    2015-08-01

    Stalk rots are destructive diseases in maize around the world, and are most often caused by the pathogen Pythium, Fusarium and other fungi. The most efficient management for controlling stalk rots is to breed resistant cultivars. Pythium stalk rot can cause serious yield loss on maize, and to find the resistance genes from the existing germplasm is the basis to develop Pythium-resistance hybrid lines. In this study, we investigated the genetic resistance to Pythium stalk rot in inbred line Qi319 using F2 and F2:3 population, and found that the resistance to Pythium inflatum in Qi319 was conferred by two independently inherited dominant genes, RpiQI319-1 and RpiQI319-2. Linkage analysis uncovered that the RpiQI319-1 co-segregated with markers bnlg1203, and bnlg2057 on chromosome 1, and that the RpiQI319-2 locus co-segregated with markers umc2069 and bnlg1716 on chromosome 10. The RpiQI319-1 locus was further mapped into a ~500-kb interval flanked by markers SSRZ33 and SSRZ47. These results will facilitate marker-assisted selection of Pythium stalk rot-resistant cultivars in maize breeding. To our knowledge, this is the first report on the resistance to P. inflatum in the inbred line Qi319, and is also the first description of two independently inherited dominant genes conferring the resistance of Pythium stalk rot in maize.

  20. The 2NS Translocation from Aegilops ventricosa Confers Resistance to the Triticum Pathotype of Magnaporthe oryzae

    Science.gov (United States)

    Cruz, C.D.; Peterson, G.L.; Bockus, W.W.; Kankanala, P.; Dubcovsky, J.; Jordan, K.W.; Akhunov, E.; Chumley, F.; Baldelomar, F.D.; Valent, B.

    2016-01-01

    Wheat blast is a serious disease caused by the fungus Magnaporthe oryzae (Triticum pathotype) (MoT). The objective of this study was to determine the effect of the 2NS translocation from Aegilops ventricosa (Zhuk.) Chennav on wheat head and leaf blast resistance. Disease phenotyping experiments were conducted in growth chamber, greenhouse, and field environments. Among 418 cultivars of wheat (Triticum aestivum L.), those with 2NS had 50.4 to 72.3% less head blast than those without 2NS when inoculated with an older MoT isolate under growth chamber conditions. When inoculated with recently collected isolates, cultivars with 2NS had 64.0 to 80.5% less head blast. Under greenhouse conditions when lines were inoculated with an older MoT isolate, those with 2NS had a significant head blast reduction. With newer isolates, not all lines with 2NS showed a significant reduction in head blast, suggesting that the genetic background and/or environment may influence the expression of any resistance conferred by 2NS. However, when near-isogenic lines (NILs) with and without 2NS were planted in the field, there was strong evidence that 2NS conferred resistance to head blast. Results from foliar inoculations suggest that the resistance to head infection that is imparted by the 2NS translocation does not confer resistance to foliar disease. In conclusion, the 2NS translocation was associated with significant reductions in head blast in both spring and winter wheat.

  1. Metabolic Syndrome, Insulin Resistance and Cognitive Dysfunction: Does your metabolic profile affect your brain?

    DEFF Research Database (Denmark)

    Neergaard, Jesper S; Møller, Katrine Dragsbæk; Christiansen, Claus

    2017-01-01

    Dementia and type 2 diabetes are both characterized by long prodromal phases challenging the study of potential risk factors and their temporal relation. The progressive relation between metabolic syndrome, insulin resistance, and dementia has recently been questioned, wherefore the aim...... of this study was to assess the potential association between these precursors of type 2 diabetes and cognitive dysfunction. Using data from the Prospective Epidemiological Risk Factor study (n=2,103), a prospective study of elderly women in Denmark, we found that impaired fasting plasma glucose was associated...

  2. Over-nutrition, obesity and insulin resistance in the development of β-cell dysfunction.

    Science.gov (United States)

    Gupta, Deepashree; Krueger, Charles B; Lastra, Guido

    2012-03-01

    The incidence of type 2 diabetes mellitus (DM2) has increased dramatically over the last several decades, largely driven by equally worrisome growing rates of obesity. Chronic diabetic complications are leading causes of morbidity and mortality worldwide. Key players in the pathophysiology of DM2 are insulin resistance and β cell dysfunction, which in turn is a result of both β cell functional abnormality as well as reduced β cell mass. The mechanisms implicated are multifactorial and include genetic and environmental factors related to obesity. Glucose homeostasis is critically dependent on a finely regulated balance between insulin sensitivity and output in the pancreas, and insulin resistance demands a corresponding rise in insulin output in order to maintain normal glycemia. However, this compensation is lost in individuals predisposed to DM2, resulting in overt hyperglycemia. Furthermore, insulin resistance related to excess adiposity is linked to several abnormalities which impact β cell function and viability. These include glucotoxicity, lipotoxicity, increased oxidative stress, and inflammation. In addition, insulin signaling in the β cell is essential to its own functionality and viability, and obesity-related abnormalities in insulin signaling are known to induce failure of insulin secretion and hyperglycemia. Insulin resistance in the β cell arises from defects in phosphorylation/activation of insulin receptor substrates (IRS) proteins, which result in impairment in glucose sensing, glucose stimulated insulin secretion, and also in increased loss of β cells. This review intends to provide an update on the main characteristics and mechanisms that link obesity and insulin resistance to β cell dysfunction in the pathogenesis of DM2. © 2012 Bentham Science Publishers

  3. Identification of dfrA14 in two distinct plasmids conferring trimethoprim resistance in Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Bossé, Janine T; Li, Yanwen; Walker, Stephanie; Atherton, Tom; Fernandez Crespo, Roberto; Williamson, Susanna M; Rogers, Jon; Chaudhuri, Roy R; Weinert, Lucy A; Oshota, Olusegun; Holden, Matt T G; Maskell, Duncan J; Tucker, Alexander W; Wren, Brendan W; Rycroft, Andrew N; Langford, Paul R

    2015-08-01

    The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  4. Chromosomal Instability Confers Intrinsic Multi-Drug Resistance

    Science.gov (United States)

    Lee, Alvin J X; Endesfelder, David; Rowan, Andrew J; Walther, Axel; Birkbak, Nicolai J; Futreal, P Andrew; Downward, Julian; Szallasi, Zoltan; Tomlinson, Ian P M; Kschischo, Maik; Swanton, Charles

    2011-01-01

    Aneuploidy is associated with poor prognosis in solid tumours. Spontaneous chromosome mis-segregation events in aneuploid cells promote Chromosomal Instability (CIN) that may contribute to the acquisition of multi-drug resistance in vitro and heighten risk for tumour relapse in animal models. Identification of distinct therapeutic agents that target tumour karyotypic complexity has important clinical implications. In order to identify distinct therapeutic approaches to specifically limit the growth of CIN tumours we focussed on a panel of colorectal cancer (CRC) cell lines, previously classified as either chromosomally-unstable (CIN+) or diploid/near-diploid (CIN−), and treated them individually with a library of kinase inhibitors targeting components of signal transduction, cell cycle and trans-membrane receptor signalling pathways. CIN+ cell lines displayed significant intrinsic multi-drug resistance compared to CIN− cancer cell lines and this appeared to be independent of somatic mutation status and proliferation rate. Confirming the association of CIN rather than ploidy status with multi-drug resistance, tetraploid isogenic cells that had arisen from diploid cell lines displayed lower drug sensitivity than their diploid parental cells only with increasing chromosomal heterogeneity, and isogenic cell line models of CIN+ displayed multi-drug resistance relative to their CIN− parental cancer cell line derivatives. In a meta-analysis of CRC outcome following cytotoxic treatment, CIN+ predicted worse progression-free or disease-free survival relative to patients with CIN− disease. Our results suggest that stratifying tumour responses according to CIN status should be considered within the context of clinical trials to minimize the confounding effects of tumour CIN status on drug sensitivity. PMID:21363922

  5. Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae.

    Science.gov (United States)

    Mitchell, Sara N; Rigden, Daniel J; Dowd, Andrew J; Lu, Fang; Wilding, Craig S; Weetman, David; Dadzie, Samuel; Jenkins, Adam M; Regna, Kimberly; Boko, Pelagie; Djogbenou, Luc; Muskavitch, Marc A T; Ranson, Hilary; Paine, Mark J I; Mayans, Olga; Donnelly, Martin J

    2014-01-01

    The development of resistance to insecticides has become a classic exemplar of evolution occurring within human time scales. In this study we demonstrate how resistance to DDT in the major African malaria vector Anopheles gambiae is a result of both target-site resistance mechanisms that have introgressed between incipient species (the M- and S-molecular forms) and allelic variants in a DDT-detoxifying enzyme. Sequencing of the detoxification enzyme, Gste2, from DDT resistant and susceptible strains of An. gambiae, revealed a non-synonymous polymorphism (I114T), proximal to the DDT binding domain, which segregated with strain phenotype. Recombinant protein expression and DDT metabolism analysis revealed that the proteins from the susceptible strain lost activity at higher DDT concentrations, characteristic of substrate inhibition. The effect of I114T on GSTE2 protein structure was explored through X-ray crystallography. The amino acid exchange in the DDT-resistant strain introduced a hydroxyl group nearby the hydrophobic DDT-binding region. The exchange does not result in structural alterations but is predicted to facilitate local dynamics and enzyme activity. Expression of both wild-type and 114T alleles the allele in Drosophila conferred an increase in DDT tolerance. The 114T mutation was significantly associated with DDT resistance in wild caught M-form populations and acts in concert with target-site mutations in the voltage gated sodium channel (Vgsc-1575Y and Vgsc-1014F) to confer extreme levels of DDT resistance in wild caught An. gambiae.

  6. Cardiovascular, metabolic, and coronary dysfunction in high-fat-fed obesity-resistant/prone rats.

    Science.gov (United States)

    Dake, Brian L; Oltman, Christine L

    2015-03-01

    Obesity is a global epidemic leading to several comorbidities including diabetes and cardiovascular disease. The hypothesis that the genetic background of the obesity-prone rat (OP) predisposes to physiologic, metabolic, and microvascular dysfunction which is exacerbated by a diet high in saturated fats was tested. Male OP and obesity-resistant (OR) rats were fed either a diet containing 10% (chow) or 45% kcal fat (HF) for 42 weeks. Weight of OP rats was greater than OR rats by 8 weeks on both diets. Blood pressure was increased in OP rats on chow and further augmented by HF diet compared to OR rats on similar diets. In contrast to weight and blood pressure, glucose clearance was similar in OR and OP rats on chow and impaired in both models on HF diet. Relaxation to acetylcholine was attenuated in OP rats compared to OR rats by 8 weeks and remained reduced throughout the study. A longer period of time was required to observe vascular dysfunction in HF-fed OR rats. When compared to OR rats, OP rats are prone to develop not only greater obesity but also hypertension and vascular dysfunction on a normal diet which is further augmented with HF diet. © 2015 The Obesity Society.

  7. Ca(2+) mishandling and cardiac dysfunction in obesity and insulin resistance: role of oxidative stress.

    Science.gov (United States)

    Carvajal, Karla; Balderas-Villalobos, Jaime; Bello-Sanchez, Ma Dolores; Phillips-Farfán, Bryan; Molina-Muñoz, Tzindilu; Aldana-Quintero, Hugo; Gómez-Viquez, Norma L

    2014-11-01

    Obesity and insulin resistance (IR) are strongly connected to the development of subclinical cardiac dysfunction and eventually can lead to heart failure, which is the main cause of morbidity and death in patients having these metabolic diseases. It has been considered that excessive fat tissue may play a critical role in producing systemic IR and enhancing reactive oxygen species (ROS) generation. This oxidative stress (OS) may elicit or exacerbate IR. On the other hand, evidence suggests that some of the cellular mechanisms involved in the pathophysiology of obesity and IR-related cardiomyopathy are excessive myocardial ROS production and abnormal Ca(2+) homeostasis. In addition, emerging evidence suggests that augmented ROS production may contribute to Ca(2+) mishandling by affecting the redox state of key proteins implicated in this process. In this review, we focus on the role of Ca(2+) mishandling in the development of cardiac dysfunction in obesity and IR and address the evidence suggesting that OS might also contribute to cardiac dysfunction by affecting Ca(2+) handling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Angiotensin II Removes Kidney Resistance Conferred by Ischemic Preconditioning

    Directory of Open Access Journals (Sweden)

    Hee-Seong Jang

    2014-01-01

    Full Text Available Ischemic preconditioning (IPC by ischemia/reperfusion (I/R renders resistance to the kidney. Strong IPC triggers kidney fibrosis, which is involved in angiotensin II (AngII and its type 1 receptor (AT1R signaling. Here, we investigated the role of AngII/AT1R signal pathway in the resistance of IPC kidneys to subsequent I/R injury. IPC of kidneys was generated by 30 minutes of bilateral renal ischemia and 8 days of reperfusion. Sham-operation was performed to generate control (non-IPC mice. To examine the roles of AngII and AT1R in IPC kidneys to subsequent I/R, IPC kidneys were subjected to either 30 minutes of bilateral kidney ischemia or sham-operation following treatment with AngII, losartan (AT1R blocker, or AngII plus losartan. IPC kidneys showed fibrotic changes, decreased AngII, and increased AT1R expression. I/R dramatically increased plasma creatinine concentrations in non-IPC mice, but not in IPC mice. AngII treatment in IPC mice resulted in enhanced morphological damage, oxidative stress, and inflammatory responses, with functional impairment, whereas losartan treatment reversed these effects. However, AngII treatment in non-IPC mice did not change I/R-induced injury. AngII abolished the resistance of IPC kidneys to subsequent I/R via the enhancement of oxidative stress and inflammatory responses, suggesting that the AngII/AT1R signaling pathway is associated with outcome in injury-experienced kidney.

  9. Obesity Resistance Promotes Mild Contractile Dysfunction Associated with Intracellular Ca{sup 2+} Handling

    Energy Technology Data Exchange (ETDEWEB)

    Sá, Felipe Gonçalves dos Santos de; Lima-Leopoldo, Ana Paula; Jacobsen, Bruno Barcellos; Ferron, Artur Junio Togneri; Estevam, Wagner Muller [Centro de Educação Física e Desportos - Departamento de Desportos - Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Campos, Dijon Henrique Salomé [Departamento de Clínica Médica - Faculdade de Medicina - Universidade Estadual Paulista, Botucatu, São Paulo (Brazil); Castardeli, Edson; Cunha, Márcia Regina Holanda da [Centro de Educação Física e Desportos - Departamento de Desportos - Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Cicogna, Antonio Carlos [Departamento de Clínica Médica - Faculdade de Medicina - Universidade Estadual Paulista, Botucatu, São Paulo (Brazil); Leopoldo, André Soares, E-mail: andresoaresleopoldo@gmail.com [Centro de Educação Física e Desportos - Departamento de Desportos - Universidade Federal do Espírito Santo, Vitória, ES (Brazil)

    2015-12-15

    Diet-induced obesity is frequently used to demonstrate cardiac dysfunction. However, some rats, like humans, are susceptible to developing an obesity phenotype, whereas others are resistant to that. To evaluate the association between obesity resistance and cardiac function, and the impact of obesity resistance on calcium handling. Thirty-day-old male Wistar rats were distributed into two groups, each with 54 animals: control (C; standard diet) and obese (four palatable high-fat diets) for 15 weeks. After the experimental protocol, rats consuming the high-fat diets were classified according to the adiposity index and subdivided into obesity-prone (OP) and obesity-resistant (OR). Nutritional profile, comorbidities, and cardiac remodeling were evaluated. Cardiac function was assessed by papillary muscle evaluation at baseline and after inotropic maneuvers. The high-fat diets promoted increase in body fat and adiposity index in OP rats compared with C and OR rats. Glucose, lipid, and blood pressure profiles remained unchanged in OR rats. In addition, the total heart weight and the weight of the left and right ventricles in OR rats were lower than those in OP rats, but similar to those in C rats. Baseline cardiac muscle data were similar in all rats, but myocardial responsiveness to a post-rest contraction stimulus was compromised in OP and OR rats compared with C rats. Obesity resistance promoted specific changes in the contraction phase without changes in the relaxation phase. This mild abnormality may be related to intracellular Ca2+ handling.

  10. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats.

    Science.gov (United States)

    Pintana, Hiranya; Sripetchwandee, Jirapas; Supakul, Luerat; Apaijai, Nattayaporn; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-12-01

    Oxidative stress in the obese-insulin resistant condition has been shown to affect cognitive as well as brain mitochondrial functions. Garlic extract has exerted a potent antioxidant effect. However, the effects of garlic extract on the brain of obese-insulin resistant rats have never been investigated. We hypothesized that garlic extract improves cognitive function and brain mitochondrial function in obese-insulin resistant rats induced by long-term high-fat diet (HFD) consumption. Male Wistar rats were fed either normal diet or HFD for 16 weeks (n = 24/group). At week 12, rats in each dietary group received either vehicle or garlic extract (250 and 500 mg·kg(-1)·day(-1)) for 28 days. Learning and memory behaviors, metabolic parameters, and brain mitochondrial function were determined at the end of treatment. HFD led to increased body weight, visceral fat, plasma insulin, cholesterol, and malondialdehyde (MDA) levels, indicating the development of insulin resistance. Furthermore, HFD rats had cognitive deficit and brain mitochondrial dysfunction. HFD rats treated with both doses of garlic extract had decreased body weight, visceral fat, plasma cholesterol, and MDA levels. Garlic extract also improved cognitive function and brain mitochondrial function, which were impaired in obese-insulin resistant rats caused by HFD consumption.

  11. Naturally selected hepatitis C virus polymorphisms confer broad neutralizing antibody resistance

    Science.gov (United States)

    Bailey, Justin R.; Wasilewski, Lisa N.; Snider, Anna E.; El-Diwany, Ramy; Osburn, William O.; Keck, Zhenyong; Foung, Steven K.H.; Ray, Stuart C.

    2014-01-01

    For hepatitis C virus (HCV) and other highly variable viruses, broadly neutralizing mAbs are an important guide for vaccine development. The development of resistance to anti-HCV mAbs is poorly understood, in part due to a lack of neutralization testing against diverse, representative panels of HCV variants. Here, we developed a neutralization panel expressing diverse, naturally occurring HCV envelopes (E1E2s) and used this panel to characterize neutralizing breadth and resistance mechanisms of 18 previously described broadly neutralizing anti-HCV human mAbs. The observed mAb resistance could not be attributed to polymorphisms in E1E2 at known mAb-binding residues. Additionally, hierarchical clustering analysis of neutralization resistance patterns revealed relationships between mAbs that were not predicted by prior epitope mapping, identifying 3 distinct neutralization clusters. Using this clustering analysis and envelope sequence data, we identified polymorphisms in E2 that confer resistance to multiple broadly neutralizing mAbs. These polymorphisms, which are not at mAb contact residues, also conferred resistance to neutralization by plasma from HCV-infected subjects. Together, our method of neutralization clustering with sequence analysis reveals that polymorphisms at noncontact residues may be a major immune evasion mechanism for HCV, facilitating viral persistence and presenting a challenge for HCV vaccine development. PMID:25500884

  12. Bacterial glyphosate resistance conferred by overexpression of an E. coli membrane efflux transporter.

    Science.gov (United States)

    Staub, Jeffrey M; Brand, Leslie; Tran, Minhtien; Kong, Yifei; Rogers, Stephen G

    2012-04-01

    Glyphosate herbicide-resistant crop plants, introduced commercially in 1994, now represent approximately 85% of the land area devoted to transgenic crops. Herbicide resistance in commercial glyphosate-resistant crops is due to expression of a variant form of a bacterial 5-enolpyruvylshikimate-3-phosphate synthase with a significantly decreased binding affinity for glyphosate at the target site of the enzyme. As a result of widespread and recurrent glyphosate use, often as the only herbicide used for weed management, increasing numbers of weedy species have evolved resistance to glyphosate. Weed resistance is most often due to changes in herbicide translocation patterns, presumed to be through the activity of an as yet unidentified membrane transporter in plants. To provide insight into glyphosate resistance mechanisms and identify a potential glyphosate transporter, we screened Escherichia coli genomic DNA for alternate sources of glyphosate resistance genes. Our search identified a single non-target gene that, when overexpressed in E. coli and Pseudomonas, confers high-level glyphosate resistance. The gene, yhhS, encodes a predicted membrane transporter of the major facilitator superfamily involved in drug efflux. We report here that an alternative mode of glyphosate resistance in E. coli is due to reduced accumulation of glyphosate in cells that overexpress this membrane transporter and discuss the implications for potential alternative resistance mechanisms in other organisms such as plants.

  13. Serum Ferritin, Insulin Resistance, and β-cell Dysfunction: A Prospective Study in Normoglycemic Japanese Men.

    Science.gov (United States)

    Nakamura, Koshi; Sakurai, Masaru; Morikawa, Yuko; Nagasawa, Shin-Ya; Miura, Katsuyuki; Ishizaki, Masao; Kido, Teruhiko; Naruse, Yuchi; Nakashima, Motoko; Nogawa, Kazuhiro; Suwazono, Yasushi; Nakagawa, Hideaki

    2017-01-01

    Objectives: The present cohort study investigated the relationship between serum ferritin levels and indices of insulin resistance and β-cell dysfunction in a normoglycemic population without iron overload disorders. Methods: The study participants included 575 normoglycemic Japanese men aged 35-57 years with serum ferritin levels of 400 μg/L or less. Insulin resistance and β-cell dysfunction were estimated at baseline and after 3 years by the homeostasis model assessments of insulin resistance and β-cell function (HOMA-IR and HOMA-β, respectively). To compare the subsequent changes in HOMA-IR and HOMA-β over a 3-year follow-up period among 3 groups based on tertiles of baseline serum ferritin levels (4.9-87.1, 87.2-140.5, and 140.6-396.8 μg/L), the geometric mean HOMA-IR and HOMA-β values at year 3 were calculated for each group using analysis of covariance, incorporating the respective log-transformed parameters at baseline in addition to age, body mass index and major confounding factors. Results: The multivariate-adjusted geometric mean HOMA-IR at year 3 was significantly higher in those in the highest and middle serum ferritin tertiles (1.24 and 1.22, respectively), compared with the lowest tertile (1.07) (p=0.009). When the total study participants were stratified by median body mass index (22.72 kg/m(2)), similar positive relationships were observed between serum ferritin levels and HOMA-IR for both obese and non-obese participants. However, the adjusted geometric mean HOMA-β at year 3 was similar among the 3 serum ferritin groups. Conclusions: Elevated serum ferritin levels predicted a subsequent increase in HOMA-IR in normoglycemic Japanese men without iron overload disorders. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Mechanisms of endothelial dysfunction in resistance arteries from patients with end-stage renal disease.

    Directory of Open Access Journals (Sweden)

    Leanid Luksha

    Full Text Available The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS, prerequisites for myoendothelial gap junctions (MEGJ, and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications.

  15. Roscovitine confers tumor suppressive effect on therapy-resistant breast tumor cells.

    Science.gov (United States)

    Nair, Binoj C; Vallabhaneni, Sreeram; Tekmal, Rajeshwar R; Vadlamudi, Ratna K

    2011-08-11

    Current clinical strategies for treating hormonal breast cancer involve the use of anti-estrogens that block estrogen receptor (ER)α functions and aromatase inhibitors that decrease local and systemic estrogen production. Both of these strategies improve outcomes for ERα-positive breast cancer patients, however, development of therapy resistance remains a major clinical problem. Divergent molecular pathways have been described for this resistant phenotype and interestingly, the majority of downstream events in these resistance pathways converge upon the modulation of cell cycle regulatory proteins including aberrant activation of cyclin dependent kinase 2 (CDK2). In this study, we examined whether the CDK inhibitor roscovitine confers a tumor suppressive effect on therapy-resistant breast epithelial cells. Using various in vitro and in vivo assays, we tested the effect of roscovitine on three hormonal therapy-resistant model cells: (a) MCF-7-TamR (acquired tamoxifen resistance model); (b) MCF-7-LTLTca (acquired letrozole resistance model); and (c) MCF-7-HER2 that exhibit tamoxifen resistance (ER-growth factor signaling cross talk model). Hormonal therapy-resistant cells exhibited aberrant activation of the CDK2 pathway. Roscovitine at a dose of 20 μM significantly inhibited the cell proliferation rate and foci formation potential of all three therapy-resistant cells. The drug treatment substantially increased the proportion of cells in G2/M cell cycle phase with decreased CDK2 activity and promoted low cyclin D1 levels. Interestingly, roscovitine also preferentially down regulated the ERα isoform and ER-coregulators including AIB1 and PELP1. Results from xenograft studies further showed that roscovitine can attenuate growth of therapy-resistant tumors in vivo. Roscovitine can reduce cell proliferation and survival of hormone therapy-resistant breast cancer cells. Our results support the emerging concept that inhibition of CDK2 activity has the potential to

  16. Lipokines and oxysterols: novel adipose-derived lipid hormones linking adipose dysfunction and insulin resistance.

    Science.gov (United States)

    Murdolo, Giuseppe; Bartolini, Desirée; Tortoioli, Cristina; Piroddi, Marta; Iuliano, Luigi; Galli, Francesco

    2013-12-01

    The expansion of adipose tissue (AT) is, by definition, a hallmark of obesity. However, not all increases in fat mass are associated with pathophysiological cues. Indeed, whereas a "healthy" fat mass accrual, mainly in the subcutaneous depots, preserves metabolic homeostasis, explaining the occurrence of the metabolically healthy obese phenotype, "unhealthy" AT expansion is importantly associated with insulin resistance/type 2 diabetes and the metabolic syndrome. The development of a dysfunctional adipose organ may find mechanistic explanation in a reduced ability to recruit new and functional (pre)adipocytes from undifferentiated precursor cells. Such a failure of the adipogenic process underlies the "AT expandability" paradigm. The inability of AT to expand further to store excess nutrients, rather than obesity per se, induces a diabetogenic milieu by promoting the overflow and the ectopic deposition of fatty acids in insulin-dependent organs (i.e., lipotoxicity), the secretion of various metabolically detrimental adipose-derived hormones (i.e., adipokines and lipokines), and the occurrence of local and systemic inflammation and oxidative stress. Hitherto, fatty acids (i.e., lipokines) and the oxidation by-products of cholesterol and polyunsaturated fatty acids, such as nonenzymatic oxysterols and reactive aldehyde species, respectively, emerge as key modulators of (pre)adipocyte signaling through Wnt/β-catenin and MAPK pathways and potential regulators of glucose homeostasis. These and other mechanistic insights linking adipose dysfunction, oxidative stress, and impairment of glucose homeostasis are discussed in this review article, which focuses on adipose peroxidation as a potential instigator of, and a putative therapeutic target for, obesity-associated metabolic dysfunctions.

  17. Obesity Resistance Promotes Mild Contractile Dysfunction Associated with Intracellular Ca2+ Handling

    Science.gov (United States)

    de Sá, Felipe Gonçalves dos Santos; Lima-Leopoldo, Ana Paula; Jacobsen, Bruno Barcellos; Ferron, Artur Junio Togneri; Estevam, Wagner Muller; Campos, Dijon Henrique Salomé; Castardeli, Edson; da Cunha, Márcia Regina Holanda; Cicogna, Antonio Carlos; Leopoldo, André Soares

    2015-01-01

    Background Diet-induced obesity is frequently used to demonstrate cardiac dysfunction. However, some rats, like humans, are susceptible to developing an obesity phenotype, whereas others are resistant to that. Objective To evaluate the association between obesity resistance and cardiac function, and the impact of obesity resistance on calcium handling. Methods Thirty-day-old male Wistar rats were distributed into two groups, each with 54 animals: control (C; standard diet) and obese (four palatable high-fat diets) for 15 weeks. After the experimental protocol, rats consuming the high-fat diets were classified according to the adiposity index and subdivided into obesity-prone (OP) and obesity-resistant (OR). Nutritional profile, comorbidities, and cardiac remodeling were evaluated. Cardiac function was assessed by papillary muscle evaluation at baseline and after inotropic maneuvers. Results The high-fat diets promoted increase in body fat and adiposity index in OP rats compared with C and OR rats. Glucose, lipid, and blood pressure profiles remained unchanged in OR rats. In addition, the total heart weight and the weight of the left and right ventricles in OR rats were lower than those in OP rats, but similar to those in C rats. Baseline cardiac muscle data were similar in all rats, but myocardial responsiveness to a post-rest contraction stimulus was compromised in OP and OR rats compared with C rats. Conclusion Obesity resistance promoted specific changes in the contraction phase without changes in the relaxation phase. This mild abnormality may be related to intracellular Ca2+ handling. PMID:26761369

  18. Obesity Resistance Promotes Mild Contractile Dysfunction Associated with Intracellular Ca2+ Handling

    Directory of Open Access Journals (Sweden)

    Felipe Gonçalves dos Santos de Sá

    2015-01-01

    Full Text Available AbstractBackground:Diet-induced obesity is frequently used to demonstrate cardiac dysfunction. However, some rats, like humans, are susceptible to developing an obesity phenotype, whereas others are resistant to that.Objective:To evaluate the association between obesity resistance and cardiac function, and the impact of obesity resistance on calcium handling.Methods:Thirty-day-old male Wistar rats were distributed into two groups, each with 54 animals: control (C; standard diet and obese (four palatable high-fat diets for 15 weeks. After the experimental protocol, rats consuming the high-fat diets were classified according to the adiposity index and subdivided into obesity-prone (OP and obesity-resistant (OR. Nutritional profile, comorbidities, and cardiac remodeling were evaluated. Cardiac function was assessed by papillary muscle evaluation at baseline and after inotropic maneuvers.Results:The high-fat diets promoted increase in body fat and adiposity index in OP rats compared with C and OR rats. Glucose, lipid, and blood pressure profiles remained unchanged in OR rats. In addition, the total heart weight and the weight of the left and right ventricles in OR rats were lower than those in OP rats, but similar to those in C rats. Baseline cardiac muscle data were similar in all rats, but myocardial responsiveness to a post-rest contraction stimulus was compromised in OP and OR rats compared with C rats.Conclusion:Obesity resistance promoted specific changes in the contraction phase without changes in the relaxation phase. This mild abnormality may be related to intracellular Ca2+ handling.

  19. Melatonin prevents mitochondrial dysfunction and insulin resistance in rat skeletal muscle.

    Science.gov (United States)

    Teodoro, Bruno G; Baraldi, Flavia G; Sampaio, Igor H; Bomfim, Lucas H M; Queiroz, André L; Passos, Madla A; Carneiro, Everardo M; Alberici, Luciane C; Gomis, Ramon; Amaral, Fernanda G; Cipolla-Neto, José; Araújo, Michel B; Lima, Tanes; Akira Uyemura, Sérgio; Silveira, Leonardo R; Vieira, Elaine

    2014-09-01

    Melatonin has a number of beneficial metabolic actions and reduced levels of melatonin may contribute to type 2 diabetes. The present study investigated the metabolic pathways involved in the effects of melatonin on mitochondrial function and insulin resistance in rat skeletal muscle. The effect of melatonin was tested both in vitro in isolated rats skeletal muscle cells and in vivo using pinealectomized rats (PNX). Insulin resistance was induced in vitro by treating primary rat skeletal muscle cells with palmitic acid for 24 hr. Insulin-stimulated glucose uptake was reduced by palmitic acid followed by decreased phosphorylation of AKT which was prevented my melatonin. Palmitic acid reduced mitochondrial respiration, genes involved in mitochondrial biogenesis and the levels of tricarboxylic acid cycle intermediates whereas melatonin counteracted all these parameters in insulin-resistant cells. Melatonin treatment increases CAMKII and p-CREB but had no effect on p-AMPK. Silencing of CREB protein by siRNA reduced mitochondrial respiration mimicking the effect of palmitic acid and prevented melatonin-induced increase in p-AKT in palmitic acid-treated cells. PNX rats exhibited mild glucose intolerance, decreased energy expenditure and decreased p-AKT, mitochondrial respiration, and p-CREB and PGC-1 alpha levels in skeletal muscle which were restored by melatonin treatment in PNX rats. In summary, we showed that melatonin could prevent mitochondrial dysfunction and insulin resistance via activation of CREB-PGC-1 alpha pathway. Thus, the present work shows that melatonin play an important role in skeletal muscle mitochondrial function which could explain some of the beneficial effects of melatonin in insulin resistance states.

  20. Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice.

    Science.gov (United States)

    Hirata, Ayumu; Maeda, Norikazu; Hiuge, Aki; Hibuse, Toshiyuki; Fujita, Koichi; Okada, Takuya; Kihara, Shinji; Funahashi, Tohru; Shimomura, Iichiro

    2009-10-01

    In obesity, chronic low-grade inflammation and overproduction of reactive oxygen species (ROS) in fat contribute to the development of metabolic syndrome. Suppression of inflammation and ROS production in fat may attenuate the metabolic syndrome. Activation of mineralocorticoid receptor (MR) promotes inflammation in heart, kidney, and vasculature via ROS generation. However, the significance of MR in fat remains elusive. Here we investigated whether MR blockade attenuates obesity-related insulin resistance and improves adipocyte dysfunction. Obese ob/ob and db/db mice were treated with eplerenone, a MR antagonist, for 3 weeks. 3T3-L1 adipocytes were treated with aldosterone or H2O2, with and without eplerenone or MR-siRNA. High levels of MR mRNA were detected in adipose tissue of obese ob/ob and db/db mice. Eplerenone treatment significantly reduced insulin resistance, suppressed macrophage infiltration and ROS production in adipose tissues, and corrected the mRNA levels of obesity-related genes in obese mice. In 3T3-L1 adipocytes, aldosterone and H2O2 increased intracellular ROS levels and MR blockade inhibited such increases. H2O2 and aldosterone resulted in dysregulation of mRNAs of various genes related to ROS and cytokines, whereas MR blockade corrected such changes. MR blockade attenuates obesity-related insulin resistance partly through reduction of fat ROS production, inflammatory process, and induction of cytokines.

  1. Vascular wall dysfunction in JCR:LA-cp rats: effects of age and insulin resistance.

    Science.gov (United States)

    O'brien, S F; Russell, J C; Davidge, S T

    1999-11-01

    We tested the hypothesis that aging and insulin resistance interact to increase vascular dysfunction by comparing the function of isolated mesenteric resistance arteries in obese, insulin-resistant JCR:LA-cp rats and lean, insulin-sensitive rats of the same strain at 3, 6, 9, and 12 mo of age. The peak constrictor responses to norepinephrine, phenylephrine, and high potassium were elevated in arteries from obese rats. Responses to these agents increased with age in both obese and lean rats. An eicosanoid constrictor contributed substantially to vasoconstriction in the arteries from both lean and obese animals. Inhibition of nitric oxide synthase increased the vasoconstrictor response to norepinephrine in both obese and lean rats. This effect increased with age in lean rats only. Vascular relaxation in response to acetylcholine and sodium nitroprusside was impaired in the obese rats and did not alter with age. The results suggest that obese JCR:LA-cp rats have enhanced maximal constriction, which originates in the arterial smooth muscle and increases with age. There is evidence that the ability of the arteries to compensate for the enhanced contractility is impaired in obese rats, particularly with advanced age.

  2. Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and β-Cell Dysfunction

    Science.gov (United States)

    Keane, Kevin Noel; Cruzat, Vinicius Fernandes; Carlessi, Rodrigo; de Bittencourt, Paulo Ivo Homem; Newsholme, Philip

    2015-01-01

    The prevalence of diabetes mellitus (DM) is increasing worldwide, a consequence of the alarming rise in obesity and metabolic syndrome (MetS). Oxidative stress and inflammation are key physiological and pathological events linking obesity, insulin resistance, and the progression of type 2 DM (T2DM). Unresolved inflammation alongside a “glucolipotoxic” environment of the pancreatic islets, in insulin resistant pathologies, enhances the infiltration of immune cells which through secretory activity cause dysfunction of insulin-secreting β-cells and ultimately cell death. Recent molecular investigations have revealed that mechanisms responsible for insulin resistance associated with T2DM are detected in conditions such as obesity and MetS, including impaired insulin receptor (IR) signalling in insulin responsive tissues, oxidative stress, and endoplasmic reticulum (ER) stress. The aim of the present review is to describe the evidence linking oxidative stress and inflammation with impairment of insulin secretion and action, which result in the progression of T2DM and other conditions associated with metabolic dysregulation. PMID:26257839

  3. Multidrug resistance protein 1 (ABCC1) confers resistance to arsenic compounds in human myeloid leukemic HL-60 cells.

    Science.gov (United States)

    Xu, Shi; Zhang, Yan Fang; Carew, Micheal W; Hao, Wen Hui; Loo, Jacky Fong Chuen; Naranmandura, Hua; Le, X Chris

    2013-06-01

    Arsenic trioxide (As(2)O(3)) is established as one of the most effective drugs for treatment of patients with acute promyelocytic leukemia, as well as other types of malignant tumors. However, HL-60 cells are resistant to As(2)O(3), and little is known about the underlying resistance mechanism for As(2)O(3) and its biomethylation products, namely, monomethylarsonous acid (MMA(III)) on the treatment of tumors. In the present study, we investigated the molecular mechanisms underlying iAs(III) and its intermediate metabolite MMA(III)-induced anticancer effects in the HL-60 cells. Here, we show that the HL-60 cells exhibit resistance to inorganic iAs(III) (IC(50) = 10 μM), but are relatively sensitive to its intermediate MMA(III) (IC(50) = 3.5 μM). Moreover, we found that the multidrug resistance protein 1 (MRP1), but not MRP2, is expressed in HL-60 cells, which reduced the intracellular arsenic accumulation, and conferred resistance to inorganic iAs(III) and MMA(III). Pretreatment of HL-60 with MK571, an inhibitor of MRP1, significantly increased iAs(III) and MMA(III)-induced cytotoxicity and arsenic accumulations, suggesting that the expression of MRP1/4 may lead to HL-60 cells resistance to trivalent arsenic compounds.

  4. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome

    Science.gov (United States)

    Paniagua, Juan Antonio

    2016-01-01

    Obesity is an excessive accumulation of body fat that may be harmful to health. Today, obesity is a major public health problem, affecting in greater or lesser proportion all demographic groups. Obesity is estimated by body mass index (BMI) in a clinical setting, but BMI reports neither body composition nor the location of excess body fat. Deaths from cardiovascular diseases, cancer and diabetes accounted for approximately 65% of all deaths, and adiposity and mainly abdominal adiposity are associated with all these disorders. Adipose tissue could expand to inflexibility levels. Then, adiposity is associated with a state of low-grade chronic inflammation, with increased tumor necrosis factor-α and interleukin-6 release, which interfere with adipose cell differentiation, and the action pattern of adiponectin and leptin until the adipose tissue begins to be dysfunctional. In this state the subject presents insulin resistance and hyperinsulinemia, probably the first step of a dysfunctional metabolic system. Subsequent to central obesity, insulin resistance, hyperglycemia, hypertriglyceridemia, hypoalphalipoproteinemia, hypertension and fatty liver are grouped in the so-called metabolic syndrome (MetS). In subjects with MetS an energy balance is critical to maintain a healthy body weight, mainly limiting the intake of high energy density foods (fat). However, high-carbohydrate rich (CHO) diets increase postprandial peaks of insulin and glucose. Triglyceride-rich lipoproteins are also increased, which interferes with reverse cholesterol transport lowering high-density lipoprotein cholesterol. In addition, CHO-rich diets could move fat from peripheral to central deposits and reduce adiponectin activity in peripheral adipose tissue. All these are improved with monounsaturated fatty acid-rich diets. Lastly, increased portions of ω-3 and ω-6 fatty acids also decrease triglyceride levels, and complement the healthy diet that is recommended in patients with MetS. PMID

  5. Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Sara N Mitchell

    Full Text Available The development of resistance to insecticides has become a classic exemplar of evolution occurring within human time scales. In this study we demonstrate how resistance to DDT in the major African malaria vector Anopheles gambiae is a result of both target-site resistance mechanisms that have introgressed between incipient species (the M- and S-molecular forms and allelic variants in a DDT-detoxifying enzyme. Sequencing of the detoxification enzyme, Gste2, from DDT resistant and susceptible strains of An. gambiae, revealed a non-synonymous polymorphism (I114T, proximal to the DDT binding domain, which segregated with strain phenotype. Recombinant protein expression and DDT metabolism analysis revealed that the proteins from the susceptible strain lost activity at higher DDT concentrations, characteristic of substrate inhibition. The effect of I114T on GSTE2 protein structure was explored through X-ray crystallography. The amino acid exchange in the DDT-resistant strain introduced a hydroxyl group nearby the hydrophobic DDT-binding region. The exchange does not result in structural alterations but is predicted to facilitate local dynamics and enzyme activity. Expression of both wild-type and 114T alleles the allele in Drosophila conferred an increase in DDT tolerance. The 114T mutation was significantly associated with DDT resistance in wild caught M-form populations and acts in concert with target-site mutations in the voltage gated sodium channel (Vgsc-1575Y and Vgsc-1014F to confer extreme levels of DDT resistance in wild caught An. gambiae.

  6. Herbicide-resistance conferred by expression of a catalytic antibody in Arabidopsis thaliana.

    Science.gov (United States)

    Weiss, Yael; Shulman, Avidor; Ben Shir, Irina; Keinan, Ehud; Wolf, Shmuel

    2006-06-01

    Engineering herbicide resistance in crops facilitates control of weed species, particularly those that are closely related to the crop, and may be useful in selecting lines that have undergone multiple transformation events. Here we show that herbicide-resistant plants can be engineered by designing an herbicide and expressing a catalytic antibody that destroys the herbicide in planta. First, we developed a carbamate herbicide that can be catalytically destroyed by the aldolase antibody 38C2. This compound has herbicidal activity on all three plant species tested. Second, the light chain and half of the heavy chain (Fab) of the catalytic antibody were targeted to the endoplasmic reticulum in two classes of Arabidopsis thaliana transformants. Third, the two transgenic plants were crossed to produce an herbicide-resistant F1 hybrid. The in vitro catalytic activity of the protein from F1 hybrids corroborates that catalytic antibodies can be constitutively expressed in transgenic plants, and that they can confer a unique trait.

  7. Generation of Mouse STO Feeder Cell Lines That Confer Resistance to Several Types of Selective Drugs.

    Science.gov (United States)

    Saitoh, Issei; Sato, Masahiro; Iwase, Yoko; Inada, Emi; Nomura, Toshiki; Akasaka, Eri; Yamasaki, Youichi; Noguchi, Hirofumi

    2012-01-01

    Feeder cells are generally required for establishment and maintenance of embryonic stem (ES)/induced pluripotent stem (iPS) cells. Increased demands for generation of those cells carrying various types of vectors (i.e., KO vectors and transgenes) also require feeder cells that confer resistance to any types of preexisting selective drugs. Unfortunately, the use of the feeders that are resistant to various drugs appears to be limited to a few laboratories. Here we generated a set of gene-engineered STO feeder cells that confer resistance to several commercially available drugs. The STO cells, which have long been used as a feeder for mouse ES and embryonal carcinoma (EC) cells, were transfected with pcBIH [carrying bleomycin resistance gene (ble) and hygromycin B phosphotransferase gene (Hyg)], pcBIP [carrying ble and puromycin resistance gene (puro)], or pcBSN [carrying ble and neomycin resistance gene (neo)]. The resulting stably transfectants (termed SHB for pcBIH, SPB for pcBIP, and SNB for pcBSN) exhibited bleomycin/hygromycin, bleomycin/puromycin, or bleomycin/neomycin, as expected. The morphology of these cells passaged over 18 generations was indistinguishable from that of parental STO cells. Of isolated clones, the SHB3, SPB3, and SNB2 clones successfully supported the growth of mouse ES cells in an undifferentiated state, when coculture was performed. PCR analysis revealed the presence of the selective markers in these clones, as expected. These SHB3, SPB3, and SNB2 cells will thus be useful for the acquisition and maintenance of genetically manipulated ES/iPS cells.

  8. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    NARCIS (Netherlands)

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC

  9. Activation tagging of ATHB13 in Arabidopsis thaliana confers broad-spectrum disease resistance.

    Science.gov (United States)

    Gao, Dongli; Appiano, Michela; Huibers, Robin P; Chen, Xi; Loonen, Annelies E H M; Visser, Richard G F; Wolters, Anne-Marie A; Bai, Yuling

    2014-12-01

    Powdery mildew species Oidium neolycopersici (On) can cause serious yield losses in tomato production worldwide. Besides on tomato, On is able to grow and reproduce on Arabidopsis. In this study we screened a collection of activation-tagged Arabidopsis mutants and identified one mutant, 3221, which displayed resistance to On, and in addition showed a reduced stature and serrated leaves. Additional disease tests demonstrated that the 3221 mutant exhibited resistance to downy mildew (Hyaloperonospora arabidopsidis) and green peach aphid (Myzus persicae), but retained susceptibility to bacterial pathogen Pseudomonas syringae pv tomato DC3000. The resistance trait and morphological alteration were mutually linked in 3221. Identification of the activation tag insertion site and microarray analysis revealed that ATHB13, a homeodomain-leucine zipper (HD-Zip) transcription factor, was constitutively overexpressed in 3221. Silencing of ATHB13 in 3221 resulted in the loss of both the morphological alteration and resistance, whereas overexpression of the cloned ATHB13 in Col-0 and Col-eds1-2 backgrounds resulted in morphological alteration and resistance. Microarray analysis further revealed that overexpression of ATHB13 influenced the expression of a large number of genes. Previously, it was reported that ATHB13-overexpressing lines conferred tolerance to abiotic stress. Together with our results, it appears that ATHB13 is involved in the crosstalk between abiotic and biotic stress resistance pathways.

  10. The functional vanGCd cluster of Clostridium difficile does not confer vancomycin resistance.

    Science.gov (United States)

    Ammam, Fariza; Meziane-Cherif, Djalal; Mengin-Lecreulx, Dominique; Blanot, Didier; Patin, Delphine; Boneca, Ivo G; Courvalin, Patrice; Lambert, Thierry; Candela, Thomas

    2013-08-01

    vanGCd, a cryptic gene cluster highly homologous to the vanG gene cluster of Enterococcus faecalis is largely spread in Clostridium difficile. Since emergence of vancomycin resistance would have dramatic clinical consequences, we have evaluated the capacity of the vanGCd cluster to confer resistance. We showed that expression of vanGCd is inducible by vancomycin and that VanGCd , VanXYCd and VanTCd are functional, exhibiting D-Ala : D-Ser ligase, D,D-dipeptidase and D-Ser racemase activities respectively. In other bacteria, these enzymes are sufficient to promote vancomycin resistance. Trans-complementation of C. difficile with the vanC resistance operon of Enterococcus gallinarum faintly impacted the MIC of vancomycin, but did not promote vancomycin resistance in C. difficile. Sublethal concentration of vancomycin led to production of UDP-MurNAc-pentapeptide[D-Ser], suggesting that the vanGCd gene cluster is able to modify the peptidoglycan precursors. Our results indicated amidation of UDP-MurNAc-tetrapeptide, UDP-MurNAc-pentapeptide[D-Ala] and UDP-MurNAc-pentapeptide[D-Ser]. This modification is passed on the mature peptidoglycan where a muropeptide Tetra-Tetra is amidated on the meso-diaminopimelic acid. Taken together, our results suggest that the vanGCd gene cluster is functional and is prevented from promoting vancomycin resistance in C. difficile. © 2013 John Wiley & Sons Ltd.

  11. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew.

    Science.gov (United States)

    Wang, Yanpeng; Cheng, Xi; Shan, Qiwei; Zhang, Yi; Liu, Jinxing; Gao, Caixia; Qiu, Jin-Long

    2014-09-01

    Sequence-specific nucleases have been applied to engineer targeted modifications in polyploid genomes, but simultaneous modification of multiple homoeoalleles has not been reported. Here we use transcription activator-like effector nuclease (TALEN) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 (refs. 4,5) technologies in hexaploid bread wheat to introduce targeted mutations in the three homoeoalleles that encode MILDEW-RESISTANCE LOCUS (MLO) proteins. Genetic redundancy has prevented evaluation of whether mutation of all three MLO alleles in bread wheat might confer resistance to powdery mildew, a trait not found in natural populations. We show that TALEN-induced mutation of all three TaMLO homoeologs in the same plant confers heritable broad-spectrum resistance to powdery mildew. We further use CRISPR-Cas9 technology to generate transgenic wheat plants that carry mutations in the TaMLO-A1 allele. We also demonstrate the feasibility of engineering targeted DNA insertion in bread wheat through nonhomologous end joining of the double-strand breaks caused by TALENs. Our findings provide a methodological framework to improve polyploid crops.

  12. Identification of mutations conferring streptomycin resistance in multidrug-resistant tuberculosis of China.

    Science.gov (United States)

    Zhao, Li-Li; Liu, Hai-Can; Sun, Qing; Xiao, Tong-Yang; Zhao, Xiu-Qin; Li, Gui-Lian; Zeng, Chun-Yan; Wan, Kang-Lin

    2015-10-01

    We investigated the spectrum and frequency of mutations in rpsL, rrs, and gidB among 140 multidrug-resistant tuberculosis (MDR-TB) clinical isolates from China. The association between mutations and different genotypes was also analyzed. Our data revealed that 65.7% of MDR-TB were resistant to streptomycin (STR), and 90.2% of STR-resistant isolates were Beijing strains. STR resistance was correlated with Beijing family (P=0.00). Compared with phenotypic data, detection of mutations for the combination of these 3 genes exhibited 94.6% sensitivity, 91.7% specificity, and 93.6% accuracy. The most common mutations in STR-resistant isolates were rpsL128, 262, and rrs514, of which rpsL128 showed association with Beijing lineage (P=0.00). A combination of these 3 mutations can serve as the reliable predictors for STR resistance, showing the sensitivity, specificity, and accuracy of 85.9%, 97.9%, and 90.0%, respectively. Furthermore, gidBA276C, not A615G, was Beijing lineage specific. These findings are useful to develop rapid molecular diagnostic methods for STR resistance in China.

  13. Hemin, a heme oxygenase-1 inducer, improves aortic endothelial dysfunction in insulin resistant rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Under an insulin resistance(IR)state,overproduction of reactive oxygen species(ROS)may be playing a maior role in the pathogenesis of endothelial dysfunction,hypertension and atherosclerosis.Recently,increasing attention has been drawn to the beneficial effects of heme oxygenase-1(HO-1)in the cardiovascular system.This study aimed to investigate the effects of HO-1 on vascular function of thoracic aorta in IR rats and demonstrate the probable mechanisms of HO-1 against endothelial dysfunction in IR states.Methods Sprague-Dawley (SD) rats fed with high-fat diet for 6 weeks and the IR models were validated with hyperinsulinemic-euglycemic clamp test.Then the IR rat models (n=44) were further randomized into 3 subgroups,namely,the IR control group (n=26, in which 12 were sacrificed immediately and evaluated for all study measures),a hemin treated IR group (n=10) and a zinc protoporphyrin-Ⅸ (ZnPP-Ⅸ)treated IR group (n=8) that were fed with a high-fat diet.Rats with standardized chow diet were used as the normal control group (n=12). The rats in IR control group,hemin treated IR group and ZnPP-Ⅸ treated IR group were subsequently treated every other day with an intraperitoneal injection of normal saline,hemin (inducer of HO-1,30 μmol/kg) or ZnPP-Ⅸ (inhibitor of HO-1,10 μmol/kg) for 4 weeks.Rats in the normal control group remained on a standardized chow diet and were treated with intraperitoneal injections of normal saline every other day for 4 weeks.Systolic arterial blood pressure (SABP) was measured by tall-cuffed microphotoelectric plethysmography.The blood carbon monoxide (CO) was measured by blood gas analysis. The levels of nitric oxide (NO),inducible nitric oxide synthase (INOS),endothelial nitric oxide synthase (eNOS),blood glucose (BG),insulin,total cholesterol (TC) and triglyceride (TG) in serum,and the levels of total antioxidant capacity (rAOC),maIondialdehyde (MDA) and superoxide dismutase (SOD) in the aorta were measured

  14. Knockdown of LYRM1 rescues insulin resistance and mitochondrial dysfunction induced by FCCP in 3T3-L1 adipocytes.

    Science.gov (United States)

    Zhang, Min; Qin, Zhen-Ying; Dai, Yong-mei; Wang, Yu-Mei; Zhu, Guan-zhong; Zhao, Ya-Ping; Ji, Chen-Bo; Zhu, Jin-Gai; Shi, Chun-Mei; Qiu, Jie; Cao, Xin-Guo; Guo, Xi-Rong

    2014-09-01

    LYR motif-containing 1 (LYRM1) was recently discovered to be involved in adipose tissue homeostasis and obesity-associated insulin resistance. We previously demonstrated that LYRM1 overexpression might contribute to insulin resistance and mitochondrial dysfunction. Additionally, knockdown of LYRM1 enhanced insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. We investigated whether knockdown of LYRM1 in 3T3-L1 adipocytes could rescue insulin resistance and mitochondrial dysfunction induced by the cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP), a mitochondrion uncoupler, to further ascertain the mechanism by which LYRM1 is involved in obesity-associated insulin resistance. Incubation of 3T3-L1 adipocytes with 1 µM FCCP for 12 h decreased insulin-stimulated glucose uptake, reduced intracellular ATP synthesis, increased intracellular reactive oxygen species (ROS) production, impaired insulin-stimulated Glucose transporter type 4 (GLUT4) translocation, and diminished insulin-stimulated tyrosine phosphorylation of Insulin receptor substrate-1 (IRS-1) and serine phosphorylation of Protein Kinase B (Akt). Knockdown of LYRM1 restored insulin-stimulated glucose uptake, rescued intracellular ATP synthesis, reduced intracellular ROS production, restored insulin-stimulated GLUT4 translocation, and rescued insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt in FCCP-treated 3T3-L1 adipocytes. This study indicates that FCCP-induced mitochondrial dysfunction and insulin resistance are ameliorated by knockdown of LYRM1.

  15. The Arabidopsis NPR1 gene confers broad-spectrum disease resistance in strawberry.

    Science.gov (United States)

    Silva, Katchen Julliany P; Brunings, Asha; Peres, Natalia A; Mou, Zhonglin; Folta, Kevin M

    2015-08-01

    Although strawberry is an economically important fruit crop worldwide, production of strawberry is limited by its susceptibility to a wide range of pathogens and the lack of major commercial cultivars with high levels of resistance to multiple pathogens. The objective of this study is to ectopically express the Arabidopsis thaliana NPR1 gene (AtNPR1) in the diploid strawberry Fragaria vesca L. and to test transgenic plants for disease resistance. AtNPR1 is a key positive regulator of the long-lasting broad-spectrum resistance known as systemic acquired resistance (SAR) and has been shown to confer resistance to a number of pathogens when overexpressed in Arabidopsis or ectopically expressed in several crop species. We show that ectopic expression of AtNPR1 in strawberry increases resistance to anthracnose, powdery mildew, and angular leaf spot, which are caused by different fungal or bacterial pathogens. The increased resistance is related to the relative expression levels of AtNPR1 in the transgenic plants. In contrast to Arabidopsis plants overexpressing AtNPR1, which grow normally and do not constitutively express defense genes, the strawberry transgenic plants are shorter than non-transformed controls, and most of them fail to produce runners and fruits. Consistently, most of the transgenic lines constitutively express the defense gene FvPR5, suggesting that the SAR activation mechanisms in strawberry and Arabidopsis are different. Nevertheless, our results indicate that overexpression of AtNPR1 holds the potential for generation of broad-spectrum disease resistance in strawberry.

  16. Two Loci from Lycopersicon hirsutum LA407 Confer Resistance to Strains of Clavibacter michiganensis subsp. michiganensis.

    Science.gov (United States)

    Kabelka, E; Franchino, B; Francis, D M

    2002-05-01

    ABSTRACT We used molecular markers to identify quantitative trait loci (QTL) that contribute to resistance to bacterial canker of tomato caused by Clavibacter michiganensis subsp. michiganensis. Resistance was first identified as a marker-trait association in an inbred backcross (IBC) population derived from crossing Lycopersicon hirsutum accession (LA407) with L. esculentum. Single-marker QTL analysis suggested that at least two loci originating from L. hirsutum LA407, Rcm 2.0 on chromosome 2 and Rcm 5.1 on chromosome 5, contribute to resistance in replicated trials. Two segregating F(2) populations were developed by crossing resistant inbred backcross lines (IBLs) to elite L. esculentum lines and used to confirm QTL associations detected in the IBC population. In these populations, realized heritability estimates were higher for selection based on maximal disease than for selection based on disease progression. Realized heritability in the population carrying Rcm 2.0 was 0.63 and 0.14, respectively, for each selection criteria. Realized heritability estimates were 0.85 for selection based on maximal disease and 0.37 for selection based on disease progression in a population carrying Rcm 5.1. The disease response of F(3) families selected for resistance suggested that both Rcm 2.0 and Rcm 5.1 confer resistance to bacterial strains in the repetitive sequence-based polymerase chain reaction DNA fingerprint classes A and C. Markers linked to Rcm 2.0 explained up to 56% of the total phenotypic variation for resistance in one population, and markers linked to Rcm 5.1 explained up to 73% of the total phenotypic variation for resistance in a separate population.

  17. Celastrol attenuates mitochondrial dysfunction and inflammation in palmitate-mediated insulin resistance in C3A hepatocytes.

    Science.gov (United States)

    Abu Bakar, Mohamad Hafizi; Sarmidi, Mohamad Roji; Tan, Joo Shun; Mohamad Rosdi, Mohamad Norisham

    2017-03-15

    Accumulating evidence indicates that mitochondrial dysfunction-induced inflammation is among the convergence points for the greatest hallmarks of hepatic insulin resistance. Celastrol, an anti-inflammatory compound from the root of Tripterygium Wilfordii has been reported to mitigate insulin resistance and inflammation in animal disease models. Nevertheless, the specific mechanistic actions of celastrol in modulating such improvements at the cellular level remain obscure. The present study sought to explore the mechanistic roles of celastrol upon insulin resistance induced by palmitate in C3A human hepatocytes. The hepatocytes exposed to palmitate (0.75mM) for 48h exhibited reduced both basal and insulin-stimulated glucose uptake, mitochondrial dysfunction, leading to increased mitochondrial oxidative stress with diminished fatty acid oxidation. Elevated expressions of nuclear factor-kappa B p65 (NF-κB p65), c-Jun NH(2)-terminal kinase (JNK) signaling pathways and the amplified release of pro-inflammatory cytokines including IL-8, IL-6, TNF-α and CRP were observed following palmitate treatment. Consistently, palmitate reduced and augmented phosphorylated Tyrosine-612 and Serine-307 of insulin receptor substrate-1 (IRS-1) proteins, respectively in hepatocytes. However, celastrol at the optimum concentration of 30nM was able to reverse these deleterious occasions and protected the cells from mitochondrial dysfunction and insulin resistance. Importantly, we presented evidence for the first time that celastrol efficiently prevented palmitate-induced insulin resistance in hepatocytes at least, via improved mitochondrial functions and insulin signaling pathways. In summary, the present investigation underlines a conceivable mechanism to elucidate the cytoprotective potential of celastrol in attenuating mitochondrial dysfunction and inflammation against the development of hepatic insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce.

    Science.gov (United States)

    Simko, Ivan; Atallah, Amy J; Ochoa, Oswaldo E; Antonise, Rudie; Galeano, Carlos H; Truco, Maria Jose; Michelmore, Richard W

    2013-10-07

    Many cultivars of lettuce (Lactuca sativa L.), the most popular leafy vegetable, are susceptible to downy mildew disease caused by Bremia lactucae. Cultivars Iceberg and Grand Rapids that were released in the 18th and 19th centuries, respectively, have high levels of quantitative resistance to downy mildew. We developed a population of recombinant inbred lines (RILs) originating from a cross between these two legacy cultivars, constructed a linkage map, and identified two QTLs for resistance on linkage groups 2 (qDM2.1) and 5 (qDM5.1) that determined resistance under field conditions in California and the Netherlands. The same QTLs determined delayed sporulation at the seedling stage in laboratory experiments. Alleles conferring elevated resistance at both QTLs originate from cultivar Iceberg. An additional QTL on linkage group 9 (qDM9.1) was detected through simultaneous analysis of all experiments with mixed-model approach. Alleles for elevated resistance at this locus originate from cultivar Grand Rapids.

  19. An antibody that confers plant disease resistance targets a membrane-bound glyoxal oxidase in Fusarium.

    Science.gov (United States)

    Song, Xiu-Shi; Xing, Shu; Li, He-Ping; Zhang, Jing-Bo; Qu, Bo; Jiang, Jin-He; Fan, Chao; Yang, Peng; Liu, Jin-Long; Hu, Zu-Quan; Xue, Sheng; Liao, Yu-Cai

    2016-05-01

    Plant germplasm resources with natural resistance against globally important toxigenic Fusarium are inadequate. CWP2, a Fusarium genus-specific antibody, confers durable resistance to different Fusarium pathogens that infect cereals and other crops, producing mycotoxins. However, the nature of the CWP2 target is not known. Thus, investigation of the gene coding for the CWP2 antibody target will likely provide critical insights into the mechanism underlying the resistance mediated by this disease-resistance antibody. Immunoblots and mass spectrometry analysis of two-dimensional electrophoresis gels containing cell wall proteins from Fusarium graminearum (Fg) revealed that a glyoxal oxidase (GLX) is the CWP2 antigen. Cellular localization studies showed that GLX is localized to the plasma membrane. This GLX efficiently catalyzes hydrogen peroxide production; this enzymatic activity was specifically inhibited by the CWP2 antibody. GLX-deletion strains of Fg, F. verticillioides (Fv) and F. oxysporum had significantly reduced virulence on plants. The GLX-deletion Fg and Fv strains had markedly reduced mycotoxin accumulation, and the expression of key genes in mycotoxin metabolism was downregulated. This study reveals a single gene-encoded and highly conserved cellular surface antigen that is specifically recognized by the disease-resistance antibody CWP2 and regulates both virulence and mycotoxin biosynthesis in Fusarium species. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis.

    Science.gov (United States)

    Nakai, Yusuke; Fujiwara, Sumire; Kubo, Yasuyuki; Sato, Masa H

    2013-03-01

    VOZ (vascular plant one zinc-finger protein) is a plant specific one-zinc finger type transcriptional activator, which is highly conserved through land plant evolution. We have previously shown that loss-of-function mutations in VOZ1 and VOZ2 showed increased cold and drought stress tolerances whereas decreased biotic stress resistance in Arabidopsis. Here, we demonstrate that transgenic plants overexpressing VOZ2 impairs freezing and drought stress tolerances but increases resistance to a fungal pathogen, Colletoricum higginsianum. Consistent with changes in the tolerance to biotic and abiotic stresses, the expression of marker genes for these stresses is significantly altered compared with those of the wild-type plant. These results indicate that a overexpression of VOZ2 confers biotic stress tolerance but impairs abiotic stress tolerances in Arabidopsis.

  1. Hepatitis B virus mutations potentially conferring adefovir/ tenofovir resistance in treatment-naive patients

    Institute of Scientific and Technical Information of China (English)

    Rebecca Pastor; Fran(c)ois Habersetzer; Samira Fafi-Kremer; Michel Doffo(e)l; Thomas F Baumert; Jean-Pierre Gut; Fran(c)oise Stoll-Keller; Evelyne Schvoerer

    2009-01-01

    Anti-hepatitis B virus (HBV) therapy leads to the emergence of mutant viral strains during the treatment of chronic hepatitis B with nucleos(t)ides analogues. The existence of HBV variants with primary antiviral resistance may be important for treatment choice. We studied two patients with chronic HBV infection by sequencing the HBV polymerase gene. They had adefovir- and tenofovir-related mutations in the viral polymerase, although they had never been treated. These mutations were rtV214A/rtN238T in one patient and rtA194T in the other. Thus, mutations in untreated patients deserve cautious surveillance. These data indicate that mutations that can theoretically confer adefovir or tenofovir resistance may emerge in treatmentnaive patients.

  2. Multiple origins of resistance-conferring mutations in Plasmodium vivax dihydrofolate reductase

    Directory of Open Access Journals (Sweden)

    O'Neil Michael T

    2008-04-01

    Full Text Available Abstract Background In order to maximize the useful therapeutic life of antimalarial drugs, it is crucial to understand the mechanisms by which parasites resistant to antimalarial drugs are selected and spread in natural populations. Recent work has demonstrated that pyrimethamine-resistance conferring mutations in Plasmodium falciparum dihydrofolate reductase (dhfr have arisen rarely de novo, but spread widely in Asia and Africa. The origin and spread of mutations in Plasmodium vivax dhfr were assessed by constructing haplotypes based on sequencing dhfr and its flanking regions. Methods The P. vivax dhfr coding region, 792 bp upstream and 683 bp downstream were amplified and sequenced from 137 contemporary patient isolates from Colombia, India, Indonesia, Papua New Guinea, Sri Lanka, Thailand, and Vanuatu. A repeat motif located 2.6 kb upstream of dhfr was also sequenced from 75 of 137 patient isolates, and mutational relationships among the haplotypes were visualized using the programme Network. Results Synonymous and non-synonymous single nucleotide polymorphisms (SNPs within the dhfr coding region were identified, as was the well-documented in-frame insertion/deletion (indel. SNPs were also identified upstream and downstream of dhfr, with an indel and a highly polymorphic repeat region identified upstream of dhfr. The regions flanking dhfr were highly variable. The double mutant (58R/117N dhfr allele has evolved from several origins, because the 58R is encoded by at least 3 different codons. The triple (58R/61M/117T and quadruple (57L/61M/117T/173F, 57I/58R/61M/117T and 57L/58R/61M/117T mutant alleles had at least three independent origins in Thailand, Indonesia, and Papua New Guinea/Vanuatu. Conclusion It was found that the P. vivax dhfr coding region and its flanking intergenic regions are highly polymorphic and that mutations in P. vivax dhfr that confer antifolate resistance have arisen several times in the Asian region. This contrasts

  3. Crizotinib-resistant NPM-ALK mutants confer differential sensitivity to unrelated Alk inhibitors.

    Science.gov (United States)

    Ceccon, Monica; Mologni, Luca; Bisson, William; Scapozza, Leonardo; Gambacorti-Passerini, Carlo

    2013-02-01

    The dual ALK/MET inhibitor crizotinib was recently approved for the treatment of metastatic and late-stage ALK+ NSCLC, and is currently in clinical trial for other ALK-related diseases. As predicted after other tyrosine kinase inhibitors' clinical experience, the first mutations that confer resistance to crizotinib have been described in patients with non-small cell lung cancer (NSCLC) and in one patient inflammatory myofibroblastic tumor (IMT). Here, we focused our attention on the anaplastic large cell lymphoma (ALCL), where the oncogenic fusion protein NPM-ALK, responsible for 70% to 80% of cases, represents an ideal crizotinib target. We selected and characterized 2 human NPM-ALK+ ALCL cell lines, KARPAS-299 and SUP-M2, able to survive and proliferate at different crizotinib concentrations. Sequencing of ALK kinase domain revealed that a single mutation became predominant at high crizotinib doses in each cell line, namely L1196Q and I1171N in Karpas-299 and SUP-M2 cells, respectively. These mutations also conferred resistance to crizotinib in Ba/F3 cells expressing human NPM-ALK. The resistant cell populations, as well as mutated Ba/F3 cells, were characterized for sensitivity to two additional ALK inhibitors: the dual ALK/EGFR inhibitor AP26113 and NVP-TAE684. While L1196Q-positive cell lines were sensitive to both inhibitors, cells carrying I1171N substitution showed cross-resistance to all ALK inhibitors tested. This study provides potentially relevant information for the management of patients with ALCL that may relapse after crizotinib treatment.

