WorldWideScience

Sample records for dynamin inhibitor inhibits

  1. Pharmacological inhibition of dynamin II reduces constitutive protein secretion from primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Maaike Kockx

    Full Text Available Dynamins are fission proteins that mediate endocytic and exocytic membrane events and are pharmacological therapeutic targets. These studies investigate whether dynamin II regulates constitutive protein secretion and show for the first time that pharmacological inhibition of dynamin decreases secretion of apolipoprotein E (apoE and several other proteins constitutively secreted from primary human macrophages. Inhibitors that target recruitment of dynamin to membranes (MiTMABs or directly target the GTPase domain (Dyngo or Dynole series, dose- and time- dependently reduced the secretion of apoE. SiRNA oligo's targeting all isoforms of dynamin II confirmed the involvement of dynamin II in apoE secretion. Inhibition of secretion was not mediated via effects on mRNA or protein synthesis. 2D-gel electrophoresis showed that inhibition occurred after apoE was processed and glycosylated in the Golgi and live cell imaging showed that inhibited secretion was associated with reduced post-Golgi movement of apoE-GFP-containing vesicles. The effect was not restricted to macrophages, and was not mediated by the effects of the inhibitors on microtubules. Inhibition of dynamin also altered the constitutive secretion of other proteins, decreasing the secretion of fibronectin, matrix metalloproteinase 9, Chitinase-3-like protein 1 and lysozyme but unexpectedly increasing the secretion of the inflammatory mediator cyclophilin A. We conclude that pharmacological inhibitors of dynamin II modulate the constitutive secretion of macrophage apoE as a class effect, and that their capacity to modulate protein secretion may affect a range of biological processes.

  2. Visualizing the effect of dynamin inhibition on annular gap vesicle formation and fission.

    Science.gov (United States)

    Nickel, Beth; Boller, Marie; Schneider, Kimberly; Shakespeare, Teresa; Gay, Vernon; Murray, Sandra A

    2013-06-15

    Although gap junction plaque assembly has been extensively studied, mechanisms involved in plaque disassembly are not well understood. Disassembly involves an internalization process in which annular gap junction vesicles are formed. These vesicles undergo fission, but the molecular machinery needed for these fissions has not been described. The mechanoenzyme dynamin has been previously demonstrated to play a role in gap junction plaque internalization. To investigate the role of dynamin in annular gap junction vesicle fission, immunocytochemical, time-lapse and transmission electron microscopy were used to analyze SW-13 adrenocortical cells in culture. Dynamin was demonstrated to colocalize with gap junction plaques and vesicles. Dynamin inhibition, by siRNA knockdown or treatment with the dynamin GTPase inhibitor dynasore, increased the number and size of gap junction 'buds' suspended from the gap junction plaques. Buds, in control populations, were frequently released to form annular gap junction vesicles. In dynamin-inhibited populations, the buds were larger and infrequently released and thus fewer annular gap junction vesicles were formed. In addition, the number of annular gap junction vesicle fissions per hour was reduced in the dynamin-inhibited populations. We believe this to be the first report addressing the details of annular gap junction vesicle fissions and demonstrating a role of dynamin in this process. This information is crucial for elucidating the relationship between gap junctions, membrane regulation and cell behavior.

  3. Surface expression and limited proteolysis of ADAM10 are increased by a dominant negative inhibitor of dynamin

    Directory of Open Access Journals (Sweden)

    Slack Barbara E

    2011-05-01

    Full Text Available Abstract Background The amyloid precursor protein (APP is cleaved by β- and γ-secretases to generate toxic amyloid β (Aβ peptides. Alternatively, α-secretases cleave APP within the Aβ domain, precluding Aβ formation and releasing the soluble ectodomain, sAPPα. We previously showed that inhibition of the GTPase dynamin reduced APP internalization and increased release of sAPPα, apparently by prolonging the interaction between APP and α-secretases at the plasma membrane. This was accompanied by a reduction in Aβ generation. In the present study, we investigated whether surface expression of the α-secretase ADAM (a disintegrin and metalloprotease10 is also regulated by dynamin-dependent endocytosis. Results Transfection of human embryonic kidney (HEK cells stably expressing M3 muscarinic receptors with a dominant negative dynamin I mutant (dyn I K44A, increased surface expression of both immature, and mature, catalytically active forms of co-expressed ADAM10. Surface levels of ADAM10 were unaffected by activation of protein kinase C (PKC or M3 receptors, indicating that receptor-coupled shedding of the ADAM substrate APP is unlikely to be mediated by inhibition of ADAM10 endocytosis in this cell line. Dyn I K44A strongly increased the formation of a C-terminal fragment of ADAM10, consistent with earlier reports that the ADAM10 ectodomain is itself a target for sheddases. The abundance of this fragment was increased in the presence of a γ-secretase inhibitor, but was not affected by M3 receptor activation. The dynamin mutant did not affect the distribution of ADAM10 and its C-terminal fragment between raft and non-raft membrane compartments. Conclusions Surface expression and limited proteolysis of ADAM10 are regulated by dynamin-dependent endocytosis, but are unaffected by activation of signaling pathways that upregulate shedding of ADAM substrates such as APP. Modulation of ADAM10 internalization could affect cellular behavior in two

  4. Dynamin-dependent amino acid endocytosis activates mechanistic target of rapamycin complex 1 (mTORC1).

    Science.gov (United States)

    Shibutani, Shusaku; Okazaki, Hana; Iwata, Hiroyuki

    2017-11-03

    The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis and potential target for modifying cellular metabolism in various conditions, including cancer and aging. mTORC1 activity is tightly regulated by the availability of extracellular amino acids, and previous studies have revealed that amino acids in the extracellular fluid are transported to the lysosomal lumen. There, amino acids induce recruitment of cytoplasmic mTORC1 to the lysosome by the Rag GTPases, followed by mTORC1 activation by the small GTPase Ras homolog enriched in brain (Rheb). However, how the extracellular amino acids reach the lysosomal lumen and activate mTORC1 remains unclear. Here, we show that amino acid uptake by dynamin-dependent endocytosis plays a critical role in mTORC1 activation. We found that mTORC1 is inactivated when endocytosis is inhibited by overexpression of a dominant-negative form of dynamin 2 or by pharmacological inhibition of dynamin or clathrin. Consistently, the recruitment of mTORC1 to the lysosome was suppressed by the dynamin inhibition. The activity and lysosomal recruitment of mTORC1 were rescued by increasing intracellular amino acids via cycloheximide exposure or by Rag overexpression, indicating that amino acid deprivation is the main cause of mTORC1 inactivation via the dynamin inhibition. We further show that endocytosis inhibition does not induce autophagy even though mTORC1 inactivation is known to strongly induce autophagy. These findings open new perspectives for the use of endocytosis inhibitors as potential agents that can effectively inhibit nutrient utilization and shut down the upstream signals that activate mTORC1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Cyclin dependent kinase 5 regulates endocytosis in nerve terminals via dynamin I phosphorylation

    International Nuclear Information System (INIS)

    Tan, T.C.; Hansra, G.; Calova, V.; Cousin, M.; Robinson, P.J.

    2002-01-01

    Full text: Synaptic vesicle endocytosis (SVE) in nerve terminals is essential for normal synaptic transmission and for memory retrieval. Dynamin I is a 96kDa nerve terminal phosphoprotein necessary for synaptic vesicle endocytosis in the nerve terminal. Dynamin I is dephosphorylated and rephosphorylated in a cyclical fashion with nerve terminal depolarisation and repolarisation. A number of kinases phosphorylate dynamin I in vitro including PKC, MAP kinase and cdc2. PKC phosphorylates dynamin in the proline rich domain on Ser 795 and is also thought to be the in vivo kinase for dynamin I. Another candidate is the neuron specific kinase cdk5, crucial for CNS development. The aim of this study is to identify the kinase which phosphorylates dynamin I in intact nerve terminals. Here we show that cyclin-dependent kinase 5 (cdk5) phosphorylates dynamin I in the proline-rich tail on Ser-774 or Ser-778. The phosphorylation of these sites but not Ser-795 also occurred in intact nerve terminals suggesting that cdk5 is the physiologically relevant enzyme for dynamin I. Synaptosomes prepared from rat brains (after cervical dislocations) and labelled with 32 Pi, were incubated with 100 M roscovitine (a selective inhibitor of cdks), 10 M Ro 31-8220 (a selective PKC inhibitor) and 100 M PD 98059 (a MEK kinase inhibitor). Dynamin rephosphorylation during repolarisation was reduced in synaptosomes treated with roscovitine and Ro 38-8220 but not in synaptosomes treated with PD 98059. Fluorimetric experiments on intact synaptosomes utilising FM-210 (a fluorescent dye) indicate that endocytosis was reduced in synaptosomes treated with 100 M roscovitine. Our results suggest that dynamin phosphorylation in intact nerve terminals may not be regulated by PKC or MAP kinase and that dynamin phosphorylation by cdk5 may regulate endocytosis. Copyright (2002) Australian Neuroscience Society

  6. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei; Li, Yong, E-mail: 11211220031@fudan.edu.cn

    2016-03-18

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels played a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.

  7. Cellular entry of G3.5 poly (amido amine) dendrimers by clathrin- and dynamin-dependent endocytosis promotes tight junctional opening in intestinal epithelia.

    Science.gov (United States)

    Goldberg, Deborah S; Ghandehari, Hamidreza; Swaan, Peter W

    2010-08-01

    This study investigates the mechanisms of G3.5 poly (amido amine) dendrimer cellular uptake, intracellular trafficking, transepithelial transport and tight junction modulation in Caco-2 cells in the context of oral drug delivery. Chemical inhibitors blocking clathrin-, caveolin- and dynamin-dependent endocytosis pathways were used to investigate the mechanisms of dendrimer cellular uptake and transport across Caco-2 cells using flow cytometry and confocal microscopy. Dendrimer cellular uptake was found to be dynamin-dependent and was reduced by both clathrin and caveolin endocytosis inhibitors, while transepithelial transport was only dependent on dynamin- and clathrin-mediated endocytosis. Dendrimers were quickly trafficked to the lysosomes after 15 min of incubation and showed increased endosomal accumulation at later time points, suggesting saturation of this pathway. Dendrimers were unable to open tight junctions in cell monolayers treated with dynasore, a selective inhibitor of dynamin, confirming that dendrimer internalization promotes tight junction modulation. G3.5 PAMAM dendrimers take advantage of several receptor-mediated endocytosis pathways for cellular entry in Caco-2 cells. Dendrimer internalization by dynamin-dependent mechanisms promotes tight junction opening, suggesting that dendrimers act on intracellular cytoskeletal proteins to modulate tight junctions, thus catalyzing their own transport via the paracellular route.

  8. Dynamin inhibitors induce caspase-mediated apoptosis following cytokinesis failure in human cancer cells and this is blocked by Bcl-2 overexpression

    Directory of Open Access Journals (Sweden)

    Braithwaite Antony W

    2011-06-01

    Full Text Available Abstract Background The aim of both classical (e.g. taxol and targeted anti-mitotic agents (e.g. Aurora kinase inhibitors is to disrupt the mitotic spindle. Such compounds are currently used in the clinic and/or are being tested in clinical trials for cancer treatment. We recently reported a new class of targeted anti-mitotic compounds that do not disrupt the mitotic spindle, but exclusively block completion of cytokinesis. This new class includes MiTMAB and OcTMAB (MiTMABs, which are potent inhibitors of the endocytic protein, dynamin. Like other anti-mitotics, MiTMABs are highly cytotoxic and possess anti-proliferative properties, which appear to be selective for cancer cells. The cellular response following cytokinesis failure and the mechanistic pathway involved is unknown. Results We show that MiTMABs induce cell death specifically following cytokinesis failure via the intrinsic apoptotic pathway. This involves cleavage of caspase-8, -9, -3 and PARP, DNA fragmentation and membrane blebbing. Apoptosis was blocked by the pan-caspase inhibitor, ZVAD, and in HeLa cells stably expressing the anti-apoptotic protein, Bcl-2. This resulted in an accumulation of polyploid cells. Caspases were not cleaved in MiTMAB-treated cells that did not enter mitosis. This is consistent with the model that apoptosis induced by MiTMABs occurs exclusively following cytokinesis failure. Cytokinesis failure induced by cytochalasin B also resulted in apoptosis, suggesting that disruption of this process is generally toxic to cells. Conclusion Collectively, these data indicate that MiTMAB-induced apoptosis is dependent on both polyploidization and specific intracellular signalling components. This suggests that dynamin and potentially other cytokinesis factors are novel targets for development of cancer therapeutics.

  9. CD4- and dynamin-dependent endocytosis of HIV-1 into plasmacytoid dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Pritschet, Kathrin; Donhauser, Norbert; Schuster, Philipp; Ries, Moritz; Haupt, Sabrina; Kittan, Nicolai A.; Korn, Klaus [Institute of Clinical and Molecular Virology, National Reference Centre for Retroviruses, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, 91054 Erlangen (Germany); Poehlmann, Stefan [Institute of Virology, Hannover Medical School, 30625 Hannover (Germany); Holland, Gudrun; Bannert, Norbert [Robert Koch-Institute, Center for Biological Security 4, 13353 Berlin (Germany); Bogner, Elke [Institute of Virology, Charite University Hospital, 10117 Berlin (Germany); Schmidt, Barbara, E-mail: baschmid@viro.med.uni-erlangen.de [Institute of Clinical and Molecular Virology, National Reference Centre for Retroviruses, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, 91054 Erlangen (Germany)

    2012-02-20

    Chronic immune activation, triggered by plasmacytoid dendritic cell (PDC) interferon (IFN)-alpha production, plays an important role in HIV-1 pathogenesis. As the entry of HIV-1 seems to be important for the activation of PDC, we directly characterized the viral entry into these cells using immuno-electron microscopy, cellular fractionation, confocal imaging, and functional experiments. After attachment to PDC, viruses were taken up in an energy-dependent manner. The virions were located in compartments positive for caveolin; early endosomal antigen 1; Rab GTPases 5, 7 and 9; lysosomal-associated membrane protein 1. PDC harbored more virus in endocytic vesicles than CD4+ T cells (p < 0.05). Blocking CD4 inhibited the uptake of virions into cytosolic and endosomal compartments. Dynasore, an inhibitor of dynamin-dependent endocytosis, not the fusion inhibitor T-20, reduced the HIV-1 induced IFN-alpha production. Altogether, our morphological and functional data support the role of endocytosis for the entry and IFN-alpha induction of HIV-1 in PDC.

  10. Tetrahymena dynamin-related protein 6 self-assembles ...

    Indian Academy of Sciences (India)

    Usha P Kar

    2017-12-30

    Dec 30, 2017 ... multi-domain proteins, and share similar domain architecture. Classical dynamins ... domains: a GTPase domain, middle domain (MD), GTPase ..... influenced by bacterial environment, we have expressed human dynamin in ...

  11. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    International Nuclear Information System (INIS)

    András, Ibolya E.; Toborek, Michal

    2014-01-01

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ

  12. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    András, Ibolya E., E-mail: iandras@med.miami; Toborek, Michal, E-mail: mtoborek@med.miami.edu

    2014-04-15

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ.

  13. Dynamin's helical geometry does not destabilize membranes during fission.

    Science.gov (United States)

    McDargh, Zachary A; Deserno, Markus

    2018-05-01

    It is now widely accepted that dynamin-mediated fission is a fundamentally mechanical process: dynamin undergoes a GTP-dependent conformational change, constricting the neck between two compartments, somehow inducing their fission. However, the exact connection between dynamin's conformational change and the scission of the neck is still unclear. In this paper, we re-evaluate the suggestion that a change in the pitch or radius of dynamin's helical geometry drives the lipid bilayer through a mechanical instability, similar to a well-known phenomenon occurring in soap films. We find that, contrary to previous claims, there is no such instability. This lends credence to an alternative model, in which dynamin drives the membrane up an energy barrier, allowing thermal fluctuations to take it into the hemifission state. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Directory of Open Access Journals (Sweden)

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  15. Actin- and dynamin-dependent maturation of bulk endocytosis restores neurotransmission following synaptic depletion.

    Directory of Open Access Journals (Sweden)

    Tam H Nguyen

    Full Text Available Bulk endocytosis contributes to the maintenance of neurotransmission at the amphibian neuromuscular junction by regenerating synaptic vesicles. How nerve terminals internalize adequate portions of the presynaptic membrane when bulk endocytosis is initiated before the end of a sustained stimulation is unknown. A maturation process, occurring at the end of the stimulation, is hypothesised to precisely restore the pools of synaptic vesicles. Using confocal time-lapse microscopy of FM1-43-labeled nerve terminals at the amphibian neuromuscular junction, we confirm that bulk endocytosis is initiated during a sustained tetanic stimulation and reveal that shortly after the end of the stimulation, nerve terminals undergo a maturation process. This includes a transient bulging of the plasma membrane, followed by the development of large intraterminal FM1-43-positive donut-like structures comprising large bulk membrane cisternae surrounded by recycling vesicles. The degree of bulging increased with stimulation frequency and the plasmalemma surface retrieved following the transient bulging correlated with the surface membrane internalized in bulk cisternae and recycling vesicles. Dyngo-4a, a potent dynamin inhibitor, did not block the initiation, but prevented the maturation of bulk endocytosis. In contrast, cytochalasin D, an inhibitor of actin polymerization, hindered both the initiation and maturation processes. Both inhibitors hampered the functional recovery of neurotransmission after synaptic depletion. Our data confirm that initiation of bulk endocytosis occurs during stimulation and demonstrates that a delayed maturation process controlled by actin and dynamin underpins the coupling between exocytosis and bulk endocytosis.

  16. The dynamin chemical inhibitor dynasore impairs cholesterol trafficking and sterol-sensitive genes transcription in human HeLa cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Girard

    Full Text Available Intracellular transport of cholesterol contributes to the regulation of cellular cholesterol homeostasis by mechanisms that are yet poorly defined. In this study, we characterized the impact of dynasore, a recently described drug that specifically inhibits the enzymatic activity of dynamin, a GTPase regulating receptor endocytosis and cholesterol trafficking. Dynasore strongly inhibited the uptake of low-density lipoprotein (LDL in HeLa cells, and to a lower extent in human macrophages. In both cell types, dynasore treatment led to the abnormal accumulation of LDL and free cholesterol (FC within the endolysosomal network. The measure of cholesterol esters (CE further showed that the delivery of regulatory cholesterol to the endoplasmic reticulum (ER was deficient. This resulted in the inhibition of the transcriptional control of the three major sterol-sensitive genes, sterol-regulatory element binding protein 2 (SREBP-2, 3-hydroxy-3-methyl-coenzymeA reductase (HMGCoAR, and low-density lipoprotein receptor (LDLR. The sequestration of cholesterol in the endolysosomal compartment impaired both the active and passive cholesterol efflux in HMDM. Our data further illustrate the importance of membrane trafficking in cholesterol homeostasis and validate dynasore as a new pharmacological tool to study the intracellular transport of cholesterol.

  17. Uncoupling of dynamin polymerization and GTPase activity revealed by the conformation-specific nanobody dynab.

    Science.gov (United States)

    Galli, Valentina; Sebastian, Rafael; Moutel, Sandrine; Ecard, Jason; Perez, Franck; Roux, Aurélien

    2017-10-12

    Dynamin is a large GTPase that forms a helical collar at the neck of endocytic pits, and catalyzes membrane fission (Schmid and Frolov, 2011; Ferguson and De Camilli, 2012). Dynamin fission reaction is strictly dependent on GTP hydrolysis, but how fission is mediated is still debated (Antonny et al., 2016): GTP energy could be spent in membrane constriction required for fission, or in disassembly of the dynamin polymer to trigger fission. To follow dynamin GTP hydrolysis at endocytic pits, we generated a conformation-specific nanobody called dynab, that binds preferentially to the GTP hydrolytic state of dynamin-1. Dynab allowed us to follow the GTPase activity of dynamin-1 in real-time. We show that in fibroblasts, dynamin GTP hydrolysis occurs as stochastic bursts, which are randomly distributed relatively to the peak of dynamin assembly. Thus, dynamin disassembly is not coupled to GTPase activity, supporting that the GTP energy is primarily spent in constriction.

  18. Insulin promotes Rip11 accumulation at the plasma membrane by inhibiting a dynamin- and PI3-kinase-dependent, but Akt-independent, internalisation event.

    Science.gov (United States)

    Boal, Frédéric; Hodgson, Lorna R; Reed, Sam E; Yarwood, Sophie E; Just, Victoria J; Stephens, David J; McCaffrey, Mary W; Tavaré, Jeremy M

    2016-01-01

    Rip11 is a Rab11 effector protein that has been shown to be important in controlling the trafficking of several intracellular cargoes, including the fatty acid transporter FAT/CD36, V-ATPase and the glucose transporter GLUT4. We have previously demonstrated that Rip11 translocates to the plasma membrane in response to insulin and here we examine the basis of this regulated phenomenon in more detail. We show that Rip11 rapidly recycles between the cell interior and surface, and that the ability of insulin to increase the appearance of Rip11 at the cell surface involves an inhibition of Rip11 internalisation from the plasma membrane. By contrast the hormone has no effect on the rate of Rip11 translocation towards the plasma membrane. The ability of insulin to inhibit Rip11 internalisation requires dynamin and class I PI3-kinases, but is independent of the activation of the protein kinase Akt; characteristics which are very similar to the mechanism by which insulin inhibits GLUT4 endocytosis. Copyright © 2015. Published by Elsevier Inc.

  19. SH3 Domains Differentially Stimulate Distinct Dynamin I Assembly Modes and G Domain Activity.

    Directory of Open Access Journals (Sweden)

    Sai Krishnan

    Full Text Available Dynamin I is a highly regulated GTPase enzyme enriched in nerve terminals which mediates vesicle fission during synaptic vesicle endocytosis. One regulatory mechanism involves its interactions with proteins containing Src homology 3 (SH3 domains. At least 30 SH3 domain-containing proteins bind dynamin at its proline-rich domain (PRD. Those that stimulate dynamin activity act by promoting its oligomerisation. We undertook a systematic parallel screening of 13 glutathione-S-transferase (GST-tagged endocytosis-related SH3 domains on dynamin binding, GTPase activity and oligomerisation. No correlation was found between dynamin binding and their potency to stimulate GTPase activity. There was limited correlation between the extent of their ability to stimulate dynamin activity and the level of oligomerisation, indicating an as yet uncharacterised allosteric coupling of the PRD and G domain. We examined the two variants, dynamin Iab and Ibb, which differ in the alternately splice middle domain α2 helix. They responded differently to the panel of SH3s, with the extent of stimulation between the splice variants varying greatly between the SH3s. This study reveals that SH3 binding can act as a heterotropic allosteric regulator of the G domain via the middle domain α2 helix, suggesting an involvement of this helix in communicating the PRD-mediated allostery. This indicates that SH3 binding both stabilises multiple conformations of the tetrameric building block of dynamin, and promotes assembly of dynamin-SH3 complexes with distinct rates of GTP hydrolysis.

