WorldWideScience

Sample records for dynodes

  1. Multiple-Dynode-Layer Microchannel Plate

    Science.gov (United States)

    Woodgate, Bruce E.

    1990-01-01

    Improved microchannel-plate electron image amplifier made of stack of discrete microchannel-plate layers. New plates easier to manufacture because no need to etch long, narrow holes, to draw and bundle thin glass tubes, or to shear plates to give microchannels curvatures necessary for reduction of undesired emission of ions. Discrete dynode layers stacked with slight offset from layer to layer to form microchannel plate with curved channels. Provides for relatively fast recharging of microchannel dynodes, with consequent enhancement of performance.

  2. Secondary Electron Emission Materials for Transmission Dynodes in Novel Photomultipliers: A Review

    Directory of Open Access Journals (Sweden)

    Shu Xia Tao

    2016-12-01

    Full Text Available Secondary electron emission materials are reviewed with the aim of providing guidelines for the future development of novel transmission dynodes. Materials with reflection secondary electron yield higher than three and transmission secondary electron yield higher than one are tabulated for easy reference. Generations of transmission dynodes are listed in the order of the invention time with a special focus on the most recent atomic-layer-deposition synthesized transmission dynodes. Based on the knowledge gained from the survey of secondary election emission materials with high secondary electron yield, an outlook of possible improvements upon the state-of-the-art transmission dynodes is provided.

  3. A high dynamic range readout unit for a calorimeter

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-Long; WU Jian; CHANG Jin; LI Bing; FENG Chang-Qing; LI Xian-Li; WANG Xiao-Lian; XU Zi-Zong; GUO Jian-Hua; CAI Ming-Sheng; HU Yi-Ming

    2012-01-01

    A high dynamic range readout system,consisting of a multi-dynode readout PMT and a VA32 chip,is presented.An LED system is set up to calibrate the relative gains between the dynodes,and the ADC counts per MIPs from dynode 7 are determined under cosmic-ray calibration.A dynamic range from 0.5 MIPs to 1 × 105 MIPs is achieved.

  4. Wide-range logarithmic radiometer for measuring high temperatures

    Science.gov (United States)

    Liston, E. M.

    1971-01-01

    Filter radiometer utilizing photomultiplier circuit, in which a direct-coupled amplifier varies dynode voltage to maintain constant anode current, measures rapid variations of temperature of white-hot charred body at 2000 K to 3000 K.

  5. Scintillation Detectors in Experiments on Plasma Accelerators

    CERN Document Server

    Bystritsky, V M; Gerasimov, V V; Kublikov, R V; Nechaev, B A; Padalko, V M; Parzhitski, S S; Smirnov, V S; Wozniak, J

    2005-01-01

    The gating circuits for photomultipliers of scintillation detectors operating in powerful pulsed electromagnetic and nuclear radiation fields are investigated. PMTs with the jalousie-type dynode system and with the linear dynode system are considered. The basic gating circuits of the photomultipliers involving active and resistor high-voltage dividers are given. The results of the investigations are important for experiments in which it is necessary to discriminate in time the preceding background radiation and the process of interest.

  6. Studies of MaPMTs with beetle-chip read-out

    CERN Document Server

    Muheim, F

    2005-01-01

    We have evaluated the 64-channel Multianode Photo-Multiplier (MaPMT) with 8-stage dynodes for the LHCb RICH detectors. With a Beetle1.2 chip to read-out the MaPMT, we have demonstrated that the MaPMT performance is as expected using particle beams and LED light sources. We have also measured the pulse shape from 12-stage dynode MaPMTs, read out with the Beetle1.2-MA0 chip.

  7. Studies of MaPMTs with beetle-chip read-out

    CERN Document Server

    Muheim, F

    2005-01-01

    We have evaluated the 64-channel Multianode Photo-Multiplier (MaPMT) with 8-stage dynodes for the LHCb RICH detectors. With a Beetle 1.2 chip to read-out the MaPMT, we have demonstrated that the MaPMT performance is as expected using particle beams and LED light sources. We have also measured the pulse shape from 12-stage dynode MaPMTs, read out with the Beetle 1.2-MA0 chip.

  8. Statistics of electron multiplication in a multiplier phototube; Iterative method; Estadistica de la multiplicacion de electrones en un fotomultiplicador: Metodos iterativos

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, J. F.; Grau, A.

    1985-07-01

    In the present paper an iterative method is applied to study the variation of dynode response in the multiplier phototube. Three different situation are considered that correspond to the following ways of electronic incidence on the first dynode: incidence of exactly one electron, incidence of exactly r electrons and incidence of an average r electrons. The responses are given for a number of steps between 1 and 5, and for values of the multiplication factor of 2.1, 2.5, 3 and 5. We study also the variance, the skewness and the excess of jurtosis for different multiplication factors. (Author) 11 refs.

  9. Secondary Emission Calorimetry: Fast and Radiation-Hard

    CERN Document Server

    Albayrak-Yetkin, A; Corso, J; Debbins, P; Jennings, G; Khristenko, V; Mestvirisvilli, A; Onel, Y; Schmidt, I; Sanzeni, C; Southwick, D; Winn, D R; Yetkin, T

    2013-01-01

    A novel calorimeter sensor for electron, photon and hadron energy measurement based on Secondary Emission(SE) to measure ionization is described, using sheet-dynodes directly as the active detection medium; the shower particles in an SE calorimeter cause direct secondary emission from dynode arrays comprising the sampling or absorbing medium. Data is presented on prototype tests and Monte Carlo simulations. This sensor can be made radiation hard at GigaRad levels, is easily transversely segmentable at the mm scale, and in a calorimeter has energy signal rise-times and integration comparable to or better than plastic scintillation/PMT calorimeters. Applications are mainly in the energy and intensity frontiers.

  10. Characteristics and applications of advanced technology microchannel plates

    Science.gov (United States)

    Horton, Jerry R.; Tasker, G. William; Fijol, John J.

    1990-10-01

    A method for fabrication of novel thin-filrn continuous dynode electron multipliers is described. We have shown the feasibility of crucial manufacturing steps, including anisotropic dry etching of substrates into photolithographically-defined arrays of high-aspect-ratio channels, and the formation of thin-film continuous dynodes by chemical vapor deposition. We discuss potential performance and design advantages of this advanced technology microchannel plate (AT-MCP) over the conven tional reduced lead silicate glass inicrochannel plate (RLSG-'MCP) and implications for new applications.

  11. Performances of multi-channel ceramic photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Comby, G.; Karolak, M.; Piret, Y.; Mouly, J.P. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Kuzmin, E. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1995-09-01

    Ceramic electron multipliers with real metal dynodes and independent channels ware constructed using multilayer ceramic technology. Tests of these prototypes show their capability to form sensitive detectors such as photomultipliers or light intensifiers. Here, we present results for the photocathode sensitivity, dynode activation, gain, linearity range and dynamic characteristics as well as the effect of 3-year aging of the main operational functions. The advantages provided by the ceramic components are discussed. These results motivate the development of a compact 256 pixel ceramic photomultiplier. (author).

  12. Design of a high dynamic range photomultiplier base board for the BGO ECAL of DAMPE

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiyong; Zhang, Yunlong, E-mail: ylzhang1@mail.ustc.edu.cn; Dong, Jianing; Wen, Sicheng; Feng, Changqing; Wang, Chi; Wei, Yifeng; Wang, Xiaolian; Xu, Zizong; Liu, Shubin

    2015-04-21

    A base board for photomultiplier tube (PMT) with multi-dynode readout has been developed for the BGO electromagnetic calorimeter (ECAL) of the Dark Matter Particle Explorer (DAMPE). In order to cover a high dynamic range of energy measurements, the signals are read out from different sensitive dynodes 2, 5, and 8 (Dy2, Dy5 and Dy8). The performance of this new type of base board is studied with a light-emitting diode (LED) system and cosmic rays. A wide measuring range from 0.5 to 1.0×10{sup 5} MIPs can be achieved using the VA32 readout Application Specific Integrated Circuit (ASIC)

  13. The effect of secondary processes in a photomultiplier tube on the characteristics of the photodetector

    Science.gov (United States)

    Vygon, V. G.; Iaroshenko, I. F.

    1983-10-01

    Expressions are derived for the mean value of the anodic current and the signal-to-noise ratio at the output of a photomultiplier tube, taking into account the formation of afterpulses. These expressions are used for the numerical calculation of the threshold sensitivity of a photomultiplier tube and the characteristics of the receiving system of a lidar. It is shown that the main factor determining this sensitivity is exoelectron emission from the dynodes. For spray-deposited emitters, having a high exoemission yield, the exoemission from the dynodes leads to a 5-10-fold deterioration in the threshold of the photomultiplier tube.

  14. The R&D of the 20 in. MCP-PMTs for JUNO

    Science.gov (United States)

    Chang, Yaping; Huang, Guorui; Heng, Yuekun; Li, Dong; Liu, Huilin; Liu, Shulin; Li, Weihua; Ning, Zhe; Qi, Ming; Qian, Sen; Sun, Jianning; Si, Shuguang; Tian, Jinshou; Wang, Xingchao; Wang, Xing; Wang, Yifang; Wei, Yonglin; Wang, Wenwen; Xia, Jingkai; Xin, Liwei; Zhao, Tianchi

    2016-07-01

    A new concept of large area photomultiplier based on MCPs was conceived for JUNO by the scientists in IHEP, and with the collaborative work of the MCP-PMT collaboration in China, 8 in. and 20 in. prototypes were produced. Test results show that this type of MCP-PMT can have good SPE performance as the traditional dynode type PMTs.

  15. Design of a large dynamic range readout unit for the PSD detector of DAMPE

    CERN Document Server

    Zhou, Yong; Sun, Zhiyu; Zhang, Yongjie; Fang, Fang; Chen, Junling; Hu, Bitao

    2016-01-01

    A large dynamic range is required by the Plastic Scintillator Detector (PSD) of DArk Matter Paricle Explorer (DAMPE), and a double-dynode readout has been developed. To verify this design, a prototype detector module has been constructed and tested with cosmic rays and heavy ion beams. The results match with the estimation and the readout unit could easily cover the required dynamic range.