  4. Diversity of Molecular Mechanisms Conferring Carbapenem Resistance to Pseudomonas aeruginosa Isolates from Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mohamed H. Al-Agamy

    2016-01-01

    Full Text Available Background. This study described various molecular and epidemiological characters determining antibiotic resistance patterns in Pseudomonas aeruginosa isolates. Methods. A total of 34 carbapenem-resistant P. aeruginosa clinical isolates were isolated from samples collected at a tertiary hospital in Riyadh, Saudi Arabia, from January to December 2011. Susceptibility testing, serotyping, molecular characterization of carbapenem resistance, and pulsed-field gel electrophoresis (PFGE were performed. Results. All isolates were resistant to ceftazidime, and more than half were highly resistant (minimum inhibitory concentration (MIC > 256 mg/L. Fifteen isolates had MIC values ≥64 mg/L for any of the carbapenems examined. Vietnamese extended-spectrum β-lactamase (VEB-1 (n=16/34 and oxacillinase (OXA-10 (n=14/34 were the most prevalent extended-spectrum β-lactamase and penicillinase, respectively. Verona imipenemase (VIM-1, VIM-2, VIM-4, VIM-11, and VIM-28 and imipenemase (IMP-7 variants were found in metallo-β-lactamase producers. A decrease in outer membrane porin gene (oprD expression was seen in nine isolates, and an increase in efflux pump gene (MexAB expression was detected in five isolates. Six serotypes (O:1, O:4, O:7, O:10, O:11, and O:15 were found among the 34 isolates. The predominant serotype was O:11 (16 isolates, followed by O:15 (nine isolates. PFGE analysis of the 34 carbapenem-resistant P. aeruginosa isolates revealed 14 different pulsotypes. Conclusions. These results revealed diverse mechanisms conferring carbapenem resistance to P. aeruginosa isolates from Saudi Arabia.

  5. Identification of Bone-Derived Factors Conferring De Novo Therapeutic Resistance in Metastatic Prostate Cancer.

    Science.gov (United States)

    Lee, Yu-Chen; Lin, Song-Chang; Yu, Guoyu; Cheng, Chien-Jui; Liu, Bin; Liu, Hsuan-Chen; Hawke, David H; Parikh, Nila U; Varkaris, Andreas; Corn, Paul; Logothetis, Christopher; Satcher, Robert L; Yu-Lee, Li-Yuan; Gallick, Gary E; Lin, Sue-Hwa

    2015-11-15

    Resistance to currently available targeted therapies significantly hampers the survival of patients with prostate cancer with bone metastasis. Here we demonstrate an important resistance mechanism initiated from tumor-induced bone. Studies using an osteogenic patient-derived xenograft, MDA-PCa-118b, revealed that tumor cells resistant to cabozantinib, a Met and VEGFR-2 inhibitor, reside in a "resistance niche" adjacent to prostate cancer-induced bone. We performed secretome analysis of the conditioned medium from tumor-induced bone to identify proteins (termed "osteocrines") found within this resistance niche. In accordance with previous reports demonstrating that activation of integrin signaling pathways confers therapeutic resistance, 27 of the 90 osteocrines identified were integrin ligands. We found that following cabozantinib treatment, only tumor cells positioned adjacent to the newly formed woven bone remained viable and expressed high levels of pFAK-Y397 and pTalin-S425, mediators of integrin signaling. Accordingly, treatment of C4-2B4 cells with integrin ligands resulted in increased pFAK-Y397 expression and cell survival, whereas targeting integrins with FAK inhibitors PF-562271 or defactinib inhibited FAK phosphorylation and reduced the survival of PC3-mm2 cells. Moreover, treatment of MDA-PCa-118b tumors with PF-562271 led to decreased tumor growth, irrespective of initial tumor size. Finally, we show that upon treatment cessation, the combination of PF-562271 and cabozantinib delayed tumor recurrence in contrast to cabozantinib treatment alone. Our studies suggest that identifying paracrine de novo resistance mechanisms may significantly contribute to the generation of a broader set of potent therapeutic tools that act combinatorially to inhibit metastatic prostate cancer.

  6. Mitochondrial Dysfunction and Insulin Resistance: The Contribution of Dioxin-Like Substances

    Directory of Open Access Journals (Sweden)

    Hong Kyu Lee

    2011-06-01

    Full Text Available Persistent organic pollutants (POPs are known to cause mitochondrial dysfunction and this in turn is linked to insulin resistance, a key biochemical abnormality underlying the metabolic syndrome. To establish the cause and effect relationship between exposure to POPs and the development of the metabolic syndrome, Koch's postulates were considered. Problems arising from this approach were discussed and possible solutions were suggested. In particular, the difficulty of establishing a cause and effect relationship due to the vagueness of the metabolic syndrome as a disease entity was discussed. Recently a bioassay, aryl-hydrocarbon receptor (AhR trans-activation activity using a cell line expressing AhR-luciferase, showed that its activity is linearly related with the parameters of the metabolic syndrome in a population. This finding suggests the possible role of bioassays in the analysis of multiple pollutants of similar kinds in the pathogenesis of several closely related diseases, such as type 2 diabetes and the metabolic syndrome. Understanding the effects of POPs on mitochondrial function will be very useful in understanding the integration of various factors involved in this process, such as genes, fetal malnutrition and environmental toxins and their protectors, as mitochondria act as a unit according to the metabolic scaling law.

  7. Attentional dysfunction, impulsivity, and resistance to change in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Moon, J; Beaudin, A E; Verosky, S; Driscoll, L L; Weiskopf, M; Levitsky, D A; Crnic, L S; Strupp, B J

    2006-12-01

    On a series of attention tasks, male mice with a mutation targeted to the fragile X mental retardation 1 (Fmrl) gene (Fmrl knockout [KO] mice) committed a higher rate of premature responses than wild-type littermates, with the largest differences seen when task contingencies changed. This finding indicates impaired inhibitory control, particularly during times of stress or arousal. The KO mice also committed a higher rate of inaccurate responses than controls, particularly during the final third of each daily test session, indicating impaired sustained attention. In the selective attention task, the unpredictable presentation of potent olfactory distractors produced a generalized disruption in the performance of the KO mice, whereas for controls, the disruption produced by the distractors was temporally limited. Finally, the attentional disruption seen following an error was more pronounced for the KO mice than for controls, further implicating impaired regulation of arousal and/or negative affect. The present study provides the first evidence that the Fmrl KO mouse is impaired in inhibitory control, attention, and arousal regulation, hallmark areas of dysfunction in fragile X syndrome. The resistance to change also seen in these mice provides a behavioral index for studying the autistic features of this disorder. 2006 APA, all rights reserved

  8. Effects of PDE type 5 inhibitors on Left Ventricular Diastolic Dysfunction in Resistant Hypertension

    Directory of Open Access Journals (Sweden)

    Ana Paula Cabral de Faria

    2015-01-01

    Full Text Available Resistant hypertension (RHTN is a multifactorial disease characterized by blood pressure (BP levels above goal (140/90 mmHg in spite of the concurrent use of three or more antihypertensive drugs of different classes. Moreover, it is well known that RHTN subjects have high prevalence of left ventricular diastolic dysfunction (LVDD, which leads to increased risk of heart failure progression. This review gathers data from studies evaluating the effects of phosphodiesterase-5 (PDE-5 inhibitors (administration of acute sildenafil and short-term tadalafil on diastolic function, biochemical and hemodynamic parameters in patients with RHTN. Acute study with sildenafil treatment found that inhibition of PDE-5 improved hemodynamic parameters and diastolic relaxation. In addition, short-term study with the use of tadalafil demonstrated improvement of LVDD, cGMP and BNP-32 levels, regardless of BP reduction. No endothelial function changes were observed in the studies. The findings of acute and short-term studies revealed potential therapeutic effects of IPDE-5 drugs on LVDD in RHTN patients.

  9. Brown fat lipoatrophy and increased visceral adiposity through a concerted adipocytokines overexpression induces vascular insulin resistance and dysfunction.

    Science.gov (United States)

    Gómez-Hernández, Almudena; Otero, Yolanda F; de las Heras, Natalia; Escribano, Oscar; Cachofeiro, Victoria; Lahera, Vicente; Benito, Manuel

    2012-03-01

    In this study, we analyzed the role played by concerted expression of adipocytokines associated with brown fat lipoatrophy and increased visceral adiposity on triggering vascular insulin resistance and dysfunction in brown adipose tissue (BAT) insulin receptor knockout (BATIRKO) mice. In addition, we assessed whether vascular insulin resistance may aggravate vascular damage. The 52-wk-old, but not 33-wk-old, BATIRKO mice had a significant decrease of BAT mass associated with a significant increase of visceral white adipose tissue (WAT) mass, without changes in body weight. Brown fat lipoatrophy and increased visceral adiposity enhanced the concerted expression of adipocytokines (TNF-α, leptin, and plasminogen activator inhibitor 1) and nuclear factor-κB binding activity in BAT and visceral WAT, mainly in the gonadal depot, and aorta. Although those mice showed insulin sensitivity in the liver and skeletal muscle, insulin signaling in WAT (gonadal depot) and aorta was markedly impaired. Treatment with anti-TNF-α antibody impaired the inflammatory activity in visceral adipose tissue, attenuated insulin resistance in WAT and aorta and induced glucose tolerance. Finally, 52-wk-old BATIRKO mice showed vascular dysfunction, macrophage infiltration, oxidative stress, and a significant increase of gene markers of endothelial activation and inflammation, the latter effect being totally reverted by anti-TNF-α antibody treatment. Our results suggest that brown fat lipoatrophy and increased visceral adiposity through the concerted overexpression of cytoadipokines induces nuclear factor-κB-mediated inflammatory signaling, vascular insulin resistance, and vascular dysfunction. Inhibition of inflammatory activity by anti-TNF-α antibody treatment attenuates vascular insulin resistance and impairs gene expression of vascular dysfunction markers.

  10. A maize wall-associated kinase confers quantitative resistance to head smut.

    Science.gov (United States)

    Zuo, Weiliang; Chao, Qing; Zhang, Nan; Ye, Jianrong; Tan, Guoqing; Li, Bailin; Xing, Yuexian; Zhang, Boqi; Liu, Haijun; Fengler, Kevin A; Zhao, Jing; Zhao, Xianrong; Chen, Yongsheng; Lai, Jinsheng; Yan, Jianbing; Xu, Mingliang

    2015-02-01

    Head smut is a systemic disease in maize caused by the soil-borne fungus Sporisorium reilianum that poses a grave threat to maize production worldwide. A major head smut quantitative resistance locus, qHSR1, has been detected on maize chromosome bin2.09. Here we report the map-based cloning of qHSR1 and the molecular mechanism of qHSR1-mediated resistance. Sequential fine mapping and transgenic complementation demonstrated that ZmWAK is the gene within qHSR1 conferring quantitative resistance to maize head smut. ZmWAK spans the plasma membrane, potentially serving as a receptor-like kinase to perceive and transduce extracellular signals. ZmWAK was highly expressed in the mesocotyl of seedlings where it arrested biotrophic growth of the endophytic S. reilianum. Impaired expression in the mesocotyl compromised ZmWAK-mediated resistance. Deletion of the ZmWAK locus appears to have occurred after domestication and spread among maize germplasm, and the ZmWAK kinase domain underwent functional constraints during maize evolution.

  11. A cfr-like gene cfr(C) conferring linezolid resistance is common in Clostridium difficile.

    Science.gov (United States)

    Candela, Thomas; Marvaud, Jean-Christophe; Nguyen, Tiep Khac; Lambert, Thierry

    2017-09-01

    Clostridium difficile T10 and Clostridium bolteae 90B3 were co-resistant to phenicols, lincosamides, oxazolidinones, pleuromutilins and streptogramin A (PhLOPSA) and harbored an unreported cfr-like determinant that may alter the 23S rRNA by m(8)A2503 methylation. The cfr-like cfr(C) gene was cloned in C. difficile 630Δerm in which it conferred PhLOPSA resistance. In C. bolteae 90B3: (i) qRT-PCR analysis indicated that cfr(C) was similarly expressed in the absence or presence of either chloramphenicol or clindamycin or linezolid; and (ii) cfr(C) was part of a putative 24 kb-transposon, which generated a detectable circular intermediate. An element differing by a single nucleotide was found in C. difficile DA00203 from GenBank data, consistent with a recent horizontal transfer. In silico analysis showed cfr(C) in 19 out of 274 C. difficile genomes. This gene was also detected by PCR analysis in 9 out of 80 C. difficile from our laboratory strain collection according to resistance to linezolid and florfenicol. The fact that cfr(C) was mainly confined in C. difficile within polymorphic environments indicates this microorganism is a reservoir for PhLOPSA resistance. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  12. IDENTIFICATION OF A MAJOR QUANTITATIVE TRAIT LOCUS CONFERRING RICE BLAST RESISTANCE USING RECOMBINANT INBRED LINES

    Directory of Open Access Journals (Sweden)

    Sobrizal Sobrizal

    2013-05-01

    Full Text Available Blast disease caused by Pyricularia oryzae is one of the limiting factors for rice production world wide. The use of resistant varieties for managing blast disease is considered as the most eco-friendly approaches. However, their resistances may be broken down within a few years due to the appearance of new virulent blast races in the field. The objective of the present study was to identify the quantitative trait locus (QTL conferring resistance to blast disease using 126 recombinant inbred (RI lines originated from a crossing of a durably resistant upland rice genotype (Laka and a highly susceptible rice accession cultivar (Kencana Bali. The RI population was developed through a single seed descent method from 1997 to 2004. Resistance of the RI lines was evaluated for blast in an endemic area of Sukabumi, West Java, in 2005. Disease intensity of the blast was examined following the standard evaluation system developed by the International Rice Research Institute (IRRI. At the same year the RI lines were analyzed with 134 DNA markers. Results of the study showed that one major QTL was found to be associated with blast resistance, and this QTL was located near RM2136 marker on the long arm of chromosome 11. This QTL explained 87% of the phenotypic variation with 37% additive effect. The map position of this QTL differed from that of a partial resistant gene, Pi34, identified previously on chromosome 11 in the Japanese durably resistant variety, Chubu 32. The QTL, however, was almost at the same position as that of the multiple allele-resistant gene, Pik. Therefore, an allelic test should be conducted to clarify the allelic relationship between QTL identified in this study and the Pik. The RI lines are the permanent segregating population that could be very useful for analysing phenotypic variations of important agronomic traits possibly owned by the RI lines. The major QTL identified in this study could be used as a genetic resource in

  13. Screening for streptomycin resistance-conferring mutations in Mycobacterium tuberculosis clinical isolates from Poland.

    Directory of Open Access Journals (Sweden)

    Tomasz Jagielski

    Full Text Available Currently, mutations in three genes, namely rrs, rpsL, and gidB, encoding 16S rRNA, ribosomal protein S12, and 16S rRNA-specific methyltransferase, respectively, are considered to be involved in conferring resistance to streptomycin (STR in Mycobacterium tuberculosis. The aim of this study was to investigate the spectrum and frequency of these mutations in M. tuberculosis clinical isolates, both resistant and susceptible to STR. Sixty-four M. tuberculosis isolates recovered from as many TB patients from Poland in 2004 were included in the study. Within the sample were 50 multidrug-resistant (32 STR-resistant and 18 STR-susceptible and 14 pan-susceptible isolates. Preliminary testing for STR resistance was performed with the 1% proportion method. The MICs of STR were determined by the Etest method. Mutation profiling was carried out by amplifying and sequencing the entire rrs, rpsL, and gidB genes. Non-synonymous mutations in either rrs or rpsL gene were detected in 23 (71.9% of the STR-resistant and none of the STR-susceptible isolates. Mutations in the gidB gene were distributed among 12 (37.5% STR-resistant and 13 (40.6% STR-susceptible isolates. Four (12.5% STR-resistant isolates were wild-type at all three loci examined. None of the rrs, rpsL or gidB mutations could be linked to low, intermediate or high level of STR resistance. In accordance with previous findings, the gidB 47T→G (L16R mutation was associated with the Latin American-Mediterranean genotype family, whereas 276A→C (E92D and 615A→G (A205A mutations of the gidB gene were associated with the Beijing lineage. The study underlines the usefulness of rrs and rpsL mutations as molecular markers for STR resistance yet not indicative of its level. The gidB polymorphisms can serve as phylogenetic markers.

  14. Effect of endurance versus resistance training on quadriceps muscle dysfunction in COPD: a pilot study

    Directory of Open Access Journals (Sweden)

    Iepsen UW

    2016-10-01

    Full Text Available Ulrik Winning Iepsen,1 Gregers Druedal Wibe Munch,1 Mette Rugbjerg,1 Anders Rasmussen Rinnov,1 Morten Zacho,1 Stefan Peter Mortensen,1,2 Niels H Secher,3 Thomas Ringbaek,4 Bente Klarlund Pedersen,1 Ylva Hellsten,5 Peter Lange,1,4,6 Pia Thaning1,4 1The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark, 2Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, 3Department of Anesthesiology, University of Copenhagen, Rigshospitalet, Copenhagen, 4Department of Respiratory Medicine, University Hospital Hvidovre, Hvidovre, 5Department of Nutrition, Exercise and Sports, University of Copenhagen, 6Department of Public Health, Section of Social Medicine, University of Copenhagen, Copenhagen, Denmark Introduction: Exercise is an important countermeasure to limb muscle dysfunction in COPD. The two major training modalities in COPD rehabilitation, endurance training (ET and resistance training (RT, may both be efficient in improving muscle strength, exercise capacity, and health-related quality of life, but the effects on quadriceps muscle characteristics have not been thoroughly described.Methods: Thirty COPD patients (forced expiratory volume in 1 second: 56% of predicted, standard deviation [SD] 14 were randomized to 8 weeks of ET or RT. Vastus lateralis muscle biopsies were obtained before and after the training intervention to assess muscle morphology and metabolic and angiogenic factors. Symptom burden, exercise capacity (6-minute walking and cycle ergometer tests, and vascular function were also assessed.Results: Both training modalities improved symptom burden and exercise capacity with no difference between the two groups. The mean (SD proportion of glycolytic type IIa muscle fibers was reduced after ET (from 48% [SD 11] to 42% [SD 10], P<0.05, whereas there was no significant change in muscle fiber distribution with RT. There was

  15. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats.

    Science.gov (United States)

    Babacanoglu, C; Yildirim, N; Sadi, G; Pektas, M B; Akar, F

    2013-10-01

    Dietary intake of fructose and sucrose can cause development of metabolic and cardiovascular disorders. The consequences of high-fructose corn syrup (HFCS), a commonly consumed form of fructose and glucose, have poorly been examined. Therefore, in this study, we investigated whether HFCS intake (10% and 20% beverages for 12 weeks) impacts vascular reactivity to insulin and endothelin-1 in conjunction with insulin receptor substrate-1(IRS-1), endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) mRNA/proteins levels in aorta of rats. At challenge, we tested the effectiveness of resveratrol (28-30 mg/kg body weight/day) on outcomes of HFCS feeding. HFCS (20%) diet feeding increased plasma triglyceride, VLDL, cholesterol, insulin and glucose levels, but not body weights of rats. Impaired nitric oxide-mediated relaxation to insulin (10⁻⁹ to 3×10⁻⁶ M), and enhanced contraction to endothelin-1 (10⁻¹¹ to 10⁻⁸ M) were associated with decreased expression of IRS-1 and eNOS mRNA and protein, but increased expression of iNOS, in aortas of rats fed with HFCS. Resveratrol supplementation restored many features of HFCS-induced disturbances, probably by regulating eNOS and iNOS production. In conclusion, dietary HFCS causes vascular insulin resistance and endothelial dysfunction through attenuating IRS-1 and eNOS expressions as well as increasing iNOS in rats. Resveratrol has capability to recover HFCS-induced disturbances.

  16. Endothelial Dysfunction and Insulin Resistance as Pathophysiologic Mechanisms in a Rat Model of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Ayman Z. Elsamanoudy

    2010-01-01

    Full Text Available Problem statement: To assess the plasma concentrations and placental gene expression of soluble fms like tyrosine kinase (sFlt-1, Vascular Endothelial Growth Factor (VEGF, visfatin and Tumour Necrosis Factor α (TNFα in a rat model of preeclampsia, induced by chronic Reduction of Uterine Perfusion Pressure (RUPP and to investigate the involvement of Insulin Resistance (IR in the pathophysiology of preeclampsia and the possible relation of visfatin and TNFα to IR in preclampsia. Approach: Twenty female Sprague-Dawley rats weighing 220-250 g were divided into either RUPP (n = 10 or Normal Pregnant (NP; n = 10 (control groups. Plasma levels and placental gene expression of sFlt-1, VEGF, visfatin, TNFα, plasma endothelin (ET-1, glucose, serum insulin, creatinine, HOMA-IR and placental Malondialdehyde (MDA and total antioxidants were measured. Also, Mean Arterial Pressure (MAP, fetal number and weight were determined. Results: In RUPP rats, MAP increased, plasma level and placental gene expression of sFlt-1, visfatin and TNFα increased while those of VEGF decreased. Moreover, plasma ET-1, glucose, insulin, HOMA-IR increased while GFR, fetal weight and number decreased. There is a significant positive correlation between TNFα, ET-1, sFlt-1 and MAP, between plasma visfatin or TNFα levels and both serum insulin and HOMA-IR, between visfatin and TNFα, between TNFα and ET-1 and between placental MDA and either sFlt-1 or ET-1. Furthermore, a negative correlation was reported between VEGF and MAP. Conclusion: RUPP increased sFlt-1, TNFα and decreased VEGF resulting in endothelial dysfunction which is manifested by increased MDA and ET-1. This results in altered renal function and hypertension. Moreover, IR may be involved in the pathophysiology of preeclampsia. Visfatin and TNFα, may have a role in IR during preclampsia.

  17. Cellular robustness conferred by genetic crosstalk underlies resistance against chemotherapeutic drug doxorubicin in fission yeast.

    Directory of Open Access Journals (Sweden)

    Zoey Tay

    Full Text Available Doxorubicin is an anthracycline antibiotic that is among one of the most commonly used chemotherapeutic agents in the clinical setting. The usage of doxorubicin is faced with many problems including severe side effects and chemoresistance. To overcome these challenges, it is important to gain an understanding of the underlying molecular mechanisms with regards to the mode of action of doxorubicin. To facilitate this aim, we identified the genes that are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe. We further demonstrated interplay between factors controlling various aspects of chromosome metabolism, mitochondrial respiration and membrane transport. In the nucleus we observed that the subunits of the Ino80, RSC, and SAGA complexes function in the similar epistatic group that shares significant overlap with the homologous recombination genes. However, these factors generally act in synergistic manner with the chromosome segregation regulator DASH complex proteins, possibly forming two major arms for regulating doxorubicin resistance in the nucleus. Simultaneous disruption of genes function in membrane efflux transport or the mitochondrial respiratory chain integrity in the mutants defective in either Ino80 or HR function resulted in cumulative upregulation of drug-specific growth defects, suggesting a rewiring of pathways that synergize only when the cells is exposed to the cytotoxic stress. Taken together, our work not only identified factors that are required for survival of the cells in the presence of doxorubicin but has further demonstrated that an extensive molecular crosstalk exists between these factors to robustly confer doxorubicin resistance.

  18. Human ABCB1 confers cells resistance to cytotoxic guanidine alkaloids from Pterogyne nitens.

    Science.gov (United States)

    Satake, Kazuhiro; Tsukamoto, Megumi; Mitani, Yuji; Regasini, Luis Octavio; da Silva Bolzani, Vanderlan; Efferth, Thomas; Nakagawa, Hiroshi

    2015-01-01

    Multidrug resistance (MDR) caused by human ABCB1 (P-glycoprotein/MDR1) is one of the major obstacles in chemotherapy. To understand the mechanism of MDR by ABCB1 and circumvent the MDR, in the present study, we established human ABCB1-expressing cells (Flp-In-293/ABCB1 cells) and examined the cytotoxic effects of four guanidine alkaloids from Pterogyne nitens (galegine, nitensidine A, pterogynidine and pterogynine) using Flp-In-293/Mock and Flp-In-293/ABCB1 cells. The activity of ABCB1 in Flp-In-293/ABCB1 cells were confirmed by typical substrates for ABCB1 (taxol and vinblastine) in MTT assay. Flp-In-293/ABCB1 cells were also resistant to the four guanidine alkaloids as well as taxol and vinblastine compared to Flp-In-293/Mock cells although the four guanidine alkaloids exhibited cytotoxicity against the two Flp-In-293 cells. Furthermore, the four guanidine alkaloids were also found to stimulate the ATPase activity of ABCB1 in ATPase assays. These results suggest that ABCB1 can confer the resistance to the cytotoxic guanidine alkaloids by transporting them.

  19. Cellular robustness conferred by genetic crosstalk underlies resistance against chemotherapeutic drug doxorubicin in fission yeast.

    Science.gov (United States)

    Tay, Zoey; Eng, Ru Jun; Sajiki, Kenichi; Lim, Kim Kiat; Tang, Ming Yi; Yanagida, Mitsuhiro; Chen, Ee Sin

    2013-01-01

    Doxorubicin is an anthracycline antibiotic that is among one of the most commonly used chemotherapeutic agents in the clinical setting. The usage of doxorubicin is faced with many problems including severe side effects and chemoresistance. To overcome these challenges, it is important to gain an understanding of the underlying molecular mechanisms with regards to the mode of action of doxorubicin. To facilitate this aim, we identified the genes that are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe. We further demonstrated interplay between factors controlling various aspects of chromosome metabolism, mitochondrial respiration and membrane transport. In the nucleus we observed that the subunits of the Ino80, RSC, and SAGA complexes function in the similar epistatic group that shares significant overlap with the homologous recombination genes. However, these factors generally act in synergistic manner with the chromosome segregation regulator DASH complex proteins, possibly forming two major arms for regulating doxorubicin resistance in the nucleus. Simultaneous disruption of genes function in membrane efflux transport or the mitochondrial respiratory chain integrity in the mutants defective in either Ino80 or HR function resulted in cumulative upregulation of drug-specific growth defects, suggesting a rewiring of pathways that synergize only when the cells is exposed to the cytotoxic stress. Taken together, our work not only identified factors that are required for survival of the cells in the presence of doxorubicin but has further demonstrated that an extensive molecular crosstalk exists between these factors to robustly confer doxorubicin resistance.

  20. Crystallization and preliminary diffraction studies of SFC-1, a carbapenemase conferring antibiotic resistance.

    Science.gov (United States)

    Hong, Myoung-Ki; Lee, Jae Jin; Wu, Xing; Kim, Jin-Kwang; Jeong, Byeong Chul; Pham, Tan-Viet; Kim, Seung-Hwan; Lee, Sang Hee; Kang, Lin-Woo

    2012-09-01

    SFC-1, a class A carbapenemase that confers antibiotic resistance, hydrolyzes the β-lactam rings of β-lactam antibiotics (carbapenems, cephalosporins, penicillins and aztreonam). SFC-1 presents an enormous challenge to infection control, particularly in the eradication of Gram-negative pathogens. As SFC-1 exhibits a remarkably broad substrate range, including β-lactams of all classes, the enzyme is a potential target for the development of antimicrobial agents against pathogens producing carbapenemases. In this study, SFC-1 was cloned, overexpressed, purified and crystallized. The SFC-1 crystal diffracted to 1.6 Å resolution and belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 65.8, b = 68.3, c = 88.8 Å. Two molecules are present in the asymmetric unit, with a corresponding V(M) of 1.99 Å(3) Da(-1) and a solvent content of 38.1%.

  1. A possible link between endothelial dysfunction and insulin resistance in hypertension. A LIFE substudy. Losartan Intervention For Endpoint-Reduction in Hypertension

    DEFF Research Database (Denmark)

    Olsen, M H; Andersen, U B; Wachtell, K;

    2000-01-01

    We wanted to investigate whether insulin resistance and time to steady state during isoglycemic clamp were associated with endothelial dysfunction, peripheral vascular remodeling and forearm blood flow (FBF) in patients with longstanding hypertension....

  2. Map - vs. homology - based cloning for the recessive gene ol-2 conferring resistance to tomato powdery mildew

    OpenAIRE

    Pavan, S.N.C.; Zheng, Z.; Borisova, M.; Berg, van den, G.J.; Lotti, C.; Giovanni, , da Bergamo; Lindhout, P.; de Jong; Ricciardi, L.; Visser, R.G.F.; Bai, Y.

    2008-01-01

    The recessive gene ol-2 confers papilla-associated and race-non-specific resistance to tomato powdery mildew caused by Oidium neolycopersici. In order to facilitate marker assisted selection (MAS) in practical breeding programmes, we identified two simple sequence repeat (SSR) markers and one cleaved amplified polymorphic sequence (CAPS) marker which are linked to the resistance locus and co-dominantly inherited. Aiming to provide a base for ol-2 positional cloning, we used a large segregatin...

  3. Chromosomal locations of the maize (Zea mays L.) HtP and rt genes that confer resistance to Exserohilum turcicum

    National Research Council Canada - National Science Library

    Ogliari, Juliana Bernardi; Guimarães, Marco Antônio; Camargo, Luis Eduardo Aranha

    2007-01-01

    ...) L30HtPHtPRtRt and L30htphtpRtRt and the L40htphtprtrt line which contrast regarding the presence of the recently described dominant HtP and the recessive rt genes that confer resistance to Exserohilum turcicum...

  4. Molecular mapping and characterization of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B

    Science.gov (United States)

    Phytophthora root and stem rot (PRR), caused by the soil-borne oomycete pathogen Phytophthora sojae, is one of the most destructive diseases of soybean. PRR can be effectively controlled by race-specific genes conferring resistance to P. sojae (Rps). However, the Rps genes are usually non-durable, a...

  5. Molecular genetic characterisation of the Asc locus of tomato conferring resistance to the fungal pathogen Alternaria alternata f. sp. lycopersici

    NARCIS (Netherlands)

    Biezen, E.A. van der; Overduin, B.; Kneppers, T.J.A.; Mesbah, L.A.; Nijkamp, H.J.J.; Hille, J.

    1994-01-01

    The Alternaria stem canker disease of tomato is caused by the fungal pathogen Alternaria alternata f. sp. lycopersici and its host-selective AAL-toxins. Resistance to the pathogen and insensitivity to the toxins are conferred by the Asc locus on chromosome 3L. Sensitivity to AAL-toxins is a relative

  6. Map - vs. homology - based cloning for the recessive gene ol-2 conferring resistance to tomato powdery mildew

    NARCIS (Netherlands)

    Pavan, S.N.C.; Zheng, Z.; Borisova, M.; Berg, van den P.M.M.M.; Lotti, C.; Giovanni, de C.; Lindhout, P.; Jong, de J.H.; Ricciardi, L.; Visser, R.G.F.; Bai, Y.

    2008-01-01

    The recessive gene ol-2 confers papilla-associated and race-non-specific resistance to tomato powdery mildew caused by Oidium neolycopersici. In order to facilitate marker assisted selection (MAS) in practical breeding programmes, we identified two simple sequence repeat (SSR) markers and one

  7. A possible link between endothelial dysfunction and insulin resistance in hypertension. A LIFE substudy. Losartan Intervention For Endpoint-Reduction in Hypertension

    DEFF Research Database (Denmark)

    Olsen, M H; Andersen, U B; Wachtell, K;

    2000-01-01

    We wanted to investigate whether insulin resistance and time to steady state during isoglycemic clamp were associated with endothelial dysfunction, peripheral vascular remodeling and forearm blood flow (FBF) in patients with longstanding hypertension.......We wanted to investigate whether insulin resistance and time to steady state during isoglycemic clamp were associated with endothelial dysfunction, peripheral vascular remodeling and forearm blood flow (FBF) in patients with longstanding hypertension....

  8. Partial deletion of ROCK2 protects mice from high-fat diet-induced cardiac insulin resistance and contractile dysfunction.

    Science.gov (United States)

    Soliman, Hesham; Nyamandi, Vongai; Garcia-Patino, Marysol; Varela, Julia Nogueira; Bankar, Girish; Lin, Guorong; Jia, Zhengping; MacLeod, Kathleen M

    2015-07-01

    Obesity is associated with cardiac insulin resistance and contractile dysfunction, which contribute to the development of heart failure. The RhoA-Rho kinase (ROCK) pathway has been reported to modulate insulin resistance, but whether it is implicated in obesity-induced cardiac dysfunction is not known. To test this, wild-type (WT) and ROCK2(+/-) mice were fed normal chow or a high-fat diet (HFD) for 17 wk. Whole body insulin resistance, determined by an insulin tolerance test, was observed in HFD-WT, but not HFD-ROCK2(+/-), mice. The echocardiographically determined myocardial performance index, a measure of global systolic and diastolic function, was significantly increased in HFD-WT mice, indicating a deterioration of cardiac function. However, no change in myocardial performance index was found in hearts from HFD-ROCK2(+/-) mice. Speckle-tracking-based strain echocardiography also revealed regional impairment in left ventricular wall motion in hearts from HFD-WT, but not HFD-ROCK2(+/-), mice. Activity of ROCK1 and ROCK2 was significantly increased in hearts from HFD-WT mice, and GLUT4 expression was significantly reduced. Insulin-induced phosphorylation of insulin receptor substrate (IRS) Tyr(612), Akt, and AS160 was also impaired in these hearts, while Ser(307) phosphorylation of IRS was increased. In contrast, the increase in ROCK2, but not ROCK1, activity was prevented in hearts from HFD-ROCK2(+/-) mice, and cardiac levels of TNFα were reduced. This was associated with normalization of IRS phosphorylation, downstream insulin signaling, and GLUT4 expression. These data suggest that increased activation of ROCK2 contributes to obesity-induced cardiac dysfunction and insulin resistance and that inhibition of ROCK2 may constitute a novel approach to treat this condition.

  9. HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma.

    Science.gov (United States)

    Wang, Zhihao; Hu, Pengchao; Tang, Fang; Lian, Haiwei; Chen, Xiong; Zhang, Yingying; He, Xiaohua; Liu, Wanhong; Xie, Conghua

    2016-08-28

    Histone deacetylases are considered to be among the most promising targets in drug development for cancer therapy. Histone deacetylase 6 (HDAC6) is a unique cytoplasmic enzyme that regulates many biological processes involved in tumorigenesis through its deacetylase and ubiquitin-binding activities. Here, we report that HDAC6 is overexpressed in glioblastoma tissues and cell lines. Overexpression of HDAC6 promotes the proliferation and spheroid formation of glioblastoma cells. HDAC6 overexpression confers resistance to temozolomide (TMZ) mediated cell proliferation inhibition and apoptosis induction. Conversely, knockdown of HDAC6 inhibits cell proliferation, impairs spheroid formation and sensitizes glioblastoma cells to TMZ. The inhibition of HDAC6 deacetylase activity by selective inhibitors inhibits the proliferation of glioblastoma cells and induces apoptosis. HDAC6 selective inhibitors can sensitize glioblastoma cells to TMZ. Moreover, we showed that HDAC6 mediated EGFR stabilization might partly account for its oncogenic role in glioblastoma. TMZ resistant glioblastoma cells showed higher expression of HDAC6 and more activation of EGFR. HDAC6 inhibitors decrease EGFR protein levels and impair the activation of the EGFR pathway. Taken together, our results suggest that the inhibition of HDAC6 may be a promising strategy for the treatment of glioblastoma.

  10. Alpha-tocopherol transfer protein disruption confers resistance to malarial infection in mice

    Directory of Open Access Journals (Sweden)

    Takeya Motohiro

    2010-04-01

    Full Text Available Abstract Background Various factors impact the severity of malaria, including the nutritional status of the host. Vitamin E, an intra and extracellular anti-oxidant, is one such nutrient whose absence was shown previously to negatively affect Plasmodium development. However, mechanisms of this Plasmodium inhibition, in addition to means by which to exploit this finding as a therapeutic strategy, remain unclear. Methods α-TTP knockout mice were infected with Plasmodium berghei NK65 or Plasmodium yoelii XL-17, parasitaemia, survival rate were monitored. In one part of the experiments mice were fed with a supplemented diet of vitamin E and then infected. In addition, parasite DNA damage was monitored by means of comet assay and 8-OHdG test. Moreover, infected mice were treated with chloroquine and parasitaemia and survival rate were monitored. Results Inhibition of α-tocopherol transfer protein (α-TTP, a determinant of vitamin E concentration in circulation, confers resistance to malarial infection as a result of oxidative damage to the parasites. Furthermore, in combination with the anti-malarial drug chloroquine results were even more dramatic. Conclusion Considering that these knockout mice lack observable negative impacts typical of vitamin E deficiency, these results suggest that inhibition of α-TTP activity in the liver may be a useful strategy in the prevention and treatment of malaria infection. Moreover, a combined strategy of α-TTP inhibition and chloroquine treatment might be effective against drug resistant parasites.

  11. A genetic marker allele conferring resistance to Ascaris suum in pigs

    DEFF Research Database (Denmark)

    Skallerup, Per; Thamsborg, Stig M.; Jørgensen, Claus B.;

    2013-01-01

    of the AB genotype. We used different indicators of resistance (worm burden, faecal egg counts, number of liver white spots and A. suum-specific serum IgG antibody levels) of which the first two traits were considered core traits and the last two traits were associated traits. Pigs of the AA genotype had...... lower mean macroscopic worm burden (2.4 vs. 19.3), lower mean total worm burden (26.5 vs. 70.1) and excreted fewer A. suum eggs at week 8 p.i. (mean number of eggs/g faeces: 238 vs. 1259) than pigs of the AB genotype. However, none of these differences were significant (P- values of 0.06, 0.06 and 0...... a similar trend. The data presented here provide suggestive evidence that resistant pigs can be selected using a genetic marker, TXNIP, and that it is the B allele which is conferring susceptibility to A. suum infection. Our work confirmed that SNP ARNT is another diagnostic marker candidate for A. suum...

  12. Activation of the Met kinase confers acquired drug resistance in FGFR-targeted lung cancer therapy.

    Science.gov (United States)

    Kim, S-M; Kim, H; Yun, M R; Kang, H N; Pyo, K-H; Park, H J; Lee, J M; Choi, H M; Ellinghaus, P; Ocker, M; Paik, S; Kim, H R; Cho, B C

    2016-07-18

    Aberrant fibroblast growth factor receptor (FGFR) activation/expression is a common feature in lung cancer (LC). In this study, we evaluated the antitumor activity of and the mechanisms underlying acquired resistance to two potent selective FGFR inhibitors, AZD4547 and BAY116387, in LC cell lines. The antitumor activity of AZD4547 and BAY1163877 was screened in 24 LC cell lines, including 5 with FGFR1 amplification. Two cell lines containing FGFR1 amplifications, H1581 and DMS114, were sensitive to FGFR inhibitors (IC50FGFR1-amplified H1581 cells resistant to AZD4547 or BAY116387 (H1581AR and H1581BR cells, respectively) were established. Receptor tyrosine kinase (RTK) array and immunoblotting analyses showed strong overexpression and activation of Met in H1581AR/BR cells, compared with that in the parental cells. Gene set enrichment analysis against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed that cytokine-cytokine receptor interaction pathways were significantly enriched in H1581AR/BR cells, with Met contributing significantly to the core enrichment. Genomic DNA quantitative PCR and fluorescent in situ hybridization analyses showed MET amplification in H1581AR, but not in H1581BR, cells. Met amplification drives acquired resistance to AZD4547 in H1581AR cells by activating ErbB3. Combination treatment with FGFR inhibitors and an anaplastic lymphoma kinase (ALK)/Met inhibitor, crizotinib, or Met-specific short interfering RNA (siRNA) synergistically inhibited cell proliferation in both H1581AR and H1581BR cells. Conversely, ectopic expression of Met in H1581 cells conferred resistance to AZD4547 and BAY1163877. Acquired resistance to FGFR inhibitors not only altered cellular morphology, but also promoted migration and invasion of resistant clones, in part by inducing epithelial-to-mesenchymal transition. Taken together, our data suggest that Met activation is sufficient to bypass dependency on FGFR signaling. Concurrent inhibition of the Met

  13. Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Nakano, Shigeru; Fukaya, Masahiro

    2008-06-30

    Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation.

  14. Resistance to Downy Mildew in Lettuce 'La Brillante' is Conferred by Dm50 Gene and Multiple QTL.

    Science.gov (United States)

    Simko, Ivan; Ochoa, Oswaldo E; Pel, Mathieu A; Tsuchida, Cayla; Font I Forcada, Carolina; Hayes, Ryan J; Truco, Maria-Jose; Antonise, Rudie; Galeano, Carlos H; Michelmore, Richard W

    2015-09-01

    Many cultivars of lettuce (Lactuca sativa L.) are susceptible to downy mildew, a nearly globally ubiquitous disease caused by Bremia lactucae. We previously determined that Batavia type cultivar 'La Brillante' has a high level of field resistance to the disease in California. Testing of a mapping population developed from a cross between 'Salinas 88' and La Brillante in multiple field and laboratory experiments revealed that at least five loci conferred resistance in La Brillante. The presence of a new dominant resistance gene (designated Dm50) that confers complete resistance to specific isolates was detected in laboratory tests of seedlings inoculated with multiple diverse isolates. Dm50 is located in the major resistance cluster on linkage group 2 that contains at least eight major, dominant Dm genes conferring resistance to downy mildew. However, this Dm gene is ineffective against the isolates of B. lactucae prevalent in the field in California and the Netherlands. A quantitative trait locus (QTL) located at the Dm50 chromosomal region (qDM2.2) was detected, though, when the amount of disease was evaluated a month before plants reached harvest maturity. Four additional QTL for resistance to B. lactucae were identified on linkage groups 4 (qDM4.1 and qDM4.2), 7 (qDM7.1), and 9 (qDM9.2). The largest effect was associated with qDM7.1 (up to 32.9% of the total phenotypic variance) that determined resistance in multiple field experiments. Markers identified in the present study will facilitate introduction of these resistance loci into commercial cultivars of lettuce.

  15. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia.

    Science.gov (United States)

    Zabriskie, Matthew S; Eide, Christopher A; Tantravahi, Srinivas K; Vellore, Nadeem A; Estrada, Johanna; Nicolini, Franck E; Khoury, Hanna J; Larson, Richard A; Konopleva, Marina; Cortes, Jorge E; Kantarjian, Hagop; Jabbour, Elias J; Kornblau, Steven M; Lipton, Jeffrey H; Rea, Delphine; Stenke, Leif; Barbany, Gisela; Lange, Thoralf; Hernández-Boluda, Juan-Carlos; Ossenkoppele, Gert J; Press, Richard D; Chuah, Charles; Goldberg, Stuart L; Wetzler, Meir; Mahon, Francois-Xavier; Etienne, Gabriel; Baccarani, Michele; Soverini, Simona; Rosti, Gianantonio; Rousselot, Philippe; Friedman, Ran; Deininger, Marie; Reynolds, Kimberly R; Heaton, William L; Eiring, Anna M; Pomicter, Anthony D; Khorashad, Jamshid S; Kelley, Todd W; Baron, Riccardo; Druker, Brian J; Deininger, Michael W; O'Hare, Thomas

    2014-09-08

    Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph(+)) leukemia, including the recalcitrant BCR-ABL1(T315I) mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib, and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph(+) leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome.

  16. Compromised Photosynthetic Electron Flow and H2O2 Generation Correlate with Genotype-Specific Stomatal Dysfunctions during Resistance against Powdery Mildew in Oats.

    Science.gov (United States)

    Sánchez-Martín, Javier; Montilla-Bascón, Gracia; Mur, Luis A J; Rubiales, Diego; Prats, Elena

    2016-01-01

    Stomatal dysfunction known as "locking" has been linked to the elicitation of a hypersensitive response (HR) following attack of fungal pathogens in cereals. We here assess how spatial and temporal patterns of different resistance mechanisms, such as HR and penetration resistance influence stomatal and photosynthetic parameters in oat (Avena sativa) and the possible involvement of hydrogen peroxide (H2O2) in the dysfunctions observed. Four oat cultivars with differential resistance responses (i.e., penetration resistance, early and late HR) to powdery mildew (Blumeria graminis f. sp. avenae, Bga) were used. Results demonstrated that stomatal dysfunctions were genotype but not response-type dependent since genotypes with similar resistance responses when assessed histologically showed very different locking patterns. Maximum quantum yield (Fv/Fm) of photosystem II were compromised in most Bga-oat interactions and photoinhibition increased. However, the extent of the photosynthetic alterations was not directly related to the extent of HR. H2O2 generation is triggered during the execution of resistance responses and can influence stomatal function. Artificially increasing H2O2 by exposing plants to increased light intensity further reduced Fv/Fm ratios and augmented the patterns of stomatal dysfunctions previously observed. The latter results suggest that the observed dysfunctions and hence a cost of resistance may be linked with oxidative stress occurring during defense induced photosynthetic disruption.

  17. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode.

    Science.gov (United States)

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Zhu, Junwei J; Zhuang, Xiaofeng; Liu, Wusheng; Pantalone, Vincent R; Arelli, Prakash R; Stewart, Charles N; Chen, Feng

    2013-12-01

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence-related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full-length cDNAs of GmSAMT1 from a SCN-resistant soybean line and from a SCN-susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli-expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μM. To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN-susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.

  18. Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt.

    Science.gov (United States)

    Abdallah, Naglaa A; Shah, Dilip; Abbas, Dina; Madkour, Magdy

    2010-01-01

    Plant defensins are small cysteine-rich peptides which belong to a group of pathogenasis related defense mechanism proteins. The proteins inhibit the growth of a broad range of microbes and are highly stable under extreme environmental stresses. Tomato cultivation is affected by fungal disease such as Fusarium wilt. In order to overcome fungal damages, transgenic tomato plants expressing the Medicago sativa defensin gene MsDef1 under the control of the CaMV 35S promoter were developed. The Fusarium-susceptible tomato (Lycobersicum esculentum Mill) cultivar CastleRock was used for transformation to acquire fungal resistance. Hypocotyl with a part of cotyledon (hypocotyledonary) for young tomato seedlings were used as an explant material and transformation was performed using the biolistic delivery system. Bombarded shoots were selected on regeneration medium supplemented with hygromycin and suitable concentrations of BA, zeatin ripozide and AgNO(3). Putative transgenic plantlets of T(0) were confirmed by PCR analysis using primers specific for the transgene and the transformation frequency obtained was 52.3%. Transformation and transcription of transgenes were confirmed in T(1) by PCR, Southern hybridizations, and reverse-transcription PCR (RT-PCR). The copy numbers of integrated transgene into tomato genome ranged between 1-3 copies. Greenhouse bioassay was performed on the transgenic T(1) and T(2) young seedlings and non-transgenic controls by challenging with a vigorous isolate of the fungal pathogen Fusarium oxysporum f. sp. Lycopersici. The level of fungal infectivity was determined using RT-PCR with tomatinase specific primers. Transgenic lines were more resistant to infection by fusarium than the control plants. These results indicated that overexpressing defensins in transgenic plants confer resistance to fungal pathogens.

  19. GSL2 over-expression confers resistance to Pectobacterium atrosepticum in potato.

    Science.gov (United States)

    Mohan, Sara; Meiyalaghan, Sathiyamoorthy; Latimer, Julie M; Gatehouse, Michelle L; Monaghan, Katrina S; Vanga, Bhanupratap R; Pitman, Andrew R; Jones, E Eirian; Conner, Anthony J; Jacobs, Jeanne M E

    2014-03-01

    Over-expression of the potato Gibberellin Stimulated-Like 2 ( GSL2 ) gene in transgenic potato confers resistance to blackleg disease incited by Pectobacterium atrosepticum and confirms a role for GSL2 in plant defence. The Gibberellin Stimulated-Like 2 (GSL2) gene (also known as Snakin 2) encodes a cysteine-rich, low-molecular weight antimicrobial peptide produced in potato plants. This protein is thought to play important roles in the innate defence against invading microbes. Over-expression of the GSL2 gene in potato (cultivar Iwa) was achieved using Agrobacterium-mediated gene transfer of a plant expression vector with the potato GSL2 gene under the regulatory control elements of the potato light-inducible Lhca3 gene. The resulting plants were confirmed as being transgenic by PCR, and subsequently analysed for transcriptional expression of the Lhca3-GSL2-Lhca3 chimeric potato gene. Quantitative RT-PCR analysis demonstrated that the majority of the transgenic potato lines over-expressed the GSL2 gene at the mRNA level. Based on qRT-PCR results and evaluation of phenotypic appearance, eight lines were selected for further characterisation and evaluated in bioassays for resistance to Pectobacterium atrosepticum (formerly Erwinia carotovora subsp. atroseptica), the causal agent of blackleg in potato. Three independent pathogenicity bioassays showed that transgenic lines with significantly increased transcriptional expression of the GSL2 gene exhibit resistance to blackleg disease. This establishes a functional role for GSL2 in plant defence against pathogens in potato.

  20. Resistance to powdery mildew in the pea cultivar Xucai 1 is conferred by the gene er1

    Institute of Scientific and Technical Information of China (English)

    Suli Sun; Zhongyi Wang; Haining Fu; Canxing Duan; Xiaoming Wang; Zhendong Zhu

    2015-01-01

    Powdery mildew, caused by Erysiphe pisi D.C., is a major constraint to pea production worldwide. The pea cultivar Xucai 1 has shown high resistance to E. pisi under greenhouse and field conditions. The objectives of this study were to identify and characterize genes conferring resistance to powdery mildew in Xucai 1. Three crosses, Qizhen 76 × Xucai 1,Bawan 6 × Xucai 1, and Xucai 1 × Bawan 6, were made to generate populations for genetic analysis. The resistance to E. pisi and segregation ratios in the F1, F2, and F2:3populations suggested a single recessive gene conferring the resistance of Xucai 1. Bulked segregant analysis was used to map the resistance gene using two F2 populations. The resistance gene was close to markers AD60 and c5 DNAmet on linkage group VI with genetic distances of9.9 c M and 15.4 c M in the Xucai 1 × Bawan 6 F2 population and 8.7 c M and 8.1 c M in the Qizhen 76 × Xucai 1 F2 population, respectively, suggesting that the resistance gene was an er1 allele. This hypothesis was confirmed by comparison of the c DNA sequences of the Ps MLO1 gene between the parents and the Ps MLO1 wild type. Three distinct types of transcripts in Xucai 1, characterized by a 129-bp deletion and 155- and 220-bp insertions,were detected, consistent with the structure of the er1-2 allele. We concluded that resistance in Xucai 1 was conferred by er1-2 and that its linked markers will be useful in pea breeding programs.

  1. High-fat diet is associated with obesity-mediated insulin resistance and β-cell dysfunction in Mexican Americans.

    Science.gov (United States)

    Black, Mary Helen; Watanabe, Richard M; Trigo, Enrique; Takayanagi, Miwa; Lawrence, Jean M; Buchanan, Thomas A; Xiang, Anny H

    2013-04-01

    Consumption of energy-dense, nutrient-poor foods has contributed to the rising incidence of obesity and may underlie insulin resistance and β-cell dysfunction. Macronutrient intake patterns were examined in relation to anthropometric and metabolic traits in participants of BetaGene, a family-based study of obesity, insulin resistance, and β-cell dysfunction in Mexican Americans. Dietary intake, body composition, insulin sensitivity (SI), and β-cell function [Disposition Index (DI)] were assessed by food-frequency questionnaires, dual-energy X-ray absorptiometry, and intravenous glucose-tolerance tests, respectively. Patterns of macronutrient intake were identified by using a K-means model based on the proportion of total energy intake per day attributable to carbohydrate, fat, and protein and were tested for association with anthropometric and metabolic traits. Among 1150 subjects aged 18-65 y (73% female), tertiles of fat intake were associated with greater adiposity and lower SI, after adjustment for age, sex, and daily energy intake. Moreover, 3 distinct dietary patterns were identified: "high fat" (35% fat, 44% carbohydrate, 21% protein; n = 238), "moderate fat" (28% fat, 54% carbohydrate, 18% protein; n = 520), and "low fat" (20% fat, 65% carbohydrate, 15% protein; n = 392). Compared with the low-fat group, the high-fat group had higher age- and sex-adjusted mean body mass index, body fat percentage, and trunk fat and lower SI and DI. Further adjustment for daily energy intake by matching individuals across dietary pattern groups yielded similar results. None of the observed associations were altered after adjustment for physical activity; however, associations with SI and DI were attenuated after adjustment for adiposity. These findings suggest that high-fat diets may contribute to increased adiposity and concomitant insulin resistance and β-cell dysfunction in Mexican Americans.

  2. Repeated exposure to heat stress results in a diaphragm phenotype that resists ventilator-induced diaphragm dysfunction.

    Science.gov (United States)

    Yoshihara, Toshinori; Ichinoseki-Sekine, Noriko; Kakigi, Ryo; Tsuzuki, Takamasa; Sugiura, Takao; Powers, Scott K; Naito, Hisashi

    2015-11-01

    Controlled mechanical ventilation (CMV) is a life-saving intervention for patients in respiratory failure. Unfortunately, prolonged mechanical ventilation (MV) results in diaphragmatic atrophy and contractile dysfunction, both of which are predicted to contribute to problems in weaning patients from the ventilator. Therefore, developing a strategy to protect the diaphragm against ventilator-induced weakness is important. We tested the hypothesis that repeated bouts of heat stress result in diaphragm resistance against CMV-induced atrophy and contractile dysfunction. Male Wistar rats were randomly divided into six experimental groups: 1) control; 2) single bout of whole body heat stress; 3) repeated bouts of whole body heat stress; 4) 12 h CMV; 5) single bout of whole body heat stress 24 h before CMV; and 6) repeated bouts of whole body heat stress 1, 3, and 5 days before 12 h of CMV. Our results revealed that repeated bouts of heat stress resulted in increased levels of heat shock protein 72 in the diaphragm and protection against both CMV-induced diaphragmatic atrophy and contractile dysfunction at submaximal stimulation frequencies. The specific mechanisms responsible for this protection remain unclear: this heat stress-induced protection against CMV-induced diaphragmatic atrophy and weakness may be partially due to reduced diaphragmatic oxidative stress, diminished activation of signal transducer/transcriptional activator-3, lower caspase-3 activation, and decreased autophagy in the diaphragm.

  3. Carboplatin and taxol resistance develops more rapidly in functional BRCA1 compared to dysfunctional BRCA1 ovarian cancer cells.

    Science.gov (United States)

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-08-01

    A major risk factor for ovarian cancer is germline mutations of BRCA1/2. It has been found that (80%) of cellular models with acquired platinum or taxane resistance display an inverse resistance relationship, that is collateral sensitivity to the other agent. We used a clinically relevant comparative selection strategy to develop novel chemoresistant cell lines which aim to investigate the mechanisms of resistance that arise from different exposures of carboplatin and taxol on cells having BRCA1 function (UPN251) or dysfunction (OVCAR8). Resistance to carboplatin and taxol developed quicker and more stably in UPN251 (BRCA1-wildtype) compared to OVCAR8 (BRCA1-methylated). Alternating carboplatin and taxol treatment delayed but did not prevent resistance development when compared to single-agent administration. Interestingly, the sequence of drug exposure influenced the resistance mechanism produced. UPN251-6CALT (carboplatin first) and UPN251-6TALT (taxol first) have different profiles of cross resistance. UPN251-6CALT displays significant resistance to CuSO4 (2.3-fold, p=0.004) while UPN251-6TALT shows significant sensitivity to oxaliplatin (0.6-fold, p=0.01). P-glycoprotein is the main mechanism of taxol resistance found in the UPN251 taxane-resistant sublines. UPN251 cells increase cellular glutathione levels (3.0-fold, p=0.02) in response to carboplatin treatment. However, increased glutathione is not maintained in the carboplatin-resistant sublines. UPN251-7C and UPN251-6CALT are low-level resistant to CuSO4 suggesting alterations in copper metabolism. However, none of the UPN251 sublines have alterations in the protein expression of ATP7A or CTR1. The protein expression of BRCA1 and MRP2 is unchanged in the UPN251 sublines. The UPN251 sublines remain sensitive to parp inhibitors veliparib and CEP8983 suggesting that these agents are candidates for the treatment of platinum/taxane resistant ovarian cancer patients.

  4. NBS Proifling Identiifes Potential Novel Locus from Solanum demissum That Confers Broad-Spectrum Resistance to Phytophthora infestans

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kun; XU Jian-fei; DUAN Shao-guang; PANG Wan-fu; BIAN Chun-song; LIU Jie; JIN Li-ping

    2014-01-01

    Potato late blight, caused by the oomycete pathogen Phytophthora infestans, is the most serious disease of potato worldwide. The adoption of varieties with resistance genes, especially broad-spectrum resistance genes, is the most efifcient approach to control late blight. Solanum demissum is a well-known wild potato species from which 11 race-speciifc resistance genes have been identiifed, however, no broad-spectrum resistance genes like RB have been reported in this species. Here, we report a novel reisistance locus from S. demissum that potentially confer broad-spectrum resistance to late blight. A small segregating population of S. demissum were assessed for resistance to aggressive P. infestans isolates (race 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11). This coupled with nucleotide binding site (NBS) proifling analyses, led to the identiifcation of three fragments that linked to the potential candidate resistance gene(s). Cloning and sequence analysis of these fragments suggested that the identiifed resistance gene locus is located in the region containing R2 resistance gene at chromosome 4. Based on the sequences of the cloned fragments, a co-segregating sequence characterized ampliifed region (SCAR) marker, RDSP, was developed. The newly identiifed marker RDSP will be useful for marker assisted breeding and further cloning of this potential resistance gene locus.

  5. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    Science.gov (United States)

    Sharkhuu, Altanbadralt; Narasimhan, Meena L; Merzaban, Jasmeen S; Bressan, Ray A; Weller, Steve; Gehring, Chris

    2014-01-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide. PMID:24654847

  6. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    KAUST Repository

    Sharkhuu, Altanbadralt

    2014-06-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.

  7. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate.

    Science.gov (United States)

    Sharkhuu, Altanbadralt; Narasimhan, Meena L; Merzaban, Jasmeen S; Bressan, Ray A; Weller, Steve; Gehring, Chris

    2014-06-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.

  8. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper.

    Science.gov (United States)

    Rao, K V; Rathore, K S; Hodges, T K; Fu, X; Stoger, E; Sudhakar, D; Williams, S; Christou, P; Bharathi, M; Bown, D P; Powell, K S; Spence, J; Gatehouse, A M; Gatehouse, J A

    1998-08-01

    Snowdrop lectin (Galanthus nivalis agglutinin; GNA) has been shown previously to be toxic towards rice brown planthopper (Nilaparvata lugens; BPH) when administered in artificial diet. BPH feeds by phloem abstraction, and causes 'hopper burn', as well as being an important virus vector. To evaluate the potential of the gna gene to confer resistance towards BPH, transgenic rice (Oryza sativa L.) plants were produced, containing the gna gene in constructs where its expression was driven by a phloem-specific promoter (from the rice sucrose synthase RSs1 gene) and by a constitutive promoter (from the maize ubiquitin ubi1 gene). PCR and Southern analyses on DNA from these plants confirmed their transgenic status, and that the transgenes were transmitted to progeny after self-fertilization. Western blot analyses revealed expression of GNA at levels of up to 2.0% of total protein in some of the transgenic plants. GNA expression driven by the RSs1 promoter was tissue-specific, as shown by immunohistochemical localization of the protein in the non-lignified vascular tissue of transgenic plants. Insect bioassays and feeding studies showed that GNA expressed in the transgenic rice plants decreased survival and overall fecundity (production of offspring) of the insects, retarded insect development, and had a deterrent effect on BPH feeding. gna is the first transgene to exhibit insecticidal activity towards sap-sucking insects in an important cereal crop plant.

  9. Loss of RASSF2 Enhances Tumorigencity of Lung Cancer Cells and Confers Resistance to Chemotherapy

    Directory of Open Access Journals (Sweden)

    Jennifer Clark

    2012-01-01

    Full Text Available RASSF2 is a novel pro-apoptotic effector of K-Ras that is frequently inactivated in a variety of primary tumors by promoter methylation. Inactivation of RASSF2 enhances K-Ras-mediated transformation and overexpression of RASSF2 suppresses tumor cell growth. In this study, we confirm that RASSF2 and K-Ras form an endogenous complex, validating that RASSF2 is a bona fide K-Ras effector. We adopted an RNAi approach to determine the effects of inactivation of RASSF2 on the transformed phenotype of lung cancer cells containing an oncogenic K-Ras. Loss of RASSF2 expression resulted in a more aggressive phenotype that was characterized by enhanced cell proliferation and invasion, decreased cell adhesion, the ability to grow in an anchorage-independent manner and cell morphological changes. This enhanced transformed phenotype of the cells correlated with increased levels of activated AKT, indicating that RASSF2 can modulate Ras signaling pathways. Loss of RASSF2 expression also confers resistance to taxol and cisplatin, two frontline therapeutics for the treatment of lung cancer. Thus we have shown that inactivation of RASSF2, a process that occurs frequently in primary tumors, enhances the transforming potential of activated K-Ras and our data suggests that RASSF2 may be a novel candidate for epigenetic-based therapy in lung cancer.

  10. Bmi1 confers resistance to oxidative stress on hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Shunsuke Nakamura

    Full Text Available BACKGROUND: The polycomb-group (PcG proteins function as general regulators of stem cells. We previously reported that retrovirus-mediated overexpression of Bmi1, a gene encoding a core component of polycomb repressive complex (PRC 1, maintained self-renewing hematopoietic stem cells (HSCs during long-term culture. However, the effects of overexpression of Bmi1 on HSCs in vivo remained to be precisely addressed. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we generated a mouse line where Bmi1 can be conditionally overexpressed under the control of the endogenous Rosa26 promoter in a hematopoietic cell-specific fashion (Tie2-Cre;R26Stop(FLBmi1. Although overexpression of Bmi1 did not significantly affect steady state hematopoiesis, it promoted expansion of functional HSCs during ex vivo culture and efficiently protected HSCs against loss of self-renewal capacity during serial transplantation. Overexpression of Bmi1 had no effect on DNA damage response triggered by ionizing radiation. In contrast, Tie2-Cre;R26Stop(FLBmi1 HSCs under oxidative stress maintained a multipotent state and generally tolerated oxidative stress better than the control. Unexpectedly, overexpression of Bmi1 had no impact on the level of intracellular reactive oxygen species (ROS. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that overexpression of Bmi1 confers resistance to stresses, particularly oxidative stress, onto HSCs. This thereby enhances their regenerative capacity and suggests that Bmi1 is located downstream of ROS signaling and negatively regulated by it.

  11. Resistance to Bacillus thuringiensis Toxin Cry2Ab in Trichoplusia ni Is Conferred by a Novel Genetic Mechanism

    Science.gov (United States)

    Song, Xiaozhao; Kain, Wendy; Cassidy, Douglas

    2015-01-01

    The resistance to the Bacillus thuringiensis (Bt) toxin Cry2Ab in a greenhouse-originated Trichoplusia ni strain resistant to both Bt toxins Cry1Ac and Cry2Ab was characterized. Biological assays determined that the Cry2Ab resistance in the T. ni strain was a monogenic recessive trait independent of Cry1Ac resistance, and there existed no significant cross-resistance between Cry1Ac and Cry2Ab in T. ni. From the dual-toxin-resistant T. ni strain, a strain resistant to Cry2Ab only was isolated, and the Cry2Ab resistance trait was introgressed into a susceptible laboratory strain to facilitate comparative analysis of the Cry2Ab resistance with the susceptible T. ni strain. Results from biochemical analysis showed no significant difference between the Cry2Ab-resistant and -susceptible T. ni larvae in midgut proteases, including caseinolytic proteolytic activity and zymogram profile and serine protease activities, in midgut aminopeptidase and alkaline phosphatase activity, and in midgut esterases and hemolymph plasma melanization activity. For analysis of genetic linkage of Cry2Ab resistance with potential Cry toxin receptor genes, molecular markers for the midgut cadherin, alkaline phosphatase (ALP), and aminopeptidase N (APN) genes were identified between the original greenhouse-derived dual-toxin-resistant and the susceptible laboratory T. ni strains. Genetic linkage analysis showed that the Cry2Ab resistance in T. ni was not genetically associated with the midgut genes coding for the cadherin, ALP, and 6 APNs (APN1 to APN6) nor associated with the ABC transporter gene ABCC2. Therefore, the Cry2Ab resistance in T. ni is conferred by a novel but unknown genetic mechanism. PMID:26025894

  12. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1

    NARCIS (Netherlands)

    Humphry, M.; Reinstädler, A.; Ivanov, S.; Bisseling, T.; Panstruga, R.