  20. Two dynamin-like proteins stabilize FtsZ rings during Streptomyces sporulation.

    Science.gov (United States)

    Schlimpert, Susan; Wasserstrom, Sebastian; Chandra, Govind; Bibb, Maureen J; Findlay, Kim C; Flärdh, Klas; Buttner, Mark J

    2017-07-25

    During sporulation, the filamentous bacteria Streptomyces undergo a massive cell division event in which the synthesis of ladders of sporulation septa convert multigenomic hyphae into chains of unigenomic spores. This process requires cytokinetic Z-rings formed by the bacterial tubulin homolog FtsZ, and the stabilization of the newly formed Z-rings is crucial for completion of septum synthesis. Here we show that two dynamin-like proteins, DynA and DynB, play critical roles in this process. Dynamins are a family of large, multidomain GTPases involved in key cellular processes in eukaryotes, including vesicle trafficking and organelle division. Many bacterial genomes encode dynamin-like proteins, but the biological function of these proteins has remained largely enigmatic. Using a cell biological approach, we show that the two Streptomyces dynamins specifically localize to sporulation septa in an FtsZ-dependent manner. Moreover, dynamin mutants have a cell division defect due to the decreased stability of sporulation-specific Z-rings, as demonstrated by kymographs derived from time-lapse images of FtsZ ladder formation. This defect causes the premature disassembly of individual Z-rings, leading to the frequent abortion of septum synthesis, which in turn results in the production of long spore-like compartments with multiple chromosomes. Two-hybrid analysis revealed that the dynamins are part of the cell division machinery and that they mediate their effects on Z-ring stability during developmentally controlled cell division via a network of protein-protein interactions involving DynA, DynB, FtsZ, SepF, SepF2, and the FtsZ-positioning protein SsgB.

  1. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    International Nuclear Information System (INIS)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.; Pacher, Pal; Schulz, Richard

    2009-01-01

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC 50 values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.

  2. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D. [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada); Pacher, Pal [National Institutes of Health, NIAAA, Laboratory of Physiologic Studies, Bethesda, MD (United States); Schulz, Richard, E-mail: richard.schulz@ualberta.ca [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada)

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.

  3. Phosphorylation of dynamin I on Ser-795 by protein kinase C blocks its association with phospholipids

    DEFF Research Database (Denmark)

    Powell, K A; Valova, V A; Malladi, C S

    2000-01-01

    Dynamin I is phosphorylated in nerve terminals exclusively in the cytosolic compartment and in vitro by protein kinase C (PKC). Dephosphorylation is required for synaptic vesicle retrieval, suggesting that its phosphorylation affects its subcellular localization. An in vitro phospholipid binding ...... assay was established that prevents lipid vesiculation and dynamin lipid insertion into the lipid. Dynamin I bound the phospholipid in a concentration-dependent and saturable manner, with an apparent affinity of 230 +/- 51 nM. Optimal binding occurred with mixtures of phosphatidylserine...... the phosphorylation site in PKCalpha-phosphorylated dynamin I as a single site at Ser-795, located near a binding site for the SH3 domain of p85, the regulatory subunit of phosphatidylinositol 3-kinase. However, phosphorylation had no effect on dynamin binding to a bacterially expressed p85-SH3 domain. Thus...

  4. A class of dynamin-like GTPases involved in the generation of the tubular ER network

    Science.gov (United States)

    Hu, Junjie; Shibata, Yoko; Zhu, Peng-Peng; Voss, Christiane; Rismanchi, Neggy; Prinz, William A.; Rapoport, Tom A.; Blackstone, Craig

    2009-01-01

    The endoplasmic reticulum (ER) consists of tubules that are shaped by the reticulons and DP1/Yop1p, but how the tubules form an interconnected network is unknown. Here, we show that mammalian atlastins, which are dynamin-like, integral membrane GTPases, interact with the tubule-shaping proteins. The atlastins localize to the tubular ER and are required for proper network formation in vivo and in vitro. Depletion of the atlastins or overexpression of dominant-negative forms inhibits tubule interconnections. The Sey1p GTPase in S. cerevisiae is likely a functional ortholog of the atlastins; it shares the same signature motifs and membrane topology and interacts genetically and physically with the tubule-shaping proteins. Cells simultaneously lacking Sey1p and a tubule-shaping protein have ER morphology defects. These results indicate that formation of the tubular ER network depends on conserved dynamin-like GTPases. Since atlastin-1 mutations cause a common form of hereditary spastic paraplegia, we suggest ER shaping defects as a novel neuropathogenic mechanism. PMID:19665976

  5. Mild functional differences of dynamin 2 mutations associated to centronuclear myopathy and Charcot-Marie Tooth peripheral neuropathy.

    Directory of Open Access Journals (Sweden)

    Olga S Koutsopoulos

    Full Text Available The large GTPase dynamin 2 is a key player in membrane and cytoskeletal dynamics mutated in centronuclear myopathy (CNM and Charcot-Marie Tooth (CMT neuropathy, two discrete dominant neuromuscular disorders affecting skeletal muscle and peripheral nerves respectively. The molecular basis for the tissue-specific phenotypes observed and the physiopathological mechanisms linked to dynamin 2 mutations are not well established. In this study, we have analyzed the impact of CNM and CMT implicated dynamin 2 mutants using ectopic expression of four CNM and two CMT mutations, and patient fibroblasts harboring two dynamin 2 CNM mutations in established cellular processes of dynamin 2 action. Wild type and CMT mutants were seen in association with microtubules whereas CNM mutants lacked microtubules association and did not disrupt interphase microtubules dynamics. Most dynamin 2 mutants partially decreased clathrin-mediated endocytosis when ectopically expressed in cultured cells; however, experiments in patient fibroblasts suggested that endocytosis is overall not defective. Furthermore, CNM mutants were seen in association with enlarged clathrin stained structures whereas the CMT mutant constructs were associated with clathrin structures that appeared clustered, similar to the structures observed in Dnm1 and Dnm2 double knock-out cells. Other roles of dynamin 2 including its interaction with BIN1 (amphiphysin 2, and its function in Golgi maintenance and centrosome cohesion were not significantly altered. Taken together, these mild functional defects are suggestive of differences between CMT and CNM disease-causing dynamin 2 mutants and suggest that a slight impairment in clathrin-mediated pathways may accumulate over time to foster the respective human diseases.

  6. BET Bromodomain Inhibition Synergizes with PARP Inhibitor in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Sergey Karakashev

    2017-12-01

    Full Text Available PARP inhibition is known to be an effective clinical strategy in BRCA mutant cancers, but PARP inhibition has not been applied to BRCA-proficient tumors. Here, we show the synergy of BET bromodomain inhibition with PARP inhibition in BRCA-proficient ovarian cancers due to mitotic catastrophe. Treatment of BRCA-proficient ovarian cancer cells with the BET inhibitor JQ1 downregulated the G2-M cell-cycle checkpoint regulator WEE1 and the DNA-damage response factor TOPBP1. Combining PARP inhibitor Olaparib with the BET inhibitor, we observed a synergistic increase in DNA damage and checkpoint defects, which allowed cells to enter mitosis despite the accumulation of DNA damage, ultimately causing mitotic catastrophe. Moreover, JQ1 and Olaparib showed synergistic suppression of growth of BRCA-proficient cancer in vivo in a xenograft ovarian cancer mouse model. Our findings indicate that a combination of BET inhibitor and PARP inhibitor represents a potential therapeutic strategy for BRCA-proficient cancers.

  7. Specific interaction with cardiolipin triggers functional activation of Dynamin-Related Protein 1.

    Directory of Open Access Journals (Sweden)

    Itsasne Bustillo-Zabalbeitia

    Full Text Available Dynamin-Related Protein 1 (Drp1, a large GTPase of the dynamin superfamily, is required for mitochondrial fission in healthy and apoptotic cells. Drp1 activation is a complex process that involves translocation from the cytosol to the mitochondrial outer membrane (MOM and assembly into rings/spirals at the MOM, leading to membrane constriction/division. Similar to dynamins, Drp1 contains GTPase (G, bundle signaling element (BSE and stalk domains. However, instead of the lipid-interacting Pleckstrin Homology (PH domain present in the dynamins, Drp1 contains the so-called B insert or variable domain that has been suggested to play an important role in Drp1 regulation. Different proteins have been implicated in Drp1 recruitment to the MOM, although how MOM-localized Drp1 acquires its fully functional status remains poorly understood. We found that Drp1 can interact with pure lipid bilayers enriched in the mitochondrion-specific phospholipid cardiolipin (CL. Building on our previous study, we now explore the specificity and functional consequences of this interaction. We show that a four lysine module located within the B insert of Drp1 interacts preferentially with CL over other anionic lipids. This interaction dramatically enhances Drp1 oligomerization and assembly-stimulated GTP hydrolysis. Our results add significantly to a growing body of evidence indicating that CL is an important regulator of many essential mitochondrial functions.

  8. Dynamin and PTP-PEST cooperatively regulate Pyk2 dephosphorylation in osteoclasts

    Science.gov (United States)

    Eleniste, Pierre P.; Du, Liping; Shivanna, Mahesh; Bruzzaniti, Angela

    2012-01-01

    Bone loss is caused by the dysregulated activity of osteoclasts which degrade the extracellular bone matrix. The tyrosine kinase Pyk2 is highly expressed in osteoclasts, and mice lacking Pyk2 exhibit an increase in bone mass, in part due to impairment of osteoclast function. Pyk2 is activated by phosphorylation at Y402 following integrin activation, but the mechanisms leading to Pyk2 dephosphorylation are poorly understood. In the current study, we examined the mechanism of action of the dynamin GTPase on Pyk2 dephosphorylation. Our studies reveal a novel mechanism for the interaction of Pyk2 with dynamin, which involves the binding of Pyk2’s FERM domain with dynamin’s plextrin homology domain. In addition, we demonstrate that the dephosphorylation of Pyk2 requires dynamin’s GTPase activity and is mediated by the tyrosine phosphatase PTP-PEST. The dephosphorylation of Pyk2 by dynamin and PTP-PEST may be critical for terminating outside-in integrin signaling, and for stabilizing cytoskeletal reorganization during osteoclast bone resorption. PMID:22342188

  9. PI3KC2{alpha}, a class II PI3K, is required for dynamin-independent internalization pathways

    DEFF Research Database (Denmark)

    Krag, Claudia; Malmberg, Emily Kim; Salcini, Anna Elisabetta

    2010-01-01

    as fluid-phase endocytosis. Our data suggest a general role for PI3KC2a in regulating physiologically relevant dynamin-independent internalization pathways by recruiting early endosome antigen 1 (EEA1) to vesicular compartments, a step required for the intracellular trafficking of vesicles generated...... screen using a cell line expressing a diphtheria toxin receptor (DTR, officially known as HBEGF) anchored to GPI (DTR-GPI), which internalizes diphtheria toxin (DT, officially known as DTX) in a dynamin-independent manner, identified PI3KC2a, a class II phosphoinositide 3-kinase (PI3K), as a specific...... regulator of dynamin-independent DT internalization. We found that the internalization of several proteins that enter the cell through dynamin-independent pathways led to a relocalization of PI3KC2a to cargo-positive vesicles. Furthermore, downregulation of PI3KC2a impaired internalization of CD59 as well...

  10. The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway

    International Nuclear Information System (INIS)

    Mulherkar, Nirupama; Raaben, Matthijs; Torre, Juan Carlos de la; Whelan, Sean P.; Chandran, Kartik

    2011-01-01

    Ebola virus (EBOV) has been reported to enter cultured cell lines via a dynamin-2-independent macropinocytic pathway or clathrin-mediated endocytosis. The route(s) of productive EBOV internalization into physiologically relevant cell types remain unexplored, and viral-host requirements for this process are incompletely understood. Here, we use electron microscopy and complementary chemical and genetic approaches to demonstrate that the viral glycoprotein, GP, induces macropinocytic uptake of viral particles into cells. GP's highly-glycosylated mucin domain is dispensable for virus-induced macropinocytosis, arguing that interactions between other sequences in GP and the host cell surface are responsible. Unexpectedly, we also found a requirement for the large GTPase dynamin-2, which is proposed to be dispensable for several types of macropinocytosis. Our results provide evidence that EBOV uses an atypical dynamin-dependent macropinocytosis-like entry pathway to enter Vero cells, adherent human peripheral blood-derived monocytes, and a mouse dendritic cell line.

  11. Dynamin-Related Protein 1 Inhibitors Protect against Ischemic Toxicity through Attenuating Mitochondrial Ca2+ Uptake from Endoplasmic Reticulum Store in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2014-02-01

    Full Text Available Intracellular calcium homeostasis disorder and mitochondrial dysfunction are involved in many acute and chronic brain diseases, including ischemic brain injury. An imbalance in mitochondrial fission and fusion is one of the most important structural abnormalities found in a large number of mitochondrial dysfunction related diseases. Here, we investigated the effects of mitochondrial division inhibitor A (mdivi A and mdivi B, two small molecule inhibitors of mitochondrial fission protein dunamin-related protein 1 (Drp-1, in neuronal injury induced by oxygen-glucose deprivation (OGD in PC12 cells. We found that mdivi A and mdivi B inhibited OGD-induced neuronal injury through attenuating apoptotic cell death. These two inhibitors also preserved mitochondrial function, as evidenced by reduced reactive oxygen species (ROS generation and cytochrome c release, as well as prevented loss of mitochondrial membrane potential (MMP. Moreover, mdivi A and mdivi B significantly suppressed mitochondrial Ca2+ uptake, but had no effect on cytoplasmic Ca2+ after OGD injury. The results of calcium imaging and immunofluorescence staining showed that Drp-1 inhibitors attenuated endoplasmic reticulum (ER Ca2+ release and prevented ER morphological changes induced by OGD. These results demonstrate that Drp-1 inhibitors protect against ischemic neuronal injury through inhibiting mitochondrial Ca2+ uptake from the ER store and attenuating mitochondrial dysfunction.

  12. Inhibition of hydrogenase synthesis by DNA gyrase inhibitors in Bradyrhizobium japonicum

    International Nuclear Information System (INIS)

    Novak, P.D.; Maier, R.J.

    1987-01-01

    Derepression of an uptake hydrogenase in Bradyrhizobium japonicum is dependent on a microaerophilic environment. Addition of DNA gyrase inhibitors during derepression of hydrogenase specifically prevented expression of the hydrogenase enzyme. Antibodies to individual hydrogenase subunits failed to detect the protein after derepression in the presence of inhibitors, although there was no general inhibition of protein synthesis. The general pattern of proteins synthesized from 14 C-labeled amino acids during derepression was no significantly different whether proteins were labeled in the presence or in the absence of gyrase inhibitors. In contrast, if transcription or translation was inhibited by addition of inhibitors of those functions, virtually no proteins were labeled during derepression. This indicated that most of the 14 C-labeled proteins were synthesized de novo during derepression, synthesis of most proteins was unaffected by gyrase inhibitors, and the dependence of hydrogenase synthesis on gyrase activity was a specific one

  13. Phenotypic spectrum of dynamin 2 mutations in Charcot-Marie-Tooth neuropathy

    NARCIS (Netherlands)

    Claeys, Kristl G.; Züchner, Stephan; Kennerson, Marina; Berciano, José; Garcia, Antonio; Verhoeven, Kristien; Storey, Elsdon; Merory, John R.; Bienfait, Henriette M. E.; Lammens, Martin; Nelis, Eva; Baets, Jonathan; de Vriendt, Els; Berneman, Zwi N.; de Veuster, Ilse; Vance, Jefferey M.; Nicholson, Garth; Timmerman, Vincent; de Jonghe, Peter

    2009-01-01

    Dominant intermediate Charcot-Marie-Tooth neuropathy type B is caused by mutations in dynamin 2. We studied the clinical, haematological, electrophysiological and sural nerve biopsy findings in 34 patients belonging to six unrelated dominant intermediate Charcot-Marie-Tooth neuropathy type B

  14. Inhibition of neuraminidase by Ganoderma triterpenoids and implications for neuraminidase inhibitor design

    Science.gov (United States)

    Zhu, Qinchang; Bang, Tran Hai; Ohnuki, Koichiro; Sawai, Takashi; Sawai, Ken; Shimizu, Kuniyoshi

    2015-01-01

    Neuraminidase (NA) inhibitors are the dominant antiviral drugs for treating influenza in the clinic. Increasing prevalence of drug resistance makes the discovery of new NA inhibitors a high priority. Thirty-one triterpenoids from the medicinal mushroom Ganoderma lingzhi were analyzed in an in vitro NA inhibition assay, leading to the discovery of ganoderic acid T-Q and TR as two inhibitors of H5N1 and H1N1 NAs. Structure-activity relationship studies revealed that the corresponding triterpenoid structure is a potential scaffold for the design of NA inhibitors. Using these triterpenoids as probes we found, through further in silico docking and interaction analysis, that interactions with the amino-acid residues Arg292 and/or Glu119 of NA are critical for the inhibition of H5N1 and H1N1. These findings should prove valuable for the design and development of NA inhibitors. PMID:26307417

  15. ARF6 Activated by the LHCG Receptor through the Cytohesin Family of Guanine Nucleotide Exchange Factors Mediates the Receptor Internalization and Signaling*

    Science.gov (United States)

    Kanamarlapudi, Venkateswarlu; Thompson, Aiysha; Kelly, Eamonn; López Bernal, Andrés

    2012-01-01

    The luteinizing hormone chorionic gonadotropin receptor (LHCGR) is a Gs-coupled GPCR that is essential for the maturation and function of the ovary and testis. LHCGR is internalized following its activation, which regulates the biological responsiveness of the receptor. Previous studies indicated that ADP-ribosylation factor (ARF)6 and its GTP-exchange factor (GEF) cytohesin 2 regulate LHCGR internalization in follicular membranes. However, the mechanisms by which ARF6 and cytohesin 2 regulate LHCGR internalization remain incompletely understood. Here we investigated the role of the ARF6 signaling pathway in the internalization of heterologously expressed human LHCGR (HLHCGR) in intact cells using a combination of pharmacological inhibitors, siRNA and the expression of mutant proteins. We found that human CG (HCG)-induced HLHCGR internalization, cAMP accumulation and ARF6 activation were inhibited by Gallein (βγ inhibitor), Wortmannin (PI 3-kinase inhibitor), SecinH3 (cytohesin ARF GEF inhibitor), QS11 (an ARF GAP inhibitor), an ARF6 inhibitory peptide and ARF6 siRNA. However, Dynasore (dynamin inhibitor), the dominant negative mutants of NM23-H1 (dynamin activator) and clathrin, and PBP10 (PtdIns 4,5-P2-binding peptide) inhibited agonist-induced HLHCGR and cAMP accumulation but not ARF6 activation. These results indicate that heterotrimeric G-protein, phosphatidylinositol (PI) 3-kinase (PI3K), cytohesin ARF GEF and ARF GAP function upstream of ARF6 whereas dynamin and clathrin act downstream of ARF6 in the regulation of HCG-induced HLHCGR internalization and signaling. In conclusion, we have identified the components and molecular details of the ARF6 signaling pathway required for agonist-induced HLHCGR internalization. PMID:22523074

  16. Oligopeptidase B from Serratia proteamaculans. III. Inhibition analysis. Specific interactions with metalloproteinase inhibitors.

    Science.gov (United States)

    Mikhailova, A G; Khairullin, R F; Kolomijtseva, G Ya; Rumsh, L D

    2012-03-01

    Inhibition of the novel oligopeptidase B from Serratia proteamaculans (PSP) by basic pancreatic trypsin inhibitor, Zn2+ ions, and o- and m-phenanthroline was investigated. A pronounced effect of calcium ions on the interaction of PSP with inhibitors was demonstrated. Inversion voltamperometry and atomic absorption spectrometry revealed no zinc ions in the PSP molecule. Hydrophobic nature of the enzyme inhibition by o- and m-phenanthroline was established.

  17. Selective inhibition of influenza virus protein synthesis by inhibitors of DNA function

    International Nuclear Information System (INIS)

    Minor, P.D.; Dimmock, N.J.