  16. The R&D of the 20 in. MCP–PMTs for JUNO

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yaping [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huang, Guorui [North Night Vision Tech. Ltd., Nanjing 211106 (China); Heng, Yuekun [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Li, Dong [North Night Vision Tech. Ltd., Nanjing 211106 (China); Liu, Huilin [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710068 (China); Liu, Shulin [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Li, Weihua [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710068 (China); Ning, Zhe [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Qi, Ming [Department of Physics, Nanjing University, Nanjing 210093 (China); Qian, Sen, E-mail: qians@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Sun, Jianning; Si, Shuguang [North Night Vision Tech. Ltd., Nanjing 211106 (China); Tian, Jinshou [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710068 (China); Wang, Xingchao [North Night Vision Tech. Ltd., Nanjing 211106 (China); and others

    2016-07-11

    A new concept of large area photomultiplier based on MCPs was conceived for JUNO by the scientists in IHEP, and with the collaborative work of the MCP–PMT collaboration in China, 8 in. and 20 in. prototypes were produced. Test results show that this type of MCP–PMT can have good SPE performance as the traditional dynode type PMTs.

  17. Potential applications of electron emission membranes in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Bilevych, Yevgen [Fraunhofer Institute for Reliability and Microintegration (IZM), Berlin (Germany); University of Bonn, Bonn (Germany); Brunner, Stefan E. [Delft University of Technology, Delft (Netherlands); Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Vienna (Austria); Chan, Hong Wah; Charbon, Edoardo [Delft University of Technology, Delft (Netherlands); Graaf, Harry van der, E-mail: vdgraaf@nikhef.nl [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Hagen, Cornelis W. [Delft University of Technology, Delft (Netherlands); Nützel, Gert; Pinto, Serge D. [Photonis, Roden (Netherlands); Prodanović, Violeta [Delft University of Technology, Delft (Netherlands); Rotman, Daan [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); University of Amsterdam, Amsterdam (Netherlands); Santagata, Fabio [State Key Lab for Solid State Lighti Changzhou base, F7 R& D HUB 1, Science and Education Town, Changzhou 213161, Jangsu Province (China); Sarro, Lina; Schaart, Dennis R. [Delft University of Technology, Delft (Netherlands); Sinsheimer, John; Smedley, John [Brookhaven National Laboratory, Upton, NY (United States); Tao, Shuxia; Theulings, Anne M.M.G. [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands)

    2016-02-11

    With a miniaturised stack of transmission dynodes, a noise free amplifier is being developed for the detection of single free electrons, with excellent time- and 2D spatial resolution and efficiency. With this generic technology, a new family of detectors for individual elementary particles may become possible. Potential applications of such electron emission membranes in medicine are discussed.

  18. Study on the performance of electromagnetic particle detectors of LHAASO-KM2A

    Science.gov (United States)

    Zhang, Zhongquan; Hou, Chao; Cao, Zhen; Chang, Jingfan; Feng, Cunfeng; Hanapia, Erlan; Gong, Guanghua; Liu, Jia; Lv, Hongkui; Sheng, Xiangdong; Zhang, Shaoru; Zhu, Chengguang

    2017-02-01

    The electromagnetic particle detectors (EDs) for one square kilometer detector array (KM2A) of large high altitude air shower observation (LHAASO) are designed to measure the densities and arrival times of secondary particles in extensive air showers (EASs). ED is a type of plastic scintillator detector with an active area of 1 m2. This study investigates the design and performance of prototype ED. Approximately 20 photoelectrons are collected by the 1st dynode of a photomultiplier tube (PMT). The prototype ED exhibited good detection efficiency and time resolution. The detection for the wide dynamic particle density varying from 1 to 10 000 particles/m2 is realized with the design of the PMT divider for the readout of both the anode and 6th dynode.

  19. Multi-collector Isotope Ratio Mass Spectrometer -- Operational Performance Report

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Anthony D; Olson, John E; Watrous, Matthew G; Ward, Michael B.; Dahl, David A.

    2010-12-01

    This report describes the operational testing of a new magnetic sector mass spectrometer that utilizes seven full-sized discrete dynode electron multipliers operating simultaneously. The instrument includes a newly developed ion dispersion lens that enables the mass dispersed individual isotope beams to be separated sufficiently to allow a full-sized discrete dynode pulse counting multiplier to be used to measure each isotope beam. The performance of the instrument was measured using SRM 996 (244Pu spike) at loadings of 2.4 and 12 fg on resin beads and with SRM 4350B Columbia River Sediment samples. The measured limit of detection (3s) for 240Pu was 3.4 attograms for SRM 996. The limit of quantitation (LOQ), defined as 10 s, was 11.2 attograms. The measured concentration of 239Pu in the CRS standard was 152 ± 6 fg/g.

  20. Low Power Photomultiplier Tube Circuit And Method Thereor

    Science.gov (United States)

    Bochenski, Edwin B.; Skinner, Jack L.; Dentinger, Paul M.; Lindblom, Scott C.

    2006-04-18

    An electrical circuit for a photomultiplier tube (PMT) is disclosed that reduces power consumption to a point where the PMT may be powered for extended periods with a battery. More specifically, the invention concerns a PMT circuit comprising a low leakage switch and a high voltage capacitor positioned between a resistive divider and each of the PMT dynodes, and a low power control scheme for recharging the capacitors.

  1. Development of a 13-in. Hybrid Avalanche Photo-Detector (HAPD) for a next generation water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, H. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)]. E-mail: nakkan@hep.phys.s.u-tokyo.ac.jp; Kusaka, A. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kakuno, H. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Abe, T. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Iwasaki, M. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Aihara, H. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Shiozawa, M. [Institute for Cosmic Ray Research, University of Tokyo, Higashi-Mozumi, Kamioka-cho, Hida city, Gifu 506-1205 (Japan); Tanaka, M. [Institute for Particle and Nuclear Studies, High Energy Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Kyushima, H. [Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Simokanzo, Iwata City 438-0193, Shizuoka (Japan); Suyama, M. [Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Simokanzo, Iwata City 438-0193, Shizuoka (Japan); Kawai, Y. [Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Simokanzo, Iwata City 438-0193, Shizuoka (Japan)

    2006-11-01

    We have developed a 13-in. Hybrid Avalanche Photo-Detector (HAPD) for photosensors in next generation water Cherenkov type detectors. We study the performance of the HAPD and the results show good time resolution better than {sigma}=1ns, good sensitivity for single photon detection, wide dynamic range, and good uniformity on the photocathode. The HAPD is also expected to be less expensive than large PMTs because of its simpler structure without dynodes.

  2. Extension of photomultiplier tube dynamic range for the LHAASO-KM2A electromagnetic particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Hongkui, E-mail: lvhk@ihep.ac.cn [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sheng, Xiangdong; He, Huihai; Liu, Jia [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Zhongquan [Shandong University, Jinan 250100 (China); Hou, Chao; Zhao, Jing [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-05-01

    In the Large High Altitude Air Shower Observatory (LHAASO), the 1 km{sup 2} array (KM2A) requires linear measurement of optical intensity with a wide dynamic range. Over 5000 photomultiplier tubes (PMTs) are employed in this experiment and developed as “two outputs” device (anode and dynode) to meet the relevant requirements. In this study, the linearity of the anode and the eighth dynode (DY8), which is limited by space charge effects and mainly related to the relative dynode voltage ratios of the PMT divider, is examined. A voltage divider for the Hamamatsu R11102 PMT is designed and a dramatically enhanced linearity is demonstrated. Test results show that this design can cover a wide dynamic range from 20 to 2×10{sup 5} photoelectrons and achieve a peak anode current of 380 mA at a PMT gain of 10{sup 5}, which satisfies the requirements of KM2A electromagnetic particle detectors. The circuit design has been successfully simulated using the simulation software Multisim. The details of PMT performance tests and simulations are described.

  3. photomultiplier tube

    CERN Multimedia

    A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  4. photomultiplier tube

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  5. photomultiplier tube

    CERN Multimedia

    Philips. 150AVP. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  6. photomultiplier tubes

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  7. The calibration and electron energy reconstruction of the BGO ECAL of the DAMPE detector

    CERN Document Server

    Zhang, Zhiyong; Dong, Jianing; Wei, Yifeng; Wen, Sicheng; Zhang, Yunlong; Li, Zhiying; Feng, Changqing; Gao, Shanshan; Shen, ZhongTao; Zhang, Deliang; Zhang, Junbin; Wang, Qi; Ma, SiYuan; Yang, Di; Jiang, Di; Chen, Dengyi; Hu, Yiming; Huang, Guangshun; Wang, Xiaolian; Xu, Zizong; Liu, Shubin; An, Qi; Gong, Yizhong

    2016-01-01

    The DArk Matter Particle Explorer (DAMPE) is a space experiment designed to search for dark matter indirectly by measuring the spectra of photons, electrons, and positrons up to 10 TeV. The BGO electromagnetic calorimeter (ECAL) is its main sub-detector for energy measurement. In this paper, the instrumentation and development of the BGO ECAL is briefly described. The calibration on the ground, including the pedestal, minimum ionizing particle (MIP) peak, dynode ratio, and attenuation length with the cosmic rays and beam particles is discussed in detail. Also, the energy reconstruction results of the electrons from the beam test are presented.

  8. Characterization of Novel Operation Modes for Secondary Emission Ionization Calorimetry

    Science.gov (United States)

    Tiras, Emrah; Dilsiz, Kamuran; Ogul, Hasan; Snyder, Christina; Bilki, Burak; Onel, Yasar; Winn, David

    2017-01-01

    Secondary Emission (SE) Ionization Calorimetry is a novel technique to measure electromagnetic showers in high radiation environments. We have developed new operation modes by modifying the bias of the conventional PMT circuits. Hamamatsu single anode R7761 and multi-anode R5900-00-M16 Photomultiplier Tubes (PMTs) with modified bases are used as SE detector modules in our SE calorimetry prototype. In this detector module, the first dynode is used as the active media as opposed to photocathode. Here, we report the technical design of new modes and characterization measurements for both SE and PMT modes.

  9. Parametric Model for the Response of a Photo-multiplier Tube

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, M.; Alcaraz, J.; Berdugo, J.; Casaus, J.; Delgado, C.; Diaz, C.; Lanciotti, E.; Mana, C.; Marin, J.; Martinez, G.; Molla, M.; Palomares, C.; Rodriguez, J.; Sanchez, E.; Sevilla, A.; Torrento, A.