    2011-01-01

    Loss-of-function alleles of plant-specific MLO (Mildew Resistance Locus O) genes confer broad-spectrum powdery mildew resistance in monocot (barley) and dicot (Arabidopsis thaliana, tomato) plants. Recessively inherited powdery mildew resistance in pea (Pisum sativum) er1 plants is, in many aspects,

  13. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics

    DEFF Research Database (Denmark)

    Long, K. S.; Poehlsgaard, Jacob; Kehrenberg, C.

    2006-01-01

    drug classes: Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Each of these five drug classes contains important antimicrobial agents that are currently used in human and/or veterinary medicine. We find that binding of the PhLOPSA drugs, which bind...... classes of antimicrobials. In addition, the findings described in this study represent the first report of a gene conferring transferable resistance to pleuromutilins and oxazolidinones....

  14. Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat diet-induced insulin resistance and endothelial dysfunction

    OpenAIRE

    Jang, Hyun-Ju; Ridgeway, Simone D.; Kim, Jeong-a

    2013-01-01

    Insulin resistance, a hallmark of metabolic disorders, is a risk factor for diabetes and cardiovascular disease. Impairment of insulin responsiveness in vascular endothelium contributes to insulin resistance. The reciprocal relationship between insulin resistance and endothelial dysfunction augments the pathophysiology of metabolism and cardiovascular functions. The most abundant green tea polyphenol, epigallocatechin-3-gallate (EGCG), has been shown to have vasodilator action in vessels by a...

  15. The oxidative stress responsive transcription factor Pap1 confers DNA damage resistance on checkpoint-deficient fission yeast cells.

    Directory of Open Access Journals (Sweden)

    Carrie Belfield

    Full Text Available Eukaryotic cells invoke mechanisms to promote survival when confronted with cellular stress or damage to the genome. The protein kinase Chk1 is an integral and conserved component of the DNA damage response pathway. Mutation or inhibition of Chk1 results in mitotic death when cells are exposed to DNA damage. Oxidative stress activates a pathway that results in nuclear accumulation of the bZIP transcription factor Pap1. We report the novel finding that fission yeast Pap1 confers resistance to drug- and non-drug-induced DNA damage even when the DNA damage checkpoint is compromised. Multi-copy expression of Pap1 restores growth to chk1-deficient cells exposed to camptothecin or hydroxyurea. Unexpectedly, increased Pap1 expression also promotes survival of chk1-deficient cells with mutations in genes encoding DNA ligase (cdc17 or DNA polymerase δ (cdc6, but not DNA replication initiation mutants. The ability of Pap1 to confer resistance to DNA damage was not specific to chk1 mutants, as it also improved survival of rad1- and rad9-deficient cells in the presence of CPT. To confer resistance to DNA damage Pap1 must localize to the nucleus and be transcriptionally active.

  16. Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria

    DEFF Research Database (Denmark)

    Giessing, Anders; Jensen, Søren Skov; Rasmussen, Anette

    2009-01-01

    The Cfr methyltransferase confers combined resistance to five different classes of antibiotics that bind to the peptidyl transferase center of bacterial ribosomes. The Cfr-mediated modification has previously been shown to occur on nucleotide A2503 of 23S rRNA and has a mass corresponding......,8-dimethyladenosine. The mutation of single conserved cysteine residues in the radical SAM motif CxxxCxxC of Cfr abolishes its activity, lending support to the notion that the Cfr modification reaction occurs via a radical-based mechanism. Antibiotic susceptibility data confirm that the antibiotic resistance...

  17. The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat.

    Science.gov (United States)

    Sasaki, Kentaro; Kuwabara, Chikako; Umeki, Natsuki; Fujioka, Mari; Saburi, Wataru; Matsui, Hirokazu; Abe, Fumitaka; Imai, Ryozo

    2016-06-20

    TAD1 (Triticum aestivum defensin 1) is induced during cold acclimation in winter wheat and encodes a plant defensin with antimicrobial activity. In this study, we demonstrated that recombinant TAD1 protein inhibits hyphal growth of the snow mold fungus, Typhula ishikariensis in vitro. Transgenic wheat plants overexpressing TAD1 were created and tested for resistance against T. ishikariensis. Leaf inoculation assays revealed that overexpression of TAD1 confers resistance against the snow mold. In addition, the TAD1-overexpressors showed resistance against Fusarium graminearum, which causes Fusarium head blight, a devastating disease in wheat and barley. These results indicate that TAD1 is a candidate gene to improve resistance against multiple fungal diseases in cereal crops.

  18. Overexpression of Salmonella enterica serovar Typhi recA gene confers fluoroquinolone resistance in Escherichia coli DH5α.

    Science.gov (United States)

    Yassien, M A M; Elfaky, M A

    2015-11-01

    A spontaneous fluoroquinolone-resistant mutant (STM1) was isolated from its parent Salmonella enterica serovar Typhi (S. Typhi) clinical isolate. Unlike its parent isolate, this mutant has selective resistance to fluoroquinolones without any change in its sensitivity to various other antibiotics. DNA gyrase assays revealed that the fluoroquinolone resistance phenotype of the STM1 mutant did not result from alteration of the fluoroquinolone sensitivity of the DNA gyrase isolated from it. To study the mechanism of fluoroquinolone resistance, a genomic library from the STM1 mutant was constructed in Escherichia coli DH5α and two recombinant plasmids were obtained. Only one of these plasmids (STM1-A) conferred the selective fluoroquinolone resistance phenotype to E. coli DH5α. The chromosomal insert from STM1-A, digested with EcoRI and HindIII restriction endonucleases, produced two DNA fragments and these were cloned separately into pUC19 thereby generating two new plasmids, STM1-A1 and STM1-A2. Only STM1-A1 conferred the selective fluoroquinolone resistance phenotype to E. coli DH5α. Sequence and subcloning analyses of STM1-A1 showed the presence of an intact RecA open reading frame. Unlike that of the wild-type E. coli DH5α, protein analysis of a crude STM1-A1 extract showed overexpression of a 40 kDa protein. Western blotting confirmed the 40 kDa protein band to be RecA. When a RecA PCR product was cloned into pGEM-T and introduced into E. coli DH5α, the STM1-A11 subclone retained fluoroquinolone resistance. These results suggest that overexpression of RecA causes selective fluoroquinolone resistance in E. coli DH5α.

  19. Overexpression of Salmonella enterica serovar Typhi recA gene confers fluoroquinolone resistance in Escherichia coli DH5α

    Directory of Open Access Journals (Sweden)

    M.A.M. Yassien

    2015-11-01

    Full Text Available A spontaneous fluoroquinolone-resistant mutant (STM1 was isolated from its parent Salmonella enterica serovar Typhi (S. Typhi clinical isolate. Unlike its parent isolate, this mutant has selective resistance to fluoroquinolones without any change in its sensitivity to various other antibiotics. DNA gyrase assays revealed that the fluoroquinolone resistance phenotype of the STM1 mutant did not result from alteration of the fluoroquinolone sensitivity of the DNA gyrase isolated from it. To study the mechanism of fluoroquinolone resistance, a genomic library from the STM1 mutant was constructed in Escherichia coli DH5α and two recombinant plasmids were obtained. Only one of these plasmids (STM1-A conferred the selective fluoroquinolone resistance phenotype to E. coli DH5α. The chromosomal insert from STM1-A, digested with EcoRI and HindIII restriction endonucleases, produced two DNA fragments and these were cloned separately into pUC19 thereby generating two new plasmids, STM1-A1 and STM1-A2. Only STM1-A1 conferred the selective fluoroquinolone resistance phenotype to E. coli DH5α. Sequence and subcloning analyses of STM1-A1 showed the presence of an intact RecA open reading frame. Unlike that of the wild-type E. coli DH5α, protein analysis of a crude STM1-A1 extract showed overexpression of a 40 kDa protein. Western blotting confirmed the 40 kDa protein band to be RecA. When a RecA PCR product was cloned into pGEM-T and introduced into E. coli DH5α, the STM1-A11 subclone retained fluoroquinolone resistance. These results suggest that overexpression of RecA causes selective fluoroquinolone resistance in E. coli DH5α.

  20. Use of the Novel INNO-LiPA Line Probe Assay for Detection of Hepatitis B Virus Variants That Confer Resistance to Entecavir Therapy▿

    Science.gov (United States)

    Jardi, Rosendo; Rodriguez-Frias, Francisco; Tabernero, David; Homs, Maria; Schaper, Melanie; Esteban, Rafael; Buti, Maria

    2009-01-01

    A line probe assay (INNO-LiPA DR, version 3) for the detection of hepatitis B virus mutations that confer resistance to entecavir therapy was evaluated. The INNO-LiPA DR assay is a highly sensitive assay that is easily applicable for the detection and monitoring of entecavir resistance-conferring mutations and is more sensitive than sequencing for the detection of mixed sequences. PMID:19052182

  1. Frequency of alleles conferring resistance to the Bt toxins Cry1Ac and Cry2Ab in Australian populations of Helicoverpa armigera (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Mahon, R J; Olsen, K M; Downes, S; Addison, S

    2007-12-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is an important lepidopteran pest of cotton (Gossypium spp.) in Australia and the Old World. From 2002, F2 screens were used to examine the frequency of resistance alleles in Australian populations of H. armigera to Bacillus thuringiensis (Bt) CrylAc and Cry2Ab, the two insecticidal proteins present in the transgenic cotton Bollgard II. At that time, Ingard (expressing Cry1Ac) cotton had been grown in Australia for seven seasons, and Bollgard II was about to be commercially released. The principal objective of our study was to determine whether sustained exposure caused an elevated frequency of alleles conferring resistance to Cry1Ac in a species with a track record of evolving resistance to conventional insecticides. No major alleles conferring resistance to Cry1Ac were found. The frequency of resistance alleles for Cry1Ac was <0.0003, with a 95% credibility interval between 0 and 0.0009. In contrast, alleles conferring resistance to Cry2Ab were found at a frequency of 0.0033 (0.0017, 0.0055). The first isolation of this allele was found before the widespread deployment of Bollgard II. For both toxins the experiment-wise detection probability was 94.4%. Our results suggest that alleles conferring resistance to Cry1Ac are rare and that a relatively high baseline frequency of alleles conferring resistance to Cry2Ab existed before the introduction of Bt cotton containing this toxin.

  2. Tbx2 confers poor prognosis in glioblastoma and promotes temozolomide resistance with change of mitochondrial dynamics

    Science.gov (United States)

    Yi, Fuxin; Du, Jianzhou; Ni, Weimin; Liu, Weixian

    2017-01-01

    Tbx2 is a cancer-related protein that was found to be overexpressed in several human malignancies. The present study aims to investigate the clinical significance and biological role of Tbx2 in human astrocytoma. We examined its protein expression in 102 cases of astrocytoma tissues using immunohistochemical staining. Negative Tbx2 staining was observed in normal astrocytes, and positive nuclear staining was found in 41 out of 102 astrocytoma specimens. The rate of Tbx2 overexpression in pylocytic astrocytoma, diffuse astrocytoma, anaplastic astrocytoma, and glioblastoma multiform (GBM) were 0%, 26.1%, 40%, and 52%, respectively. Tbx2 overexpression correlated with poor prognosis in patients with astrocytoma or GBM. Tbx2 plasmid transfection was performed in A172 cells, and Tbx2 siRNA knockdown was carried out in U251 cells. Cell Counting Kit-8, cell cycle analysis, and matrigel invasion assay showed that Tbx2 overexpression upregulated cell proliferation, G1-S transition, and invasion, with corresponding change of cyclin D1, p21, and MMP 2 and 9. Importantly, we demonstrated that Tbx2 reduced apoptosis and conferred resistance to temozolomide in GBM cell lines. Further experiments showed that Tbx2 could regulate mitochondrial fission/fusion balance. Western blot showed that Tbx2 overexpression reduced caspase 3 cleavage, while it induced Bcl-2 and p-Drp1 upregulation. In conclusion, our results indicated that Tbx2 might serve as an indicator for poor prognosis and also be useful as an important therapeutic in human GBM, which inhibits apoptosis through regulation of mitochondrial function. PMID:28260920

  3. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil.

    Science.gov (United States)

    Ribeiro, Thuanne Pires; Arraes, Fabricio Barbosa Monteiro; Lourenço-Tessutti, Isabela Tristan; Silva, Marilia Santos; Lisei-de-Sá, Maria Eugênia; Lucena, Wagner Alexandre; Macedo, Leonardo Lima Pepino; Lima, Janaina Nascimento; Santos Amorim, Regina Maria; Artico, Sinara; Alves-Ferreira, Márcio; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-01-12

    Genetically modified (GM) cotton plants that effectively control cotton boll weevil (CBW), which is the most destructive cotton insect pest in South America, are reported here for the first time. This work presents the successful development of a new GM cotton with high resistance to CBW conferred by Cry10Aa toxin, a protein encoded by entomopathogenic Bacillus thuringiensis (Bt) gene. The plant transformation vector harbouring cry10Aa gene driven by the cotton ubiquitination-related promoter uceA1.7 was introduced into a Brazilian cotton cultivar by biolistic transformation. Quantitative PCR (qPCR) assays revealed high transcription levels of cry10Aa in both T0 GM cotton leaf and flower bud tissues. Southern blot and qPCR-based 2(-ΔΔCt) analyses revealed that T0 GM plants had either one or two transgene copies. Quantitative and qualitative analyses of Cry10Aa protein expression showed variable protein expression levels in both flower buds and leaves tissues of T0 GM cotton plants, ranging from approximately 3.0 to 14.0 μg g(-1) fresh tissue. CBW susceptibility bioassays, performed by feeding adults and larvae with T0 GM cotton leaves and flower buds, respectively, demonstrated a significant entomotoxic effect and a high level of CBW mortality (up to 100%). Molecular analysis revealed that transgene stability and entomotoxic effect to CBW were maintained in T1 generation as the Cry10Aa toxin expression levels remained high in both tissues, ranging from 4.05 to 19.57 μg g(-1) fresh tissue, and the CBW mortality rate remained around 100%. In conclusion, these Cry10Aa GM cotton plants represent a great advance in the control of the devastating CBW insect pest and can substantially impact cotton agribusiness.

  4. Deletion of gene encoding methyltransferase (gidB) confers high-level antimicrobial resistance in Salmonella.

    Science.gov (United States)

    Mikheil, Dareen M; Shippy, Daniel C; Eakley, Nicholas M; Okwumabua, Ogi E; Fadl, Amin A

    2012-04-01

    The glucose-inhibited division gene (gid)B, which resides in the gid operon, was thought to have a role in the modulation of genes similar to that of gidA. Recent studies have indicated that GidB is a methyltransferase enzyme that is involved in the methylation of the 16S ribosomal RNA (rRNA) in Escherichia coli. In this study, we investigated the role of GidB in susceptibility to antibiotics and the overall biology of Salmonella. A gidB isogenic mutant of Salmonella was constructed and subsequently characterized under different conditions. Our data indicated that growth and invasion characteristics of the gidB mutant were similar to those of the wild type (WT). The gidB mutant was outgrown by the WT in a competitive growth assay, indicating a compromised overall bacterial fitness. Under the stress of nalidixic acid, the gidB mutant's motility was significantly reduced. Similarly, the mutant showed a filamentous morphology and smaller colony size compared with the rod-shaped and large colonies of the WT in the presence of nalidixic acid. Most importantly, deletion of gidB conferred high-level resistance to the aminoglycoside antibiotics streptomycin and neomycin. A primer extension assay determined the methylation site for the WT to be at G527 of the 16S rRNA. A lack of methylation in the mutant indicated that GidB is required for this methylation. Taken together, these data indicate that the GidB enzyme has a significant role in the alteration of antibiotic susceptibility and the modulation of growth and morphology under stress conditions in Salmonella.

  5. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan, E-mail: danw@bjmu.edu.cn [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Liu, Jing; Wu, Baiyan [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Tu, Bo; Zhu, Weiguo [Department of Biochemistry and Molecular Biology, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Luo, Jianyuan, E-mail: jluo@som.umaryland.edu [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Department of Medical and Research Technology, School of Medicine, University of Maryland, Baltimore 21201 (United States)

    2014-04-25

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration.

  6. Non-injurious neonatal hypoxia confers resistance to brain senescence in aged male rats.

    Directory of Open Access Journals (Sweden)

    Nicolas Martin

    Full Text Available Whereas brief acute or intermittent episodes of hypoxia have been shown to exert a protective role in the central nervous system and to stimulate neurogenesis, other studies suggest that early hypoxia may constitute a risk factor that influences the future development of mental disorders. We therefore investigated the effects of a neonatal "conditioning-like" hypoxia (100% N₂, 5 min on the brain and the cognitive outcomes of rats until 720 days of age (physiologic senescence. We confirmed that such a short hypoxia led to brain neurogenesis within the ensuing weeks, along with reduced apoptosis in the hippocampus involving activation of Erk1/2 and repression of p38 and death-associated protein (DAP kinase. At 21 days of age, increased thicknesses and cell densities were recorded in various subregions, with strong synapsin activation. During aging, previous exposure to neonatal hypoxia was associated with enhanced memory retrieval scores specifically in males, better preservation of their brain integrity than controls, reduced age-related apoptosis, larger hippocampal cell layers, and higher expression of glutamatergic and GABAergic markers. These changes were accompanied with a marked expression of synapsin proteins, mainly of their phosphorylated active forms which constitute major players of synapse function and plasticity, and with increases of their key regulators, i.e. Erk1/2, the transcription factor EGR-1/Zif-268 and Src kinase. Moreover, the significantly higher interactions between PSD-95 scaffolding protein and NMDA receptors measured in the hippocampus of 720-day-old male animals strengthen the conclusion of increased synaptic functional activity and plasticity associated with neonatal hypoxia. Thus, early non-injurious hypoxia may trigger beneficial long term effects conferring higher resistance to senescence in aged male rats, with a better preservation of cognitive functions.

  7. Resistance to the novel fungicide pyrimorph in Phytophthora capsici: risk assessment and detection of point mutations in CesA3 that confer resistance.

    Science.gov (United States)

    Pang, Zhili; Shao, Jingpeng; Chen, Lei; Lu, Xiaohong; Hu, Jian; Qin, Zhaohai; Liu, Xili

    2013-01-01

    Pyrimorph is a novel fungicide with high activity against the plant pathogen Phytophthora capsici. We investigated the risk that P. capsici can develop resistance to pyrimorph. The baseline sensitivities of 226 P. capsici isolates, tested by mycelial growth inhibition, showed a unimodal distribution with a mean EC(50) value of 1.4261 (± 0.4002) µg/ml. Twelve pyrimorph-resistant mutants were obtained by repeated exposure to pyrimorph in vitro with a frequency of approximately 1 × 10(-4). The resistance factors of the mutants ranged from 10.67 to 56.02. Pyrimorph resistance of the mutants was stable after 10 transfers on pyrimorph-free medium. Fitness in sporulation, cystospore germination, and pathogenicity in the pyrimorph-resistant mutants was similar to or less than that in the parental wild-type isolates. On detached pepper leaves and pepper plants treated with the recommended maximum dose of pyrimorph, however, virulence was greater for mutants with a high level of pyrimorph resistance than for the wild type. The results suggest that the risk of P. capsici developing resistance to pyrimorph is low to moderate. Among mutants with a high level of pyrimorph resistance, EC(50) values for pyrimorph and CAA fungicides flumorph, dimethomorph, and mandipropamid were positively correlated. This indicated that point mutations in cellulose synthase 3 (CesA3) may confer resistance to pyrimorph. Comparison of CesA3 in isolates with a high level of pyrimorph resistance and parental isolates showed that an amino acid change from glutamine to lysine at position 1077 resulted in stable, high resistance in the mutants. Based on the point mutations, an allele-specific PCR method was developed to detect pyrimorph resistance in P. capsici populations.

  8. Resistance to the novel fungicide pyrimorph in Phytophthora capsici: risk assessment and detection of point mutations in CesA3 that confer resistance.

    Directory of Open Access Journals (Sweden)

    Zhili Pang

    Full Text Available Pyrimorph is a novel fungicide with high activity against the plant pathogen Phytophthora capsici. We investigated the risk that P. capsici can develop resistance to pyrimorph. The baseline sensitivities of 226 P. capsici isolates, tested by mycelial growth inhibition, showed a unimodal distribution with a mean EC(50 value of 1.4261 (± 0.4002 µg/ml. Twelve pyrimorph-resistant mutants were obtained by repeated exposure to pyrimorph in vitro with a frequency of approximately 1 × 10(-4. The resistance factors of the mutants ranged from 10.67 to 56.02. Pyrimorph resistance of the mutants was stable after 10 transfers on pyrimorph-free medium. Fitness in sporulation, cystospore germination, and pathogenicity in the pyrimorph-resistant mutants was similar to or less than that in the parental wild-type isolates. On detached pepper leaves and pepper plants treated with the recommended maximum dose of pyrimorph, however, virulence was greater for mutants with a high level of pyrimorph resistance than for the wild type. The results suggest that the risk of P. capsici developing resistance to pyrimorph is low to moderate. Among mutants with a high level of pyrimorph resistance, EC(50 values for pyrimorph and CAA fungicides flumorph, dimethomorph, and mandipropamid were positively correlated. This indicated that point mutations in cellulose synthase 3 (CesA3 may confer resistance to pyrimorph. Comparison of CesA3 in isolates with a high level of pyrimorph resistance and parental isolates showed that an amino acid change from glutamine to lysine at position 1077 resulted in stable, high resistance in the mutants. Based on the point mutations, an allele-specific PCR method was developed to detect pyrimorph resistance in P. capsici populations.

  9. Tandem amplification of a chromosomal segment harboring 5-enolpyruvylshikimate-3-phosphate synthase locus confers glyphosate resistance in Kochia scoparia.

    Science.gov (United States)

    Jugulam, Mithila; Niehues, Kindsey; Godar, Amar S; Koo, Dal-Hoe; Danilova, Tatiana; Friebe, Bernd; Sehgal, Sunish; Varanasi, Vijay K; Wiersma, Andrew; Westra, Philip; Stahlman, Phillip W; Gill, Bikram S

    2014-11-01

    Recent rapid evolution and spread of resistance to the most extensively used herbicide, glyphosate, is a major threat to global crop production. Genetic mechanisms by which weeds evolve resistance to herbicides largely determine the level of resistance and the rate of evolution of resistance. In a previous study, we determined that glyphosate resistance in Kochia scoparia is due to the amplification of the 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) gene, the enzyme target of glyphosate. Here, we investigated the genomic organization of the amplified EPSPS copies using fluorescence in situ hybridization (FISH) and extended DNA fiber (Fiber FISH) on K. scoparia chromosomes. In both glyphosate-resistant K. scoparia populations tested (GR1 and GR2), FISH results displayed a single and prominent hybridization site of the EPSPS gene localized on the distal end of one pair of homologous metaphase chromosomes compared with a faint hybridization site in glyphosate-susceptible samples (GS1 and GS2). Fiber FISH displayed 10 copies of the EPSPS gene (approximately 5 kb) arranged in tandem configuration approximately 40 to 70 kb apart, with one copy in an inverted orientation in GR2. In agreement with FISH results, segregation of EPSPS copies followed single-locus inheritance in GR1 population. This is the first report of tandem target gene amplification conferring field-evolved herbicide resistance in weed populations.

  10. Identification of regulated genes conferring resistance to high concentrations of glyphosate in a new strain of Enterobacter.

    Science.gov (United States)

    Fei, Yun-Yan; Gai, Jun-Yi; Zhao, Tuan-Jie

    2013-12-01

    Glyphosate is a widely used herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity. Most plants and microbes are sensitive to glyphosate. However, transgenic-resistant crops that contain a modified epsps obtained from the resistant microbes have been commercially successful and therefore, new resistance genes and their adaptive regulatory mechanisms are of great interest. In this study, a soil-borne, glyphosate-resistant bacterium was selected and identified as Enterobacter. The EPSPS in this strain was found to have been altered to a resistant one. A total of 42 differentially expressed genes (DEGs) in the glyphosate were screened using microarray techniques. Under treatment, argF, sdhA, ivbL, rrfA-H were downregulated, whereas the transcripts of speA, osmY, pflB, ahpC, fusA, deoA, uxaC, rpoD and a few ribosomal protein genes were upregulated. Data were verified by quantitative real-time PCR on selected genes. All transcriptional changes appeared to protect the bacteria from glyphosate and associated osmotic, acidic and oxidative stresses. Many DEGs may have the potential to confer resistance to glyphosate alone, and some may be closely related to the shikimate pathway, reflecting the complex gene interaction network for glyphosate resistance.

  11. Mitochondrial aldehyde dehydrogenase obliterates insulin resistance-induced cardiac dysfunction through deacetylation of PGC-1α

    Science.gov (United States)

    Hu, Nan; Ren, Jun; Zhang, Yingmei

    2016-01-01

    Insulin resistance contributes to the high prevalence of type 2 diabetes mellitus, leading to cardiac anomalies. Emerging evidence depicts a pivotal role for mitochondrial injury in oxidative metabolism and insulin resistance. Mitochondrial aldehyde dehydrogenase (ALDH2) is one of metabolic enzymes detoxifying aldehydes although its role in insulin resistance remains elusive. This study was designed to evaluate the impact of ALDH2 overexpression on insulin resistance-induced myocardial damage and mechanisms involved with a focus on autophagy. Wild-type (WT) and transgenic mice overexpressing ALDH2 were fed sucrose or starch diet for 8 weeks and cardiac function and intracellular Ca2+ handling were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate Akt, heme oxygenase-1 (HO-1), PGC-1α and Sirt-3. Our data revealed that sucrose intake provoked insulin resistance and compromised fractional shortening, cardiomyocyte function and intracellular Ca2+ handling (p 0.05), mitochondrial injury (elevated ROS generation, suppressed NAD+ and aconitase activity, p < 0.05 for all), the effect of which was ablated by ALDH2. In vitro incubation of the ALDH2 activator Alda-1, the Sirt3 activator oroxylin A and the histone acetyltransferase inhibitor CPTH2 rescued insulin resistance-induced changes in aconitase activity and cardiomyocyte function (p < 0.05). Inhibiting Sirt3 deacetylase using 5-amino-2-(4-aminophenyl) benzoxazole negated Alda-1-induced cardioprotective effects. Taken together, our data suggest that ALDH2 serves as an indispensable cardioprotective factor against insulin resistance-induced cardiomyopathy with a mechanism possibly associated with facilitation of the Sirt3-dependent PGC-1α deacetylation. PMID:27634872

  12. CLINICAL IMPORTANCE OF ENDOTHELIAL DYSFUNCTION AND INSULIN RESISTANCE SYNDROME IN PATIENTS WITH GOUT ASSOCIATED WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    N. N. Kushnarenko

    2015-09-01

    Full Text Available Aim. To study the endothelium status and determine the correlation between endothelial dysfunction and glucose metabolism in men with gout associated with arterial hypertension (HT.Material and methods. Patients (n=175, all are males with gout were enrolled into the study. Ambulatory blood pressure monitoring (ABPM was performed in all patients. Endothelial function was studied in tests with reactive hyperemia (endothelium-dependent reaction and nitroglycerin (endothelium independent reaction in brachial artery by ultrasonic Doppler examination. The level of nitrite-nitrate and endothelin-1 in blood serum was determined by ELISA technique. Fasting blood glucose and oral glucose tolerance tests were performed as well as fasting insulin blood level was determined by immunoenzyme method. Insulin-resistance index (HOMA-IR was calculated. Patients with HOMA- IR>2.77 were considered as insulin-resistant.Results. Patients with gout demonstrated endothelial deterioration associated with activation of nitroxid producing function, elevation in endothelin-1 serum level (1.36 fmol/ml [0.91; 2.32 fmol/ml] vs 0.19 fmol/ml [0.16; 0.27 fmol/ml] in controls, p<0.05 and impairments of endothelium-dependent vasodilation (6.4% [3.3; 7.3%] vs 17.8% [12.7; 23.9%] in controls, p<0.05. The revealed changes were the most marked in patients with gout associated with HT. The correlation between some endothelial dysfunction in- dices and glucose metabolism was observed.Conclusion. ABPM, brachial artery endothelium-dependent vasodilation and glucose metabolism status should be studied in patients with gout. Complex treatment of cardiovascular diseases in patients with gout should include ω-3 polyunsaturated fatty acids, angiotensin receptor antagonists should be used for antihypertensive therapy.

  13. CLINICAL IMPORTANCE OF ENDOTHELIAL DYSFUNCTION AND INSULIN RESISTANCE SYNDROME IN PATIENTS WITH GOUT ASSOCIATED WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    N. N. Kushnarenko

    2013-01-01

    Full Text Available Aim. To study the endothelium status and determine the correlation between endothelial dysfunction and glucose metabolism in men with gout associated with arterial hypertension (HT.Material and methods. Patients (n=175, all are males with gout were enrolled into the study. Ambulatory blood pressure monitoring (ABPM was performed in all patients. Endothelial function was studied in tests with reactive hyperemia (endothelium-dependent reaction and nitroglycerin (endothelium independent reaction in brachial artery by ultrasonic Doppler examination. The level of nitrite-nitrate and endothelin-1 in blood serum was determined by ELISA technique. Fasting blood glucose and oral glucose tolerance tests were performed as well as fasting insulin blood level was determined by immunoenzyme method. Insulin-resistance index (HOMA-IR was calculated. Patients with HOMA- IR>2.77 were considered as insulin-resistant.Results. Patients with gout demonstrated endothelial deterioration associated with activation of nitroxid producing function, elevation in endothelin-1 serum level (1.36 fmol/ml [0.91; 2.32 fmol/ml] vs 0.19 fmol/ml [0.16; 0.27 fmol/ml] in controls, p<0.05 and impairments of endothelium-dependent vasodilation (6.4% [3.3; 7.3%] vs 17.8% [12.7; 23.9%] in controls, p<0.05. The revealed changes were the most marked in patients with gout associated with HT. The correlation between some endothelial dysfunction in- dices and glucose metabolism was observed.Conclusion. ABPM, brachial artery endothelium-dependent vasodilation and glucose metabolism status should be studied in patients with gout. Complex treatment of cardiovascular diseases in patients with gout should include ω-3 polyunsaturated fatty acids, angiotensin receptor antagonists should be used for antihypertensive therapy.

  14. Evaluation of dihydrofolate reductase and dihydropteroate synthetase genotypes that confer resistance to sulphadoxine-pyrimethamine in Plasmodium falciparum in Haiti.

    Science.gov (United States)

    Carter, Tamar E; Warner, Megan; Mulligan, Connie J; Existe, Alexander; Victor, Yves S; Memnon, Gladys; Boncy, Jacques; Oscar, Roland; Fukuda, Mark M; Okech, Bernard A

    2012-08-13

    Malaria caused by Plasmodium falciparum infects roughly 30,000 individuals in Haiti each year. Haiti has used chloroquine (CQ) as a first-line treatment for malaria for many years and as a result there are concerns that malaria parasites may develop resistance to CQ over time. Therefore it is important to prepare for alternative malaria treatment options should CQ resistance develop. In many other malaria-endemic regions, antifolates, particularly pyrimethamine (PYR) and sulphadoxine (SDX) treatment combination (SP), have been used as an alternative when CQ resistance has developed. This study evaluated mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes that confer PYR and SDX resistance, respectively, in P. falciparum to provide baseline data in Haiti. This study is the first comprehensive study to examine PYR and SDX resistance genotypes in P. falciparum in Haiti. DNA was extracted from dried blood spots and genotyped for PYR and SDX resistance mutations in P. falciparum using PCR and DNA sequencing methods. Sixty-one samples were genotyped for PYR resistance in codons 51, 59, 108 and 164 of the dhfr gene and 58 samples were genotyped for SDX resistance codons 436, 437, 540 of the dhps gene in P. falciparum. Thirty-three percent (20/61) of the samples carried a mutation at codon 108 (S108N) of the dhfr gene. No mutations in dhfr at codons 51, 59, 164 were observed in any of the samples. In addition, no mutations were observed in dhps at the three codons (436, 437, 540) examined. No significant difference was observed between samples collected in urban vs rural sites (Welch's T-test p-value = 0.53 and permutations p-value = 0.59). This study has shown the presence of the S108N mutation in P. falciparum that confers low-level PYR resistance in Haiti. However, the absence of SDX resistance mutations suggests that SP resistance may not be present in Haiti. These results have important implications for ongoing discussions on

  15. Evaluation of dihydrofolate reductase and dihydropteroate synthetase genotypes that confer resistance to sulphadoxine-pyrimethamine in Plasmodium falciparum in Haiti

    Directory of Open Access Journals (Sweden)

    Carter Tamar E

    2012-08-01

    Full Text Available Abstract Background Malaria caused by Plasmodium falciparum infects roughly 30,000 individuals in Haiti each year. Haiti has used chloroquine (CQ as a first-line treatment for malaria for many years and as a result there are concerns that malaria parasites may develop resistance to CQ over time. Therefore it is important to prepare for alternative malaria treatment options should CQ resistance develop. In many other malaria-endemic regions, antifolates, particularly pyrimethamine (PYR and sulphadoxine (SDX treatment combination (SP, have been used as an alternative when CQ resistance has developed. This study evaluated mutations in the dihydrofolate reductase (dhfr and dihydropteroate synthetase (dhps genes that confer PYR and SDX resistance, respectively, in P. falciparum to provide baseline data in Haiti. This study is the first comprehensive study to examine PYR and SDX resistance genotypes in P. falciparum in Haiti. Methods DNA was extracted from dried blood spots and genotyped for PYR and SDX resistance mutations in P. falciparum using PCR and DNA sequencing methods. Sixty-one samples were genotyped for PYR resistance in codons 51, 59, 108 and 164 of the dhfr gene and 58 samples were genotyped for SDX resistance codons 436, 437, 540 of the dhps gene in P. falciparum. Results Thirty-three percent (20/61 of the samples carried a mutation at codon 108 (S108N of the dhfr gene. No mutations in dhfr at codons 51, 59, 164 were observed in any of the samples. In addition, no mutations were observed in dhps at the three codons (436, 437, 540 examined. No significant difference was observed between samples collected in urban vs rural sites (Welch’s T-test p-value = 0.53 and permutations p-value = 0.59. Conclusion This study has shown the presence of the S108N mutation in P. falciparum that confers low-level PYR resistance in Haiti. However, the absence of SDX resistance mutations suggests that SP resistance may not be present in Haiti. These

  16. Introgression and pyramiding into common bean market class fabada of genes conferring resistance to anthracnose and potyvirus.

    Science.gov (United States)

    Ferreira, Juan José; Campa, Ana; Pérez-Vega, Elena; Rodríguez-Suárez, Cristina; Giraldez, Ramón

    2012-03-01

    Anthracnose and bean common mosaic (BCM) are considered major diseases in common bean crop causing severe yield losses worldwide. This work describes the introgression and pyramiding of genes conferring genetic resistance to BCM and anthracnose local races into line A25, a bean genotype classified as market class fabada. Resistant plants were selected using resistance tests or combining resistance tests and marker-assisted selection. Lines A252, A321, A493, Sanilac BC6-Are, and BRB130 were used as resistance sources. Resistance genes to anthracnose (Co-2 ( C ), Co-2 ( A252 ) and Co-3/9) and/or BCM (I and bc-3) were introgressed in line A25 through six parallel backcrossing programs, and six breeding lines showing a fabada seed phenotype were obtained after six backcross generations: line A1258 from A252; A1231 from A321; A1220 from A493; A1183 and A1878 from Sanilac BC6-Are; and line A2418 from BRB130. Pyramiding of different genes were developed using the pedigree method from a single cross between lines obtained in the introgression step: line A1699 (derived from cross A1258 × A1220), A2438 (A1220 × A1183), A2806 (A1878 × A2418), and A3308 (A1699 × A2806). A characterization based on eight morpho-agronomic traits revealed a limited differentiation among the obtained breeding lines and the recurrent line A25. However, using a set of seven molecular markers linked to the loci used in the breeding programs it was possible to differentiate the 11 fabada lines. Considering the genetic control of the resistance in resistant donor lines, the observed segregations in the last backcrossing generation, the reaction against the pathogens, and the expression of the molecular markers it was also possible to infer the genotype conferring resistance in the ten fabada breeding lines obtained. As a result of these breeding programs, genetic resistance to three anthracnose races controlled by genes included in clusters Co-2 and Co-3/9, and genetic resistance to BCM controlled

  17. A consensus development conference model for establishing health policy for surveillance and screening of antimicrobial-resistant organisms.

    Science.gov (United States)

    Buick, Steve; Joffe, A Mark; Taylor, Geoffrey; Conly, John

    2015-04-01

    The Canadian Consensus Development Conference on Surveillance and Screening for Antimicrobial-Resistant Organisms (AROs) was sponsored by the Alberta Ministry of Health to provide evidence to update policies for ARO screening in acute care settings. A rigorous evidence-based literature review completed before the conference concluded that that neither universal nor targeted screening of patients was associated with a reduction in hospital-acquired ARO colonization, infection, morbidity, or mortality. Leading international clinicians, scientists, academics, policy makers, and administrators presented current evidence and clinical experience, focusing on whether and how hospitals should screen patients for AROs as part of broader ARO control strategies. An unbiased and independent "jury" with a broad base of expertise from complementary disciplines considered the evidence and released a consensus statement of 22 recommendations. Policy highlights included developing an integrated "One Health" strategy, fully resourcing basic infection control practices, not performing universal screening, and focusing original research to determine what works.

  18. Distinct Detoxification Mechanisms Confer Resistance to Mesotrione and Atrazine in a Population of Waterhemp1[C][W][OPEN

    Science.gov (United States)

    Ma, Rong; Kaundun, Shiv S.; Tranel, Patrick J.; Riggins, Chance W.; McGinness, Daniel L.; Hager, Aaron G.; Hawkes, Tim; McIndoe, Eddie; Riechers, Dean E.

    2013-01-01

    Previous research reported the first case of resistance to mesotrione and other 4-hydroxyphenylpyruvate dioxygenase (HPPD) herbicides in a waterhemp (Amaranthus tuberculatus) population designated MCR (for McLean County mesotrione- and atrazine-resistant). Herein, experiments were conducted to determine if target site or nontarget site mechanisms confer mesotrione resistance in MCR. Additionally, the basis for atrazine resistance was investigated in MCR and an atrazine-resistant but mesotrione-sensitive population (ACR for Adams County mesotrione-sensitive but atrazine-resistant). A standard sensitive population (WCS for Wayne County herbicide-sensitive) was also used for comparison. Mesotrione resistance was not due to an alteration in HPPD sequence, HPPD expression, or reduced herbicide absorption. Metabolism studies using whole plants and excised leaves revealed that the time for 50% of absorbed mesotrione to degrade in MCR was significantly shorter than in ACR and WCS, which correlated with previous phenotypic responses to mesotrione and the quantity of the metabolite 4-hydroxy-mesotrione in excised leaves. The cytochrome P450 monooxygenase inhibitors malathion and tetcyclacis significantly reduced mesotrione metabolism in MCR and corn (Zea mays) excised leaves but not in ACR. Furthermore, malathion increased mesotrione activity in MCR seedlings in greenhouse studies. These results indicate that enhanced oxidative metabolism contributes significantly to mesotrione resistance in MCR. Sequence analysis of atrazine-resistant (MCR and ACR) and atrazine-sensitive (WCS) waterhemp populations detected no differences in the psbA gene. The times for 50% of absorbed atrazine to degrade in corn, MCR, and ACR leaves were shorter than in WCS, and a polar metabolite of atrazine was detected in corn, MCR, and ACR that cochromatographed with a synthetic atrazine-glutathione conjugate. Thus, elevated rates of metabolism via distinct detoxification mechanisms contribute to

  19. Overexpression of Mcl-1 Confers Multidrug Resistance, Whereas Topoisomerase IIβ Downregulation Introduces Mitoxantrone-Specific Drug Resistance in Acute Myeloid Leukemia

    Science.gov (United States)

    Hermanson, David L.; Das, Sonia G.; Li, Yunfang

    2013-01-01

    Drug resistance is a serious challenge in cancer treatment and can be acquired through multiple mechanisms. These molecular changes may introduce varied extents of resistance to different therapies and need to be characterized for optimal therapy choice. A recently discovered small molecule, ethyl-2-amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate) (CXL017), reveals selective cytotoxicity toward drug-resistant leukemia. A drug-resistant acute myeloid leukemia cell line, HL60/MX2, also failed to acquire resistance to CXL017 upon chronic exposure and regained sensitivity toward standard therapies. In this study, we investigated the mechanisms responsible for HL60/MX2 cells’ drug resistance and the molecular basis for its resensitization. Results show that the HL60/MX2 cell line has an elevated level of Mcl-1 protein relative to the parental cell line, HL60, and its resensitized cell line, HL60/MX2/CXL017, whereas it has a reduced level of topoisomerase IIβ. Mcl-1 overexpression in HL60/MX2 cells is mainly regulated through phospho-extracellular signal-regulated protein kinases 1 and 2–mediated Mcl-1 stabilization, whereas the reduction of topoisomerase IIβ in HL60/MX2 cells is controlled through genetic downregulation. Upregulating Mcl-1 introduces multidrug resistance to standard therapies, whereas its downregulation results in significant cell death. Downregulating topoisomerase IIβ confers resistance specifically to mitoxantrone, not to other topoisomerase II inhibitors. Overall, these data suggest that Mcl-1 overexpression is a critical determinant for cross-resistance to standard therapies, whereas topoisomerase IIβ downregulation is specific to mitoxantrone resistance. PMID:23696245

  20. Mitochondrial dysfunction is an essential step for killing of non-small cell lung carcinomas resistant to conventional treatment.

    Science.gov (United States)

    Joseph, Bertrand; Marchetti, Philippe; Formstecher, Pierre; Kroemer, Guido; Lewensohn, Rolf; Zhivotovsky, Boris

    2002-01-03

    Apoptosis, a tightly controlled multi-step mechanism of cell death, is important for anti-cancer therapy-based elimination of tumor cells. However, this process is not always efficient. Small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC) cells display different susceptibility to undergo apoptosis induced by anticancer treatment. In contrast to SCLC, NSCLC cells are cross-resistant to a broad spectrum of apoptotic stimuli, including receptor stimulation, cytotoxic drugs and gamma-radiation. Since resistance of tumor cells to treatment often accounts for the failure of traditional forms of cancer therapy, in the present study attempts to find a potent broad-range apoptosis inductor, which can kill therapy-resistant NSCLC cells were undertaken and the mechanism of apoptosis induction by this drug was investigated in detail. We found that staurosporine (STS) had cell killing effect on both types of lung carcinomas. Release of cytochrome c, activation of apical and effector caspases followed by cleavage of their nuclear substrates and morphological changes specific for apoptosis were observed in STS-treated cells. In contrast to treatment with radiation or chemotherapy drugs, STS induces mitochondrial dysfunction followed by translocation of AIF into the nuclei. These events preceded the activation of nuclear apoptosis. Thus, in lung carcinomas two cell death pathways, caspase-dependent and caspase-independent, coexist. In NSCLC cells, where the caspase-dependent pathway is less efficient, the triggering of an AIF-mediated caspase-independent mechanism circumvents the resistance of these cells to treatment.

  1. Chronic exposure to the herbicide, atrazine, causes mitochondrial dysfunction and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Soo Lim

    Full Text Available There is an apparent overlap between areas in the USA where the herbicide, atrazine (ATZ, is heavily used and obesity-prevalence maps of people with a BMI over 30. Given that herbicides act on photosystem II of the thylakoid membrane of chloroplasts, which have a functional structure similar to mitochondria, we investigated whether chronic exposure to low concentrations of ATZ might cause obesity or insulin resistance by damaging mitochondrial function. Sprague-Dawley rats (n = 48 were treated for 5 months with low concentrations (30 or 300 microg kg(-1 day(-1 of ATZ provided in drinking water. One group of animals was fed a regular diet for the entire period, and another group of animals was fed a high-fat diet (40% fat for 2 months after 3 months of regular diet. Various parameters of insulin resistance were measured. Morphology and functional activities of mitochondria were evaluated in tissues of ATZ-exposed animals and in isolated mitochondria. Chronic administration of ATZ decreased basal metabolic rate, and increased body weight, intra-abdominal fat and insulin resistance without changing food intake or physical activity level. A high-fat diet further exacerbated insulin resistance and obesity. Mitochondria in skeletal muscle and liver of ATZ-treated rats were swollen with disrupted cristae. ATZ blocked the activities of oxidative phosphorylation complexes I and III, resulting in decreased oxygen consumption. It also suppressed the insulin-mediated phosphorylation of Akt. These results suggest that long-term exposure to the herbicide ATZ might contribute to the development of insulin resistance and obesity, particularly where a high-fat diet is prevalent.

  2. Acquired resistance to dasatinib in lung cancer cell lines conferred by DDR2 gatekeeper mutation and NF1 loss.

    Science.gov (United States)

    Beauchamp, Ellen M; Woods, Brittany A; Dulak, Austin M; Tan, Li; Xu, Chunxiao; Gray, Nathanael S; Bass, Adam J; Wong, Kwok-kin; Meyerson, Matthew; Hammerman, Peter S

    2014-02-01

    The treatment of non-small cell lung cancer has evolved dramatically over the past decade with the adoption of widespread use of effective targeted therapies in patients with distinct molecular alterations. In lung squamous cell carcinoma (lung SqCC), recent studies have suggested that DDR2 mutations are a biomarker for therapeutic response to dasatinib and clinical trials are underway testing this hypothesis. Although targeted therapeutics are typically quite effective as initial therapy for patients with lung cancer, nearly all patients develop resistance with long-term exposure to targeted drugs. Here, we use DDR2-dependent lung cancer cell lines to model acquired resistance to dasatinib therapy. We perform targeted exome sequencing to identify two distinct mechanisms of acquired resistance: acquisition of the T654I gatekeeper mutation in DDR2 and loss of NF1. We show that NF1 loss activates a bypass pathway, which confers ERK dependency downstream of RAS activation. These results indicate that acquired resistance to dasatinib can occur via both second-site mutations in DDR2 and by activation of bypass pathways. These data may help to anticipate mechanisms of resistance that may be identified in upcoming clinical trials of anti-DDR2 therapy in lung cancer and suggest strategies to overcome resistance.

  3. Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis

    Directory of Open Access Journals (Sweden)

    Wang Hehe

    2012-08-01

    Full Text Available Abstract Background Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils. Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide there are populations that have adapted to the most commonly deployed resistance to P. sojae ( Rps genes. Hence, this system has received increased attention towards identifying mechanisms and molecular markers associated with partial resistance to this pathogen. Several quantitative trait loci (QTL have been identified in the soybean cultivar ‘Conrad’ that contributes to the expression of partial resistance to multiple P. sojae isolates. Results In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and expression analysis of genes in both resistant (Conrad and susceptible (‘Sloan’ genotypes. There were 1025 single nucleotide polymorphisms (SNPs in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in 54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with qRT-PCR had significant differences in fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification, ubiquitination, and basal resistance. Conclusions These findings may indicate a complex defense network with multiple mechanisms underlying these two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute to fine mapping of QTL and marker assisted breeding for

  4. Resistin - the link between adipose tissue dysfunction and insulin resistance in patients with obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Cherneva Radostina Vlaeva

    2013-01-01

    Full Text Available Abstract Background Resistin is an adipocytokine, associated with obesity and inflammation. Its exact role in insulin resistance and diabetes in the general population is still controversial. The relation between resistin plasma levels, insulin resistance and risk of impaired glucose metabolism in OSA patients has not been investigated. Materials and methods Plasma levels of resistin were measured in 67 patients with OSA and impaired glucose metabolism. 34,7% (23/67 had diabetes; 40% (27/67 patients had impаired glucose tolerance(IGT; 25,3%(17/67 had normal glucose metabolism (NGM. The association between resistin, BMI, obesity, markers of insulin resistance, oxidative stress and sleep study characteristics was analysed. The different groups of patients were compared in regards to glucometabolic parameters and biomarkers of oxidative stress – isoprostanes and insulin resistance – free fatty acids (FFA. Results Plasma levels of resistin were higher in patients with diabetes (6,12 ±5,93ng/ml, compared to those with IGT (3,85±2,81ng/ml, p-0,021 and NGM (3,77±3,23, p-0,043. Resistin did not differ between patients with IGT and NGM (p-0,954. In OSA patients with BMI>40 resistin plasma levels correlated neither to the clinical parameters (BMI, IRI, HOMA-I, HbA1C, AHI, desaturation index, nor to the biomarkers of oxidative stress and insulin resistance. Free fatty acids (0,232>0,177mmol/l, p-0,037 were higher in diabetics in comparison to NGM. Conclusions Plasma resistin levels in OSA patients with BMI>40 are independent of insulin resistance and are not associated with the parameters, characterising the oxidative stress or severity of OSA. Resistin could be used in a multiple panel of clinical and biomarkers to discern patients with diabetes from those with IGT; in OSA patients with BMI >40 resistin together with HbA1C could discern patients with diabetes from those with NGM. In OSA patients with BMI >40 FFA and HbA1C are useful clinical

  5. Functional and Kinetic Analysis of the Phosphotransferase CapP Conferring Selective Self-resistance to Capuramycin Antibiotics*

    Science.gov (United States)

    Yang, Zhaoyong; Funabashi, Masanori; Nonaka, Koichi; Hosobuchi, Masahiko; Shibata, Tomoyuki; Pahari, Pallab; Van Lanen, Steven G.

    2010-01-01

    Capuramycin-related compounds, including A-500359s and A-503083s, are nucleoside antibiotics that inhibit the enzyme bacterial translocase I involved in peptidoglycan cell wall biosynthesis. Within the biosynthetic gene cluster for the A-500359s exists a gene encoding a putative aminoglycoside 3-phosphotransferase that was previously demonstrated to be highly expressed during the production of A-500359s and confers selective resistance to capuramycins when expressed in heterologous hosts. A similar gene (capP) was identified within the biosynthetic gene cluster for the A-503083s, and CapP is now shown to similarly confer selective resistance to capuramycins. Recombinant CapP was produced and purified from Escherichia coli, and the function of CapP is established as an ATP-dependent capuramycin phosphotransferase that regio-specifically transfers the γ-phosphate to the 3″-hydroxyl of the unsaturated hexuronic acid moiety of A-503083 B. Kinetic analysis with the three major A-503083 congeners suggests that CapP preferentially phosphorylates A-503083s containing an aminocaprolactam moiety attached to the hexuronic acid, and bi-substrate kinetic analysis was consistent with CapP employing a sequential kinetic mechanism similar to most known aminoglycoside 3-phosphotransferases. The purified CapP product lost its antibiotic activity against Mycobacterium smegmatis, and this loss in bioactivity is primarily due to a 272-fold increase in the IC50 in the bacterial translocase I-catalyzed reaction. The results establish CapP-mediated phosphorylation as a mechanism of resistance to capuramycins and now set the stage to explore this strategy of resistance as a potential mechanism inherent to pathogens and provide the impetus for preparing second generation analogues as a preemptive strike to such resistance strategies. PMID:20202936

  6. Functional and kinetic analysis of the phosphotransferase CapP conferring selective self-resistance to capuramycin antibiotics.

    Science.gov (United States)

    Yang, Zhaoyong; Funabashi, Masanori; Nonaka, Koichi; Hosobuchi, Masahiko; Shibata, Tomoyuki; Pahari, Pallab; Van Lanen, Steven G

    2010-04-23

    Capuramycin-related compounds, including A-500359s and A-503083s, are nucleoside antibiotics that inhibit the enzyme bacterial translocase I involved in peptidoglycan cell wall biosynthesis. Within the biosynthetic gene cluster for the A-500359s exists a gene encoding a putative aminoglycoside 3-phosphotransferase that was previously demonstrated to be highly expressed during the production of A-500359s and confers selective resistance to capuramycins when expressed in heterologous hosts. A similar gene (capP) was identified within the biosynthetic gene cluster for the A-503083s, and CapP is now shown to similarly confer selective resistance to capuramycins. Recombinant CapP was produced and purified from Escherichia coli, and the function of CapP is established as an ATP-dependent capuramycin phosphotransferase that regio-specifically transfers the gamma-phosphate to the 3''-hydroxyl of the unsaturated hexuronic acid moiety of A-503083 B. Kinetic analysis with the three major A-503083 congeners suggests that CapP preferentially phosphorylates A-503083s containing an aminocaprolactam moiety attached to the hexuronic acid, and bi-substrate kinetic analysis was consistent with CapP employing a sequential kinetic mechanism similar to most known aminoglycoside 3-phosphotransferases. The purified CapP product lost its antibiotic activity against Mycobacterium smegmatis, and this loss in bioactivity is primarily due to a 272-fold increase in the IC(50) in the bacterial translocase I-catalyzed reaction. The results establish CapP-mediated phosphorylation as a mechanism of resistance to capuramycins and now set the stage to explore this strategy of resistance as a potential mechanism inherent to pathogens and provide the impetus for preparing second generation analogues as a preemptive strike to such resistance strategies.

  7. Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein.

    Directory of Open Access Journals (Sweden)

    Wee Tek Tay

    2015-11-01

    Full Text Available The use of conventional chemical insecticides and bacterial toxins to control lepidopteran pests of global agriculture has imposed significant selection pressure leading to the rapid evolution of insecticide resistance. Transgenic crops (e.g., cotton expressing the Bt Cry toxins are now used world wide to control these pests, including the highly polyphagous and invasive cotton bollworm Helicoverpa armigera. Since 2004, the Cry2Ab toxin has become widely used for controlling H. armigera, often used in combination with Cry1Ac to delay resistance evolution. Isolation of H. armigera and H. punctigera individuals heterozygous for Cry2Ab resistance in 2002 and 2004, respectively, allowed aspects of Cry2Ab resistance (level, fitness costs, genetic dominance, complementation tests to be characterised in both species. However, the gene identity and genetic changes conferring this resistance were unknown, as was the detailed Cry2Ab mode of action. No cross-resistance to Cry1Ac was observed in mutant lines. Biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by exon-primed intron-crossing (EPIC marker mapping and candidate gene sequencing identified three independent resistance-associated INDEL mutations in an ATP-Binding Cassette (ABC transporter gene we named HaABCA2. A deletion mutation was also identified in the H. punctigera homolog from the resistant line. All mutations truncate the ABCA2 protein. Isolation of further Cry2Ab resistance alleles in the same gene from field H. armigera populations indicates unequal resistance allele frequencies and the potential for Bt resistance evolution. Identification of the gene involved in resistance as an ABC transporter of the A subfamily adds to the body of evidence on the crucial role this gene family plays in the mode of action of the Bt Cry toxins. The structural differences between the ABCA2, and that of the C subfamily required for Cry1Ac toxicity, indicate differences in the

  8. Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein

    Science.gov (United States)

    Tay, Wee Tek; Mahon, Rod J.; Heckel, David G.; Walsh, Thomas K.; Downes, Sharon; James, William J.; Lee, Sui-Fai; Reineke, Annette; Williams, Adam K.; Gordon, Karl H. J.

    2015-01-01

    The use of conventional chemical insecticides and bacterial toxins to control lepidopteran pests of global agriculture has imposed significant selection pressure leading to the rapid evolution of insecticide resistance. Transgenic crops (e.g., cotton) expressing the Bt Cry toxins are now used world wide to control these pests, including the highly polyphagous and invasive cotton bollworm Helicoverpa armigera. Since 2004, the Cry2Ab toxin has become widely used for controlling H. armigera, often used in combination with Cry1Ac to delay resistance evolution. Isolation of H. armigera and H. punctigera individuals heterozygous for Cry2Ab resistance in 2002 and 2004, respectively, allowed aspects of Cry2Ab resistance (level, fitness costs, genetic dominance, complementation tests) to be characterised in both species. However, the gene identity and genetic changes conferring this resistance were unknown, as was the detailed Cry2Ab mode of action. No cross-resistance to Cry1Ac was observed in mutant lines. Biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by exon-primed intron-crossing (EPIC) marker mapping and candidate gene sequencing identified three independent resistance-associated INDEL mutations in an ATP-Binding Cassette (ABC) transporter gene we named HaABCA2. A deletion mutation was also identified in the H. punctigera homolog from the resistant line. All mutations truncate the ABCA2 protein. Isolation of further Cry2Ab resistance alleles in the same gene from field H. armigera populations indicates unequal resistance allele frequencies and the potential for Bt resistance evolution. Identification of the gene involved in resistance as an ABC transporter of the A subfamily adds to the body of evidence on the crucial role this gene family plays in the mode of action of the Bt Cry toxins. The structural differences between the ABCA2, and that of the C subfamily required for Cry1Ac toxicity, indicate differences in the detailed mode

  9. Time course of adipose tissue dysfunction associated with antioxidant defense, inflammatory cytokines and oxidative stress in dyslipemic insulin resistant rats.

    Science.gov (United States)

    D'Alessandro, María Eugenia; Selenscig, Dante; Illesca, Paola; Chicco, Adriana; Lombardo, Yolanda B

    2015-04-01

    The dysfunctional adipose tissue of rats fed a sucrose-rich diet was investigated following the time course of the development of oxidative stress, changes in proinflammatory cytokines and adiponectin levels, and their relationship with insulin resistance. We analyzed the morphometric characteristics of epididymal adipocytes, de novo lipogenesis enzyme activities and cellular antioxidant defense, inflammatory mediators, adiponectin levels and insulin resistance in rats fed a sucrose-rich diet for 3, 15 or 30 weeks and compared to those fed a control diet. The results showed a depletion of antioxidant enzyme activities in the fat pads of rats fed a sucrose-rich diet, with an increase in xanthine oxidase activity and lipid peroxidation after 3, 15 and 30 weeks on the diet. Superoxide dismutase activity and the redox state of glutathione showed a significant decrease at weeks 15 and 30. This was accompanied by visceral adiposity and enhanced lipogenic enzyme activities. An increase in the plasma levels of proinflammatory markers (TNF-α and IL-6) was recorded only after 30 weeks on the diet. A reduction in plasma adiponectin levels accompanied the time course of deterioration of whole-body insulin sensitivity. The results suggest that lipid peroxidation, depletion of antioxidant defenses and changes in inflammatory cytokines induced by a sucrose-rich diet contribute to the dysregulation of adipose tissue and insulin resistance. Finally, these results show that the progressive deterioration of adipose tissue function, which begins in the absence of both visceral adiposity and overweight, is highly dependent on the length of time on the diet.

  10. The A395T mutation in ERG11 gene confers fluconazole resistance in Candida tropicalis causing candidemia.

    Science.gov (United States)

    Tan, Jingwen; Zhang, Jinqing; Chen, Wei; Sun, Yi; Wan, Zhe; Li, Ruoyu; Liu, Wei

    2015-04-01

    The mechanism of fluconazole resistance in Candida tropicalis is still unclear. Recently, we isolated a fluconazole-resistant strain of C. tropicalis from the blood specimen of a patient with candidemia in China. In vitro antifungal susceptibility of the isolate was determined by using CLSI M27-A3 and E-test methods. The sequence of ERG11 gene was then analyzed, and the three-dimensional model of Erg11p encoded by ERG11 gene was also investigated. The sequencing of ERG11 gene revealed the mutation of A395T in this fluconazole-resistant isolate of C. tropicalis, resulting in the Y132F substitution in Erg11p. Sequence alignment and three-dimensional model comparison of Erg11ps showed high similarity between fluconazole-susceptible isolates of C. tropicalis and Candida albicans. The comparison of the three-dimensional models of Erg11ps demonstrated that the position of the Y132F substitution in this isolate of C. tropicalis is identical to the isolate of C. albicans with fluconazole resistance resulting from Y132F substitution in Erg11p. Hence, we ascertain that the Y132F substitution of Erg11p caused by A395T mutation in ERG11 gene confers the fluconazole resistance in C. tropicalis.

  11. Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance.

    Science.gov (United States)

    Chen, Jian; Yoshinaga, Masafumi; Garbinski, Luis D; Rosen, Barry P

    2016-06-01

    Microbial biotransformations are major contributors to the arsenic biogeocycle. In parallel with transformations of inorganic arsenic, organoarsenicals pathways have recently been recognized as important components of global cycling of arsenic. The well-characterized pathway of resistance to arsenate is reduction coupled to arsenite efflux. Here, we describe a new pathway of arsenate resistance involving biosynthesis and extrusion of an unusual pentavalent organoarsenical. A number of arsenic resistance (ars) operons have two genes of unknown function that are linked in these operons. One, gapdh, encodes the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase. The other, arsJ, encodes a major facilitator superfamily (MFS) protein. The two genes were cloned from the chromosome of Pseudomonas aeruginosa. When expressed together, but not alone, in Escherichia coli, gapdh and arsJ specifically conferred resistance to arsenate and decreased accumulation of As(V). Everted membrane vesicles from cells expressing arsJ accumulated As(V) in the presence of purified GAPDH, D-glceraldehylde 3-phosphate (G3P) and NAD(+) . GAPDH forms the unstable organoarsenical 1-arseno-3-phosphoglycerate (1As3PGA). We propose that ArsJ is an efflux permease that extrudes 1As3PGA from cells, where it rapidly dissociates into As(V) and 3-phosphoglycerate (3PGA), creating a novel pathway of arsenate resistance.

  12. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides.

    Science.gov (United States)

    Lumjuan, Nongkran; Rajatileka, Shavanthi; Changsom, Donch; Wicheer, Jureeporn; Leelapat, Posri; Prapanthadara, La-aied; Somboon, Pradya; Lycett, Gareth; Ranson, Hilary

    2011-03-01

    The Epsilon glutathione transferase (GST) class in the dengue vector Aedes aegypti consists of eight sequentially arranged genes spanning 53,645 bp on super contig 1.291, which maps to chromosome 2. One Epsilon GST, GSTE2, has previously been implicated in conferring resistance to DDT. The amino acid sequence of GSTE2 in an insecticide susceptible and a DDT resistant strain differs at five residues two of which occur in the putative DDT binding site. Characterization of the respective recombinant enzymes revealed that both variants have comparable DDT dehydrochlorinase activity although the isoform from the resistant strain has higher affinity for the insecticide. GSTe2 and two additional Epsilon GST genes, GSTe5 and GSTe7, are expressed at elevated levels in the resistant population and the recombinant homodimer GSTE5-5 also exhibits low levels of DDT dehydrochlorinase activity. Partial silencing of either GSTe7 or GSTe2 by RNA interference resulted in an increased susceptibility to the pyrethroid, deltamethrin suggesting that these GST enzymes may also play a role in resistance to pyrethroid insecticides.

  13. An AFLP marker linked to the Pm-1 gene that confers resistance to Podosphaera xanthii race 1 in Cucumis melo

    Directory of Open Access Journals (Sweden)

    Ana Paula Matoso Teixeira

    2008-01-01

    Full Text Available Brazil produced 330,000 metric tons of melons in 2005, principally in the Northeast region where one of the most important melon pathogens is the powdery mildew fungus Podosphaera xanthii. The disease is controlled mainly by incorporating single dominant resistance genes into commercial hybrids. We report on linkage analysis of the Pm-1 resistance gene, introgressed from the AF125Pm-1 Cantalupensis Charentais-type breeding line into the yellow-fleshed melon (Group Inodorus breeding line AF426-S by backcrossing to produce the resistant line AF426-R, and the amplified fragment length polymorphism (AFLP marker M75/H35_155 reported to be polymorphic between AF426-S and AF426-R. Segregation analysis of M75/H35_155 using a backcross population of 143 plants derived from [AF426-R x AF426-S] x AF426-S and screened for resistance to P. xanthii race 1 produced a recombination frequency of 4.9%, indicating close linkage between M75/H35_155 and Pm-1. Using the same segregating population, the M75/H35_155 marker had previously been reported to be distantly linked to Prv¹, a gene conferring resistance to papaya ringspot virus-type W. Since M75/H35_155 is linked to Prv¹ at a distance of 40.9 cM it is possible that Pm-1 and Prv¹ are also linked.

  14. Antisense expression of peach mildew resistance locus O (PpMlo1) gene confers cross-species resistance to powdery mildew in Fragaria x ananassa.

    Science.gov (United States)

    Jiwan, Derick; Roalson, Eric H; Main, Dorrie; Dhingra, Amit

    2013-12-01

    Powdery mildew (PM) is one of the major plant pathogens. The conventional method of PM control includes frequent use of sulfur-based fungicides adding to production costs and potential harm to the environment. PM remains a major scourge for Rosaceae crops where breeding approaches mainly resort to gene-for-gene resistance. We have tested an alternate source of PM resistance in Rosaceae. Mildew resistance locus O (MLO) has been well studied in barley due to its role in imparting broad spectrum resistance to PM. We identified PpMlo1 (Prunus persica Mlo) in peach and characterized it further to test if a similar mechanism of resistance is conserved in Rosaceae. Due to its recalcitrance in tissue culture, reverse genetic studies involving PpMloI were not feasible in peach. Therefore, Fragaria x ananassa LF9 line, a taxonomic surrogate, was used for functional analysis of PpMlo1. Agrobacterium-mediated transformation yielded transgenic strawberry plants expressing PpMlo1 in sense and antisense orientation. Antisense expression of PpMlo1 in transgenic strawberry plants conferred resistance to Fragaria-specific powdery mildew, Podosphaera macularis. Phylogenetic analysis of 208 putative Mlo gene copies from 35 plant species suggests a large number of duplications of this gene family prior to the divergence of monocots and eudicots, early in eudicot diversification. Our results indicate that the Mlo-based resistance mechanism is functional in Rosaceae, and that Fragaria can be used as a host to test mechanistic function of genes derived from related tree species. To the best of our knowledge, this work is one of the first attempts at testing the potential of using a Mlo-based resistance strategy to combat powdery mildew in Rosaceae.