    1977-01-01

    Various known inhibitors of cellular DNA function were shown to inhibit cellular RNA synthesis and influenza (fowl plague) virus multiplication. The drugs were investigated for their effect upon the synthesis of influenza virus proteins. According to this effect they could be classified with previously studied compounds as follows: Group I (ethidium bromide, proflavine, and N-nitroquinoline-N-oxide) inhibited both viral and cellular protein synthesis; Group II (nogalomycin, daunomycin and α-amanitin) inhibited viral but not cellular protein synthesis, and all viral proteins were inhibited coordinately; Group III (mithramycin, echinomycin, and actinomycin D) inhibited all viral but not cellular protein synthesis at high concentrations, but at a lower critical concentration inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein preferentially; Group IV(uv irradiation and camptothecin) inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein, but not other viral proteins, even at high doses. The mode of action of these inhibitors is discussed in relation to the mechanism of the nuclear events upon which influenza virus multiplication is dependent

  18. Purification, crystallization and X-ray diffraction analysis of human dynamin-related protein 1 GTPase-GED fusion protein

    International Nuclear Information System (INIS)

    Klinglmayr, Eva; Wenger, Julia; Mayr, Sandra; Bossy-Wetzel, Ella; Puehringer, Sandra

    2012-01-01

    The crystallization and initial diffraction analysis of human Drp1 GTPase-GED fusion protein are reported. The mechano-enzyme dynamin-related protein 1 plays an important role in mitochondrial fission and is implicated in cell physiology. Dysregulation of Drp1 is associated with abnormal mitochondrial dynamics and neuronal damage. Drp1 shares structural and functional similarities with dynamin 1 with respect to domain organization, ability to self-assemble into spiral-like oligomers and GTP-cycle-dependent membrane scission. Structural studies of human dynamin-1 have greatly improved the understanding of this prototypical member of the dynamin superfamily. However, high-resolution structural information for full-length human Drp1 covering the GTPase domain, the middle domain and the GTPase effector domain (GED) is still lacking. In order to obtain mechanistic insights into the catalytic activity, a nucleotide-free GTPase-GED fusion protein of human Drp1 was expressed, purified and crystallized. Initial X-ray diffraction experiments yielded data to 2.67 Å resolution. The hexagonal-shaped crystals belonged to space group P2 1 2 1 2, with unit-cell parameters a = 53.59, b = 151.65, c = 43.53 Å, one molecule per asymmetric unit and a solvent content of 42%. Expression of selenomethionine-labelled protein is currently in progress. Here, the expression, purification, crystallization and X-ray diffraction analysis of the Drp1 GTPase-GED fusion protein are presented, which form a basis for more detailed structural and biophysical analysis

  19. N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor.

    Science.gov (United States)

    Zhang, Hao; Jing, Xigang; Shi, Yang; Xu, Hao; Du, Jianhai; Guan, Tongju; Weihrauch, Dorothee; Jones, Deron W; Wang, Weiling; Gourlay, David; Oldham, Keith T; Hillery, Cheryl A; Pritchard, Kirkwood A

    2013-11-01

    Myeloperoxidase (MPO) plays important roles in disease by increasing oxidative and nitrosative stress and oxidizing lipoproteins. Here we report N-acetyl lysyltyrosylcysteine amide (KYC) is an effective inhibitor of MPO activity. We show KYC inhibits MPO-mediated hypochlorous acid (HOCl) formation and nitration/oxidation of LDL. Disulfide is the major product of MPO-mediated KYC oxidation. KYC (≤4,000 μM) does not induce cytotoxicity in bovine aortic endothelial cells (BAECs). KYC inhibits HOCl generation by phorbol myristate acetate (PMA)-stimulated neutrophils and human promyelocytic leukemia (HL-60) cells but not superoxide generation by PMA-stimulated HL-60 cells. KYC inhibits MPO-mediated HOCl formation in BAEC culture and protects BAECs from MPO-induced injury. KYC inhibits MPO-mediated lipid peroxidation of LDL whereas tyrosine (Tyr) and tryptophan (Trp) enhance oxidation. KYC is unique as its isomers do not inhibit MPO activity, or are much less effective. Ultraviolet-visible spectral studies indicate KYC binds to the active site of MPO and reacts with compounds I and II. Docking studies show the Tyr of KYC rests just above the heme of MPO. Interestingly, KYC increases MPO-dependent H₂O₂ consumption. These data indicate KYC is a novel and specific inhibitor of MPO activity that is nontoxic to endothelial cell cultures. Accordingly, KYC may be useful for treating MPO-mediated vascular disease.

  20. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel.

    Science.gov (United States)

    Kuwajima, Akiko; Iwashita, Jun; Murata, Jun; Abe, Tatsuya

    2007-01-01

    Histone deacetylase (HDAC) inhibitors have anticancer effects. Their effects on expression of cell adhesion molecules might be related to their effects on tumor cell invasion. Murine B16-BL6 cells were treated with the HDAC inhibitors, butyrate or trichostatin A. Melanoma cell invasion of the artificial basement membrane, Matrigel, was examined by Transwell chamber assay. Butyrate as well as trichostatin A inhibited the cell growth mainly by arresting the cell cycle. The cell invasion of Matrigel was inhibited by butyrate and trichostatin A. The butyrate treatment increased the cell-cell aggregation, although neither E-cadherin nor N-cadherin mRNA were up-regulated. Both mRNA expression and protein levels of the immunoglobulin superfamily cell adhesion molecules, Mel-CAM and L1-CAM, were increased in the butyrate-treated cells. The HDAC inhibitor butyrate blocked the B16-BL6 melanoma cell invasion of Matrigel, although it increased the expression of Mel-CAM and L1-CAM which are important to the metastatic potential.

  1. The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices.

    Science.gov (United States)

    Kistemaker, Loes E M; Oenema, Tjitske A; Baarsma, Hoeke A; Bos, I Sophie T; Schmidt, Martina; Facchinetti, Fabrizio; Civelli, Maurizio; Villetti, Gino; Gosens, Reinoud

    2017-09-01

    Combination therapy of PDE4 inhibitors and anticholinergics induces bronchoprotection in COPD. Mechanical forces that arise during bronchoconstriction may contribute to airway remodeling. Therefore, we investigated the impact of PDE4 inhibitors and anticholinergics on bronchoconstriction-induced remodeling. Because of the different mechanism of action of PDE4 inhibitors and anticholinergics, we hypothesized functional interactions of these two drug classes. Guinea pig precision-cut lung slices were preincubated with the PDE4 inhibitors CHF-6001 or roflumilast and/or the anticholinergics tiotropium or glycopyorrolate, followed by stimulation with methacholine (10 μM) or TGF-β 1 (2 ng/ml) for 48 h. The inhibitory effects on airway smooth muscle remodeling, airway contraction, and TGF-β release were investigated. Methacholine-induced protein expression of smooth muscle-myosin was fully inhibited by CHF-6001 (0.3-100 nM), whereas roflumilast (1 µM) had smaller effects. Tiotropium and glycopyrrolate fully inhibited methacholine-induced airway remodeling (0.1-30 nM). The combination of CHF-6001 and tiotropium or glycopyrrolate, in concentrations partially effective by themselves, fully inhibited methacholine-induced remodeling in combination. CHF-6001 did not affect airway closure and had limited effects on TGF-β 1 -induced remodeling, but rather, it inhibited methacholine-induced TGF-β release. The PDE4 inhibitor CHF-6001, and to a lesser extent roflumilast, and the LAMAs tiotropium and glycopyrrolate inhibit bronchoconstriction-induced remodeling. The combination of CHF-6001 and anticholinergics was more effective than the individual compounds. This cooperativity might be explained by the distinct mechanisms of action inhibiting TGF-β release and bronchoconstriction. Copyright © 2017 the American Physiological Society.

  2. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    International Nuclear Information System (INIS)

    Backues, Steven K.; Bednarek, Sebastian Y.

    2010-01-01

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  3. Endocytic pathways mediating oligomeric Aβ42 neurotoxicity

    Directory of Open Access Journals (Sweden)

    Laxton Kevin

    2010-05-01

    Full Text Available Abstract Background One pathological hallmark of Alzheimer's disease (AD is amyloid plaques, composed primarily of amyloid-β peptide (Aβ. Over-production or diminished clearance of the 42 amino acid form of Aβ (Aβ42 in the brain leads to accumulation of soluble Aβ and plaque formation. Soluble oligomeric Aβ (oAβ has recently emerged to be as a likely proximal cause of AD. Results Here we demonstrate that endocytosis is critical in mediating oAβ42-induced neurotoxicity and intraneuronal accumulation of Aβ. Inhibition of clathrin function either with a pharmacological inhibitor, knock-down of clathrin heavy chain expression, or expression of the dominant-negative mutant of clathrin-assembly protein AP180 did not block oAβ42-induced neurotoxicity or intraneuronal accumulation of Aβ. However, inhibition of dynamin and RhoA by expression of dominant negative mutants reduced neurotoxicity and intraneuronal Aβ accumulation. Pharmacologic inhibition of the dynamin-mediated endocytic pathway by genistein also reduced neurotoxicity. Conclusions These data suggest that dynamin-mediated and RhoA-regulated endocytosis are integral steps for oligomeric Aβ42-induced neurotoxicity and intraneuronal Aβ accumulation.

  4. Inhibition of growth hormone and prolactin secretion by a serine proteinase inhibitor

    International Nuclear Information System (INIS)

    Rappay, G.; Nagy, I.; Makara, G.B.; Horvath, G.; Karteszi, M.; Bacsy, E.; Stark, E.

    1984-01-01

    The action of the tripeptide aldehyde t-butyloxycarbonyl-DPhe-Pro-Arg-H (boc-fPR-H), belonging to a family of serine proteinase inhibitors, on the release of immunoreactive prolactin (iPRL) and growth hormone (iGH) has been studied. In rat anterior pituitary cell cultures and pituitary quarters 1 mM boc-fPR-H inhibited basal iPRL and iGH release. Thyroliberin-induced iPRL release by cultured cells was also markedly inhibited with a concomitant accumulation of intracellular iPRL. During the short- and long-term exposure of cells to boc-fPR-H there were no changes in total cell protein contents and in activities of some lysosomal marker enzymes. The marked inhibition of basal as well as stimulated hormone release in the presence of the enzyme inhibitor might suggest that at least a portion of the hormones is released via a proteolytic enzyme-dependent process

  5. A novel fission-independent role of dynamin-related protein 1 in cardiac mitochondrial respiration.

    Science.gov (United States)

    Zhang, Huiliang; Wang, Pei; Bisetto, Sara; Yoon, Yisang; Chen, Quan; Sheu, Shey-Shing; Wang, Wang

    2017-02-01

    Mitochondria in adult cardiomyocytes exhibit static morphology and infrequent dynamic changes, despite the high abundance of fission and fusion regulatory proteins in the heart. Previous reports have indicated that fusion proteins may bear functions beyond morphology regulation. Here, we investigated the role of fission protein, dynamin-related protein 1 (DRP1), on mitochondrial respiration regulation in adult cardiomyocytes. By using genetic or pharmacological approaches, we manipulated the activity or protein level of fission and fusion proteins and found they mildly influenced mitochondrial morphology in adult rodent cardiomyocytes, which is in contrast to their significant effect in H9C2 cardiac myoblasts. Intriguingly, inhibiting endogenous DRP1 by dominant-negative DRP1 mutation (K38A), shRNA, or Mdivi-1 suppressed maximal respiration and respiratory control ratio in isolated mitochondria from adult mouse heart or in adult cardiomyocytes from rat. Meanwhile, basal respiration was increased due to increased proton leak. Facilitating mitofusin-mediated fusion by S3 compound, however, failed to inhibit mitochondrial respiration in adult cardiomyocytes. Mechanistically, DRP1 inhibition did not affect the maximal activity of individual respiratory chain complexes or the assembly of supercomplexes. Knocking out cyclophilin D, a regulator of mitochondrial permeability transition pore (mPTP), abolished the effect of DRP1 inhibition on respiration. Finally, DRP1 inhibition decreased transient mPTP-mediated mitochondrial flashes, delayed laser-induced mPTP opening and suppressed mitochondrial reactive oxygen species (ROS). These results uncover a novel non-canonical function of the fission protein, DRP1 in maintaining or positively stimulating mitochondrial respiration, bioenergetics and ROS signalling in adult cardiomyocyte, which is likely independent of morphological changes. Published on behalf of the European Society of Cardiology. All rights reserved. © The

  6. Synergistic Inhibition of Carbon Steel Corrosion by Inhibitor-Blends in Chloride-Containing Simulated Cooling Water

    Energy Technology Data Exchange (ETDEWEB)

    Shaban, Abdul; Felhosi, Ilona [Hungarian Academy of Sciences, Budapest (Hungary); Vastag, Gyongyi [University of Novi Sad, Novi Sad (Serbia)

    2017-06-15

    The objective of this work was to develop efficient synergistic inhibitor combinations comprising sodium nitrite (NaNO{sub 2}) and an inhibitor-blend code named (SN-50), keeping in view of their application in industrial cooling water systems. The electrochemical characteristics of the carbon steel working electrode in simulated cooling water (SCW), without and with the addition of different combinations of the inhibitors, were investigated using electrochemical impedance spectroscopy (EIS), open circuit potential (OCP). The electrode surface changes were followed by visual characterization methods. It was demonstrated in this study that all the combinations of the inhibitors exhibited synergistic benefit and higher inhibition efficiencies than did either of the individual inhibitors. The addition of SN-50 inhibitor to the SCW shifted the OCP to more anodic values and increased the polarization resistance (R{sub p}) values of carbon steel at all applied concentrations. The higher the applied sodium nitrite concentration (in the protection concentration range), the higher the obtained R{sub p} values and the inhibition efficiency improved by increasing the inhibitor concentration.

  7. Follicle-stimulating hormone (FSH) activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization

    Science.gov (United States)

    Piketty, Vincent; Kara, Elodie; Guillou, Florian; Reiter, Eric; Crepieux, Pascale

    2006-01-01

    Background The follicle-stimulating hormone receptor (FSH-R) is a seven transmembrane spanning receptor (7TMR) which plays a crucial role in male and female reproduction. Upon FSH stimulation, the FSH-R activates the extracellular signal-regulated kinases (ERK). However, the mechanisms whereby the agonist-stimulated FSH-R activates ERK are poorly understood. In order to activate ERK, some 7 TMRs require beta-arrestin-and dynamin-dependent internalization to occur, whereas some others do not. In the present study, we examined the ability of the FSH-activated FSH-R to induce ERK phosphorylation, in conditions where its beta-arrestin- and dynamin-mediated internalization was impaired. Methods Human embryonic kidney (HEK) 293 cells were transiently transfected with the rat FSH-R. Internalization of the FSH-R was manipulated by co-expression of either a beta-arrestin (319–418) dominant negative peptide, either an inactive dynamin K44A mutant or of wild-type beta-arrestin 1 or 2. The outcomes on the FSH-R internalization were assayed by measuring 125I-FSH binding at the cell surface when compared to internalized 125I-FSH binding. The resulting ERK phosphorylation level was visualized by Western blot analysis. Results In HEK 293 cells, FSH stimulated ERK phosphorylation in a dose-dependent manner. Co-transfection of the beta- arrestin (319–418) construct, or of the dynamin K44A mutant reduced FSH-R internalization in response to FSH, without affecting ERK phosphorylation. Likewise, overexpression of wild-type beta-arrestin 1 or 2 significantly increased the FSH-R internalization level in response to FSH, without altering FSH-induced ERK phosphorylation. Conclusion From these results, we conclude that the FSH-R does not require beta-arrestin- nor dynamin-mediated internalization to initiate ERK phosphorylation in response to FSH. PMID:16787538

  8. Why Do SGLT2 inhibitors inhibit only 30-50% of renal glucose reabsorption in humans?

    Science.gov (United States)

    Liu, Jiwen Jim; Lee, TaeWeon; DeFronzo, Ralph A

    2012-09-01

    Sodium glucose cotransporter 2 (SGLT2) inhibition is a novel and promising treatment for diabetes under late-stage clinical development. It generally is accepted that SGLT2 mediates 90% of renal glucose reabsorption. However, SGLT2 inhibitors in clinical development inhibit only 30-50% of the filtered glucose load. Why are they unable to inhibit 90% of glucose reabsorption in humans? We will try to provide an explanation to this puzzle in this perspective analysis of the unique pharmacokinetic and pharmacodynamic profiles of SGLT2 inhibitors in clinical trials and examine possible mechanisms and molecular properties that may be responsible.

  9. Apyrase inhibitors enhance the ability of diverse fungicides to inhibit the growth of different plant-pathogenic fungi.

    Science.gov (United States)

    Kumar Tripathy, Manas; Weeraratne, Gayani; Clark, Greg; Roux, Stanley J

    2017-09-01

    A previous study has demonstrated that the treatment of Arabidopsis plants with chemical inhibitors of apyrase enzymes increases their sensitivity to herbicides. In this study, we found that the addition of the same or related apyrase inhibitors could potentiate the ability of different fungicides to inhibit the growth of five different pathogenic fungi in plate growth assays. The growth of all five fungi was partially inhibited by three commonly used fungicides: copper octanoate, myclobutanil and propiconazole. However, when these fungicides were individually tested in combination with any one of four different apyrase inhibitors (AI.1, AI.10, AI.13 or AI.15), their potency to inhibit the growth of five fungal pathogens was increased significantly relative to their application alone. The apyrase inhibitors were most effective in potentiating the ability of copper octanoate to inhibit fungal growth, and least effective in combination with propiconazole. Among the five pathogens assayed, that most sensitive to the fungicide-potentiating effects of the inhibitors was Sclerotinia sclerotiorum. Overall, among the 60 treatment combinations tested (five pathogens, four apyrase inhibitors, three fungicides), the addition of apyrase inhibitors increased significantly the sensitivity of fungi to the fungicide treatments in 53 of the combinations. Consistent with their predicted mode of action, inhibitors AI.1, AI.10 and AI.13 each increased the level of propiconazole retained in one of the fungi, suggesting that they could partially block the ability of efflux transporters to remove propiconazole from these fungi. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  10. Cysteine protease inhibition by nitrile-based inhibitors: a computational study

    Science.gov (United States)

    Quesne, Matthew G.; Ward, Richard A.; de Visser, Sam P.

    2013-01-01

    Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical vs. electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism. PMID:24790966

  11. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    International Nuclear Information System (INIS)

    Chen, Zirong; Jin, Guorong; Lin, Shuibin; Lin, Xiumei; Gu, Yumei; Zhu, Yujuan; Hu, Chengbin; Zhang, Qingjiong; Wu, Lizi; Shen, Huangxuan

    2012-01-01

    Highlights: ► CDA-II inhibits myogenic differentiation in a dose-dependent manner. ► CDA-II repressed expression of muscle transcription factors and structural proteins. ► CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiation of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.

  12. Actin and dynamin recruitment and the lack thereof at exo- and endocytotic sites in PC12 cells.

    Science.gov (United States)

    Felmy, Felix

    2009-06-01

    Protein recruitment during endocytosis is well characterized in fibroblasts. Since fibroblasts do not engage in regulated exocytosis, only information about protein recruitment during constitutive endocytosis is provided. Furthermore, the cortical actin of fibroblasts is characterized by stress fibers rather than a thick cortical meshwork. A cell model, which differs in these features, could provide insight into the heterogeneity of protein recruitment to constitutive and exocytosis coupled endocytotic areas. Therefore, this study investigates the sequence of protein recruitment in PC12 cells, a well documented exocytotic cell model with thick actin cortex. Using real time total-internal-reflection fluorescence microscopy it was found that at the plasma membrane steady, but not transient, dynamin-1-EGFP or -mCherry fluorescence spots that rapidly dimmed coincided with markers for constitutive endocytotic such as clathrin-LC-dsRed and transferrin-receptor-pHluorin. Clathrin-LC-dsRed and dynamin-1-EGFP were further used to determine the temporal sequence of protein recruitment to areas of constitutive endocytosis. mCherry- and EGFP-beta-actin, Arp-3-EGFP and EGFP-mAbp1 were slowly recruited before the dynamin-1-mCherry fluorescence dimmed, but their fluorescence peaked after the loss of clathrin-LC-dsRed commenced. Furthermore, mCherry-beta-actin fluorescence increased before exocytosis, indicating redistribution prior to release. Also, no average dynamin-1-mCherry recruitment was observed within 50 s to regions of exocytosis marked by NPY-mGFP. This indicates that the temporal-spatial coupling between regulated exo-and endocytosis is rather limited in PC12 cells. Furthermore, the time course of the protein recruitment to constitutive endocytotic sites might depend on the subcellular morphology such as the size of the actin cortex.

  13. MUC1 intra-cellular trafficking is clathrin, dynamin, and rab5 dependent

    International Nuclear Information System (INIS)

    Liu Xiaolong; Yuan Zhenglong; Chung, Maureen

    2008-01-01

    MUC1, a transmembrane glycoprotein, is abnormally over-expressed in most human adenocarcinomas. MUC1 association with cytoplasmic cell signal regulators and nuclear accumulation are important for its tumor related activities. Little is known about how MUC1 translocates from the cell membrane to the cytoplasm. In this study, live cell imaging was used to study MUC1 intracellular trafficking. The interaction between EGFR and MUC1 was mapped by FRET analysis and EGF stimulated MUC1 endocytosis was observed directly through live cell imaging. MUC1-CT endocytosis was clathrin and dynamin dependent. Rab5 over-expression resulted in decreased cell membrane localization of MUC1, with accumulation of MUC1 endocytic vesicles in the peri-nuclear region. Conversely, over-expression of a Rab5 dominant negative mutant (S34N) resulted in redistribution of MUC1 from the peri-nuclear region to the cytoplasm. Collectively, these results indicated that MUC1 intra-cellular trafficking occurs through a regulated process that was stimulated by direct EGFR and MUC1 interaction, mediated by clathrin coated pits that were dynamin dependent and regulated by Rab5

  14. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination.

    Science.gov (United States)

    Nakatsuka, Erika; Sawada, Kenjiro; Nakamura, Koji; Yoshimura, Akihito; Kinose, Yasuto; Kodama, Michiko; Hashimoto, Kae; Mabuchi, Seiji; Makino, Hiroshi; Morii, Eiichi; Yamaguchi, Yoichi; Yanase, Takeshi; Itai, Akiko; Morishige, Ken-Ichirou; Kimura, Tadashi

    2017-10-27

    In the present study, the therapeutic potential of targeting plasminogen activator inhibitor-1 (PAI-1) in ovarian cancer was tested. Tissues samples from 154 cases of ovarian carcinoma were immunostained with anti-PAI-1 antibody, and the prognostic value was analyzed. Among the samples, 67% (104/154) showed strong PAI-1 expression; this was significantly associated with poor prognosis (progression-free survival: 20 vs. 31 months, P = 0.0033). In particular, among patients with stage II-IV serous adenocarcinoma, PAI-1 expression was an independent prognostic factor. The effect of a novel PAI-1 inhibitor, IMD-4482, on ovarian cancer cell lines was assessed and its therapeutic potential was examined using a xenograft mouse model of ovarian cancer. IMD-4482 inhibited in vitro cell adhesion to vitronectin in PAI-1-positive ovarian cancer cells, followed by the inhibition of extracellular signal-regulated kinase and focal adhesion kinase phosphorylation through dissociation of the PAI-urokinase receptor complex from integrin αVβ3. IMD-4482 caused G0/G1 cell arrest and inhibited the proliferation of PAI-1-positive ovarian cancer cells. In the xenograft model, IMD-4482 significantly inhibited peritoneal dissemination with the reduction of PAI-1 expression and the inhibition of focal adhesion kinase phosphorylation. Collectively, the functional inhibition of PAI-1 significantly inhibited ovarian cancer progression, and targeting PAI-1 may be a potential therapeutic strategy in ovarian cancer.