    2005-07-01

    When a photon impinges upon a photon-multiplier tube, an electron is emitted with certain probability and, after several amplification stages, an electron shower is collected at the anode. However, when the first electron is emitted from one of the amplification dynodes or the photon-multiplier is operated under untoward conditions (external magnetic fields...) smaller showers are collected. In this paper, we present a bi-parametric model which describers the response of a photo-multiplier tube over a wide range of circumstances. (Author)

  10. Development of a 24-anode linear-array fine-mesh PMT with 85% photoelectron detection efficiency and 100 ps TTS at B{<=}1 T

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, M.; Akatsu, M.; Enari, Y.; Fujimoto, K.; Fujita, T.; Higashino, Y.; Hokuue, T.; Hotta, Y.; Inami, K.; Ishikawa, A.; Matsui, S.; Matsumoto, T.; Misono, K.; Ohshima, T. E-mail: ohshima@hepl.phys.nagoya-u.ac.jp; Sugi, A.; Sugiyama, A.; Suzuki, A.; Suzuki, S.; Tomoto, M

    2001-03-21

    By shortening the distance between the photocathode and the first dynode to 1 mm and using a finer mesh size of 2500 lines/in. with 4 {mu}m{sup {phi}}, a 24 anode linear-array of fine-mesh photomultiplier tube has produced a clear single-photon peak in its pulse-height distribution under a strong magnetic field of B{<=}1 T, and provided {sigma}{sub TTS}=100 ps of transit time spread (TTS) and 85% of photoelectron detection efficiency.

  11. The calibration and electron energy reconstruction of the BGO ECAL of the DAMPE detector

    Science.gov (United States)

    Zhang, Zhiyong; Wang, Chi; Dong, Jianing; Wei, Yifeng; Wen, Sicheng; Zhang, Yunlong; Li, Zhiying; Feng, Changqing; Gao, Shanshan; Shen, ZhongTao; Zhang, Deliang; Zhang, Junbin; Wang, Qi; Ma, SiYuan; Yang, Di; Jiang, Di; Chen, Dengyi; Hu, Yiming; Huang, Guangshun; Wang, Xiaolian; Xu, Zizong; Liu, Shubin; An, Qi; Gong, Yizhong

    2016-11-01

    The DArk Matter Particle Explorer (DAMPE) is a space experiment designed to search for dark matter indirectly by measuring the spectra of photons, electrons, and positrons up to 10 TeV. The BGO electromagnetic calorimeter (ECAL) is its main sub-detector for energy measurement. In this paper, the instrumentation and development of the BGO ECAL is briefly described. The calibration on the ground, including the pedestal, minimum ionizing particle (MIP) peak, dynode ratio, and attenuation length with the cosmic rays and beam particles is discussed in detail. Also, the energy reconstruction results of the electrons from the beam test are presented.

  12. Performance of Hamamatsu R11410-20 PMTs under intense illumination in a two-phase cryogenic emission detector

    Science.gov (United States)

    Akimov, D. Yu.; Belov, V. A.; Bolozdynya, A. I.; Kaplin, V. A.; Khromov, A. V.; Kozlova, E. S.; Maklyaev, E. F.; Melikyan, Yu. A.; Shakirov, A. V.; Sosnovtsev, V. V.

    2016-12-01

    Hamamatsu R11410-20 PMTs are used in the RED-100 two-phase xenon emission detector built to search for the rare process of coherent elastic neutrino-nucleus scattering using intense artificial neutrino flux. We demonstrate how to adapt the PMTs for their operation under strong illumination caused by electroluminescent signals from gamma and cosmogenic muon backgrounds which are significant at shallow depth experimental sites. The PMT linearity is demonstrated for signals in the dynamic range from 1 to 2*104 photoelectrons. Impact of a photoelectric effect at the PMT first dynode to the capabilities of the RED-100 photodetection system is studied and quantified.

  13. A large dynamic range readout design for the plastic scintillator detector of DAMPE

    Science.gov (United States)

    Zhou, Yong; Sun, Zhiyu; Yu, Yuhong; Zhang, Yongjie; Fang, Fang; Chen, Junling; Hu, Bitao

    2016-08-01

    A large dynamic range is required by the Plastic Scintillator Detector (PSD) of DArk Matter Particle Explorer (DAMPE) to detect particles from electron to heavy ions with Z ≤ 20. To expand the dynamic range, the readout design based on the double-dynodes signal extraction from the photomultiplier tube has been proposed and adopted by PSD. To verify this design, a prototype detector module has been constructed and tested with cosmic ray and relativistic ion beam. The results match with the estimation and the readout unit could easily cover the required dynamic range of about 4 orders of magnitude.

  14. Measurement of the ratio h/e with a photomultiplier tube and a set of LEDs

    CERN Document Server

    Loparco, F; Rainò, S; Spinelli, P

    2016-01-01

    We propose a laboratory experience aimed at undergraduate physics students to understand the main features of the photoelectric effect and to perform a measurement of the ratio h/e, where h is the Planck's constant and e is the electron charge. The experience is based on the method developed by Millikan for his measurements on the photoelectric effect in the years from 1912 to 1915. The experimental setup consists of a photomultiplier tube (PMT) equipped with a voltage divider properly modified to set variable retarding potentials between the photocathode and the first dynode, and a set of LEDs emitting at different wavelengths. The photocathode is illuminated with the various LEDs and, for each wavelength of the incident light, the output anode current is measured as a function of the retarding potential applied between the cathode and the first dynode. From each measurement, a value of the stopping potential for the anode current is derived. Finally, the stopping potentials are plotted as a function of the ...

  15. Extension of the dynamic range of large photocathode PMTs for a UHECR detector

    Directory of Open Access Journals (Sweden)

    Morello C.

    2013-06-01

    Full Text Available Ground arrays for UHECR shower detection based on traditional counters, water Cerenkov tanks or scintillator modules, are unavoidably limited by the saturation suffered by the counters nearest to the shower axis. Reducing to a negligible level the amount of events recorded with saturated counters should be mandatory in a future UHECR ground array. The use of the signals extracted from the internal dynodes of the used photomultipliers can offer an elegant and inexpensive way to increase the dynamic range of such detectors. The viability of this technique has been explored studying in laboratory the performances of a sample of 3 Hamamatsu R5912-MOD photomultipliers. Exploiting the signal from the fifth dynode, a linear response up to an equivalent anodic peak current larger than 1A (at gain G = 2 ⋅ 105 has been measured for all the studied PMTs. The feasibility of this technique in the frame of a new ground array for UHECR studies should be verified with a larger sample of photomultipliers.

  16. Cross Talk Study to the Single Photon Response of a Flat Panel PMT for the RICH Upgrade at LHCb

    CERN Multimedia

    Arnaboldi, C; Calvi, M; Fanchini, E; Gotti, C; Maino, M; Matteuzzi, C; Perego, D L; Pessina, G; Wang, J C

    2009-01-01

    The Ring Imaging CHerenkov, RICH, detector at LHCb is now readout by Hybrid Photon Detectors. In view of its upgrade a possible option is the adoption of the flat panel Photon Multipliers Tubes, PMT. An important issue for the good determination of the rings produced in the sensitive media is a negligible level of cross talk. We have experimentally studied the cross talk from the 64x64 pixels of the H9500 PMT from Hamamatsu. Results have shown that at the single photon signal level, as expected at LHCb, the statistics applied to the small number of electrons generated at the first dynode of the PMT chain leads to a cross talk mechanism that must be interpreted in term of the percentage of the number of induced signals rather than on the amplitude of the induced signals. The threshold to suppress cross talk must be increased to a significant fraction of the single photon signal for the worst case. The number of electrons generated at the first dynode is proportional to the biasing voltage. Measurements have sh...

  17. Secondary Emission Calorimeter Sensor Development

    Science.gov (United States)

    Winn, David R.; Onel, Yasar

    2012-12-01

    In a Secondary Emission electron(SEe) detector module, Secondary Emission electrons (SEe) are generated from an SE surface/cathode, when charged hadronic or electromagnetic particles, particularly shower particles, penetrate an SE sampling module placed between absorber materials (Fe, Cu, Pb, W etc) in calorimeters. The SE cathode is a thin (10-50 nm thick) film (simple metal-oxides, or other higher yield materials) on the surface of a metal plate, which serves as the entrance “window” to a compact vacuum vessel (metal or metal-ceramic); this SE film cathode is analogous to a photocathode, and the SEe are similar to p.e., which are then amplified by dynodes, also is in a PMT. SE sensor modules can make use of electrochemically etched/machined or laser-cut metal mesh dynode sheets, as large as ~30 cm square, to amplify the Secondary Emission Electrons (SEe), much like those that compact metal mesh or mesh dynode PMT's use to amplify p.e.'s. The construction requirements easier than a PMT, since the entire final assembly can be done in air; there are no critical controlled thin film depositions, cesiation or other oxygen-excluded processes or other required vacuum activation, and consequently bake-out can be a refractory temperatures; the module is sealed by normal vacuum techniques (welding or brazing or other high temperature joinings), with a simple final heated vacuum pump-out and tip-off. The modules envisioned are compact, high gain, high speed, exceptionally radiation damage resistant, rugged, and cost effective, and can be fabricated in arbitrary tileable shapes. The SE sensor module anodes can be segmented transversely to sizes appropriate to reconstruct electromagnetic cores with high precision. The GEANT4 and existing calorimeter data estimated calorimeter response performance is between 35-50 Secondary Emission electrons per GeV, in a 1 cm thick Cu absorber calorimeter, with a gain per SEe > 105 per SEe, and an e/pi<1.2. The calorimeter pulse width is

  18. Experiments on a 14.5 GHz ECR source

    CERN Document Server

    Hill, C E

    1998-01-01

    The 14.5 GHz ECR4 source supplied to CERN in the framework of the Heavy Ion Facility collaboration provided Pb27+ operational beams to a new heavy ion linac in 1994. This source, which operates in the pulsed "afterglow" mode, has surpassed its design specification of 80 emA and now provides currents >120 emA on an operational basis for this charge state. Early tests showed the existence of extremely stable modes of operation which are fully exploited, and in 1996 the source was operational on a 24 hour basis for more than 2400 hours. Future operational requirements will benefit from the 10 Hz repetition rate of the source, but will require beam pulse length modulation. In the search for higher intensities a number of experiments have been performed on gas composition, RF power matching, extraction, plasma chamber liner and a biased dynode. The results of these tests will be presented.