  15. Overexpression of the Chromosomally Encoded Aminoglycoside Acetyltransferase eis Confers Kanamycin Resistance in Mycobacterium tuberculosis

    National Research Council Canada - National Science Library

    M. Analise Zaunbrecher; R. David Sikes; Beverly Metchock; Thomas M. Shinnick; James E. Posey

    2009-01-01

    .... The aminoglycosides kanamycin and amikacin are important bactericidal drugs used to treat MDR TB, and resistance to one or both of these drugs is a defining characteristic of extensively drug-resistant TB...

  16. Three QTLs from Lycopersicum peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis

    NARCIS (Netherlands)

    Heusden, A.W.; Koornneef, M.; Voorrips, R.E.; Bruggeman, W.; Pet, G.; Vrielink, R.; Chen, X.; Lindhout, P.

    1999-01-01

    Lycopersicon peruvianum LA2157 originates from 1650 m above sea level and harbours several beneficial traits for cultivated tomatoes such as cold tolerance, nematode resistance and resistance to bacterial canker (Clavibacter michiganensis ssp. michiganensis). In order to identify quantitative trait

  17. Metabolic and Target-Site Mechanisms Combine to Confer Strong DDT Resistance in Anopheles gambiae

    OpenAIRE

    2014-01-01

    The development of resistance to insecticides has become a classic exemplar of evolution occurring within human time scales. In this study we demonstrate how resistance to DDT in the major African malaria vector Anopheles gambiae is a result of both target-site resistance mechanisms that have introgressed between incipient species (the M- and S-molecular forms) and allelic variants in a DDT-detoxifying enzyme. Sequencing of the detoxification enzyme, Gste2, from DDT resistant and susceptible ...

  18. FabH Mutations Confer Resistance to FabF-Directed Antibiotics in Staphylococcus aureus

    OpenAIRE

    Parsons, Joshua B.; Yao, Jiangwei; Frank, Matthew W.; Rock, Charles O.

    2014-01-01

    Delineating the mechanisms for genetically acquired antibiotic resistance is a robust approach to target validation and anticipates the evolution of clinical drug resistance. This study defines a spectrum of mutations in fabH that render Staphylococcus aureus resistant to multiple natural products known to inhibit the elongation condensing enzyme (FabF) of bacterial type II fatty acid synthesis. Twenty independently isolated clones resistant to platensimycin, platencin, or thiolactomycin were...

  19. Overexpression of MN1 confers resistance to chemotherapy, accelerates leukemia onset, and suppresses p53 and Bim induction.

    Directory of Open Access Journals (Sweden)

    Timothy S Pardee

    Full Text Available BACKGROUND: The transcriptional co-activator MN1 confers a worse prognosis for patients with acute myeloid leukemia (AML when highly expressed; however, the mechanisms involved are unknown. We sought to model the effects of high MN1 expression in AML models to explore the underlying mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We used cell lines and a genetically defined mouse model of AML to examine the effects of MN1 overexpression on prognosis and response to cytarabine and doxorubicin in vitro and in vivo. Murine AML that was engineered to overexpress MN1 became more aggressive in vivo, leading to shortened survival in both treated and control groups. In vitro murine AML cells that overexpressed MN1 became resistant to treatment with cytarabine and highly resistant to doxorubicin. This resistant phenotype was also seen in vivo, where treatment with the combination of cytarabine and doxorubicin selected for cells expressing MN1. When therapy-induced DNA damage levels were assessed by γH2AX foci, no reduction was seen in MN1 expressing cells arguing against a drug efflux mechanism. Despite no reduction in DNA damage, MN1-expressing cells showed less apoptosis as assessed by annexin V and propidium iodide staining. Following treatment, p53 and BIM induction were markedly reduced in cells expressing MN1. Pharmacologic inhibition of the p53 E3 ligase MDM2 resulted in increased p53 levels and improved response to doxorubicin in vitro. CONCLUSIONS/SIGNIFICANCE: MN1 overexpression accelerates an already aggressive leukemia, confers resistance to chemotherapy, and suppresses p53 and BIM induction, resulting in decreased apoptosis. This provides a mechanistic explanation of the poor prognosis observed with high MN1 expression and suggests that therapies directed at increasing p53 function may be useful for these patients.

  20. Amelioration of mitochondrial dysfunction-induced insulin resistance in differentiated 3T3-L1 adipocytes via inhibition of NF-κB pathways.

    Science.gov (United States)

    Bakar, Mohamad Hafizi Abu; Sarmidi, Mohamad Roji; Kai, Cheng Kian; Huri, Hasniza Zaman; Yaakob, Harisun

    2014-12-02

    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.

  1. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2014-12-01

    Full Text Available A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.

  2. HLA-DRB1-DQB1 Haplotypes Confer Susceptibility and Resistance to Multiple Sclerosis in Sardinia

    Science.gov (United States)

    Cocco, Eleonora; Sardu, Claudia; Pieroni, Enrico; Valentini, Maria; Murru, Raffaele; Costa, Gianna; Tranquilli, Stefania; Frau, Jessica; Coghe, Giancarlo; Carboni, Nicola; Floris, Matteo; Contu, Paolo; Marrosu, Maria Giovanna

    2012-01-01

    :02, *06:01 alleles. Conclusions These findings show that the association of specific, independent DRB1*-DQB1* haplotypes confers susceptibility or resistance to MS in the MS-prone Sardinian population. The data also supports a functional role for specific residues of the DRB1 and DQB1 proteins in predisposing patients to MS. PMID:22509268

  3. Suppression of resistance to Erysiphe graminis f.sp. hordei conferred by the mlo5 barley powdery mildew resistance gene

    DEFF Research Database (Denmark)

    Lyngkjær, M.F.; Carver, T.L.W.; Zeyen, R.J.

    1997-01-01

    . Additional suppression of mlo5 penetration resistance against the avirulent E. graminis isolate was achieved by using DDG, mannose, or glucose in combination with the phenylalanine ammonia lyase inhibitor alpha-aminooxy-beta-phenylpropionic acid (AOPP). A mlo virulent isolate of E. graminis was also tested...... phenolic compound synthesis, but that phenolics are not responsible for the primary mechanism of mlo5 penetration resistance. Sequestration of phosphate ions caused by complexing with DDG or mannose may lower the energy available for penetration resistance in these barley lines, obviating both inherent...

  4. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti.

    Science.gov (United States)

    Lumjuan, Nongkran; McCarroll, Lynn; Prapanthadara, La-aied; Hemingway, Janet; Ranson, Hilary

    2005-08-01

    Glutathione transferases (GSTs) play a central role in the detoxification of xenobiotics such as insecticides and elevated GST expression is an important mechanism of insecticide resistance. In the mosquito, Anopheles gambiae, increased expression of an Epsilon class GST, GSTE2, confers resistance to DDT. We have identified eight GST genes in the dengue vector, Aedes aegypti. Four of these belong to the insect specific GST classes Delta and Epsilon and three are from the more ubiquitously distributed Theta and Sigma classes. The expression levels of the two Epsilon genes, a Theta GST and a previously identified Ae. aegypti GST [Grant and Hammock, 1992. Molecular and General Genetics 234, 169-176] were established for an insecticide susceptible and a resistant strain. We show that the putative ortholog of GSTe2 in Ae. aegypti (AaGSTe2) is over expressed in mosquitoes that are resistant to the insecticides DDT and permethrin. Characterisation of recombinant AaGSTE2-2 confirmed the role of this enzyme in DDT metabolism. In addition, unlike its Anopheles ortholog, AaGSTE2-2 also exhibited glutathione peroxidase activity.

  5. Mapping quantitative trait loci conferring resistance to rice black-streaked virus in maize (Zea mays L.).

    Science.gov (United States)

    Luan, Junwen; Wang, Fei; Li, Yujie; Zhang, Bin; Zhang, Juren

    2012-08-01

    Maize rough dwarf disease (MRDD) is one of the most serious virus diseases of maize worldwide, and it causes great reduction of maize production. In China, the pathogen was shown to be rice black-streaked virus (RBSDV). Currently, MRDD has spread broadly and leads to significant loss in China. However, there has been little research devoted to this disease. Our aims were to identify the markers and loci underlying resistance to this virus disease. In this study, segregation populations were constructed from two maize elite lines '90110', which is highly resistant to MRDD and 'Ye478', which is highly susceptible to MRDD. The F(2) and BC(1) populations were used for bulk sergeant analysis (BSA) to identify resistance-related markers. One hundred and twenty F(7:9) RILs were used for quantitative trait loci (QTL) mapping through the experiment of multiple environments over 3 years. Natural occurrence and artificial inoculation were both used and combined to determine the phenotype of plants. Five QTL, qMRD2, qMRD6, qMRD7, qMRD8 and qMRD10 were measured in the experiments. The qMRD8 on chromosome 8 was proved to be one major QTL conferring resistance to RBSDV disease in almost all traits and environments, which explained 12.0-28.9 % of the phenotypic variance for disease severity in this present study.

  6. Bordetella pertussis lipid A glucosamine modification confers resistance to cationic antimicrobial peptides and increases resistance to outer membrane perturbation.

    Science.gov (United States)

    Shah, Nita R; Hancock, Robert E W; Fernandez, Rachel C

    2014-08-01

    Bordetella pertussis, the causative agent of whooping cough, has many strategies for evading the human immune system. Lipopolysaccharide (LPS) is an important Gram-negative bacterial surface structure that activates the immune system via Toll-like receptor 4 and enables susceptibility to cationic antimicrobial peptides (CAMPs). We show modification of the lipid A region of LPS with glucosamine increased resistance to numerous CAMPs, including LL-37. Furthermore, we demonstrate that this glucosamine modification increased resistance to outer membrane perturbation.

  7. Successful treatment of prediabetes in clinical practice: targeting insulin resistance and β-cell dysfunction.

    Science.gov (United States)

    Armato, John; DeFronzo, Ralph A; Abdul-Ghani, Muhammad; Ruby, Ron

    2012-01-01

    To determine the effectiveness of targeted pharmacologic interventions to reverse documented pathophysiologic abnormalities in prediabetes. Patients with impaired glucose tolerance (IGT) and/or impaired fasting glucose (IFG) were treated with insulin sensitizers (pioglitazone + metformin) or insulin sensitizers + exenatide on the basis of oral glucose tolerance testing-derived indices of insulin resistance and impaired β-cell function. Patients who declined pharmacologic therapy received lifestyle modification only. One hundred five patients with IGT and/or IFG were treated with insulin sensitizers (pioglitazone + metformin) (n = 40), insulin sensitizers + exenatide (n = 47), or lifestyle modification only (n = 18). After a mean follow-up period of 8.9 months, the lifestyle modification group demonstrated no significant changes in fasting plasma glucose, plasma glucose area under the curve during oral glucose tolerance testing, insulin sensitivity, or β-cell function. In the pioglitazone + metformin group (24 hours off medication), fasting plasma glucose fell from 109 to 102 mg/dL; plasma glucose area under the curve decreased by 12.0%; insulin sensitivity and β-cell function improved by 42% and 50%, respectively (all Pcell function improved by 52% and 109%, respectively (all Pcell function can be implemented in general internal medicine and endocrine practice and is associated with marked improvement in glucose tolerance and reversion of prediabetes to normal glucose tolerance in more than 50% of patients.

  8. Rapid development of cardiac dysfunction in a canine model of insulin resistance and moderate obesity.

    Science.gov (United States)

    Broussard, Josiane L; Nelson, Michael D; Kolka, Cathryn M; Bediako, Isaac Asare; Paszkiewicz, Rebecca L; Smith, Laura; Szczepaniak, Edward W; Stefanovski, Darko; Szczepaniak, Lidia S; Bergman, Richard N

    2016-01-01

    The worldwide incidence of obesity and diabetes continues to rise at an alarming rate. A major cause of the morbidity and mortality associated with obesity and diabetes is heart disease, yet the mechanisms that lead to cardiovascular complications remain unclear. We performed cardiac MRI to assess left ventricular morphology and function during the development of moderate obesity and insulin resistance in a well-established canine model (n = 26). To assess the influence of dietary fat composition, we randomised animals to a traditional lard diet (rich in saturated and monounsaturated fat; n = 12), a salmon oil diet (rich in polyunsaturated fat; n = 8) or a control diet (n = 6). High-fat feeding with lard increased body weight and fasting insulin and markedly reduced insulin sensitivity. Lard feeding also significantly reduced left ventricular function, evidenced by a worsening of circumferential strain and impairment in left ventricular torsion. High-fat feeding with salmon oil increased body weight; however, salmon oil feeding did not impair insulin sensitivity or cardiac function. These data emphasise the importance of dietary fat composition on both metabolic and cardiac function, and have important implications for the relationship between diet and health.

  9. The exenatide analogue AC3174 attenuates hypertension, insulin resistance, and renal dysfunction in Dahl salt-sensitive rats

    Directory of Open Access Journals (Sweden)

    Fernandez Rayne

    2010-08-01

    Full Text Available Abstract Background Activation of glucagon-like peptide-1 (GLP-1 receptors improves insulin sensitivity and induces vasodilatation and diuresis. AC3174 is a peptide analogue with pharmacologic properties similar to the GLP-1 receptor agonist, exenatide. Hypothetically, chronic AC3174 treatment could attenuate salt-induced hypertension, cardiac morbidity, insulin resistance, and renal dysfunction in Dahl salt-sensitive (DSS rats. Methods DSS rats were fed low salt (LS, 0.3% NaCl or high salt (HS, 8% NaCl diets. HS rats were treated with vehicle, AC3174 (1.7 pmol/kg/min, or GLP-1 (25 pmol/kg/min for 4 weeks via subcutaneous infusion. Other HS rats received captopril (150 mg/kg/day or AC3174 plus captopril. Results HS rat survival was improved by all treatments except GLP-1. Systolic blood pressure (SBP was lower in LS rats and in GLP-1, AC3174, captopril, or AC3174 plus captopril HS rats than in vehicle HS rats (p Conclusions Thus, AC3174 had antihypertensive, cardioprotective, insulin-sensitizing, and renoprotective effects in the DSS hypertensive rat model. Furthermore, AC3174 improved animal survival, an effect not observed with GLP-1.

  10. Vat, an amazing gene conferring resistance to aphids and viruses they carry: from molecular structure to field effects

    Directory of Open Access Journals (Sweden)

    Nathalie Boissot

    2016-09-01

    Full Text Available We review half a century of research on Cucumis melo resistance to Aphis gossypii from molecular to field levels. The Vat gene is unique in conferring resistance to both A. gossypii and the viruses it transmits. This double phenotype is aphid clone-dependent and has been observed in 25 melon accessions, mostly from Asia. It is controlled by a cluster of genes including CC-NLR, which has been characterized in detail. Copy-number polymorphisms (for the whole gene and for a domain that stands out in the LLR region and single-nucleotide polymorphisms have been identified in the Vat cluster. The role of these polymorphisms in plant aphid/interactions remains unclear. The Vat gene structure suggests a functioning with separate recognition and response phases. During the recognition phase, the VAT protein is thought to interact (likely indirectly with an aphid effector introduced during cell puncture by the aphid. A few hours later, several miRNAs are upregulated in Vat plants. Peroxidase activity increases, and callose and lignin are deposited in the walls of the cells adjacent to the stylet path, disturbing aphid behavior. In aphids feeding on Vat plants, Piwi-interacting RNA-like sequences are abundant and the levels of other miRNAs are modified. At the plant level, resistance to aphids is quantitative (aphids escape the plant and display low rates of reproduction. Resistance to viruses is qualitative and local.Durability of NLR genes is highly variable. A. gossypii clones are adapted to Vat resistance, either by introducing a new effector that interferes with the deployment of plant defenses, or by adapting to the defenses it triggered. Viruses transmitted in a non-persistent manner cannot adapt to Vat resistance. At population level, Vat reduces aphid density and genetic diversity. The durability of Vat resistance to A. gossypii populations depends strongly on the agro-ecosystem, including, in particular, the presence of other cucurbit crops

  11. Towards positional isolation of three quantitative trait loci conferring resistance to powdery mildew in two Spanish barley landraces.

    Directory of Open Access Journals (Sweden)

    Cristina Silvar

    Full Text Available Three quantitative trait loci (QTL conferring broad spectrum resistance to powdery mildew, caused by the fungus Blumeria graminis f. sp. hordei, were previously identified on chromosomes 7HS, 7HL and 6HL in the Spanish barley landrace-derived lines SBCC097 and SBCC145. In the present work, a genome-wide putative linear gene index of barley (Genome Zipper and the first draft of the physical, genetic and functional sequence of the barley genome were used to go one step further in the shortening and explicit demarcation on the barley genome of these regions conferring resistance to powdery mildew as well as in the identification of candidate genes. First, a comparative analysis of the target regions to the barley Genome Zippers of chromosomes 7H and 6H allowed the development of 25 new gene-based molecular markers, which slightly better delimit the QTL intervals. These new markers provided the framework for anchoring of genetic and physical maps, figuring out the outline of the barley genome at the target regions in SBCC097 and SBCC145. The outermost flanking markers of QTLs on 7HS, 7HL and 6HL defined a physical area of 4 Mb, 3.7 Mb and 3.2 Mb, respectively. In total, 21, 10 and 16 genes on 7HS, 7HL and 6HL, respectively, could be interpreted as potential candidates to explain the resistance to powdery mildew, as they encode proteins of related functions with respect to the known pathogen defense-related processes. The majority of these were annotated as belonging to the NBS-LRR class or protein kinase family.

  12. EPSPS gene amplification conferring resistance to glyphosate in windmill grass (Chloris truncata) in Australia.

    Science.gov (United States)

    Ngo, The D; Malone, Jenna M; Boutsalis, Peter; Gill, Gurjeet; Preston, Christopher

    2017-03-20

    Five glyphosate-resistant populations of Chloris truncata originally collected from New South Wales were compared with one susceptible (S) population from South Australia to confirm glyphosate resistance and elucidate possible mechanisms of resistance. Based on the amounts of glyphosate required to kill 50% of treated plants (LD50 ), glyphosate resistance (GR) was confirmed in five populations of C. truncata (A536, A528, T27, A534 and A535.1). GR plants were 2.4-8.7-fold more resistant and accumulated less shikimate after glyphosate treatment than S plants. There was no difference in glyphosate absorption and translocation between GR and S plants. The EPSPS gene did not contain any point mutation that had previously been associated with resistance to glyphosate. The resistant plants (A528 and A536) contained up to 32-48 more copies of the EPSPS gene than the susceptible plants. This study has identified EPSPS gene amplification contributing to glyphosate resistance in C. truncata. In addition, a Glu-91-Ala mutation within EPSPS was identified that may contribute to glyphosate resistance in this species. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Mapping of loci from Solanum lycopersicoides conferring resistance or susceptibility to Botrytis cinerea in tomato.

    Science.gov (United States)

    Davis, Joel; Yu, Daozhan; Evans, Wendy; Gokirmak, Tufan; Chetelat, Roger T; Stotz, Henrik U

    2009-07-01

    Cultivated tomato (Solanum lycopersicum, syn. Lycopersicon esculentum) is susceptible to the necrotrophic ascomycete and causal agent of gray mold, Botrytis cinerea. Resistance to this fungal pathogen is elevated in wild relatives of tomato, including Solanum lycopersicoides. An introgression line population (IL) containing chromosomal segments of S. lycopersicoides within the background of tomato cv. VF36 was used to screen the genome for foliar resistance and susceptibility to B. cinerea. Based on this screen, putative quantitative trait loci (QTL) were identified, five for resistance and two for susceptibility. Four resistance QTL decreased infection frequency while the fifth reduced lesion diameter. One susceptibility QTL increased infection frequency whereas the other increased lesion diameter. Overlapping chromosomal segments provided strong evidence for partial resistance on chromosomes 1 and 9 and for elevated susceptibility on chromosome 11. Segregation analysis confirmed the major resistance QTL on the long arm of chromosome 1 and susceptibility on chromosome 11. Linkage of partial resistance to chromosome 9 could not be confirmed. The usefulness of these data for resistance breeding and for map-based cloning of foliar resistance to B. cinerea is discussed.

  14. Mutations in 23S rRNA Confer Resistance against Azithromycin in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Marvig, Rasmus Lykke; Søndergaard, Mette S. R.; Pedersen, Søren Damkiær

    2012-01-01

    The emergence of antibiotic-resistant Pseudomonas aeruginosa is an important concern in the treatment of long-term airway infections in cystic fibrosis patients. In this study, we report the occurrence of azithromycin resistance among clinical P. aeruginosa DK2 isolates. We demonstrate that resis...... that resistance is associated with specific mutations (A2058G, A2059G, and C2611T in Escherichia coli numbering) in domain V of 23S rRNA and that introduction of A2058G and C2611T into strain PAO1 results in azithromycin resistance....

  15. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation.

    Science.gov (United States)

    Kim, Min Hwan; Kim, Jongshin; Hong, Hyowon; Lee, Si-Hyung; Lee, June-Koo; Jung, Eunji; Kim, Joon

    2016-03-01

    The activation of transcriptional coactivators YAP and its paralog TAZ has been shown to promote resistance to anti-cancer therapies. YAP/TAZ activity is tightly coupled to actin cytoskeleton architecture. However, the influence of actin remodeling on cancer drug resistance remains largely unexplored. Here, we report a pivotal role of actin remodeling in YAP/TAZ-dependent BRAF inhibitor resistance in BRAF V600E mutant melanoma cells. Melanoma cells resistant to the BRAF inhibitor PLX4032 exhibit an increase in actin stress fiber formation, which appears to promote the nuclear accumulation of YAP/TAZ. Knockdown of YAP/TAZ reduces the viability of resistant melanoma cells, whereas overexpression of constitutively active YAP induces resistance. Moreover, inhibition of actin polymerization and actomyosin tension in melanoma cells suppresses both YAP/TAZ activation and PLX4032 resistance. Our siRNA library screening identifies actin dynamics regulator TESK1 as a novel vulnerable point of the YAP/TAZ-dependent resistance pathway. These results suggest that inhibition of actin remodeling is a potential strategy to suppress resistance in BRAF inhibitor therapies.

  16. The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines

    NARCIS (Netherlands)

    Putman, M; van Veen, HW; Degener, JE; Konings, WN

    2001-01-01

    The active efflux of toxic compounds by (multi)drug transporters is one of the mechanisms that bacteria have developed to resist cytotoxic drugs. The authors describe the role of the lactococcal secondary multidrug transporter LmrP in the resistance to a broad range of clinically important antibioti

  17. The dipeptidyl peptidase-4 inhibitor teneligliptin improved endothelial dysfunction and insulin resistance in the SHR/NDmcr-cp rat model of metabolic syndrome.

    Science.gov (United States)

    Nakagami, Hironori; Pang, Zhengda; Shimosato, Takashi; Moritani, Toshinori; Kurinami, Hitomi; Koriyama, Hiroshi; Tenma, Akiko; Shimamura, Munehisa; Morishita, Ryuichi

    2014-07-01

    Diabetes mellitus, hypertension and metabolic syndrome are major risk factors for the occurrence of cardiovascular events. In this study, we used spontaneous hypertensive rat (SHR)/NDmcr-cp (cp/cp) (SHRcp) rats as a model for metabolic syndrome to examine the effects of dipeptidyl peptidase (DPP)-4 inhibition on hypertension, glucose metabolism and endothelial dysfunction. First, we confirmed that SHRcp rats showed very severe obesity, hypertension and endothelial dysfunction phenotypes from 14 to 54 weeks of age. Next, we examined whether the DPP-4 inhibitor teneligliptin (10 mg kg(-1) per day per os for 12 weeks) could modify any of these phenotypes. Treatment with teneligliptin significantly improved hyperglycemia and insulin resistance, as evidenced by an oral glucose tolerance test and homeostasis model assessment for insulin resistance, respectively. Teneligliptin showed no effects on systolic blood pressure or heart rate. In regard to endothelial function, the vasodilator response to acetylcholine was significantly impaired in SHRcp rats when compared with WKY rats. Long-term treatment with teneligliptin significantly attenuated endothelial dysfunction through the upregulation of endothelium-derived nitric oxide synthase mRNA. These results demonstrate that long-term treatment with teneligliptin significantly improved endothelial dysfunction and glucose metabolism in a rat model of metabolic syndrome, suggesting that teneligliptin treatment might be beneficial for patients with hypertension and/or diabetes.

  18. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  19. Acetolactate synthase mutation conferring imidazolinone-specific herbicide resistance in Amaranthus hybridus.

    Science.gov (United States)

    Trucco, Federico; Hager, Aaron G; Tranel, Patrick J

    2006-03-01

    Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of branched-chain amino acids in plants and is the target of several herbicides. ALS inhibitors have enjoyed popularity as herbicides due to numerous attributes, although their current adequacy in weed control programs is hampered by herbicide resistance. Most cases of ALS-inhibitor resistance have resulted from selection of an altered target site. The study herein reports on an alanine by threonine amino acid substitution at position 122 of ALS as the basis for imidazolinone-specific resistance in an A. hybridus population from Illinois. In vitro inhibition of enzymatic activity (I(50)) required 1000-fold greater concentration of imazethapyr in the resistant population compared with a susceptible control. This mutation represents the second ALS alteration associated with herbicide resistance in a natural A. hybridus population.

  20. Mutations in the RAM network confer resistance to the thiol oxidant 4,4'-dipyridyl disulfide

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R; Thorsen, Michael

    2008-01-01

    might relate to bypass for abnormal septum-associated protein sorting. The broad resistance toward oxidants (DPS, diamide and H(2)O(2)) of the Deltacts1 strain links cell wall function to the resistance to oxidative stress and suggests the existence of targets that are common for these oxidants.......Thiol oxidants are expected to have multiple effects in living cells. Hence, mutations giving resistance to such agents are likely to reveal important targets and/or mechanisms influencing the cellular capacity to withstand thiol oxidation. A screen for mutants resistant to the thiol......-specific oxidant dipyridyl disulfide (DPS) yielded tao3-516, which is impaired in the function of the RAM signaling network protein Tao3/Pag1p. We suggest that the DPS-resistance of the tao3-516 mutant might be due to deficient cell-cycle-regulated production of the chitinase Cts1p, which functions in post...

  1. Insensitive Acetylcholine Receptor Conferring Resistance of Plutella xylostella to Nereistoxin Insecticides

    Institute of Scientific and Technical Information of China (English)

    CHENG Luo-gen; YU Guang; CHEN Zi-hao; LI Zhong-yin

    2008-01-01

    The combinative rate measurement of (3-[Ⅰ125] iodotyrosyl) α-bungarotoxin was applied in the analysis of the relation between nerve acetylcholine receptor and three types of insecticide resistance in diamondback moth, Plutella xylostella (L.). In the dimehypo-resistant strain and in the cartap-resistant strain, the nerve acetylcholine receptor showed the remarkable insensitivity to dimehypo and cartap, of which the binding rate to ligand was approximately 66 and 60%, respectively, of the susceptible strain. The sensitivity to deltamethrin in the deltamethrin-resistant strain did not show visible change. These results indicated that the decline in the sensitivity of nerve acetylcholine receptor to insecticide might be a potential mechanism to nereistoxin insecticides resistance in the diamondback moth.

  2. The N550K/H Mutations in FGFR2 Confer Differential Resistance to PD173074, Dovitinib, and Ponatinib ATP-Competitive Inhibitors

    Directory of Open Access Journals (Sweden)

    Sara A Byron

    2013-08-01

    Full Text Available We sought to identify fibroblast growth factor receptor 2 (FGFR2 kinase domain mutations that confer resistance to the pan-FGFR inhibitor, dovitinib, and explore the mechanism of action of the drug-resistant mutations. We cultured BaF3 cells overexpressing FGFR2 in high concentrations of dovitinib and identified 14 dovitinib-resistant mutations, including the N550K mutation observed in 25% of FGFR2mutant endometrial cancers (ECs. Structural and biochemical in vitro kinase analyses, together with BaF3 proliferation assays, showed that the resistance mutations elevate the intrinsic kinase activity of FGFR2. BaF3 lines were used to assess the ability of each mutation to confer cross-resistance to PD173074 and ponatinib. Unlike PD173074, ponatinib effectively inhibited all the dovitinib-resistant FGFR2 mutants except the V565I gatekeeper mutation, suggesting ponatinib but not dovitinib targets the active conformation of FGFR2 kinase. EC cell lines expressing wild-type FGFR2 were relatively resistant to all inhibitors, whereas EC cell lines expressing mutated FGFR2 showed differential sensitivity. Within the FGFR2mutant cell lines, three of seven showed marked resistance to PD173074 and relative resistance to dovitinib and ponatinib. This suggests that alternative mechanisms distinct from kinase domain mutations are responsible for intrinsic resistance in these three EC lines. Finally, overexpression of FGFR2N550K in JHUEM-2 cells (FGFR2C383R conferred resistance (about five-fold to PD173074, providing independent data that FGFR2N550K can be associated with drug resistance. Biochemical in vitro kinase analyses also show that ponatinib is more effective than dovitinib at inhibiting FGFR2N550K. We propose that tumors harboring mutationally activated FGFRs should be treated with FGFR inhibitors that specifically bind the active kinase.

  3. Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco.

    Science.gov (United States)

    Yevtushenko, Dmytro P; Romero, Rafael; Forward, Benjamin S; Hancock, Robert E; Kay, William W; Misra, Santosh

    2005-06-01

    Expression of defensive genes from a promoter that is specifically activated in response to pathogen invasion is highly desirable for engineering disease-resistant plants. A plant transformation vector was constructed with transcriptional fusion between the pathogen-responsive win3.12T promoter from poplar and the gene encoding the novel cecropin A-melittin hybrid peptide (CEMA) with strong antimicrobial activity. This promoter-transgene combination was evaluated in transgenic tobacco (Nicotiana tabacum L. cv. Xanthi) for enhanced plant resistance against a highly virulent pathogenic fungus Fusarium solani. Transgene expression in leaves was strongly increased after fungal infection or mechanical wounding, and the accumulation of CEMA transcripts was found to be systemic and positively correlated with the number of transgene insertions. A simple and efficient in vitro regeneration bioassay for preliminary screening of transgenic lines against pathogenic fungi was developed. CEMA had strong antifungal activity in vitro, inhibiting conidia germination at concentrations that were non-toxic to tobacco protoplasts. Most importantly, the expression level of the CEMA peptide in vivo, regulated by the win3.12T promoter, was sufficient to confer resistance against F. solani in transgenic tobacco. The antifungal resistance of plants with high CEMA expression was strong and reproducible. In addition, leaf tissue extracts from transgenic plants significantly reduced the number of fungal colonies arising from germinated conidia. Accumulation of CEMA peptide in transgenic tobacco had no deleterious effect on plant growth and development. This is the first report showing the application of a heterologous pathogen-inducible promoter to direct the expression of an antimicrobial peptide in plants, and the feasibility of this approach to provide disease resistance in tobacco and, possibly, other crops.

  4. Non-recessive Bt toxin resistance conferred by an intracellular cadherin mutation in field-selected populations of cotton bollworm.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.

  5. Non-recessive Bt toxin resistance conferred by an intracellular cadherin mutation in field-selected populations of cotton bollworm.

    Science.gov (United States)

    Zhang, Haonan; Wu, Shuwen; Yang, Yihua; Tabashnik, Bruce E; Wu, Yidong

    2012-01-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.

  6. Overproduction of superoxide dismutase and catalase confers cassava resistance to Tetranychus cinnabarinus.

    Science.gov (United States)

    Lu, Fuping; Liang, Xiao; Lu, Hui; Li, Qian; Chen, Qing; Zhang, Peng; Li, Kaimian; Liu, Guanghua; Yan, Wei; Song, Jiming; Duan, Chunfang; Zhang, Linhui

    2017-01-05

    To explore the role of protective enzymes in cassava (Manihot esculenta Crantz) resistance to mites, transgenic cassava lines overproducing copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) were used to evaluate and molecularly confirm cassava resistance to Tetranychus cinnabarinus. Laboratory evaluation demonstrated that, compared with the control cultivar TMS60444 (wild type, WT), the survival, reproduction, development and activities of SOD and CAT in T. cinnabarinus feeding on transgenic cassava lines SC2, SC4, and SC11 significantly inhibited. Furthermore, the activities of SOD and CAT in transgenic cassava lines SC2, SC4, and SC11 damaged by T. cinnabarinus significantly increased. These findings were similar to the results in the mite-resistant cassava cultivars. Besides, field evaluation indicated that the transgenic cassava lines SC2, SC4, and SC11 were slightly damaged as the highly mite-resistant control C1115, while the highly mite-susceptible WT was severely damaged by T. cinnabarinus. Laboratory and field evaluation demonstrated that transgenic cassava lines were resistant to T. cinnabarinus, which directly confirmed that the increase in SOD and CAT activities was positively related to cassava resistance to T. cinnabarinus. These results will help in understanding the antioxidant defense responses in the cassava-mite interaction and molecular breeding of mite-resistant cassava for effective pest control.

  7. Distribution of genes conferring combined resistance to tetracycline and minocycline among group B streptococcal isolates from humans and various animals.

    Science.gov (United States)

    Schwarz, S; Wibawan, I W; Lämmler, C

    1994-11-01

    Forty-nine tetracycline and minocycline resistant streptococci of serological group B isolated from humans, cattle, pigs and nutrias were investigated for the presence of genes conferring this combined resistance. Southern blot hybridization of EcoRI-digested chromosomal DNA of the bacteria revealed for 39 of the cultures a hybridization signal with tet(M), for four of the cultures a hybridization signal with tet(O) and for none of the cultures a hybridization signal with the tet(Q) gene probe. The restriction endonuclease digested and blotted DNA of six tetracycline and minocycline resistant group B streptococci did not hybridize with any of the available gene probes. The tet(M) gene probes recognized complementary sequences of EcoRI fragments of approximately 10.5 kb and 21.5 kb, the tet(O) gene probe hybridized with fragments of approximately 19 kb. The hybridization of the tet(M) gene probe in two different patterns appeared to be related to the origin of the cultures.

  8. Agrobacterium tumefaciens-mediated transformation of rice with the spider insecticidal gene conferring resistance to leaffolder and striped stem borer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Immature embryos of rice varieties “Xiushui11” and “Chunjiang 11” precultured for 4d were infected and transformed by Agrobacterium tumefaciens strain EHA101/pExT7(containing the spider insecticidal gene).The resistant calli were transferred onto the differentiation medium and plants were regenerated.The transformation frequency reached 56%~72% measured as numbers of Geneticin(G418)-resistant calli produced and 36%~60% measured as numbers of transgenic plants regenerated,respectively.PCR and Southern blot analysis of transgenic plants confirmed that the T-DNA had been integrated into the rice genome.Insect bioassays using T1 transgenic plants indicated that the mortality of the leaffolder(Cnaphalocrasis medinalis)after 7d of leaf feeding reached 38%~61% and the corrected mortality of the striped stem borer(Chilo suppressalis)after 7d of leaf feeding reached 16%~75%.The insect bioassay results demonstrated that the transgenic plants expressing the spider insecticidal protein conferred enhanced resistance to these pests.

  9. Impairment of O-antigen production confers resistance to grazing in a model amoeba-cyanobacterium predator-prey system.

    Science.gov (United States)

    Simkovsky, Ryan; Daniels, Emy F; Tang, Karen; Huynh, Stacey C; Golden, Susan S; Brahamsha, Bianca

    2012-10-09

    The grazing activity of predators on photosynthetic organisms is a major mechanism of mortality and population restructuring in natural environments. Grazing is also one of the primary difficulties in growing cyanobacteria and other microalgae in large, open ponds for the production of biofuels, as contaminants destroy valuable biomass and prevent stable, continuous production of biofuel crops. To address this problem, we have isolated a heterolobosean amoeba, HGG1, that grazes upon unicellular and filamentous freshwater cyanobacterial species. We have established a model predator-prey system using this amoeba and Synechococcus elongatus PCC 7942. Application of amoebae to a library of mutants of S. elongatus led to the identification of a grazer-resistant knockout mutant of the wzm ABC O-antigen transporter gene, SynPCC7942_1126. Mutations in three other genes involved in O-antigen synthesis and transport also prevented the expression of O-antigen and conferred resistance to HGG1. Complementation of these rough mutants returned O-antigen expression and susceptibility to amoebae. Rough mutants are easily identifiable by appearance, are capable of autoflocculation, and do not display growth defects under standard laboratory growth conditions, all of which are desired traits for a biofuel production strain. Thus, preventing the production of O-antigen is a pathway for producing resistance to grazing by certain amoebae.

  10. Diminished representation of HIV-1 variants containing select drug resistance-conferring mutations in primary HIV-1 infection.

    Science.gov (United States)

    Turner, Dan; Brenner, Bluma; Routy, Jean-Pierre; Moisi, Daniela; Rosberger, Zeev; Roger, Michel; Wainberg, Mark A

    2004-12-15

    This study compared the incidence of HIV-1 variants harboring mutations conferring resistance to thymidine analogues, ie, thymidine analogue mutations (TAMs), nonnucleoside reverse transcriptase (RT) inhibitors (NNMs), lamivudine (3TC) (ie, M184V), and protease inhibitors (PIs) acquired in primary HIV infection (PHI) (n = 59) to their observed prevalence in a corresponding potential transmitter (PT) population of persons harboring resistant infections (n = 380). Both of these populations in the context of this cohort analysis possessed similar demographics. Whereas the frequencies of observed TAMs, NNMs, M184V, and protease-associated mutations (PRAMs) were similar in the PT groups, the prevalence of M184V and major PI mutations were significantly lower in the PHI group (PHI/PT ratios of 0.14 and 0.39, respectively). There was a decreased prevalence in the PHI population of resistant viruses co-expressing NNMs or TAMs with M184V compared with viruses that harbored NNMs or TAMs in the absence of M184V (P < 0.0001). It was also observed that individuals in the PT subgroups who harbored RT mutations or PRAMs with M184V had lower levels of plasma viremia than individuals who lacked M184V (P < 0.05). These findings suggest that both decreased viremia and viral fitness in the case of M184V-containing HIV-1 variants may impact on viral transmissibility.

  11. EmtA, a rRNA methyltransferase conferring high-level evernimicin resistance

    DEFF Research Database (Denmark)

    Mann, P. A.; Xiong, L.; Mankin, A. S.

    2001-01-01

    exhibited a dramatic reduction in evernimicin binding, shown by both cell-free translation assays and direct-binding assays. The resistance determinant was cloned from strain 9631355; sequence alignments suggested it was a methyltransferase and therefore it was designated emtA for evernimicin...... methyltransferase. Evernimicin resistance was transmissible and emtA was localized to a plasmid-borne insertion element. Purified EmtA methylated 50S subunits from an evernimicin-sensitive strain 30-fold more efficiently than those from a resistant strain. Reverse transcription identified a pause site...

  12. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat.

    Science.gov (United States)

    Cao, Aizhong; Xing, Liping; Wang, Xiaoyun; Yang, Xueming; Wang, Wei; Sun, Yulei; Qian, Chen; Ni, Jinlong; Chen, Yaping; Liu, Dajun; Wang, Xiue; Chen, Peidu

    2011-05-10

    Powdery mildew resistance gene Pm21, located on the chromosome 6V short arm of Haynaldia villosa and transferred to wheat as a 6VS·6AL translocation (T6VS·6AL), confers durable and broad-spectrum resistance to wheat powdery mildew. Pm21 has become a key gene resource for powdery mildew resistance breeding all over the world. In China, 12 wheat varieties containing Pm21 have been planted on more than 3.4 million hectares since 2002. Pm21 has been intractable to molecular genetic mapping because the 6VS does not pair and recombine with the 6AS. Moreover, all known accessions of H. villosa are immune to powdery mildew fungus. Pm21 is still defined by cytogenetics as a locus. In the present study, a putative serine and threonine protein kinase gene Stpk-V was cloned and characterized with an integrative strategy of molecular and cytogenetic techniques. Stpk-V is located on the Pm21 locus. The results of a single cell transient expression assay showed that Stpk-V could decrease the haustorium index dramatically. After the Stpk-V was transformed into a susceptible wheat variety Yangmai158, the characterized transgenic plants showed high and broad-spectrum powdery mildew resistance similar to T6VS·6AL. Silencing of the Stpk-V by virus-induced gene silencing in both T6VS·6AL and H. villosa resulted in their increased susceptibility. Stpk-V could be induced by Bgt and exogenous H(2)O(2), but it also mediated the increase of endogenous H(2)O(2), leading to cell death and plant resistance when the plant was attacked by Bgt.

  13. Vat, an Amazing Gene Conferring Resistance to Aphids and Viruses They Carry: From Molecular Structure to Field Effects

    Science.gov (United States)

    Boissot, Nathalie; Schoeny, Alexandra; Vanlerberghe-Masutti, Flavie

    2016-01-01

    We review half a century of research on Cucumis melo resistance to Aphis gossypii from molecular to field levels. The Vat gene is unique in conferring resistance to both A. gossypii and the viruses it transmits. This double phenotype is aphid clone-dependent and has been observed in 25 melon accessions, mostly from Asia. It is controlled by a cluster of genes including CC-NLR, which has been characterized in detail. Copy-number polymorphisms (for the whole gene and for a domain that stands out in the LLR region) and single-nucleotide polymorphisms have been identified in the Vat cluster. The role of these polymorphisms in plant/aphid interactions remains unclear. The Vat gene structure suggests a functioning with separate recognition and response phases. During the recognition phase, the VAT protein is thought to interact (likely indirectly) with an aphid effector introduced during cell puncture by the aphid. A few hours later, several miRNAs are upregulated in Vat plants. Peroxidase activity increases, and callose and lignin are deposited in the walls of the cells adjacent to the stylet path, disturbing aphid behavior. In aphids feeding on Vat plants, Piwi-interacting RNA-like sequences are abundant and the levels of other miRNAs are modified. At the plant level, resistance to aphids is quantitative (aphids escape the plant and display low rates of reproduction). Resistance to viruses is qualitative and local. Durability of NLR genes is highly variable. A. gossypii clones are adapted to Vat resistance, either by introducing a new effector that interferes with the deployment of plant defenses, or by adapting to the defenses it triggered. Viruses transmitted in a non-persistent manner cannot adapt to Vat resistance. At population level, Vat reduces aphid density and genetic diversity. The durability of Vat resistance to A. gossypii populations depends strongly on the agro-ecosystem, including, in particular, the presence of other cucurbit crops serving as

  14. RON confers lapatinib resistance in HER2-positive breast cancer cells.

    Science.gov (United States)

    Wang, Quanren; Quan, Haitian; Zhao, Jie; Xie, Chengying; Wang, Lei; Lou, Liguang

    2013-10-28

    Lapatinib-resistance is a major problem for HER2-positive breast cancer treatment. SK-BR-3-LR, a lapatinib-resistant cell clone, was established from HER2-positive SK-BR-3 breast cancer cells following chronic exposure to lapatinib. The PI3K/AKT signaling pathway was demonstrated to be resistant to HER2 inhibition in SK-BR-3-LR cells. However, both small-molecular Recepteur d'Origine Nantais (RON) inhibitors and RON-targeted small interfering RNA (siRNA) effectively restored lapatinib sensitivity in these cells by inhibiting PI3K/AKT activation. Our results demonstrate for the first time the important role of RON in mediating lapatinib resistance and suggest that RON-targeted therapy may become a novel, promising therapeutic strategy after the failure of lapatinib treatment in patients with HER2-positive breast cancer.

  15. Resistance to intestinal Entamoeba histolytica infection is conferred by innate immunity and Gr-1+ cells.

    Science.gov (United States)

    Asgharpour, Amon; Gilchrist, Carol; Baba, Duza; Hamano, Shinjiro; Houpt, Eric

    2005-08-01

    Establishment of intestinal infection with Entamoeba histolytica depends on the mouse strain; C57BL/6 mice are highly resistant, and C3H/HeJ mice are relatively susceptible. We found that resistance to intestinal infection was independent of lymphocyte activity or H-2 haplotype and occurred in the first hours to days postchallenge according to in vivo imaging. At 18 h postchallenge, the ceca of resistant C57BL/6 mice were histologically unremarkable, in contrast to the severe inflammation observed in susceptible C3H/HeJ mice. Comparison of cecal gene expression in C3H/HeJ and C57BL/6 mice demonstrated that there was parasite-induced upregulation of proinflammatory and neutrophil chemotaxis transcripts and there was downregulation of transforming growth factor beta signaling molecules. Pretreatment with dexamethasone abrogated the partial resistance of C3H/HeJ or CBA mice through an innate, lymphocyte-independent mechanism, but it had no effect on the high-level resistance of C57BL/6 mice. Similarly, administration of a neutrophil-depleting anti-Gr-1 monoclonal antibody (RB6-8C5) decreased the partial resistance of CBA mice and led to severe pathology compared to control antibody-treated mice, but it had no effect on C57BL/6 resistance. These data indicate that there are discrete mechanisms of innate resistance to E. histolytica depending on the host background and, in contrast to other reports, imply that neutrophils are protective and not damaging in intestinal amebiasis.

  16. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus

    Directory of Open Access Journals (Sweden)

    Fangquan Wang

    2016-05-01

    Full Text Available Rice black-streaked dwarf virus (RBSDV belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21–24 nt small interfering RNA (siRNA. By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  17. Splice form variant and amino acid changes in MDR49 confers DDT resistance in transgenic Drosophila.

    Science.gov (United States)

    Seong, Keon Mook; Sun, Weilin; Clark, John M; Pittendrigh, Barry R

    2016-03-22

    The ATP-binding cassette (ABC) transporters represent a superfamily of proteins that have important physiological roles in both prokaryotes and eukaryotes. In insects, ABC transporters have previously been implicated in insecticide resistance. The 91-R strain of Drosophila melanogaster has been intensely selected with DDT over six decades. A recent selective sweeps analysis of 91-R implicated the potential role of MDR49, an ABC transporter, in DDT resistance, however, to date the details of how MDR49 may play a role in resistance have not been elucidated. In this study, we investigated the impact of structural changes and an alternative splicing event in MDR49 on DDT-resistance in 91-R, as compared to the DDT susceptible strain 91-C. We observed three amino acid differences in MDR49 when 91-R was compared with 91-C, and only one isoform (MDR49B) was implicated in DDT resistance. A transgenic Drosophila strain containing the 91-R-MDR49B isoform had a significantly higher LD50 value as compared to the 91-C-MDR49B isoform at the early time points (6 h to 12 h) during DDT exposure. Our data support the hypothesis that the MDR49B isoform, with three amino acid mutations, plays a role in the early aspects of DDT resistance in 91-R.

  18. Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity.

    Science.gov (United States)

    Ojo, Babajide; Simenson, Ashley J; O'Hara, Crystal; Wu, Lei; Gou, Xin; Peterson, Sandra K; Lin, Daniel; Smith, Brenda J; Lucas, Edralin A

    2017-08-01

    Obesity is strongly associated with insulin resistance (IR), along with mitochondrial dysfunction to metabolically active tissues and increased production of reactive O2 species (ROS). Foods rich in antioxidants such as wheat germ (WG), protect tissues from damage due to ROS and modulate some negative effects of obesity. This study examined the effects of WG supplementation on markers of IR, mitochondrial substrate metabolism and innate antioxidant markers in two metabolically active tissues (i.e. liver and heart) of C57BL/6 mice fed a high-fat-high-sucrose (HFS) diet. Male C57BL/6 mice, 6-week-old, were randomised into four dietary treatment groups (n 12 mice/group): control (C, 10 % fat kcal), C+10 % WG, HFS (60 % fat kcal) or HFS+10 % WG (HFS+WG). After 12 weeks of treatment, HFS+WG mice had significantly less visceral fat (-16 %, P=0·006) compared with the HFS group. WG significantly reduced serum insulin (P=0·009), the insulinotropic hormone, gastric inhibitory peptide (P=0·0003), and the surrogate measure of IR, homoeostatic model assessment of IR (P=0·006). HFS diet significantly elevated (45 %, P=0·02) cardiac complex 2 mitochondrial VO2, suggesting increased metabolic stress, whereas WG stabilised this effect to the level of control. Consequently, genes which mediate antioxidant defense and mitochondrial biogenesis (superoxide dismutase 2 (Sod2) and PPARγ coactivator 1-α (Pgc1a), respectively) were significantly reduced (P<0·05) in the heart of the HFS group, whereas WG supplementation tended to up-regulate both genes. WG significantly increased hepatic gene expression of Sod2 (P=0·048) but not Pgc1a. Together, these results showed that WG supplementation in HFS diet, reduced IR and improved cardiac mitochondrial metabolic functions.

  19. Endothelial and vascular dysfunctions and insulin resistance in rats fed a high-fat, high-sucrose diet.

    Science.gov (United States)

    Bourgoin, Frédéric; Bachelard, Hélène; Badeau, Mylène; Mélançon, Sébastien; Pitre, Maryse; Larivière, Richard; Nadeau, André

    2008-09-01

    This study was designed to examine the effects of a high-fat, high-sucrose (HFHS) diet on vascular and metabolic actions of insulin. Male rats were randomized to receive an HFHS or regular chow diet for 4 wk. In a first series of experiments, the rats had pulsed Doppler flow probes and intravascular catheters implanted to measure blood pressure, heart rate, and regional blood flows. Insulin sensitivity and vascular responses to insulin were assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine skeletal muscle glucose transport activity and to determine in vitro vascular reactivity, endothelial nitric oxide synthase (eNOS) protein expression in muscle and vascular tissues and endothelin content, nitrotyrosine formation, and NAD(P)H oxidase protein expression in vascular tissues. The HFHS-fed rats displayed insulin resistance, hyperinsulinemia, hypertriglyceridemia, hyperlipidemia, elevated blood pressure, and impaired insulin-mediated renal and skeletal muscle vasodilator responses. A reduction in endothelium-dependent vasorelaxation, accompanied by a decreased eNOS protein expression in muscles and blood vessel endothelium, and increased vascular endothelin-1 protein content were also noted in HFHS-fed rats compared with control rats. Furthermore, the HFHS diet induced a reduced insulin-stimulated glucose transport activity in muscles and increased levels of NAD(P)H oxidase protein and nitrotyrosine formation in vascular tissues. These findings support the importance of eNOS protein in linking metabolic and vascular disease and indicate the ability of a Westernized diet to induce endothelial dysfunction and to alter metabolic and vascular homeostasis.

  20. European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 2011 4th European Conference on Infections in Leukemia

    NARCIS (Netherlands)

    Averbuch, D.; Orasch, C.; Cordonnier, C.; Livermore, D.M.; Mikulska, M.; Viscoli, C.; Gyssens, I.C.J.; Kern, W.V.; Klyasova, G.; Marchetti, O.; Engelhard, D.; Akova, M.; Ecil, a.j.v.o.E.E.I.E.E.; Eln, .

    2013-01-01

    Owing to increasing resistance and the limited arsenal of new antibiotics, especially against Gram-negative pathogens, carefully designed antibiotic regimens are obligatory for febrile neutropenic patients, along with effective infection control. The Expert Group of the 4(th) European Conference on

  1. European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 2011 4th European Conference on Infections in Leukemia

    NARCIS (Netherlands)

    Averbuch, D.; Orasch, C.; Cordonnier, C.; Livermore, D.M.; Mikulska, M.; Viscoli, C.; Gyssens, I.C.J.; Kern, W.V.; Klyasova, G.; Marchetti, O.; Engelhard, D.; Akova, M.; Ecil, a.j.v.o.E.E.I.E.E.; Eln, .

    2013-01-01

    Owing to increasing resistance and the limited arsenal of new antibiotics, especially against Gram-negative pathogens, carefully designed antibiotic regimens are obligatory for febrile neutropenic patients, along with effective infection control. The Expert Group of the 4(th) European Conference on

  2. BNYVV-derived dsRNA confers resistance to rhizomania disease of sugar beet as evidenced by a novel transgenic hairy root approach

    NARCIS (Netherlands)

    Pavli, R.; Panopoulos, N.J.; Goldbach, R.W.; Skaracis, G.N.

    2010-01-01

    Agrobacterium rhizogenes-transformed sugar beet hairy roots, expressing dsRNA from the Beet necrotic yellow vein virus replicase gene, were used as a novel approach to assess the efficacy of three intron-hairpin constructs at conferring resistance to rhizomania disease. Genetically engineered roots

  3. Obesogenic memory can confer long-term increases in adipose tissue but not liver inflammation and insulin resistance after weight loss

    Directory of Open Access Journals (Sweden)

    J. Schmitz

    2016-05-01

    Conclusions: These results demonstrate that although sustained weight loss improves systemic glucose homeostasis, primarily through improved inflammation and insulin action in liver, a remarkable obesogenic memory can confer long-term increases in adipose tissue inflammation and insulin resistance in mice as well as in a significant subpopulation of obese patients.

  4. BNYVV-derived dsRNA confers resistance to rhizomania disease of sugar beet as evidenced by a novel transgenic hairy root approach

    NARCIS (Netherlands)

    Pavli, R.; Panopoulos, N.J.; Goldbach, R.W.; Skaracis, G.N.

    2010-01-01

    Agrobacterium rhizogenes-transformed sugar beet hairy roots, expressing dsRNA from the Beet necrotic yellow vein virus replicase gene, were used as a novel approach to assess the efficacy of three intron-hairpin constructs at conferring resistance to rhizomania disease. Genetically engineered roots

  5. A second gene at the tomato Cf-4 locus confers resistance to Cladosporium fulvum through recognition of a novel avirulence determinant

    NARCIS (Netherlands)

    Nijkamp, HJJ; Takken, Frank L.W.; Thomas, Colwyn M.; Joosten, Matthieu H.A.J.; Golstein, Catherine; Westerink, Nienke; Hille, Jacques; Nijkamp, H. John J.; Wit, Pierre J.G.M. de; Jones, Jonathan D.G.

    1999-01-01

    The tomato Cf-4 and Cf-9 genes confer resistance to the leaf mould pathogen Cladosporium fulvum and map at a complex locus on the short arm of chromosome 1. It was previously shown that the gene encoding Cf-4, which recognizes the Avr4 avirulence determinant, is one of five tandemly duplicated homol

  6. The dipeptidyl peptidase-4 inhibitor vildagliptin has the capacity to repair β-cell dysfunction and insulin resistance.

    Science.gov (United States)

    Horie, A; Tokuyama, Y; Ishizuka, T; Suzuki, Y; Marumo, K; Oshikiri, K; Ide, K; Sunaga, M; Kanatsuka, A

    2014-10-01

    The aim of the present study was to determine whether the dipeptidyl peptidase (DPP)-4 inhibitor could repair pancreatic β-cell dysfunction and insulin resistance. Ten subjects with type 2 diabetes who had never received DPP-4 inhibitor treatment were enrolled in the study. Just before and 3 months after twice-daily administration of vildagliptin (50 mg tablets), insulin secretion and insulin sensitivity were estimated using 2-compartment model analysis of C-peptide kinetics and insulin-modified minimal model parameters, respectively. The first-phase insulin secretion (CS1) was determined as the sum of the C-peptide secretion rate (CSR) from 0 to 5 min (normal range 6.8-18.5 ng/ml/min). The whole-body insulin sensitivity index (SI) was calculated using a minimal model software program (normal range 2.6-7.6×10(-4)/min/μU/ml). After vildagliptin treatment, reductions in mean (± SE) HbA1c were noted (43.28±1.53 vs. 40.98±1.77 mmol/mol; p=0.019). Vildagliptin treatment increased the area under the curve for the C peptide reactivity (CPR) (AUCCPR; 26.66±5.15 vs. 33.02±6.12 ng/ml · 20 min; p=0.003) and CS1 (0.80±0.20 vs. 1.35±0.38 ng/ml/min; p=0.037) in response to an intravenous glucose load. -Vildagliptin treatment significantly increased SI (0.46±0.27 vs. 1.21±0.48×10(-4)/min/μU/ml; p=0.037). The long-term administration of vildagliptin improved CS1 and Si suggesting that this drug has the capacity to repair impairments in pancreatic β-cell function and insulin resistance in type 2 diabetes.

  7. Genetic mapping of two genes conferring resistance to powdery mildew in common bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Pérez-Vega, Elena; Trabanco, Noemí; Campa, Ana; Ferreira, Juan José

    2013-06-01

    Powdery mildew (PM) is a serious disease in many legume species, including the common bean (Phaseolus vulgaris L.). This study investigated the genetic control behind resistance reaction to PM in the bean genotype, Cornell 49242. The results revealed evidence supporting a qualitative mode of inheritance for resistance and the involvement of two independent genes in the resistance reaction. The location of these resistance genes was investigated in a linkage genetic map developed for the XC RIL population. Contingency tests revealed significant associations for 28 loci out of a total of 329 mapped loci. Fifteen were isolated or formed groups with less than two loci. The thirteen remaining loci were located at three regions in linkage groups Pv04, Pv09, and Pv11. The involvement of Pv09 was discarded due to the observed segregation in the subpopulation obtained from the Xana genotype for the loci located in this region. In contrast, the two subpopulations obtained from the Xana genotype for the BM161 locus, linked to the Co-3/9 anthracnose resistance gene (Pv04), and from the Xana genotype for the SCAReoli locus, linked to the Co-2 anthracnose resistance gene (Pv11), exhibited monogenic segregations, suggesting that both regions were involved in the genetic control of resistance. A genetic dissection was carried out to verify the involvement of both regions in the reaction to PM. Two resistant recombinant lines were selected, according to their genotypes, for the block of loci included in the Co-2 and Co-3/9 regions, and they were crossed with the susceptible parent, Xana. Linkage analysis in the respective F2 populations supported the hypothesis that a dominant gene (Pm1) was located in the linkage group Pv11 and another gene (Pm2) was located in the linkage group Pv04. This is the first report showing the localization of resistance genes against powdery mildew in Phaseolus vulgaris and the results offer the opportunity to increase the efficiency of breeding

  8. Hyperandrogenism and Insulin Resistance, Not Changes in Body Weight, Mediate the Development of Endothelial Dysfunction in a Female Rat Model of Polycystic Ovary Syndrome (PCOS).

    Science.gov (United States)

    Hurliman, Amanda; Keller Brown, Jennifer; Maille, Nicole; Mandala, Maurizio; Casson, Peter; Osol, George

    2015-11-01

    This study was designed to differentiate the contributions of hyperandrogenism, insulin resistance (IR), and body weight to the development of endothelial dysfunction in polycystic ovary syndrome and determine the effectiveness of insulin sensitization and antiandrogenic therapy after the establishment of vascular and metabolic dysfunction using a rat model of polycystic ovary syndrome. We hypothesized that the observed endothelial dysfunction was a direct steroidal effect, as opposed to changes in insulin sensitivity or body weight. Prepubertal female rats were randomized to the implantation of a pellet containing DHT or sham procedure. In phase 1, DHT-exposed animals were randomized to pair feeding to prevent weight gain or metformin, an insulin-sensitizing agent, from 5 to 14 weeks. In phase 2, DHT-exposed animals were randomized to treatment with metformin or flutamide, a nonsteroidal androgen receptor blocker from 12 to 16 weeks. Endothelial function was assessed by the vasodilatory response of preconstricted arteries to acetylcholine. Serum steroid levels were analyzed in phase 1 animals. Fasting blood glucose and plasma insulin were analyzed and homeostasis model assessment index calculated in all animals. Our data confirm the presence of endothelial dysfunction as well as increased body weight, hypertension, hyperinsulinemia, and greater IR among DHT-treated animals. Even when normal weight was maintained through pair feeding, endothelial dysfunction, hyperinsulinemia, and IR still developed. Furthermore, despite weight gain, treatment with metformin and flutamide improved insulin sensitivity and blood pressure and restored normal endothelial function. Therefore, the observed endothelial dysfunction is most likely a direct result of hyperandrogenism-induced reductions in insulin sensitivity, as opposed to weight gain.

  9. Role of neural NO synthase (nNOS uncoupling in the dysfunctional nitrergic vasorelaxation of penile arteries from insulin-resistant obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Ana Sánchez

    resistance. This dysfunction likely contributes to the metabolic syndrome-associated ED, along with the endothelial dysfunction also involving altered NO signalling.

  10. Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance

    Directory of Open Access Journals (Sweden)

    Tang Zhen

    2004-02-01

    Full Text Available Abstract Background Insecticide resistance is now common in insects due to the frequent use of chemicals to control them, which provides a useful tool to study the adaptation of eukaryotic genome to new environments. Although numerous potential mutations may provide high level of resistance, only few alleles are found in insect natural populations. Then, we hypothesized that only alleles linked to the highest fitness in the absence of insecticide are selected. Results To obtain information on the origin of the fitness of resistant alleles, we studied Drosophila melanogaster acetylcholinesterase, the target of organophosphate and carbamate insecticides. We produced in vitro 15 possible proteins resulting from the combination of the four most frequent mutations and we tested their catalytic activity and enzymatic stability. Mutations affected deacetylation of the enzyme, decreasing or increasing its catalytic efficiency and all mutations diminished the stability of the enzyme. Combination of mutations result to an additive alteration. Conclusion Our findings suggest that the alteration of activity and stability of acetylcholinesterase are at the origin of the fitness cost associated with mutations providing resistance. Magnitude of the alterations was related to the allelic frequency in Drosophila populations suggesting that the fitness cost is the main driving force for the maintenance of resistant alleles in insecticide free conditions.

  11. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  12. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer.

    Science.gov (United States)

    Ji, Runbi; Zhang, Bin; Zhang, Xu; Xue, Jianguo; Yuan, Xiao; Yan, Yongmin; Wang, Mei; Zhu, Wei; Qian, Hui; Xu, Wenrong

    2015-08-01

    Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.

  13. Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease.

    Science.gov (United States)

    Namukwaya, B; Tripathi, L; Tripathi, J N; Arinaitwe, G; Mukasa, S B; Tushemereirwe, W K

    2012-08-01

    Banana Xanthomonas wilt (BXW), caused by Xanthomonas campestris pv. musacearum, is one of the most important diseases of banana (Musa sp.) and currently considered as the biggest threat to banana production in Great Lakes region of East and Central Africa. The pathogen is highly contagious and its spread has endangered the livelihood of millions of farmers who rely on banana for food and income. The development of disease resistant banana cultivars remains a high priority since farmers are reluctant to employ labor-intensive disease control measures and there is no host plant resistance among banana cultivars. In this study, we demonstrate that BXW can be efficiently controlled using transgenic technology. Transgenic bananas expressing the plant ferredoxin-like protein (Pflp) gene under the regulation of the constitutive CaMV35S promoter were generated using embryogenic cell suspensions of banana. These transgenic lines were characterized by molecular analysis. After challenge with X. campestris pv. musacearum transgenic lines showed high resistance. About 67% of transgenic lines evaluated were completely resistant to BXW. These transgenic lines did not show any disease symptoms after artificial inoculation of in vitro plants under laboratory conditions as well as potted plants in the screen-house, whereas non-transgenic control plants showed severe symptoms resulting in complete wilting. This study confirms that expression of the Pflp gene in banana results in enhanced resistance to BXW. This transgenic technology can provide a timely solution to the BXW pandemic.

  14. Transgenic Rice Plants Harboring Genomic DNA from Zizania latifolia Confer Bacterial Blight Resistance

    Institute of Scientific and Technical Information of China (English)

    SHEN Wei-wei; SONG Cheng-li; CHEN Jie; Fu Ya-ping; Wu Jian-li; JIANG Shao-mei

    2011-01-01

    Based on the sequence of a resistance gene analog FZ14 derived from Zizania latifolia (Griseb.),a pair of specific PCR primers FZ14P1/FZ14P2 was designed to isolate candidate disease resistance gene.The pooled-PCR approach was adopted using the primer pair to screen a genomic transformation-competent artificial chromosome (TAC) library derived from Z.latifolia.A positive TAC clone (ZR1) was obtained and confirmed by sequence analysis.The results indicated that ZR1 consisted of conserved motifs similar to P-loop (kinase 1a),kinase 2,kinase 3a and GLPL (Gly-Leu-Pro-Leu),suggesting that it could be a portion of NBS-LRR type of resistance gene.Using Agrobacterium-mediated transformation of Nipponbare mature embryo,a total of 48 independent transgenic T0 plants were obtained.Among them,36 plants were highly resistant to the virulent bacterial blight strain P×O71.The results indicate that ZR1 contains at least one functional bacterial blight resistance gene.

  15. Distinction between the Cfr Methyltransferase Conferring Antibiotic Resistance and the Housekeeping RlmN Methyltransferase

    DEFF Research Database (Denmark)

    Atkinson, Gemma C; Hansen, Lykke H; Tenson, Tanel

    2013-01-01

    The cfr gene encodes the Cfr methyltransferase that primarily methylates C-8 in A2503 of 23S rRNA in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to six classes of antibiotics of clinical and veterinary importance. The rlmN gene encodes the Rlm......N methyltransferase that methylates C-2 in A2503 in 23S rRNA and A37 in tRNA, but RlmN does not significantly influence antibiotic resistance. The enzymes are homologous and use the same mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate involving a methylated cysteine....... The differentiation between the two classes is supported by previous and new experimental evidence from antibiotic resistance, primer extensions, and mass spectrometry. Finally, evolutionary aspects of the distribution of Cfr- and RlmN-like enzymes are discussed....

  16. 2nd International Conference on Historic Earthquake-Resistant Timber Frames in the Mediterranean Area

    CERN Document Server

    Machado, José; Costa, Alfredo; Candeias, Paulo; Ruggieri, Nicola; Catarino, José

    2016-01-01

    This book presents a selection of the best papers from the HEaRT 2015 conference, held in Lisbon, Portugal, which provided a valuable forum for engineers and architects, researchers and educators to exchange views and findings concerning the technological history, construction features and seismic behavior of historical timber-framed walls in the Mediterranean countries. The topics covered are wide ranging and include historical aspects and examples of the use of timber-framed construction systems in response to earthquakes, such as the gaiola system in Portugal and the Bourbon system in southern Italy; interpretation of the response of timber-framed walls to seismic actions based on calculations and experimental tests; assessment of the effectiveness of repair and strengthening techniques, e.g., using aramid fiber wires or sheets; and modelling analyses. In addition, on the basis of case studies, a methodology is presented that is applicable to diagnosis, strengthening and improvement of seismic performance ...