  15. The phosphatase inhibitor menadione (vitamin K3) protects cells from EGFR inhibition by erlotinib and cetuximab.

    Science.gov (United States)

    Perez-Soler, Roman; Zou, Yiyu; Li, Tianhong; Ling, Yi He

    2011-11-01

    Skin toxicity is the main side effect of epidermal growth factor receptor (EGFR) inhibitors, often leading to dose reduction or discontinuation. We hypothesized that phosphatase inhibition in the skin keratinocytes may prevent receptor dephosphorylation caused by EGFR inhibitors and be used as a new potential strategy for the prevention or treatment of this side effect. Menadione (Vitamin K3) was used as the prototype compound to test our hypothesis. HaCat human skin keratinocyte cells and A431 human squamous carcinoma cells were used. EGFR inhibition was measured by Western blotting and immunofluorescence. Phosphatase inhibition and reactive oxygen species (ROS) generation were measured by standard ELISA and fluorescence assays. Menadione caused significant and reversible EGFR activation in a dose-dependent manner starting at nontoxic concentrations. EGFR activation by menadione was associated with reversible protein tyrosine phosphatase inhibition, which seemed to be mediated by ROS generation as exposure to antioxidants prevented both menadione-induced ROS generation and phosphatase inhibition. Short-term coincubation of cells with nontoxic concentrations of menadione and the EGFR inhibitors erlotinib or cetuximab prevented EGFR dephosphorylation. Seventy-two-hour coincubation of cells with the highest nontoxic concentration of menadione and erlotinib provided for a fourfold cell growth inhibitory protection in HaCat human keratinocyte cells. Menadione at nontoxic concentrations causes EGFR activation and prevents EGFR dephosphorylation by erlotinib and cetuximab. This effect seems to be mediated by ROS generation and secondary phosphatase inhibition. Mild oxidative stress in skin keratinocytes by topical menadione may protect the skin from the toxicity secondary to EGFR inhibitors without causing cytotoxicity. ©2011 AACR

  16. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    Science.gov (United States)

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria.

  17. Why Do SGLT2 Inhibitors Inhibit Only 30–50% of Renal Glucose Reabsorption in Humans?

    Science.gov (United States)

    Liu, Jiwen (Jim); Lee, TaeWeon; DeFronzo, Ralph A.

    2012-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibition is a novel and promising treatment for diabetes under late-stage clinical development. It generally is accepted that SGLT2 mediates 90% of renal glucose reabsorption. However, SGLT2 inhibitors in clinical development inhibit only 30–50% of the filtered glucose load. Why are they unable to inhibit 90% of glucose reabsorption in humans? We will try to provide an explanation to this puzzle in this perspective analysis of the unique pharmacokinetic and pharmacodynamic profiles of SGLT2 inhibitors in clinical trials and examine possible mechanisms and molecular properties that may be responsible. PMID:22923645

  18. N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor1[S

    Science.gov (United States)

    Zhang, Hao; Jing, Xigang; Shi, Yang; Xu, Hao; Du, Jianhai; Guan, Tongju; Weihrauch, Dorothee; Jones, Deron W.; Wang, Weiling; Gourlay, David; Oldham, Keith T.; Hillery, Cheryl A.; Pritchard, Kirkwood A.

    2013-01-01

    Myeloperoxidase (MPO) plays important roles in disease by increasing oxidative and nitrosative stress and oxidizing lipoproteins. Here we report N-acetyl lysyltyrosylcysteine amide (KYC) is an effective inhibitor of MPO activity. We show KYC inhibits MPO-mediated hypochlorous acid (HOCl) formation and nitration/oxidation of LDL. Disulfide is the major product of MPO-mediated KYC oxidation. KYC (⩽4,000 μM) does not induce cytotoxicity in bovine aortic endothelial cells (BAECs). KYC inhibits HOCl generation by phorbol myristate acetate (PMA)-stimulated neutrophils and human promyelocytic leukemia (HL-60) cells but not superoxide generation by PMA-stimulated HL-60 cells. KYC inhibits MPO-mediated HOCl formation in BAEC culture and protects BAECs from MPO-induced injury. KYC inhibits MPO-mediated lipid peroxidation of LDL whereas tyrosine (Tyr) and tryptophan (Trp) enhance oxidation. KYC is unique as its isomers do not inhibit MPO activity, or are much less effective. Ultraviolet-visible spectral studies indicate KYC binds to the active site of MPO and reacts with compounds I and II. Docking studies show the Tyr of KYC rests just above the heme of MPO. Interestingly, KYC increases MPO-dependent H2O2 consumption. These data indicate KYC is a novel and specific inhibitor of MPO activity that is nontoxic to endothelial cell cultures. Accordingly, KYC may be useful for treating MPO-mediated vascular disease. PMID:23883583

  19. Protein C inhibitor acts as a procoagulant by inhibiting the thrombomodulin-induced activation of protein C in human plasma

    NARCIS (Netherlands)

    Elisen, M. G.; von dem Borne, P. A.; Bouma, B. N.; Meijers, J. C.

    1998-01-01

    Protein C inhibitor (PCI), which was originally identified as an inhibitor of activated protein C, also efficiently inhibits coagulation factors such as factor Xa and thrombin. Recently it was found, using purified proteins, that the anticoagulant thrombin-thrombomodulin complex was also inhibited

  20. The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake.

    Science.gov (United States)

    Carpéné, Christian; Grès, Sandra; Rascalou, Simon

    2013-06-01

    The antidepressant phenelzine is a monoamine oxidase inhibitor known to inhibit various other enzymes, among them semicarbazide-sensitive amine oxidase (currently named primary amine oxidase: SSAO/PrAO), absent from neurones but abundant in adipocytes. It has been reported that phenelzine inhibits adipocyte differentiation of cultured preadipocytes. To further explore the involved mechanisms, our aim was to study in vitro the acute effects of phenelzine on de novo lipogenesis in mature fat cells. Therefore, glucose uptake and incorporation into lipid were measured in mouse adipocytes in response to phenelzine, other hydrazine-based SSAO/PrAO-inhibitors, and reference agents. None of the inhibitors was able to impair the sevenfold activation of 2-deoxyglucose uptake induced by insulin. Phenelzine did not hamper the effect of lower doses of insulin. However, insulin-stimulated glucose incorporation into lipids was dose-dependently inhibited by phenelzine and pentamidine, but not by semicarbazide or BTT2052. In contrast, all these SSAO/PrAO inhibitors abolished the transport and lipogenesis stimulation induced by benzylamine. These data indicate that phenelzine does not inhibit glucose transport, the first step of lipogenesis, but inhibits at 100 μM the intracellular triacylglycerol assembly, consistently with its long-term anti-adipogenic effect and such rapid action was not found with all the hydrazine derivatives tested. Therefore, the alterations of body weight control consecutive to the use of this antidepressant drug might be not only related to central effects on food intake/energy expenditure, but could also depend on its direct action in adipocytes. Nonetheless, phenelzine antilipogenic action is not merely dependent on SSAO/PrAO inhibition.

  1. Dynamin-like protein 1 at the Golgi complex: A novel component of the sorting/targeting machinery en route to the plasma membrane

    International Nuclear Information System (INIS)

    Bonekamp, Nina A.; Vormund, Kerstin; Jacob, Ralf; Schrader, Michael

    2010-01-01

    The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.

  2. Suppression of Homologous Recombination by insulin-like growth factor-1 inhibition sensitizes cancer cells to PARP inhibitors

    International Nuclear Information System (INIS)

    Amin, Oreekha; Beauchamp, Marie-Claude; Nader, Paul Abou; Laskov, Ido; Iqbal, Sanaa; Philip, Charles-André; Yasmeen, Amber; Gotlieb, Walter H.

    2015-01-01

    Impairment of homologous recombination (HR) is found in close to 50 % of ovarian and breast cancer. Tumors with BRCA1 mutations show increased expression of the Insulin-like growth factor type 1 receptor (IGF-1R). We previously have shown that inhibition of IGF-1R results in growth inhibition and apoptosis of ovarian tumor cells. In the current study, we aimed to investigate the correlation between HR and sensitivity to IGF-1R inhibition. Further, we hypothesized that IGF-1R inhibition might sensitize HR proficient cancers to Poly ADP ribose polymerase (PARP) inhibitors. Using ovarian and breast cancer cellular models with known BRCA1 status, we evaluated their HR functionality by RAD51 foci formation assay. The 50 % lethal concentration (LC50) of Insulin-like growth factor type 1 receptor kinase inhibitor (IGF-1Rki) in these cells was assessed, and western immunoblotting was performed to determine the expression of proteins involved in the IGF-1R pathway. Moreover, IGF-1R inhibitors were added on HR proficient cell lines to assess mRNA and protein expression of RAD51 by qPCR and western blot. Also, we explored the interaction between RAD51 and Insulin receptor substance 1 (IRS-1) by immunoprecipitation. Next, combination effect of IGF-1R and PARP inhibitors was evaluated by clonogenic assay. Cells with mutated/methylated BRCA1 showed an impaired HR function, and had an overactivation of the IGF-1R pathway. These cells were more sensitive to IGF-1R inhibition compared to HR proficient cells. In addition, the IGF-IR inhibitor reduced RAD51 expression at mRNA and protein levels in HR proficient cells, and sensitized these cells to PARP inhibitor. Targeting IGF-1R might lead to improved personalized therapeutic approaches in cancer patients with HR deficiency. Targeting both PARP and IGF-1R might increase the clinical efficacy in HR deficient patients and increase the population of patients who may benefit from PARP inhibitors

  3. N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor1[S

    OpenAIRE

    Zhang, Hao; Jing, Xigang; Shi, Yang; Xu, Hao; Du, Jianhai; Guan, Tongju; Weihrauch, Dorothee; Jones, Deron W.; Wang, Weiling; Gourlay, David; Oldham, Keith T.; Hillery, Cheryl A.; Pritchard, Kirkwood A.

    2013-01-01

    Myeloperoxidase (MPO) plays important roles in disease by increasing oxidative and nitrosative stress and oxidizing lipoproteins. Here we report N-acetyl lysyltyrosylcysteine amide (KYC) is an effective inhibitor of MPO activity. We show KYC inhibits MPO-mediated hypochlorous acid (HOCl) formation and nitration/oxidation of LDL. Disulfide is the major product of MPO-mediated KYC oxidation. KYC (⩽4,000 μM) does not induce cytotoxicity in bovine aortic endothelial cells (BAECs). KYC inhibits HO...

  4. Suramin Inhibits Osteoarthritic Cartilage Degradation by Increasing Extracellular Levels of Chondroprotective Tissue Inhibitor of Metalloproteinases 3.

    Science.gov (United States)

    Chanalaris, Anastasios; Doherty, Christine; Marsden, Brian D; Bambridge, Gabriel; Wren, Stephen P; Nagase, Hideaki; Troeberg, Linda

    2017-10-01

    Osteoarthritis is a common degenerative joint disease for which no disease-modifying drugs are currently available. Attempts to treat the disease with small molecule inhibitors of the metalloproteinases that degrade the cartilage matrix have been hampered by a lack of specificity. We aimed to inhibit cartilage degradation by augmenting levels of the endogenous metalloproteinase inhibitor, tissue inhibitor of metalloproteinases (TIMP)-3, through blocking its interaction with the endocytic scavenger receptor, low-density lipoprotein receptor-related protein 1 (LRP1). We discovered that suramin (C 51 H 40 N 6 O 23 S 6 ) bound to TIMP-3 with a K D value of 1.9 ± 0.2 nM and inhibited its endocytosis via LRP1, thus increasing extracellular levels of TIMP-3 and inhibiting cartilage degradation by the TIMP-3 target enzyme, adamalysin-like metalloproteinase with thrombospondin motifs 5. NF279 (8,8'-[carbonyl bis (imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)] bis -1,3,5-naphthalenetrisulfonic acid hexasodium salt), a structural analog of suramin, has an increased affinity for TIMP-3 and increased ability to inhibit TIMP-3 endocytosis and protect cartilage. Suramin is thus a promising scaffold for the development of novel therapeutics to increase TIMP-3 levels and inhibit cartilage degradation in osteoarthritis. Copyright © 2017 by The Author(s).

  5. Bean polygalacturonase inhibitor protein-1 (PGIP-1) inhibits polygalacturonases from Stenocarpella maydis

    CSIR Research Space (South Africa)

    Berger, DK

    2000-07-01

    Full Text Available Stenocarpella maydis, a fungal pathogen of maize, produced polygalacturonases (PGs) when grown on pectin or maize cell walls. An extract from bean (Phaseolus vulgaris L.) which contained an active inhibitor of Aspergillus niger PG, also inhibited S...

  6. NMR derived model of GTPase effector domain (GED self association: relevance to dynamin assembly.

    Directory of Open Access Journals (Sweden)

    Swagata Chakraborty

    Full Text Available Self-association of dynamin to form spiral structures around lipidic vesicles during endocytosis is largely mediated by its 'coiled coil' GTPase Effector Domain (GED, which, in vitro, self-associates into huge helical assemblies. Residue-level structural characterizations of these assemblies and understanding the process of association have remained a challenge. It is also impossible to get folded monomers in the solution phase. In this context, we have developed here a strategy to probe the self-association of GED by first dissociating the assembly using Dimethyl Sulfoxide (DMSO and then systematically monitoring the refolding into helix and concomitant re-association using NMR spectroscopy, as DMSO concentration is progressively reduced. The short segment, Arg109 - Met116, acts as the nucleation site for helix formation and self-association. Hydrophobic and complementary charge interactions on the surfaces drive self-association, as the helices elongate in both the directions resulting in an antiparallel stack. A small N-terminal segment remains floppy in the assembly. Following these and other published results on inter-domain interactions, we have proposed a plausible mode of dynamin self assembly.

  7. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.

    Science.gov (United States)

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N

    2015-09-17

    RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. External morphology of the adult of Dynamine postverta (Cramer (Lepidoptera, Nymphalidae, Biblidinae and patterns of morphological similarity among species from eight tribes of Nymphalidae

    Directory of Open Access Journals (Sweden)

    Luis Anderson Ribeiro Leite

    2013-06-01

    Full Text Available External morphology of the adult of Dynamine postverta (Cramer (Lepidoptera, Nymphalidae, Biblidinae and patterns of morphological similarity among species from eight tribes of Nymphalidae. The external structure of the integument of Dynamine postverta postverta (Cramer, 1779 is based on detailed morphological drawings and scanning electron microscopy. The data are compared with other species belonging to eight tribes of Nymphalidae, to assist future studies on the taxonomy and systematics of Neotropical Biblidinae.

  9. Identification of novel NPRAP/δ-catenin-interacting proteins and the direct association of NPRAP with dynamin 2.

    Directory of Open Access Journals (Sweden)

    Carolina Koutras

    Full Text Available Neural plakophilin-related armadillo protein (NPRAP or δ-catenin is a neuronal-specific protein that is best known for its interaction with presenilin 1 (PS1. Interestingly, the hemizygous loss of NPRAP is associated with severe mental retardation in cri du chat syndrome (CDCS, and mutations in PS1 cause an aggressive, early-onset form of Alzheimer's disease. Until recently, studies on the function of NPRAP have focused on its ability to modulate dendritic protrusion elaboration through its binding to cell adhesion and scaffolding molecules. However, mounting evidence indicates that NPRAP participates in intracellular signaling and exists in the nucleus, where it modulates gene expression. This apparent bifunctional nature suggests an elaborate neuronal role, but how NPRAP came to participate in such distinct subcellular events remains a mystery. To gain insight into this pathway, we immunoprecipitated NPRAP from human SH SY5Y cells and identified several novel interacting proteins by mass spectrometry. These included neurofilament alpha-internexin, interferon regulatory protein 2 binding factors, and dynamins 1 and 2. We further validated dynamin 2/NPRAP colocalization and direct interaction in vivo, confirming their bona fide partnership. Interestingly, dynamin 2 has established roles in endocytosis and actin assembly, and both of these processes have the potential to interface with the cell adhesion and intracellular signaling processes that involve NPRAP. Our data provide new avenues for approaching NPRAP biology and suggest a broader role for this protein than previously thought.

  10. Inhibition of natural gas hydrates by means of kinetic inhibitors; Inhibierung von Erdgashydraten mit kinetischen Inhibitoren

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, E.; Froemmel, J.; Hase, A. [Inst. fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany)

    1997-12-31

    The use of kinetic inhibitors saves considerable costs as compared with thermodynamic inhibition. The effectivity of kinetic inhibitors can be examined by means of screening tests using an agitated autoclave. This contribution describes the experimental set-up and measuring methods used for this purpose and discusses the results obtained. (MSK) [Deutsch] Der Einsatz von kinetischen Inhibitoren fuehrt im Vergleich zur thermodynamischen Inhibition zu einer erheblichen Kostenreduzierung. Die Effektivitaet wird anhand von Screening-Versuchen in einem Ruehrautoklaven geprueft.Im Folgenden werden die Versuchsapparatur und die Messmethodik beschrieben. Ebenso werden die Ergebnisse diskutiert.

  11. Dihydrocoumarin, an HDAC Inhibitor, Increases DNA Damage Sensitivity by Inhibiting Rad52

    Directory of Open Access Journals (Sweden)

    Chin-Chuan Chen

    2017-12-01

    Full Text Available Effective DNA repair enables cancer cells to survive DNA damage induced by chemotherapeutic or radiotherapeutic treatments. Therefore, inhibiting DNA repair pathways is a promising therapeutic strategy for increasing the efficacy of such treatments. In this study, we found that dihydrocoumarin (DHC, a flavoring agent, causes deficiencies in double-stand break (DSB repair and prolonged DNA damage checkpoint recovery in yeast. Following DNA damage, Rad52 recombinase was revealed to be inhibited by DHC, which results in deficiencies in DSB repair and prolonged DNA damage checkpoint recovery. The deletion of RPD3, a class I histone deacetylase (HDAC, was found to mimic DHC-induced suppression of Rad52 expression, suggesting that the HDAC inhibitor activity of DHC is critical to DSB repair and DNA damage sensitivity. Overall, our findings delineate the regulatory mechanisms of DHC in DSB repair and suggest that it might potentially be used as an inhibitor of the DNA repair pathway in human cells.

  12. Renoprotective Effects of SGLT2 Inhibitors: Beyond Glucose Reabsorption Inhibition.

    Science.gov (United States)

    Tsimihodimos, V; Filippatos, T D; Filippas-Ntekouan, S; Elisaf, M

    2017-01-01

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new class of antidiabetic drugs that inhibit glucose and sodium reabsorption at proximal tubules. These drugs may exhibit renoprotective properties, since they prevent the deterioration of the glomerular filtration rate and reduce the degree of albuminuria in patients with diabetes-associated kidney disease. In this review we consider the pathophysiologic mechanisms that have been recently implicated in the renoprotective properties of SGLT2 inhibitors. The beneficial effects of SGLT2 inhibitors on the conventional risk factors for kidney disease (such as blood pressure, hyperglycaemia, body weight and serum uric acid levels) may explain, at least in part, the observed renal-protecting properties of these compounds. However, it has been hypothesized that the most important mechanisms for this phenomenon include the reduction in the intraglomerular pressure, the changes in the local and systemic degree of activation of the renin-aldosterone-angiotensin system and a shift in renal fuel consumption towards more efficient energy substrates such as ketone bodies. The beneficial effects of SGLT2 inhibitors on various aspects of renal function make them an attractive choice in patients with (and possibly without) diabetes-associated renal impairment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy

    DEFF Research Database (Denmark)

    Böhm, Johann; Biancalana, Valérie; Dechene, Elizabeth T

    2012-01-01

    Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzym...

  14. STRUCTURAL ASPECTS OF STRONG INHIBITION AND ROLE OF SCAFFOLD FOR SERINE PROTEASE INHIBITORS

    Directory of Open Access Journals (Sweden)

    Jhimli Dasgupta

    2011-12-01

    Full Text Available Canonical serine protease inhibitors inhibit their cognate enzymes by binding tightly at the enzyme active site in a substrate-like manner, being cleaved extremely slowly compared to a true substrate. They interact with cognate enzymes through P3-P2 region of the inhibitory loop while the scaffold hardly makes any contact. Neighbouring scaffolding residues like arginine or asparagine shape-up the inhibitory loop and religate the cleaved scissile bond. The specificity of the inhibitor can be altered by mutating the hyper solvent accessible P1 residue without changing loop-scaffold interactions. To understand the loop-scaffold compatibility, we prepared three chimeric proteins ECIL-WCIS , ETIL-WCIS , and STIL-WCIS , where the inhibitory loops of ECI, ETI, and STI were placed on the scaffold of their homologue WCI. Results showed that although ECIL-WCIS and STIL-WCIS behave like inhibitors, ETIL-WCIS behaves like a substrate. Crystal structure of ETIL-WCIS and its comparison with ETI indicated that three novel scaffolding residues Trp88, Arg74, and Tyr113 in ETI act as barrier to confine the inhibitory loop to canonical conformation. Absence of this barrier in the scaffold of WCI makes the inhibitory loop flexible in ETIL-WCIS leading to a loss of canonical conformation, explaining its substrate-like behaviour. Furthermore, complex structures of the inhibitors with their cognate enzymes indicate that rigidification of the inhibitory loop at the enzyme active site is necessary for efficient inhibition.

  15. High potency inhibition of hERG potassium channels by the sodium–calcium exchange inhibitor KB-R7943

    Science.gov (United States)

    Cheng, Hongwei; Zhang, Yihong; Du, Chunyun; Dempsey, Christopher E; Hancox, Jules C

    2012-01-01

    BACKGROUND AND PURPOSE KB-R7943 is an isothiourea derivative that is used widely as a pharmacological inhibitor of sodium–calcium exchange (NCX) in experiments on cardiac and other tissue types. This study investigated KB-R7943 inhibition of hERG (human ether-à-go-go-related gene) K+ channels that underpin the cardiac rapid delayed rectifier potassium current, IKr. EXPERIMENTAL APPROACH Whole-cell patch-clamp measurements were made of hERG current (IhERG) carried by wild-type or mutant hERG channels and of native rabbit ventricular IKr. Docking simulations utilized a hERG homology model built on a MthK-based template. KEY RESULTS KB-R7943 inhibited both IhERG and native IKr rapidly on membrane depolarization with IC50 values of ∼89 and ∼120 nM, respectively, for current tails at −40 mV following depolarizing voltage commands to +20 mV. Marked IhERG inhibition also occurred under ventricular action potential voltage clamp. IhERG inhibition by KB-R7943 exhibited both time- and voltage-dependence but showed no preference for inactivated over activated channels. Results of alanine mutagenesis and docking simulations indicate that KB-R7943 can bind to a pocket formed of the side chains of aromatic residues Y652 and F656, with the compound's nitrobenzyl group orientated towards the cytoplasmic side of the channel pore. The structurally related NCX inhibitor SN-6 also inhibited IhERG, but with a markedly reduced potency. CONCLUSIONS AND IMPLICATIONS KB-R7943 inhibits IhERG/IKr with a potency that exceeds that reported previously for acute cardiac NCX inhibition. Our results also support the feasibility of benzyloxyphenyl-containing NCX inhibitors with reduced potential, in comparison with KB-R7943, to inhibit hERG. PMID:21950687

  16. An Ectosteric Inhibitor of Cathepsin K Inhibits Bone Resorption in Ovariectomized Mice

    DEFF Research Database (Denmark)

    Panwar, Preety; Xue, Liming; Søe, Kent

    2017-01-01

    The potent cathepsin K (CatK) inhibitor, Tanshinone IIA sulfonic sodium (T06), was tested for its in vitro and in vivo antiresorptive activities. T06 binds in an ectosteric site of CatK remote from its active site and selectively inhibits collagen degradation with an IC50 value of 2.7±0.2μM (CatK...