  19. Experiments on a 14.5 GHz ECR source

    CERN Document Server

    Hill, C E

    1996-01-01

    The 14.5 GHz ECR4 source supplied to CERN in the framework of the Heavy Ion Facility collaboration provided Pb27+ operational beams to a new custom built linac in 1994. This source, which operates in the pulsed "afterglow" mode, quickly met its design specification of 80 emA and now provides currents >100 emA regularly. Early source tests showed the existence of extremely stable modes of operation. In the search for higher intensities a number of experiments have been performed on plasma gas composition, RF power matching, extraction, beam pulse compression and a biased dynode. The results of these tests will be presented along with further ideas to improve source performance

  20. A compact neutron-gamma spectrometer

    Science.gov (United States)

    Cester, D.; Nebbia, G.; Stevanato, L.; Pino, F.; Sajo-Bohus, L.; Viesti, G.

    2013-08-01

    A compact neutron/gamma detector has been developed using a liquid scintillator cell coupled to a Flat Panel PMT; performances have been compared with a second cell coupled to a traditional linearly-focused 12 dynodes PMT. Energy resolution and pulse shape discrimination (PSD) measured by using a fast digitizer are very similar for the two detectors with the time resolution of the Flat Panel PMT slightly worse. The new detector results to be weakly affected by the influence of a moderate magnetic field while the traditional PMT exhibits strong pulse reduction. The compact size and the low power consumption obtained by using the Flat Panel PMT are very useful in portable neutron/gamma spectrometers.

  1. Very low power, high voltage base for a Photo Multiplier Tube for the KM3NeT deep sea neutrino telescope

    CERN Document Server

    Timmer, P; Peek, H

    2010-01-01

    The described system is developed in the framework of a deep-sea submerged Very Large Volume neutrino Telescope where photons are detected by a large number of Photo Multiplier Tubes. These PMTs are placed in optical modules (OM). A basic Cockcroft-Walton (CW) voltage multiplier circuit design is used to generate multiple voltages to drive the dynodes of the photomultiplier tube. To achieve a long lifetime and a high reliability the dissipation in the OM must be kept to the minimum. The design is also constrained by size restrictions, load current, voltage range, and the maximum allowable ripple in the output voltage. A surface mount PMT-base PCB prototype is designed and successfully tested. The system draws less than 1.5 mA of supply current at a voltage of 3.3 V with outputs up to -1400 Vdc cathode voltage, a factor 10 less than the commercially available state of the art

  2. VSiPMT a new photon detector

    Science.gov (United States)

    Di Capua, F.; Barbarino, G.; Barbato, F. C. T.; Campajola, L.; de Asmundis, R.; De Rosa, G.; Migliozzi, P.; Mollo, C. M.; Vivolo, D.

    2016-04-01

    Photon detection is a key factor to study many physical processes in several areas of fundamental physics research. Focusing the attention on photodetectors for particle astrophysics, the future experiments aimed at the study of very high-energy or extremely rare phenomena (e.g. dark matter, proton decay, neutrinos from astrophysical sources) will require additional improvements in linearity, gain, quantum efficiency and single photon counting capability. To meet the requirements of these class of experiments, we propose a new design for a modern hybrid photodetector: the VSiPMT (Vacuum Silicon PhotoMultiplier Tube). The idea is to replace the classical dynode chain of a PMT with a SiPM, which therefore acts as an electron detector and amplifier. The aim is to match the large sensitive area of a photocathode with the performances of the SiPM technology.

  3. The development of SiGHT: an ultra low background photosensor

    Science.gov (United States)

    Wang, Y.; Fan, A.; Fiorillo, G.; Galbiati, C.; Guan, M. Y.; Korga, G.; Pantic, E.; Razeto, A.; Renshaw, A.; Rossi, B.; Suvorov, Y.; Wang, H.; Yang, C. G.

    2016-09-01

    The Silicon Geiger Hybrid Tube (SiGHT) is a novel photosensor designed for future generations of rare event search experiments using noble liquids. The main idea is to replace conventional multi-dynode photomultiplier tubes (PMTs) with a hybrid technology, consisting of a low temperature sensitive bialkali photocathode for conversion of photons into photoelectrons and a low dark count silicon photomultiplier (SiPM) for photoelectron signal amplification. SiGHT can achieve ultra low internal radioactivity, high quantum efficiency and stable performance at low temperatures, which are required features for rare event searches such as direct dark matter detection and neutrinoless double beta decay experiments. The first SiGHT prototype fabrication is in progress at UCLA. The current status of the development is presented.

  4. Research of Spectrometric and Exploitation Characteristics of BGO-PMP-165 Scintiblock in Temperature Interval from +25 to -140$^{o}$C

    CERN Document Server

    Ainbund, M R; Gundorin, N A; Matveev, D V; Serov, D G

    2001-01-01

    Photomultipliers based on microchannel plates are used for fast systems which form time marks of physical setups as well as in special technical areas. It is not uncommon when they substitute traditional dynode system photomultipliers. The possibility of compatible work of the PMP-165 photomultiplier with BGO crystal which were cooled down to temperature necessary for appropriate functioning of a semiconductor Ge detector with taking into account of temperature dependencies of own PMP characteristics is investigated during experiment. Cooling down of the system from room temperature down to v140^{o}C during 8 hours is done. Lower limit of temperature which allows PMP to function properly is registered. Changes of spectrometric characteristics caused by temperature are studied.

  5. The 3rd generation Front-End cards of the Pierre Auger surface detectors: Test results and performance in the field

    Science.gov (United States)

    Szadkowski, Z.; Bäcker, T.; Becker, K.-H.; Buchholz, P.; Fleck, I.; Kampert, K.-H.; Rammes, M.; Rautenberg, J.; Taşcău, O.

    2009-07-01

    The surface detector array of the Pierre Auger Observatory comprises 1600 water Cherenkov detectors distributed over an area of 3000 km2. The Cherenkov light is detected by three 9-in. photo-multiplier tubes from which the signals of the anode and last dynode are digitized by 10 bit 40 MHz FADCs. An Altera Cyclone FPGA is employed to generate different local triggers and to handle the data transfer to a communication board. After briefly discussing the design of the cards we present an autonomous test-bench, which has been set up in order to test the large number of boards prior to installation in the field. The qualification procedure and the results obtained in the laboratory are presented. Up to three years of operation in the field demonstrate a very good performance and reliability of the Front-End cards.

  6. The 3rd generation Front-End cards of the Pierre Auger surface detectors: Test results and performance in the field

    Energy Technology Data Exchange (ETDEWEB)

    Szadkowski, Z. [Bergische Universitaet Wuppertal, Department of Physics, 42097 Wuppertal (Germany); University of Lodz, Department of Physics and Applied Informatics, 90-236 Lodz (Poland)], E-mail: zszadkow@kfd2.phys.uni.lodz.pl; Baecker, T. [Universitaet Siegen, Department of Physics, 57058 Siegen (Germany); Becker, K.-H. [Bergische Universitaet Wuppertal, Department of Physics, 42097 Wuppertal (Germany); Buchholz, P.; Fleck, I. [Universitaet Siegen, Department of Physics, 57058 Siegen (Germany); Kampert, K.-H. [Bergische Universitaet Wuppertal, Department of Physics, 42097 Wuppertal (Germany)], E-mail: kampert@uni-wuppertal.de; Rammes, M. [Universitaet Siegen, Department of Physics, 57058 Siegen (Germany); Rautenberg, J.; Tascau, O. [Bergische Universitaet Wuppertal, Department of Physics, 42097 Wuppertal (Germany)

    2009-07-21

    The surface detector array of the Pierre Auger Observatory comprises 1600 water Cherenkov detectors distributed over an area of 3000km{sup 2}. The Cherenkov light is detected by three 9-in. photo-multiplier tubes from which the signals of the anode and last dynode are digitized by 10 bit 40 MHz FADCs. An Altera Cyclone FPGA is employed to generate different local triggers and to handle the data transfer to a communication board. After briefly discussing the design of the cards we present an autonomous test-bench, which has been set up in order to test the large number of boards prior to installation in the field. The qualification procedure and the results obtained in the laboratory are presented. Up to three years of operation in the field demonstrate a very good performance and reliability of the Front-End cards.

  7. The Vacuum Silicon Photomultiplier Tube (VSiPMT): A new version of a hybrid photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Stefano, E-mail: srusso@na.infn.i [Universita di Napoli ' Federico II' , Dipartimento di Scienze fisiche, via Cintia 80126 Napoli (Italy); Barbarino, Giancarlo [Universita di Napoli ' Federico II' , Dipartimento di Scienze fisiche, via Cintia 80126 Napoli (Italy); Asmundis, Riccardo de; De Rosa, Gianfranca [Istituto Nazionale di fisica Nucleare, sezione di Napoli, Complesso di Monte S. Angelo Ed. 6, via Cintia 80126 Napoli (Italy)

    2010-11-01

    The future astroparticle experiments will study both energetic phenomena and extremely rare events from astrophysical sources. Since most of these families of experiments are carried out by using scintillation phenomena, Cherenkov or fluorescence radiation, the development of photosensitive detectors seems to be the right way to increase the experimental sensitivity. Therefore we propose an innovative design for a modern, high gain, silicon-based Vacuum Silicon Photomultiplier Tube (VSiPMT), which combines three fully established and well-understood technologies: the manufacture of hemispherical vacuum tubes with the possibility of very large active areas, the photocathode glass deposition and the novel Geiger-mode avalanche silicon photodiode (G-APD) for which a mass production is today available. This new design, based on G-APD as the electron multiplier, allows overcoming the limits of a classical PMT dynode chain.

  8. PET detector modules based on novel detector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moses, W.W.; Derenzo, S.E.; Budinger, T.F.

    1994-05-01

    A successful PET detector module must identify 511 keV photons with: high efficiency (>85%), high spatial resolution (<5 mm fwhm), low cost (<$600 / in{sup 2}), low dead time (<4 {mu}s in{sup 2}), good timing resolution (<5 ns fwhm for conventional PET, <200 ps fwhm for time of flight), and good energy resolution (<100 keV fwhm), where these requirements are listed in decreasing order of importance. The ``high efficiency`` requirement also implies that the detector modules must pack together without inactive gaps. Several novel and emerging radiation detector technologies could improve the performance of PET detectors. Avalanche photodiodes, PIN photodiodes, metal channel dynode photomultiplier tubes, and new scintillators all have the potential to improve PET detectors significantly.

  9. VSiPMT a new photon detector

    Directory of Open Access Journals (Sweden)

    Di Capua F.