  17. MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum

    Science.gov (United States)

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S.; Han, Cliff S.; Stajich, Jason E.; Kaloshian, Isgouhi; Borkovich, Katherine A.

    2014-01-01

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site–leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. We explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulated by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. Taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs. PMID:25330340

  18. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption

    Science.gov (United States)

    Li, Ting; Lu, Xinshan; Sun, Yanfei; Yang, Xingbin

    2016-01-01

    Background Insulin resistance, which is associated with an increased risk of cardiovascular morbidity and mortality, has become a leading nutrition problem. Inorganic nitrate enriched in spinach has been demonstrated to reverse the pathological features of insulin resistance and endothelial dysfunction. However, the effects of a direct intake of nitrate-enriched spinach on insulin resistance and endothelial dysfunction have not been studied. Objective To investigate the effects of spinach nitrate on insulin resistance, lipid metabolism, endothelial function, and inflammation in mice fed with a high-fat and high-fructose diet. Design A diet intervention of spinach with or without nitrate was performed in mice. A high-fat and high-fructose diet was used to cause insulin resistance, endothelial dysfunction, and inflammation in mice. The impacts of spinach nitrate on lipid profile, insulin resistance, markers of endothelial function, and inflammation were determined in mice. Results Spinach nitrate improved the vascular endothelial function of the mice with high-fat and high-fructose consumption, as evidenced by the elevated plasma nitrite level, increased serum nitric oxide (NO) level and decreased serum ET-1 level after spinach nitrate intervention. Spinach nitrate also reduced serum triglycerides, total cholesterol, and low-density lipoprotein-cholesterol levels and elevated serum high-density lipoprotein-cholesterol levels in the mice fed with a high-fat and high-fructose diet. Mice receiving spinach with 60 mg/kg of nitrate (1.02±0.34) showed a significantly low homeostasis model assessment-insulin resistance index as compared with the model mice (2.05±0.58), which is indicating that spinach nitrate could effectively improve the insulin resistance. In addition, spinach nitrate remarkably decreased the elevated serum C-reactive protein, tumor necrosis factor α, and interleukin-6 levels induced by a high-fat and high-fructose diet. Conclusions The intake of

  19. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption

    Directory of Open Access Journals (Sweden)

    Ting Li

    2016-09-01

    Full Text Available Background: Insulin resistance, which is associated with an increased risk of cardiovascular morbidity and mortality, has become a leading nutrition problem. Inorganic nitrate enriched in spinach has been demonstrated to reverse the pathological features of insulin resistance and endothelial dysfunction. However, the effects of a direct intake of nitrate-enriched spinach on insulin resistance and endothelial dysfunction have not been studied. Objective: To investigate the effects of spinach nitrate on insulin resistance, lipid metabolism, endothelial function, and inflammation in mice fed with a high-fat and high-fructose diet. Design: A diet intervention of spinach with or without nitrate was performed in mice. A high-fat and high-fructose diet was used to cause insulin resistance, endothelial dysfunction, and inflammation in mice. The impacts of spinach nitrate on lipid profile, insulin resistance, markers of endothelial function, and inflammation were determined in mice. Results: Spinach nitrate improved the vascular endothelial function of the mice with high-fat and high-fructose consumption, as evidenced by the elevated plasma nitrite level, increased serum nitric oxide (NO level and decreased serum ET-1 level after spinach nitrate intervention. Spinach nitrate also reduced serum triglycerides, total cholesterol, and low-density lipoprotein-cholesterol levels and elevated serum high-density lipoprotein-cholesterol levels in the mice fed with a high-fat and high-fructose diet. Mice receiving spinach with 60 mg/kg of nitrate (1.02±0.34 showed a significantly low homeostasis model assessment-insulin resistance index as compared with the model mice (2.05±0.58, which is indicating that spinach nitrate could effectively improve the insulin resistance. In addition, spinach nitrate remarkably decreased the elevated serum C-reactive protein, tumor necrosis factor α, and interleukin-6 levels induced by a high-fat and high-fructose diet

  20. Overexpression of a soybean salicylic acid methlyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Soybean cyst nematode (Heterodera glycines Ichinohe, SCN) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. SCN reduced soybean yields worldwide by an estimated billion dollars annually. These losses remained stable with the use of resistant cultivars but over ...

  1. Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce

    Science.gov (United States)

    Many cultivars of lettuce (Lactuca sativa L.), the most popular leafy vegetable, are susceptible to downy mildew disease caused by Bremia lactucae. Cultivars Iceberg and Grand Rapids that were released in 18th and 19th century, respectively, have high levels of quantitative resistance to downy milde...

  2. Powdery mildew resistant cucurbit rootstocks confer tolerance to grafted susceptible watermelon scions

    Science.gov (United States)

    Cucurbit powdery mildew (PM) caused by Podosphaera xanthii can impact seedling growth and cause serious losses in greenhouse and open fields. We have developed watermelon and bottle gourd germplasm lines with high levels of resistance to PM. A PM susceptible watermelon cultivar Mickey Lee (ML) was g...

  3. Tolerance to powdery mildew conferred in susceptible watermelon scion by grafting on resistant rootstocks

    Science.gov (United States)

    Cucurbit powdery mildew (PM) caused by Podosphaera xanthii, can impact seedling growth and cause serious losses in greenhouse and open field production. We have developed several watermelon and bottle gourd germplasm lines with high levels of resistance to PM. A PM susceptible cultivar Mickey Lee ...

  4. Novel plasmid conferring kanamycin and tetracycline resistance in turkey-derived Campylobacter jejuni strain 11601MD

    Science.gov (United States)

    In Campylobacter spp., resistance to the antibiotics kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095 bp.) harboring tet(O) was identified in...

  5. Transgenic resistance confers effective field level control of bacterial spot disease in tomato.

    Directory of Open Access Journals (Sweden)

    Diana M Horvath

    Full Text Available We investigated whether lines of transgenic tomato (Solanum lycopersicum expressing the Bs2 resistance gene from pepper, a close relative of tomato, demonstrate improved resistance to bacterial spot disease caused by Xanthomonas species in replicated multi-year field trials under commercial type growing conditions. We report that the presence of the Bs2 gene in the highly susceptible VF 36 background reduced disease to extremely low levels, and VF 36-Bs2 plants displayed the lowest disease severity amongst all tomato varieties tested, including commercial and breeding lines with host resistance. Yields of marketable fruit from transgenic lines were typically 2.5 times that of the non-transformed parent line, but varied between 1.5 and 11.5 fold depending on weather conditions and disease pressure. Trials were conducted without application of any copper-based bactericides, presently in wide use despite negative impacts on the environment. This is the first demonstration of effective field resistance in a transgenic genotype based on a plant R gene and provides an opportunity for control of a devastating pathogen while eliminating ineffective copper pesticides.

  6. Transgenic expression of the Aedes aegypti CYP9J28 confers pyrethroid resistance in Drosophila melanogaster

    NARCIS (Netherlands)

    Pavlidi, N.; Monastirioti, M.; Daborn, P.; Van Leeuwen, T.; Vontas, J.

    2012-01-01

    The emergence and spread of insecticide resistance in mosquitoes, such as the major vector of dengue and yellow fever Aedes aegypti, is a major public health problem. A number of studies have been conducted to-date aiming to identify specific molecular changes that are associated with the phenotype,

  7. Potentially Deceptive Health Nutrition-Related Advertising Claims: The Role of Inoculation in Conferring Resistance

    Science.gov (United States)

    Mason, Alicia M.; Miller, Claude H.

    2016-01-01

    Objective: This study sought to examine the efficacy of inoculation message treatments to facilitate resistance to health nutrition-related (HNR) commercial food advertising claims. Design: Data were collected across three phases extending across a 5-week period conducted over two semesters at a Midwest US university. A 2 × 3 between-subjects…

  8. Potentially Deceptive Health Nutrition-Related Advertising Claims: The Role of Inoculation in Conferring Resistance

    Science.gov (United States)

    Mason, Alicia M.; Miller, Claude H.

    2016-01-01

    Objective: This study sought to examine the efficacy of inoculation message treatments to facilitate resistance to health nutrition-related (HNR) commercial food advertising claims. Design: Data were collected across three phases extending across a 5-week period conducted over two semesters at a Midwest US university. A 2 × 3 between-subjects…

  9. Transgenic expression of the Aedes aegypti CYP9J28 confers pyrethroid resistance in Drosophila melanogaster

    NARCIS (Netherlands)

    Pavlidi, N.; Monastirioti, M.; Daborn, P.; Van Leeuwen, T.; Vontas, J.

    2012-01-01

    The emergence and spread of insecticide resistance in mosquitoes, such as the major vector of dengue and yellow fever Aedes aegypti, is a major public health problem. A number of studies have been conducted to-date aiming to identify specific molecular changes that are associated with the phenotype,

  10. The efficiency of RNA interference for conferring stable resistance to Plum Pox Virus

    Science.gov (United States)

    Plum transformed with an intron hairpin RNA CP (ihRNA-CP) were resistant to PPV infection through the specific process of RNA silencing involving both small interfering -RNA interfering (siRNA) and a methylated virus transgene. This recognition process specifically targeted the triggered PPV genome...

  11. Label-free longitudinal monitoring of melanogenesis in the evolution of melanoma treatment resistance (Conference Presentation)

    Science.gov (United States)

    Osseiran, Sam; Wang, Hequn; Dutton-Regester, Ken; Garraway, Levi A.; Evans, Conor L.

    2017-02-01

    While melanoma is not the most common form of skin cancer, it represents the vast majority of skin cancer-related deaths. Indeed, while combination therapies such as Dabrafenib and Trametinib have shown great promise in clinical trials for treating metastatic disease, some melanoma subtypes nevertheless develop resistances to front-line treatments. Under in vitro conditions, some metastatic human melanoma cell lines have been observed to evolve resistance to treatment while simultaneously changing color under brightfield microscopy, hinting at perturbations in pigment synthesis. The process known as melanogenesis gives rise to the two forms of melanin found in mammals: eumelanin, a dark brown/black pigment, and pheomelanin, a much more pale red/blond pigment. Interestingly, pheomelanin has been shown to contribute to the onset and development of melanoma in an ultraviolet-radiation-independent manner through a mechanism of oxidative stress. Eumelanin, on the other hand, is a known antioxidant whose chemical properties seem to shield cells against oxidative damage. To study these pigments in closer detail, nonlinear optical microscopy including coherent anti-Stokes Raman scattering (CARS) was used for the specific visualization and quantification of the relative abundance of pheomelanin and eumelanin within these treatment resistant cell lines. These microscopy toolkits provide a means to monitor changes in pigmentation in a noninvasive and non-destructive manner without the use of exogenous dyes to better understand the molecular basis of treatment resistance.

  12. An improved method for transformation of lettuce by Agrobacterium tumefaciens with a gene that confers freezing resistance

    Directory of Open Access Journals (Sweden)

    Pileggi Marcos

    2001-01-01

    Full Text Available An efficient method for constructing transgenic lettuce cultivars by Agrobacterium tumefaciens was described by Torres et al., 1993. In the present work, an improvement of the above procedure is described and applied to transform the cultivar Grand Rapids with a mutated P5CS gene. The major modifications were concerned with turning more practical the transformation and regeneration protocols. Also we tried to improve transformation steps by increasing injured area in explants and prolonging co-cultivation with Agrobacteria (in larger concentration. A more significant selective pressure was used against non-transformed plants and bacteria. In these work we were concerned to obtain T1 and T2 seeds. The P5CS gene codes for a delta¹-pyrroline-5-carboxylate synthetase, a bifunctional enzyme that catalyzes two steps of proline biosynthesis in plants (Zhang et al., 1995; Peng et al., 1996, while the mutated gene is insensitive to feedback inhibition by proline. The potential benefit of this gene is to confer water stress resistance (drought, salt, cold due to increased intracellular levels of proline that works like an osmoprotectant. In this work could obtain and characterize transgenic lettuce lineages which are resistant to freezing temperature.

  13. Cyclic AMP (cAMP) confers drug resistance against DNA damaging agents via PKAIA in CML cells.

    Science.gov (United States)

    Xiao, Ling-Yi; Kan, Wai-Ming

    2017-01-05

    Cyclic adenosine monophosphate (cAMP) regulates many vital functions such as metabolism, proliferation, differentiation and death. Depending on cell types and stimulators, cAMP could either promote or attenuate cell death. cAMP signal can be transduced by protein kinase A (PKA) and/or exchange protein directly activated by cAMP (EPAC). In CML cells, cAMP may suppress their proliferation and enhance their differentiation. However, the role of cAMP on DNA damaging agent toxicity and the mechanism involved has not been studied. In this study, we studied the effect of cAMP on the sensitivity of CML cells to DNA damaging agents. We observed that forskolin (FSK) and dibutyryl-cAMP (DBcAMP) decreased cisplatin and etoposide-induced cell death in K562 cells. Moreover, PKA activator prevented K562 cells from DNA damaging agent-induced cell death while EPAC activator had no effect. Furthermore, we found that the PKA subtype, PKAIA, was involved in cAMP-attenuated resistance in K562 cells. Taken together, our results suggest that increased cAMP level confers CML cells to acquire a novel mechanism against DNA damaging agent toxicity via PKAIA. Thus, PKAIA inhibitor may be helpful in overcoming the resistance to DNA damaging agents in CML cells.

  14. Genetic variation in plant CYP51s confers resistance against voriconazole, a novel inhibitor of brassinosteroid-dependent sterol biosynthesis.

    Directory of Open Access Journals (Sweden)

    Wilfried Rozhon

    Full Text Available Brassinosteroids (BRs are plant steroid hormones with structural similarity to mammalian sex steroids and ecdysteroids from insects. The BRs are synthesized from sterols and are essential regulators of cell division, cell elongation and cell differentiation. In this work we show that voriconazole, an antifungal therapeutic drug used in human and veterinary medicine, severely impairs plant growth by inhibiting sterol-14α-demethylation and thereby interfering with BR production. The plant growth regulatory properties of voriconazole and related triazoles were identified in a screen for compounds with the ability to alter BR homeostasis. Voriconazole suppressed growth of the model plant Arabidopsis thaliana and of a wide range of both monocotyledonous and dicotyledonous plants. We uncover that voriconazole toxicity in plants is a result of a deficiency in BRs that stems from an inhibition of the cytochrome P450 CYP51, which catalyzes a step of BR-dependent sterol biosynthesis. Interestingly, we found that the woodland strawberry Fragaria vesca, a member of the Rosaceae, is naturally voriconazole resistant and that this resistance is conferred by the specific CYP51 variant of F. vesca. The potential of voriconazole as a novel tool for plant research is discussed.

  15. Heterologous expression of a Tpo1 homolog from Arabidopsis thaliana confers resistance to the herbicide 2,4-D and other chemical stresses in yeast.

    Science.gov (United States)

    Cabrito, Tânia R; Teixeira, Miguel C; Duarte, Alexandra A; Duque, Paula; Sá-Correia, Isabel

    2009-10-01

    The understanding of the molecular mechanisms underlying acquired herbicide resistance is crucial in dealing with the emergence of resistant weeds. Saccharomyces cerevisiae has been used as a model system to gain insights into the mechanisms underlying resistance to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The TPO1 gene, encoding a multidrug resistance (MDR) plasma membrane transporter of the major facilitator superfamily (MFS), was previously found to confer resistance to 2,4-D in yeast and to be transcriptionally activated in response to the herbicide. In this work, we demonstrate that Tpo1p is required to reduce the intracellular concentration of 2,4-D. ScTpo1p homologs encoding putative plasma membrane MFS transporters from the plant model Arabidopsis thaliana were analyzed for a possible role in 2,4-D resistance. At5g13750 was chosen for further analysis, as its transcript levels were found to increase in 2,4-D stressed plants. The functional heterologous expression of this plant open reading frame in yeast was found to confer increased resistance to the herbicide in Deltatpo1 and wild-type cells, through the reduction of the intracellular concentration of 2,4-D. Heterologous expression of At5g13750 in yeast also leads to increased resistance to indole-3-acetic acid (IAA), Al(3+) and Tl(3+). At5g13750 is the first plant putative MFS transporter to be suggested as possibly involved in MDR.

  16. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple.

    Science.gov (United States)

    Zhang, Ying; Shi, Xiangpeng; Li, Baohua; Zhang, Qingming; Liang, Wenxing; Wang, Caixia

    2016-09-01

    Glomerella leaf spot (GLS) caused by Glomerella cingulata is a newly emergent disease that results in severe defoliation and fruit spots in apple. Currently, there are no effective means to control this disease except for the traditional fungicide sprays. Induced resistance by elicitors against pathogens infection is a widely accepted eco-friendly strategy. In the present study, we investigated whether exogenous application of salicylic acid (SA) could improve resistance to GLS in a highly susceptible apple cultivar (Malus domestica Borkh. cv. 'Gala') and the underlying mechanisms. The results showed that pretreatment with SA, at 0.1-1.0 mM, induced strong resistance against GLS in 'Gala' apple leaves, with SA treated leaves showing significant reduction in lesion numbers and disease index. Concurrent with the enhanced disease resistance, SA treatment markedly increased the total antioxidant capacity (T-AOC) and defence-related enzyme activities, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO). As expected, SA treatment also induced the expression levels of five pathogenesis-related (PR) genes including PR1, PR5, PR8, Chitinase and β-1,3-glucanase. Furthermore, the most pronounced and/or rapid increase was observed in leaves treated with SA and subsequently inoculated with G. cingulata compared to the treatment with SA or inoculation with the pathogen. Together, these results suggest that exogenous SA triggered increase in reactive oxygen species levels and the antioxidant system might be responsible for enhanced resistance against G. cingulata in 'Gala' apple leaves.

  17. Resistance Training in Type II Diabetes Mellitus: Impact on Areas of Metabolic Dysfunction in Skeletal Muscle and Potential Impact on Bone

    Directory of Open Access Journals (Sweden)

    Richard J. Wood

    2012-01-01

    Full Text Available The prevalence of Type II Diabetes mellitus (T2DM is increasing rapidly and will continue to be a major healthcare expenditure burden. As such, identification of effective lifestyle treatments is paramount. Skeletal muscle and bone display metabolic and functional disruption in T2DM. Skeletal muscle in T2DM is characterized by insulin resistance, impaired glycogen synthesis, impairments in mitochondria, and lipid accumulation. Bone quality in T2DM is decreased, potentially due to the effects of advanced glycation endproducts on collagen, impaired osteoblast activity, and lipid accumulation. Although exercise is widely recognized as an important component of treatment for T2DM, the focus has largely been on aerobic exercise. Emerging research suggests that resistance training (strength training may impose potent and unique benefits in T2DM. The purpose of this review is to examine the role of resistance training in treating the dysfunction in skeletal muscle and the potential role for resistance training in treating the associated dysfunction in bone.

  18. Chromosomal locations of the maize (Zea mays L. HtP and rt genes that confer resistance to Exserohilum turcicum

    Directory of Open Access Journals (Sweden)

    Juliana Bernardi Ogliari

    2007-01-01

    Full Text Available We used 125 microsatellite markers to genotype the maize (Zea mays L. near isogenic lines (NIL L30HtPHtPRtRt and L30htphtpRtRt and the L40htphtprtrt line which contrast regarding the presence of the recently described dominant HtP and the recessive rt genes that confer resistance to Exserohilum turcicum. Five microsatellite markers revealed polymorphisms between the NIL and were considered candidate linked markers for the HtP resistance gene. Linkage was confirmed by bulked segregant sample (BSS analysis of 32 susceptible and 34 resistant plants from a BC1F1 population derived from the cross (L30HtPHtPRtRt x L40htphtprtrt x L40htphtprtrt. The bnlg198 and dupssr25 markers, both located on maize chromosome 2L (bin 2.08, were polymorphic between bulks. Linkage distances were estimated based on co-segregation data of the 32 susceptible plants and indicated distances of 28.7 centimorgans (cM between HtP and bnlg198 and 23.5 cM between HtP and dupssr25. The same set of susceptible plants was also genotyped with markers polymorphic between L30HtPHtPRtRt and L40htphtprtrt in order to find markers linked to the rt gene. Marker bnlg197, from chromosome 3L (bin 3.06, was found linked to rt at a distance of 9.7 cM. This is the first report on the chromosomal locations of these newly described genes.

  19. Identification of amino acids conferring high-level resistance to expanded-spectrum cephalosporins in the penA gene from Neisseria gonorrhoeae strain H041.

    Science.gov (United States)

    Tomberg, Joshua; Unemo, Magnus; Ohnishi, Makoto; Davies, Christopher; Nicholas, Robert A

    2013-07-01

    The recent identification of a high-level-ceftriaxone-resistant (MIC = 2 to 4 μg/ml) isolate of Neisseria gonorrhoeae from Japan (H041) portends the loss of ceftriaxone as an effective treatment for gonococcal infections. This is of grave concern because ceftriaxone is the last remaining option for first-line empirical antimicrobial monotherapy. The penA gene from H041 (penA41) is a mosaic penA allele similar to mosaic alleles conferring intermediate-level cephalosporin resistance (Ceph(i)) worldwide but has 13 additional mutations compared to the mosaic penA gene from the previously studied Ceph(i) strain 35/02 (penA35). When transformed into the wild-type strain FA19, the penA41 allele confers 300- and 570-fold increases in the MICs for ceftriaxone and cefixime, respectively. In order to understand the mechanisms involved in high-level ceftriaxone resistance and to improve surveillance and epidemiology during the potential emergence of ceftriaxone resistance, we sought to identify the minimum number of amino acid alterations above those in penA35 that confer high-level resistance to ceftriaxone. Using restriction fragment exchange and site-directed mutagenesis, we identified three mutations, A311V, T316P, and T483S, that, when incorporated into the mosaic penA35 allele, confer essentially all of the increased resistance of penA41. A311V and T316P are close to the active-site nucleophile Ser310 that forms the acyl-enzyme complex, while Thr483 is predicted to interact with the carboxylate of the β-lactam antibiotic. These three mutations have thus far been described only for penA41, but dissemination of these mutations in other mosaic alleles would spell the end of ceftriaxone as an effective treatment for gonococcal infections.

  20. Smoothened Mutation Confers Resistance to a Hedgehog Pathway Inhibitor in Medulloblastoma

    Science.gov (United States)

    Yauch, Robert L.; Dijkgraaf, Gerrit J. P.; Alicke, Bruno; Januario, Thomas; Ahn, Christina P.; Holcomb, Thomas; Pujara, Kanan; Stinson, Jeremy; Callahan, Christopher A.; Tang, Tracy; Bazan, J. Fernando; Kan, Zhengyan; Seshagiri, Somasekar; Hann, Christine L.; Gould, Stephen E.; Low, Jennifer A.; Rudin, Charles M.; de Sauvage, Frederic J.

    2017-01-01

    The Hedgehog (Hh) signaling pathway is inappropriately activated in certain human cancers, including medulloblastoma, an aggressive brain tumor. GDC-0449, a drug that inhibits Hh signaling by targeting the serpentine receptor Smoothened (SMO), has produced promising anti-tumor responses in early clinical studies of cancers driven by mutations in this pathway. To evaluate the mechanism of resistance in a medulloblastoma patient who had relapsed after an initial response to GDC-0449, we determined the mutational status of Hh signaling genes in the tumor after disease progression. We identified an amino acid substitution at a conserved aspartic acid residue of SMO that had no effect on Hh signaling but disrupted the ability of GDC-0449 to bind SMO and suppress this pathway. A mutation altering the same amino acid also arose in a GDC-0449–resistant mouse model of medulloblastoma. These findings show that acquired mutations in a serpentine receptor with features of a G protein–coupled receptor can serve as a mechanism of drug resistance in human cancer. PMID:19726788

  1. Modulation of auxin content in Arabidopsis confers improved drought stress resistance.

    Science.gov (United States)

    Shi, Haitao; Chen, Li; Ye, Tiantian; Liu, Xiaodong; Ding, Kejian; Chan, Zhulong

    2014-09-01

    Auxin is a well-known plant phytohormone that is involved in multiple plant growth processes and stress responses. In this study, auxin response was significantly modulated under drought stress condition. The iaaM-OX transgenic lines with higher endogenous indole-3-acetic acid (IAA) level and IAA pre-treated wild type (WT) plants exhibited enhanced drought stress resistance, while the yuc1yuc2yuc6 triple mutants with lower endogenous IAA level showed decreased stress resistance in comparison to non-treated WT plants. Additionally, endogenous and exogenous auxin positively modulated the expression levels of multiple abiotic stress-related genes (RAB18, RD22, RD29A, RD29B, DREB2A, and DREB2B), and positively affected reactive oxygen species (ROS) metabolism and underlying antioxidant enzyme activities. Moreover, auxin significantly modulated some carbon metabolites including amino acids, organic acids, sugars, sugar alcohols and aromatic amines. Notably, endogenous and exogenous auxin positively modulated root architecture especially the lateral root number. Taken together, this study demonstrated that auxin might participate in the positive regulation of drought stress resistance, through regulation of root architecture, ABA-responsive genes expression, ROS metabolism, and metabolic homeostasis, at least partially.

  2. Screening for Escherichia coli K-12 genes conferring glyoxal resistance or sensitivity by transposon insertions.

    Science.gov (United States)

    Lee, Changhan; Kim, Jihong; Kwon, Minsuk; Lee, Kihyun; Min, Haeyoung; Kim, Seong Hun; Kim, Dongkyu; Lee, Nayoung; Kim, Jiyeun; Kim, Doyun; Ko, Changmin; Park, Chankyu

    2016-09-01

    Glyoxal (GO) belongs to the reactive electrophilic species generated in vivo in all organisms. In order to identify targets of GO and their response mechanisms, we attempted to screen for GO-sensitive mutants by random insertions of TnphoA-132. The genes responsible for GO susceptibility were functionally classified as the following: (i) tRNA modification; trmE, gidA and truA, (ii) DNA repair; recA and recC, (iii) toxin-antitoxin; mqsA and (iv) redox metabolism; yqhD and caiC In addition, an insertion in the crp gene, encoding the cAMP responsive transcription factor, exhibits a GO-resistant phenotype, which is consistent with the phenotype of adenylate cyclase (cya) mutant showing GO resistance. This suggests that global regulation involving cAMP is operated in a stress response to GO. To further characterize the CRP-regulated genes directly associated with GO resistance, we created double mutants deficient in both crp and one of the candidate genes including yqhD, gloA and sodB The results indicate that these genes are negatively regulated by CRP as confirmed by real-time RT-PCR. We propose that tRNA as well as DNA are the targets of GO and that toxin/antitoxin, antioxidant and cAMP are involved in cellular response to GO.

  3. Expression of a chitinase gene from Metarhizium anisopliae in tobacco plants confers resistance against Rhizoctonia solani.

    Science.gov (United States)

    Kern, Marcelo Fernando; Maraschin, Simone de Faria; Vom Endt, Débora; Schrank, Augusto; Vainstein, Marilene Henning; Pasquali, Giancarlo

    2010-04-01

    The chit1 gene from the entomopathogenic fungus Metarhizium anisopliae, encoding the endochitinase CHIT42, was placed under the control of the CaMV 35S promoter, and the resulting construct was transferred to tobacco. Seventeen kanamycin-resistant transgenic lines were recovered, and the presence of the transgene was confirmed by polymerase chain reactions and Southern blot hybridization. The number of chit1 copies was determined to be varying from one to four. Copy number had observable effects neither on plant growth nor development. Substantial heterogeneity concerning production of the recombinant chitinase, and both general and specific chitinolytic activities were detected in leaf extracts from primary transformants. The highest chitinase activities were found in plants harboring two copies of chit1 inserts at different loci. Progeny derived from self-pollination of the primary transgenics revealed a stable inheritance pattern, with transgene segregation following a mendelian dihybrid ratio. Two selected plants expressing high levels of CHIT42 were consistently resistant to the soilborne pathogen Rhizoctonia solani, suggesting a direct relationship between enzyme activity and reduction of foliar area affected by fungal lesions. To date, this is the first report of resistance to fungal attack in plants mediated by a recombinant chitinase from an entomopathogenic and acaricide fungus.

  4. A Locus at 5q33.3 Confers Resistance to Tuberculosis in Highly Susceptible Individuals

    Science.gov (United States)

    Sobota, Rafal S.; Stein, Catherine M.; Kodaman, Nuri; Scheinfeldt, Laura B.; Maro, Isaac; Wieland-Alter, Wendy; Igo, Robert P.; Magohe, Albert; Malone, LaShaunda L.; Chervenak, Keith; Hall, Noemi B.; Modongo, Chawangwa; Zetola, Nicola; Matee, Mecky; Joloba, Moses; Froment, Alain; Nyambo, Thomas B.; Moore, Jason H.; Scott, William K.; Lahey, Timothy; Boom, W. Henry; von Reyn, C. Fordham; Tishkoff, Sarah A.; Sirugo, Giorgio; Williams, Scott M.

    2016-01-01

    Immunosuppression resulting from HIV infection increases the risk of progression to active tuberculosis (TB) both in individuals newly exposed to Mycobacterium tuberculosis (MTB) and in those with latent infections. We hypothesized that HIV-positive individuals who do not develop TB, despite living in areas where it is hyperendemic, provide a model of natural resistance. We performed a genome-wide association study of TB resistance by using 581 HIV-positive Ugandans and Tanzanians enrolled in prospective cohort studies of TB; 267 of these individuals developed active TB, and 314 did not. A common variant, rs4921437 at 5q33.3, was significantly associated with TB (odds ratio = 0.37, p = 2.11 × 10−8). This variant lies within a genomic region that includes IL12B and is embedded in an H3K27Ac histone mark. The locus also displays consistent patterns of linkage disequilibrium across African populations and has signals of strong selection in populations from equatorial Africa. Along with prior studies demonstrating that therapy with IL-12 (the cytokine encoded in part by IL12B, associated with longer survival following MTB infection in mice deficient in CD4 T cells), our results suggest that this pathway might be an excellent target for the development of new modalities for treating TB, especially for HIV-positive individuals. Our results also indicate that studying extreme disease resistance in the face of extensive exposure can increase the power to detect associations in complex infectious disease. PMID:26942285

  5. Diversity of mechanisms conferring resistance to β-lactams among OXA-23-producing Acinetobacter baumannii clones.

    Science.gov (United States)

    Cardoso, Juliana Provasi; Cayô, Rodrigo; Girardello, Raquel; Gales, Ana Cristina

    2016-05-01

    A total of 31 unrelated OXA-23-producing Acinetobacter baumannii strains isolated from 14 hospitals located in distinct Brazilian regions were evaluated in this study. These isolates were grouped into 12 different sequence types (STs), of which 7 had unique allelic sequences (ST188, ST189, ST190, ST191, ST192, ST228, and ST299). Most isolates belonged to the clonal complex CC79 followed by CC15 and CC1. Only polymyxin B and minocycline showed good activity against the OXA-23-producing A. baumannii clones. The ISAba1 upstream blaOXA-23, blaOXA-51-like, or ampC was found in 100%, 54.8%, and 77.4% of the isolates, respectively. High resistance rates to ceftazidime and cefotaxime were observed among those isolates possessing ISAba1 upstream ampC, in contrast to those isolates that did not carry this configuration. Moreover, a ≥2 Log2 decrease in the MICs of meropenem and ceftazidime was observed in the presence of phenyl-arginine-β-naphthylamide for 80.6% and 54.8% of isolates, respectively. Overexpression of the adeB was observed in 61.3% of isolates, particularly among those isolates belonging to the ST1 (CC1). It was also verified that ompW was down-regulated in all isolates belonging to the ST15 (CC15). On the other hand, carO and omp33-36 genes were overexpressed in 48.4% and 58.1% of the isolates, respectively. In this study, we show that overexpression of AdeABC system could significantly contribute for resistance to meropenem and ceftazidime among OXA-23-producing A. baumannii clones in Brazil, demonstrating the complexity involved in the β-lactam resistance in such isolates.

  6. Epithelial-to-mesenchymal transition (EMT) confers primary resistance to trastuzumab (Herceptin).

    Science.gov (United States)

    Oliveras-Ferraros, Cristina; Corominas-Faja, Bruna; Cufí, Sílvia; Vazquez-Martin, Alejandro; Martin-Castillo, Begoña; Iglesias, Juan Manuel; López-Bonet, Eugeni; Martin, Ángel G; Menendez, Javier A

    2012-11-01

    The rate of inherent resistance to single-agent trastuzumab in HER2-overexpressing metastatic breast carcinomas is impressive at above 70%. Unfortunately, little is known regarding the distinctive genetic signatures that could predict trastuzumab refractoriness ab initio. The epithelial-to-mesenchymal transition (EMT) molecular features, HER2 expression status and primary responses to trastuzumab were explored in the public Lawrence Berkeley Laboratory (LBL) Breast Cancer Collection. Lentivirus-delivered small hairpin RNAs were employed to reduce specifically and stably the expression of EMT transcription factors in trastuzumab-refractory basal/HER2+ cells. Cell proliferation assays and pre-clinical nude mice xenograft-based studies were performed to assess the contribution of specific EMT transcription factors to inherent trastuzumab resistance. Primary sensitivity to trastuzumab was restricted to the SLUG/SNAIL2-negative subset of luminal/HER2+ cell lines, whereas all of the SLUG/SNAIL2-positive basal/HER2+ cell lines exhibited an inherent resistance to trastuzumab. The specific knockdown of SLUG/SNAIL2 suppressed the stem-related CD44+CD24(-/low) mesenchymal immunophenotype by transcriptionally upregulating the luminal epithelial marker CD24 in basal/HER2+ cells. Basal/HER2+ cells gained sensitivity to the growth-inhibitory effects of trastuzumab following SLUG/SNAIL2 gene depletion, which induced the expression of the mesenchymal-to-epithelial transition (MET) genes involved in promoting an epithelial phenotype. The isolation of CD44+CD24(-/low) mesenchymal cells by magnetic-activated cell sorting (MACS) confirmed their intrinsic unresponsiveness to trastuzumab. A reduction in tumor growth and dramatic gain in sensitivity to trastuzumab in vivo were confirmed when the SLUG/SNAIL2 knockdown basal/HER2+ cells were injected into nude mice. HER2 overexpression in a basal, rather than in a luminal molecular background, results in a basal/HER2+ breast cancer subtype

  7. Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS using chemogenomics

    Directory of Open Access Journals (Sweden)

    Jaime Maria DLA

    2012-06-01

    Full Text Available Abstract Background Chitosan oligosaccharide (COS, a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. Results Three different chemogenomic fitness assays, haploinsufficiency (HIP, homozygous deletion (HOP, and multicopy suppression (MSP profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms, membrane functions (e.g. signalling, transport and targeting, membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. Conclusions Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane

  8. Antiviral activity produced by an IPNV-carrier EPC cell culture confers resistance to VHSV infection.

    Science.gov (United States)

    Jurado, María Teresa; García-Valtanen, Pablo; Estepa, Amparo; Perez, Luis

    2013-10-25

    Infectious pancreatic necrosis virus (IPNV), a fish birnavirus, can establish a persistent infection on epithelioma papulosum cyprinid (EPC) cells producing a carrier state where a small fraction of IPNV-infected cells is maintained in the culture after continuous subculture. The EPC(IPNV) cells are resistant to challenge with IPNV as well as to challenge with viral hemorrhagic septicemia virus (VHSV), a rhabdovirus. In this work, the antiviral effect of the IPNV carrier culture conditioned medium (EPC(IPNV)-CM) was tested and analyzed in detail. EPC cells treated with the carrier culture supernatant become protected against VHSV challenge. Size-fractionation by filtration and acid and heat treatment showed that the IPNV persistently infected cells release an acid-resistant soluble factor in the molecular weight fraction bellow 50 kDa. The capacity of the EPC(IPNV)-CM to induce cytokine genes in EPC cells was also determined by real-time RT-PCR. We found that there is a positive correlation between up-regulation of mx gene expression in EPC cells treated with EPC(IPNV)-CM and protection against VHSV challenge. Our findings indicate that the control of IPNV multiplication in the carrier culture as well as the interference with rhabdovirus replication are connected to the production and release of an antiviral (interferon-like) factor to the medium.

  9. Aberrant lipogenesis is a metabolic marker for azole-resistant candida albicans (Conference Presentation)

    Science.gov (United States)

    Karanja, Caroline; Hong, Weili; Younis, Waleed; Cheng, Ji-Xin; Seleem, Mohamed

    2017-02-01

    Candida is the single most important cause of fungal bloodstream infections worldwide causing significant mortality as high as 50%. This high mortality rate is, in part, due to the inability to rapidly diagnose and simultaneously initiate an effective antifungal therapy early in the disease process. Current culture-based diagnostics are often slow, requiring several days to complete, and are only 50% sensitive in diagnosing candidemia (Candida bloodstream infection). For every 12 hours of delay in starting correct antifungal therapy, the risk of death for a given patient with candidemia increases by 200%. To address this unmet need, we explored the potential of employing stimulated Raman Scattering (SRS) imaging to diagnose candidemia and probe metabolic differences between resistant and susceptible strain at a single cell level. Metabolism is integral to pathogenicity; microorganism have very short life cycles, and therefore only a few hours are needed to observe a full metabolic cycle. SRS imaging at C-H vibration frequency at 2850 cm-1 revealed a substantial difference in lipogenesis between the susceptible and resistant C. albicans. Treating the C. albicans with fluconazole, an antimicrobial drug that targets ergosterol biosynthesis only affected the lipogenesis in the susceptible strain. Our results show that single-cell metabolic imaging under a SRS microscope can be used for diagnose candidemia and early detection of antimicrobial susceptibility.

  10. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma.

    Science.gov (United States)

    Kessler, Tobias; Sahm, Felix; Blaes, Jonas; Osswald, Matthias; Rübmann, Petra; Milford, David; Urban, Severino; Jestaedt, Leonie; Heiland, Sabine; Bendszus, Martin; Hertenstein, Anne; Pfenning, Philipp-Niclas; Ruiz de Almodóvar, Carmen; Wick, Antje; Winkler, Frank; von Deimling, Andreas; Platten, Michael; Wick, Wolfgang; Weiler, Markus

    2015-10-13

    Loss of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a prerequisite for tumor cell-specific expression of vascular endothelial growth factor receptor (VEGFR)-2 in glioblastoma defining a subgroup prone to develop evasive resistance towards antiangiogenic treatments. Immunohistochemical analysis of human tumor tissues showed VEGFR-2 expression in glioma cells in 19% of specimens examined, mainly in the infiltration zone. Glioma cell VEGFR-2 positivity was restricted to PTEN-deficient tumor specimens. PTEN overexpression reduced VEGFR-2 expression in vitro, as well as knock-down of raptor or rictor. Genetic interference with VEGFR-2 revealed proproliferative, antiinvasive and chemoprotective functions for VEGFR-2 in glioma cells. VEGFR-2-dependent cellular effects were concomitant with activation of 'kappa-light-chain-enhancer' of activated B-cells, protein kinase B, and N-myc downstream regulated gene 1. Two-photon in vivo microscopy revealed that expression of VEGFR-2 in glioma cells hampers antiangiogenesis. Bevacizumab induces a proinvasive response in VEGFR-2-positive glioma cells. Patients with PTEN-negative glioblastomas had a shorter survival after initiation of bevacizumab therapy compared with PTEN-positive glioblastomas. Conclusively, expression of VEGFR-2 in glioma cells indicates an aggressive glioblastoma subgroup developing early resistance to temozolomide or bevacizumab. Loss of PTEN may serve as a biomarker identifying those tumors upfront by routine neuropathological methods.

  11. Serum insulin, insulin resistance, β-cell dysfunction, and gallstone disease among type 2 diabetics in Chinese population: A community-based study in Kinmen, Taiwan

    Institute of Scientific and Technical Information of China (English)

    Chi-Ming Liu; Chung-Te Hsu; Hui-Chuan Shih; De-Chuan Chan; Pesus Chou; Tao-Hsin Tung; Shih-Tzer Tsai; Jorn-Hon Liu; Yeh-Kuang Tsai; Victor Tze-Kai Chen; Tseng-Nip Tam; Hsu-Feng Lu; Kuang-Kuo Wang

    2005-01-01

    AIM: To explore the association of serum insulin, insulin resistance, and β-cell dysfunction with gallstone disease (GSD) in type 2 diabetics.METHODS: We used a community-based study conducted between 1991 and 1993 in Kinmen, Taiwan to identify type 2 diabetics. A screening program for GSD was performed in 2001 by a panel of specialists who employed real-time ultrasound sonography to examine the abdominal region after the patient had fasted for at least 8 h. Screening was conducted in 2001 on 848patients diagnosed with type 2 diabetes. The HOMA method was used to compare the profile differences for insulin resistance (HOMA IR) and β-cell dysfunction (HOMA β-cell).RESULTS: We studied 440 type 2 diabetics who attended sonography check-ups. After excluding eight insulin-treated diabetics, the prevalence of GSD among the remaining 432 was 13.9% (26/187) among males and 14.7% (36/245) among females. After adjustment for other GSD-associated risk factors in addition to age and obesity, GSD risk increased among females with levels of serum insulin [4th vs 1st quartile odds ratios (OR)= 4.46 (95%CI: 1.71-11.66)] and HOMA IR [4th vs 1st quartile OR = 4.46 (95% CI: 1.71-11.66)]. Better HOMA β-cell function was significantly related to decreased risk of GSD [4th vs 1st quartile OR = 0.16 (95% CI: 0.03-1.70)].Among males, age and central obesity were the most significant risk factors for GSD. No association of GSD with serum insulin, HOMA IR, and HOMA β-cell was observed among males.CONCLUSION: Serum insulin, insulin resistance, and β-cell dysfunction are risk factors for GSD in females, but not males with type 2 diabetes.

  12. Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development.

    Science.gov (United States)

    Weyer, C; Tataranni, P A; Bogardus, C; Pratley, R E

    2001-01-01

    Although prospective studies indicate that insulin resistance and insulin secretory dysfunction predict type 2 diabetes, they provide limited information on the relative contributions of both abnormalities to worsening glucose tolerance at different developmental stages of the disease. We therefore assessed the predictive effect of insulin resistance and insulin secretory dysfunction separately for the progression from normal glucose tolerance (NGT) to impaired glucose tolerance (IGT) and from IGT to diabetes. Insulin-stimulated glucose disposal (M) (hyperinsulinemic clamp), acute insulin secretory response (AIR) (25-g intravenous glucose tolerance test), and body composition (hydrodensitometry or dual-energy X-ray absorptiometry) were measured in 254 Pima Indians with NGT and in 145 Pima Indians with IGT, who were then followed for 0.5-13 years. After follow-ups of 4.4 +/- 3.1 and 5.5 +/- 3.4 years, 79 (31%) of the subjects with initial NGT had developed IGT, and 64 (44%) of the subjects with initial IGT had developed diabetes. In proportional-hazards analyses with adjustment for age, sex, and percent body fat, low M and low AIR were independent predictors of both the progression from NGT to IGT (relative hazards [95% CI] for 10th vs. 90th percentile: M 2.4 [1.2-4.7], P < 0.02; AIR 2.1 [1.1-4.1], P < 0.04) and from IGT to diabetes (M 2.5 [1.3-5.0], P < 0.01; AIR 1.8 [0.99-3.3], P = 0.055). During each stage of the development of type 2 diabetes, insulin resistance and insulin secretory dysfunction are independent predictors of worsening glucose tolerance and are, therefore, both targets for the primary prevention of the disease.

  13. Nuclear PIM1 confers resistance to rapamycin-impaired endothelial proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Walpen, Thomas; Kalus, Ina [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Schwaller, Juerg [Department of Biomedicine, University of Basel, 4031 Basel (Switzerland); Peier, Martin A. [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Battegay, Edouard J. [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), 8057 Zuerich (Switzerland); Humar, Rok, E-mail: Rok.Humar@usz.ch [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), 8057 Zuerich (Switzerland)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Pim1{sup -/-} endothelial cell proliferation displays increased sensitivity to rapamycin. Black-Right-Pointing-Pointer mTOR inhibition by rapamycin enhances PIM1 cytosolic and nuclear protein levels. Black-Right-Pointing-Pointer Truncation of Pim1 beyond serine 276 results in nuclear localization of the kinase. Black-Right-Pointing-Pointer Nuclear PIM1 increases endothelial proliferation independent of rapamycin. -- Abstract: The PIM serine/threonine kinases and the mTOR/AKT pathway integrate growth factor signaling and promote cell proliferation and survival. They both share phosphorylation targets and have overlapping functions, which can partially substitute for each other. In cancer cells PIM kinases have been reported to produce resistance to mTOR inhibition by rapamycin. Tumor growth depends highly on blood vessel infiltration into the malignant tissue and therefore on endothelial cell proliferation. We therefore investigated how the PIM1 kinase modulates growth inhibitory effects of rapamycin in mouse aortic endothelial cells (MAEC). We found that proliferation of MAEC lacking Pim1 was significantly more sensitive to rapamycin inhibition, compared to wildtype cells. Inhibition of mTOR and AKT in normal MAEC resulted in significantly elevated PIM1 protein levels in the cytosol and in the nucleus. We observed that truncation of the C-terminal part of Pim1 beyond Ser 276 resulted in almost exclusive nuclear localization of the protein. Re-expression of this Pim1 deletion mutant significantly increased the proliferation of Pim1{sup -/-} cells when compared to expression of the wildtype Pim1 cDNA. Finally, overexpression of the nuclear localization mutant and the wildtype Pim1 resulted in complete resistance to growth inhibition by rapamycin. Thus, mTOR inhibition-induced nuclear accumulation of PIM1 or expression of a nuclear C-terminal PIM1 truncation mutant is sufficient to increase endothelial cell proliferation

  14. "Non-destructive" dimensional metrology of EUV resist gratings (Conference Presentation)

    Science.gov (United States)

    Kline, R. Joseph; Sunday, Daniel F.; Windover, Donald; Kulmala, Tero S.; Ekinci, Yasin

    2017-03-01

    New critical dimension metrology methods such as critical dimension small angle X-ray scattering (CDSAXS) are being developed to meet the measurement challenges of next generation devices. Two key requirements for any new CD metrology method are non-destructiveness and the measurement speed. We will report on a study of beam damage and scattering strength of two model photoresist systems, HSQ and PMMA. We also will report on the status and initial results from NIST's upgraded lab CDSAXS system. 50 nm pitch line gratings were fabricated in HSQ and PMMA films using EUV interference lithography at the Swiss Light Source. The lines were about 30 nm tall and 20-30 nm wide. The 17 keV CDSAXS exposure time was varied from 0.1 s to 60 s to determine the minimum X-ray exposure required to obtain a satisfactory fit. Normal incident measurements separated by a blanket X-ray exposure were repeated to measure the decrease in scattering intensity with X-ray dose. The PMMA scattering signal was found to decrease by about 80 % before stabilizing at around 15 % of the original scattering intensity. The HSQ scattering signal decreased much less and stabilized at about 80 % of the original scattering intensity. We also conducted a series of variable-angle CDSAXS measurements as a function of blanket X-ray exposure to determine how the shape of the photoresist lines changed during X-ray exposure. For PMMA, we found the line width to remain constant and the line height to decrease from 25 nm to 10 nm during the exposure series. The exposures that damaged the samples corresponded to several hours of exposure to the synchrotron beam in a 100 µm spot and were much longer than what was required to characterize the line gratings. Smaller targets result in a larger dose and could potentially damage the resist in the time required to make a CDSAXS measurement. The large differences in beam damage between PMMA and HSQ show that resist damage from CDSAXS will depend on the particular resist

  15. IL-27 Found to Play Significant Role in Conferring HIV Resistance | Poster

    Science.gov (United States)

    By Nancy Parrish, Staff Writer The human immunodeficiency virus (HIV) targets specific immune cells in the body known as macrophages because these are the cells that eliminate foreign material such as bacteria or viruses. HIV is able to reproduce and spread throughout the body if it can avoid destruction by macrophages. A recent study by Lue Dai, Ph.D., and colleagues revealed that the human cytokine IL-27 helps promote the body’s production of macrophages that are resistant to HIV. The study further found that IL-27 suppresses a gene known as SPTBN1, which facilitates the survival of HIV cells. This breakthrough research was recently published in the Journal of Experimental Medicine.

  16. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    Science.gov (United States)

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Identification of ABC transporter genes conferring combined pleuromutilin-lincosamide-streptogramin A resistance in bovine methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci.

    Science.gov (United States)

    Wendlandt, Sarah; Kadlec, Kristina; Feßler, Andrea T; Schwarz, Stefan

    2015-06-12

    The aim of this study was to investigate the genetic basis of combined pleuromutilin-lincosamide-streptogramin A resistance in 26 unrelated methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) from dairy cows suffering from mastitis. The 26 pleuromutilin-resistant staphylococcal isolates were screened for the presence of the genes vga(A), vga(B), vga(C), vga(E), vga(E) variant, sal(A), vmlR, cfr, lsa(A), lsa(B), lsa(C), and lsa(E) by PCR. None of the 26 isolates carried the genes vga(B), vga(C), vga(E), vga(E) variant, vmlR, cfr, lsa(A), lsa(B), or lsa(C). Two Staphylococcus haemolyticus and single Staphylococcus xylosus, Staphylococcus lentus, and Staphylococcus hominis were vga(A)-positive. Twelve S. aureus, two Staphylococcus warneri, as well as single S. lentus and S. xylosus carried the lsa(E) gene. Moreover, single S. aureus, S. haemolyticus, S. xylosus, and Staphylococcus epidermidis were positive for both genes, vga(A) and lsa(E). The sal(A) gene was found in a single Staphylococcus sciuri. All ABC transporter genes were located in the chromosomal DNA, except for a plasmid-borne vga(A) gene in the S. epidermidis isolate. The genetic environment of the lsa(E)-positive isolates was analyzed using previously described PCR assays. Except for the S. warneri and S. xylosus, all lsa(E)-positive isolates harbored a part of the previously described enterococcal multiresistance gene cluster. This is the first report of the novel lsa(E) gene in the aforementioned bovine CoNS species. This is also the first identification of the sal(A) gene in a S. sciuri from a case of bovine mastitis. Moreover, the sal(A) gene was shown to also confer pleuromutilin resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Overexpression of centrosomal protein Nlp confers breast carcinoma resistance to paclitaxel.

    Science.gov (United States)

    Zhao, Weihong; Song, Yongmei; Xu, Binghe; Zhan, Qimin

    2012-02-01

    Nlp (ninein-like protein), an important molecule involved in centrosome maturation and spindle formation, plays an important role in tumorigenesis and its abnormal expression was recently observed in human breast and lung cancers. In this study, the correlation between overexpression of Nlp and paclitaxel chemosensitivity was investigated to explore the mechanisms of resistance to paclitaxel and to understand the effect of Nlp upon apoptosis induced by chemotherapeutic agents. Nlp expression vector was stably transfected into breast cancer MCF-7 cells. With Nlp overexpression, the survival rates, cell cycle distributions and apoptosis were analyzed in transfected MCF-7 cells by MTT test and FCM approach. The immunofluorescent assay was employed to detect the changes of microtubule after paclitaxel treatment. Immunoblotting analysis was used to examine expression of centrosomal proteins and apoptosis associated proteins. Subsequently, Nlp expression was retrospectively examined with 55 breast cancer samples derived from paclitaxel treated patients. Interestingly, the survival rates of MCF-7 cells with Nlp overexpressing were higher than that of control after paclitaxel treatment. Nlp overexpression promoted G2-M arrest and attenuated apoptosis induced by paclitaxel, which was coupled with elevated Bcl-2 protein. Nlp expression significantly lessened the microtubule polymerization and bundling elicited by paclitaxel attributing to alteration on the structure or dynamics of β-tubulin but not on its expression. The breast cancer patients with high expression of Nlp were likely resistant to the treatment of paclitaxel, as the response rate in Nlp negative patients was 62.5%, whereas was 58.3 and 15.8% in Nlp (+) and Nlp (++) patients respectively (p = 0.015). Nlp expression was positive correlated with those of Plk1 and PCNA. These findings provide insights into more rational chemotherapeutic regimens in clinical practice, and more effective approaches might be

  19. Lack of PPARγ in myeloid cells confers resistance to Listeria monocytogenes infection.

    Directory of Open Access Journals (Sweden)

    Zeinab Abdullah

    Full Text Available The peroxisomal proliferator-activated receptor γ (PPARγ is a nuclear receptor that controls inflammation and immunity. Innate immune defense against bacterial infection appears to be compromised by PPARγ. The relevance of PPARγ in myeloid cells, that organize anti-bacterial immunity, for the outcome of immune responses against intracellular bacteria such as Listeria monocytogenes in vivo is unknown. We found that Listeria monocytogenes infection of macrophages rapidly led to increased expression of PPARγ. This prompted us to investigate whether PPARγ in myeloid cells influences innate immunity against Listeria monocytogenes infection by using transgenic mice with myeloid-cell specific ablation of PPARγ (LysMCre×PPARγ(flox/flox. Loss of PPARγ in myeloid cells results in enhanced innate immune defense against Listeria monocytogenes infection both, in vitro and in vivo. This increased resistance against infection was characterized by augmented levels of bactericidal factors and inflammatory cytokines: ROS, NO, IFNγ TNF IL-6 and IL-12. Moreover, myeloid cell-specific loss of PPARγ enhanced chemokine and adhesion molecule expression leading to improved recruitment of inflammatory Ly6C(hi monocytes to sites of infection. Importantly, increased resistance against Listeria infection in the absence of PPARγ was not accompanied by enhanced immunopathology. Our results elucidate a yet unknown regulatory network in myeloid cells that is governed by PPARγ and restrains both listeriocidal activity and recruitment of inflammatory monocytes during Listeria infection, which may contribute to bacterial immune escape. Pharmacological interference with PPARγ activity in myeloid cells might represent a novel strategy to overcome intracellular bacterial infection.

  20. Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa.

    Science.gov (United States)

    Yang, Shengming; Gao, Muqiang; Xu, Chenwu; Gao, Jianchang; Deshpande, Shweta; Lin, Shaoping; Roe, Bruce A; Zhu, Hongyan

    2008-08-26

    Alfalfa is economically the most important forage legume worldwide. A recurrent challenge to alfalfa production is the significant yield loss caused by disease. Although knowledge of molecular mechanisms underlying host resistance should facilitate the genetic improvement of alfalfa, the acquisition of such knowledge is hampered by alfalfa's tetrasomic inheritance and outcrossing nature. However, alfalfa is congeneric with the reference legume Medicago truncatula, providing an opportunity to use M. truncatula as a surrogate to clone the counterparts of many agronomically important genes in alfalfa. In particular, the high degree of sequence identity and remarkably conserved genome structure and function between the two species enables M. truncatula genes to be used directly in alfalfa improvement. Here we report the map-based cloning of RCT1, a host resistance (R) gene in M. truncatula that confers resistance to multiple races of Colletotrichum trifolii, a hemibiotrophic fungal pathogen that causes anthracnose disease of alfalfa. RCT1 is a member of the Toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NBS-LRR) class of plant R genes and confers broad-spectrum anthracnose resistance when transferred into susceptible alfalfa plants. Thus, RCT1 provides a novel resource to develop anthracnose-resistant alfalfa cultivars and contributes to our understanding of host resistance against the fungal genus Colletotrichum. This work demonstrates the potential of using M. truncatula genes for genetic improvement of alfalfa.

  1. Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum.

    Science.gov (United States)

    Tripathi, Jaindra N; Lorenzen, Jim; Bahar, Ofir; Ronald, Pamela; Tripathi, Leena

    2014-08-01

    Banana Xanthomonas wilt (BXW), caused by the bacterium Xanthomonas campestris pv. musacearum (Xcm), is the most devastating disease of banana in east and central Africa. The spread of BXW threatens the livelihood of millions of African farmers who depend on banana for food security and income. There are no commercial chemicals, biocontrol agents or resistant cultivars available to control BXW. Here, we take advantage of the robust resistance conferred by the rice pattern-recognition receptor (PRR), XA21, to the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). We identified a set of genes required for activation of Xa21-mediated immunity (rax) that were conserved in both Xoo and Xcm. Based on the conservation, we hypothesized that intergeneric transfer of Xa21 would confer resistance to Xcm. We evaluated 25 transgenic lines of the banana cultivar 'Gonja manjaya' (AAB) using a rapid bioassay and 12 transgenic lines in the glasshouse for resistance against Xcm. About 50% of the transgenic lines showed complete resistance to Xcm in both assays. In contrast, all of the nontransgenic control plants showed severe symptoms that progressed to complete wilting. These results indicate that the constitutive expression of the rice Xa21 gene in banana results in enhanced resistance against Xcm. Furthermore, this work demonstrates the feasibility of PRR gene transfer between monocotyledonous species and provides a valuable new tool for controlling the BXW pandemic of banana, a staple food for 100 million people in east Africa.

  2. Functional expression of phosphagen kinase systems confers resistance to transient stresses in Saccharomyces cerevisiae by buffering the ATP pool.

    Science.gov (United States)

    Canonaco, Fabrizio; Schlattner, Uwe; Pruett, Pamela S; Wallimann, Theo; Sauer, Uwe

    2002-08-30

    Phosphagen kinase systems provide different advantages to tissues with high and fluctuating energy demands, in particular an efficient energy buffering system. In this study we show for the first time functional expression of two phosphagen kinase systems in Saccharomyces cerevisiae, which does not normally contain such systems. First, to establish the creatine kinase system, in addition to overexpressing creatine kinase isoenzymes, we had to install the biosynthesis pathway of creatine by co-overexpression of L-arginine:glycine amidinotransferase and guanidinoacetate methyltransferase. Although we could achieve considerable creatine kinase activity, together with more than 3 mM intracellular creatine, this was not sufficient to confer an obvious advantage to the yeast under the specific stress conditions examined here. Second, using arginine kinase, we successfully installed an intracellular phosphagen pool of about 5 mM phosphoarginine. Such arginine kinase-expressing yeast showed improved resistance under two stress challenges that drain cellular energy, which were transient pH reduction and starvation. Although transient starvation led to 50% reduced intracellular ATP concentrations in wild-type yeast, arginine kinase overexpression stabilized the ATP pool at the pre-stress level. Thus, our results demonstrate that temporal energy buffering is an intrinsic property of phosphagen kinases that can be transferred to phylogenetically very distant organisms.

  3. Stable expression and functional characterisation of the diamondback moth ryanodine receptor G4946E variant conferring resistance to diamide insecticides.

    Science.gov (United States)

    Troczka, Bartlomiej J; Williams, Alan J; Williamson, Martin S; Field, Linda M; Lüemmen, Peter; Davies, T G Emyr

    2015-10-01

    Diamides, such as flubendiamide and chlorantraniliprole, belong to a new chemical class of insecticides that act as conformation-sensitive activators of insect ryanodine receptors (RyRs). Both compounds are registered for use against lepidopteran species such as the diamondback moth, Plutella xylostella, a notorious global pest of cruciferous crops. Recently acquired resistance to diamide insecticides in this species is thought to be due to a target-site mutation conferring an amino acid substitution (G4946E), located within the trans-membrane domain of the RyR, though the exact role of this mutation has not yet been fully determined. To address this we have cloned a full-length cDNA encoding the P. xylostella RyR and established clonal Sf9 cell lines stably expressing either the wildtype RyR or the G4946E variant, in order to test the sensitivity to flubendiamide and chlorantraniliprole on the recombinant receptor. We report that the efficacy of both diamides was dramatically reduced in clonal Sf9 cells stably expressing the G4946E modified RyR, providing clear functional evidence that the G4946E RyR mutation impairs diamide insecticide binding.

  4. Structural Basis for Carbapenem-Hydrolyzing Mechanisms of Carbapenemases Conferring Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Jeong Ho Jeon

    2015-04-01

    Full Text Available Carbapenems (imipenem, meropenem, biapenem, ertapenem, and doripenem are β-lactam antimicrobial agents. Because carbapenems have the broadest spectra among all β-lactams and are primarily used to treat infections by multi-resistant Gram-negative bacteria, the emergence and spread of carbapenemases became a major public health concern. Carbapenemases are the most versatile family of β-lactamases that are able to hydrolyze carbapenems and many other β-lactams. According to the dependency of divalent cations for enzyme activation, carbapenemases can be divided into metallo-carbapenemases (zinc-dependent class B and non-metallo-carbapenemases (zinc-independent classes A, C, and D. Many studies have provided various carbapenemase structures. Here we present a comprehensive and systematic review of three-dimensional structures of carbapenemase-carbapenem complexes as well as those of carbapenemases. We update recent studies in understanding the enzymatic mechanism of each class of carbapenemase, and summarize structural insights about regions and residues that are important in acquiring the carbapenemase activity.

  5. Repurposing of tetracyclines to overcome resistance pathways associated with photochemotherapy in cancer (Conference Presentation)

    Science.gov (United States)

    Liu, Joyce; Huang, Huang-Chiao; Rizvi, Imran; Hasan, Tayyaba

    2016-03-01

    Given the consistently poor prognoses for some of the most difficult-to-treat cancers, rapidly translatable treatment regimens that offer improvements in outcomes are much needed. The repurposing of FDA approved non-cancer drugs presents an opportunity to design clinically feasible, novel combinations of therapies with a mechanistic rationale, to overcome resistance and survival pathways that render many current treatments ineffective. Tetracyclines are a class of antibiotics that demonstrate potential for such repurposing, as they have also been shown by others to affect a wide range of targets in cancer. Notably, the unique structure of tetracyclines allows them to act through both light activated and non-light mediated mechanisms. While light activation of tetracyclines can result in singlet oxygen production, their non-light mediated targets include inhibition of DNA repair enzymes and modulation of hypoxia-inducible markers, among others. With these mechanisms in mind, we seek to elucidate the benefit of including tetracyclines as part of an already promising, mechanistically cooperative photochemotherapy combination for ovarian cancer. In ovarian cancer, the dismal rates of recurrence and survival associated with the aggressive disease further emphasize the need to mechanistically reinforce treatments regimens. Thus, the results will highlight insights into the cooperative effect of repurposed tetracyclines on treatment response and molecular markers, both in vitro and in a challenging mouse model of disseminated ovarian cancer.

  6. Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance

    Science.gov (United States)

    Chen, Yi Chung; Wong, Chin Lin; Muzzi, Frederico; Vlaardingerbroek, Ido; Kidd, Brendan N.; Schenk, Peer M.

    2014-01-01

    Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong induction of defense-associated gene expression and instead showed a greater proportion of repressed genes. Screening insertion mutants from differentially expressed genes in the microarray uncovered a role for the transcription factor ETHYLENE RESPONSE FACTOR72 (ERF72) in susceptibility to F. oxysporum. Due to the role of ERF72 in suppressing programmed cell death and detoxifying reactive oxygen species (ROS), we examined the pub22/pub23/pub24 U-box type E3 ubiquitin ligase triple mutant which is known to possess enhanced ROS production in response to pathogen challenge. We found that the pub22/23/24 mutant is more resistant to F. oxysporum infection, suggesting that a heightened innate immune response provides protection against F. oxysporum. We conclude that root-mediated defenses against soil-borne pathogens can be provided at multiple levels. PMID:24998294

  7. Cymbidium mosaic virus coat protein gene in antisense confers resistance to transgenic Nicotiana occidentalis.

    Science.gov (United States)

    Lim, S H; Ko, M K; Lee, S J; La, Y J; Kim, B D

    1999-12-31

    The nucleotide sequence of the 3'-terminal region of the Korean isolate of cymbidium mosaic virus (CyMV-Ca) from a naturally infected cattleya was determined. The sequence contains an open reading frame (ORF) coding for the viral coat protein (CP) at the 3'-end and three other ORFs (triple gene block or movement protein) of CyMV. The CP gene encodes a polypeptide chain of 220 amino acids with a molecular mass of 23,760 Da. The deduced CP sequence showed a strong homology with those of two CyMVs reported. A construct of the CyMV-Ca CP gene in the antisense orientation in the plant expression vector pMBP1 was transferred via Agrobacterium tumefaciens-mediated transformation into Nicotiana occidentalis which is a propagation host of CyMV. The T1 progeny of the transgenic plants were inoculated with CyMV and found to be highly resistant to CyMV infection.

  8. A plant Bcl-2-associated athanogene is proteolytically activated to confer fungal resistance

    Directory of Open Access Journals (Sweden)

    Mehdi Kabbage

    2016-04-01

    Full Text Available The Bcl-2-associated athanogene (BAG family is a multifunctional group of proteins involved in numerous cellular functions ranging from apoptosis to tumorigenesis. These proteins are evolutionarily conserved and encode a characteristic region known as the BAG domain. BAGs function as adapter proteins forming complexes with signaling molecules and molecular chaperones. In humans, a role for BAG proteins has been suggested in tumor growth, HIV infection, and neurodegenerative diseases; as a result, the BAGs are attractive targets for therapeutic interventions, and their expression in cells may serve as a predictive tool for disease development. The Arabidopsis genome contains seven homologs of BAG family proteins (Figure 1, including four with a domain organization similar to animal BAGs (BAG1-4. The remaining three members (BAG5-7 contain a predicted calmodulin-binding motif near the BAG domain, a feature unique to plant BAG proteins that possibly reflects divergent mechanisms associated with plant-specific functions. As reported for animal BAGs, plant BAGs also regulate several stress and developmental processes (Figure 2. The recent article by Li et al. focuses on the role of BAG6 in plant innate immunity. This study shows that BAG6 plays a key role in basal plant defense against fungal pathogens. Importantly, this work further shows that BAG6 is proteolytically activated to induce autophagic cell death and resistance in plants. This finding underscores the importance of proteases in the execution of plant cell death, yet little is known about proteases and their substrates in plants.

  9. Metabolism by conjugation appears to confer resistance to paracetamol (acetaminophen) hepatotoxicity in the cynomolgus monkey.