  17. Novel mechanisms to inhibit HIV reservoir seeding using Jak inhibitors.

    Directory of Open Access Journals (Sweden)

    Christina Gavegnano

    2017-12-01

    Full Text Available Despite advances in the treatment of HIV infection with ART, elucidating strategies to overcome HIV persistence, including blockade of viral reservoir establishment, maintenance, and expansion, remains a challenge. T cell homeostasis is a major driver of HIV persistence. Cytokines involved in regulating homeostasis of memory T cells, the major hub of the HIV reservoir, trigger the Jak-STAT pathway. We evaluated the ability of tofacitinib and ruxolitinib, two FDA-approved Jak inhibitors, to block seeding and maintenance of the HIV reservoir in vitro. We provide direct demonstration for involvement of the Jak-STAT pathway in HIV persistence in vivo, ex vivo, and in vitro; pSTAT5 strongly correlates with increased levels of integrated viral DNA in vivo, and in vitro Jak inhibitors reduce the frequency of CD4+ T cells harboring integrated HIV DNA. We show that Jak inhibitors block viral production from infected cells, inhibit γ-C receptor cytokine (IL-15-induced viral reactivation from latent stores thereby preventing transmission of infectious particles to bystander activated T cells. These results show that dysregulation of the Jak-STAT pathway is associated with viral persistence in vivo, and that Jak inhibitors target key events downstream of γ-C cytokine (IL-2, IL-7 and IL-15 ligation to their receptors, impacting the magnitude of the HIV reservoir in all memory CD4 T cell subsets in vitro and ex vivo. Jak inhibitors represent a therapeutic modality to prevent key events of T cell activation that regulate HIV persistence and together, specific, potent blockade of these events may be integrated to future curative strategies.

  18. Dynamin-like proteins in Trypanosoma brucei: A division of labour between two paralogs?

    Czech Academy of Sciences Publication Activity Database

    Benz, C.; Stříbrná, Eva; Hashimi, Hassan; Lukeš, Julius

    2017-01-01

    Roč. 12, č. 5 (2017), č. článku e0177200. E-ISSN 1932-6203 R&D Projects: GA ČR GA15-21974S; GA ČR GA17-24036S; GA MŠk LL1601 Institutional support: RVO:60077344 Keywords : blood-stream forms * mitochondrial fission * sequence alignment * gtpase activity * single dynamin * life-cycle * endocytosis * fis1 * expression * surface Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 2.806, year: 2016

  19. Switch in Site of Inhibition: A Strategy for Structure-Based Discovery of Human Topoisomerase IIα Catalytic Inhibitors

    Science.gov (United States)

    2015-01-01

    A study of structure-based modulation of known ligands of hTopoIIα, an important enzyme involved in DNA processes, coupled with synthesis and in vitro assays led to the establishment of a strategy of rational switch in mode of inhibition of the enzyme’s catalytic cycle. 6-Arylated derivatives of known imidazopyridine ligands were found to be selective inhibitors of hTopoIIα, while not showing TopoI inhibition and DNA binding. Interestingly, while the parent imidazopyridines acted as ATP-competitive inhibitors, arylated derivatives inhibited DNA cleavage similar to merbarone, indicating a switch in mode of inhibition from ATP-hydrolysis to the DNA-cleavage stage of catalytic cycle of the enzyme. The 6-aryl-imidazopyridines were relatively more cytotoxic than etoposide in cancer cells and less toxic to normal cells. Such unprecedented strategy will encourage research on “choice-based change” in target-specific mode of action for rapid drug discovery. PMID:25941559

  20. Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model.

    Directory of Open Access Journals (Sweden)

    Kelly Jean Thomas

    Full Text Available Evasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549 cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynamics whereby the joining of two mitochondria, fusion, inhibits apoptosis while fission, the division of a mitochondrion, initiates apoptosis. Mitochondrial morphology of A549 cells displayed an elongated phenotype-mimicking cells deficient in mitochondrial fission protein, Dynamin-related protein 1 (Drp1. A549 cells had impaired Drp1 mitochondrial recruitment and decreased Drp1-dependent fission. Cytochrome c release and caspase-3 and PARP cleavage were impaired both basally and with apoptotic stimuli in A549 cells. Increased mitochondrial mass was observed in A549 cells, suggesting defects in mitophagy (mitochondrial selective autophagy. A549 cells had decreased LC3-II lipidation and lysosomal inhibition suggesting defects in autophagy occur upstream of lysosomal degradation. Immunostaining indicated mitochondrial localized LC3 punctae in A549 cells increased after mitochondrial uncoupling or with a combination of mitochondrial depolarization and ectopic Drp1 expression. Increased inhibition of apoptosis in A549 cells is correlated with impeded mitochondrial fission and mitophagy. We suggest mitochondrial fission defects contribute to apoptotic resistance in A549 cells.

  1. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R., E-mail: grw7@cornell.edu

    2014-07-25

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.

  2. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    International Nuclear Information System (INIS)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R.

    2014-01-01

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza

  3. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Kai [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of Life Science and Technology, Jinan University, Guangzhou (China); Chen, Maoyun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Xiang, Yangfei; Ma, Kaiqi [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Jin, Fujun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Wang, Xiao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wang, Xiaoyan; Wang, Shaoxiang [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Wang, Yifei, E-mail: twang-yf@163.com [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China)

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.

  4. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    International Nuclear Information System (INIS)

    Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Ma, Kaiqi; Jin, Fujun; Wang, Xiao; Wang, Xiaoyan; Wang, Shaoxiang; Wang, Yifei

    2014-01-01

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections

  5. General amyloid inhibitors? A critical examination of the inhibition of IAPP amyloid formation by inositol stereoisomers.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Islet amyloid polypeptide (IAPP or amylin forms amyloid deposits in the islets of Langerhans; a process that is believed to contribute to the progression of type 2 diabetes and to the failure of islet transplants. An emerging theme in amyloid research is the hypothesis that the toxic species produced during amyloid formation by different polypeptides share common features and exert their effects by common mechanisms. If correct, this suggests that inhibitors of amyloid formation by one polypeptide might be effective against other amyloidogenic sequences. IAPP and Aβ, the peptide responsible for amyloid formation in Alzheimer's disease, are particularly interesting in this regard as they are both natively unfolded in their monomeric states and share some common characteristics. Comparatively little effort has been expended on the design of IAPP amyloid inhibitors, thus it is natural to inquire if Aβ inhibitors are effective against IAPP, especially since no IAPP inhibitors have been clinically approved. A range of compounds inhibit Aβ amyloid formation, including various stereoisomers of inositol. Myo-, scyllo-, and epi-inositol have been shown to induce conformational changes in Aβ and prevent Aβ amyloid fibril formation by stabilizing non-fibrillar β-sheet structures. We investigate the ability of inositol stereoisomers to inhibit amyloid formation by IAPP. The compounds do not induce a conformational change in IAPP and are ineffective inhibitors of IAPP amyloid formation, although some do lead to modest apparent changes in IAPP amyloid fibril morphology. Thus not all classes of Aβ inhibitors are effective against IAPP. This work provides a basis of comparison to work on polyphenol based inhibitors of IAPP amyloid formation and helps provide clues as to the features which render them effective. The study also helps provide information for further efforts in rational inhibitor design.

  6. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans.

    Science.gov (United States)

    Abdul-Ghani, Muhammad A; DeFronzo, Ralph A; Norton, Luke

    2013-10-01

    Inhibitors of sodium-glucose cotransporter 2 (SGLT2) are a novel class of antidiabetes drugs, and members of this class are under various stages of clinical development for the management of type 2 diabetes mellitus (T2DM). It is widely accepted that SGLT2 is responsible for >80% of the reabsorption of the renal filtered glucose load. However, maximal doses of SGLT2 inhibitors fail to inhibit >50% of the filtered glucose load. Because the clinical efficacy of this group of drugs is entirely dependent on the amount of glucosuria produced, it is important to understand why SGLT2 inhibitors inhibit <50% of the filtered glucose load. In this Perspective, we provide a novel hypothesis that explains this apparent puzzle and discuss some of the clinical implications inherent in this hypothesis.

  7. Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors.

    Science.gov (United States)

    Tsurkan, Lyudmila G; Hatfield, M Jason; Edwards, Carol C; Hyatt, Janice L; Potter, Philip M

    2013-03-25

    Carboxylesterases (CEs) are ubiquitously expressed proteins that are responsible for the detoxification of xenobiotics. They tend to be expressed in tissues likely to be exposed to such agents (e.g., lung and gut epithelia, liver) and can hydrolyze numerous agents, including many clinically used drugs. Due to the considerable structural similarity between cholinesterases (ChE) and CEs, we have assessed the ability of a series of ChE inhibitors to modulate the activity of the human liver (hCE1) and the human intestinal CE (hiCE) isoforms. We observed inhibition of hCE1 and hiCE by carbamate-containing small molecules, including those used for the treatment of Alzheimer's disease. For example, rivastigmine resulted in greater than 95% inhibition of hiCE that was irreversible under the conditions used. Hence, the administration of esterified drugs, in combination with these carbamates, may inadvertently result in decreased hydrolysis of the former, thereby limiting their efficacy. Therefore drug:drug interactions should be carefully evaluated in individuals receiving ChE inhibitors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. GS143, an IκB ubiquitination inhibitor, inhibits allergic airway inflammation in mice

    International Nuclear Information System (INIS)

    Hirose, Koichi; Wakashin, Hidefumi; Oki, Mie; Kagami, Shin-ichiro; Suto, Akira; Ikeda, Kei; Watanabe, Norihiko; Iwamoto, Itsuo; Furuichi, Yasuhiro; Nakajima, Hiroshi

    2008-01-01

    Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-κB (NF-κB) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of IκB ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-κB activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil and lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that IκB ubiquitination inhibitor may have therapeutic potential against asthma

  9. A Revisit to the Corrosion Inhibition of Aluminum in Aqueous Alkaline Solutions by Water-Soluble Alginates and Pectates as Anionic Polyelectrolyte Inhibitors

    Directory of Open Access Journals (Sweden)

    Refat Hassan

    2013-01-01

    Full Text Available The corrosion behavior of aluminum (Al in alkaline media in presence of some natural polymer inhibitors has been reinvestigated. The inhibition action of the tested inhibitors was found to obey both Langmuir and Freundlich isotherms models. The inhibition efficiency was found to increase with increasing the inhibitors concentration and decrease with increasing the temperature, suggesting physical adsorption mechanism. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated, and a suitable corrosion mechanism consistent with the kinetic results obtained is suggested and discussed.

  10. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors.

    Science.gov (United States)

    Hassan, Refat M; Zaafarany, Ishaq A

    2013-06-17

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyeletrolyte pectates (PEC) as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  11. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun; Zhuang, Wen-Fang

    2015-01-01

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice

  12. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun, E-mail: majuntongrensh1@126.com; Zhuang, Wen-Fang, E-mail: wenfangzhuangmd@163.com

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.

  13. MEK inhibition potentiates the activity of Hsp90 inhibitor 17-AAG against pancreatic cancer cells.

    Science.gov (United States)

    Zhang, Tao; Li, Yanyan; Zhu, Zhenkun; Gu, Mancang; Newman, Bryan; Sun, Duxin

    2010-10-04

    The Ras/Raf/MEK/ERK signaling has been implicated in uncontrolled cell proliferation and tumor progression in pancreatic cancer. The purpose of this study is to evaluate the antitumor activity of MEK inhibitor U0126 in combination with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) in pancreatic cancer cells. Western blotting showed that 17-AAG caused a 2- to 3-fold transient activation of MEK/ERK signaling in pancreatic cancer cells. The activation sustained for 6 h before phospho-ERK (p-ERK) destabilization. The selective MEK inhibitor U0126 completely abolished 17-AAG induced ERK1/2 activation and resulted in more than 80% of phospho-ERK degradation after only 15 min treatment. Moreover, U0126 had complementary effect on 17-AAG regulated oncogenic and cell cycle related proteins. Although 17-AAG downregulated cyclin D1, cyclin E, CDK4 and CDK6, it led to cyclin A and CDK2 accumulation, which was reversed by the addition of U0126. Antiproliferation assay showed that combination of U0126 and 17-AAG resulted in synergistic cytotoxic effect. More importantly, 17-AAG alone only exhibited moderate inhibition of cell migration in vitro, while addition of U0126 dramatically enhanced the inhibitory effect by 2- to 5-fold. Taken together, these data demonstrate that MEK inhibitor U0126 potentiates the activity of Hsp90 inhibitor 17-AAG against pancreatic cancer cells. The combination of Hsp90 and MEK inhibition could provide a promising avenue for the treatment of pancreatic cancer.

  14. Kinetic analysis of the inhibition of matrix metalloproteinases: lessons from the study of tissue inhibitors of metalloproteinases.

    Science.gov (United States)

    Willenbrock, Frances; Thomas, Daniel A; Amour, Augustin

    2010-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) are a group of highly potent inhibitors of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs). The high affinity and "tight-binding" nature of the inhibition of MMPs or ADAMs by TIMPs presents challenges for the determination of both equilibrium and dissociation rate constants of these inhibitory events. Methodologies that enable some of these challenges to be overcome are described in this chapter and represent valuable lessons for the in vitro assessment of MMP or ADAM inhibitors within a drug discovery context.

  15. Dynamin1 is a novel target for IRSp53 protein and works with mammalian enabled (Mena) protein and Eps8 to regulate filopodial dynamics.

    Science.gov (United States)

    Chou, Ai Mei; Sem, Kai Ping; Wright, Graham Daniel; Sudhaharan, Thankiah; Ahmed, Sohail

    2014-08-29

    Filopodia are dynamic actin-based structures that play roles in processes such as cell migration, wound healing, and axonal guidance. Cdc42 induces filopodial formation through IRSp53, an Inverse-Bin-Amphiphysins-Rvs (I-BAR) domain protein. Previous work from a number of laboratories has shown that IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics through its Src homology 3 domain binding partners. Here, we show that dynamin1 (Dyn1), the large guanosine triphosphatase, is an interacting partner of IRSp53 through pulldown and Förster resonance energy transfer analysis, and we explore its role in filopodial formation. In neuroblastoma cells, Dyn1 localizes to filopodia, associated tip complexes, and the leading edge just behind the anti-capping protein mammalian enabled (Mena). Dyn1 knockdown reduces filopodial formation, which can be rescued by overexpressing wild-type Dyn1 but not the GTPase mutant Dyn1-K44A and the loss-of-function actin binding domain mutant Dyn1-K/E. Interestingly, dynasore, an inhibitor of Dyn GTPase, also reduced filopodial number and increased their lifetime. Using rapid time-lapse total internal reflection fluorescence microscopy, we show that Dyn1 and Mena localize to filopodia only during initiation and assembly. Dyn1 actin binding domain mutant inhibits filopodial formation, suggesting a role in actin elongation. In contrast, Eps8, an actin capping protein, is seen most strongly at filopodial tips during disassembly. Taken together, the results suggest IRSp53 partners with Dyn1, Mena, and Eps8 to regulate filopodial dynamics. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Mitochondrial toxicity of selective COX-2 inhibitors via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria

    DEFF Research Database (Denmark)

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-01-01

    Cyclooxygenase-2 (COX-2) inhibitors (coxibs) are non-steroidal anti-inflammatory drugs (NSAIDs) designed to selectively inhibit COX-2. However, drugs of this therapeutic class are associated with drug induced liver injury (DILI) and mitochondrial injury is likely to play a role. The effects...... of selective COX-2 inhibitors on inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria were investigated. The order of potency of inhibition of ATP synthesis was: lumiracoxib (IC50: 6.48 ± 2.74 μM)>celecoxib (IC50: 14.92 ± 6.40 μM)>valdecoxib (IC50: 161.4 ± 28.6 μM)>rofecoxib (IC50...... correlation (with r(2)=0.921) was observed between the potency of inhibition of ATP synthesis and the log P values. The in vitro metabolism of coxibs in rat liver mitochondria yielded for each drug substance a major single metabolite and identified a hydroxy metabolite with each of the coxibs...

  17. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors

    Directory of Open Access Journals (Sweden)

    Refat M. Hassan

    2013-06-01

    Full Text Available Corrosion inhibition of aluminum (Al in hydrochloric acid by anionic polyeletrolyte pectates (PEC as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  18. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth.

    Science.gov (United States)

    Koo, Junghui; Yue, Ping; Gal, Anthony A; Khuri, Fadlo R; Sun, Shi-Yong

    2014-05-01

    mTOR kinase inhibitors that target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here, we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacologic inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. ©2014 AACR.

  19. Human monoamine oxidase is inhibited by tobacco smoke: β-carboline alkaloids act as potent and reversible inhibitors

    International Nuclear Information System (INIS)

    Herraiz, Tomas; Chaparro, Carolina

    2005-01-01

    Monoamine oxidase (MAO) is a mitochondrial outer-membrane flavoenzyme involved in brain and peripheral oxidative catabolism of neurotransmitters and xenobiotic amines, including neurotoxic amines, and a well-known target for antidepressant and neuroprotective drugs. Recently, positron emission tomography imaging has shown that smokers have a much lower activity of peripheral and brain MAO-A (30%) and -B (40%) isozymes compared to non-smokers. This MAO inhibition results from a pharmacological effect of smoke, but little is known about its mechanism. Working with mainstream smoke collected from commercial cigarettes we confirmed that cigarette smoke is a potent inhibitor of human MAO-A and -B isozymes. MAO inhibition was partly reversible, competitive for MAO-A, and a mixed-type inhibition for MAO-B. Two β-carboline alkaloids, norharman (β-carboline) and harman (1-methyl-β-carboline), were identified by GC-MS, quantified, and isolated from the mainstream smoke by solid phase extraction and HPLC. Kinetics analysis revealed that β-carbolines from cigarette smoke were competitive, reversible, and potent inhibitors of MAO enzymes. Norharman was an inhibitor of MAO-A (K i = 1.2 ± 0.18 μM) and MAO-B (K i = 1.12 ± 0.19 μM), and harman of MAO-A (K i = 55.54 ± 5.3 nM). β-Carboline alkaloids are psychopharmacologically active compounds that may occur endogenously in human tissues, including the brain. These results suggest that β-carboline alkaloids from cigarette smoke acting as potent reversible inhibitors of MAO enzymes may contribute to the MAO-reduced activity produced by tobacco smoke in smokers. The presence of MAO inhibitors in smoke like β-carbolines and others may help us to understand some of the purported neuropharmacological effects associated with smoking

  20. Roles of dynamin-related protein 1 in the regulation of mitochondrial fission and apoptosis in response to UV stimuli

    Science.gov (United States)

    Zhang, Zhenzhen; Feng, Jie; Wu, Shengnan

    2011-03-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, it remains unclear whether this event has a significant impact on the rate of cell death or only accompanies apoptosis as an epiphenomenon. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial morphology and apoptosis in response to UV irradiation in human lung adenocarcinoma cells (ASTC-a-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Down-regulation of Drp1 by shRNA inhibits UV-induced apoptosis. Our results suggest that Drp1 is involved in the regulation of transition from a reticulo-tubular to a punctiform mitochondrial phenotype and mitochondrial fission plays an important role in UV-induced apoptosis.

  1. Protease inhibitors and indoleamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer disease.

    Science.gov (United States)

    Wright, C I; Guela, C; Mesulam, M M

    1993-01-01

    Neurofibrillary tangles and amyloid plaques express acetylcholinesterase and butyrylcholinesterase activity in Alzheimer disease. We previously reported that traditional acetylcholinesterase inhibitors such as BW284C51, tacrine, and physostigmine were more potent inhibitors of the acetylcholinesterase in normal axons and cell bodies than of the acetylcholinesterase in plaques and tangles. We now report that the reverse pattern is seen with indoleamines (such as serotonin and its precursor 5-hydroxytryptophan), carboxypeptidase inhibitor, and the nonspecific protease inhibitor bacitracin. These substances are more potent inhibitors of the cholinesterases in plaques and tangles than of those in normal axons and cell bodies. These results show that the enzymatic properties of plaque and tangle-associated cholinesterases diverge from those of normal axons and cell bodies. The selective susceptibility to bacitracin and carboxypeptidase inhibitor indicates that the catalytic sites of plaque and tangle-bound cholinesterases are more closely associated with peptidase or protease-like properties than the catalytic sites of cholinesterases in normal axons and cell bodies. This shift in enzymatic affinity may lead to the abnormal protein processing that is thought to play a major role in the pathogenesis of Alzheimer disease. The availability of pharmacological and dietary means for altering brain indoleamines raises therapeutic possibilities for inhibiting the abnormal cholinesterase activity associated with Alzheimer disease. Images PMID:8421706

  2. Novel Hypothesis to Explain Why SGLT2 Inhibitors Inhibit Only 30–50% of Filtered Glucose Load in Humans

    Science.gov (United States)

    Abdul-Ghani, Muhammad A.; DeFronzo, Ralph A.; Norton, Luke

    2013-01-01

    Inhibitors of sodium-glucose cotransporter 2 (SGLT2) are a novel class of antidiabetes drugs, and members of this class are under various stages of clinical development for the management of type 2 diabetes mellitus (T2DM). It is widely accepted that SGLT2 is responsible for >80% of the reabsorption of the renal filtered glucose load. However, maximal doses of SGLT2 inhibitors fail to inhibit >50% of the filtered glucose load. Because the clinical efficacy of this group of drugs is entirely dependent on the amount of glucosuria produced, it is important to understand why SGLT2 inhibitors inhibit <50% of the filtered glucose load. In this Perspective, we provide a novel hypothesis that explains this apparent puzzle and discuss some of the clinical implications inherent in this hypothesis. PMID:24065789

  3. Prevention of wear particle-induced osteolysis by a novel V-ATPase inhibitor saliphenylhalamide through inhibition of osteoclast bone resorption.

    Directory of Open Access Journals (Sweden)

    An Qin

    Full Text Available Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis.