    2016-01-01

    Full Text Available Photon detection is a key factor to study many physical processes in several areas of fundamental physics research. Focusing the attention on photodetectors for particle astrophysics, the future experiments aimed at the study of very high-energy or extremely rare phenomena (e.g. dark matter, proton decay, neutrinos from astrophysical sources will require additional improvements in linearity, gain, quantum efficiency and single photon counting capability. To meet the requirements of these class of experiments, we propose a new design for a modern hybrid photodetector: the VSiPMT (Vacuum Silicon PhotoMultiplier Tube. The idea is to replace the classical dynode chain of a PMT with a SiPM, which therefore acts as an electron detector and amplifier. The aim is to match the large sensitive area of a photocathode with the performances of the SiPM technology.

  10. The Tynode: A new vacuum electron multiplier

    Science.gov (United States)

    van der Graaf, Harry; Akhtar, Hassan; Budko, Neil; Chan, Hong Wah; Hagen, Cornelis W.; Hansson, Conny C. T.; Nützel, Gert; Pinto, Serge D.; Prodanović, Violeta; Raftari, Behrouz; Sarro, Pasqualina M.; Sinsheimer, John; Smedley, John; Tao, Shuxia; Theulings, Anne M. M. G.; Vuik, Kees

    2017-03-01

    By placing, in vacuum, a stack of transmission dynodes (tynodes) on top of a CMOS pixel chip, a single free electron detector could be made with outstanding performance in terms of spatial and time resolution. The essential object is the tynode: an ultra thin membrane, which emits, at the impact of an energetic electron on one side, a multiple of electrons at the other side. The electron yields of tynodes have been calculated by means of GEANT-4 Monte Carlo simulations, applying special low-energy extensions. The results are in line with another simulation based on a continuous charge-diffusion model. By means of Micro Electro Mechanical System (MEMS) technology, tynodes and test samples have been realized. The secondary electron yield of several samples has been measured in three different setups. Finally, several possibilities to improve the yield are presented.

  11. Improvements in apparatus and procedures for using an organic liquid scintillator as a fast-neutron spectrometer for radiation protection applications

    Energy Technology Data Exchange (ETDEWEB)

    Thorngate, J.H.

    1987-05-15

    For use in radiation protection measurements, a neutron spectrometer must have a wide energy range, good sensitivity, medium resolution, and ease of taking and reducing data. No single spectrometer meets all of these requirements. Several experiments aimed at improving and characterizing the detector response to gamma rays and neutrons were conducted. A light pipe (25 mm) was needed between the scintillator cell and the photomultiplier tube to achieve the best resolution. The light output of the scintillator as a function of gamma-ray energy was measured. Three experiments were conducted to determine the light output as a function of neutron energy. Monte Carlo calculations were made to evaluate the effects of multiple neutron scattering and edge effects in the detector. The electronic systems associated with the detector were improved with a transistorized circuit providing the bias voltage for the photomultiplier tube dynodes. This circuit was needed to obtain pulse-height linearity over the wide range of signal sizes. A special live-time clock was built to compensate for the large amount of dead time generated by the pulse-shape discrimination circuit we chose to use. 64 refs., 58 figs., 9 tabs.

  12. A double photomultiplier Compton camera and its readout system for mice imaging

    Science.gov (United States)

    Fontana, Cristiano Lino; Atroshchenko, Kostiantyn; Baldazzi, Giuseppe; Bello, Michele; Uzunov, Nikolay; Di Domenico, Giovanni Di

    2013-04-01

    We have designed a Compton Camera (CC) to image the bio-distribution of gamma-emitting radiopharmaceuticals in mice. A CC employs the "electronic collimation", i.e. a technique that traces the gamma-rays instead of selecting them with physical lead or tungsten collimators. To perform such a task, a CC measures the parameters of the Compton interaction that occurs in the device itself. At least two detectors are required: one (tracker), where the primary gamma undergoes a Compton interaction and a second one (calorimeter), in which the scattered gamma is completely absorbed. Eventually the polar angle and hence a "cone" of possible incident directions are obtained (event with "incomplete geometry"). Different solutions for the two detectors are proposed in the literature: our design foresees two similar Position Sensitive Photomultipliers (PMT, Hamamatsu H8500). Each PMT has 64 output channels that are reduced to 4 using a charge multiplexed readout system, i.e. a Series Charge Multiplexing net of resistors. Triggering of the system is provided by the coincidence of fast signals extracted at the last dynode of the PMTs. Assets are the low cost and the simplicity of design and operation, having just one type of device; among drawbacks there is a lower resolution with respect to more sophisticated trackers and full 64 channels Readout. This paper does compare our design of our two-Hamamatsu CC to other solutions and shows how the spatial and energy accuracy is suitable for the inspection of radioactivity in mice.

  13. Applications of High Speed Configurable Logic Devices in Modern Particle Physics Experiments

    CERN Document Server

    Giorgi, Filippo Maria

    Several activities were conducted during my PhD activity. For the NEMO experiment a collaboration between the INFN/University groups of Catania and Bologna led to the development and production of a mixed signal acquisition board for the Nemo Km3 telescope. The research concerned the feasibility study for a different acquisition technique quite far from that adopted in the NEMO Phase 1 telescope. The DAQ board that we realized exploits the LIRA06 front-end chip for the analog acquisition of anodic an dynodic sources of a PMT (Photo-Multiplier Tube). The low-power analog acquisition allows to sample contemporaneously multiple channels of the PMT at different gain factors in order to increase the signal response linearity over a wider dynamic range. Also the auto triggering and self-event-classification features help to improve the acquisition performance and the knowledge on the neutrino event. A fully functional interface towards the first level data concentrator, the Floor Control Module, has been integrated...

  14. A compact gamma ray imager for oncology

    CERN Document Server

    Pani, R; Del Guerra, A; Festinesi, A; Garibaldi, F; Gigliotti, T; Pellegrini, R; Scafe, R; Scopinaro, F; Soluri, A; Tati, A

    2002-01-01

    A variety of new techniques based on radiopharmaceuticals are showing a valid support for cancer detection and interventional procedures. Axillary lymph nodes status is the most important prognostic factor for determining breast cancer prognosis. The use of dedicated gamma cameras characterized by low costs and weight, could be easily transferred to detection for bioptical procedures. To this aim this paper presents a new detection system having two heads with 4 and 25 cm sup 2 Field of View (FOV) and 0.8 and 3.6 kg weight, respectively. This novel scintillation camera is based upon a compact Position Sensitive Photo Multiplier Tube (PSPMT) Hamamatsu R5900-C8 as individual or array assembled. The Hamamatsu R5900-C8 is a metal channel dynode PMT with a crossed wire anode. The overall dimensions are 28x28 mm sup 2 and 20 mm height. It was coupled to a CsI(Tl) array of individual 3x3x3 mm sup 3 crystals. The measured intrinsic spatial resolution proved much better than the pixel size. A clinical image obtained f...

  15. Investigation about decoupling capacitors of PMT voltage divider effects on neutron-gamma discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Divani, Nazila, E-mail: n-divani@birjand.ac.ir; Firoozabadi, Mohammad M. [Dep. Of Physics, Faculty of Science, University of Birjand, Birjand (Iran, Islamic Republic of); Bayat, Esmail [Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran (Iran, Islamic Republic of)

    2014-11-24

    Scintillators are almost used in any nuclear laboratory. These detectors combine of scintillation materials, PMT and a voltage divider. Voltage dividers are different in resistive ladder design. But the effect of decoupling capacitors and damping resistors haven’t discussed yet. In this paper at first a good equilibrium circuit designed for PMT, and it was used for investigating about capacitors and resistors in much manner. Results show that decoupling capacitors have great effect on PMT output pulses. In this research, it was tried to investigate the effect of Capacitor’s value and places on PMT voltage divider in Neutron-Gamma discrimination capability. Therefore, the voltage divider circuit for R329-02 Hamamatsu PMT was made and Zero Cross method used for neutron-gamma discrimination. The neutron source was a 20Ci Am-Be. Anode and Dynode pulses and discrimination spectrum were saved. The results showed that the pulse height and discrimination quality change with the value and setting of capacitors.

  16. Design of the Readout Electronics for the Qualification Model of DAMPE BGO Calorimeter

    CERN Document Server

    Feng, Changqing; Zhang, Junbin; Gao, Shanshan; Yang, Di; Zhang, Yunlong; Liu, Shubin; An, Qi

    2014-01-01

    The DAMPE (DArk Matter Particle Explorer) is a scientific satellite being developed in China, aimed at cosmic ray study, gamma ray astronomy, and searching for the clue of dark matter particles, with a planned mission period of more than 3 years and an orbit altitude of about 500 km. The BGO Calorimeter, which consists of 308 BGO (Bismuth Germanate Oxid) crystal bars, 616 PMTs (photomultiplier tubes) and 1848 dynode signals, has approximately 32 radiation lengths. It is a crucial sub-detector of the DAMPE payload, with the functions of precisely measuring the energy of cosmic particles from 5 GeV to 10TeV, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information for the whole DAMPE payload. The dynamic range for a single BGO crystal is about 2?105 and there are 1848 detector signals in total. To build such an instrument in space, the major design challenges for the readout electronics come from the large dynamic range, the high integrity inside the very compa...

  17. Recent development on the realization of a 1-inch VSiPMT prototype

    Science.gov (United States)

    Barbato, F. C. T.; Barbarino, G.; Campajola, L.; Di Capua, F.; Mollo, C. M.; Valentini, A.; Vivolo, D.

    2017-03-01

    The VSiPMT (Vacuum Silicon PhotoMultiplier Tube) is an innovative design for a revolutionary hybrid photodetector. The idea, born with the purpose to use a SiPM for large detection volumes, consists in replacing the classical dynode chain with a SiPM. In this configuration, we match the large sensitive area of a photocathode with the performances of the SiPM technology, which therefore acts like an electron detector and so like a current amplifier. The excellent photon counting capability, fast response, low power consumption and great stability are among the most attractive features of the VSiPMT. In order to realize such a device we first studied the feasibility of this detector both from theoretical and experimental point of view, by implementing a Geant4-based simulation and studying the response of a special non-windowed MPPC by Hamamatsu with an electron beam. Thanks to this result Hamamatsu realized two VSiPMT industrial prototypes with a photocathode of 3mm diameter. We present the progress on the realization of a 1-inch prototype and the preliminary tests we are performing on it.