    Science.gov (United States)

    Yu, Hong; Barrass, Nigel; Gales, Sonya; Lenz, Eva; Parry, Tony; Powell, Helen; Thurman, Dale; Hutchison, Michael; Wilson, Ian D; Bi, Luke; Qiao, Junwen; Qin, Qiuping; Ren, Jin

    2015-03-01

    1. Paracetamol overdose remains the leading cause of acute liver failure in humans. This study was undertaken in cynomolgus monkeys to study the pharmacokinetics, metabolism and the potential for hepatotoxic insult from paracetamol administration as a possible model for human toxicity. 2. No adverse effects were observed for doses of up to 900 mg/kg/d for 14 d. Only minor sporadic increases in alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase in a number of animals were observed, with no clear dose response. 3. Toxicokinetic analysis showed good plasma exposure, albeit with less than proportional rises in Cmax and AUC, with increasing dose. The Cmax values in monkey were up to 3.5 times those associated with human liver toxicity and the AUC approx. 1000 times those associated with liver enzyme changes in 31-44% of human subjects. 4. Metabolite profiling of urine by (1)H NMR spectroscopy revealed paracetamol and its glucuronide and sulphate metabolites. Glutathione-derived metabolites, e.g. the cysteinyl conjugate, were only present in very low concentrations whilst the mercapturate was not detected. 5. These in vivo observations demonstrated that the cynomolgus monkey is remarkably resistant to paracetamol-induced toxicity and a poor model for investigating paracetamol-related hepatotoxicity in humans.

  10. PGE2 confers survivin-dependent apoptosis resistance in human monocyte-derived dendritic cells.

    Science.gov (United States)

    Baratelli, Felicita; Krysan, Kostyantyn; Heuzé-Vourc'h, Nathalie; Zhu, Li; Escuadro, Brian; Sharma, Sherven; Reckamp, Karen; Dohadwala, Mariam; Dubinett, Steven M

    2005-08-01

    Control of apoptosis is fundamental for dendritic cell (DC) homeostasis. Numerous factors maintain DC viability throughout their lifespan, including inhibitor of apoptosis proteins. Among them, survivin is overexpressed in many human malignancies, but its physiological function in normal cells has not been fully delineated. Prostaglandin E2 (PGE2), also overproduced in several malignancies, has shown to induce proapoptotic and antiapoptotic effects in different cell types, including immune cells. In DC, PGE2 predominantly affects maturation and modulates immune functions. Here, we show that exposure of monocyte-derived DC to PGE2 (10(-5) M) for 72 h significantly increased DC survivin mRNA and protein expression. In contrast, DC, matured with lipopolysaccharide or tumor necrosis factor alpha, did not reveal survivin induction in response to PGE2. Following exposure to apoptotic stimuli, DC treated with PGE2 exhibited an overall increased viability compared with control DC, and this effect was correlated inversely with caspase-3 activation. Moreover, PGE2-treated, survivin-deficient DC demonstrated reduced viability in response to apoptotic stimuli. Further analysis indicated that PGE2 induced DC survivin expression in an E prostanoid (EP)2/EP4 receptor and phosphatidylinositol-3 kinase-dependent manner. These findings suggest that PGE2-dependent regulation of survivin is important in modulating apoptosis resistance in human DC.

  11. BNYVV-derived dsRNA confers resistance to rhizomania disease of sugar beet as evidenced by a novel transgenic hairy root approach

    OpenAIRE

    Pavli, R.; Panopoulos, N J; Goldbach, R.W.; Skaracis, G.N.

    2010-01-01

    Agrobacterium rhizogenes-transformed sugar beet hairy roots, expressing dsRNA from the Beet necrotic yellow vein virus replicase gene, were used as a novel approach to assess the efficacy of three intron-hairpin constructs at conferring resistance to rhizomania disease. Genetically engineered roots were similar in morphology to wild type roots but were characterized by a profound abundancy, rapid growth rate and, in some cases, plagiotropic development. Upon challenge inoculation, seedlings s...

  12. A Novel erm(44) Gene Variant from a Human Staphylococcus saprophyticus Isolate Confers Resistance to Macrolides and Lincosamides but Not Streptogramins.

    Science.gov (United States)

    Strauss, Christian; Hu, Yanmin; Coates, Anthony; Perreten, Vincent

    2017-01-01

    A novel erm(44) gene variant, erm(44)v, has been identified by whole-genome sequencing in a Staphylococcus saprophyticus isolate from the skin of a healthy person. It has the particularity to confer resistance to macrolides and lincosamides but not to streptogramin B when expressed in S. aureus The erm(44)v gene resides on a 19,400-bp genomic island which contains phage-associated proteins and is integrated into the chromosome of S. saprophyticus.

  13. An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan.

    Science.gov (United States)

    Rasool, Akhtar; Joußen, Nicole; Lorenz, Sybille; Ellinger, Renate; Schneider, Bernd; Khan, Sher Afzal; Ashfaq, Muhammad; Heckel, David G

    2014-10-01

    The increasing resistance level of insect pest species is a major concern to agriculture worldwide. The cotton bollworm, Helicoverpa armigera, is one of the most important pest species due to being highly polyphagous, geographically widespread, and resistant towards many chemical classes of insecticides. We previously described the mechanism of fenvalerate resistance in Australian populations conferred by the chimeric cytochrome P450 monooxygenase CYP337B3, which arose by unequal crossing-over between CYP337B1 and CYP337B2. Here, we show that this mechanism is also present in the cypermethrin-resistant FSD strain from Pakistan. The Pakistani and the Australian CYP337B3 alleles differ by 18 synonymous and three nonsynonymous SNPs and additionally in the length and sequence of the intron. Nevertheless, the activity of both CYP337B3 proteins is comparable. We demonstrate that CYP337B3 is capable of metabolizing cypermethrin (trans- and especially cis-isomers) to the main metabolite 4'-hydroxycypermethrin, which exhibits no intrinsic toxicity towards susceptible larvae. In a bioassay, CYP337B3 confers a 7-fold resistance towards cypermethrin in FSD larvae compared to susceptible larvae from the Australian TWB strain lacking CYP337B3. Linkage analysis shows that presence of CYP337B3 accounts for most of the cypermethrin resistance in the FSD strain; up-regulation of other P450s in FSD plays no detectable role in resistance. The presence or absence of CYP337B3 can be easily detected by a simple PCR screen, providing a powerful tool to rapidly distinguish resistant from susceptible individuals in the field and to determine the geographical distribution of this resistance gene. Our results suggest that CYP337B3 evolved twice independently by unequal crossing-over between CYP337B2 and two different CYP337B1 alleles.

  14. High-resolution mapping reveals linkage between genes in common bean cultivar Ouro Negro conferring resistance to the rust, anthracnose, and angular leaf spot diseases.

    Science.gov (United States)

    Valentini, Giseli; Gonçalves-Vidigal, Maria Celeste; Hurtado-Gonzales, Oscar P; de Lima Castro, Sandra Aparecida; Cregan, Perry B; Song, Qijian; Pastor-Corrales, Marcial A

    2017-08-01

    Co-segregation analysis and high-throughput genotyping using SNP, SSR, and KASP markers demonstrated genetic linkage between Ur-14 and Co-3 (4) /Phg-3 loci conferring resistance to the rust, anthracnose and angular leaf spot diseases of common bean. Rust, anthracnose, and angular leaf spot are major diseases of common bean in the Americas and Africa. The cultivar Ouro Negro has the Ur-14 gene that confers broad spectrum resistance to rust and the gene cluster Co-3 (4) /Phg-3 containing two tightly linked genes conferring resistance to anthracnose and angular leaf spot, respectively. We used co-segregation analysis and high-throughput genotyping of 179 F2:3 families from the Rudá (susceptible) × Ouro Negro (resistant) cross-phenotyped separately with races of the rust and anthracnose pathogens. The results confirmed that Ur-14 and Co-3 (4) /Phg-3 cluster in Ouro Negro conferred resistance to rust and anthracnose, respectively, and that Ur-14 and the Co-3 (4) /Phg-3 cluster were closely linked. Genotyping the F2:3 families, first with 5398 SNPs on the Illumina BeadChip BARCBEAN6K_3 and with 15 SSR, and eight KASP markers, specifically designed for the candidate region containing Ur-14 and Co-3 (4) /Phg-3, permitted the creation of a high-resolution genetic linkage map which revealed that Ur-14 was positioned at 2.2 cM from Co-3 (4) /Phg-3 on the short arm of chromosome Pv04 of the common bean genome. Five flanking SSR markers were tightly linked at 0.1 and 0.2 cM from Ur-14, and two flanking KASP markers were tightly linked at 0.1 and 0.3 cM from Co-3 (4) /Phg-3. Many other SSR, SNP, and KASP markers were also linked to these genes. These markers will be useful for the development of common bean cultivars combining the important Ur-14 and Co-3 (4) /Phg-3 genes conferring resistance to three of the most destructive diseases of common bean.

  15. Two different point mutations in ABL gene ATP-binding domain conferring Primary Imatinib resistance in a Chronic Myeloid Leukemia (CML patient: A case report

    Directory of Open Access Journals (Sweden)

    Iqbal Zafar

    2004-01-01

    Full Text Available Imatinib (Gleevec is the effective therapy for BCR-ABL positive CML patients. Point mutations have been detected in ATP-binding domain of ABL gene which disturbs the binding of Gleevec to this target leading to resistance. Detection of mutations is helpful in clinical management of imatinib resistance. We established a very sensitive (ASO PCR to detect mutations in an imatinib-resistant CML patient. Mutations C944T and T1052C were detected which cause complete partial imatinib resistance, respectively. This is the first report of multiple point mutations conferring primary imatinib resistance in same patient at the same time. Understanding the biological reasons of primary imatinib resistance is one of the emerging issues of pharmacogenomics and will be helpful in understanding primary resistance of molecularly-targeted cancer therapies. It will also be of great utilization in clinical management of imatinib resistance. Moreover, this ASO-PCR assay is very effective in detecting mutations related to imatinib resistance.

  16. Overexpression of GATA1 confers resistance to chemotherapy in acute megakaryocytic Leukemia.

    Directory of Open Access Journals (Sweden)

    John Timothy Caldwell

    Full Text Available It has been previously shown that acute myeloid leukemia (AML patients with higher levels of GATA1 expression have poorer outcomes. Furthermore, pediatric Down syndrome (DS patients with acute megakaryocytic leukemia (AMKL, whose blast cells almost universally harbor somatic mutations in exon 2 of the transcription factor gene GATA1, demonstrate increased overall survival relative to non-DS pediatric patients, suggesting a potential role for GATA1 in chemotherapy response. In this study, we confirmed that amongst non-DS patients, GATA1 transcripts were significantly higher in AMKL blasts compared to blasts from other AML subgroups. Further, GATA1 transcript levels significantly correlated with transcript levels for the anti-apoptotic protein Bcl-xL in our patient cohort. ShRNA knockdown of GATA1 in the megakaryocytic cell line Meg-01 resulted in significantly increased cytarabine (ara-C and daunorubicin anti-proliferative sensitivities and decreased Bcl-xL transcript and protein levels. Chromatin immunoprecipitation (ChIP and reporter gene assays demonstrated that the Bcl-x gene (which transcribes the Bcl-xL transcripts is a bona fide GATA1 target gene in AMKL cells. Treatment of the Meg-01 cells with the histone deacetylase inhibitor valproic acid resulted in down-regulation of both GATA1 and Bcl-xL and significantly enhanced ara-C sensitivity. Furthermore, additional GATA1 target genes were identified by oligonucleotide microarray and ChIP-on-Chip analyses. Our findings demonstrate a role for GATA1 in chemotherapy resistance in non-DS AMKL cells, and identified additional GATA1 target genes for future studies.

  17. Isolation and characterization of a gene, pmrD, from Salmonella typhimurium that confers resistance to polymyxin when expressed in multiple copies.

    OpenAIRE

    Roland, K L; Esther, C R; Spitznagel, J K

    1994-01-01

    We have isolated from Salmonella typhimurium a gene, designated pmrD, that confers resistance to the membrane-damaging drug, polymyxin B when expressed from the medium-copy-number plasmid pHSG576. The gene maps to 46 min on the standard genetic map, near the menB gene, and is therefore distinct from the previously described pmrA locus. We have mapped the polymyxin resistance activity to a 1.3-kb ClaI-PvuII fragment which contains a small open reading frame that could encode an 85-amino-acid p...

  18. Knockdown of NYGGF4 (PID1) rescues insulin resistance and mitochondrial dysfunction induced by FCCP in 3T3-L1 adipocytes.

    Science.gov (United States)

    Shi, Chun-Mei; Wang, Yu-Mei; Zhang, Chun-Mei; Qiu, Jie; Shen, Ya-Hui; Zhu, Jin-Gai; Chen, Lin; Xu, Guang-Feng; Zhao, Ya-Ping; Ji, Chen-Bo; Guo, Xi-Rong

    2012-11-01

    NYGGF4 is a recently identified gene that is involved in obesity-associated insulin resistance. Previous data from this laboratory have demonstrated that NYGGF4 overexpression might contribute to the development of insulin resistance (IR) and to mitochondrial dysfunction. Additionally, NYGGF4 knockdown enhanced insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. We designed this study to determine whether silencing of NYGGF4 in 3T3-L1 adipocytes could rescue the effect of insulin sensitivity and mitochondrial function induced by the cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP), a mitochondrion uncoupler, to ascertain further the mechanism of NYGGF4 involvement in obesity-associated insulin resistance. We found that 3T3-L1 adipocytes, incubated with 5μM FCCP for 12h, had decreased levels of insulin-stimulated glucose uptake and had impaired insulin-stimulated GLUT4 translocation. Silencing also diminished insulin-stimulated tyrosinephosphorylation of IRS-1 and serine phosphorylation of Akt. This phenomenon contrasts with the effect of NYGGF4 knockdown on insulin sensitivity and describes the regulatory function of NYGGF4 in adipocytes insulin sensitivity. We next analyzed the mitochondrial function in NYGGF4-silenced adipocytes incubated with FCCP. NYGGF4 knockdown partly rescued the dissipation of mitochondrial mass, mitochondrial DNA, intracellular ATP synthesis, and intracellular reactive oxygen species (ROS) production occurred following the addition of FCCP, as well as inhibition of mitochondrial transmembrane potential (ΔΨm) in 3T3-L1 adipocytes incubated with FCCP. Collectively, our results suggested that addition of silencing NYGGF4 partly rescued the effect of insulin resistance and mitochondrial dysfunction in NYGGF4 silenced 3T3-L1 adipocytes incubated with FCCP, which might explain the involvement of NYGGF4-induced IR and the development of NYGGF4 in mitochondrial function.

  19. A novel P106L mutation in EPSPS and an unknown mechanism(s) act additively to confer resistance to glyphosate in a South African Lolium rigidum population.

    Science.gov (United States)

    Kaundun, Shiv S; Dale, Richard P; Zelaya, Ian A; Dinelli, Giovanni; Marotti, Ilaria; McIndoe, Eddie; Cairns, Andrew

    2011-04-13

    Glyphosate resistance evolution in weeds is a growing problem in world agriculture. Here, we have investigated the mechanism(s) of glyphosate resistance in a Lolium rigidum population (DAG1) from South Africa. Nucleotide sequencing revealed the existence of at least three EPSPS homologues in the L. rigidum genome and identified a novel proline 106 to leucine substitution (P106L) in 52% DAG1 individuals. This mutation conferred a 1.7-fold resistance increase to glyphosate at the whole plant level. Additionally, a 3.1-fold resistance increase, not linked to metabolism or translocation, was estimated between wild-type P106-DAG1 and P106-STDS sensitive plants. Point accepted mutation analysis suggested that other amino acid substitutions at EPSPS position 106 are likely to be found in nature besides the P106/S/A/T/L point mutations reported to date. This study highlights the importance of minor mechanisms acting additively to confer significant levels of resistance to commercial field rates of glyphosate in weed populations subjected to high selection pressure.

  20. ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone.

    Science.gov (United States)

    Chen, Jian; Bhattacharjee, Hiranmoy; Rosen, Barry P

    2015-06-01

    Environmental organoarsenicals are produced by microorganisms and are introduced anthropogenically as herbicides and antimicrobial growth promoters for poultry and swine. Nearly every prokaryote has an ars (arsenic resistance) operon, and some have an arsH gene encoding an atypical flavodoxin. The role of ArsH in arsenic resistance has been unclear. Here we demonstrate that ArsH is an organoarsenical oxidase that detoxifies trivalent methylated and aromatic arsenicals by oxidation to pentavalent species. Escherichia coli, which does not have an arsH gene, is very sensitive to the trivalent forms of the herbicide monosodium methylarsenate [MSMA or MAs(V)] and antimicrobial growth promoter roxarsone [Rox(V)], as well as to phenylarsenite [PhAs(III), also called phenylarsine oxide or PAO]. Pseudomonas putida has two chromosomally encoded arsH genes and is highly resistant to the trivalent forms of these organoarsenicals. A derivative of P. putida with both arsH genes deleted is sensitive to MAs(III), PhAs(III) or Rox(III). P. putida arsH expressed in E. coli conferred resistance to each trivalent organoarsenical. Cells expressing PpArsH oxidized the trivalent organoarsenicals. PpArsH was purified, and the enzyme in vitro similarly oxidized the trivalent organoarsenicals. These results suggest that ArsH catalyzes a novel biotransformation that confers resistance to environmental methylated and aromatic arsenicals.

  1. ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide MSMA and the poultry growth promoter roxarsone

    Science.gov (United States)

    Chen, Jian; Bhattacharjee, Hiranmoy; Rosen, Barry P.

    2015-01-01

    Environmental organoarsenicals are produced by microorganisms and are introduced anthropogenically as herbicides and antimicrobial growth promoters for poultry and swine. Nearly every prokaryote has an ars (arsenic resistance) operon, and some have an arsH gene encoding an atypical flavodoxin. The role of ArsH in arsenic resistance has been unclear. Here we demonstrate that ArsH is an organoarsenical oxidase that detoxifies trivalent methylated and aromatic arsenicals by oxidation to pentavalent species. Escherichia coli, which does not have an arsH gene, is very sensitive to the trivalent forms of the herbicide monosodium methylarsenate (MSMA or MAs(V)) and antimicrobial growth promoter roxarsone (Rox(V)), as well as to phenylarsenite (PhAs(III), also called phenylarsine oxide or PAO). Pseudomonas putida has two chromosomally-encoded arsH genes and is highly resistant to the trivalent forms of these organoarsenicals. A derivative of P. putida with both arsH genes deleted is sensitive to MAs(III), PhAs(III) or Rox(III). P. putida arsH expressed in E. coli conferred resistance to each trivalent organoarsenical. Cells expressing PpArsH oxidized the trivalent organoarsenicals. PpArsH was purified, and the enzyme in vitro similarly oxidized the trivalent organoarsenicals. These results suggest that ArsH catalyzes a novel biotransformation that confers resistance to environmental methylated and aromatic arsenicals. PMID:25732202

  2. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction.

    Science.gov (United States)

    Kang, Yea Eun; Kim, Ji Min; Joung, Kyong Hye; Lee, Ju Hee; You, Bo Ram; Choi, Min Jeong; Ryu, Min Jeong; Ko, Young Bok; Lee, Min A; Lee, Junguee; Ku, Bon Jeong; Shong, Minho; Lee, Ki Hwan; Kim, Hyun Jin

    2016-01-01

    The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance have been explored in both animal and human studies. However, our current understanding of obesity-associated insulin resistance relies on studies of artificial metabolic extremes. The purpose of this study was to explore the roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in human patients with modest obesity and early metabolic dysfunction. We obtained omental adipose tissue and fasting blood samples from 51 females undergoing gynecologic surgery. We investigated serum concentrations of proinflammatory cytokines and adipokines as well as the mRNA expression of proinflammatory and macrophage phenotype markers in visceral adipose tissue using ELISA and quantitative RT-PCR. We measured adipose tissue inflammation and macrophage infiltration using immunohistochemical analysis. Serum levels of adiponectin and leptin were significantly correlated with HOMA-IR and body mass index. The levels of expression of MCP-1 and TNF-α in visceral adipose tissue were also higher in the obese group (body mass index ≥ 25). The expression of mRNA MCP-1 in visceral adipose tissue was positively correlated with body mass index (r = 0.428, p = 0.037) but not with HOMA-IR, whereas TNF-α in visceral adipose tissue was correlated with HOMA-IR (r = 0.462, p = 0.035) but not with body mass index. There was no obvious change in macrophage phenotype or macrophage infiltration in patients with modest obesity or early metabolic dysfunction. Expression of mRNA CD163/CD68 was significantly related to mitochondrial-associated genes and serum inflammatory cytokine levels of resistin and leptin. These results suggest that changes in the production of inflammatory biomolecules precede increased immune cell infiltration and induction of a macrophage phenotype switch in visceral adipose tissue. Furthermore, serum resistin and leptin have specific

  3. THE ROLE OF PARASYMPATHETIC AUTONOMIC REGULATION IN ENSURING OF RATS’ RESISTANCE IN THE MODEL OF MULTIPLE ORGAN DYSFUNCTION SYNDROM

    Directory of Open Access Journals (Sweden)

    I. A. Khrypachenko

    2015-06-01

    Full Text Available To assess contribution of autonomic regulation in multiple organ dysfunction syndrome (MODS survival ensuring and to test hypothesis about possible correction of clinical course by modulating the activity of parasympathetic influences we performed experiments on rats’ model of the MODS. It was determined that nonresistant animals differentiated by less intensity of parasympathetic regulation response. It was revealed that stimulation of cholinergic system decrease lethality in rats, and inhibits the power of high frequency regulatory effects on the heart rate.

  4. Brown Fat Lipoatrophy and Increased Visceral Adiposity through a Concerted Adipocytokines Overexpression Induces Vascular Insulin Resistance and Dysfunction

    National Research Council Canada - National Science Library

    Gómez-Hernández, Almudena; Otero, Yolanda F; de las Heras, Natalia; Escribano, Óscar; Cachofeiro, Victoria; Lahera, Vicente; Benito, Manuel

    2012-01-01

    In this study, we analyzed the role played by concerted expression of adipocytokines associated with brown fat lipoatrophy and increased visceral adiposity on triggering vascular insulin resistance...

  5. MYC functions are specific in biological subtypes of breast cancer and confers resistance to endocrine therapy in luminal tumours

    Science.gov (United States)

    Green, Andrew R; Aleskandarany, Mohammed A; Agarwal, Devika; Elsheikh, Somaia; Nolan, Christopher C; Diez-Rodriguez, Maria; Macmillan, R Douglas; Ball, Graham R; Caldas, Carlos; Madhusudan, Srinivasan; Ellis, Ian O; Rakha, Emad A

    2016-01-01

    Background: MYC is amplified in approximately 15% of breast cancers (BCs) and is associated with poor outcome. c-MYC protein is multi-faceted and participates in many aspects of cellular function and is linked with therapeutic response in BCs. We hypothesised that the functional role of c-MYC differs between molecular subtypes of BCs. Methods: We therefore investigated the correlation between c-MYC protein expression and other proteins involved in different cellular functions together with clinicopathological parameters, patients' outcome and treatments in a large early-stage molecularly characterised series of primary invasive BCs (n=1106) using immunuohistochemistry. The METABRIC BC cohort (n=1980) was evaluated for MYC mRNA expression and a systems biology approach utilised to identify genes associated with MYC in the different BC molecular subtypes. Results: High MYC and c-MYC expression was significantly associated with poor prognostic factors, including grade and basal-like BCs. In luminal A tumours, c-MYC was associated with ATM (P=0.005), Cyclin B1 (P=0.002), PIK3CA (P=0.009) and Ki67 (Pc-MYC showed positive association with Cyclin E (P=0.003) and p16 (P=0.042) expression only. c-MYC was an independent predictor of a shorter distant metastases-free survival in luminal A LN+ tumours treated with endocrine therapy (ET; P=0.013). In luminal tumours treated with ET, MYC mRNA expression was associated with BC-specific survival (P=0.001). In ER-positive tumours, MYC was associated with expression of translational genes while in ER-negative tumours it was associated with upregulation of glucose metabolism genes. Conclusions: c-MYC function is associated with specific molecular subtypes of BCs and its overexpression confers resistance to ET. The diverse mechanisms of c-MYC function in the different molecular classes of BCs warrants further investigation particularly as potential therapeutic targets. PMID:26954716

  6. Alteration of TEAD1 expression levels confers apoptotic resistance through the transcriptional up-regulation of Livin.

    Directory of Open Access Journals (Sweden)

    André Landin Malt

    Full Text Available BACKGROUND: TEA domain (TEAD proteins are highly conserved transcription factors involved in embryonic development and differentiation of various tissues. More recently, emerging evidences for a contribution of these proteins towards apoptosis and cell proliferation regulation have also been proposed. These effects appear to be mediated by the interaction between TEAD and its co-activator Yes-Associated Protein (YAP, the downstream effector of the Hippo tumour suppressor pathway. METHODOLOGY/PRINCIPAL FINDINGS: We further investigated the mechanisms underlying TEAD-mediated apoptosis regulation and showed that overexpression or RNAi-mediated silencing of the TEAD1 protein is sufficient to protect mammalian cell lines from induced apoptosis, suggesting a proapoptotic function for TEAD1 and a non physiological cytoprotective effect for overexpressed TEAD1. Moreover we show that the apoptotic resistance conferred by altered TEAD1 expression is mediated by the transcriptional up-regulation of Livin, a member of the Inhibitor of Apoptosis Protein (IAP family. In addition, we show that overexpression of a repressive form of TEAD1 can induce Livin up-regulation, indicating that the effect of TEAD1 on Livin expression is indirect and favoring a model in which TEAD1 activates a repressor of Livin by interacting with a limiting cofactor that gets titrated upon TEAD1 up-regulation. Interestingly, we show that overexpression of a mutated form of TEAD1 (Y421H implicated in Sveinsson's chorioretinal atrophy that strongly reduces its interaction with YAP as well as its activation, can induce Livin expression and protect cells from induced apoptosis, suggesting that YAP is not the cofactor involved in this process. CONCLUSIONS/SIGNIFICANCE: Taken together our data reveal a new, Livin-dependent, apoptotic role for TEAD1 in mammals and provide mechanistic insight downstream of TEAD1 deregulation in cancers.

  7. Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway

    Science.gov (United States)

    Wang, Sheng-Fan; Chen, Meng-Shian; Chou, Yueh-Ching; Ueng, Yune-Fang; Yin, Pen-Hui; Yeh, Tien-Shun; Lee, Hsin-Chen

    2016-01-01

    Mitochondrial DNA mutations and defects in mitochondrial enzymes have been identified in gastric cancers, and they might contribute to cancer progression. In previous studies, mitochondrial dysfunction was induced by oligomycin-enhanced chemoresistance to cisplatin. Herein, we dissected the regulatory mechanism for mitochondrial dysfunction-enhanced cisplatin resistance in human gastric cancer cells. Repeated cisplatin treatment-induced cisplatin-resistant cells exhibited high SLC7A11 (xCT) expression, and xCT inhibitors (sulfasalazine or erastin), xCT siRNA, or a GSH synthesis inhibitor (buthionine sulphoximine, BSO) could sensitize these cells to cisplatin. Clinically, the high expression of xCT was associated with a poorer prognosis for gastric cancer patients under adjuvant chemotherapy. Moreover, we found that mitochondrial dysfunction enhanced cisplatin resistance and up-regulated xCT expression, as well as intracellular glutathione (GSH). The xCT inhibitors, siRNA against xCT or BSO decreased mitochondrial dysfunction-enhanced cisplatin resistance. We further demonstrated that the upregulation of the eIF2α-ATF4 pathway contributed to mitochondrial dysfunction-induced xCT expression, and activated eIF2α kinase GCN2, but not PERK, stimulated the eIF2α-ATF4-xCT pathway in response to mitochondrial dysfunction-increased reactive oxygen species (ROS) levels. In conclusion, our results suggested that the ROS-activated GCN2-eIF2α-ATF4-xCT pathway might contribute to mitochondrial dysfunction-enhanced cisplatin resistance and could be a potential target for gastric cancer therapy. PMID:27708226

  8. Population distribution of Beta-lactamase conferring resistance to third-generation cephalosporins in human clinical Enterobacteriaceae in the Netherlands.

    Directory of Open Access Journals (Sweden)

    Guido M Voets

    Full Text Available There is a global increase in infections caused by Enterobacteriaceae with plasmid-borne β-lactamases that confer resistance to third-generation cephalosporins. The epidemiology of these bacteria is not well understood, and was, therefore, investigated in a selection of 636 clinical Enterobacteriaceae with a minimal inhibitory concentration >1 mg/L for ceftazidime/ceftriaxone from a national survey (75% E. coli, 11% E. cloacae, 11% K. pneumoniae, 2% K. oxytoca, 2% P. mirabilis. Isolates were investigated for extended-spectrum β-lactamases (ESBLs and ampC genes using microarray, PCR, gene sequencing and molecular straintyping (Diversilab and multi-locus sequence typing (MLST. ESBL genes were demonstrated in 512 isolates (81%; of which 446 (87% belonged to the CTX-M family. Among 314 randomly selected and sequenced isolates, bla(CTX-M-15 was most prevalent (n = 124, 39%, followed by bla(CTX-M-1 (n = 47, 15%, bla(CTX-M-14 (n = 15, 5%, bla(SHV-12 (n = 24, 8% and bla(TEM-52 (n = 13, 4%. Among 181 isolates with MIC ≥16 mg/L for cefoxitin plasmid encoded AmpCs were detected in 32 and 27 were of the CMY-2 group. Among 102 E. coli isolates with MIC ≥16 mg/L for cefoxitin ampC promoter mutations were identified in 29 (28%. Based on Diversilab genotyping of 608 isolates (similarity cut-off >98% discriminatory indices of bacteria with ESBL and/or ampC genes were 0.994, 0.985 and 0.994 for E. coli, K. pneumoniae and E. cloacae, respectively. Based on similarity cut-off >95% two large clusters of E. coli were apparent (of 43 and 30 isolates and 21 of 21 that were typed by belonged to ST131 of which 13 contained bla(CTX-M-15. Our findings demonstrate that bla(CTX-M-15 is the most prevalent ESBL and we report a larger than previously reported prevalence of ampC genes among Enterobacteriaceae responsible for resistance to third-generation cephalosporins.

  9. Population distribution of Beta-lactamase conferring resistance to third-generation cephalosporins in human clinical Enterobacteriaceae in the Netherlands.

    Science.gov (United States)

    Voets, Guido M; Platteel, Tamara N; Fluit, Ad C; Scharringa, Jelle; Schapendonk, Claudia M; Stuart, James Cohen; Bonten, Marc J M; Leverstein-van Hall, Maurine A; Hall, Maurine A L

    2012-01-01

    There is a global increase in infections caused by Enterobacteriaceae with plasmid-borne β-lactamases that confer resistance to third-generation cephalosporins. The epidemiology of these bacteria is not well understood, and was, therefore, investigated in a selection of 636 clinical Enterobacteriaceae with a minimal inhibitory concentration >1 mg/L for ceftazidime/ceftriaxone from a national survey (75% E. coli, 11% E. cloacae, 11% K. pneumoniae, 2% K. oxytoca, 2% P. mirabilis). Isolates were investigated for extended-spectrum β-lactamases (ESBLs) and ampC genes using microarray, PCR, gene sequencing and molecular straintyping (Diversilab and multi-locus sequence typing (MLST)). ESBL genes were demonstrated in 512 isolates (81%); of which 446 (87%) belonged to the CTX-M family. Among 314 randomly selected and sequenced isolates, bla(CTX-M-15) was most prevalent (n = 124, 39%), followed by bla(CTX-M-1) (n = 47, 15%), bla(CTX-M-14) (n = 15, 5%), bla(SHV-12) (n = 24, 8%) and bla(TEM-52) (n = 13, 4%). Among 181 isolates with MIC ≥16 mg/L for cefoxitin plasmid encoded AmpCs were detected in 32 and 27 were of the CMY-2 group. Among 102 E. coli isolates with MIC ≥16 mg/L for cefoxitin ampC promoter mutations were identified in 29 (28%). Based on Diversilab genotyping of 608 isolates (similarity cut-off >98%) discriminatory indices of bacteria with ESBL and/or ampC genes were 0.994, 0.985 and 0.994 for E. coli, K. pneumoniae and E. cloacae, respectively. Based on similarity cut-off >95% two large clusters of E. coli were apparent (of 43 and 30 isolates) and 21 of 21 that were typed by belonged to ST131 of which 13 contained bla(CTX-M-15). Our findings demonstrate that bla(CTX-M-15) is the most prevalent ESBL and we report a larger than previously reported prevalence of ampC genes among Enterobacteriaceae responsible for resistance to third-generation cephalosporins.

  10. Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat diet-induced insulin resistance and endothelial dysfunction.

    Science.gov (United States)

    Jang, Hyun-Ju; Ridgeway, Simone D; Kim, Jeong-A

    2013-12-01

    Insulin resistance, a hallmark of metabolic disorders, is a risk factor for diabetes and cardiovascular disease. Impairment of insulin responsiveness in vascular endothelium contributes to insulin resistance. The reciprocal relationship between insulin resistance and endothelial dysfunction augments the pathophysiology of metabolism and cardiovascular functions. The most abundant green tea polyphenol, epigallocatechin-3-gallate (EGCG), has been shown to have vasodilator action in vessels by activation of endothelial nitric oxide synthase (eNOS). However, it is not known whether EGCG has a beneficial effect in high-fat diet (HFD)-induced endothelial dysfunction. Male C57BL/6J mice were fed either a normal chow diet (NCD) or HFD with or without EGCG supplement (50 mg·kg(-1)·day(-1)) for 10 wk. Mice fed a HFD with EGCG supplement gained less body weight and showed improved insulin sensitivity. In vehicle-treated HFD mice, endothelial function was impaired in response to insulin but not to acetylcholine, whereas the EGCG-treated HFD group showed improved insulin-stimulated vasodilation. Interestingly, EGCG intake reduced macrophage infiltration into aortic tissues in HFD mice. Treatment with EGCG restored the insulin-stimulated phosphorylation of eNOS, insulin receptor substrate-1 (IRS-1), and protein kinase B (Akt), which was inhibited by palmitate (200 μM, 5 h) in primary bovine aortic endothelial cells. From these results, we conclude that supplementation of EGCG improves glucose tolerance, insulin sensitivity, and endothelial function. The results suggest that EGCG may have beneficial health effects in glucose metabolism and endothelial function through modulating HFD-induced inflammatory response.

  11. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight.

    Science.gov (United States)

    Rawat, Nidhi; Pumphrey, Michael O; Liu, Sixin; Zhang, Xiaofei; Tiwari, Vijay K; Ando, Kaori; Trick, Harold N; Bockus, William W; Akhunov, Eduard; Anderson, James A; Gill, Bikram S

    2016-12-01

    Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of wheat and barley that leads to reduced yield and mycotoxin contamination of grain, making it unfit for human consumption. FHB is a global problem, with outbreaks in the United States, Canada, Europe, Asia and South America. In the United States alone, total direct and secondary economic losses from 1993 to 2001 owing to FHB were estimated at $7.67 billion. Fhb1 is the most consistently reported quantitative trait locus (QTL) for FHB resistance breeding. Here we report the map-based cloning of Fhb1 from a Chinese wheat cultivar Sumai 3. By mutation analysis, gene silencing and transgenic overexpression, we show that a pore-forming toxin-like (PFT) gene at Fhb1 confers FHB resistance. PFT is predicted to encode a chimeric lectin with two agglutinin domains and an ETX/MTX2 toxin domain. Our discovery identifies a new type of durable plant resistance gene conferring quantitative disease resistance to plants against Fusarium species.

  12. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of); Kang, Ho Young [Department of Microbiology, Pusan National University, Busan 609-736 (Korea, Republic of); Kim, Manbok [Department of Medical Science, Dankook University College of Medicine, Cheonan 330-714 (Korea, Republic of); Koh, Sang Seok [Department of Biological Sciences, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of)

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  13. A Novel SND1-BRAF Fusion Confers Resistance to c-Met Inhibitor PF-04217903 in GTL16 Cells though MAPK Activation

    Science.gov (United States)

    Lee, Nathan V.; Lira, Maruja E.; Pavlicek, Adam; Ye, Jingjing; Buckman, Dana; Bagrodia, Shubha; Srinivasa, Sreesha P.; Zhao, Yongjun; Aparicio, Samuel; Rejto, Paul A.; Christensen, James G.; Ching, Keith A.

    2012-01-01

    Targeting cancers with amplified or abnormally activated c-Met (hepatocyte growth factor receptor) may have therapeutic benefit based on nonclinical and emerging clinical findings. However, the eventual emergence of drug resistant tumors motivates the pre-emptive identification of potential mechanisms of clinical resistance. We rendered a MET amplified gastric cancer cell line, GTL16, resistant to c-Met inhibition with prolonged exposure to a c-Met inhibitor, PF-04217903 (METi). Characterization of surviving cells identified an amplified chromosomal rearrangement between 7q32 and 7q34 which overexpresses a constitutively active SND1-BRAF fusion protein. In the resistant clones, hyperactivation of the downstream MAPK pathway via SND1-BRAF conferred resistance to c-Met receptor tyrosine kinase inhibition. Combination treatment with METi and a RAF inhibitor, PF-04880594 (RAFi) inhibited ERK activation and circumvented resistance to either single agent. Alternatively, treatment with a MEK inhibitor, PD-0325901 (MEKi) alone effectively blocked ERK phosphorylation and inhibited cell growth. Our results suggest that combination of a c-Met tyrosine kinase inhibitor with a BRAF or a MEK inhibitor may be effective in treating resistant tumors that use activated BRAF to escape suppression of c-Met signaling. PMID:22745804

  14. Peripheral insulin resistance rather than beta cell dysfunction accounts for geographical differences in impaired fasting blood glucose among sub-Saharan African individuals: findings from the RODAM study.

    Science.gov (United States)

    Meeks, Karlijn A C; Stronks, Karien; Adeyemo, Adebowale; Addo, Juliet; Bahendeka, Silver; Beune, Erik; Owusu-Dabo, Ellis; Danquah, Ina; Galbete, Cecilia; Henneman, Peter; Klipstein-Grobusch, Kerstin; Mockenhaupt, Frank P; Osei, Kwame; Schulze, Matthias B; Spranger, Joachim; Smeeth, Liam; Agyemang, Charles

    2017-05-01

    The aim of this study was to assess the extent to which insulin resistance and beta cell dysfunction account for differences in impaired fasting blood glucose (IFBG) levels in sub-Saharan African individuals living in different locations in Europe and Africa. We also aimed to identify determinants associated with insulin resistance and beta cell dysfunction among this population. Data from the cross-sectional multicentre Research on Obesity and Diabetes among African Migrants (RODAM) study were analysed. Participants included Ghanaian individuals without diabetes, aged 18-96 years old, who were residing in Amsterdam (n = 1337), Berlin (n = 502), London (n = 961), urban Ghana (n = 1309) and rural Ghana (n = 970). Glucose and insulin were measured in fasting venous blood samples. Anthropometrics were assessed during a physical examination. Questionnaires were used to assess demographics, physical activity, smoking status, alcohol consumption and energy intake. Insulin resistance and beta cell function were determined using homeostatic modelling (HOMA-IR and HOMA-B, respectively). Logistic regression analysis was used to study the contribution of HOMA-IR and inverse HOMA-B (beta cell dysfunction) to geographical differences in IFBG (fasting glucose 5.6-6.9 mmol/l). Multivariate linear regression analysis was used to identify determinants associated with HOMA-IR and inverse HOMA-B. IFBG was more common in individuals residing in urban Ghana (OR 1.41 [95% CI 1.08, 1.84]), Amsterdam (OR 3.44 [95% CI 2.69, 4.39]) and London (OR 1.58 [95% CI 1.20 2.08), but similar in individuals living in Berlin (OR 1.00 [95% CI 0.70, 1.45]), compared with those in rural Ghana (reference population). The attributable risk of IFBG per 1 SD increase in HOMA-IR was 69.3% and in inverse HOMA-B was 11.1%. After adjustment for HOMA-IR, the odds for IFBG reduced to 0.96 (95% CI 0.72, 1.27), 2.52 (95%CI 1.94, 3.26) and 1.02 (95% CI 0.78, 1.38) for individuals in Urban Ghana

  15. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites

    KAUST Repository

    Hunt, Paul

    2010-09-16

    Background: Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum.Results: A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (IlluminaSolexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme.Conclusions: This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations. 2010 Hunt et al; licensee BioMed Central Ltd.

  16. Quercetin induces apoptosis in the methotrexate-resistant osteosarcoma cell line U2-OS/MTX300 via mitochondrial dysfunction and dephosphorylation of Akt.

    Science.gov (United States)

    Xie, Xianbiao; Yin, Junqiang; Jia, Qiang; Wang, Jin; Zou, Changye; Brewer, Kari J; Colombo, Chiara; Wang, Yaofei; Huang, Gang; Shen, Jingnan

    2011-09-01

    Quercetin is the most abundant polyphenolic flavonoid found in plants. Several studies suggest that it has potent anticancer effects. The present study examines the apoptosis-inducing activity and the underlying mechanism of action of quercetin in a methotrexate (MTX)-resistant osteosarcoma model. Our results showed that quercetin inhibited cell viability in a dose-dependent manner and there was no cross-resistance between MTX and quercetin in U2-OS/MTX300 cells. The induction of apoptosis was observed by flow cyto-metry and fluorescence staining experiments. Quercetin-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to the cytosol, activation of caspase-3, down-regulation of Bcl-2, p-Bad and up-regulation of Bax. A remarkable dephospho-rylation of Akt was also detected after quercetin treatment. Furthermore, transduction with constitutively active Akt protected against the quercetin-induced dephosphorylation of Akt and Bad as well as poly(ADP-ribose)polymerase (PARP) degradation, while combined treatment with quercetin and LY294002 enhanced the dephosphorylation of Akt, Bad and PARP cleavage in U2-OS/MTX300 cells. Taken together, our results demonstrate that quercetin-induced apoptosis in the MTX-resistant osteosarcoma cells U2-OS/MTX300 was mediated via mitochondrial dysfunction and dephosphorylation of Akt.

  17. Dimethoate induces kidney dysfunction, disrupts membrane-bound ATPases and confers cytotoxicity through DNA damage. Protective effects of vitamin E and selenium.

    Science.gov (United States)

    Ben Amara, Ibtissem; Karray, Aida; Hakim, Ahmed; Ben Ali, Yassine; Troudi, Afef; Soudani, Nejla; Boudawara, Tahia; Zeghal, Khaled Mounir; Zeghal, Najiba

    2013-12-01

    Dimethoate (DM) is an organophosphate insecticide widely used in agriculture and industry and has toxic effects on non-target organisms especially mammalian. However, we still know little about DM-induced kidney injury and its alleviation by natural antioxidants. In the present study, selenium (Se), vitamin E, DM, Se+DM, vitamin E+DM, Se+vitamin E+DM were given to adult rats for 4 weeks. Plasma creatinine and uric acid, kidney MDA, PC, H2O2 and AOPP levels were higher, while Na(+)-K(+)-ATPase and LDH values were lower in the DM group than those of controls. A smear without ladder formation on agarose gel was shown in the DM group, indicating random DNA degradation and DM-induced genotoxicity. A decrease in kidney GSH, NPSH and plasma urea levels and an increase in GPx, SOD and catalase activities were observed in the DM group when compared to those of controls. Plasma cystatin C levels increased, indicating a decrease in glomerular filtration rate. When Se or vitamin E was added through diet, the biochemical parameters cited above were partially restored in Se+DM and vitamin E+DM than DM group. The joint effect of Se and vitamin E was more powerful against DM-induced oxidative stress and kidney dysfunction. The changes in biochemical parameters were substantiated by histological data. In conclusion, our results indicated a possible mechanism of DM-induced nephrotoxicity, where renal genotoxicity was noted, membrane-bound ATPases and plasma biomarkers were disturbed. Se and vitamin E ameliorated the toxic effects of this pesticide in renal tissue suggesting their role as potential antioxidants.

  18. Role of a novel I1781T mutation and other mechanisms in conferring resistance to acetyl-CoA carboxylase inhibiting herbicides in a black-grass population.

    Directory of Open Access Journals (Sweden)

    Shiv Shankhar Kaundun

    Full Text Available BACKGROUND: Knowledge of the mechanisms of herbicide resistance is important for designing long term sustainable weed management strategies. Here, we have used an integrated biology and molecular approach to investigate the mechanisms of resistance to acetyl-CoA carboxylase inhibiting herbicides in a UK black-grass population (BG2. METHODOLOGY/PRINCIPAL FINDINGS: Comparison between BG2 phenotypes using single discriminant rates of herbicides and genotypes based on ACCase gene sequencing showed that the I1781L, a novel I1781T, but not the W2027C mutations, were associated with resistance to cycloxydim. All plants were killed with clethodim and a few individuals containing the I1781L mutation were partially resistant to tepraloxydim. Whole plant dose response assays demonstrated that a single copy of the mutant T1781 allele conferred fourfold resistance levels to cycloxydim and clodinafop-propargyl. In contrast, the impact of the I1781T mutation was low (Rf = 1.6 and non-significant on pinoxaden. BG2 was also characterised by high levels of resistance, very likely non-target site based, to the two cereal selective herbicides clodinafop-propargyl and pinoxaden and not to the poorly metabolisable cyclohexanedione herbicides. Analysis of 480 plants from 40 cycloxydim resistant black grass populations from the UK using two very effective and high throughput dCAPS assays established for detecting any amino acid changes at the 1781 ACCase codon and for positively identifying the threonine residue, showed that the occurrence of the T1781 is extremely rare compared to the L1781 allele. CONCLUSION/SIGNIFICANCE: This study revealed a novel mutation at ACCase codon position 1781 and adequately assessed target site and non-target site mechanisms in conferring resistance to several ACCase herbicides in a black-grass population. It highlights that over time the level of suspected non-target site resistance to some cereal selective ACCase herbicides have in some

  19. Emergence of late-onset placental dysfunction: relationship to the change in uterine artery blood flow resistance between the first and third trimesters.

    Science.gov (United States)

    Llurba, Elisa; Turan, Ozhan; Kasdaglis, Tania; Harman, Chris R; Baschat, Ahmet A

    2013-06-01

    To test if emergence of third-trimester (T3) placental dysfunction is related to the impedance change in uterine artery blood flow resistance between the first trimester (T1) and T3. Mean T1 and T3 uterine artery (mUtA) pulsatility index (PI) was measured in 1098 singletons. Each patient's individual mUtA-PI change was calculated ([(T3 PI - T1 PI/interval in days)] × 100; ΔmUtA-PI). This parameter and T1 and T3 mUtA-PI z-scores were related to placenta-related disease (PRD) and to constitutionally small neonates (CS). Forty-seven (5%) women had PRD and 83 (8.7%) delivered a CS neonate. T1 and T3 mUtA-PI z-scores were higher with PRD (0.418 versus -0.097 and 1.06 versus -0.13, p Change in mUtA-PI (ΔmUtA PI) was similar for patients with PRD. However, the prevalence of PRD doubled with rising ΔmUtA-PI (11.1% versus 5.2%, p = 0.041). T3 uterine artery Doppler performs significantly better in detecting patients at risk for late-onset PRD than T1 or the gestational age change in uterine artery Doppler resistance This suggests that a proportion of late emerging PRD is not amenable to early screening by uterine artery Doppler. Further research is essential to identify the optimal screening strategy for late-onset placental dysfunction. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Tomato I2 Immune Receptor Can Be Engineered to Confer Partial Resistance to the Oomycete Phytophthora infestans in Addition to the Fungus Fusarium oxysporum.

    Science.gov (United States)

    Giannakopoulou, Artemis; Steele, John F C; Segretin, Maria Eugenia; Bozkurt, Tolga O; Zhou, Ji; Robatzek, Silke; Banfield, Mark J; Pais, Marina; Kamoun, Sophien

    2015-12-01

    Plants and animals rely on immune receptors, known as nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins, to defend against invading pathogens and activate immune responses. How NLR receptors respond to pathogens is inadequately understood. We previously reported single-residue mutations that expand the response of the potato immune receptor R3a to AVR3a(EM), a stealthy effector from the late blight oomycete pathogen Phytophthora infestans. I2, another NLR that mediates resistance to the will-causing fungus Fusarium oxysporum f. sp. lycopersici, is the tomato ortholog of R3a. We transferred previously identified R3a mutations to I2 to assess the degree to which the resulting I2 mutants have an altered response. We discovered that wild-type I2 protein responds weakly to AVR3a. One mutant in the N-terminal coiled-coil domain, I2(I141N), appeared sensitized and displayed markedly increased response to AVR3a. Remarkably, I2(I141N) conferred partial resistance to P. infestans. Further, I2(I141N) has an expanded response spectrum to F. oxysporum f. sp. lycopersici effectors compared with the wild-type I2 protein. Our results suggest that synthetic immune receptors can be engineered to confer resistance to phylogenetically divergent pathogens and indicate that knowledge gathered for one NLR could be exploited to improve NLR from other plant species.

  1. Rpi-vnt1.1, a Tm-2(2) homolog from Solanum venturii, confers resistance to potato late blight.

    Science.gov (United States)

    Foster, Simon J; Park, Tae-Ho; Pel, Mathieu; Brigneti, Gianinna; Sliwka, Jadwiga; Jagger, Luke; van der Vossen, Edwin; Jones, Jonathan D G

    2009-05-01

    Despite the efforts of breeders and the extensive use of fungicide control measures, late blight still remains a major threat to potato cultivation worldwide. The introduction of genetic resistance into cultivated potato is considered a valuable method to achieve durable resistance to late blight. Here, we report the identification and cloning of Rpi-vnt1.1, a previously uncharacterized late-blight resistance gene from Solanum venturii. The gene was identified by a classical genetic and physical mapping approach and encodes a coiled-coil nucleotide-binding leucine-rich repeat protein with high similarity to Tm-2(2) from S. lycopersicum which confers resistance against Tomato mosaic virus. Transgenic potato and tomato plants carrying Rpi-vnt1.1 were shown to be resistant to Phytophthora infestans. Of 11 P. infestans isolates tested, only isolate EC1 from Ecuador was able to overcome Rpi-vnt1.1 and cause disease on the inoculated plants. Alleles of Rpi-vnt1.1 (Rpi-vnt1.2 and Rpi-vnt1.3) that differed by only a few nucleotides were found in other late-blight-resistant accessions of S. venturii. The late blight resistance gene Rpi-phu1 from S. phureja is shown here to be identical to Rpi-vnt1.1, suggesting either that this strong resistance gene has been maintained since a common ancestor, due to selection pressure for blight resistance, or that genetic exchange between S. venturii and S. phureja has occurred at some time.

  2. Mutations in blaKPC-3 that confer ceftazidime-avibactam resistance encode novel KPC-3 variants that function as extended-spectrum β-lactamases.

    Science.gov (United States)

    Haidar, Ghady; Clancy, Cornelius J; Shields, Ryan K; Hao, Binghua; Cheng, Shaoji; Nguyen, M Hong

    2017-02-21

    We identified four blaKPC-3 mutations in ceftazidime-avibactam resistant clinical Klebsiella pneumoniae isolates, corresponding to D179Y, T243M, D179Y/T243M, and EL165 KPC-3 variants. Using site-directed mutagenesis and transforming vectors into Escherichia coli, we conclusively demonstrated that mutant blaKPC-3 encoded enzymes that functioned as extended-spectrum β-lactamases; mutations directly conferred higher MICs of ceftazidime-avibactam MICs, and decreased MICs of carbapenems and other β-lactams. Impact was strongest for the D179Y mutant, highlighting the importance of the KPC Ω-loop.

  3. Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria

    DEFF Research Database (Denmark)

    Karminska, K. H.; Purta, E.; Hansen, L .H.

    2010-01-01

    The Cfr methyltransferase confers combined resistance to five classes of antibiotics that bind to the peptidyl tranferase center of bacterial ribosomes by catalyzing methylation of the C-8 position of 23S rRNA nucleotide A2503. The same nucleotide is targeted by the housekeeping methyltransferase...... of a 4Fe-4S cluster, a SAM molecule coordinated to the iron-sulfur cluster (SAM1) and a SAM molecule that is the putative methyl group donor (SAM2). All mutations at predicted functional sites affect Cfr activity significantly as assayed by antibiotic susceptibility testing and primer extension analysis...

  4. Stable gene transfer of CCR5 and CXCR4 siRNAs by sleeping beauty transposon system to confer HIV-1 resistance

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2008-07-01

    Full Text Available Abstract Background Thus far gene therapy strategies for HIV/AIDS have used either conventional retroviral vectors or lentiviral vectors for gene transfer. Although highly efficient, their use poses a certain degree of risk in terms of viral mediated oncogenesis. Sleeping Beauty (SB transposon system offers a non-viral method of gene transfer to avoid this possible risk. With respect to conferring HIV resistance, stable knock down of HIV-1 coreceptors CCR5 and CXCR4 by the use of lentiviral vector delivered siRNAs has proved to be a promising strategy to protect cells from HIV-1 infection. In the current studies our aim is to evaluate the utility of SB system for stable gene transfer of CCR5 and CXCR4 siRNA genes to derive HIV resistant cells as a first step towards using this system for gene therapy. Results Two well characterized siRNAs against the HIV-1 coreceptors CCR5 and CXCR4 were chosen based on their previous efficacy for the SB transposon gene delivery. The siRNA transgenes were incorporated individually into a modified SB transfer plasmid containing a FACS sortable red fluorescence protein (RFP reporter and a drug selectable neomycin resistance gene. Gene transfer was achieved by co-delivery with a construct expressing a hyperactive transposase (HSB5 into the GHOST-R3/X4/R5 cell line, which expresses the major HIV receptor CD4 and and the co-receptors CCR5 and CXCR4. SB constructs expressing CCR5 or CXCR4 siRNAs were also transfected into MAGI-CCR5 or MAGI-CXCR4 cell lines, respectively. Near complete downregulation of CCR5 and CXCR4 surface expression was observed in transfected cells. During viral challenge with X4-tropic (NL4.3 or R5-tropic (BaL HIV-1 strains, the respective transposed cells showed marked viral resistance. Conclusion SB transposon system can be used to deliver siRNA genes for stable gene transfer. The siRNA genes against HIV-1 coreceptors CCR5 and CXCR4 are able to downregulate the respective cell surface proteins

  5. YKL-40, a new inflammatory marker with relation to insulin resistance and with a role in endothelial dysfunction and atherosclerosis

    DEFF Research Database (Denmark)

    Rathcke, C N; Vestergaard, H

    2006-01-01

    in atherosclerotic plaques. YKL-40 promotes chemotaxis, cell attachment and migration of VSMCs and the formation of branching tubules suggesting that YKL-40 plays a role in angiogenesis. Latest studies reveal that YKL-40 is elevated in patients with T2D and is related to insulin resistance. This article reviews...

  6. Hypothalamic dysfunction

    Science.gov (United States)

    ... common causes of hypothalamic dysfunction are surgery, traumatic brain injury, tumors, and radiation. Other causes include: Anorexia nervosa or bulimia Bleeding Genetic disorders that cause iron ...

  7. Phosphorylation of cofilin-1 by ERK confers HDAC inhibitor resistance in hepatocellular carcinoma cells via decreased ROS-mediated mitochondria injury.

    Science.gov (United States)

    Liao, P-H; Hsu, H-H; Chen, T-S; Chen, M-C; Day, C-H; Tu, C-C; Lin, Y-M; Tsai, F-J; Kuo, W-W; Huang, C-Y

    2017-04-06

    Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Despite the availability of several treatment strategies, resistance to chemotherapeutic agents, which limits the effectiveness of anticancer drugs, is a major problem in cancer therapy. In this study, we used a histone deacetylases inhibitor (HDACi) to establish drug-resistant HCC cells and further analyzed the molecular mechanisms underlying the development of resistance in HCC cells. Compared with the parental cells, HDACi-resistant cells showed high metastatic and pro-survival abilities. Two-dimensional electrophoresis data showed that the cofilin-1 (CFL-1) protein was altered in HDACi-resistant cells and was highly expressed in resistant cells compared with parental cells. The molecular function of CFL-1 is actin depolymerization, and it is involved in tumor metastasis. In this study, we showed that CFL-1 inhibition decreased cell migration and increased cell apoptosis in HDACi-resistant cells. We observed that HDACi induced ROS accumulation in cells and apoptosis via promotion of the CFL-1 interaction with Bax and CFL-1 translocation to the mitochondria, resulting in cytochrome C release. Importantly, phosphorylation of CFL-1 by activated extracellular signal-regulated kinases 1 and 2 (ERK1/2) confers strong protection against HDAC inhibitor-induced cell injury. p-CFL-1 shows a loss of affinity with Bax and will not translocate to mitochondria, stably remaining in the cytoplasm. These results indicate that phosphorylation to inactivate CFL-1 decreased the chemosensitivity to HDAC inhibitors and resulting in drug resistance of HCC cells.

  8. Overexpression of MoSM1, encoding for an immunity-inducing protein from Magnaporthe oryzae, in rice confers broad-spectrum resistance against fungal and bacterial diseases

    Science.gov (United States)

    Hong, Yongbo; Yang, Yayun; Zhang, Huijuan; Huang, Lei; Li, Dayong; Song, Fengming

    2017-01-01

    Potential of MoSM1, encoding for a cerato-platanin protein from Magnaporthe oryzae, in improvement of rice disease resistance was examined. Transient expression of MoSM1 in rice leaves initiated hypersensitive response and upregulated expression of defense genes. When transiently expressed in tobacco leaves, MoSM1 targeted to plasma membrane. The MoSM1-overexpressing (MoSM1-OE) transgenic rice lines showed an improved resistance, as revealed by the reduced disease severity and decreased in planta pathogen growth, against 2 strains belonging to two different races of M. oryzae, causing blast disease, and against 2 strains of Xanthomonas oryzae pv. oryzae, causing bacterial leaf blight disease. However, no alteration in resistance to sheath blight disease was observed in MoSM1-OE lines. The MoSM1-OE plants contained elevated levels of salicylic acid (SA) and jasmonic acid (JA) and constitutively activated the expression of SA and JA signaling-related regulatory and defense genes. Furthermore, the MoSM1-OE plants had no effect on drought and salt stress tolerance and on grain yield. We conclude that MoSM1 confers a broad-spectrum resistance against different pathogens through modulating SA- and JA-mediated signaling pathways without any penalty on abiotic stress tolerance and grain yield, providing a promising potential for application of MoSM1 in improvement of disease resistance in crops. PMID:28106116

  9. Fine mapping and analysis of a candidate gene in tomato accession PI128216 conferring hypersensitive resistance to bacterial spot race T3.

    Science.gov (United States)

    Pei, Chengcheng; Wang, Hui; Zhang, Jieyun; Wang, Yuanyuan; Francis, David M; Yang, Wencai

    2012-02-01

    Bacterial spot caused by Xanthomonas euvesicatoria, X. vesicatoria, X. perforans and X. gardneri is one of the most destructive diseases in tomatoes (Solanum lycopersicum L.) growing in tropical and subtropical regions. Exploring resistance genes from diverse germplasm and incorporating them into cultivated varieties are critical for controlling this disease. The S. pimpinellifolium accession PI128216 was reported to carry the Rx4 gene on chromosome 11 conferring hypersensitivity and field resistance to race T3. To facilitate the use of marker-assisted selection in breeding and map-based cloning of the gene, an F(2) population derived from a cross between the susceptible variety OH88119 and the resistant accession PI128216 was created for fine mapping of the Rx4 gene. Using 18 markers developed through various approaches, we mapped the gene to a 45.1-kb region between two markers pcc17 and pcc14 on chromosome 11. A NBS-LRR class of resistance gene was identified as the candidate for the Rx4 gene based on annotation results from the International Tomato Annotation Group. Comparison of the genomic DNA sequences of the Rx4 alleles in PI128216 and OH88119 revealed a 6-bp insertion/deletion (InDel) and eight SNPs. The InDel marker was successfully used to distinguish resistance and susceptibility in 12 tomato lines. These results will facilitate cloning the Rx4 gene and provide a useful tool for marker-assisted selection of this gene in tomato breeding programs.

  10. Hyperglycemia, acute insulin resistance, and renal dysfunction in the early phase of ST-elevation myocardial infarction without previously known diabetes: impact on long-term prognosis.

    Science.gov (United States)

    Lazzeri, Chiara; Valente, Serafina; Chiostri, Marco; Attanà, Paola; Mattesini, Alessio; Nesti, Martina; Gensini, Gian Franco

    2014-11-01

    We evaluated the relationship between admission renal function (as assessed by estimated glomerular filtration rate (eGFR)), hyperglycemia, and acute insulin resistance, indicated by the homeostatic model assessment (HOMA) index, and their impact on long-term prognosis in 825 consecutive patients with ST-elevation myocardial infarction (STEMI) without previously known diabetes who underwent primary percutaneous coronary intervention (PCI). Admission eGFR showed a significant indirect correlation with admission glycemia (Spearman's ρ -0.23, P renal function and glucose values and acute insulin resistance in the early phase of STEMI was detectable, since a significant, indirect correlation between eGFR, insulin values, and glycemia was observed. Patients with renal dysfunction (eGFR renal function (eGFR ≥60 ml/min/1.73 m(2)). The prognostic role of glucose values for 1-year mortality was confined to patients with eGFR ≥60 ml/min/m(2), who represent the large part of our population and are thought to be at lower risk. In these patients, an independent relationship between 1-year mortality and glucose values was detectable not only for admission glycemia but also for glucose values measured at discharge.

  11. "Resistance" to PSC-RANTES revisited: two mutations in human immunodeficiency virus type 1 HIV-1 SF162 or simian-human immunodeficiency virus SHIV SF162-p3 do not confer resistance.

    Science.gov (United States)

    Nedellec, Rebecca; Coetzer, Mia; Lederman, Michael M; Offord, Robin E; Hartley, Oliver; Mosier, Donald E

    2010-06-01

    Resistance of human immunodeficiency virus type 1 (HIV-1) to small-molecule CCR5 inhibitors is well demonstrated, but resistance to macromolecular CCR5 inhibitors (e.g., PSC-RANTES) that act by both CCR5 internalization and receptor blockade had not been reported until recently (3). The report of a single simian-human immunodeficiency virus SHIV(SF162-p3) variant with one V3 and one gp41 sequence change in gp160 that conferred both altered replicative fitness and resistance to PSC-RANTES was therefore surprising. We introduced the same two mutations into both the parental HIV-1(SF162) and the macaque-adapted SHIV(SF162-p3) and found minor differences in entry fitness but no changes in sensitivity to inhibition by either PSC-RANTES or the small-molecule allosteric inhibitor TAK-779. We attribute the earlier finding to confounding fitness effects with inhibitor sensitivity.

  12. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection

    Directory of Open Access Journals (Sweden)

    Spena Angelo

    2003-06-01

    Full Text Available Abstract Background Homology-dependent selective degradation of RNA, or post-transcriptional gene silencing (PTGS, is involved in several biological phenomena, including adaptative defense mechanisms against plant viruses. Small interfering RNAs mediate the selective degradation of target RNA by guiding a multicomponent RNAse. Expression of self-complementary hairpin RNAs within two complementary regions separated by an intron elicits PTGS with high efficiency. Plum pox virus (PPV is the etiological agent of sharka disease in Drupaceae, although it can also be transmitted to herbaceous species (e.g. Nicotiana benthamiana. Once inside the plant, PPV is transmitted via plasmodesmata from cell to cell, and at longer distances, via phloem. The rolC promoter drives expression in phloem cells. RolC expression is absent in both epidermal and mesophyll cells. The aim of the present study was to confer systemic disease resistance without preventing local viral infection. Results In the ihprolC-PP197 gene (intron hair pin rolC PPV 197, a 197 bp sequence homologous to the PPV RNA genome (from base 134 to 330 was placed as two inverted repeats separated by the DNA sequence of the rolA intron. This hairpin construct is under the control of the rolC promoter.N. benthamiana plants transgenic for the ihprolC-PP197 gene contain siRNAs homologous to the 197 bp sequence. The transgenic progeny of ihprolC-PP197 plants are resistant to PPV systemic infection. Local infection is unaffected. Most (80% transgenic plants are virus free and symptomless. Some plants (20% contain virus in uninoculated apical leaves; however they show only mild symptoms of leaf mottling. PPV systemic resistance cosegregates with the ihprolC-PP197 transgene and was observed in progeny plants of all independent transgenic lines analyzed. SiRNAs of 23–25 nt homologous to the PPV sequence used in the ihprolC-PP197 construct were detected in transgenic plants before and after inoculation

  13. A nucleic-acid hydrolyzing single chain antibody confers resistance to DNA virus infection in hela cells and C57BL/6 mice.

    Science.gov (United States)

    Lee, Gunsup; Yu, Jaelim; Cho, Seungchan; Byun, Sung-June; Kim, Dae Hyun; Lee, Taek-Kyun; Kwon, Myung-Hee; Lee, Sukchan

    2014-06-01

    Viral protein neutralizing antibodies have been developed but they are limited only to the targeted virus and are often susceptible to antigenic drift. Here, we present an alternative strategy for creating virus-resistant cells and animals by ectopic expression of a nucleic acid hydrolyzing catalytic 3D8 single chain variable fragment (scFv), which has both DNase and RNase activities. HeLa cells (SCH07072) [corrected] expressing 3D8 scFv acquired significant resistance to DNA viruses. Virus challenging with Herpes simplex virus (HSV) in 3D8 scFv transgenic cells and fluorescence resonance energy transfer (FRET) assay based on direct DNA cleavage analysis revealed that the induced resistance in HeLa cells was acquired by the nucleic acid hydrolyzing catalytic activity of 3D8 scFv. In addition, pseudorabies virus (PRV) infection in WT C57BL/6 mice was lethal, whereas transgenic mice (STG90) that expressed high levels of 3D8 scFv mRNA in liver, muscle, and brain showed a 56% survival rate 5 days after PRV intramuscular infection. The antiviral effects against DNA viruses conferred by 3D8 scFv expression in HeLa cells as well as an in vivo mouse system can be attributed to the nuclease activity that inhibits viral genome DNA replication in the nucleus and/or viral mRNA translation in the cytoplasm. Our results demonstrate that the nucleic-acid hydrolyzing activity of 3D8 scFv confers viral resistance to DNA viruses in vitro in HeLa cells and in an in vivo mouse system.