  4. The M358R variant of α_1-proteinase inhibitor inhibits coagulation factor VIIa

    International Nuclear Information System (INIS)

    Sheffield, William P.; Bhakta, Varsha

    2016-01-01

    The naturally occurring M358R mutation of the plasma serpin α_1-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg–Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg–Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10"2 M"−"1sec"−"1. We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. - Highlights: • The inhibitory specificity of the serpin alpha-1-proteinase inhibitor (API) is sharply altered in the M358R variant. • API M358R forms denaturation-resistant complexes with coagulation factor VIIa at a rate accelerated by tissue factor but unaffected by heparin. • Complex formation was shown by gel-based assays and quantified kinetically by inhibition of FVIIa-dependent amidolysis.

  5. Env-glycoprotein heterogeneity as a source of apparent synergy and enhanced cooperativity in inhibition of HIV-1 infection by neutralizing antibodies and entry inhibitors

    Science.gov (United States)

    Ketas, Thomas J.; Holuigue, Sophie; Matthews, Katie; Moore, John P.

    2011-01-01

    We measured the inhibition of infectivity of HIV-1 isolates and derivative clones by combinations of neutralizing antibodies (NAbs) and other entry inhibitors in a single-cycle-replication assay. Synergy was analyzed both by the current linear and a new nonlinear method. The new method reduced spurious indications of synergy and antagonism. Synergy between NAbs was overall weaker than between other entry inhibitors, and no stronger where one ligand is known to enhance the binding of another. However, synergy was stronger for a genetically heterogeneous HIV-1 R5 isolate than for its derivative clones. Enhanced cooperativity in inhibition by combinations, compared with individual inhibitors, correlated with increased synergy at higher levels of inhibition, while being less variable. Again, cooperativity enhancement was stronger for isolates than clones. We hypothesize that genetic, post-translational or conformational heterogeneity of the Env protein and of other targets for inhibitors can yield apparent synergy and increased cooperativity between inhibitors. PMID:22018634

  6. Corrosion inhibition by inorganic cationic inhibitors on the high strength alumunium alloy, 2024-T3

    Science.gov (United States)

    Chilukuri, Anusha

    The toxicity and carcinogenic nature of chromates has led to the investigation of environmentally friendly compounds that offer good corrosion resistance to AA 2024-T3. Among the candidate inhibitors are rare earth metal cationic (REM) and zinc compounds, which have received much of attention over the past two decades. A comparative study on the corrosion inhibition caused by rare earth metal cations, Ce3+, Pr3+, La3+ and Zn2+ cations on the alloy was done. Cathodic polarization showed that these inhibitor ions suppress the oxygen reduction reaction (ORR) to varying extents with Zn2+ providing the best inhibition. Pr3+ exhibited windows of concentration (100-300 ppm) in which the corrosion rate is minimum; similar to the Ce3+ cation. Scanning Electron Microscopy (SEM) studies showed that the mechanism of inhibition of the Pr3+ ion is also similar to that of the Ce3+ ion. Potentiodynamic polarization experiments after 30 min immersion time showed greatest suppression of oxygen reduction reaction in neutral chloride solutions (pH 7), which reached a maximum at a Zn2+ ion concentration of 5 mM. Anodic polarization experiments after 30 min immersion time, showed no anodic inhibition by the inhibitor in any concentration (0.1 mM - 10 mM) and at any pH. However, anodic polarization of samples immersed after longer immersion times (upto 4 days) in mildly acidic Zn2+ (pH 4) solutions showed significant reduction in anodic kinetics indicating that zinc also acts as a “slow anodic inhibitor”. In contrast to the polarization experiments, coupons exposed to inhibited acidic solutions at pH 4 showed complete suppression of dissolution of Al2CuMg particles compared to zinc-free solutions in the SEM studies. Samples exposed in pH 4 Zn2+-bearing solution exhibited highest polarization resistance which was also observed to increase with time. In deaerated solutions, the inhibition by Zn2+ at pH 4 is not observed as strongly. The ability to make the interfacial electrolyte

  7. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells.

    Science.gov (United States)

    Kang, Minyong; Lee, Kyoung-Hwa; Lee, Hye Sun; Jeong, Chang Wook; Kwak, Cheol; Kim, Hyeon Hoe; Ku, Ja Hyeon

    2017-02-04

    Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR) inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1), chloroquine (CQ) and 3-methyladenine (3-MA) were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8) assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI) was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA) remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating a novel

  8. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Minyong Kang

    2017-02-01

    Full Text Available Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1, chloroquine (CQ and 3-methyladenine (3-MA were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8 assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating

  9. Organic compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elizandra C.S.; Chrisman, Erika C.A.N. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2009-12-19

    The use of inhibitors for mild steels corrosion control which are in contact with aggressive environment is an accepted practice in acid treatment of oil-wells. Organic compounds have been studied to evaluate their corrosion inhibition potential. Film-forming corrosion inhibitors, commonly used to protect oil-field equipment, can be absorbed on the steel surface to give structurally ordered layers. Therefore, the electrons should act as an important role for this adsorption. Studies reveal that organic compounds show significant inhibition efficiency. For this purpose, their molecules should contain N, O and S heteroatoms in various functional groups, long hydrocarbon linear or branched radical and anion and cation active components. However, most of these compounds are not only expensive but also toxic to living beings. According to the 'Green Chemistry' rules, corrosion inhibitors based on organic compounds should be cheap, with low toxicity and have high inhibition efficiency. In this study, the effects of some organic compounds with different groups such as amide, ether, phenyldiamine, anime and aminophenol on the corrosion behavior of mild steel in acidic media have been investigated. The experimental data were obtained by gravimetric measurements. The results show that these compounds reveal a promising corrosion inhibition where phenyldiamine is the most efficient. The effect of molecular structure on the corrosion inhibition efficiency was investigated by semi-empirical quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, and LUMO-HOMO energy gap orbital density were calculated. The relations between the inhibition efficiency and some quantum parameters are discussed and correlations are proposed. The highest values for the HOMO densities were found in the vicinity nitrogen atom, indicating that it is the most probable adsorption center

  10. Inhibition of plasminogen activator inhibitor-1 activity results in promotion of endogenous thrombolysis and inhibition of thrombus extension in models of experimental thrombosis

    NARCIS (Netherlands)

    Levi, M. [=Marcel M.; Biemond, B. J.; van Zonneveld, A. J.; ten Cate, J. W.; Pannekoek, H.

    1992-01-01

    We investigated the effect of inhibition of plasminogen activator inhibitor-1 (PAI-1) activity by a murine monoclonal anti-human PAI-1 antibody (MAI-12) on in vitro thrombolysis and on in vivo thrombolysis and thrombus extension in an experimental animal model for thrombosis. Thrombolysis, mediated

  11. Inhibition of post-transcriptional RNA processing by CDK inhibitors and its implication in anti-viral therapy.

    Directory of Open Access Journals (Sweden)

    Jitka Holcakova

    Full Text Available Cyclin-dependent kinases (CDKs are key regulators of the cell cycle and RNA polymerase II mediated transcription. Several pharmacological CDK inhibitors are currently in clinical trials as potential cancer therapeutics and some of them also exhibit antiviral effects. Olomoucine II and roscovitine, purine-based inhibitors of CDKs, were described as effective antiviral agents that inhibit replication of a broad range of wild type human viruses. Olomoucine II and roscovitine show high selectivity for CDK7 and CDK9, with important functions in the regulation of RNA polymerase II transcription. RNA polymerase II is necessary for viral transcription and following replication in cells. We analyzed the effect of inhibition of CDKs by olomoucine II on gene expression from viral promoters and compared its effect to widely-used roscovitine. We found that both roscovitine and olomoucine II blocked the phosphorylation of RNA polymerase II C-terminal domain. However the repression of genes regulated by viral promoters was strongly dependent on gene localization. Both roscovitine and olomoucine II inhibited expression only when the viral promoter was not integrated into chromosomal DNA. In contrast, treatment of cells with genome-integrated viral promoters increased their expression even though there was decreased phosphorylation of the C-terminal domain of RNA polymerase II. To define the mechanism responsible for decreased gene expression after pharmacological CDK inhibitor treatment, the level of mRNA transcription from extrachromosomal DNA was determined. Interestingly, our results showed that inhibition of RNA polymerase II C-terminal domain phosphorylation increased the number of transcribed mRNAs. However, some of these mRNAs were truncated and lacked polyadenylation, which resulted in decreased translation. These results suggest that phosphorylation of RNA polymerase II C-terminal domain is critical for linking transcription and posttrancriptional

  12. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice.

    Science.gov (United States)

    Chiasson, Valorie L; Pakanati, Abhinandan R; Hernandez, Marcos; Young, Kristina J; Bounds, Kelsey R; Mitchell, Brett M

    2017-07-01

    The immunosuppressive calcineurin inhibitors cyclosporine A and tacrolimus alter T-cell subsets and can cause hypertension, vascular dysfunction, and renal toxicity. We and others have reported that cyclosporine A and tacrolimus decrease anti-inflammatory regulatory T cells and increase proinflammatory interleukin-17-producing T cells; therefore, we hypothesized that inhibition of these effects using noncellular therapies would prevent the hypertension, endothelial dysfunction, and renal glomerular injury induced by calcineurin inhibitor therapy. Daily treatment of mice with cyclosporine A or tacrolimus for 1 week significantly decreased CD4 + /FoxP3 + regulatory T cells in the spleen and lymph nodes, as well as induced hypertension, vascular injury and dysfunction, and glomerular mesangial expansion in mice. Daily cotreatment with all-trans retinoic acid reported to increase regulatory T cells and decrease interleukin-17-producing T cells, prevented all of the detrimental effects of cyclosporine A and tacrolimus. All-trans retinoic acid also increased regulatory T cells and prevented the hypertension, endothelial dysfunction, and glomerular injury in genetically modified mice that phenocopy calcineurin inhibitor-treated mice (FKBP12-Tie2 knockout). Treatment with an interleukin-17-neutralizing antibody also increased regulatory T-cell levels and prevented the hypertension, endothelial dysfunction, and glomerular injury in cyclosporine A-treated and tacrolimus-treated mice and FKBP12-Tie2 knockout mice, whereas an isotype control had no effect. Augmenting regulatory T cells and inhibiting interleukin-17 signaling using noncellular therapies prevents the cardiovascular and renal toxicity of calcineurin inhibitors in mice. © 2017 American Heart Association, Inc.

  13. Flower inhibition in Kalanchoe blossfeldiana. Bioassay of an endogenous long-day inhibitor and inhibition by (±) abscisic acid and xanthoxin.

    Science.gov (United States)

    Schwabe, W W

    1972-03-01

    The inhibition of flowering in Kalanchoe by crude sap expressed from leaves held in non-inductive long-day conditions is described, using a bioassay technique of leaf injection, which confirms the existence of a transferable inhibitor.This technique has also revealed that ± abscisic acid and Xanthoxin are inhibitory to flowering at 50 and 100 ppm respectively. The previously known inhibitory effects of gibberellic acid on flowering have also been confirmed.

  14. Improved detection of hydrophilic phosphopeptides using graphite powder microcolumns and mass spectrometry: evidence for in vivo doubly phosphorylated dynamin I and dynamin III

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Graham, Mark E; Robinson, Phillip J

    2004-01-01

    A common strategy in proteomics to improve the number and quality of peptides detected by mass spectrometry (MS) is to desalt and concentrate proteolytic digests using reversed phase (RP) chromatography prior to analysis. However, this does not allow for detection of small or hydrophilic peptides...... a large improvement in the detection of small amounts of phosphopeptides by MS and the approach has major implications for both small- and large-scale projects in phosphoproteomics.......A common strategy in proteomics to improve the number and quality of peptides detected by mass spectrometry (MS) is to desalt and concentrate proteolytic digests using reversed phase (RP) chromatography prior to analysis. However, this does not allow for detection of small or hydrophilic peptides......, or peptides altered in hydrophilicity such as phosphopeptides. We used microcolumns to compare the ability of RP resin or graphite powder to retain phosphopeptides. A number of standard phosphopeptides and a biologically relevant phosphoprotein, dynamin I, were analyzed. MS revealed that some phosphopeptides...

  15. Anomalous inhibition of c-Met by the kinesin inhibitor aurintricarboxylic acid.

    Science.gov (United States)

    Milanovic, Mina; Radtke, Simone; Peel, Nick; Howell, Michael; Carrière, Virginie; Joffre, Carine; Kermorgant, Stéphanie; Parker, Peter J

    2012-03-01

    c-Met [the hepatocyte growth factor (HGF) receptor] is a receptor tyrosine kinase playing a role in various biological events. Overexpression of the receptor has been observed in a number of cancers, correlating with increased metastatic tendency and poor prognosis. Additionally, activating mutations in c-Met kinase domain have been reported in a subset of familial cancers causing resistance to treatment. Receptor trafficking, relying on the integrity of the microtubule network, plays an important role in activation of downstream targets and initiation of signalling events. Aurintricarboxylic acid (ATA) is a triphenylmethane derivative that has been reported to inhibit microtubule motor proteins kinesins. Additional reported properties of this inhibitor include inhibition of protein tyrosine phosphatases, nucleases and members of the Jak family. Here we demonstrate that ATA prevents HGF-induced c-Met phosphorylation, internalisation, subsequent receptor trafficking and degradation. In addition, ATA prevented HGF-induced downstream signalling which also affected cellular function, as assayed by collective cell migration of A549 cells. Surprisingly, the inhibitory effect of ATA on HGF-induced phosphorylation and signalling in vivo was associated with an increase in basal c-Met kinase activity in vitro. It is concluded that the inhibitory effects of ATA on c-Met in vivo is an allosteric effect mediated through the kinase domain of the receptor. As the currently tested adenosine triphosphate competitive tyrosine kinase inhibitors (TKIs) may lead to tumor resistance (McDermott U, et al., Cancer Res 2010;70:1625-34), our findings suggest that novel anti-c-Met therapies could be developed in the future for cancer treatment. Copyright © 2011 UICC.

  16. The M358R variant of α{sub 1}-proteinase inhibitor inhibits coagulation factor VIIa

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, William P., E-mail: sheffiel@mcmaster.ca [Canadian Blood Services, Centre for Innovation, Hamilton, Ontario (Canada); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario (Canada); Bhakta, Varsha [Canadian Blood Services, Centre for Innovation, Hamilton, Ontario (Canada)

    2016-02-12

    The naturally occurring M358R mutation of the plasma serpin α{sub 1}-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg–Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg–Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10{sup 2} M{sup −1}sec{sup −1}. We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. - Highlights: • The inhibitory specificity of the serpin alpha-1-proteinase inhibitor (API) is sharply altered in the M358R variant. • API M358R forms denaturation-resistant complexes with coagulation factor VIIa at a rate accelerated by tissue factor but unaffected by heparin. • Complex formation was shown by gel-based assays and quantified kinetically by inhibition of FVIIa-dependent amidolysis.

  17. Inhibition of xyloglucanase from an alkalothermophilic Thermomonospora sp. by a peptidic aspartic protease inhibitor from Penicillium sp. VM24.

    Science.gov (United States)

    Menon, Vishnu; Rao, Mala

    2012-11-01

    A bifunctional inhibitor from Penicillium sp VM24 causing inactivation of xyloglucanase from Thermomonospora sp and an aspartic protease from Aspergillus saitoi was identified. Steady state kinetics studies of xyloglucanase and the inhibitor revealed an irreversible, non-competitive, two-step inhibition mechanism with IC(50) and K(i) values of 780 and 500nM respectively. The interaction of o-phthalaldehyde (OPTA)-labeled xyloglucanase with the inhibitor revealed that the inhibitor binds to the active site of the enzyme. Far- and near-UV spectrophotometric analysis suggests that the conformational changes induced in xyloglucanase by the inhibitor may be due to irreversible denaturation of enzyme. The bifunctional inhibitor may have potential as a biocontrol agent for the protection of plants against phytopathogenic fungi. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption

    Directory of Open Access Journals (Sweden)

    Boutin Jean A

    2010-10-01

    Full Text Available Abstract Background Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we screened a protein kinase inhibitor library in human osteoclasts. Methods Human osteoclasts were generated from CD14+ monocytes. The effect of different kinase inhibitors on lysosomal acidification in human osteoclasts was investigated using acridine orange for different incubation times (45 minutes, 4 and 24 hours. The inhibitors were tested in an acid influx assay using microsomes isolated from human osteoclasts. Bone resorption by human osteoclasts on bone slices was measured by calcium release. Cell viability was measured using AlamarBlue. Results Of the 51 compounds investigated only few inhibitors were positive in both acidification and resorption assays. Rottlerin, GF109203X, Hypericin and Ro31-8220 inhibited acid influx in microsomes and bone resorption, while Sphingosine and Palmitoyl-DL-carnitine-Cl showed low levels of inhibition. Rottlerin inhibited lysosomal acidification in human osteoclasts potently. Conclusions In conclusion, a group of inhibitors all indicated to inhibit PKC reduced acidification in human osteoclasts, and thereby bone resorption, indicating that acid secretion by osteoclasts may be specifically regulated by PKC in osteoclasts.

  19. SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells.

    Science.gov (United States)

    Pasquier, Benoit

    2015-04-03

    Autophagy plays an important role in cancer and it has been suggested that it functions not only as a tumor suppressor pathway to prevent tumor initiation, but also as a prosurvival pathway that helps tumor cells endure metabolic stress and resist death triggered by chemotherapeutic agents. We recently described the discovery of inhibitors of PIK3C3/Vps34 (phosphatidylinositol 3-kinase, catalytic subunit type 3), the lipid kinase component of the class III phosphatidylinositol 3-kinase (PtdIns3K). This PtdIns3K isoform has attracted significant attention in recent years because of its role in autophagy. Following chemical optimization we identified SAR405, a low molecular mass kinase inhibitor of PIK3C3, highly potent and selective with regard to other lipid and protein kinases. We demonstrated that inhibiting the catalytic activity of PIK3C3 disrupts vesicle trafficking from late endosomes to lysosomes. SAR405 treatment also inhibits autophagy induced either by starvation or by MTOR (mechanistic target of rapamycin) inhibition. Finally our results show that combining SAR405 with everolimus, the FDA-approved MTOR inhibitor, results in a significant synergy on the reduction of cell proliferation using renal tumor cells. This result indicates a potential therapeutic application for PIK3C3 inhibitors in cancer.

  20. Inhibitors of the mitochondrial cytochrome b-c1 complex inhibit the cyanide-insensitive respiration of Trypanosoma brucei.

    Science.gov (United States)

    Turrens, J F; Bickar, D; Lehninger, A L

    1986-06-01

    The cyanide-insensitive respiration of bloodstream trypomastigote forms of Trypanosoma brucei (75 +/- 8 nmol O2 min-1(mg protein)-1) is completely inhibited by the mitochondrial ubiquinone-like inhibitors 2-hydroxy-3-undecyl-1,4-naphthoquinone (UHNQ) and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT). The Ki values for UHDBT (30 nM) and UHNQ (2 microM) are much lower than the reported Ki for salicylhydroxamic acid (SHAM) (5 microM), a widely used inhibitor of the cyanide-insensitive oxidase. UHNQ also stimulated the glycerol-3-phosphate-dependent reduction of phenazine methosulfate, demonstrating that the site of UHNQ inhibition is on the terminal oxidase of the cyanide-insensitive respiration of T. brucei. These results suggest that a ubiquinone-like compound may act as an electron carrier between the two enzymatic components of the cyanide-insensitive glycerol-3-phosphate oxidase.

  1. The deletion of bacterial dynamin and flotillin genes results in pleiotrophic effects on cell division, cell growth and in cell shape maintenance

    Directory of Open Access Journals (Sweden)

    Dempwolff Felix

    2012-12-01

    Full Text Available Abstract Background In eukaryotic cells, dynamin and flotillin are involved in processes such as endocytosis and lipid raft formation, respectively. Dynamin is a GTPase that exerts motor-like activity during the pinching off of vesicles, while flotillins are coiled coil rich membrane proteins with no known enzymatic activity. Bacteria also possess orthologs of both classes of proteins, but their function has been unclear. Results We show that deletion of the single dynA or floT genes lead to no phenotype or a mild defect in septum formation in the case of the dynA gene, while dynA floT double mutant cells were highly elongated and irregularly shaped, although the MreB cytoskeleton appeared to be normal. DynA colocalizes with FtsZ, and the dynA deletion strain shows aberrant FtsZ rings in a subpopulation of cells. The mild division defect of the dynA deletion is exacerbated by an additional deletion in ezrA, which affects FtsZ ring formation, and also by the deletion of a late division gene (divIB, indicating that DynA affects several steps in cell division. DynA and mreB deletions generated a synthetic defect in cell shape maintenance, showing that MreB and DynA play non-epistatic functions in cell shape maintenance. TIRF microscopy revealed that FloT forms many dynamic membrane assemblies that frequently colocalize with the division septum. The deletion of dynA did not change the pattern of localization of FloT, and vice versa, showing that the two proteins play non redundant roles in a variety of cellular processes. Expression of dynamin or flotillin T in eukaryotic S2 cells revealed that both proteins assemble at the cell membrane. While FloT formed patch structures, DynA built up tubulated structures extending away from the cells. Conclusions Bacillus subtilis dynamin ortholog DynA plays a role during cell division and in cell shape maintenance. It shows a genetic link with flotillin T, with both proteins playing non-redundant functions at

  2. Mutation Spectrum in the Large GTPase Dynamin 2, and Genotype–Phenotype Correlation in Autosomal Dominant Centronuclear Myopathy

    Science.gov (United States)

    Böhm, Johann; Biancalana, Valérie; DeChene, Elizabeth T.; Bitoun, Marc; Pierson, Christopher R.; Schaefer, Elise; Karasoy, Hatice; Dempsey, Melissa A.; Klein, Fabrice; Dondaine, Nicolas; Kretz, Christine; Haumesser, Nicolas; Poirson, Claire; Toussaint, Anne; Greenleaf, Rebecca S.; Barger, Melissa A.; Mahoney, Lane J.; Kang, Peter B.; Zanoteli, Edmar; Vissing, John; Witting, Nanna; Echaniz-Laguna, Andoni; Wallgren-Pettersson, Carina; Dowling, James; Merlini, Luciano; Oldfors, Anders; Ousager, Lilian Bomme; Melki, Judith; Krause, Amanda; Jern, Christina; Oliveira, Acary S. B.; Petit, Florence; Jacquette, Aurélia; Chaussenot, Annabelle; Mowat, David; Leheup, Bruno; Cristofano, Michele; Aldea, Juan José Poza; Michel, Fabrice; Furby, Alain; Llona, Jose E. Barcena; Van Coster, Rudy; Bertini, Enrico; Urtizberea, Jon Andoni; Drouin-Garraud, Valérie; Béroud, Christophe; Prudhon, Bernard; Bedford, Melanie; Mathews, Katherine; Erby, Lori A. H.; Smith, Stephen A.; Roggenbuck, Jennifer; Crowe, Carol A.; Spitale, Allison Brennan; Johal, Sheila C.; Amato, Anthony A.; Demmer, Laurie A.; Jonas, Jessica; Darras, Basil T.; Bird, Thomas D.; Laurino, Mercy; Welt, Selman I.; Trotter, Cynthia; Guicheney, Pascale; Das, Soma; Mandel, Jean-Louis; Beggs, Alan H.; Laporte, Jocelyn

    2012-01-01

    Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype–phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot–Marie–Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT. PMID:22396310

  3. Kinetics of corrosion inhibition of aluminum in acidic media by water-soluble natural polymeric chondroitin-4-sulfate as anionic polyelectrolyte inhibitor.