  18. Prototype of Readout Electronics for the ED in LHAASO KM2A

    CERN Document Server

    Liu, Xiang; Wang, Zheng; Fan, Lei

    2015-01-01

    The KM2A(one kilometer square extensive air shower array) is the largest detector array in the LHAA- SO(Large High Altitude Air Shower Observatory) project. The KM2A consists of 5635 EDs(Electromagnetic particle Detectors) and 1221 MDs(Muon Detectors). The EDs are distributed and exposed in the wild. Two channels, Anode and Dynode, are employed for the PMT(photomultiplier tube) signal readout. The readout electronics proposed in this paper aims at the accurate charge and arrival time measurement of the PMT signals, which cover a large amplitude range from 20P.E(photoelectrons) to 2?x10^5P.E. By using the Trigger-less architecture, we digitize signals close to the PMTs. All digitized data is transmitted to DAQ(Data Acquisition) via the simplified WR(White Rabbit) protocol. Compared with traditional high energy experiments, high-precision of time measurement in such a large area and suppression of temperature effects in the wild become the key techniques. Experiments show that the design has fulfilled the requi...

  19. An ion-to-photon conversion detector for mass spectrometry

    Science.gov (United States)

    Dubois, F.; Knochenmuss, R.; Zenobi, R.

    1997-12-01

    An ion-to-photon conversion detector (IPD) for time-of-flight mass spectrometry was studied and tested with ions produced by matrix-assisted laser desorption-ionization. The detector consisted of a conversion surface located at the end of the drift tube of a time-of-flight mass spectrometer and, behind it, a head-on photomultiplier tube. Fluorescent organic scintillator materials like Bu-PBD [2-(4-t-buthylphenyl)-5-(4-biphenylyl)-1,3,4-oxidiazole] were found to be the most efficient converters of those materials tested. Similar mass resolutions were found with the ion-to-photo detector and standard microchannel plates in a linear time-of-flight instrument. The background noise of the IPD was more intense than with microchannel plates. Slow unfocused ions are suspected to contribute to this noise. Test analytes as large as 70 000 Da could be measured with the IPD. Even with no secondary particle conversion surface in front of the IPD, masses up to approximately 20 000 Da may be more efficiently detected with the IPD than the MCP. For higher masses, a conversion dynode should be considered for increased signal.

  20. Prototype of readout electronics for the LHAASO KM2A electromagnetic particle detectors

    Science.gov (United States)

    Liu, Xiang; Chang, Jing-Fan; Wang, Zheng; Fan, Lei

    2016-07-01

    The KM2A (one kilometer square extensive air shower array) is the largest detector array in the LHAASO (Large High Altitude Air Shower Observatory) project. The KM2A consists of 5242 EDs (Electromagnetic particle Detectors) and 1221 MDs (Muon Detectors). The EDs are distributed and exposed in the wild. Two channels, anode and dynode, are employed for the PMT (photomultiplier tube) signal readout. The readout electronics designed in this paper aims at accurate charge and arrival time measurement of the PMT signals, which cover a large amplitude range from 20 P.E. (photoelectrons) to 2 × 105 P.E. By using a “trigger-less” architecture, we digitize signals close to the PMTs. All digitized data is transmitted to DAQ (Data Acquisition) via a simplified White Rabbit protocol. Compared with traditional high energy experiments, high precision of time measurement over such a large area and suppression of temperature effects in the wild become the key techniques. Experiments show that the design has fulfilled the requirements in this project. Supported by National Natural Science Foundation of China (11375210) and the Knowledge Innovation Fund of IHEP, Beijing

  1. Characterization of HZC XP1805 photomultiplier tube for LHAASO-WCDA with a high dynamic range base

    Science.gov (United States)

    Zhao, X.; Tang, Z.; Li, C.; Li, X.; Zha, W.; Chen, H.; Zhang, Y.; Shao, M.; Sun, Y.; Zhou, Y.

    2016-10-01

    The Water Cherenkov Detector Array (WCDA) for the Large High Altitude Air Shower Observatory (LHAASO) will employ 3000 large-sized hemisphere photomultiplier tubes (PMTs) to collect the Cherenkov light produced by shower particles crossing water. The PMTs require not only good single photoelectron (SPE) resolution and small transit time spread (TTS), but also good linearity up to 4000 photoelectrons. XP1805 PMT produced by Hainan Zhanchuang Photonics Technology Co., Ltd (HZC), China, with a production line imported from Photonis (France) is a good candidate for LHAASO-WCDA readout. In this paper, the design of a high dynamic range base for XP1805 is presented. The SPE responses and non-linearity of XP1805 with the high dynamic range base are measured. These results show that HZC XP1805 with the designed base is well qualified for LHAASO-WCDA, with peak-to-valley ratio greater than 2, TTS around 3 ns, dynamic range (non-linearity within 5%) over 1500 and 5300 photoelectrons for anode and the 6th dynode output, respectively, at PMT gain of 3 × 106 with the inciting light pulse width of 6.4 ns.

  2. Dual parameter analysis of CsI:Tl/PMT with a digital oscilloscope

    CERN Document Server

    Devol, T A; Fjeld, R A

    1999-01-01

    Scintillation pulses from alpha-particle and gamma-ray excited CsI:Tl were recorded with a photomultiplier tube and digital oscilloscope card in single parameter (pulse shape or pulse height) and dual parameter (simultaneous pulse shape and pulse height) modes. A 2.8x1.3x1.3 cm sup 3 CsI:Tl crystal was coupled to a Burle 8850 photomultiplier tube (PMT) and excited with sup 1 sup 4 sup 8 Gd (E subalpha=3.18 MeV) and sup 1 sup 3 sup 7 Cs (E subgamma=0.662 MeV). The timing pulses (50 OMEGA terminated dynode signal) from the PMT base were directly input to a GaGe CompuScope 8012A/PCI sup T sup M (12-bit, 50 MHz dual channel digital oscilloscope card) that resided in a P6-300 MHz personal computer. Individual digitized pulses were processed via a LabVIEW sup T sup M V 4.1 interface to the oscilloscope. The ratio of the charge collected over a short time interval to the total charge collected was used for the single parameter pulse shape spectrum while the total charge collected was used for the single parameter pu...

  3. A double photomultiplier Compton camera and its readout system for mice imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, Cristiano Lino [Physics Department Galileo Galilei, University of Padua, Via Marzolo 8, Padova 35131 (Italy) and INFN Padova, Via Marzolo 8, Padova 35131 (Italy); Atroshchenko, Kostiantyn [Physics Department Galileo Galilei, University of Padua, Via Marzolo 8, Padova 35131 (Italy) and INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Baldazzi, Giuseppe [Physics Department, University of Bologna, Viale Berti Pichat 6/2, Bologna 40127, Italy and INFN Bologna, Viale Berti Pichat 6/2, Bologna 40127 (Italy); Bello, Michele [INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Uzunov, Nikolay [Department of Natural Sciences, Shumen University, 115 Universitetska str., Shumen 9712, Bulgaria and INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Di Domenico, Giovanni [Physics Department, University of Ferrara, Via Saragat 1, Ferrara 44122 (Italy) and INFN Ferrara, Via Saragat 1, Ferrara 44122 (Italy)

    2013-04-19

    We have designed a Compton Camera (CC) to image the bio-distribution of gamma-emitting radiopharmaceuticals in mice. A CC employs the 'electronic collimation', i.e. a technique that traces the gamma-rays instead of selecting them with physical lead or tungsten collimators. To perform such a task, a CC measures the parameters of the Compton interaction that occurs in the device itself. At least two detectors are required: one (tracker), where the primary gamma undergoes a Compton interaction and a second one (calorimeter), in which the scattered gamma is completely absorbed. Eventually the polar angle and hence a 'cone' of possible incident directions are obtained (event with 'incomplete geometry'). Different solutions for the two detectors are proposed in the literature: our design foresees two similar Position Sensitive Photomultipliers (PMT, Hamamatsu H8500). Each PMT has 64 output channels that are reduced to 4 using a charge multiplexed readout system, i.e. a Series Charge Multiplexing net of resistors. Triggering of the system is provided by the coincidence of fast signals extracted at the last dynode of the PMTs. Assets are the low cost and the simplicity of design and operation, having just one type of device; among drawbacks there is a lower resolution with respect to more sophisticated trackers and full 64 channels Readout. This paper does compare our design of our two-Hamamatsu CC to other solutions and shows how the spatial and energy accuracy is suitable for the inspection of radioactivity in mice.

  4. Mass measurements on neutron-deficient nuclides at SHIPTRAP and commissioning of a cryogenic narrow-band FT-ICR mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer Garcia, R.

    2007-07-01

    The dissertation presented here deals with high-precision Penning trap mass spectrometry on short-lived radionuclides. Owed to the ability of revealing all nucleonic interactions, mass measurements far off the line of {beta}-stability are expected to bring new insight to the current knowledge of nuclear properties and serve to test the predictive power of mass models and formulas. In nuclear astrophysics, atomic masses are fundamental parameters for the understanding of the synthesis of nuclei in the stellar environments. This thesis presents ten mass values of radionuclides around A=90 interspersed in the predicted rp-process pathway. Six of them have been experimentally determined for the first time. The measurements have been carried out at the Penning-trap mass spectrometer SHIPTRAP using the destructive time-of-flight ion-cyclotron-resonance (TOF-ICR) detection technique. Given the limited performance of the TOF-ICR detection when trying to investigate heavy/superheavy species with small production cross sections ({sigma} <1 {mu}b), a new detection system is found to be necessary. Thus, the second part of this thesis deals with the commissioning of a cryogenic double-Penning trap system for the application of a highly-sensitive, narrow-band Fourier-transform ion-cyclotron-resonance (FT-ICR) detection technique. With the non-destructive FT-ICR detection method a single singly-charged trapped ion will provide the required information to determine its mass. First off-line tests of a new detector system based on a channeltron with an attached conversion dynode, of a cryogenic pumping barrier, to guarantee ultra-high vacuum conditions during mass determination, and of the detection electronics for the required single-ion sensitivity are reported. (orig.)