  14. Dietary soy protein improves adipose tissue dysfunction by modulating parameters related with oxidative stress in dyslipidemic insulin-resistant rats.

    Science.gov (United States)

    Illesca, Paola G; Álvarez, Silvina M; Selenscig, Dante A; Ferreira, María Del R; Giménez, María S; Lombardo, Yolanda B; D'Alessandro, María E

    2017-04-01

    The present study investigates the benefits of the dietary intake of soy protein on adipose tissue dysfunction in a rat model that mimics several aspects of the human metabolic syndrome. Wistar rats were fed a sucrose-rich diet (SRD) for 4 months. After that, half of the animals continued with SRD until month 8 while in the other half, casein protein was replaced by isolated soy protein for 4 months (SRD-S). A reference group consumed a control diet all the time. In adipose tissue we determined: i) the activities of antioxidant enzymes, gene expression of Mn-superoxide dismutase (SOD) and glutathione peroxidase (GPx), and glutathione redox state ii) the activity of xanthine oxidase (XO), ROS levels and the gene expression of NAD(P)H oxidase iii) the expression of the nuclear factor erythroid-2 related factor-2 (Nrf2). Besides, adiposity visceral index, insulin sensitivity, and tumor necrosis factor-α (TNF-α) in plasma were determined. Compared with the SRD-fed rats, the animals fed a SRD-S showed: activity normalization of SOD and glutathione reductase, improvement of mRNA SOD and normalization of mRNA GPx without changes in the expression of the Nrf2, and improvement of glutathione redox state. These results were accompanied by a normalization of XO activity and improvement of both the ROS production as well as TNF-α levels in plasma. Besides, adipocyte size distribution, adiposity visceral index and insulin sensitivity improved. The results suggest that soy protein can be a complementary nutrient for treating some signs of the metabolic syndrome. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Weekly paclitaxel in escalating doses in a patient with anthracycline-resistant, triple-negative, metastatic breast cancer with severe liver dysfunction

    Directory of Open Access Journals (Sweden)

    Ajay Gupta

    2012-01-01

    Full Text Available Liver dysfunction in a patient with anthracycline-resistant breast cancer and liver metastases with poor performance status (PS represents a serious situation. Taxanes are the drugs of choice, but once the transaminase enzyme levels are raised more than 10-times the upper limit of normal (>10 ULN, paclitaxel administration is contraindicated. We present the report of one such case who had a gratifying response to escalating doses of weekly paclitaxel thus suggesting that even patients with severe liver dysfunction can derive benefits from such a strategy. The patient, a 54-year-old lady with breast cancer metastatic to the liver and bones and previous receipt of anthracycline-based therapy, presented to us with a PS of 3. Her liver functions (LFT were: serum bilirubin 2.2 mg% (0.3-1.1 mg%, aspartate aminotransferase 375 IU/L (0-25 IU/L, alanine aminotransferase 369 IU/L (0-35 IU/L and alkaline phosphatase 363 IU/L (38-126 IU/L. She was started on weekly paclitaxel 20 mg/m 2 and zoledronate. After the first dose, the LFTs rose marginally but the skin lesions stabilized. Dose was subsequently escalated to 40 mg/m 2 . At the end of the 10th week, her PS improved to 1 and the disease showed a partial response. LFTs improved markedly. However, 5 days after the administration of the 13 th dose, the disease progressed and paclitaxel had to be discontinued. It is possible to derive maximum palliative benefit with escalating doses of weekly paclitaxel even in patients whose liver functions are deranged with transaminase levels (>10 ULN and in whom conventional administration of paclitaxel is contraindicated.

  16. Ketosis-prone type 2 diabetes in patients of sub-Saharan African origin: clinical pathophysiology and natural history of beta-cell dysfunction and insulin resistance.

    Science.gov (United States)

    Mauvais-Jarvis, Franck; Sobngwi, Eugène; Porcher, Raphaël; Riveline, Jean-Pierre; Kevorkian, Jean-Philippe; Vaisse, Christian; Charpentier, Guillaume; Guillausseau, Pierre-Jean; Vexiau, Patrick; Gautier, Jean-François

    2004-03-01

    beta-cell dysfunction and insulin resistance reflecting a propensity to glucose toxicity.

  17. Natural Polymorphisms Conferring Resistance to HCV Protease and Polymerase Inhibitors in Treatment-Naive HIV/HCV Co-Infected Patients in China.

    Directory of Open Access Journals (Sweden)

    Kali Zhou

    Full Text Available The advent of direct-acting agents (DAAs has improved treatment of HCV in HIV co-infection, but may be limited by primary drug resistance. This study reports the prevalence of natural polymorphisms conferring resistance to NS3/4A protease inhibitors and NS5B polymerase inhibitors in treatment-naïve HIV/HCV co-infected individuals in China.Population based NS3/4A sequencing was completed for 778 treatment-naïve HIV/HCV co-infected patients from twelve provinces. NS3 sequences were amplified by nested PCR using in-house primers for genotypes 1-6. NS5B sequencing was completed for genotyping in 350 sequences. Resistance-associated variants (RAVs were identified in positions associated with HCV resistance.Overall, 72.8% (566/778 of all HCV sequences had at least one RAV associated with HCV NS3/4A protease inhibitor resistance. Variants were found in 3.6% (7/193 of genotype 1, 100% (23/23 of genotype 2, 100% (237/237 of genotype 3 and 92% (299/325 of genotype 6 sequences. The Q80K variant was present in 98.4% of genotype 6a sequences. High-level RAVs were rare, occurring in only 0.8% of patients. 93% (64/69 patients with genotype 1b also carried the C316N variant associated with NS5B low-level resistance.The low frequency of high-level RAVs associated with primary HCV DAA resistance among all genotypes in HIV/HCV co-infected patients is encouraging. Further phenotypic studies and clinical research are needed.

  18. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1

    Science.gov (United States)

    El-Diwany, Ramy; Mankowski, Madeleine C.; Wasilewski, Lisa N.; Brady, Jillian K.; Snider, Anna E.; Osburn, William O.; Murrell, Ben; Ray, Stuart C.

    2017-01-01

    Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes. PMID:28235087

  19. Natural Polymorphisms Conferring Resistance to HCV Protease and Polymerase Inhibitors in Treatment-Naïve HIV/HCV Co-Infected Patients in China

    Science.gov (United States)

    Wang, Charles; Hu, Fengyu; Ning, Chuanyi; Lan, Yun; Tang, Xiaoping; Tucker, Joseph D.; Cai, Weiping

    2016-01-01

    Background The advent of direct-acting agents (DAAs) has improved treatment of HCV in HIV co-infection, but may be limited by primary drug resistance. This study reports the prevalence of natural polymorphisms conferring resistance to NS3/4A protease inhibitors and NS5B polymerase inhibitors in treatment-naïve HIV/HCV co-infected individuals in China. Methods Population based NS3/4A sequencing was completed for 778 treatment-naïve HIV/HCV co-infected patients from twelve provinces. NS3 sequences were amplified by nested PCR using in-house primers for genotypes 1–6. NS5B sequencing was completed for genotyping in 350 sequences. Resistance-associated variants (RAVs) were identified in positions associated with HCV resistance. Results Overall, 72.8% (566/778) of all HCV sequences had at least one RAV associated with HCV NS3/4A protease inhibitor resistance. Variants were found in 3.6% (7/193) of genotype 1, 100% (23/23) of genotype 2, 100% (237/237) of genotype 3 and 92% (299/325) of genotype 6 sequences. The Q80K variant was present in 98.4% of genotype 6a sequences. High-level RAVs were rare, occurring in only 0.8% of patients. 93% (64/69) patients with genotype 1b also carried the C316N variant associated with NS5B low-level resistance. Conclusions The low frequency of high-level RAVs associated with primary HCV DAA resistance among all genotypes in HIV/HCV co-infected patients is encouraging. Further phenotypic studies and clinical research are needed. PMID:27341031

  20. Fitness conferred by BCR-ABL kinase domain mutations determines the risk of pre-existing resistance in chronic myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Kevin Leder

    Full Text Available Chronic myeloid leukemia (CML is the first human malignancy to be successfully treated with a small molecule inhibitor, imatinib, targeting a mutant oncoprotein (BCR-ABL. Despite its successes, acquired resistance to imatinib leads to reduced drug efficacy and frequent progression of disease. Understanding the characteristics of pre-existing resistant cells is important for evaluating the benefits of first-line combination therapy with second generation inhibitors. However, due to limitations of assay sensitivity, determining the existence and characteristics of resistant cell clones at the start of therapy is difficult. Here we combined a mathematical modeling approach using branching processes with experimental data on the fitness changes (i.e., changes in net reproductive rate conferred by BCR-ABL kinase domain mutations to investigate the likelihood, composition, and diversity of pre-existing resistance. Furthermore, we studied the impact of these factors on the response to tyrosine kinase inhibitors. Our approach predicts that in most patients, there is at most one resistant clone present at the time of diagnosis of their disease. Interestingly, patients are no more likely to harbor the most aggressive, pan-resistant T315I mutation than any other resistance mutation; however, T315I cells on average establish larger-sized clones at the time of diagnosis. We established that for patients diagnosed late, the relative benefit of combination therapy over monotherapy with imatinib is significant, while this benefit is modest for patients with a typically early diagnosis time. These findings, after pre-clinical validation, will have implications for the clinical management of CML: we recommend that patients with advanced-phase disease be treated with combination therapy with at least two tyrosine kinase inhibitors.

  1. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1.

    Science.gov (United States)

    El-Diwany, Ramy; Cohen, Valerie J; Mankowski, Madeleine C; Wasilewski, Lisa N; Brady, Jillian K; Snider, Anna E; Osburn, William O; Murrell, Ben; Ray, Stuart C; Bailey, Justin R

    2017-02-01

    Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes.

  2. 8-Hydroxy-2-deoxyguanosine ameliorates high-fat diet-induced insulin resistance and adipocyte dysfunction in mice.

    Science.gov (United States)

    Huh, Joo Young; Jung, Inji; Piao, Lingjuan; Ha, Hunjoo; Chung, Myung-Hee

    2017-09-30

    8-Hydroxy-2-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, has been recently shown to exert anti-inflammatory effects through inhibition of Rac1. Inflammation in adipose tissue is a hallmark of obesity-induced insulin resistance, but the therapeutic potential of 8-OHdG in treatment of metabolic diseases has not been fully elucidated. The aim of this study was to examine the effect of exogenously administered 8-OHdG on adipose tissue and whole body metabolism. In cultured adipocytes, 8-OHdG inhibited adipogenesis and reversed TNFα-induced insulin resistance. In high-fat diet (HFD)-induced obese mice, 8-OHdG administration blunted the rise in body weight and fat mass. The decrease in adipose tissue mass by 8-OHdG was due to reduced adipocyte hypertrophy through induction of adipose triglyceride lipase and inhibition of fatty acid synthase expression. 8-OHdG also inhibited the infiltration of macrophages, resulting in amelioration of adipose tissue inflammation and adipokine dysregulation. Moreover, 8-OHdG administration ameliorated adipocyte as well as systemic insulin sensitivity. Both in vivo and in vitro results showed that 8-OHdG induces AMPK activation and reduces JNK activation in adipocytes. In conclusion, our results show that orally administered 8-OHdG protects against HFD-induced metabolic disorders by regulating adipocyte metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The targeted inhibition of mitochondrial Hsp90 overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chunlan [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Oh, Joon Seok; Yoo, Seung Hee; Lee, Jee Suk [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Yoon, Young Geol [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Department of Biomedical Science, Institute for Biomedical and Health Sciences, Jungwon University, Chungbuk, 367-805 (Korea, Republic of); Oh, Yoo Jin; Jang, Min Seok [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Lee, Sang Yeob [Department of Rheumatology, Dong-A University College of Medicine, Busan, 602-714 (Korea, Republic of); Yang, Jun [Department of Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, Zhejiang, 310036 China (China); Lee, Sang Hwa [Department of Microbiology and, Dong-A University College of Medicine, Busan, 602-714 (Korea, Republic of); Kim, Hye Young [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Yoo, Young Hyun, E-mail: yhyoo@dau.ac.kr [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of)

    2013-01-01

    Previous studies have reported that a Gamitrinib variant containing triphenylphosphonium (G-TPP) binds to mitochondrial Hsp90 and rapidly inhibits its activity, thus inducing the apoptotic pathway in the cells. Accordingly, G-TPP shows a potential as a promising drug for the treatment of cancer. A cell can die from different types of cell death such as apoptosis, necrosis, necroptosis, and autophagic cell death. In this study, we further investigated the mechanisms and modes of cell death in the G-TPP-treated Hep3B and U937 cell lines. We discovered that G-TPP kills the U937 cells through the apoptotic pathway and the overexpression of Bcl-2 significantly inhibits U937 cell death to G-TPP. We further discovered that G-TPP kills the Hep3B cells by activating necroptosis in combination with the partial activation of caspase-dependent apoptosis. Importantly, G-TPP overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. We also observed that G-TPP induces compensatory autophagy in the Hep3B cell line. We further found that whereas there is a Bcl-2-Beclin 1 interaction in response to G-TPP, silencing the beclin 1 gene failed to block LC3-II accumulation in the Hep3B cells, indicating that G-TPP triggers Beclin 1-independent protective autophagy in Hep3B cells. Taken together, these data reveal that G-TPP induces cell death through a combination of death pathways, including necroptosis and apoptosis, and overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. These findings are important for the therapeutic exploitation of necroptosis as an alternative cell death program to bypass the resistance to apoptosis. Highlights: ► G-TPP binds to mitochondrial Hsp90. ► G-TPP induces apoptosis in U937 human leukemia cancer cells. ► G-TPP induces combination of death pathways in Hep3B cell. ► G-TPP overcomes the resistance conferred by Bcl-2 in Hep3B cells via necroptosis. ► G-TPP triggers Beclin 1-independent

  4. Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy

    Science.gov (United States)

    Liu, Mingfu; Douthwaite, Stephen

    2002-01-01

    The macrolide antibiotic tylosin has been used extensively in veterinary medicine and exerts potent antimicrobial activity against Gram-positive bacteria. Tylosin-synthesizing strains of the Gram-positive bacterium Streptomyces fradiae protect themselves from their own product by differential expression of four resistance determinants, tlrA, tlrB, tlrC, and tlrD. The tlrB and tlrD genes encode methyltransferases that add single methyl groups at 23S rRNA nucleotides G748 and A2058, respectively. Here we show that methylation by neither TlrB nor TlrD is sufficient on its own to give tylosin resistance, and resistance is conferred by the G748 and A2058 methylations acting together in synergy. This synergistic mechanism of resistance is specific for the macrolides tylosin and mycinamycin that possess sugars extending from the 5- and 14-positions of the macrolactone ring and is not observed for macrolides, such as carbomycin, spiramycin, and erythromycin, that have different constellations of sugars. The manner in which the G748 and A2058 methylations coincide with the glycosylation patterns of tylosin and mycinamycin reflects unambiguously how these macrolides fit into their binding site within the bacterial 50S ribosomal subunit. PMID:12417742

  5. Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat.

    Science.gov (United States)

    Cheng, Wei; Song, Xiu-Shi; Li, He-Ping; Cao, Le-Hui; Sun, Ke; Qiu, Xiao-Li; Xu, Yu-Bin; Yang, Peng; Huang, Tao; Zhang, Jing-Bo; Qu, Bo; Liao, Yu-Cai

    2015-12-01

    Fusarium head blight (FHB) and Fusarium seedling blight (FSB) of wheat, caused by Fusarium pathogens, are devastating diseases worldwide. We report the expression of RNA interference (RNAi) sequences derived from an essential Fusarium graminearum (Fg) virulence gene, chitin synthase (Chs) 3b, as a method to enhance resistance of wheat plants to fungal pathogens. Deletion of Chs3b was lethal to Fg; disruption of the other Chs gene family members generated knockout mutants with diverse impacts on Fg. Comparative expression analyses revealed that among the Chs gene family members, Chs3b had the highest expression levels during Fg colonization of wheat. Three hairpin RNAi constructs corresponding to the different regions of Chs3b were found to silence Chs3b in transgenic Fg strains. Co-expression of these three RNAi constructs in two independent elite wheat cultivar transgenic lines conferred high levels of stable, consistent resistance (combined type I and II resistance) to both FHB and FSB throughout the T3 to T5 generations. Confocal microscopy revealed profoundly restricted mycelia in Fg-infected transgenic wheat plants. Presence of the three specific short interfering RNAs in transgenic wheat plants was confirmed by Northern blotting, and these RNAs efficiently down-regulated Chs3b in the colonizing Fusarium pathogens on wheat seedlings and spikes. Our results demonstrate that host-induced gene silencing of an essential fungal chitin synthase gene is an effective strategy for enhancing resistance in crop plants under field test conditions.

  6. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana.

    Science.gov (United States)

    Ghag, Siddhesh B; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2014-06-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is among the most destructive diseases of banana (Musa spp.). Because no credible control measures are available, development of resistant cultivars through genetic engineering is the only option. We investigated whether intron hairpin RNA (ihpRNA)-mediated expression of small interfering RNAs (siRNAs) targeted against vital fungal genes (velvet and Fusarium transcription factor 1) in transgenic banana could achieve effective resistance against Foc. Partial sequences of these two genes were assembled as ihpRNAs in suitable binary vectors (ihpRNA-VEL and ihpRNA-FTF1) and transformed into embryogenic cell suspensions of banana cv. Rasthali by Agrobacterium-mediated genetic transformation. Eleven transformed lines derived from ihpRNA-VEL and twelve lines derived from ihpRNA-FTF1 were found to be free of external and internal symptoms of Foc after 6-week-long greenhouse bioassays. The five selected transgenic lines for each construct continued to resist Foc at 8 months postinoculation. Presence of specific siRNAs derived from the two ihpRNAs in transgenic banana plants was confirmed by Northern blotting and Illumina sequencing of small RNAs derived from the transgenic banana plants. The present study represents an important effort in proving that host-induced post-transcriptional ihpRNA-mediated gene silencing of vital fungal genes can confer efficient resistance against debilitating pathogens in crop plants.

  7. The arabidopsis TIR-NB-LRR gene RAC1 confers resistance to Albugo candida (white rust) and is dependent on EDS1 but not PAD4.

    Science.gov (United States)

    Borhan, Mohammad H; Holub, Eric B; Beynon, Jim L; Rozwadowski, Kevin; Rimmer, S Roger

    2004-07-01

    Resistance to Albugo candida isolate Acem1 is conferred by a dominant gene, RAC1, in accession Ksk-1 of Arabidopsis thaliana. This gene was isolated by positional cloning and is a member of the Drosophila toll and mammalian interleukin-1 receptor (TIR) nucleotide-binding site leucine-rich repeat (NB-LRR) class of plant resistance genes. Strong identity of the TIR and NB domains was observed between the predicted proteins encoded by the Ksk-1 allele and the allele from an Acem1-susceptible accession Columbia (Col) (99 and 98%, respectively). However, major differences between the two predicted proteins occur within the LRR domain and mainly are confined to the beta-strand/beta-turn structure of the LRR. Both proteins contain 14 imperfect repeats. RAC1-mediated resistance was analyzed further using mutations in defense regulation, including: pad4-1, eds1-1, and NahG, in the presence of the RAC1 allele from Ksk-1. White rust resistance was completely abolished by eds1-1 but was not affected by either pad4-1 or NahG.

  8. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence

    Science.gov (United States)

    Jiao, Yuntong; Xu, Weirong; Duan, Dong; Wang, Yuejin; Nick, Peter

    2016-01-01

    Stilbenes are central phytoalexins in Vitis, and induction of the key enzyme stilbene synthase (STS) is pivotal for disease resistance. Here, we address the potential for breeding resistance using an STS allele isolated from Chinese wild grapevine Vitis pseudoreticulata (VpSTS) by comparison with its homologue from Vitis vinifera cv. ‘Carigane’ (VvSTS). Although the coding regions of both alleles are very similar (>99% identity on the amino acid level), the promoter regions are significantly different. By expression in Arabidopsis as a heterologous system, we show that the allele from the wild Chinese grapevine can confer accumulation of stilbenes and resistance against the powdery mildew Golovinomyces cichoracearum, whereas the allele from the vinifera cultivar cannot. To dissect the upstream signalling driving the activation of this promoter, we used a dual-luciferase reporter system in a grapevine cell culture. We show elevated responsiveness of the promoter from the wild grape to salicylic acid (SA) and to the pathogen-associated molecular pattern (PAMP) flg22, equal induction of both alleles by jasmonic acid (JA), and a lack of response to the cell death-inducing elicitor Harpin. This elevated SA response of the VpSTS promoter depends on calcium influx, oxidative burst by RboH, mitogen-activated protein kinase (MAPK) signalling, and JA synthesis. We integrate the data in the context of a model where the resistance of V. pseudoreticulata is linked to a more efficient recruitment of SA signalling for phytoalexin synthesis. PMID:27702992

  9. Two non-target recessive genes confer resistance to the anti-oomycete microtubule inhibitor zoxamide in Phytophthora capsici.

    Directory of Open Access Journals (Sweden)

    Yang Bi

    Full Text Available This study characterized isolates of P. capsici that had developed a novel mechanism of resistance to zoxamide, which altered the minimum inhibition concentration (MIC but not the EC50. Molecular analysis revealed that the β-tubulin gene of the resistant isolates contained no mutations and was expressed at the same level as in zoxamide-sensitive isolates. This suggested that P. capsici had developed a novel non-target-site-based resistance to zoxamide. Analysis of the segregation ratio of zoxamide-resistance in the sexual progeny of the sensitive isolates PCAS1 and PCAS2 indicated that the resistance to zoxamide was controlled by one or more recessive nuclear genes. Furthermore, the segregation of resistance in the F1, F2, and BC1 progeny was in accordance with the theoretical ratios of the χ(2 test (P>0.05, which suggested that the resistance to zoxamide was controlled by two recessive genes, and that resistance to zoxamide occurred when at least one pair of these alleles was homozygous. This implies that the risk of zoxamide-resistance in P. capsici is low to moderate. Nevertheless this potential for resistance should be monitored closely, especially if two compatible mating types co-exist in the same field.

  10. Powdery Mildew Resistance Conferred by Loss of the ENHANCED DISEASE RESISTANCE1 Protein Kinase Is Suppressed by a Missense Mutation in KEEP ON GOING, a Regulator of Abscisic Acid Signaling1[W][OA

    Science.gov (United States)

    Wawrzynska, Anna; Christiansen, Katy M.; Lan, Yinan; Rodibaugh, Natalie L.; Innes, Roger W.

    2008-01-01

    Loss-of-function mutations in the Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced resistance to infection by powdery mildew (Golovinomyces cichoracearum). EDR1 encodes a protein kinase, but its substrates and the pathways regulated by EDR1 are unknown. To identify components of the EDR1 signal transduction pathway(s), we conducted a forward genetic screen for mutations that suppressed edr1-mediated disease resistance. Genetic mapping and cloning of one of these suppressor mutations revealed a recessive missense mutation in the KEEP ON GOING gene (KEG; At5g13530), which we designated keg-4. KEG encodes a multidomain protein that includes a RING E3 ligase domain, a kinase domain, ankyrin repeats, and HERC2-like repeats. The KEG protein has previously been shown to have ubiquitin ligase activity and to negatively regulate protein levels of the transcription factor ABCISIC ACID INSENSITIVE5. KEG mRNA levels were found to be 3-fold higher in edr1 mutant plants compared to wild type. Loss-of-function mutations in KEG are seedling lethal and are hypersensitive to glucose and abscisic acid (ABA). The keg-4 mutation, in contrast, conferred resistance to 6% glucose and suppressed edr1-mediated hypersensitivity to ABA, suggesting that the keg-4 mutation suppresses ABA signaling by altering KEG function. Several ABA-responsive genes were found to be further up-regulated in the edr1 mutant following ABA treatment, and this up-regulation was suppressed by the keg-4 mutation. We conclude that edr1-mediated resistance to powdery mildew is mediated, in part, by enhanced ABA signaling. PMID:18815384

  11. Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling.

    Science.gov (United States)

    Wawrzynska, Anna; Christiansen, Katy M; Lan, Yinan; Rodibaugh, Natalie L; Innes, Roger W

    2008-11-01

    Loss-of-function mutations in the Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced resistance to infection by powdery mildew (Golovinomyces cichoracearum). EDR1 encodes a protein kinase, but its substrates and the pathways regulated by EDR1 are unknown. To identify components of the EDR1 signal transduction pathway(s), we conducted a forward genetic screen for mutations that suppressed edr1-mediated disease resistance. Genetic mapping and cloning of one of these suppressor mutations revealed a recessive missense mutation in the KEEP ON GOING gene (KEG; At5g13530), which we designated keg-4. KEG encodes a multidomain protein that includes a RING E3 ligase domain, a kinase domain, ankyrin repeats, and HERC2-like repeats. The KEG protein has previously been shown to have ubiquitin ligase activity and to negatively regulate protein levels of the transcription factor ABCISIC ACID INSENSITIVE5. KEG mRNA levels were found to be 3-fold higher in edr1 mutant plants compared to wild type. Loss-of-function mutations in KEG are seedling lethal and are hypersensitive to glucose and abscisic acid (ABA). The keg-4 mutation, in contrast, conferred resistance to 6% glucose and suppressed edr1-mediated hypersensitivity to ABA, suggesting that the keg-4 mutation suppresses ABA signaling by altering KEG function. Several ABA-responsive genes were found to be further up-regulated in the edr1 mutant following ABA treatment, and this up-regulation was suppressed by the keg-4 mutation. We conclude that edr1-mediated resistance to powdery mildew is mediated, in part, by enhanced ABA signaling.

  12. Drug-Susceptible Mycobacterium tuberculosis Beijing Genotype Does Not Develop Mutation-Conferred Resistance to Rifampin at an Elevated Rate

    OpenAIRE

    2003-01-01

    The Mycobacterium tuberculosis Beijing genotype has drawn attention because it is often strongly associated with multidrug-resistant tuberculosis (MDR-TB). A possible reason is that the Beijing strains may have an enhanced capacity to develop drug resistance. In this study, we used the Luria-Delbrück fluctuation test to investigate whether strains of Beijing and non-Beijing genotypes exhibit differences in the acquisition of drug resistance. The M. tuberculosis reference strain H37Rv and 12 f...

  13. The mecA homolog mecC confers resistance against β-lactams in Staphylococcus aureus irrespective of the genetic strain background.

    Science.gov (United States)

    Ballhausen, Britta; Kriegeskorte, André; Schleimer, Nina; Peters, Georg; Becker, Karsten

    2014-07-01

    In staphylococci, methicillin resistance is mediated by mecA-encoded penicillin-binding protein 2a (PBP2a), which has a low affinity for beta-lactams. Recently, a novel PBP2a homolog was described as being encoded by mecC, which shares only 70% similarity to mecA. To prove that mecC is the genetic determinant that confers methicillin resistance in Staphylococcus aureus, a mecC knockout strain was generated. The S. aureus ΔmecC strain showed considerably reduced oxacillin and cefoxitin MICs (0.25 and 4 μg/ml, respectively) compared to those of the corresponding wild-type methicillin-resistant S. aureus (MRSA) strain (8 and 16 μg/ml, respectively). Complementing the mutant in trans with wild-type mecC restored the resistance to oxacillin and cefoxitin. By expressing mecC and mecA in different S. aureus clonal lineages, we found that mecC mediates resistance irrespective of the genetic strain background, yielding oxacillin and cefoxitin MIC values comparable to those with mecA. In addition, we showed that mecC expression is inducible by oxacillin, which supports the assumption that a functional beta-lactam-dependent regulatory system is active in MRSA strains possessing staphylococcal cassette chromosome mec (SCCmec) type XI. In summary, we showed that mecC is inducible by oxacillin and mediates beta-lactam resistance in SCCmec type XI-carrying strains as well as in different S. aureus genetic backgrounds. Furthermore, our results could explain the comparatively low MICs for clinical mecC-harboring S. aureus isolates. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Technical note: Occurrence in fecal microbiota of genes conferring resistance to both macrolide-lincosamide-streptogramin B and tetracyclines concomitant with feeding of beef cattle with tylosin.

    Science.gov (United States)

    Chen, J; Fluharty, F L; St-Pierre, N; Morrison, M; Yu, Z

    2008-09-01

    Development of antimicrobial resistance in food animals receiving antimicrobials has been well documented among bacterial isolates, especially pathogens, but information on development of antimicrobial resistance at the microbial community level during long-term feeding of antimicrobials is lacking. The objective of this study was to examine the association between inclusion of tylosin in feed and occurrence of resistance to macrolide-lincosamide-streptogramin B (MLS(B)) in the entire fecal microbial communities of beef cattle over a feeding study of 168 d. A completely randomized design included 6 pens housed together in 1 barn, with each pen housing 10 to 11 steers. The control and tylosin groups each had 3 pens, with the former receiving no antimicrobial whereas the latter received both tylosin and monensin (11 and 29.9 mg/ kg of feed, respectively, DM) in feed. The abundance of genes conferring resistance to MLS(B) (erm genes) and tetracyclines (tet genes) were quantified using class-specific, real-time PCR assays. The abundances of erm and tet genes were analyzed with pens as experimental units using the MIXED procedure of SAS. Correlations between abundance of different resistance genes were calculated using the CORR procedure of SAS. We identified 4 classes (B, F, T, and X) of erm genes in fresh fecal samples collected at wk 2, 17, and 21 of feeding. From wk 2 to 17, the abundance of erm(T) and erm(X) increased (P tylosin feeding. Such co-selection of multiresistance at community level by one antimicrobial drug used in animals has the important implication that future studies should examine resistance to not only the antimicrobials used in animals, but also other antimicrobials, especially those used in human medicine, to fully assess the potential risk associated with antimicrobial use in animals. Both the erm and tet genes appeared to be disseminated among the microbial populations in all steers housed together.

  15. Precise gene editing of chicken Na+/H+ exchange type 1 (chNHE1) confers resistance to avian leukosis virus subgroup J (ALV-J).

    Science.gov (United States)

    Lee, Hong Jo; Lee, Kyung Youn; Jung, Kyung Min; Park, Kyung Je; Lee, Ko On; Suh, Jeong-Yong; Yao, Yongxiu; Nair, Venugopal; Han, Jae Yong

    2017-09-09

    Avian leukosis virus subgroup J (ALV-J), first isolated in the late 1980s, has caused economic losses to the poultry industry in many countries. As all chicken lines studied to date are susceptible to ALV infection, there is enormous interest in developing resistant chicken lines. The ALV-J receptor, chicken Na(+)/H(+) exchange 1 (chNHE1) and the critical amino acid sequences involved in viral attachment and entry have already been characterized. However, there are no reported attempts to induce resistance to the virus by targeted genome modification of the receptor sequences. In an attempt to induce resistance to ALV-J infection, we used clustered regularly interspaced short palindromic repeats (CRISPR)-associated (CRISPR/Cas9)-based genome editing approaches to modify critical residues of the chNHE1 receptor in chicken cells. The susceptibility of the modified cell lines to ALV-J infection was examined using enhanced green fluorescent protein (EGFP)-expressing marker viruses. We showed that modifying the chNHE1 receptor by artificially generating a premature stop codon induced absolute resistance to viral infection, with mutations of the tryptophan residue at position 38 (Trp38) being very critical. Single-stranded oligodeoxynucleotide (ssODN)-mediated targeted recombination of the Trp38 region revealed that deletions involving the Trp38 residue were most effective in conferring resistance to ALV-J. Moreover, protein structure analysis of the chNHE1 receptor sequence suggested that its intrinsically disordered region undergoes local conformational changes through genetic alteration. Collectively, these results demonstrate that targeted mutations on chNHE1 alter the susceptibility to ALV-J and the technique is expected to contribute to develop disease-resistant chicken lines. Copyright © 2017. Published by Elsevier Ltd.

  16. Characterization and mapping of LanrBo: a locus conferring anthracnose resistance in narrow-leafed lupin (Lupinus angustifolius L.).

    Science.gov (United States)

    Fischer, Kristin; Dieterich, Regine; Nelson, Matthew N; Kamphuis, Lars G; Singh, Karam B; Rotter, Björn; Krezdorn, Nicolas; Winter, Peter; Wehling, Peter; Ruge-Wehling, Brigitte

    2015-10-01

    A novel and highly effective source of anthracnose resistance in narrow-leafed lupin was identified. Resistance was shown to be governed by a single dominant locus. Molecular markers have been developed, which can be used for selecting resistant genotypes in lupin breeding. A screening for anthracnose resistance of a set of plant genetic resources of narrow-leafed lupin (Lupinus angustifolius L.) identified the breeding line Bo7212 as being highly resistant to anthracnose (Colletotrichum lupini). Segregation analysis indicated that the resistance of Bo7212 is inherited by a single dominant locus. The corresponding resistance gene was given the designation LanrBo. Previously published molecular anchor markers allowed us to locate LanrBo on linkage group NLL-11 of narrow-leafed lupin. Using information from RNAseq data obtained with inoculated resistant vs. susceptible lupin entries as well as EST-sequence information from the model genome Lotus japonicus, additional SNP and EST markers linked to LanrBo were derived. A bracket of two LanrBo-flanking markers allows for precise marker-assisted selection of the novel resistance gene in narrow-leafed lupin breeding programs.

  17. Macrolide resistance conferred by rRNA mutations in field isolates of Mannheimia haemolytica and Pasteurella multocida

    DEFF Research Database (Denmark)

    Olsen, Anders S; Warrass, Ralf; Douthwaite, Stephen Roger

    2014-01-01

    . haemolytica identified as being highly resistant (MICs >64 mg/L) to the macrolides erythromycin, gamithromycin, tilmicosin, tildipirosin and tulathromycin were screened by multiplex PCR for the previously identified resistance genes erm(42), msr(E) and mph(E). Strains lacking these determinants were analysed...

  18. Characterization of a mutation in the parE gene that confers fluoroquinolone resistance in Streptococcus pneumoniae.

    OpenAIRE

    Perichon, B; Tankovic, J; Courvalin, P

    1997-01-01

    We report a mutation in the parE genes of two in vitro mutants of Streptococcus pneumoniae responsible for low-level resistance to fluoroquinolones. Sequential acquisition of mutations in parE and gyrA leads to higher levels of resistance. This confirms that topoisomerase IV is the primary target of fluoroquinolones in S. pneumoniae.

  19. Effectiveness of the Ty-3 Introgression for Conferring Resistance in Recombinant Inbred Lines of Tomato to Bipartite Begomoviruses in Guatemala

    Science.gov (United States)

    Management of begomovirus-incited diseases on tomatoes in Guatemala continues to be a challenge and there continues to be a need to better understand the genetics of resistance to begomoviruses. In this study, the resistant line, Gh13, was crossed with the susceptible line, HUJ-VF, that lacked the ...

  20. Overexpression of Erg11p by the Regulatable GAL1 Promoter Confers Fluconazole Resistance in Saccharomyces cerevisiae

    OpenAIRE

    Kontoyiannis, Dimitrios P.; Sagar, Namita; Hirschi, Kendal D.

    1999-01-01

    The contribution of the dosage of target enzyme P-450 14α-demethylase (14αDM) to fluconazole resistance in both Candida albicans and Saccharomyces cerevisiae remains unclear. Here, we show that overexpression of Saccharomyces P-450 14αDM in S. cerevisiae, under the control of the regulatable promoter GAL1, results in azole resistance.

  1. Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean

    Directory of Open Access Journals (Sweden)

    Sumit Rishi

    2012-06-01

    Full Text Available Abstract Background Nonhost resistance (NHR provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae. Results The P.sojaesusceptible (pss 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes. Conclusions The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of

  2. Two major er1 alleles confer powdery mildew resistance in three pea cultivars bred in Yunnan Province, China

    Institute of Scientific and Technical Information of China (English)

    Suli Sun; Yuhua He; Cheng Dai; Canxing Duan; Zhendong Zhu

    2016-01-01

    Powdery mildew, caused by Erysiphe pisi D.C., is an important disease of pea (Pisum sativum L.). The use of cultivars carrying powdery mildew resistance alleles at the er1 locus is the most effective and economical means of controlling this disease. The objectives of this study were to screen Chinese elite pea cultivars for resistance to E. pisi and to identify the responsible gene at the er1 locus. Among the 37 pea cultivars tested, three (Yunwan 8, Yunwan 21, and Yunwan 23) were immune to E. pisi infection in phenotypic evaluations. The full-length cDNA sequences of the er1 candidate gene, PsMLO1, from the three resistant cultivars and control plants were analyzed. Comparison of the cDNA sequences of 10 clones revealed differences among the powdery mildew-resistant cultivars, susceptible controls, and wild-type cultivar Sprinter. The observed resistance in Yunwan 8 plants resulted from a point mutation (C→G) at position 680 of PsMLO1 that introduced a stop codon, leading to premature termination of protein synthesis. The responsible resistance allele was identified as er1–1. Powdery mildew resistance in Yunwan 21 and Yunwan 23 plants was caused by identical insertions or deletions in PsMLO1. Three distinct PsMLO1 transcripts were observed in Yunwan 21 and Yunwan 23 plants. These transcripts were characterized by a 129-bp deletion and 155-and 220-bp insertions, respectively. The responsible resistance allele was identified as er1–2. We have characterized two important er1 alleles in three E. pisi-resistant pea cultivars bred in Yunnan Province, China. These cultivars represent important genetic resources for the breeding of powdery mildew-resistant pea cultivars.

  3. Two major er1 alleles confer powdery mildew resistance in three pea cultivars bred in Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Suli Sun

    2016-10-01

    Full Text Available Powdery mildew, caused by Erysiphe pisi D.C., is an important disease of pea (Pisum sativum L.. The use of cultivars carrying powdery mildew resistance alleles at the er1 locus is the most effective and economical means of controlling this disease. The objectives of this study were to screen Chinese elite pea cultivars for resistance to E. pisi and to identify the responsible gene at the er1 locus. Among the 37 pea cultivars tested, three (Yunwan 8, Yunwan 21, and Yunwan 23 were immune to E. pisi infection in phenotypic evaluations. The full-length cDNA sequences of the er1 candidate gene, PsMLO1, from the three resistant cultivars and control plants were analyzed. Comparison of the cDNA sequences of 10 clones revealed differences among the powdery mildew-resistant cultivars, susceptible controls, and wild-type cultivar Sprinter. The observed resistance in Yunwan 8 plants resulted from a point mutation (C → G at position 680 of PsMLO1 that introduced a stop codon, leading to premature termination of protein synthesis. The responsible resistance allele was identified as er1–1. Powdery mildew resistance in Yunwan 21 and Yunwan 23 plants was caused by identical insertions or deletions in PsMLO1. Three distinct PsMLO1 transcripts were observed in Yunwan 21 and Yunwan 23 plants. These transcripts were characterized by a 129-bp deletion and 155- and 220-bp insertions, respectively. The responsible resistance allele was identified as er1–2. We have characterized two important er1 alleles in three E. pisi-resistant pea cultivars bred in Yunnan Province, China. These cultivars represent important genetic resources for the breeding of powdery mildew-resistant pea cultivars.

  4. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L. Landraces.

    Directory of Open Access Journals (Sweden)

    Suli Sun

    Full Text Available Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L. landraces resistant to E. pisi, and to characterize the resistance gene(s at the er1 locus in the resistant landraces, and to develop functional marker(s specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%, 4 (1.24% and 17 (5.28% landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders.

  5. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L.) Landraces.

    Science.gov (United States)

    Sun, Suli; Fu, Haining; Wang, Zhongyi; Duan, Canxing; Zong, Xuxiao; Zhu, Zhendong

    2016-01-01

    Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L.) landraces resistant to E. pisi, and to characterize the resistance gene(s) at the er1 locus in the resistant landraces, and to develop functional marker(s) specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%), 4 (1.24%) and 17 (5.28%) landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C) at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders.

  6. Adipose Tissue Dysfunction in Nascent Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Andrew A. Bremer

    2013-01-01

    Full Text Available The metabolic syndrome (MetS confers an increased risk for both type 2 diabetes mellitus (T2DM and cardiovascular disease (CVD. Moreover, studies on adipose tissue biology in nascent MetS uncomplicated by T2DM and/or CVD are scanty. Recently, we demonstrated that adipose tissue dysregulation and aberrant adipokine secretion contribute towards the syndrome’s low-grade chronic proinflammatory state and insulin resistance. Specifically, we have made the novel observation that subcutaneous adipose tissue (SAT in subjects with nascent MetS has increased macrophage recruitment with cardinal crown-like structures. We have also shown that subjects with nascent MetS have increased the levels of SAT-secreted adipokines (IL-1, IL-6, IL-8, leptin, RBP-4, CRP, SAA, PAI-1, MCP-1, and chemerin and plasma adipokines (IL-1, IL-6, leptin, RBP-4, CRP, SAA, and chemerin, as well as decreased levels of plasma adiponectin and both plasma and SAT omentin-1. The majority of these abnormalities persisted following correction for increased adiposity. Our data, as well as data from other investigators, thus, highlight the importance of subcutaneous adipose tissue dysfunction in subjects with MetS and its contribution to the proinflammatory state and insulin resistance. This adipokine profile may contribute to increased insulin resistance and low-grade inflammation, promoting the increased risk of T2DM and CVD.

  7. Rice RING protein OSBBI1 with E3 ligase activity confers broad-spectrum resistance against Magnaporthe oryzae by modifying the cell wall defence

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Zuhua He; Sihui Zhong; Guojun Li; Qun Li; Bizeng Mao; Yiwen Deng; Huijuan Zhang; Longjun Zeng; Fengming Song

    2011-01-01

    Emerging evidence suggests that E3 ligases play critical roles in diverse biological processes, including innate immune responses in plants. However, the mechanism of the E3 ligase involvement in plant innate immunity is unclear.We report that a rice gene, OsBBI1, encoding a RING finger protein with E3 ligase activity, mediates broad-spectrum disease resistance. The expression of OSBBI1 was induced by rice blast fungus Magnaporthe oryzae, as well as chemical inducers, benzothiadiazole and salicylic acid. Biochemical analysis revealed that OsBBI1 protein possesses E3ubiquitin ligase activity in vitro. Genetic analysis revealed that the loss of OsBBI1 function in a Tos17-insertion line increased susceptibility, while the overexpression of OsBBI1 in transgenic plants conferred enhanced resistance to multiple races of M.oryzae. This indicates that OsBBI1 modulates broad-spectrum resistance against the blast fungus. The OsBBII-overexpressing plants showed higher levels of H,O, accumulation in cells and higher levels of phenolic compounds and cross-linking of proteins in cell walls at infection sites by M. Oryzae compared with wild-type(WT)plants. The cell walls were thicker in the OsBB11-overexpressing plants and thinner in the mutant plants than in the WT plants. Our results suggest that OsBBH modulates broad-spectrum resistance to blast fungus by modifying cell wall defence responses. The functional characterization of OsBBI1 provides insight into the E3 ligase-mediated innate immunity, and a practical tool for constructing broad-spectrum resistance against the most destructive disease in rice.

  8. WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops.

    Science.gov (United States)

    Borhan, Mohammad Hossein; Holub, Eric B; Kindrachuk, Colin; Omidi, Mansour; Bozorgmanesh-Frad, Ghazaleh; Rimmer, S Roger

    2010-03-01

    White blister rust caused by Albugo candida (Pers.) Kuntze is a common and often devastating disease of oilseed and vegetable brassica crops worldwide. Physiological races of the parasite have been described, including races 2, 7 and 9 from Brassica juncea, B. rapa and B. oleracea, respectively, and race 4 from Capsella bursa-pastoris (the type host). A gene named WRR4 has been characterized recently from polygenic resistance in the wild brassica relative Arabidopsis thaliana (accession Columbia) that confers broad-spectrum white rust resistance (WRR) to all four of the above Al. candida races. This gene encodes a TIR-NB-LRR (Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat) protein which, as with other known functional members in this subclass of intracellular receptor-like proteins, requires the expression of the lipase-like defence regulator, enhanced disease susceptibility 1 (EDS1). Thus, we used RNA interference-mediated suppression of EDS1 in a white rust-resistant breeding line of B. napus (transformed with a construct designed from the A. thaliana EDS1 gene) to determine whether defence signalling via EDS1 is functionally intact in this oilseed brassica. The eds1-suppressed lines were fully susceptible following inoculation with either race 2 or 7 isolates of Al. candida. We then transformed white rust-susceptible cultivars of B. juncea (susceptible to race 2) and B. napus (susceptible to race 7) with the WRR4 gene from A. thaliana. The WRR4-transformed lines were resistant to the corresponding Al. candida race for each host species. The combined data indicate that WRR4 could potentially provide a novel source of white rust resistance in oilseed and vegetable brassica crops.

  9. Role of Different Pfcrt and Pfmdr-1 Mutations in Conferring Resistance to Antimalaria Drugs in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Zaid O. Ibraheem

    2014-01-01

    Full Text Available Emergence of drugs resistant strains of Plasmodium falciparum has augmented the scourge of malaria in endemic areas. Antimalaria drugs act on different intracellular targets. The majority of them interfere with digestive vacuoles (DVs while others affect other organelles, namely, apicoplast and mitochondria. Prevention of drug accumulation or access into the target site is one of the mechanisms that plasmodium adopts to develop resistance. Plasmodia are endowed with series of transporters that shuffle drugs away from the target site, namely, pfmdr (Plasmodium falciparum multidrug resistance transporter and pfcrt (Plasmodium falciparum chloroquine resistance transporter which exist in DV membrane and are considered as putative markers of CQ resistance. They are homologues to human P-glycoproteins (P-gh or multidrug resistance system and members of drug metabolite transporter (DMT family, respectively. The former mediates drifting of xenobiotics towards the DV while the latter chucks them outside. Resistance to drugs whose target site of action is intravacuolar develops when the transporters expel them outside the DVs and vice versa for those whose target is extravacuolar. In this review, we are going to summarize the possible pfcrt and pfmdr mutation and their role in changing plasmodium sensitivity to different anti-Plasmodium drugs.

  10. Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major.

    Science.gov (United States)

    Coelho, Adriano C; Beverley, Stephen M; Cotrim, Paulo C

    2003-08-31

    Pentamidine (PEN) is a second-line agent in the treatment of leishmaniasis whose mode of action and resistance is not well understood. Here, we used a genetic strategy to search for loci able to mediate PEN resistance (PENr) when overexpressed in Leishmania major. A shuttle cosmid library containing genomic DNA inserts was transfected into wild-type promastigotes and screened for PEN-resistant transfectants. Two different cosmids identifying the same locus were found, which differed from other known Leishmania drug resistance genes. The PENr gene was mapped by deletion and transposon mutagenesis to an open reading frame (ORF) belonging to the P-glycoprotein (PGP)/MRP ATP-binding cassette (ABC) transporter superfamily that we named pentamidine resistance protein 1 (PRP1). The predicted PRP1 protein encodes 1,807 amino acids with the typical dimeric structure involving 10 transmembrane domains and two nucleotide-binding domains (NBDs). PRP1-mediated PENr could be reversed by verapamil and PRP1 overexpressors showed cross-resistance to trivalent antimony but not to pentavalent antimony (glucantime). Although the degree of PENr was modest (1.7- to 3.7-fold), this may be significant in clinical drug resistance given the marginal efficacy of PEN against Leishmania.

  11. A mutant beta-tubulin confers resistance to the action of benzimidazole-carbamate microtubule inhibitors both in vivo and in vitro.

    Science.gov (United States)

    Foster, K E; Burland, T G; Gull, K

    1987-03-16

    The mutant BEN210 of Physarum polycephalum is highly resistant to a number of benzimidazole carbamate agents, including methylbenzimidazole-2-yl-carbamate and parbendazole. The resistance is conferred by the benD210 mutation in a structural gene for beta-tubulin. This mutant allele encodes a beta-tubulin with novel electrophoretic mobility. We have used this strain to determine whether the mutant beta-tubulin is used in microtubules and whether this usage permits microtubule polymerisation in the presence of drugs both in vivo and in vitro. In vitro assembly studies of tubulin purified from the mutant strain have shown that microtubules are formed both in the absence of drugs and in all drug concentrations tested (up to 50 microM parbendazole). In contrast, the assembly of microtubules from wild-type tubulin in vitro is totally inhibited by 2-5 microM parbendazole. Thus the resistance of BEN210 to parbendazole observed in vivo has been reproduced in vitro using tubulin purified from the mutant strain. Electrophoretic analysis of the microtubules formed in vitro has shown that both the wild-type and the mutant beta-tubulin are incorporated into the microtubules and that the proportion of mutant to wild-type beta-tubulin appears to remain constant with increasing drug concentration. This is the first demonstration of a single mutation in a tubulin structural gene causing an altered function of the gene product in vitro.

  12. CIAPIN1 confers multidrug resistance through up-regulation of MDR-1 and Bcl-L in LoVo/Adr cells and is independent of p53.

    Science.gov (United States)

    Zhang, Ya-Fei; Li, Xiao-Hua; Shi, Yong-Quan; Wu, Yu-Yun; Li, Ning; He, Qiang; Ji, Qing; Wang, Rong-Quan; Yang, Shi-Ming; Fang, Dian-Chun

    2011-04-01

    Recent investigations discovered that CIAPIN1 might be another drug resistance-associated molecule in cancer cells. However, the underlying mechanisms of CIAPIN1-related multidrug resistance (MDR) remain elusive. In the present study, we investigated the role and possible mechanisms of CIAPIN1 in MDR of human colon carcinoma LoVo/Adr cells which express the wild-type p53 gene. By using small interference RNA and gene transfection techniques, we found that knockdown of CIAPIN1 expression re-sensitized LoVo/Adr cells to anti-cancer drugs and up-regulation of CIAPIN1 in sensitive LoVo cells resulted in a distinct MDR phenotype. We further revealed that CIAPIN1 conferred the MDR phenotype in LoVo/Adr cells through up-regulating expression of MDR-1 (P-gp) and Bcl-xL. Finally, by analyzing the effect of inactivation of wild-type p53 on CIAPIN1-induced up-regulation of P-gp and Bcl-xL, we determined that CIAPIN1 could exhibit its MDR-related function independently of the p53 signaling pathway. Overall, the results presented here further suggest that over-expression of CIAPIN1 is an important mechanism of drug resistance in human cancers, even if not the sole one.

  13. Quercetin ameliorates chronic unpredicted stress-mediated memory dysfunction in male Swiss albino mice by attenuating insulin resistance and elevating hippocampal GLUT4 levels independent of insulin receptor expression.

    Science.gov (United States)

    Mehta, Vineet; Parashar, Arun; Sharma, Arun; Singh, Tiratha Raj; Udayabanu, Malairaman

    2017-03-01

    Chronic stress is associated with impaired neuronal functioning, altered insulin signaling, and behavioral dysfunction. Quercetin has shown neuroprotective and antidiabetic effects, besides modulating cognition and insulin signaling. Therefore, in the present study, we explored whether or not quercetin ameliorates stress-mediated cognitive dysfunction and explored the underlying mechanism. Swiss albino male mice were subjected to an array of unpredicted stressors for 21days, during which 30mg/kg quercetin treatment was given orally. The effect of chronic unpredicted stress (CUS) and quercetin treatment on cognition were evaluated using novel object recognition (NOR) and Morris water maze (MWM) tests. Hippocampal neuronal integrity was observed by histopathological examination. Blood glucose, serum corticosterone, and insulin levels were measured by commercial kits and insulin resistance was evaluated in terms of HOMA-IR index. Hippocampal insulin signaling was determined by immunofluorescence staining. CUS induced significant cognitive dysfunction (NOR and MWM) and severely damaged hippocampal neurons, especially in the CA3 region. Quercetin treatment alleviated memory dysfunction and rescued neurons from CUS-mediated damage. Fasting blood glucose, serum corticosterone, and serum insulin were significantly elevated in stressed animals, besides, having significantly higher HOMA-IR index, suggesting the development of insulin resistance. Quercetin treatment alleviated insulin resistance and attenuated altered biochemical parameters. CUS markedly down-regulated insulin signaling in CA3 region and quercetin treatment improved neuronal GLUT4 expression, which seemed to be independent of insulin and insulin receptor levels. These results suggest that intact insulin functioning in the hippocampus is essential for cognitive functions and quercetin improves CUS-mediated cognitive dysfunction by modulating hippocampal insulin signaling. Copyright © 2016 Elsevier Inc. All

  14. RamA confers multidrug resistance in Salmonella enterica via increased expression of acrB, which is inhibited by chlorpromazine.

    Science.gov (United States)

    Bailey, Andrew M; Paulsen, Ian T; Piddock, Laura J V

    2008-10-01

    Salmonella enterica serovar Typhimurium SL1344, in which efflux pump genes (acrB, acrD, acrF, tolC) or regulatory genes thereof (marA, soxS, ramA) were inactivated, was grown in the presence of 240 antimicrobial and nonantimicrobial agents in the Biolog Phenotype MicroArray. Mutants lacking tolC, acrB, and ramA grew significantly worse than other mutants in the presence of 48 agents (some of which have not previously been identified as substrates of AcrAB-TolC) and particularly poorly in the presence of phenothiazines, which are human antipsychotics. MIC testing revealed that the phenothiazine chlorpromazine had antimicrobial activity and synergized with common antibiotics against different Salmonella serovars and SL1344. Chlorpromazine increased the intracellular accumulation of ethidium bromide, which was ablated in mutants lacking acrB, suggesting an interaction with AcrB. High-level but not low-level overexpression of ramA increased the expression of acrB; conferred resistance to chloramphenicol, tetracycline, nalidixic acid, and triclosan and organic solvent tolerance; and increased the amount of ethidium bromide accumulated. Chlorpromazine induced the modest overproduction of ramA but repressed acrB. These data suggest that phenothiazines are not efflux pump inhibitors but influence gene expression, including that of acrB, which confers the synergy with antimicrobials observed.

  15. HAb18G/CD147 cell-cell contacts confer resistance of a HEK293 subpopulation to anoikis in an E-cadherin-dependent manner

    Directory of Open Access Journals (Sweden)

    Zhu Ping

    2010-04-01

    Full Text Available Abstract Background Acquisition of resistance to "anoikis" facilitates the survival of cells under independent matrix-deficient conditions, such as cells in tumor progression and the production of suspension culture cells for biomedical engineering. There is evidence suggesting that CD147, an adhesion molecule associated with survival of cells in tumor metastasis and cell-cell contacts, plays an important role in resistance to anoikis. However, information regarding the functions of CD147 in mediating cell-cell contacts and anoikis-resistance remains limited and even self-contradictory. Results An anoikis-resistant clone (HEK293ar, derived from anoikis-sensitive parental Human Embryonic Kidney 293 cells, survived anoikis by the formation of cell-cell contacts. The expression of HAb18G/CD147 (a member of the CD147 family was upregulated and the protein was located at cell-cell junctions. Upregulation of HAb18G/CD147 in suspended HEK293ar cells suppressed anoikis by mediating the formation of cell-cell adhesions. Anoikis resistance in HEK293ar cells also required E-cadherin-mediated cell-cell contacts. Knock-down of HAb18G/CD147 and E-cadherin inhibited cell-cell contacts formation and increased anoikis sensitivity respectively. When HAb18G/CD147 was downregulated, E-cadherin expression in HEK293ar cells was significantly suppressed; however, knockdown of E-cadherin by E-cadherin siRNA or blocking of E-cadherin binding activity with a specific antibody and EDTA had no significant effect on HAb18G/CD147 expression. Finally, pretreatment with LY294002, a phosphoinositide 3-kinase (PI3K/AKT inhibitor, disrupted cell-cell contacts and decreased cell number, but this was not the case in cells treated with the extracellular signal-regulated kinase (ERK inhibitor PD98059. Conclusions Our results provide new evidence that HAb18G/CD147-mediated cell-cell contact confers anoikis resistance in an E-cadherin-dependent manner; and cell-cell contact mediated

  16. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum {beta}-lactamase conferring severe antibiotic resistance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H., E-mail: msgjhlee@mju.ac.kr; Sohn, S. G., E-mail: sgsohn@mju.ac.kr; Jung, H. I., E-mail: jhinumber1@hanmail.net; An, Y. J., E-mail: anyj0120@hanmail.net; Lee, S. H., E-mail: sangheelee@mju.ac.kr [Myongji University, Drug Resistance Proteomics Laboratory, Department of Biological Sciences (Korea, Republic of)

    2013-07-15

    OXA-17, an extended-spectrum {beta}-lactamase (ESBL) conferring severe antibiotic resistance, hydrolytically inactivates {beta}-lactam antibiotics, inducing a lack of eradication of pathogenic bacteria by oxyimino {beta}-lactams and not helping hospital infection control. Thus, the enzyme is a potential target for developing antimicrobial agents against pathogens producing ESBLs. OXA-17 was purified and crystallized at 298 K. X-ray diffraction data from OXA-17 crystal have been collected to 1.85 A resolution using synchrotron radiation. The crystal of OXA-17 belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 48.37, b = 101.12, and c = 126.07 A. Analysis of the packing density shows that the asymmetric unit probably contains two molecules with a solvent content of 54.6%.

  17. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum β-lactamase conferring severe antibiotic resistance

    Science.gov (United States)

    Lee, J. H.; Sohn, S. G.; Jung, H. I.; An, Y. J.; Lee, S. H.

    2013-07-01

    OXA-17, an extended-spectrum β-lactamase (ESBL) conferring severe antibiotic resistance, hydrolytically inactivates β-lactam antibiotics, inducing a lack of eradication of pathogenic bacteria by oxyimino β-lactams and not helping hospital infection control. Thus, the enzyme is a potential target for developing antimicrobial agents against pathogens producing ESBLs. OXA-17 was purified and crystallized at 298 K. X-ray diffraction data from OXA-17 crystal have been collected to 1.85 Å resolution using synchrotron radiation. The crystal of OXA-17 belongs to space group P212121, with unit-cell parameters a = 48.37, b = 101.12, and c = 126.07 Å. Analysis of the packing density shows that the asymmetric unit probably contains two molecules with a solvent content of 54.6%.

  18. Cloning and occurrence of czrC, a gene conferring cadmium and zinc resistance in MRSA CC398 Isolates

    DEFF Research Database (Denmark)

    Cavaco, Lina; Hasman, Henrik; Stegger, Marc

    2010-01-01

    the genetic determinant causing zinc resistance in CC398 and examine its prevalence in isolates of animal and human origin. Based on the sequence of the staphylococcal cassette chromosome mec (SCCmec) element from methicillin-resistant S. aureus (MRSA) CC398 strain SO385, a putative metal resistance gene...... was identified in strain 171 and cloned in S. aureus RN4220. Furthermore, 81 MRSA and 48 methicillin-susceptible S. aureus (MSSA) strains, isolated from pigs (31 and 28) and from humans (50 and 20) in Denmark, were tested for susceptibility to zinc chloride and for the presence of a putative resistance...... determinant, czrC, by PCR. The cloning of czrC confirmed that the zinc chloride and cadmium acetate MICs for isogenic constructs carrying this gene were increased compared to those for S. aureus RN4220. No difference in susceptibility to sodium arsenate, copper sulfate, or silver nitrate was observed. Seventy...

  19. Cloning and occurrence of czrC, a gene conferring cadmium and zinc resistance in MRSA CC398 Isolates

    DEFF Research Database (Denmark)

    Cavaco, Lina; Hasman, Henrik; Stegger, Marc

    2010-01-01

    the genetic determinant causing zinc resistance in CC398 and examine its prevalence in isolates of animal and human origin. Based on the sequence of the staphylococcal cassette chromosome mec (SCCmec) element from methicillin-resistant S. aureus (MRSA) CC398 strain SO385, a putative metal resistance gene...... was identified in strain 171 and cloned in S. aureus RN4220. Furthermore, 81 MRSA and 48 methicillin-susceptible S. aureus (MSSA) strains, isolated from pigs (31 and 28) and from humans (50 and 20) in Denmark, were tested for susceptibility to zinc chloride and for the presence of a putative resistance...... determinant, czrC, by PCR. The cloning of czrC confirmed that the zinc chloride and cadmium acetate MICs for isogenic constructs carrying this gene were increased compared to those for S. aureus RN4220. No difference in susceptibility to sodium arsenate, copper sulfate, or silver nitrate was observed. Seventy...

  20. Registration of Common Wheat Germplasm with Mutations in SBEII Genes Conferring Increased Grain Amylose and Resistant Starch Content

    OpenAIRE

    2016-01-01

    Starch present in the endosperm of common wheat (Triticum aestivum L.) grains is an important source of carbohydrates worldwide. Starches with a greater proportion of amylose have increased levels of resistant starch, a dietary fiber that can provide human health benefits. Induced mutations in STARCH BRANCHING ENZYME II (SBEII) genes in wheat are associated with increased amylose and resistant starch. Ethyl methane sulfonate mutations in SBEIIa and SBEIIb paralogs were combined in the hexaplo...

  1. Label-free image-based detection of drug resistance with optofluidic time-stretch microscopy (Conference Presentation)

    Science.gov (United States)

    Kobayashi, Hirofumi; Lei, Cheng; Mao, Ailin; Jiang, Yiyue; Guo, Baoshan; Ozeki, Yasuyuki; Goda, Keisuke

    2017-02-01

    Acquired drug resistance is a fundamental predicament in cancer therapy. Early detection of drug-resistant cancer cells during or after treatment is expected to benefit patients from unnecessary drug administration and thus play a significant role in the development of a therapeutic strategy. However, the development of an effective method of detecting drug-resistant cancer cells is still in its infancy due to their complex mechanism in drug resistance. To address this problem, we propose and experimentally demonstrate label-free image-based drug resistance detection with optofluidic time-stretch microscopy using leukemia cells (K562 and K562/ADM). By adding adriamycin (ADM) to both K562 and K562/ADM (ADM-resistant K562 cells) cells, both types of cells express unique morphological changes, which are subsequently captured by an optofluidic time-stretch microscope. These unique morphological changes are extracted as image features and are subjected to supervised machine learning for cell classification. We hereby have successfully differentiated K562 and K562/ADM solely with label-free images, which suggests that our technique is capable of detecting drug-resistant cancer cells. Our optofluidic time-stretch microscope consists of a time-stretch microscope with a high spatial resolution of 780 nm at a 1D frame rate of 75 MHz and a microfluidic device that focuses and orders cells. We compare various machine learning algorithms as well as various concentrations of ADM for cell classification. Owing to its unprecedented versatility of using label-free image and its independency from specific molecules, our technique holds great promise for detecting drug resistance of cancer cells for which its underlying mechanism is still unknown or chemical probes are still unavailable.

  2. A novel Pro197Glu substitution in acetolactate synthase (ALS) confers broad-spectrum resistance across ALS inhibitors.

    Science.gov (United States)

    Liu, Weitang; Yuan, Guohui; Du, Long; Guo, Wenlei; Li, Lingxu; Bi, Yaling; Wang, Jinxin

    2015-01-01

    Water chickweed (Myosoton aquaticum L.), a competitive broadleaf weed, is widespread in wheat fields in China. Tribenuron and pyroxsulam failed to control water chickweed in the same field in Qiaotian Village in 2011 and 2012, respectively. An initial tribenuron resistance confirmation test identified a resistant population (AH02). ALS gene sequencing revealed a previously unreported substitution of Glu for Pro at amino acid position 197 in resistant individuals. A purified subpopulation (WRR04) that was individually homozygous for the Pro197Glu substitution was generated and characterized in terms of its response to different classes of ALS inhibitors. A whole-plant experiment showed that the WRR04 population exhibited broad-spectrum resistance to tribenuron (SU, 318-fold), pyrithiobac sodium (PTB, > 197-fold), pyroxsulam (TP, 81-fold), florasulam (TP, > 36-fold) and imazethapyr (IMI, 11-fold). An in vitro ALS assay confirmed that the ALS from WRR04 showed high resistance to all the tested ALS inhibitors. These results established that the Pro197Glu substitution endows broad-spectrum resistance across ALS inhibitors in water chickweed. In addition, molecular markers were developed to rapidly identify the Pro197Glu mutation.

  3. MAPK14/p38α confers irinotecan resistance to TP53-defective cells by inducing survival autophagy.

    Science.gov (United States)

    Paillas, Salome; Causse, Annick; Marzi, Laetitia; de Medina, Philippe; Poirot, Marc; Denis, Vincent; Vezzio-Vie, Nadia; Espert, Lucile; Arzouk, Hayat; Coquelle, Arnaud; Martineau, Pierre; Del Rio, Maguy; Pattingre, Sophie; Gongora, Céline

    2012-07-01

    Recently we have shown that the mitogen-activated protein kinase (MAPK) MAPK14/p38α is involved in resistance of colon cancer cells to camptothecin-related drugs. Here we further investigated the cellular mechanisms involved in such drug resistance and showed that, in HCT116 human colorectal adenocarcinoma cells in which TP53 was genetically ablated (HCT116-TP53KO), overexpression of constitutively active MAPK14/p38α decreases cell sensitivity to SN-38 (the active metabolite of irinotecan), inhibits cell proliferation and induces survival-autophagy. Since autophagy is known to facilitate cancer cell resistance to chemotherapy and radiation treatment, we then investigated the relationship between MAPK14/p38α, autophagy and resistance to irinotecan. We demonstrated that induction of autophagy by SN38 is dependent on MAPK14/p38α activation. Finally, we showed that inhibition of MAPK14/p38α or autophagy both sensitizes HCT116-TP53KO cells to drug therapy. Our data proved that the two effects are interrelated, since the role of autophagy in drug resistance required the MAPK14/p38α. Our results highlight the existence of a new mechanism of resistance to camptothecin-related drugs: upon SN38 induction, MAPK14/p38α is activated and triggers survival-promoting autophagy to protect tumor cells against the cytotoxic effects of the drug. Colon cancer cells could thus be sensitized to drug therapy by inhibiting either MAPK14/p38 or autophagy.