    Science.gov (United States)

    Hassan, Refat M; Ibrahim, Samia M; Takagi, Hideo D; Sayed, Suzan A

    2018-07-15

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyelectrolyte chondroitin-4-sulfate (CS) polysaccharide has been studied using both gasometrical and weight-loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing the inhibitor concentration and decreased with increasing temperature. The inhibition action of CS on Al metal surface was found to obey both of Langmuir and Freundlich isotherms. The factors affecting the corrosion rates such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and the temperature were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the results obtained is discussed. Copyright © 2018. Published by Elsevier Ltd.

  4. Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor

    Directory of Open Access Journals (Sweden)

    Qureshi Asaf A

    2012-07-01

    Full Text Available Abstract Background Altered immune function during ageing results in increased production of nitric oxide (NO and other inflammatory mediators. Recently, we have reported that NO production was inhibited by naturally-occurring proteasome inhibitors (quercetin, δ-tocotrienol, and riboflavin in lipopolysaccharide (LPS-stimulated RAW264.7 cells, and thioglycolate-elicited peritoneal macrophages from C57BL/6 mice. In a continuous effort to find more potent, non-toxic, commercially available, naturally-occurring proteasome inhibitors that suppress inflammation, the present study was carried out to describe the inhibition of NF-κB activation and NO, TNF-α, IL-6, IL-1β, and iNOS expression by trans-resveratrol, trans-pterostilbene, morin hydrate, and nicotinic acid in LPS-induced RAW 264.7 cells and thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice. Results The present results indicate that resveratrol, pterostilbene, and morin hydrate caused significant inhibition (>70% to 90%; P 40%; P 60%; P 40%; P P  Conclusions The present results clearly demonstrate that resveratrol and pterostilbene are particularly potent proteasome inhibitors that suppress expression of genes, and production of inflammatory products in LPS-stimulated RAW 264.7 cells, and macrophages from C57BL/6 and BALB/c mice. Resveratrol and pterostilbene which are present in grapes, blueberries, and red wine, have been implicated as contributing factors to the lower incidence of cardiovascular disease in the French population, despite their relatively high dietary fat intake. Consequently, it appears likely that the beneficial nutritional effects of resveratrol and pterostilbene are due at least in part, to their ability to inhibit NF-κB activation by the proteasome, thereby suppressing activation of pro-inflammatory cytokines and iNOS genes, resulting in decreased secretion of TNF-α, IL-1β, IL-6, and NO levels, in response to inflammatory stimuli

  5. Gimeracil, an inhibitor of dihydropyrimidine dehydrogenase, inhibits the early step in homologous recombination

    International Nuclear Information System (INIS)

    Sakata, Koh-ichi; Someya, Masanori; Matsumoto, Yoshihisa; Takagi, Masaru; Hareyama, Masato; Tauchi, Hiroshi; Kai, Masahiro; Toyota, Minoru; Fukushima, Masakazu

    2011-01-01

    Gimeracil (5-chloro-2, 4-dihydroxypyridine) is an inhibitor of dihydropyrimidine dehydrogenase (DPYD), which degrades pyrimidine including 5-fluorouracil in the blood. Gimeracil was originally added to an oral fluoropyrimidine derivative S-1 to yield prolonged 5-fluorouracil concentrations in serum and tumor tissues. We have already reported that gimeracil had radiosensitizing effects by partially inhibiting homologous recombination (HR) in the repair of DNA double strand breaks. We investigated the mechanisms of gimeracil radiosensitization. Comet assay and radiation-induced focus formation of various kinds of proteins involved in HR was carried out. Small interfering RNA (siRNA) for DPYD were transfected to HeLa cells to investigate the target protein for radiosensitization with gimeracil. SCneo assay was carried out to examine whether DPYD depletion by siRNA inhibited HR repair of DNA double strand breaks. Tail moments in neutral comet assay increased in gimeracil-treated cells. Gimeracil restrained the formation of foci of Rad51 and replication protein A (RPA), whereas it increased the number of foci of Nbs1, Mre11, Rad50, and FancD2. When HeLa cells were transfected with the DPYD siRNA before irradiation, the cells became more radiosensitive. The degree of radiosensitization by transfection of DPYD siRNA was similar to that of gimeracil. Gimeracil did not sensitize DPYD-depleted cells. Depletion of DPYD by siRNA significantly reduced the frequency of neopositive clones in SCneo assay. Gimeracil partially inhibits the early step in HR. It was found that DPYD is the target protein for radiosensitization by gimeracil. The inhibitors of DPYD, such as gimeracil, could enhance the efficacy of radiotherapy through partial suppression of HR-mediated DNA repair. (author)

  6. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    Science.gov (United States)

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  7. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice

    Science.gov (United States)

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Ho-Yuet Cheng, Grace; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-01-01

    Abstract Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain–hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ5 integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmen-tal vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. PMID:19874420

  8. A novel dual inhibitor of microtubule and Bruton's tyrosine kinase inhibits survival of multiple myeloma and osteoclastogenesis.

    Science.gov (United States)

    Pandey, Manoj K; Gowda, Krishne; Sung, Shen-Shu; Abraham, Thomas; Budak-Alpdogan, Tulin; Talamo, Giampolo; Dovat, Sinisa; Amin, Shantu

    2017-09-01

    Bruton's tyrosine kinase (BTK) regulates many vital signaling pathways and plays a critical role in cell proliferation, survival, migration, and resistance. Previously, we reported that a small molecule, KS99, is an inhibitor of tubulin polymerization. In the present study, we explored whether KS99 is a dual inhibitor of BTK and tubulin polymerization. Although it is known that BTK is required for clonogenic growth and resistance, and microtubules are essential for cancer cell growth, dual targeting of these two components has not been explored previously. Through docking studies, we predicted that KS99 interacts directly with the catalytic domain of BTK and inhibits phosphorylation at the Y223 residue and kinase activities. Treatment of KS99 reduces the cell viability of multiple myeloma (MM) and CD138 + cells, with an IC 50 of between 0.5 and 1.0 μmol/L. We found that KS99 is able to induce apoptosis in MM cells in a caspase-dependent manner. KS99 suppressed the receptor activator of NF-κB ligand (RANKL)-induced differentiation of macrophages to osteoclasts in a dose-dependent manner and, importantly, inhibited the expression of cytokines associated with bone loss. Finally, we found that KS99 inhibits the in vivo tumor growth of MM cells through the inhibition of BTK and tubulin. Overall, our results show that dual inhibition of BTK and tubulin polymerization by KS99 is a viable option in MM treatment, particularly in the inhibition of refraction and relapse. Copyright © 2017 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  9. Oxidised LDL internalisation by the LOX-1 scavenger receptor is dependent on a novel cytoplasmic motif and is regulated by dynamin-2.

    Science.gov (United States)

    Murphy, Jane E; Vohra, Ravinder S; Dunn, Sarah; Holloway, Zoe G; Monaco, Anthony P; Homer-Vanniasinkam, Shervanthi; Walker, John H; Ponnambalam, Sreenivasan

    2008-07-01

    The LOX-1 scavenger receptor recognises pro-atherogenic oxidised low-density lipoprotein (OxLDL) particles and is implicated in atherosclerotic plaque formation, but this mechanism is not well understood. Here we show evidence for a novel clathrin-independent and cytosolic-signal-dependent pathway that regulates LOX-1-mediated OxLDL internalisation. Cell surface labelling in the absence or presence of OxLDL ligand showed that LOX-1 is constitutively internalised from the plasma membrane and its half-life is not altered upon ligand binding and trafficking. We show that LOX-1-mediated OxLDL uptake is disrupted by overexpression of dominant-negative dynamin-2 but unaffected by CHC17 or mu2 (AP2) depletion. Site-directed mutagenesis revealed a conserved and novel cytoplasmic tripeptide motif (DDL) that regulates LOX-1-mediated endocytosis of OxLDL. Taken together, these findings indicate that LOX-1 is internalised by a clathrin-independent and dynamin-2-dependent pathway and is thus likely to mediate OxLDL trafficking in vascular tissues.

  10. The Phosphodiesterase 4 Inhibitor Roflumilast Protects against Cigarette Smoke Extract-Induced Mitophagy-Dependent Cell Death in Epithelial Cells.

    Science.gov (United States)

    Kyung, Sun Young; Kim, Yu Jin; Son, Eun Suk; Jeong, Sung Hwan; Park, Jeong Woong

    2018-04-01

    Recent studies show that mitophagy, the autophagy-dependent turnover of mitochondria, mediates pulmonary epithelial cell death in response to cigarette smoke extract (CSE) exposure and contributes to the development of emphysema in vivo during chronic cigarette smoke (CS) exposure, although the underlying mechanisms remain unclear. In this study, we investigated the role of mitophagy in the regulation of CSE-exposed lung bronchial epithelial cell (Beas-2B) death. We also investigated the role of a phosphodiesterase 4 inhibitor, roflumilast, in CSE-induced mitophagy-dependent cell death. Our results demonstrated that CSE induces mitophagy in Beas-2B cells through mitochondrial dysfunction and increased the expression levels of the mitophagy regulator protein, PTEN-induced putative kinase-1 (PINK1), and the mitochondrial fission protein, dynamin-1-like protein (DRP1). CSE-induced epithelial cell death was significantly increased in Beas-2B cells exposed to CSE but was decreased by small interfering RNA-dependent knockdown of DRP1. Treatment with roflumilast in Beas-2B cells inhibited CSE-induced mitochondrial dysfunction and mitophagy by inhibiting the expression of phospho-DRP1 and -PINK1. Roflumilast protected against cell death and increased cell viability, as determined by the lactate dehydrogenase release test and the MTT assay, respectively, in Beas-2B cells exposed to CSE. These findings suggest that roflumilast plays a protective role in CS-induced mitophagy-dependent cell death. Copyright©2018. The Korean Academy of Tuberculosis and Respiratory Diseases.

  11. Allosteric inhibition enhances the efficacy of ABL kinase inhibitors to target unmutated BCR-ABL and BCR-ABL-T315I

    Directory of Open Access Journals (Sweden)

    Mian Afsar

    2012-09-01

    Full Text Available Abstract Background Chronic myelogenous leukemia (CML and Philadelphia chromosome-positive (Ph+ acute lymphatic leukemia (Ph + ALL are caused by the t(9;22, which fuses BCR to ABL resulting in deregulated ABL-tyrosine kinase activity. The constitutively activated BCR/ABL-kinase “escapes” the auto-inhibition mechanisms of c-ABL, such as allosteric inhibition. The ABL-kinase inhibitors (AKIs Imatinib, Nilotinib or Dasatinib, which target the ATP-binding site, are effective in Ph + leukemia. Another molecular therapy approach targeting BCR/ABL restores allosteric inhibition. Given the fact that all AKIs fail to inhibit BCR/ABL harboring the ‘gatekeeper’ mutation T315I, we investigated the effects of AKIs in combination with the allosteric inhibitor GNF2 in Ph + leukemia. Methods The efficacy of this approach on the leukemogenic potential of BCR/ABL was studied in Ba/F3 cells, primary murine bone marrow cells, and untransformed Rat-1 fibroblasts expressing BCR/ABL or BCR/ABL-T315I as well as in patient-derived long-term cultures (PDLTC from Ph + ALL-patients. Results Here, we show that GNF-2 increased the effects of AKIs on unmutated BCR/ABL. Interestingly, the combination of Dasatinib and GNF-2 overcame resistance of BCR/ABL-T315I in all models used in a synergistic manner. Conclusions Our observations establish a new approach for the molecular targeting of BCR/ABL and its resistant mutants using a combination of AKIs and allosteric inhibitors.

  12. Insight to structural subsite recognition in plant thiol protease-inhibitor complexes : Understanding the basis of differential inhibition and the role of water

    Directory of Open Access Journals (Sweden)

    Mukhopadhayay Bishnu P

    2001-09-01

    Full Text Available Abstract Background This work represents an extensive MD simulation / water-dynamics studies on a series of complexes of inhibitors (leupeptin, E-64, E-64-C, ZPACK and plant cysteine proteases (actinidin, caricain, chymopapain, calotropin DI of papain family to understand the various interactions, water binding mode, factors influencing it and the structural basis of differential inhibition. Results The tertiary structure of the enzyme-inhibitor complexes were built by visual interactive modeling and energy minimization followed by dynamic simulation of 120 ps in water environment. DASA study with and without the inhibitor revealed the potential subsite residues involved in inhibition. Though the interaction involving main chain atoms are similar, critical inspection of the complexes reveal significant differences in the side chain interactions in S2-P2 and S3-P3 pairs due to sequence differences in the equivalent positions of respective subsites leading to differential inhibition. Conclusion The key finding of the study is a conserved site of a water molecule near oxyanion hole of the enzyme active site, which is found in all the modeled complexes and in most crystal structures of papain family either native or complexed. Conserved water molecules at the ligand binding sites of these homologous proteins suggest the structural importance of the water, which changes the conventional definition of chemical geometry of inhibitor binding domain, its shape and complimentarity. The water mediated recognition of inhibitor to enzyme subsites (Pn...H2O....Sn of leupeptin acetyl oxygen to caricain, chymopapain and calotropinDI is an additional information and offer valuable insight to potent inhibitor design.

  13. The cytotoxicity of the α1-adrenoceptor antagonist prazosin is linked to an endocytotic mechanism equivalent to transport-P

    International Nuclear Information System (INIS)

    Fuchs, Robert; Stracke, Anika; Ebner, Nadine; Zeller, Christian Wolfgang; Raninger, Anna Maria; Schittmayer, Matthias; Kueznik, Tatjana; Absenger-Novak, Markus; Birner-Gruenberger, Ruth

    2015-01-01

    Since the α1-adrenergic antagonist prazosin (PRZ) was introduced into medicine as a treatment for hypertension and benign prostate hyperplasia, several studies have shown that PRZ induces apoptosis in various cell types and interferes with endocytotic trafficking. Because PRZ is also able to induce apoptosis in malignant cells, its cytotoxicity is a focus of interest in cancer research. Besides inducing apoptosis, PRZ was shown to serve as a substrate for an amine uptake mechanism originally discovered in neurones called transport-P. In line with our hypothesis that transport-P is an endocytotic mechanism also present in non-neuronal tissue and linked to the cytotoxicity of PRZ, we tested the uptake of QAPB, a fluorescent derivative of PRZ, in cancer cell lines in the presence of inhibitors of transport-P and endocytosis. Early endosomes and lysosomes were visualised by expression of RAB5-RFP and LAMP1-RFP, respectively; growth and viability of cells in the presence of PRZ and uptake inhibitors were also tested. Cancer cells showed co-localisation of QAPB with RAB5 and LAMP1 positive vesicles as well as tubulation of lysosomes. The uptake of QAPB was sensitive to transport-P inhibitors bafilomycin A1 (inhibits v-ATPase) and the antidepressant desipramine. Endocytosis inhibitors pitstop ® 2 (general inhibitor of endocytosis), dynasore (dynamin inhibitor) and methyl-β-cyclodextrin (cholesterol chelator) inhibited the uptake of QAPB. Bafilomycin A1 and methyl-β-cyclodextrin but not desipramine were able to preserve growth and viability of cells in the presence of PRZ. In summary, we confirmed the hypothesis that the cellular uptake of QAPB/PRZ represents an endocytotic mechanism equivalent to transport-P. Endocytosis of QAPB/PRZ depends on a proton gradient, dynamin and cholesterol, and results in reorganisation of the LAMP1 positive endolysosomal system. Finally, the link seen between the cellular uptake of PRZ and cell death implies a still unknown pro

  14. Inhibition of hydrate formation by kinetic inhibitors. Literature study; Inhibierung von Erdgashydraten durch kinetische Inhibitoren. Literaturstudie

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, E.; Meyn, V.; Rahimian, I. [Institut fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany)

    2000-04-01

    The aim of this study was to represent the state-of-the art of the inhibition of gas hydrates. Corresponding to recent publications the kinetic inhibition was considered in particular. Special inhibitors were validated using a set of criteria derived from different experimental test methods. Best results were obtained by the application of terpolymer VC-713 especially in relation to nucleation and crystal growth, followed by PVCap (polyvinylcaprolactame) and THI (threshold hydrate inhibitor), the chemical structure of which is derived from the antifreeze glycopeptids of antarcitc winter flounder. (orig.) [German] Die vorliegende Literaturstudie gibt den derzeitigen Stand der Kenntnis zur Inhibierung von Gashydraten wieder. Entsprechend der neueren Literatur wird insbesondere auf die kinetische Inhibierung eingegangen. Zur Beurteilung der verschiedenen Inhibitoren werden Bewertungskriterien zur Validierung der mit unterschiedlichen Untersuchungsmethoden erzielten experimentellen Ergebnisse angegeben. Anhand dieser Vorgehensweise zeigte sich, dass mit dem Terpolymer VC-713 die besten Ergebnisse, insbesondere im Hinblick auf Keimbildung und Wachstum, erzielt werden konnten. Sehr gute Ergebnisse wurden auch mit dem Polyvinylcaprolactam (PVCap) und den aus den Antigefrierpeptiden der antarktischen Winterflunder abgeleiteten Threshold Hydrate Inhibitoren (THI) erhalten. (orig.)

  15. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  16. Characteristics of the Inhibition of Potato (Solanum tuberosum) Invertase by an Endogenous Proteinaceous Inhibitor in Potatoes

    Science.gov (United States)

    Bracho, Geracimo E.; Whitaker, John R.

    1990-01-01

    Effect of several parameters on inhibition of potato (Solanum tuberosum) invertase by its endogenous proteinaceous inhibitor was determined using homogeneous preparations of both proteins. The inhibitor and invertase formed an inactive complex with an observed association rate constant at pH 4.70 and 37°C of 8.82 × 102 per molar per second and a dissociation rate constant of 3.3 × 10−3 per minute. The inhibitor appeared to bind to invertase in more than one step. Initial interaction (measured by loss of invertase activity) was rapid, relatively weak, readily reversible (Ki of 2 × 10−6 molar) and noncompetitive with substrate at pH 4.70. Initial interaction was probably followed by isomerization to a tighter (Ki of 6.23 × 10−8 molar) complex, which dissociated slowly with a half-time of 3.5 hour. Interaction between enzyme and inhibitor appeared to be of ionic character and essentially pH independent between pH 3.5 and 7.4. PMID:16667286

  17. Density functional theory and quantum mechanics/molecular mechanics study of cysteine protease inhibition by nitrile-based inhibitors.

    Directory of Open Access Journals (Sweden)

    Sam P De Visser

    2013-12-01

    Full Text Available Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical versus electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism.

  18. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice.

    Science.gov (United States)

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Cheng, Grace Ho-Yuet; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-02-01

    Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ(5) integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmental vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  19. Aurora B kinase inhibition in mitosis: strategies for optimising the use of aurora kinase inhibitors such as AT9283.

    Science.gov (United States)

    Curry, Jayne; Angove, Hayley; Fazal, Lynsey; Lyons, John; Reule, Matthias; Thompson, Neil; Wallis, Nicola

    2009-06-15

    Aurora kinases play a key role in regulating mitotic division and are attractive oncology targets. AT9283, a multi-targeted kinase inhibitor with potent activity against Aurora A and B kinases, inhibited growth and survival of multiple solid tumor cell lines and was efficacious in mouse xenograft models. AT9283-treatment resulted in endoreduplication and ablation of serine-10 histone H3 phosphorylation in both cells and tumor samples, confirming that in these models it acts as an Aurora B kinase inhibitor. In vitro studies demonstrated that exposure to AT9283 for one complete cell cycle committed an entire population of p53 checkpoint-compromised cells (HCT116) to multinucleation and death whereas treatment of p53 checkpoint-competent cells (HMEC, A549) for a similar length of time led to a reversible arrest of cells with 4N DNA. Further studies in synchronized cell populations suggested that exposure to AT9283 during mitosis was critical for optimal cytotoxicity. We therefore investigated ways in which these properties might be exploited to optimize the efficacy and therapeutic index of Aurora kinase inhibitors for p53 checkpoint compromised tumors in vivo. Combining Aurora B kinase inhibition with paclitaxel, which arrests cells in mitosis, in a xenograft model resulted in promising efficacy without additional toxicity. These findings have implications for optimizing the efficacy of Aurora kinase inhibitors in clinical practice.

  20. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    Science.gov (United States)

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.

  1. Deletion of the distal COOH-terminus of the A2B adenosine receptor switches internalization to an arrestin- and clathrin-independent pathway and inhibits recycling.

    Science.gov (United States)

    Mundell, S J; Matharu, A-L; Nisar, S; Palmer, T M; Benovic, J L; Kelly, E

    2010-02-01

    We have investigated the effect of deletions of a postsynaptic density, disc large and zo-1 protein (PDZ) motif at the end of the COOH-terminus of the rat A(2B) adenosine receptor on intracellular trafficking following long-term exposure to the agonist 5'-(N-ethylcarboxamido)-adenosine. The trafficking of the wild type A(2B) adenosine receptor and deletion mutants expressed in Chinese hamster ovary cells was studied using an enzyme-linked immunosorbent assay in combination with immunofluorescence microscopy. The wild type A(2B) adenosine receptor and deletion mutants were all extensively internalized following prolonged treatment with NECA. The intracellular compartment through which the Gln(325)-stop receptor mutant, which lacks the Type II PDZ motif found in the wild type receptor initially trafficked was not the same as the wild type receptor. Expression of dominant negative mutants of arrestin-2, dynamin or Eps-15 inhibited internalization of wild type and Leu(330)-stop receptors, whereas only dominant negative mutant dynamin inhibited agonist-induced internalization of Gln(325)-stop, Ser(326)-stop and Phe(328)-stop receptors. Following internalization, the wild type A(2B) adenosine receptor recycled rapidly to the cell surface, whereas the Gln(325)-stop receptor did not recycle. Deletion of the COOH-terminus of the A(2B) adenosine receptor beyond Leu(330) switches internalization from an arrestin- and clathrin-dependent pathway to one that is dynamin dependent but arrestin and clathrin independent. The presence of a Type II PDZ motif appears to be essential for arrestin- and clathrin-dependent internalization, as well as recycling of the A(2B) adenosine receptor following prolonged agonist addition.