  5. Analysis and Speciation of Lanthanoides by ICP-MS

    Science.gov (United States)

    Telgmann, Lena; Lindner, Uwe; Lingott, Jana; Jakubowski, Norbert

    2016-11-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is based on formation of positively charged atomic ions in a high-frequency inductively coupled Argon plasma at atmospheric pressure. The ions are extracted and transferred from the plasma source into a mass analyzer operated at high vacuum via an interface equipped with a sampling and a skimmer cone. The ions are separated in the mass analyzer according to their charge to mass ratio. The ions are converted at a conversion dynode and are detected by use of a secondary electron multiplier or a Faraday cup. From an analytical point of view, ICP-MS is a well-established method for multi-elemental analysis in particular for elements at trace- and ultra-trace levels. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional analytical techniques, and relative limits of detection (LODs) in the low pg g-1 range and absolute LODs down to the attomol range. For these applications, ICP-MS excels by a high sensitivity which is independent of the molecular structure and a wide linear dynamic range. It has found acceptance in various application areas and during the last decade ICP-MS is also more and more applied for detection of rare earth elements particularly in the life sciences. Due to the fact that all molecules introduced into the high temperature of the plasma in the ion source were completely dissociated and broken down into atoms, which are subsequently ionized, all elemental species information is completely lost. However, if the different species are separated before they enter the plasma by using adequate fractionation or separation techniques, then ICP-MS can be used as a very sensitive element-specific detector. We will discuss this feature of ICP-MS in this chapter in more detail at hand of the speciation of gadolinium-containing contrast agents.

  6. Spectrometric performances of high quantum efficiency multi and single anode PMTs coupled to LaBr3(Ce) crystal

    Science.gov (United States)

    Cinti, Maria Nerina; Pani, Roberto; Pellegrini, Rosanna; Bennati, Paolo; Orlandi, Chiara; Fabbri, Andrea; Ridolfi, Stefano; Scafè, Raffaele

    2013-10-01

    High quantum efficiency semiconductor photodetectors have recently drawn the attention of the scientific community for their potential in the realization of a new class of scintillation imagers with very high energy and spatial resolution performance. However, this goal does not seem within easy reach, due to various technological issues such as, for example, the difficulty to scale the characteristics of a single detector to an imager with suitable dimensions. Lately a definite technical improvement in increasing quantum efficiency up to 42% for position sensitive photomultipliers was achieved. The aim of this work is thus to test this new technological progress and to study the possible implications in imaging applications. Four Hamamatsu PMTs were tested: two multi anode photomultipliers, one with a bialkali (27% quantum efficiency) and the other one with a super-bialkali photocathode (38% quantum efficiency), and two 1×1 in. PMTs, both equipped with an ultra bialkali photocathode (42% quantum efficiency). In particular one of the ultra bialkali PMT has also an increased efficiency of first dynode charge collection. The results were compared with the ones obtained with a reference PMT (Hamamatsu R6231), mainly used in spectroscopy. The PMTs were coupled to LaBr3(Ce), NaI(Tl) and LSO(Ce) continuous scintillation crystals. The tests were done using two independent electronic chains: one dedicated for spectroscopic application and a second one, using a multi wire 64 channel readout, for imaging applications. The super-bialkali MA-PMTs have shown high energy resolution, both with spectroscopic and imaging setup, highlighting the appropriateness of these devices for the development of imaging devices with high spectroscopic performance.

  7. Development of a large area microstructure photomultiplier assembly (LAMPA)

    Science.gov (United States)

    Clifford, E. T. H.; Dick, M.; Facina, M.; Wakeford, D.; Andrews, H. R.; Ing, H.; Best, D.; Baginski, M. J.

    2017-05-01

    Large area (> m2) position-sensitive readout of scintillators is important for passive/active gamma and neutron imaging for counter-terrorism applications. The goal of the LAMPA project is to provide a novel, affordable, large-area photodetector (8" x 8") by replacing the conventional dynodes of photomultiplier tubes (PMTs) with electron multiplier microstructure boards (MSBs) that can be produced using industrial manufacturing techniques. The square, planar format of the LAMPA assemblies enables tiling of multiple units to support large area applications. The LAMPA performance objectives include comparable gain, noise, timing, and energy resolution relative to conventional PMTs, as well as spatial resolution in the few mm range. The current LAMPA prototype is a stack of 8" x 8" MSBs made commercially by chemical etching of a molybdenum substrate and coated with hydrogen-terminated boron-doped diamond for high secondary emission yield (SEY). The layers of MSBs are electrically isolated using ceramic standoffs. Field-shaping grids are located between adjacent boards to achieve good transmission of electrons from one board to the next. The spacing between layers and the design of the microstructure pattern and grids were guided by simulations performed using an electro-optics code. A position sensitive anode board at the back of the stack of MSBs provides 2-D readout. This presentation discusses the trade studies performed in the design of the MSBs, the measurements of SEY from various electro-emissive materials, the electro-optics simulations conducted, the design of the 2-D readout, and the mechanical aspects of the LAMPA design, in order to achieve a gain of > 104 in an 8-stage stack of MSBs, suitable for use with various scintillators when coupled to an appropriate photocathode.

  8. Characterization of photo-multiplier tubes for the Cryogenic Avalanche Detector

    Science.gov (United States)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Nosov, V.; Shekhtman, L.; Sokolov, A.

    2015-10-01

    New Cryogenic Avalanche Detector (CRAD) with ultimate sensitivity, that will be able to detect one primary electron released in the cryogenic liquid, is under development in the Laboratory of Cosmology and Particle Physics of the Novosibirsk State University jointly with the Budker Institute of Nuclear Physics. The CRAD will use two sets of cryogenic PMTs in order to get trigger signal either from primary scintillations in liquid Ar or from secondary scintillations in high field gap above the liquid. Two types of cryogenic PMTs produced by Hamamatsu Photonics were tested and the results are presented in this paper. Low background 3 inch PMT R11065-10 demonstrated excellent performance according to its specifications provided by the producer. The gain measured with single electron response (SER) in liquid Ar reached 107, dark count rate rate did not exceed 300 Hz and pulse height resolution of single electron signals was close to 50%(FWHM). However, two R11065-10 PMTs out of 7 tested stopped functioning after several tens minutes of operation immersed completely into liquid Ar. The remaining 5 devices and one R11065-MOD were operated successfully for several hours each with all the parameters according to the producer specifications. Compact 2 inch PMT R6041-506-MOD with metal-channel dynode structure is a candidate for side wall PMT system that will look at electroluminescence in high field region above liquid. Four of these PMTs were tested in liquid Ar and demonstrated gain up to 2× 107, dark count rate rate below 100 Hz and pulse height resolution of single electron signals of about 110% (FWHM).

  9. Onboard calibration circuit for the DAMPE BGO calorimeter front-end electronics

    Science.gov (United States)

    Zhang, De-Liang; Feng, Chang-Qing; Zhang, Jun-Bin; Wang, Qi; Ma, Si-Yuan; Shen, Zhong-Tao; Jiang, Di; Gao, Shan-Shan; Zhang, Yun-Long; Guo, Jian-Hua; Liu, Shu-Bin; An, Qi

    2016-05-01

    DAMPE (DArk Matter Particle Explorer) is a scientific satellite which is mainly aimed at indirectly searching for dark matter in space. One critical sub-detector of the DAMPE payload is the BGO (bismuth germanium oxide) calorimeter, which contains 1848 PMT (photomultiplier tube) dynodes and 16 FEE (Front-End Electronics) boards. VA160 and VATA160, two 32-channel low power ASICs (Application Specific Integrated Circuits), are adopted as the key components on the FEEs to perform charge measurement for the PMT signals. In order to monitor the parameter drift which may be caused by temperature variation, aging, or other environmental factors, an onboard calibration circuit is designed for the VA160 and VATA160 ASICs. It is mainly composed of a 12-bit DAC (Digital to Analog Converter), an operational amplifier and an analog switch. Test results showed that a dynamic range of 0-30 pC with a precision of 5 fC (Root Meam Square, RMS) was achieved, which covers the VA160’s input range. It can be used to compensate for the temperature drift and test the trigger function of the FEEs. The calibration circuit has been implemented for the front-end electronics of the BGO Calorimeter and verified by all the environmental tests for both Qualification Model and Flight Model of DAMPE. The DAMPE satellite was launched at the end of 2015 and the calibration circuit will operate periodically in space. Supported by Strategic Priority Research Program on Space Science of Chinese Academy of Sciences (XDA04040202-4), and National Basic Research Program (973 Program) of China (2010CB833002) and National Natural Science Foundation of China (11273070)

  10. Gamma–neutron imaging system utilizing pulse shape discrimination with CLYC

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Chad M., E-mail: cwhitney@rmdinc.com; Soundara-Pandian, Lakshmi; Johnson, Erik B.; Vogel, Sam; Vinci, Bob; Squillante, Michael; Glodo, Jarek; Christian, James F.

    2015-06-01

    Recently, RMD has investigated the use of CLYC (Cs{sub 2}LiYCl{sub 6}:Ce), a new and emerging scintillation material, in a gamma–neutron coded aperture imaging system based on RMD's commercial RadCam{sup TM} instrument. CLYC offers efficient thermal neutron detection, fast neutron detection capabilities, excellent pulse shape discrimination (PSD), and gamma-ray energy resolution as good as 4% at 662 keV. PSD improves the isolation of higher energy gammas from thermal neutron interactions (>3 MeV electron equivalent peak), compared to conventional pulse height techniques. The scintillation emission time in CLYC provides the basis for PSD; where neutron interactions result in a slower emission rise and decay components while gamma interactions result in a faster emission components. By creating a population plot based on the ratio of the decay tail compared to the total integral amplitude (PSD ratio), discrimination of gammas, thermal neutrons, and fast neutrons is possible. Previously, we characterized the CLYC-based RadCam system for imaging gammas and neutrons using a layered W-Cd coded aperture mask and employing only pulse height discrimination. In this paper, we present the latest results which investigate gamma-neutron imaging capabilities using PSD. An FPGA system is used to acquire the CLYC–PSPMT last dynode signals, determine a PSD ratio for each event, and compare it to a calibrated PSD cutoff. Each event is assigned either a gamma (low) or neutron (high) flag signal which is then correlated with the imaging information for each event. - Highlights: • The latest results are presented for our CLYC RadCam-2 system which investigate gamma–neutron imaging using pulse shape discrimination. • CLYC RadCam-2 system successfully discriminates gammas, thermal neutrons, and fast neutrons by employing a fully integrated, FPGA-based PSD system. • Imaging of our {sup 252}Cf source was possible using both pulse height and pulse shape discrimination with