  4. On the research progress of insulin resistance, vascular endothelial dysfunction and exercise intervention%胰岛素抵抗和血管内皮功能障碍及其运动干预的研究进展

    Institute of Scientific and Technical Information of China (English)

    杜丽

    2016-01-01

    就有氧运动对胰岛素抵抗与血管内皮功能障碍的影响进行分析,以期利用有氧运动为疾病的防治提供理论依据。%This paper analyzes how the aerobic exercises influence insulin resistance and vascular endothelial dysfunction, in order to provide some references for preventing diseases by aerobic exercise.

  5. Identification and Mapping of Two New Genes Conferring Resistance to Powdery Mildew from Aegilops tauschii (Coss.) Schmal

    Institute of Scientific and Technical Information of China (English)

    Xiao-Li Sun; Di Liu; Hai-Quan Zhang; Na-Xin Huo; Rong-Hua Zhou; Ji-Zeng Jia

    2006-01-01

    Two powdery mildew resistance genes were Identified from Aegilops tauschii accessions Y201 and Y212and mapped using two different F2 populations derived from the crosses between susceptible accession Y2272 and Y201, and susceptible accession Y2263 and Y212. Genetic analysis of resistance to powdery mildew indicated that the resistance of Y201 was controlled by a single dominant gene, whereas the resistance of Y212 was controlled by a single recessive gene. We have temporarily designated these genes as PmY201 and PmY212, respectively. By bulk segregation analysis, six microsatellite markers including Xgwm174, cfd26, cfd57, cfd102, Xgwm583 and Xgwm639 were found to be linked to PmY201 with genetic distances of 5.2, 7.7, 9.6, 12.5, 20.2 and 22.1 cM, respectively. Five SSR markers, including cfd57, Xgwm182,cfd7, cfd102, and cfd12, were found to be linked to PmY212 with distances of 5.6, 7.2, 11.5, 14.7, and 18.5 cM,respectively. According to the locations of the linked markers, the two resistance genes were located in the 5DL region. Based on the chromosomal locations and the resistance patterns of the two genes, we propose that PmY201 and PmY212 are two novel powdery mildew resistance genes, and are suitable for marker-assisted selection.

  6. IL-4 confers resistance to IL-27-mediated suppression on CD4+ T cells by impairing STAT1 signaling

    Science.gov (United States)

    Chen, Zhihong; Wang, Shanze; Erekosima, Nkiruka; Li, Yapeng; Hong, Jessie; Qi, Xiaopeng; Merkel, Patricia; Nagabhushanam, Vijaya; Choo, Eugene; Katial, Rohit; Alam, Rafeul; Trikha, Anita; Chu, HongWei; Zhuang, Yonghua; Jin, Meiling; Bai, Chunxue; Huang, Hua

    2013-01-01

    Background Th2 cells play a critical role in the pathogenesis of allergic asthma. Established Th2 cells have been shown to resist reprogramming into Th1 cells. The inherent stability of Th2 cells poses a significant barrier to treating allergic diseases. Objective We sought to understand the mechanisms by which CD4+ T cells from asthmatic patients resist the IL-27-mediated inhibition. Methods We isolated and cultured CD4+ T cells from both healthy individuals and allergic asthmatic patients in order to test whether IL-27 can inhibit IL-4 production by the cultured CD4+ T cells using ELISA. Culturing conditions that resulted in resistance to IL-27 were determined using both murine and human CD4+ T cell culture systems. STAT1 phosphorylation was analyzed by Western blot and flow cytometry. Suppressor of cytokine signaling (Socs) mRNA expression was measured by quantitative PCR. The small interfering RNA method was used to knockdown the expression of Socs3 mRNA. Main Results We demonstrated that CD4+ T cells from asthmatic patients resisted the suppression of IL-4 production mediated by IL-27. We observed that repeated exposure to Th2-inducing conditions rendered healthy human CD4+ T cells resistant to IL-27-mediated inhibition. Using an in vitro murine culture system, we further demonstrated that repeated or higher doses of IL-4 stimulation, but not IL-2 stimulation, upregulated Socs3 mRNA expression and impaired IL-27-induced STAT1 phosphorylation. The Knockdown of Socs3 mRNA expression restored IL-27-induced STAT1 phosphorylation and IL-27-mediated inhibition of IL-4-production. Conclusions Our findings demonstrate that differentiated Th2 cells can resist IL-27-induced reprogramming toward Th1 cells by downregulating STAT1 phosphorylation and likely explain why the CD4+ T cells of asthmatic patients are resistant to IL-27-mediated inhibition. PMID:23958647

  7. Shotgun label-free proteomic analysis of clubroot (Plasmodiophora brassicae resistance conferred by the gene Rcr1 in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Tao Song

    2016-07-01

    Full Text Available Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one of the most serious diseases on Brassica crops worldwide and a major threat to canola production in western Canada. Host resistance is the key strategy for clubroot management on canola. Several clubroot resistance (CR genes have been identified, but the mechanisms associated with these CR genes are poorly understood. In the current study, a label-free shotgun proteomic approach was used to profile and compare the proteomes of B. rapa carrying and not carrying the CR gene Rcr1 upon P. brassicae infection. A total of 527 differentially accumulated proteins (DAPs were identified between the resistant and susceptible samples, and functional annotation of these DAPs indicates that the perception of P. brassicae and activation of defense responses is triggered via an unique signaling pathway distinct from common modes of recognition receptors reported with many other plant-pathogen interactions; this pathway appears to act in a calcium-independent manner through a not-well defined cascade of mitogen-activated protein kinases and may require the ubiquitin-26S proteasome related to abiotic stresses, especially the cold-stress tolerance. Both up-regulation of defense-related and down-regulation of pathogenicity-related metabolism were observed in plants carrying Rcr1, and these functions may all contribute to the clubroot resistance mediated by this CR gene. These results, combined with those of transcriptomic analysis reported earlier, improved our understanding of molecular mechanisms associated with Rcr1 and clubroot resistance at large, and identified candidate metabolites or pathways for further confirmation of specific resistance mechanisms. Deploying CR genes with different modes of action may help improve the durability of clubroot resistance.

  8. Identification and distribution of a GABA receptor mutation conferring dieldrin resistance in the malaria vector Anopheles funestus in Africa.

    Science.gov (United States)

    Wondji, Charles S; Dabire, Roch K; Tukur, Zainab; Irving, Helen; Djouaka, Rousseau; Morgan, John C

    2011-07-01

    Growing problems of pyrethroid resistance in Anopheles funestus have intensified efforts to identify alternative insecticides. Many agrochemicals target the GABA receptors, but cross-resistance from dieldrin resistance may preclude their introduction. Dieldrin resistance was detected in An. funestus populations from West (Burkina Faso) and central (Cameroon) Africa, but populations from East (Uganda) and Southern Africa (Mozambique and Malawi) were fully susceptible to this insecticide. Partial sequencing of the dieldrin target site, the γ-aminobutyric acid (GABA) receptor, identified two amino acid substitutions, A296S and V327I. The A296S mutation has been associated with dieldrin resistance in other species. The V327I mutations was detected in the resistant sample from Burkina Faso and Cameroon and consistently associated with the A296S substitution. The full-length of the An. funestus GABA-receptor gene, amplified by RT-PCR, generated a sequence of 1674 bp encoding 557 amino acid of the protein in An. funestus with 98% similarity to that of Anopheles gambiae. Two diagnostic assays were developed to genotype the A296S mutation (pyrosequencing and PCR-RFLP), and use of these assays revealed high frequency of the resistant allele in Burkina Faso (60%) and Cameroon (82%), moderate level in Benin (16%) while low frequency or absence of the mutation was observed respectively in Uganda (7.5%) or 0% in Malawi and Mozambique. The distribution of the Rdl(R) mutation in An. funestus populations in Africa suggests extensive barriers to gene flow between populations from different regions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Erectile dysfunction.

    Science.gov (United States)

    Wylie, Kevan

    2008-01-01

    Erectile dysfunction is a common problem affecting sexual function in men. Approximately one in 10 men over the age of 40 is affected by this condition and the incidence is age related. Erectile dysfunction is a sentinel marker for several reversible conditions including peripheral and coronary vascular disease, hypertension and diabetes mellitus. Endothelial dysfunction is a common factor between the disease states. Concurrent conditions such as depression, late-onset hypogonadism, Peyronie's disease and lower urinary tract symptoms may significantly worsen erectile function, other sexual and relationship issues and penis dysmorphophobia. A focused physical examination and baseline laboratory investigations are mandatory. Management consists of initiating modifiable lifestyle changes, psychological and psychosexual/couples interventions and pharmacological and other interventions. In combination and with treatment of concurrent comorbid states, these interventions will often bring about successful resolution of symptoms and avoid the need for surgical interventions.

  10. Genome-wide identification of genes conferring energy related resistance to a synthetic antimicrobial peptide (Bac8c.

    Directory of Open Access Journals (Sweden)

    Eileen C Spindler

    Full Text Available A fundamental issue in the design and development of antimicrobials is the lack of understanding of complex modes of action and how this complexity affects potential pathways for resistance evolution. Bac8c (RIWVIWRR-NH(2 is an 8 amino acid antimicrobial peptide (AMP that has been shown to have enhanced activity against a range of pathogenic Gram-positive and Gram-negative bacteria, as well as yeast. We have previously demonstrated that Bac8c appears to interfere with multiple targets, at least in part through the disruption of cytoplasmic membrane related functions, and that resistance to this peptide does not easily develop using standard laboratory methods. Here, we applied a genomics approach, SCalar Analysis of Library Enrichement (SCALEs, to map the effect of gene overexpression onto Bac8c resistance in parallel for all genes and gene combinations (up to ∼ 10 adjacent genes in the E. coli genome (a total of ∼ 500,000 individual clones were mapped. Our efforts identified an elaborate network of genes for which overexpression leads to low-level resistance to Bac8c (including biofilm formation, multi-drug transporters, etc. This data was analyzed to provide insights into the complex relationships between mechanisms of action and potential routes by which resistance to this synthetic AMP can develop.

  11. Powdery Mildew Resistance in Wheat Cultivar Mv Hombár is Conferred by a New Gene, PmHo.

    Science.gov (United States)

    Komáromi, Judit; Jankovics, Tünde; Fábián, Attila; Puskás, Katalin; Zhang, Zengyan; Zhang, Miao; Li, Hongjie; Jäger, Katalin; Láng, László; Vida, Gyula

    2016-11-01

    A new powdery mildew resistance gene designated as PmHo was identified in 'Mv Hombár' winter wheat, bred in Martonvásár, Hungary. It has exhibited a high level of resistance over the last two decades. Genetic mapping of recombinant inbred lines derived from the cross 'Ukrainka'/Mv Hombár located this gene on chromosome 2AL. The segregation ratio and consistent effect in all environments indicated that PmHo is a major dominant powdery mildew resistance gene. The race-specific nature of resistance in Mv Hombár was shown by the emergence of a single virulent pathotype designated as 51-Ho. This pathotype was, to some extent, able to infect Mv Hombár, developing visible symptoms with sporulating colonies. Microscopic studies revealed that, in incompatible interactions, posthaustorial hypersensitivity reaction was the most prevalent but not exclusive plant defense response in Mv Hombár, and fungal growth was mostly arrested during haustorium formation or in the early stages of colony development. The delayed fungal development of the virulent pathotype 51-Ho may be explained by additional effects of other loci that were also involved in the powdery mildew resistance of Mv Hombár.

  12. Dysbiosis caused by vitamin D receptor deficiency confers colonization resistance to Citrobacter rodentium through modulation of innate lymphoid cells.

    Science.gov (United States)

    Chen, J; Waddell, A; Lin, Y-D; Cantorna, M T

    2015-05-01

    Vitamin D receptor (VDR) knockout (KO) mice had fewer Citrobacter rodentium in the feces than wild-type (WT) mice and the kinetics of clearance was faster in VDR KO than WT mice. VDR KO mice had more interleukin-22 (IL-22)-producing innate lymphoid cells (ILCs) and more antibacterial peptides than WT mice. The increased ILCs in the VDR KO mice was a cell-autonomous effect of VDR deficiency on ILC frequencies. Bone marrow (BM) transplantation from VDR KO mice into WT resulted in higher ILCs and colonization resistance of the WT mice. Disruption of the gut microbiota using antibiotics in VDR KO mice reversed colonization resistance to C. rodentium infection. Confirming the role of the microbiota in the colonization resistance of VDR KO mice, transfer of the VDR KO microbiota to WT germ-free mice resulted in colonization resistance. Once colonization resistance was overcome, VDR KO mice had increased susceptibility to C. rodentium. VDR expression is a regulator of ILC frequencies, IL-22, dysbiosis, and C. rodentium susceptibility.

  13. The KPC type beta-lactamases: new enzymes that confer resistance to carbapenems in Gram-negative bacilli.

    Directory of Open Access Journals (Sweden)

    Piotr Wieczorek

    2010-05-01

    Full Text Available Antimicrobial resistance due to the continuous selective pressure from widespread use of antimicrobials in humans, animals and agriculture has been a growing problem for last decades. KPC beta-lactamases hydrolyzed beta-lactams of all classes. Especially, carbapenem antibiotics are hydrolyzed more efficiency than other beta-lactam antibiotics. The KPC enzymes are found most often in Enterobacteriaceae. Recently, these enzymes have been found in isolates of Pseudomonas aeruginosa and Acinetobacter spp. The observations of blaKPC genes isolated from different species in other countries indicate that these genes from common but unknown ancestor may have been mobilized in these areas or that blaKPC-carrying bacteria may have been passively by many vectors. The emergence of carbapenem resistance in Gram-negative bacteria is worrisome because the carbapenem resistance often may be associated with resistance to many beta-lactam and non-beta-lactam antibiotics. Treatment of infections caused by KPC-producing bacteria is extremely difficult because of their multidrug resistance, which results in high mortality rates. Therapeutic options to treat infections caused by multiresistant Gram-negative bacteria producing KPC-carbapenemases could be used polymyxin B or tigecycline.

  14. Genetic mapping, marker assisted selection and allelic relationships for the Pu 6 gene conferring rust resistance in sunflower.

    Science.gov (United States)

    Bulos, Mariano; Vergani, Pablo Nicolas; Altieri, Emiliano

    2014-09-01

    Rust resistance in the sunflower line P386 is controlled by Pu 6 , a gene which was reported to segregate independently from other rust resistant genes, such as R 4 . The objectives of this work were to map Pu 6 , to provide and validate molecular tools for its identification, and to determine the linkage relationship of Pu 6 and R 4 . Genetic mapping of Pu 6 with six markers covered 24.8 cM of genetic distance on the lower end of linkage Group 13 of the sunflower consensus map. The marker most closely linked to Pu 6 was ORS316 at 2.5 cM in the distal position. ORS316 presented five alleles when was assayed with a representative set of resistant and susceptible lines. Allelism test between Pu 6 and R 4 indicated that both genes are linked at a genetic distance of 6.25 cM. This is the first confirmation based on an allelism test that at least two members of the R adv /R 4 /R 11 / R 13a /R 13b /Pu 6 cluster of genes are at different loci. A fine elucidation of the architecture of this complex locus will allow designing and constructing completely new genomic regions combining genes from different resistant sources and the elimination of the linkage drag around each resistant gene.

  15. PmrA(Con) Confers pmrHFIJKL-Dependent EGTA and Polymyxin Resistance on msbB Salmonella by Decorating Lipid A with Phosphoethanolamine▿

    Science.gov (United States)

    Murray, Sean R.; Ernst, Robert K.; Bermudes, David; Miller, Samuel I.; Low, K. Brooks

    2007-01-01

    Mutations in pmrA were recombined into Salmonella strain ATCC 14028 msbB to determine if pmrA-regulated modifications of lipopolysaccharide could suppress msbB growth defects. A mutation that functions to constitutively activate pmrA [pmrA(Con)] suppresses msbB growth defects on EGTA-containing media. Lipid A structural analysis showed that Salmonella msbB pmrA(Con) strains, compared to Salmonella msbB strains, have increased amounts of palmitate and phosphoethanolamine but no aminoarabinose addition, suggesting that aminoarabinose is not incorporated into msbB lipid A. Surprisingly, loss-of-function mutations in the aminoarabinose biosynthetic genes restored EGTA and polymyxin sensitivity to Salmonella msbB pmrA(Con) strains. These blocks in aminoarabinose biosynthesis also prevented lipid A phosphoethanolamine incorporation and reduced the levels of palmitate addition, indicating previously unknown roles for the aminoarabinose biosynthetic enzymes. Lipid A structural analysis of the EGTA- and polymyxin-resistant triple mutant msbB pmrA(Con) pagP::Tn10, which contains phosphoethanolamine but no palmitoylated lipid A, suggests that phosphoethanolamine addition is sufficient to confer EGTA and polymyxin resistance on Salmonella msbB strains. Additionally, palmitoylated lipid A was observed only in wild-type Salmonella grown in the presence of salt in rich media. Thus, we correlate EGTA resistance and polymyxin resistance with phosphoethanolamine-decorated lipid A and demonstrate that the aminoarabinose biosynthetic proteins play an essential role in lipid A phosphoethanolamine addition and affect lipid A palmitate addition in Salmonella msbB strains. PMID:17449614

  16. pmrA(Con) confers pmrHFIJKL-dependent EGTA and polymyxin resistance on msbB Salmonella by decorating lipid A with phosphoethanolamine.

    Science.gov (United States)

    Murray, Sean R; Ernst, Robert K; Bermudes, David; Miller, Samuel I; Low, K Brooks

    2007-07-01

    Mutations in pmrA were recombined into Salmonella strain ATCC 14028 msbB to determine if pmrA-regulated modifications of lipopolysaccharide could suppress msbB growth defects. A mutation that functions to constitutively activate pmrA [pmrA(Con)] suppresses msbB growth defects on EGTA-containing media. Lipid A structural analysis showed that Salmonella msbB pmrA(Con) strains, compared to Salmonella msbB strains, have increased amounts of palmitate and phosphoethanolamine but no aminoarabinose addition, suggesting that aminoarabinose is not incorporated into msbB lipid A. Surprisingly, loss-of-function mutations in the aminoarabinose biosynthetic genes restored EGTA and polymyxin sensitivity to Salmonella msbB pmrA(Con) strains. These blocks in aminoarabinose biosynthesis also prevented lipid A phosphoethanolamine incorporation and reduced the levels of palmitate addition, indicating previously unknown roles for the aminoarabinose biosynthetic enzymes. Lipid A structural analysis of the EGTA- and polymyxin-resistant triple mutant msbB pmrA(Con) pagP::Tn10, which contains phosphoethanolamine but no palmitoylated lipid A, suggests that phosphoethanolamine addition is sufficient to confer EGTA and polymyxin resistance on Salmonella msbB strains. Additionally, palmitoylated lipid A was observed only in wild-type Salmonella grown in the presence of salt in rich media. Thus, we correlate EGTA resistance and polymyxin resistance with phosphoethanolamine-decorated lipid A and demonstrate that the aminoarabinose biosynthetic proteins play an essential role in lipid A phosphoethanolamine addition and affect lipid A palmitate addition in Salmonella msbB strains.

  17. Identification and analysis of CD133(+) melanoma stem-like cells conferring resistance to taxol: An insight into the mechanisms of their resistance and response.

    Science.gov (United States)

    El-Khattouti, Abdelouahid; Selimovic, Denis; Haïkel, Youssef; Megahed, Mosaad; Gomez, Christian R; Hassan, Mohamed

    2014-02-01

    The presence and the involvement of cancer stem-like cells (CSCs) in tumor initiation and progression, and chemo-resistance are documented. Herein, we functionally analyzed melanoma stem-like cells (MSC)/CD133(+) cells on their resistance and response to taxol-induced apoptosis. Besides being taxol resistant, the CD133(+) cells demonstrated a growth advantage over the CD133(-) subpopulation. Taxol induced apoptosis on CD133(-) cells, but not on CD133(+) cells. In the CD133(-) subpopulation, the exposure to taxol induced the activation of apoptosis signal-regulating kinase1 (ASK1)/c-jun-N-terminal kinase (JNK), p38, extracellular signal regulated kinase (ERK) pathways and Bax expression, while in CD133(+) cells taxol was able only to enhance the activity of the ERK pathway. In CD133(+) cells, the direct gene transfer of Bax overcame the acquired resistance to taxol. Taken together, our data provide an insight into the mechanistic cascade of melanoma resistance to taxol and suggest Bax gene transfer as a complementary approach to chemotherapy.

  18. Resistance assessment for oxathiapiprolin in Phytophthora capsici and the detection of a point mutation (G769W in PcORP1 that confers resistance

    Directory of Open Access Journals (Sweden)

    Jianqiang eMiao

    2016-04-01

    Full Text Available The potential for oxathiapiprolin resistance in Phytophthora capsici was evaluated. The baseline sensitivities of 175 isolates to oxathiapiprolin were initially determinated and found to conform to a unimodal curve with a mean EC50 value of 5.61×10-4 μg/ml. Twelve stable oxathiapiprolin-resistant mutants were generated by fungicide adaption in two sensitive isolates, LP3 and HNJZ10. The fitness of the LP3-mutants was found to be similar to or better than that of the parental isolate LP3, while the HNJZ10-mutants were found to have lost the capacity to produce zoospores. Taken together these results suggest that the risk of P. capsici developing resistance to oxathiapiprolin is moderate. Comparison of the PcORP1 genes in the LP3-mutants and wild-type parental isolate, which encode the target protein of oxathiapiprolin, revealed that a heterozygous mutation caused the amino acid substitution G769W. Transformation and expression of the mutated PcORP1-769W allele in the sensitive wild-type isolate BYA5 confirmed that the mutation in PcORP1 was responsible for the observed oxathiapiprolin resistance. Finally diagnostic tests including As-PCR and CAPs were developed to detect the oxathiapiprolin resistance resulting from the G769W point mutation in field populations of P. capsici.

  19. Novel plasmid conferring kanamycin and tetracycline resistance in the turkey-derived Campylobacter jejuni strain 11601MD.

    Science.gov (United States)

    Crespo, M D; Altermann, E; Olson, J; Miller, W G; Chandrashekhar, K; Kathariou, S

    2016-07-01

    In Campylobacter spp., resistance to the antimicrobials kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095nt) harboring tet(O) was identified in C. jejuni strain 11601MD, which was isolated from the jejunum of a turkey produced conventionally in North Carolina. Analysis of the p11601MD sequence revealed the presence of a high-GC content cassette with four genes that included tet(O) and a putative aminoglycoside transferase gene (aphA-3) highly similar to kanamycin resistance determinants. Several genes putatively involved in conjugative transfer were also identified on the plasmid. These findings will contribute to a better understanding of the distribution of potentially self-mobilizing plasmids harboring antibiotic resistance determinants in Campylobacter spp. from turkeys and other sources.

  20. Overexpression of rice OsLOL2 gene confers disease resistance in tobacco to Pseudomonas syringae pv. Tabaci

    Institute of Scientific and Technical Information of China (English)

    Khizar Hayat Bhatti; Chunxiao Xu; Jiahe Wu; Chaozu He

    2008-01-01

    LSD1-related proteins of Arabidopsis with LSD1-like zinc finger domains regulate disease resistance and programmed cell death(PCD). We cloned a rice OsLOL2 gene, orthologous to LSDI of Arabidopsis and expressed it in a tobacco plant. Transgenic tobacco lines displayed enhanced disease resistance to a virulent bacterium Pseudomonas syringae pv. tabaci (Pst). RT-PCR analysis showed that overexpression of OsLOL2 in transgenic tobacco lines resulted in upregulation of two pathogenesis-related (PR) protein genes, PR2 and PR5. Our results suggest that overexpression of OsLOL2 in transgenic tobacco enhances the resistance through the induction of PR pro-teins and hypersensitive response-like reaction.

  1. IL-17E synergizes with EGF and confers in vitro resistance to EGFR-targeted therapies in TNBC cells

    Science.gov (United States)

    Merrouche, Yacine; Fabre, Joseph; Cure, Herve; Garbar, Christian; Fuselier, Camille; Bastid, Jeremy; Antonicelli, Frank; Al-Daccak, Reem; Bensussan, Armand; Giustiniani, Jerome

    2016-01-01

    Estrogen receptor-, progesterone receptor- and HER2-negative breast cancers, also known as triple-negative breast cancers (TNBCs), have poor prognoses and are refractory to current therapeutic agents, including epidermal growth factor receptor (EGFR) inhibitors. Resistance to anti-EGFR therapeutic agents is often associated with sustained kinase phosphorylation, which promotes EGFR activation and translocation to the nucleus and prevents these agents from acting on their targets. The mechanisms underlying this resistance have not been fully elucidated. In addition, the IL-17E receptor is overexpressed in TNBC tumors and is associated with a poor prognosis. We have previously reported that IL-17E promotes TNBC resistance to anti-mitotic therapies. Here, we investigated whether IL-17E promotes TNBC resistance to anti-EGFR therapeutic agents by exploring the link between the IL-17E/IL-17E receptor axis and EGF signaling. We found that IL-17E, similarly to EGF, activates the EGFR in TNBC cells that are resistant to EGFR inhibitors. It also activates the PYK-2, Src and STAT3 kinases, which are essential for EGFR activation and nuclear translocation. IL-17E binds its specific receptor, IL-17RA/IL17RB, on these TNBC cells and synergizes with the EGF signaling pathway, thereby inducing Src-dependent EGFR transactivation and pSTAT3 and pEGFR translocation to the nucleus. Collectively, our data indicate that the IL-17E/IL-17E receptor axis may underlie TNBC resistance to EGFR inhibitors and suggest that inhibiting IL-17E or its receptor in combination with EGFR inhibitor administration may improve TNBC management. PMID:27462789

  2. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics

    DEFF Research Database (Denmark)

    Long, K. S.; Poehlsgaard, Jacob; Kehrenberg, C.

    2006-01-01

    A novel multidrug resistance phenotype mediated by the Cfr rRNA methyltransferase is observed in Staphylococcus aureus and Escherichia coli. The cfr gene has previously been identified as a phenicol and lincosamide resistance gene on plasmids isolated from Staphylococcus spp. of animal origin...... drug classes: Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Each of these five drug classes contains important antimicrobial agents that are currently used in human and/or veterinary medicine. We find that binding of the PhLOPSA drugs, which bind...

  3. Overexpression of TFAM protects 3T3-L1 adipocytes from NYGGF4 (PID1) overexpression-induced insulin resistance and mitochondrial dysfunction.

    Science.gov (United States)

    Shi, Chun-Mei; Xu, Guang-Feng; Yang, Lei; Fu, Zi-Yi; Chen, Ling; Fu, Hai-Long; Shen, Ya-Hui; Zhu, Lu; Ji, Chen-Bo; Guo, Xi-Rong

    2013-07-01

    NYGGF4, also known as phosphotyrosine interaction domain containing 1(PID1), is a recently discovered gene which is involved in obesity-related insulin resistance (IR) and mitochondrial dysfunction. We aimed to further elucidate the effects and mechanisms underlying NYGGF4-induced IR by investigating the effect of overexpressing mitochondrial transcription factor A (TFAM), which is essential for mitochondrial DNA transcription and replication, on NYGGF4-induced IR and mitochondrial abnormalities in 3T3-L1 adipocytes. Overexpression of TFAM increased the mitochondrial copy number and ATP content in both control 3T3-L1 adipocytes and NYGGF4-overexpressing adipocytes. Reactive oxygen species (ROS) production was enhanced in NYGGF4-overexpressing adipocytes and reduced in TFAM-overexpressing adipocytes; co-overexpression of TFAM significantly attenuated ROS production in NYGGF4-overexpressing adipocytes. However, overexpression of TFAM did not affect the mitochondrial transmembrane potential (ΔΨm) in control 3T3-L1 adipocytes or NYGGF4-overexpressing adipocytes. In addition, co-overexpression of TFAM-enhanced insulin-stimulated glucose uptake by increasing Glucose transporter type 4 (GLUT4) translocation to the PM in NYGGF4-overexpressing adipocytes. Overexpression of NYGGF4 significantly inhibited tyrosine phosphorylation of Insulin receptor substrate 1 (IRS-1) and serine phosphorylation of Akt, whereas overexpression of TFAM strongly induced phosphorylation of IRS-1 and Akt in NYGGF4-overexpressing adipocytes. This study demonstrates that NYGGF4 plays a role in IR by impairing mitochondrial function, and that overexpression of TFAM can restore mitochondrial function to normal levels in NYGGF4-overexpressing adipocytes via activation of the IRS-1/PI3K/Akt signaling pathway.

  4. A new phosphorylated form of Ku70 identified in resistant leukemic cells confers fast but unfaithful dna repair in cancer cell lines

    Science.gov (United States)

    Schellenbauer, Amelie; Biard, Denis; Paget, Vincent; Morel-Altmeyer, Sandrine; Guipaud, Olivier; Chambon, Christophe; Salles, Bernard; Maloum, Karim; Merle-Béral, Hélène; Chevillard, Sylvie; Delic, Jozo

    2015-01-01

    Ku70-dependent canonical nonhomologous end-joining (c-NHEJ) DNA repair system is fundamental to the genome maintenance and B-cell lineage. c-NHEJ is upregulated and error-prone in incurable forms of chronic lymphocytic leukemia which also displays telomere dysfunction, multiple chromosomal aberrations and the resistance to DNA damage-induced apoptosis. We identify in these cells a novel DNA damage inducible form of phospho-Ku70. In vitro in different cancer cell lines, Ku70 phosphorylation occurs in a heterodimer Ku70/Ku80 complex within minutes of genotoxic stress, necessitating its interaction with DNA damage-induced kinase pS2056-DNA-PKcs and/or pS1981-ATM. The mutagenic effects of phospho-Ku70 are documented by a defective S/G2 checkpoint, accelerated disappearance of γ-H2AX foci and kinetics of DNA repair resulting in an increased level of genotoxic stress-induced chromosomal aberrations. Together, these data unveil an involvement of phospho-Ku70 in fast but inaccurate DNA repair; a new paradigm linked to both the deregulation of c-NHEJ and the resistance of malignant cells. PMID:26337656

  5. Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells.

    Science.gov (United States)

    Wang, J; Mikse, O; Liao, R G; Li, Y; Tan, L; Janne, P A; Gray, N S; Wong, K-k; Hammerman, P S

    2015-04-23

    Somatic alterations of fibroblast growth factor receptors (FGFRs) have been described in a wide range of malignancies. A number of anti-FGFR therapies are currently under investigation in clinical trials for subjects with FGFR gene amplifications, mutations and translocations. Here, we develop cell line models of acquired resistance to FGFR inhibition by exposure of cell lines harboring FGFR3 gene amplification and translocation to the selective FGFR inhibitor BGJ398 and multitargeted FGFR inhibitor ponatinib. We show that the acquisition of resistance is rapid, reversible and characterized by an epithelial to mesenchymal transition and a switch from dependency on FGFR3 to ERBB family members. Acquired resistance was associated with demonstrable changes in gene expression including increased production of ERBB2/3 ligands, which were sufficient to drive resistance in the setting of FGFR3 dependency but not dependency on other FGFR family members. These data support the concept that activation of ERBB family members is sufficient to bypass dependency on FGFR3 and suggest that concurrent inhibition of these two pathways may be desirable when targeting FGFR3-dependent cancers.

  6. Mutations in the nonstructural protein 3A confer resistance to the novel enterovirus replication inhibitor TTP-8307.

    NARCIS (Netherlands)

    Palma, A.M. De; Thibaut, H.J.; Linden, L. van de; Lanke, K.H.W.; Heggermont, W.; Ireland, S.; Andrews, R.; Arimilli, M.; Al-Tel, T.H.; Clercq, E. De; Kuppeveld, F.J.M. van; Neyts, J.

    2009-01-01

    A novel compound, TTP-8307, was identified as a potent inhibitor of the replication of several rhino- and enteroviruses. TTP-8307 inhibits viral RNA synthesis in a dose-dependent manner, without affecting polyprotein synthesis and/or processing. Drug-resistant variants of coxsackievirus B3 were all

  7. Resistance to downy mildew in lettuce ‘La Brillante’ is conferred by dm50 gene and multiple QTL

    Science.gov (United States)

    Many cultivars of lettuce (Lactuca sativa L.) are susceptible to downy mildew, a nearly globally ubiquitous disease caused by Bremia lactucae. We previously determined that Batavia type cultivar La Brillante has a high level of field resistance to the disease in California. Testing of a mapping popu...

  8. FaRXf1: a locus conferring resistance to angular leaf spot caused by Xanthomonas fragariae in octoploid strawberry

    Science.gov (United States)

    Angular leaf spot caused by Xanthomonas fragariae is the only major bacterial disease of cultivated strawberry (Fragaria ×ananassa). While this disease may cause reductions of up to 8 % of marketable yield in Florida winter annual production, no resistant cultivars have been commercialized. Wild acc...

  9. Title A de novo synthesis citrate transporter VuMATE confers aluminum resistance in rice bean (vigna umbellata)

    Science.gov (United States)

    Al-activated organic acid anion efflux from roots is an important Al resistance mechanism in plants. We have conducted the homologous cloning and isolation of VuMATE (Vigna umbellata multidrug and toxic compound extrusion), a gene encoding a de novo citrate transporter from rice bean. Al treatment u...

  10. The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans.

    Science.gov (United States)

    Zhang, Chunzhi; Liu, Lei; Wang, Xiaoxuan; Vossen, Jack; Li, Guangcun; Li, Tao; Zheng, Zheng; Gao, Jianchang; Guo, Yanmei; Visser, Richard G F; Li, Junming; Bai, Yuling; Du, Yongchen

    2014-06-01

    Ph-3 is the first cloned tomato gene for resistance to late blight and encodes a CC-NBS-LRR protein. Late blight, caused by Phytophthora infestans, is one of the most destructive diseases in tomato. The resistance (R) gene Ph-3, derived from Solanum pimpinellifolium L3708, provides resistance to multiple P. infestans isolates and has been widely used in tomato breeding programmes. In our previous study, Ph-3 was mapped into a region harbouring R gene analogues (RGA) at the distal part of long arm of chromosome 9. To further narrow down the Ph-3 interval, more recombinants were identified using the flanking markers G2-4 and M8-2, which defined the Ph-3 gene to a 26 kb region according to the Heinz1706 reference genome. To clone the Ph-3 gene, a bacterial artificial chromosome (BAC) library was constructed using L3708 and one BAC clone B25E21 containing the Ph-3 region was identified. The sequence of the BAC clone B25E21 showed that only one RGA was present in the target region. A subsequent complementation analysis demonstrated that this RGA, encoding a CC-NBS-LRR protein, was able to complement the susceptible phenotype in cultivar Moneymaker. Thus this RGA was considered the Ph-3 gene. The predicted Ph-3 protein shares high amino acid identity with the chromosome-9-derived potato resistance proteins against P. infestans (Rpi proteins).

  11. AFLP markers for the R-gene in the flea beetle, Phyllotreta nemorum, conferring resistance to defenses in Barbarea vulgaris

    NARCIS (Netherlands)

    Breuker, C.J.; Victoir, K.; Jong, de P.W.; Meijden, van der E.; Brakefield, P.M.; Vrieling, K.

    2005-01-01

    A so-called R-gene renders the yellow-striped flea beetle Phyllotreta nemorum L. (Coleoptera: Chrysomelidae: Alticinae) resistant to the defenses of the yellow rocket Barbarea vulgaris R.Br. (Brassicacea) and enables it to use it as a host plant in Denmark. In this study, genetic markers for an auto

  12. Identification of nine pathotype-specific genes conferring resistance to fusiform rust in loblolly pine (Pinus taeda L.)

    Science.gov (United States)

    Henry Amerson; C. Dana Nelson; Thomas L. Kubisiak; E.George Kuhlman; Saul Garcia

    2015-01-01

    Nearly two decades of research on the host-pathogen interaction in fusiform rust of loblolly pine is detailed. Results clearly indicate that pathotype-specific genes in the host interacting with pathogen avirulence cause resistance as defined by the non-gall phenotype under favorable environmental conditions for disease development. In particular, nine fusiform rust...

  13. Stepwise Development of a Homozygous S80P Substitution in Fks1p, Conferring Echinocandin Resistance in Candida tropicalis

    DEFF Research Database (Denmark)

    Jensen, Rasmus Hare; Johansen, Helle Krogh; Arendrup, Maiken Cavling

    2013-01-01

    Three Candida tropicalis isolates were obtained from a patient with acute lymphoblastic leukemia. The first isolate was susceptible to all drug classes, while isolates 2 and 3, obtained after 8 and 8.5 weeks of caspofungin treatment, respectively, were resistant to the three echinocandins...

  14. DNA sequence analysis of the composite plasmid pTC conferring virulence and antimicrobial resistance for porcine enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Fekete, Péter Z; Brzuszkiewicz, Elzbieta; Blum-Oehler, Gabriele; Olasz, Ferenc; Szabó, Mónika; Gottschalk, Gerhard; Hacker, Jörg; Nagy, Béla

    2012-01-01

    In this study the plasmid pTC, a 90 kb self-conjugative virulence plasmid of the porcine enterotoxigenic Escherichia coli (ETEC) strain EC2173 encoding the STa and STb heat-stable enterotoxins and tetracycline resistance, has been sequenced in two steps. As a result we identified five main distinct regions of pTC: (i) the maintenance region responsible for the extreme stability of the plasmid, (ii) the TSL (toxin-specific locus comprising the estA and estB genes) which is unique and characteristic for pTC, (iii) a Tn10 transposon, encoding tetracycline resistance, (iv) the tra (plasmid transfer) region, and (v) the colE1-like origin of replication. It is concluded that pTC is a self-transmissible composite plasmid harbouring antibiotic resistance and virulence genes. pTC belongs to a group of large conjugative E. coli plasmids represented by NR1 with a widespread tra backbone which might have evolved from a common ancestor. This is the first report of a completely sequenced animal ETEC virulence plasmid containing an antimicrobial resistance locus, thereby representing a selection advantage for spread of pathogenicity in the presence of antimicrobials leading to increased disease potential. Copyright © 2011. Published by Elsevier GmbH.

  15. Oncogenic K-ras confers SAHA resistance by up-regulating HDAC6 and c-myc expression.

    Science.gov (United States)

    Wang, Qun; Tan, Rong; Zhu, Xin; Zhang, Yi; Tan, Zhiping; Su, Bing; Li, Yu

    2016-03-01

    Histone deacetylase inhibitors (HDIs) represent a new class of anticancer drugs. Suberoylanilide hydroxamic acid (SAHA), the first HDI approved for the treatment of cutaneous T cell lymphoma (CTCL), is currently being tested in clinical trials for other cancers. However, SAHA has been ineffective against solid tumors in many clinical trials. A better understanding of molecular mechanisms of SAHA resistance may provide the basis for improved patient selection and the enhancement of clinical efficacy. Here we demonstrate that oncogenic K-ras contributes to SAHA resistance by upregulating HDAC6 and c-myc expression. We find that the high levels of HDAC6 expression are associated with activated K-ras mutant in colon cancer patients. And expressions of HDAC6 and c-myc are increased in fibroblasts transformed with activated K-ras. Surprisingly, we find that activated K-ras transformed cells are more resistant to SAHA inhibition on cell growth and anchorage-independent colony formation. We show that a K-ras inhibitor sensitizes K-ras mutated lung cancer cells to SAHA induced growth inhibition. We also find that mutant K-ras induces HDAC6 expression by a MAP kinase dependent pathway. Our study suggests that combined treatment with SAHA and K-ras inhibitors may represent an effective strategy to overcome SAHA resistance.

  16. Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight

    Directory of Open Access Journals (Sweden)

    Nyla Jabeen

    2015-09-01

    Full Text Available This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3 gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol causing fusarium wilt and Alternaria solani causing early blight (EB. In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3 gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to non-transgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3.

  17. Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight

    Science.gov (United States)

    Jabeen, Nyla; Chaudhary, Zubeda; Gulfraz, Muhammad; Rashid, Hamid; Mirza, Bushra

    2015-01-01

    This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to non-transgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3. PMID:26361473

  18. Mapping of a Leishmania major gene/locus that confers pentamidine resistance by deletion and insertion of transposable element

    Directory of Open Access Journals (Sweden)

    Coelho Adriano C.

    2004-01-01

    Full Text Available Pentamidine (PEN is an alternative compound to treat antimony-resistant leishmaniasis patients, which cellular target remains unclear. One approach to the identification of prospective targets is to identify genes able to mediate PEN resistance following overexpression. Starting from a genomic library of transfected parasites bearing a multicopy episomal cosmid vector containing wild-type Leishmania major DNA, we isolated one locus capable to render PEN resistance to wild type cells after DNA transfection. In order to map this Leishmania locus, cosmid insert was deleted by two successive sets of partial digestion with restriction enzymes, followed by transfection into wild type cells, overexpression, induction and functional tests in the presence of PEN. To determine the Leishmania gene related to PEN resistance, nucleotide sequencing experiments were done through insertion of the transposon Mariner element of Drosophila melanogaster (mosK into the deleted insert to work as primer island. Using general molecular techniques, we described here this method that permits a quickly identification of a functional gene facilitating nucleotide sequence experiments from large DNA fragments. Followed experiments revealed the presence of a P-Glycoprotein gene in this locus which role in Leishmania metabolism has now been analyzed.

  19. CXCL12/CXCR4 axis induced miR-125b promotes invasion and confers 5-fluorouracil resistance through enhancing autophagy in colorectal cancer

    Science.gov (United States)

    Yu, Xinfeng; Shi, Wenna; Zhang, Yuhang; Wang, Xiaohui; Sun, Shiyue; Song, Zhiyu; Liu, Man; Zeng, Qiao; Cui, Shuxiang; Qu, Xianjun

    2017-01-01

    The activation of CXCL12/CXCR4 axis is associated with potential progression of cancer, such as invasion, metastasis and chemoresistance. However, the underlying mechanisms of CXCL12/CXCR4 axis and cancer progression have been poorly explored. We hypothesized that miRNAs might be critical downstream mediators of CXCL12/CXCR4 axis involved in cancer invasion and chemoresistance in CRC. In human CRC cells, we found that the activation of CXCL12/CXCR4 axis promoted epithelial-mesenchymal transition (EMT) and concurrent upregulation of miR-125b. Overexpression of miR-125b robustly triggered EMT and cancer invasion, which in turn enhanced the expression of CXCR4. Importantly, the reciprocal positive feedback loop between CXCR4 and miR-125b further activated the Wnt/β-catenin signaling by targeting Adenomatous polyposis coli (APC) gene. There was a negative correlation of the expression of miR-125b with APC mRNA in paired human colorectal tissue specimens. Further experiments indicated a role of miR-125b in conferring 5-fluorouracil (5-FU) resistance in CRC probably through increasing autophagy both in vitro and in vivo. MiR-125b functions as an important downstream mediator upon the activation of CXCL12/CXCR4 axis that involved in EMT, invasion and 5-FU resistance of CRC. These findings shed a new insight into the role of miR-125b and provide a potential therapeutic target in CRC. PMID:28176874

  20. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling.

    Science.gov (United States)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-04-01

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling.

  1. The Presence of Conjugative Plasmid pLS20 Affects Global Transcription of Its Bacillus subtilis Host and Confers Beneficial Stress Resistance to Cells

    Science.gov (United States)

    Rösch, Thomas C.; Golman, Wladislaw; Hucklesby, Laura; Gonzalez-Pastor, Jose E.

    2014-01-01

    Conjugation activity of plasmid pLS20 from Bacillus subtilis subsp. natto is induced when cells are diluted into fresh medium and diminishes as cells enter into stationary-phase growth. Transcriptional profiling shows that during mid-exponential growth, more than 5% of the host genes are affected in the presence of the plasmid, in contrast to the minor changes seen in freshly diluted and stationary-phase cells. Changes occurred in many metabolic pathways, although pLS20 does not confer any detectable burden on its host cell, as well as in membrane and cell wall-associated processes, in the large motility operon, and in several other cellular processes. In agreement with these changes, we found considerable alterations in motility and enzyme activity and increased resistance against several different forms of stress in cells containing the plasmid, revealing that the presence of pLS20 has a broad impact on the physiology of its host cell and increases its stress resistance in multiple aspects. Additionally, we found that the lack of chromosomal gene yueB, known to encode a phage receptor protein, which is upregulated in cells containing pLS20, strongly reduced conjugation efficiency, revealing that pLS20 not only increases fitness of its host but also employs host proteins for efficient transfer into a new cell. PMID:24334659

  2. BNYVV-derived dsRNA confers resistance to rhizomania disease of sugar beet as evidenced by a novel transgenic hairy root approach.

    Science.gov (United States)

    Pavli, Ourania I; Panopoulos, Nicholas J; Goldbach, Rob; Skaracis, George N

    2010-10-01

    Agrobacterium rhizogenes-transformed sugar beet hairy roots, expressing dsRNA from the Beet necrotic yellow vein virus replicase gene, were used as a novel approach to assess the efficacy of three intron-hairpin constructs at conferring resistance to rhizomania disease. Genetically engineered roots were similar in morphology to wild type roots but were characterized by a profound abundancy, rapid growth rate and, in some cases, plagiotropic development. Upon challenge inoculation, seedlings showed a considerable delay in symptom development compared to untransformed or vector-transformed seedlings, expressing dsRNA from an unrelated source. The transgenic root system of almost all seedlings contained no or very low virus titer while the non-transformed aerial parts of the same plants were found infected, leading to the conclusion that the hairy roots studied were effectively protected against the virus. This readily applicable novel method forms a plausible approach to preliminarily evaluate transgenic rhizomania resistance before proceeding in transformation and whole plant regeneration of sugar beet, a tedious and time consuming process for such a recalcitrant crop species.

  3. Amino acid sequence requirements at residues 69 and 238 for the SME-1 beta-lactamase to confer resistance to beta-lactam antibiotics.

    Science.gov (United States)

    Majiduddin, Fahd K; Palzkill, Timothy

    2003-03-01

    Carbapenem antibiotics have been used to counteract resistant strains of bacteria harboring beta-lactamases and extended-spectrum beta-lactamases. Four enzymes from the class A group of beta-lactamases, NMC-A, IMI-1, SME-1, and KPC-1, efficiently hydrolyze carbapenem antibiotics. Sequence comparisons and structural information indicate that cysteines at amino acid residues 69 and 238, which are conserved in all four of these enzymes, form a disulfide bond that is unique to these beta-lactamases. To test whether this disulfide bond is required for catalytic activity, the codons for residues Cys69 and Cys238 were randomized individually and simultaneously by PCR-based mutagenesis to create random replacement libraries for these positions. Mutants that were able to confer resistance to ampicillin, imipenem, or cefotaxime were selected from these libraries. The results indicate that positions Cys69 and Cys238 are critical for hydrolysis of all of the antibiotics tested, suggesting that the disulfide bond is generally required for this enzyme to catalyze the hydrolysis of beta-lactam antibiotics.

  4. Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum.

    Science.gov (United States)

    Wang, Xinhua; Kohalmi, Susanne E; Svircev, Antonet; Wang, Aiming; Sanfaçon, Hélène; Tian, Lining

    2013-01-01

    Plum pox virus (PPV) causes the most economically-devastating viral disease in Prunus species. Unfortunately, few natural resistance genes are available for the control of PPV. Recessive resistance to some potyviruses is associated with mutations of eukaryotic translation initiation factor 4E (eIF4E) or its isoform eIF(iso)4E. In this study, we used an RNA silencing approach to manipulate the expression of eIF4E and eIF(iso)4E towards the development of PPV resistance in Prunus species. The eIF4E and eIF(iso)4E genes were cloned from plum (Prunus domestica L.). The sequence identity between plum eIF4E and eIF(iso)4E coding sequences is 60.4% at the nucleotide level and 52.1% at the amino acid level. Quantitative real-time RT-PCR analysis showed that these two genes have a similar expression pattern in different tissues. Transgenes allowing the production of hairpin RNAs of plum eIF4E or eIF(iso)4E were introduced into plum via Agrobacterium-mediated transformation. Gene expression analysis confirmed specific reduced expression of eIF4E or eIF(iso)4E in the transgenic lines and this was associated with the accumulation of siRNAs. Transgenic plants were challenged with PPV-D strain and resistance was evaluated by measuring the concentration of viral RNA. Eighty-two percent of the eIF(iso)4E silenced transgenic plants were resistant to PPV, while eIF4E silenced transgenic plants did not show PPV resistance. Physical interaction between PPV-VPg and plum eIF(iso)4E was confirmed. In contrast, no PPV-VPg/eIF4E interaction was observed. These results indicate that eIF(iso)4E is involved in PPV infection in plum, and that silencing of eIF(iso)4E expression can lead to PPV resistance in Prunus species.

  5. 14-3-3σ confers cisplatin resistance in esophageal squamous cell carcinoma cells via regulating DNA repair molecules.

    Science.gov (United States)

    Lai, Kenneth K Y; Chan, Kin Tak; Choi, Mei Yuk; Wang, Hector K; Fung, Eva Y M; Lam, Ho Yu; Tan, Winnie; Tung, Lai Nar; Tong, Daniel K H; Sun, Raymond W Y; Lee, Nikki P; Law, Simon

    2016-02-01

    Esophageal squamous cell carcinoma (ESCC) is the predominant type of esophageal cancer in Asia. Cisplatin is commonly used in chemoradiation for unresectable ESCC patients. However, the treatment efficacy is diminished in patients with established cisplatin resistance. To understand the mechanism leading to the development of cisplatin resistance in ESCC, we compared the proteomes from a cisplatin-resistant HKESC-2R cell line with its parental-sensitive counterpart HKESC-2 to identify key molecule involved in this process. Mass spectrometry analysis detected 14-3-3σ as the most abundant molecule expressed exclusively in HKESC-2R cells, while western blot result further validated it to be highly expressed in HKESC-2R cells when compared to HKESC-2 cells. Ectopic expression of 14-3-3σ increased cisplatin resistance in HKESC-2 cells, while its suppression sensitized SLMT-1 cells to cisplatin. Among the molecules involved in drug detoxification, drug transportation, and DNA repair, the examined DNA repair molecules HMGB1 and XPA were found to be highly expressed in HKESC-2R cells with high 14-3-3σ expression. Subsequent manipulation of 14-3-3σ by both overexpression and knockdown approaches concurrently altered the expression of HMGB1 and XPA. 14-3-3σ, HMGB1, and XPA were preferentially expressed in cisplatin-resistant SLMT-1 cells when compared to those more sensitive to cisplatin. In ESCC patients with poor response to cisplatin-based chemoradiation, their pre-treatment tumors expressed higher expression of HMGB1 than those with response to such treatment. In summary, our results demonstrate that 14-3-3σ induces cisplatin resistance in ESCC cells and that 14-3-3σ-mediated cisplatin resistance involves DNA repair molecules HMGB1 and XPA. Results from this study provide evidences for further work in researching the potential use of 14-3-3σ and DNA repair molecules HMGB1 and XPA as biomarkers and therapeutic targets for ESCC.

  6. Silencing of the host factor eIF(iso4E gene confers plum pox virus resistance in plum.

    Directory of Open Access Journals (Sweden)

    Xinhua Wang

    Full Text Available Plum pox virus (PPV causes the most economically-devastating viral disease in Prunus species. Unfortunately, few natural resistance genes are available for the control of PPV. Recessive resistance to some potyviruses is associated with mutations of eukaryotic translation initiation factor 4E (eIF4E or its isoform eIF(iso4E. In this study, we used an RNA silencing approach to manipulate the expression of eIF4E and eIF(iso4E towards the development of PPV resistance in Prunus species. The eIF4E and eIF(iso4E genes were cloned from plum (Prunus domestica L.. The sequence identity between plum eIF4E and eIF(iso4E coding sequences is 60.4% at the nucleotide level and 52.1% at the amino acid level. Quantitative real-time RT-PCR analysis showed that these two genes have a similar expression pattern in different tissues. Transgenes allowing the production of hairpin RNAs of plum eIF4E or eIF(iso4E were introduced into plum via Agrobacterium-mediated transformation. Gene expression analysis confirmed specific reduced expression of eIF4E or eIF(iso4E in the transgenic lines and this was associated with the accumulation of siRNAs. Transgenic plants were challenged with PPV-D strain and resistance was evaluated by measuring the concentration of viral RNA. Eighty-two percent of the eIF(iso4E silenced transgenic plants were resistant to PPV, while eIF4E silenced transgenic plants did not show PPV resistance. Physical interaction between PPV-VPg and plum eIF(iso4E was confirmed. In contrast, no PPV-VPg/eIF4E interaction was observed. These results indicate that eIF(iso4E is involved in PPV infection in plum, and that silencing of eIF(iso4E expression can lead to PPV resistance in Prunus species.

  7. Erectile dysfunction

    African Journals Online (AJOL)

    that increase blood flow to the penis. The blood ... The pressure of the blood in the chambers makes the ... What are the risk factors for erectile dysfunction? The most .... losing excessive weight and increasing physical activity, may improve the ...

  8. Multi-agent chemotherapy overcomes glucocorticoid resistance conferred by a BIM deletion polymorphism in pediatric acute lymphoblastic leukemia.

    Science.gov (United States)

    Soh, Sheila Xinxuan; Lim, Joshua Yew Suang; Huang, John W J; Jiang, Nan; Yeoh, Allen Eng Juh; Ong, S Tiong

    2014-01-01

    A broad range of anti-cancer agents, including glucocorticoids (GCs) and tyrosine kinase inhibitors (TKIs), kill cells by upregulating the pro-apoptotic BCL2 family member, BIM. A common germline deletion in the BIM gene was recently shown to favor the production of non-apoptotic BIM isoforms, and to predict inferior responses in TKI-treated chronic myeloid leukemia (CML) and EGFR-driven lung cancer patients. Given that both in vitro and in vivo GC resistance are predictive of adverse outcomes in acute lymphoblastic leukemia (ALL), we hypothesized that this polymorphism would mediate GC resistance, and serve as a biomarker of poor response in ALL. Accordingly, we used zinc finger nucleases to generate ALL cell lines with the BIM deletion, and confirmed the ability of the deletion to mediate GC resistance in vitro. In contrast to CML and lung cancer, the BIM deletion did not predict for poorer clinical outcome in a retrospective analysis of 411 pediatric ALL patients who were uniformly treated with GCs and chemotherapy. Underlying the lack of prognostic significance, we found that the chemotherapy agents used in our cohort (vincristine, L-asparaginase, and methotrexate) were each able to induce ALL cell death in a BIM-independent fashion, and resensitize BIM deletion-containing cells to GCs. Together, our work demonstrates how effective therapy can overcome intrinsic resistance in ALL patients, and suggests the potential of using combinations of drugs that work via divergent mechanisms of cell killing to surmount BIM deletion-mediated drug resistance in other cancers.

  9. Characterization of a New Pm2 Allele Conferring Powdery Mildew Resistance in the Wheat Germplasm Line FG-1.

    Science.gov (United States)

    Ma, Pengtao; Xu, Hongxng; Li, Lihui; Zhang, Hongxia; Han, Guohao; Xu, Yunfeng; Fu, Xiaoyi; Zhang, Xiaotian; An, Diaoguo

    2016-01-01

    Powdery mildew has a negative impact on wheat production. Novel host resistance increases the diversity of resistance genes and helps to control the disease. In this study, wheat line FG-1 imported from France showed a high level of powdery mildew resistance at both the seedling and adult stages. An F2 population and F2:3 families from the cross FG-1 × Mingxian 169 both fit Mendelian ratios for a single dominant resistance gene when tested against multiple avirulent Blumeria tritici f. sp. tritici (Bgt) races. This gene was temporarily designated PmFG. PmFG was mapped on the multi-allelic Pm2 locus of chromosome 5DS using seven SSR, 10 single nucleotide polymorphism (SNP)-derived and two SCAR markers with the flanking markers Xbwm21/Xcfd81/Xscar112 (distal) and Xbwm25 (proximal) at 0.3 and 0.5 cM being the closest. Marker SCAR203 co-segregated with PmFG. Allelism tests between PmFG and documented Pm2 alleles confirmed that PmFG was allelic with Pm2. Line FG-1 produced a significantly different reaction pattern compared to other lines with genes at or near Pm2 when tested against 49 Bgt isolates. The PmFG-linked marker alleles detected by the SNP-derived markers revealed significant variation between FG-1 and other lines with genes at or near Pm2. It was concluded that PmFG is a new allele at the Pm2 locus. Data from seven closely linked markers tested on 31 wheat cultivars indicated opportunities for marker-assisted pyramiding of this gene with other genes for powdery mildew resistance and additional traits.

  10. Registration of Durum Wheat Germplasm Lines with Combined Mutations in SBEIIa and SBEIIb Genes Conferring Increased Amylose and Resistant Starch.

    Science.gov (United States)

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Dubcovsky, Jorge

    2014-08-25

    Durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.], used in pasta, couscous, and flatbread production, is an important source of starch food products worldwide. The amylose portion of the starch forms resistant starch complexes that resist digestion and contribute to dietary fiber. Increasing the amount of amylose and resistant starch in wheat by mutating the STARCH BRANCHING ENZYME II (SBEII) genes has potential to provide human health benefits. Ethyl methane sulfonate mutations in the linked SBEIIa and SBEIIb paralogs were combined on chromosomes 2A (SBEIIa/b-A; Reg. No. GP-968, PI 670159), 2B (SBEIIa/b-B; Reg. No. GP-970, PI 670161), and on both chromosomes (SBEIIa/b-AB; Reg. No. GP-969, PI 670160) in the tetraploid wheat cultivar Kronos, a semidwarf durum wheat cultivar that has high yield potential and excellent pasta quality. These three double and quadruple SBEII-mutant lines were compared with a control sib line with no SBEII mutations in two field locations in California. The SBEIIa/b-AB line with four mutations showed dramatic increases in amylose (average 66%) and resistant starch (average 753%) relative to the control. However, the SBEIIa/b-AB line also showed an average 7% decrease in total starch and an 8% decrease in kernel weight. The release by the University of California-Davis of the durum wheat germplasm combining four SBEIIa and SBEIIb mutations will accelerate the deployment of these mutations in durum wheat breeding programs and the development of durum wheat varieties with increased resistant starch.

  11. Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp.

    Science.gov (United States)

    Dor, Evgenia; Yoneyama, Koichi; Wininger, Smadar; Kapulnik, Yoram; Yoneyama, Kaori; Koltai, Hinanit; Xie, Xiaonan; Hershenhorn, Joseph

    2011-02-01

    The parasitic flowering plants of the genera Orobanche and Phelipanche (broomrape species) are obligatory chlorophyll-lacking root-parasitic weeds that infect dicotyledonous plants and cause heavy economic losses in a wide variety of plant species in warm-temperate and subtropical regions. One of the most effective strategies for broomrape control is crop breeding for broomrape resistance. Previous efforts to find natural broomrape-resistant tomato (Solanum lycopersicon) genotypes were unsuccessful, and no broomrape resistance was found in any wild tomato species. Recently, however, the fast-neutron-mutagenized tomato mutant SL-ORT1 was found to be highly resistant to various Phelipanche and Orobanche spp. Nevertheless, SL-ORT1 plants were parasitized by Phelipanche aegyptiaca if grown in pots together with the susceptible tomato cv. M-82. In the present study, no toxic activity or inhibition of Phelipanche seed germination could be detected in the SL-ORT1 root extracts. SL-ORT1 roots did not induce Phelipanche seed germination in pots but they were parasitized, at the same level as M-82, after application of the synthetic germination stimulant GR24 to the rhizosphere. Whereas liquid chromatography coupled to tandem mass spectrometry analysis of root exudates of M-82 revealed the presence of the strigolactones orobanchol, solanacol, and didehydro-orobanchol isomer, these compounds were not found in the exudates of SL-ORT1. It can be concluded that SL-ORT1 resistance results from its inability to produce and secrete natural germination stimulants to the rhizosphere.

  12. tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance

    DEFF Research Database (Denmark)

    Hasman, Henrik; Aarestrup, Frank Møller

    2002-01-01

    B protein from Enterococcus hirae. The tcrB gene was found in E. faecium isolated from pigs (75%), broilers (34%), calves (16%), and humans (10%) but not in isolates from sheep. Resistant isolates, containing the tcrB gene, grew on brain heart infusion agar plates containing up to 28 mM CuSO4 compared...

  13. Cloning and Occurrence of czrC, a Gene Conferring Cadmium and Zinc Resistance in Methicillin-Resistant Staphylococcus aureus CC398 Isolates

    NARCIS (Netherlands)

    Cavaco, L. M.; Hasman, H.; Stegger, M.; Andersen, P. S.; Skov, R.; Fluit, A. C.; Ito, T.; Aarestrup, F. M.

    2010-01-01

    We recently reported a phenotypic association between reduced susceptibility to zinc and methicillin resistance in Staphylococcus aureus CC398 isolates from Danish swine (F. M. Aarestrup, L. M. Cavaco, and H. Hasman, Vet. Microbiol. 142: 455-457, 2009). The aim of this study was to identify the gene

  14. Mutations Conferring Resistance to SCH6, a Novel Hepatitis C Virus NS3/4A Protease Inhibitor: Reduced DNA Replication Fitness and Partial Rescue by Second-Site Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Yi, MinKyung; Tong, Xiao; Skelton, Angela; Chase, Robert; Chen, Tong; Prongay, Andrew; Bogen, Stephane L.; Saksena, Anil K.; Njoroge, F. George; Veselenak, Ronald L.; Pyles, Richard B.; Bourne, Nigel; Malcolm, Bruce A.; Lemon, Stanley M. (SPRI)

    2008-06-30

    Drug resistance is a major issue in the development and use of specific antiviral therapies. Here we report the isolation and characterization of hepatitis C virus RNA replicons resistant to a novel ketoamide inhibitor of the NS3/4A protease, SCH6 (originally SCH446211). Resistant replicon RNAs were generated by G418 selection in the presence of SCH6 in a dose-dependent fashion, with the emergence of resistance reduced at higher SCH6 concentrations. Sequencing demonstrated remarkable consistency in the mutations conferring SCH6 resistance in genotype 1b replicons derived from two different strains of hepatitis C virus, A156T/A156V and R109K. R109K, a novel mutation not reported previously to cause resistance to NS3/4A inhibitors, conferred moderate resistance only to SCH6. Structural analysis indicated that this reflects unique interactions of SCH6 with P{prime}-side residues in the protease active site. In contrast, A156T conferred high level resistance to SCH6 and a related ketoamide, SCH503034, as well as BILN 2061 and VX-950. Unlike R109K, which had minimal impact on NS3/4A enzymatic function, A156T significantly reduced NS3/4A catalytic efficiency, polyprotein processing, and replicon fitness. However, three separate second-site mutations, P89L, Q86R, and G162R, were capable of partially reversing A156T-associated defects in polyprotein processing and/or replicon fitness, without significantly reducing resistance to the protease inhibitor.

  15. The learning conference

    DEFF Research Database (Denmark)

    Ravn, Ib

    2007-01-01

    are described: Individual reflection, the buzz dyad, ?You have won two consultants, free of charge?, facilitated group work, the knowledge exchange, and lunch with gaffer tape. Originality/value: This paper introduces modern learning theory and techniques into an educational context which has resisted......Purpose: To call attention to the fact that conferences for professionals rely on massive one-way communication and hence produce little learning for delegates. To introduce an alternative, the ?learning conference,? that involves delegates in fun and productive learning processes. Design....../methodology/approach: A typical full-day conference is analyzed. It has six hours of podium talk and twenty-five minutes for delegates to become involved. What model of learning can possibly lie behind this? The transfer model, which assumes learners to be empty vessels. An alternative view is that conference delegates...

  16. The learning conference

    DEFF Research Database (Denmark)

    Ravn, Ib

    2007-01-01

    are described: Individual reflection, the buzz dyad, ?You have won two consultants, free of charge?, facilitated group work, the knowledge exchange, and lunch with gaffer tape. Originality/value: This paper introduces modern learning theory and techniques into an educational context which has resisted......Purpose: To call attention to the fact that conferences for professionals rely on massive one-way communication and hence produce little learning for delegates. To introduce an alternative, the ?learning conference,? that involves delegates in fun and productive learning processes. Design....../methodology/approach: A typical full-day conference is analyzed. It has six hours of podium talk and twenty-five minutes for delegates to become involved. What model of learning can possibly lie behind this? The transfer model, which assumes learners to be empty vessels. An alternative view is that conference delegates...

  17. BMP type II receptor deficiency confers resistance to growth inhibition by TGF-β in pulmonary artery smooth muscle cells: role of proinflammatory cytokines.

    Science.gov (United States)

    Davies, Rachel J; Holmes, Alan M; Deighton, John; Long, Lu; Yang, Xudong; Barker, Lucy; Walker, Christoph; Budd, David C; Upton, Paul D; Morrell, Nicholas W

    2012-03-15

    Mutations in the bone morphogenetic protein (BMP) type II receptor (BMPR-II) underlie most cases of heritable pulmonary arterial hypertension (HPAH) and a significant proportion of sporadic cases. Pulmonary artery smooth muscle cells (PASMCs) from patients with pulmonary arterial hypertension (PAH) not only exhibit attenuated growth suppression by BMPs, but an abnormal mitogenic response to transforming growth factor (TGF)-β1. We sought to define the mechanism underlying this loss of the antiproliferative effects of TGF-β1 in BMPR-II-deficient PASMCs. The effect of TGF-β1 on PASMC proliferation was characterized in three different models of BMPR-II dysfunction: 1) HPAH PASMCs, 2) Bmpr2(+/-) mouse PASMCs, and 3) control human PASMCs transfected with BMPR-II small interfering RNA. BMPR-II reduction consistently conferred insensitivity to growth inhibition by TGF-β1. This was not associated with altered canonical TGF-β1/Smad signaling but was associated with a secreted factor. Microarray analysis revealed that the transcriptional responses to TGF-β1 differed between control and HPA