  11. Temperature dependences of LaBr{sub 3}(Ce), LaCl{sub 3}(Ce) and NaI(Tl) scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Moszynski, M. [Soltan Institute for Nuclear Studies, PL 05-400 Otwock-Swierk (Poland)]. E-mail: marek@ipj.gov.pl; Nassalski, A. [Soltan Institute for Nuclear Studies, PL 05-400 Otwock-Swierk (Poland); Syntfeld-Kazuch, A. [Soltan Institute for Nuclear Studies, PL 05-400 Otwock-Swierk (Poland); Szczesniak, T. [Soltan Institute for Nuclear Studies, PL 05-400 Otwock-Swierk (Poland); Czarnacki, W. [Soltan Institute for Nuclear Studies, PL 05-400 Otwock-Swierk (Poland); Wolski, D. [Soltan Institute for Nuclear Studies, PL 05-400 Otwock-Swierk (Poland); Pausch, G. [Target Systemelectronic GmbH, Koelner Str. 99, D-42651 Solingen (Germany); Stein, J. [Target Systemelectronic GmbH, Koelner Str. 99, D-42651 Solingen (Germany)

    2006-12-01

    The temperature dependence of light output, energy resolution and decay time constants of the light pulses of NaI(Tl), LaCl{sub 3}(Ce) (LaCl{sub 3}) and LaBr{sub 3}(Ce) (LaBr{sub 3}) crystals were measured over the temperature range of -30 to 60 {sup o}C. In the study of the light output, the number of photoelectrons produced by the scintillators in the XP2020 photomultiplier was measured and corrected for by the temperature dependence of the quantum efficiency determined for 360 and 420 nm, respectively. It showed a high stability of the light output of LaBr{sub 3} of about 0.01%/{sup o}C and a comparable uniformity of LaCl{sub 3} at a long peaking time of 12 {mu}s. The well-known thermal instability of NaI(Tl) was confirmed at a short peaking time of 2 {mu}s. However, a much better stability of NaI(Tl) at low temperatures was observed for a long peaking time. The study of the decay of light pulses from LaCl{sub 3} and LaBr{sub 3} crystals confirmed earlier measurements, while NaI(Tl) showed a complex behavior at different temperatures. At low temperatures a strong contribution of a slow component of up to 60% of the total light was observed, while at elevated temperatures a well-known initial slow decay was replaced by a delayed maximum and the slow component became insignificant. The results of the study of energy resolution seem to be correlated with the variation of both the light output and a dependence of the decay time constants of the light pulses at changing temperature. This is particularly interesting in the case of NaI(Tl), where different dependencies of the energy resolution as a function of temperature for different peaking times in the spectroscopy amplifier were found. Tests of the XP2020 PMT itself showed that the thermal instability of the gain of the dynode structure of about-0.4%/{sup o}C is a dominating effect. The opposite effect on an increasing quantum efficiency, partly compensating for the gain instability, was observed above 10 {sup o

  12. Innovations in Mass Spectrometry for Precise and Accurate Isotope Ratio Determination from Very Small Analyte Quantities (Invited)

    Science.gov (United States)

    Lloyd, N. S.; Bouman, C.; Horstwood, M. S.; Parrish, R. R.; Schwieters, J. B.

    2010-12-01

    This presentation describes progress in mass spectrometry for analysing very small analyte quantities, illustrated by example applications from nuclear forensics. In this challenging application, precise and accurate (‰) uranium isotope ratios are required from 1 - 2 µm diameter uranium oxide particles, which comprise less than 40 pg of uranium. Traditionally these are analysed using thermal ionisation mass spectrometry (TIMS), and more recently using secondary ionisation mass spectrometry (SIMS). Multicollector inductively-coupled plasma mass spectrometry (MC-ICP-MS) can offer higher productivity compared to these techniques, but is traditionally limited by low efficiency of analyte utilisation (sample through to ion detection). Samples can either be introduced as a solution, or sampled directly from solid using laser ablation. Large multi-isotope ratio datasets can help identify provenance and intended use of anthropogenic uranium and other nuclear materials [1]. The Thermo Scientific NEPTUNE Plus (Bremen, Germany) with ‘Jet Interface’ option offers unparalleled MC-ICP-MS sensitivity. An analyte utilisation of c. 4% has previously been reported for uranium [2]. This high-sensitivity configuration utilises a dry high-capacity (100 m3/h) interface pump, special skimmer and sampler cones and a desolvating nebuliser system. Coupled with new acquisition methodologies, this sensitivity enhancement makes possible the analysis of micro-particles and small sample volumes at higher precision levels than previously achieved. New, high-performance, full-size and compact discrete dynode secondary electron multipliers (SEM) exhibit excellent stability and linearity over a large dynamic range and can be configured to simultaneously measure all of the uranium isotopes. Options for high abundance-sensitivity filters on two ion beams are also available, e.g. for 236U and 234U. Additionally, amplifiers with high ohm (1012 - 1013) feedback resistors have been developed to

  13. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

    Science.gov (United States)

    Bandura, Dmitry R; Baranov, Vladimir I; Ornatsky, Olga I; Antonov, Alexei; Kinach, Robert; Lou, Xudong; Pavlov, Serguei; Vorobiev, Sergey; Dick, John E; Tanner, Scott D

    2009-08-15

    A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions ( 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia patient samples immuno-labeled with lanthanide-tagged antibodies is presented.

  14. A low background-rate detector for ions in the 5 to 50 keV energy range to be used for radioisotope dating with a small cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, P.G.

    1986-11-25

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. We are developing a 20 cm diameter 30 to 40 keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for /sup 14/C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30 to 40 keV /sup 14/C at 10/sup -2/ counts/sec in the high background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. We have developed and tested an inexpensive, generally useful ion detector that allows dark-count rates below 10/sup -4/ counts/sec and excellent background suppression. With the cyclotron tuned near the /sup 13/CH background peak, to the frequency for /sup 14/C, the detector suppresses the background to 6 x 10/sup -4/ counts/sec. For each /sup 14/C ion the detectors grazing-incidence Al/sub 2/O/sub 3/ conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background. We have successfully tested the detector with positive /sup 12/C, /sup 23/Na, /sup 39/K, /sup 41/K, /sup 85/Rb, /sup 87/Rb, and /sup 133/Cs at 5 to 40 keV, and with 36 keV negative /sup 12/C and /sup 13/CH. It should detect ions and neutrals of all species, at energies above 5 keV, with good efficiency and excellent background discrimination. Counting efficiency and background discrimination improve with higher ion energy. The detector can be operated at least up to 2 x 10/sup -7/ Torr and be repeatedly exposed to air. The maximum rate is 10/sup 6.4/ ions/sec in pulse counting mode and 10/sup 9.7/ ions/sec in current integrating mode.

  15. Readout Electronics for BGO Calorimeter of DAMPE: Status during the First Half-year after Launching

    Science.gov (United States)

    Ma, Siyuan; Feng, Changqing; Zhang, Deliang; Wang, Qi

    2016-07-01

    The DAMPE (DArk Matter Particle Explorer) is a scientic satellite which was successfully launched into a 500 Km sun-synchronous orbit, on December 17th, 2015, from the Jiuquan Satellite Launch Center of China. The major scientific objective of DAMPE mission is indirect searching for dark matter by observing high energy primary cosmic rays, especially positrons/electrons and gamma rays with an energy range from 5 GeV to 10 TeV. The BGO (Bismuth Germanate Oxide) calorimeter, which is a critical sub-detector of DAMPE payload, was developed for measuring the energy of cosmic particles, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information. It is composed of 308 BGO crystal logs, with the size of 2.5cm*2.5cm*60cm for each log to form a total absorption electromagnetic calorimeter. All the BGO logs are stacked in 14 layers, with each layer consisting of 22 BGO crystal logs and each log is viewed by two Hamamatsu R5610A PMTs (photomultiplier tubes), from both sides respectively. Each PMT incorporates a three dynode pick off to achieve a large dynamic range, which results in 616 PMTs and 1848 signal channels. The main function of readout electronics system, which consists of 16 FEE(Front End Electronics) modules, is to precisely measure the charge of PMT signals and providing "hit" signals. The hit signals are sent to the trigger module of PDPU (Payload Data Process Unit) to generate triggers for the payload. The calibration of the BGO calorimeter is composed of pedestal testing and electronic linear scale, which are executed frequently in the space after launching. The data of the testing is transmitted to ground station in the form of scientific data. The monitor status consists of temperature, current and status words of the FEE, which are measured and recorded every 16 seconds and packed in the engineering data, then transmitted to ground station. The status of the BGO calorimeter can be evaluated by the calibration

  16. Study on Radiation Condition in DAMPE Orbit by Analyzing the Engineering Data of BGO Calorimeter

    Science.gov (United States)

    Feng, Changqing; Liu, Shubin; Zhang, Yunlong; Ma, Siyuan

    2016-07-01

    The DAMPE (DArk Matter Particle Explorer) is a scientific satellite which was successfully launched into a 500 Km sun-synchronous orbit, on December 17th, 2015, from the Jiuquan Satellite Launch Center of China. The major scientific objectives of the DAMPE mission are primary cosmic ray, gamma ray astronomy and dark matter particles, by observing high energy primary cosmic rays, especially positrons/electrons and gamma rays with an energy range from 5 GeV to 10 TeV. The BGO calorimeter is a critical sub-detector of DAMPE payload, for measuring the energy of cosmic particles, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information. It utilizes 308 BGO (Bismuth Germanate Oxide) crystal logs with the size of 2.5cm*2.5cm*60cm for each log, to form a total absorption electromagnetic calorimeter. All the BGO logs are stacked in 14 layers, with each layer consisting of 22 BGO crystal logs and each log is viewed by two Hamamatsu R5610A PMTs (photomultiplier tubes), from both sides respectively. In order to achieve a large dynamic range, each PMT base incorporates a three dynode (2, 5, 8) pick off, which results in 616 PMTs and 1848 signal channels. The readout electronics system, which consists of 16 FEE (Front End Electronics) modules, was developed. Its main functions are based on the Flash-based FPGA (Field Programmable Gate Array) chip and low power, 32-channel VA160 and VATA160 ASICs (Application Specific Integrated Circuits) for precisely measuring the charge of PMT signals and providing "hit" signals as well. The hit signals are sent to the trigger module of PDPU (Payload Data Process Unit) and the hit rates of each layer is real-timely recorded by counters and packed into the engineering data, which directly reflect the flux of particles which fly into or pass through the detectors. In order to mitigate the SEU (Single Event Upset) effect in radioactive space environment, certain protecting methods, such as TMR