  2. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    International Nuclear Information System (INIS)

    Honma, Yuichi; Harada, Masaru

    2013-01-01

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation

  3. Suppression of human T cell proliferation by the caspase inhibitors, z-VAD-FMK and z-IETD-FMK is independent of their caspase inhibition properties

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C.P. [Medical Research Council Toxicology Unit, Hodgkin Building, Lancaster Road, University of Leicester, Leicester LE1 9HN (United Kingdom); Chow, S.C., E-mail: chow.sek.chuen@monash.edu [School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan (Malaysia)

    2012-11-15

    The caspase inhibitors, benzyloxycarbony (Cbz)-l-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) and benzyloxycarbonyl (Cbz)-Ile-Glu (OMe)-Thr-Asp (OMe)-FMK (z-IETD-FMK) at non-toxic doses were found to be immunosuppressive and inhibit human T cell proliferation induced by mitogens and IL-2 in vitro. Both caspase inhibitors were shown to block NF-κB in activated primary T cells, but have little inhibitory effect on the secretion of IL-2 and IFN-γ during T cell activation. However, the expression of IL-2 receptor α-chain (CD25) in activated T cells was inhibited by both z-VAD-FMK and z-IETD-FMK, whereas the expression of the early activated T cell marker, CD69 was unaffected. During primary T cell activation via the antigen receptor, both caspase-8 and caspase-3 were activated and processed to their respective subunits, but neither caspase inhibitors had any effect on the processing of these two caspases. In sharp contrast both caspase inhibitors readily blocked apoptosis and the activation of caspases during FasL-induced apoptosis in activated primary T cells and Jurkat T cells. Collectively, the results demonstrate that both z-VAD-FMK and z-IETD-FMK are immunosuppressive in vitro and inhibit T cell proliferation without blocking the processing of caspase-8 and caspase-3. -- Highlights: ► Caspase-8 and caspase-3 were activated during T cell activation and proliferation. ► T cell proliferation was blocked by caspase inhibitors. ► Caspase activation during T cell proliferation was not block by caspase inhibitors.

  4. Inga laurina trypsin inhibitor (ILTI) obstructs Spodoptera frugiperda trypsins expressed during adaptive mechanisms against plant protease inhibitors.

    Science.gov (United States)

    Machado, Suzy Wider; de Oliveira, Caio Fernando Ramalho; Zério, Neide Graciano; Parra, José Roberto Postali; Macedo, Maria Lígia Rodrigues

    2017-08-01

    Plant protease inhibitors (PIs) are elements of a common plant defense mechanism induced in response to herbivores. The fall armyworm, Spodoptera frugiperda, a highly polyphagous lepidopteran pest, responds to various PIs in its diet by expressing genes encoding trypsins. This raises the question of whether the PI-induced trypsins are also inhibited by other PIs, which we posed as the hypothesis that Inga laurina trypsin inhibitor (ILTI) inhibits PI-induced trypsins in S. frugiperda. In the process of testing our hypothesis, we compared its properties with those of selected PIs, soybean Kunitz trypsin inhibitor (SKTI), Inga vera trypsin inhibitor (IVTI), Adenanthera pavonina trypsin inhibitor (ApTI), and Entada acaciifolia trypsin inhibitor (EATI). We report that ILTI is more effective in inhibiting the induced S. frugiperda trypsins than SKTI and the other PIs, which supports our hypothesis. ILTI may be more appropriate than SKTI for studies regarding adaptive mechanisms to dietary PIs. © 2017 Wiley Periodicals, Inc.

  5. Structural Basis for Specific Inhibition of tRNA Synthetase by an ATP Competitive Inhibitor

    OpenAIRE

    Fang, Pengfei; Han, Hongyan; Wang, Jing; Chen, Kaige; Chen, Xin; Guo, Min

    2015-01-01

    Pharmaceutical inhibitors of aminoacyl-tRNA synthetases demand high species and family specificity. The antimalarial ATP-mimetic cladosporin selectively inhibits P. falciparum LysRS (PfLysRS). How the binding to a universal ATP site achieves the specificity is unknown. Here we report 3 crystal structures of cladosporin with human LysRS, PfLysRS, and a Pf-like human LysRS mutant. In all 3 structures, cladosporin occupies the class defining ATP-binding pocket, replacing the adenosine portion of...

  6. MoDnm1 Dynamin Mediating Peroxisomal and Mitochondrial Fission in Complex with MoFis1 and MoMdv1 Is Important for Development of Functional Appressorium in Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Kaili Zhong

    2016-08-01

    Full Text Available Dynamins are large superfamily GTPase proteins that are involved in various cellular processes including budding of transport vesicles, division of organelles, cytokinesis, and pathogen resistance. Here, we characterized several dynamin-related proteins from the rice blast fungus Magnaporthe oryzae and found that MoDnm1 is required for normal functions, including vegetative growth, conidiogenesis, and full pathogenicity. In addition, we found that MoDnm1 co-localizes with peroxisomes and mitochondria, which is consistent with the conserved role of dynamin proteins. Importantly, MoDnm1-dependent peroxisomal and mitochondrial fission involves functions of mitochondrial fission protein MoFis1 and WD-40 repeat protein MoMdv1. These two proteins display similar cellular functions and subcellular localizations as MoDnm1, and are also required for full pathogenicity. Further studies showed that MoDnm1, MoFis1 and MoMdv1 are in complex to regulate not only peroxisomal and mitochondrial fission, pexophagy and mitophagy progression, but also appressorium function and host penetration. In summary, our studies provide new insights into how MoDnm1 interacts with its partner proteins to mediate peroxisomal and mitochondrial functions and how such regulatory events may link to differentiation and pathogenicity in the rice blast fungus.

  7. Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain

    Science.gov (United States)

    Mistry, Pragnesh; Laird, Michelle H. W.; Schwarz, Ryan S.; Greene, Shannon; Dyson, Tristan; Snyder, Greg A.; Xiao, Tsan Sam; Chauhan, Jay; Fletcher, Steven; Toshchakov, Vladimir Y.; MacKerell, Alexander D.; Vogel, Stefanie N.

    2015-01-01

    Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein–protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors. PMID:25870276

  8. Structural Basis for Specific Inhibition of tRNA Synthetase by an ATP Competitive Inhibitor.

    Science.gov (United States)

    Fang, Pengfei; Han, Hongyan; Wang, Jing; Chen, Kaige; Chen, Xin; Guo, Min

    2015-06-18

    Pharmaceutical inhibitors of aminoacyl-tRNA synthetases demand high species and family specificity. The antimalarial ATP-mimetic cladosporin selectively inhibits Plasmodium falciparum LysRS (PfLysRS). How the binding to a universal ATP site achieves the specificity is unknown. Here we report three crystal structures of cladosporin with human LysRS, PfLysRS, and a Pf-like human LysRS mutant. In all three structures, cladosporin occupies the class defining ATP-binding pocket, replacing the adenosine portion of ATP. Three residues holding the methyltetrahydropyran moiety of cladosporin are critical for the specificity of cladosporin against LysRS over other class II tRNA synthetase families. The species-exclusive inhibition of PfLysRS is linked to a structural divergence beyond the active site that mounts a lysine-specific stabilizing response to binding cladosporin. These analyses reveal that inherent divergence of tRNA synthetase structural assembly may allow for highly specific inhibition even through the otherwise universal substrate binding pocket and highlight the potential for structure-driven drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Inhibition of potentially lethal radiation damage repair in normal and neoplastic human cells by 3-aminobenzamide: an inhibitor of poly(ADP-ribosylation)

    International Nuclear Information System (INIS)

    Thraves, P.J.; Mossman, K.L.; Frazier, D.T.; Dritschilo, A.

    1986-01-01

    The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase, on potentially lethal damage repair (PLDR) was investigated in normal human fibroblasts and four human tumor cell lines from tumors with varying degrees of radiocurability. The tumor lines selected were: Ewing's sarcoma, a bone tumor considered radiocurable and, human lung adenocarcinoma, osteosarcoma, and melanoma, three tumors considered nonradiocurable. PLDR was measured by comparing cell survival when cells were irradiated in a density-inhibited state and replated at appropriate cell numbers at specified times following irradiation to cell survival when cells were replated immediately following irradiation. 3AB was added to cultures 2 hr prior to irradiation and removed at the time of replating. Different test radiation doses were used for the various cell lines to obtain equivalent levels of cell survival. In the absence of inhibitor, PLDR was similar in all cell lines tested. In the presence of 8 mM 3AB, differential inhibition of PLDR was observed. PLDR was almost completely inhibited in Ewing's sarcoma cells and partially inhibited in normal fibroblast cells and osteosarcoma cells. No inhibition of PLDR was observed in the lung adenocarcinoma or melanoma cells. Except for the osteosarcoma cells, inhibition of PLDR by 3AB correlated well with radiocurability

  10. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation.

    Science.gov (United States)

    Scannevin, Robert H; Alexander, Richard; Haarlander, Tara Mezzasalma; Burke, Sharon L; Singer, Monica; Huo, Cuifen; Zhang, Yue-Mei; Maguire, Diane; Spurlino, John; Deckman, Ingrid; Carroll, Karen I; Lewandowski, Frank; Devine, Eric; Dzordzorme, Keli; Tounge, Brett; Milligan, Cindy; Bayoumy, Shariff; Williams, Robyn; Schalk-Hihi, Celine; Leonard, Kristi; Jackson, Paul; Todd, Matthew; Kuo, Lawrence C; Rhodes, Kenneth J

    2017-10-27

    Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Inhibition of protease-inhibitor resistant hepatitis C virus replicons and infectious virus by intracellular intrabodies

    Science.gov (United States)

    Gal-Tanamy, Meital; Zemel, Romy; Bachmatov, Larissa; Jangra, Rohit K.; Shapira, Assaf; Villanueva, Rodrigo; Yi, MinKyung; Lemon, Stanley M.; Benhar, Itai; Tur-Kaspa, Ran

    2015-01-01

    Hepatitis C virus (HCV) infection is a common cause of chronic liver disease and a serious threat to human health. The HCV NS3/4A serine protease is necessary for viral replication and innate immune evasion, and represents a well-validated target for specific antiviral therapy. We previously reported the isolation of single-chain antibodies (scFvs) that inhibit NS3/4A protease activity in vitro. Expressed intracellularly (intrabodies), these scFvs blocked NS3-mediated proliferation of NS3-transfected cells. Here we show that anti-NS3 scFvs suppress HCV RNA replication when expressed intracellularly in Huh7 hepatoma cells bearing either subgenomic or genome-length HCV RNA replicons. The expression of intrabodies directed against NS3 inhibited the autonomous amplification of HCV replicons resistant to small molecule inhibitors of the NS3/4A protease, and replicons derived from different HCV genotypes. The combination of intrabodies and interferon-α had an additive inhibitory effect on RNA replication in the replicon model. Intrabody expression also inhibited production of infectious HCV in a cell culture system. The NS3 protease activity was inhibited by the intrabodies in NS3-expressing cells. In contrast, cell-free synthesis of HCV RNA by preformed replicase complexes was not inhibited by intrabodies, suggesting that the major mode of inhibition of viral replication is inhibition of NS3/4A protease activity and subsequent suppression of viral polyprotein processing. PMID:20705106

  12. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    Science.gov (United States)

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-02-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes.

  13. Multi-tyrosine kinase inhibitors in preclinical studies for pediatric CNS AT/RT: Evidence for synergy with Topoisomerase-I inhibition

    Directory of Open Access Journals (Sweden)

    Jayanthan Aarthi

    2011-12-01

    Full Text Available Abstract Background Currently, Atypical Teratoid Rhabdoid Tumor (AT/RT constitutes one of the most difficult to treat malignancies in pediatrics. Hence, new knowledge of potential targets for therapeutics and the development of novel treatment approaches are urgently needed. We have evaluated the presence of cytokine pathways and the effects of two clinically available multi-tyrosine kinase inhibitors for cytotoxicity, target modulation and drug combinability against AT/RT cell lines. Results AT/RT cell lines expressed measurable quantities of VEGF, FGF, PDGF and SDF-1, although the absolute amounts varied between the cell lines. The targeted receptor tyrosine kinase inhibitor sorafenib inhibited the key signaling molecule Erk, which was activated following the addition of own conditioned media, suggesting the existence of autocrine/paracrine growth stimulatory pathways. The multi-tyrosine kinase inhibitors sorafenib and sunitinib also showed significant growth inhibition of AT/RT cells and their activity was enhanced by combination with the topoisomerase inhibitor, irinotecan. The loss of cytoplasmic NF-kappa-B in response to irinotecan was diminished by sorafenib, providing evidence for a possible benefit for this drug combination. Conclusions In addition to previously described involvement of insulin like growth factor (IGF family of cytokines, a multitude of other growth factors may contribute to the growth and survival of AT/RT cells. However, consistent with the heterogeneous nature of this tumor, quantitative and qualitative differences may exist among different tumor samples. Multi-tyrosine kinase inhibitors appear to have effective antitumor activity against all cell lines studied. In addition, the target modulation studies and drug combinability data provide the groundwork for additional studies and support the evaluation of these agents in future treatment protocols.

  14. Experimental and theoretical studies of benzoxazines corrosion inhibitors

    Directory of Open Access Journals (Sweden)

    Abdulhadi Kadhim

    Full Text Available 2-Methyl-4H-benzo[d][1,3]oxazin-4-one (BZ1 and 3-amino-2-methylquinazolin-4(3H-one (BZ2 were evaluated for their corrosion inhibition properties on mild steel (MS in hydrochloric acid solution by weight loss technique and scanning electron microscopy. Results show the inhibition efficiency values depend on the amount of nitrogen in the inhibitor, the inhibitor concentration and the inhibitor molecular weight with maximum inhibition efficiency of 89% and 65% for BZ2 and BZ1 at highest concentration of the compounds. Keywords: Methylquinazoline, Benzoxazines, Corrosion, Inhibitors

  15. The calmodulin inhibitor CGS 9343B inhibits voltage-dependent K{sup +} channels in rabbit coronary arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongliang; Hong, Da Hye; Kim, Han Sol; Kim, Hye Won [Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 200-701 (Korea, Republic of); Jung, Won-Kyo [Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 608-737 (Korea, Republic of); Na, Sung Hun [Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 200-701 (Korea, Republic of); Jung, In Duk; Park, Yeong-Min [Department of Immunology, Lab of Dendritic Cell Differentiation and Regulation, College of Medicine, Konkuk University, Chungju 380-701 (Korea, Republic of); Choi, Il-Whan, E-mail: cihima@inje.ac.kr [Department of Microbiology, Inje University College of Medicine, Busan, 614-735 (Korea, Republic of); Park, Won Sun, E-mail: parkws@kangwon.ac.kr [Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 200-701 (Korea, Republic of)

    2015-06-15

    We investigated the effects of the calmodulin inhibitor CGS 9343B on voltage-dependent K{sup +} (Kv) channels using whole-cell patch clamp technique in freshly isolated rabbit coronary arterial smooth muscle cells. CGS 9343B inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC{sub 50}) value of 0.81 μM. The decay rate of Kv channel inactivation was accelerated by CGS 9343B. The rate constants of association and dissociation for CGS 9343B were 2.77 ± 0.04 μM{sup −1} s{sup −1} and 2.55 ± 1.50 s{sup −1}, respectively. CGS 9343B did not affect the steady-state activation curve, but shifted the inactivation curve toward to a more negative potential. Train pulses (1 or 2 Hz) application progressively increased the CGS 9343B-induced Kv channel inhibition. In addition, the inactivation recovery time constant was increased in the presence of CGS 9343B, suggesting that CGS 9343B-induced inhibition of Kv channel was use-dependent. Another calmodulin inhibitor, W-13, did not affect Kv currents, and did not change the inhibitory effect of CGS 9343B on Kv current. Our results demonstrated that CGS 9343B inhibited Kv currents in a state-, time-, and use-dependent manner, independent of calmodulin inhibition. - Highlights: • We investigated the effects of CGS 9394B on Kv channels. • CGS 9394B inhibited Kv current in a state-, time-, and use-dependent manner. • Caution is required when using CGS 9394B in vascular function studies.

  16. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  17. AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance

    Science.gov (United States)

    O’Hare, Thomas; Shakespeare, William C.; Zhu, Xiaotian; Eide, Christopher A.; Rivera, Victor M.; Wang, Frank; Adrian, Lauren T.; Zhou, Tianjun; Huang, Wei-Sheng; Xu, Qihong; Metcalf, Chester A.; Tyner, Jeffrey W.; Loriaux, Marc M.; Corbin, Amie S.; Wardwell, Scott; Ning, Yaoyu; Keats, Jeffrey A.; Wang, Yihan; Sundaramoorthi, Raji; Thomas, Mathew; Zhou, Dong; Snodgrass, Joseph; Commodore, Lois; Sawyer, Tomi K.; Dalgarno, David C.; Deininger, Michael W.N.; Druker, Brian J.; Clackson, Tim

    2009-01-01

    SUMMARY Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABLT315I mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and pre-clinical evaluation of AP24534, a potent, orally available multi-targeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABLT315I-driven tumor growth in mice, and completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML. PMID:19878872

  18. AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance

    Energy Technology Data Exchange (ETDEWEB)

    O’Hare, Thomas; Shakespeare, William C.; Zhu, Xiaotian; Eide, Christopher A.; Rivera, Victor M.; Wang, Frank; Adrian, Lauren T.; Zhou, Tianjun; Huang, Wei-Sheng; Xu, Qihong; Metcalf, III, Chester A.; Tyner, Jeffrey W.; Loriaux, Marc M.; Corbin, Amie S.; Wardwell, Scott; Ning, Yaoyu; Keats, Jeffrey A.; Wang, Yihan; Sundaramoorthi, Raji; Thomas, Mathew; Zhou, Dong; Snodgrass, Joseph; Commodore, Lois; Sawyer, Tomi K.; Dalgarno, David C.; Deininger, Michael W.N.; Druker, Brian J.; Clackson, Tim; (OHSU- Cancer Instit.); (ARIAD)

    2010-09-07

    Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABL{sup T315I} mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and preclinical evaluation of AP24534, a potent, orally available multitargeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABL{sup T315I}-driven tumor growth in mice, and completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML.

  19. The inhibition of human T cell proliferation by the caspase inhibitor z-VAD-FMK is mediated through oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Rajah, T.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    2014-07-15

    The caspase inhibitor benzyloxycarbony (Cbz)-L-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletion of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH.

  20. The inhibition of human T cell proliferation by the caspase inhibitor z-VAD-FMK is mediated through oxidative stress

    International Nuclear Information System (INIS)

    Rajah, T.; Chow, S.C.

    2014-01-01

    The caspase inhibitor benzyloxycarbony (Cbz)-L-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletion of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH

  1. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Rando, Roy J. [Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University Health Sciences Center, New Orleans, LA (United States); Pathak, Yashwant V. [College of Pharmacy, University of South Florida, Tampa, FL (United States); Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States)

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.

  2. Stabilization versus inhibition of TAFIa by competitive inhibitors in vitro

    NARCIS (Netherlands)

    Walker, J.B.; Hughes, B.; James, I.; Haddock, P.; Kluft, C.; Bajzar, L.

    2003-01-01

    Two competitive inhibitors of TAFIa (activated thrombin-activable fibrinolysis inhibitor), 2-guanidinoethyl-mercaptosuccinic acid and potato tuber carboxypeptidase inhibitor, variably affect fibrinolysis of clotted human plasma. Depending on their concentration, the inhibitors shortened, prolonged,

  3. Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1.

    Directory of Open Access Journals (Sweden)

    Ronald A Merrill

    2011-04-01

    Full Text Available Mitochondrial shape is determined by fission and fusion reactions catalyzed by large GTPases of the dynamin family, mutation of which can cause neurological dysfunction. While fission-inducing protein phosphatases have been identified, the identity of opposing kinase signaling complexes has remained elusive. We report here that in both neurons and non-neuronal cells, cAMP elevation and expression of an outer-mitochondrial membrane (OMM targeted form of the protein kinase A (PKA catalytic subunit reshapes mitochondria into an interconnected network. Conversely, OMM-targeting of the PKA inhibitor PKI promotes mitochondrial fragmentation upstream of neuronal death. RNAi and overexpression approaches identify mitochondria-localized A kinase anchoring protein 1 (AKAP1 as a neuroprotective and mitochondria-stabilizing factor in vitro and in vivo. According to epistasis studies with phosphorylation site-mutant dynamin-related protein 1 (Drp1, inhibition of the mitochondrial fission enzyme through a conserved PKA site is the principal mechanism by which cAMP and PKA/AKAP1 promote both mitochondrial elongation and neuronal survival. Phenocopied by a mutation that slows GTP hydrolysis, Drp1 phosphorylation inhibits the disassembly step of its catalytic cycle, accumulating large, slowly recycling Drp1 oligomers at the OMM. Unopposed fusion then promotes formation of a mitochondrial reticulum, which protects neurons from diverse insults.

  4. Inhibitors of poly (ADP-ribose) synthesis inhibit the two types of repair of potentially lethal damage

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi; Elkind, M.M.

    1994-01-01

    The purpose of this study was to examine whether 3-amino-benzamide (3ABA), an inhibitor of poly (ADP-ribose) synthesis, inhibits the two types of potentially lethal damage (PLD) repair, termed slow and fast. The fast-type PLD repair was measured by the decrease in survival of V79 Chinese hamster cells by postirradiation treatment with 3ABA. The slow-type PLD repair was measured by the increase in survival by posttreatment with conditioned medium (CM), which became conditioned by growing a crowed culture of cells and supports the slow-type PLD repair. Up to 1 mM 3-ABA inhibited the slow type repair; at doses of 2 mM and above, it inhibited the fast type of PLD repair. There are quantitative differences in cellular effects of 3ABA dependent on concentration. Poly (ADP-ribose) appears to play an important role in the PLD repairs and has little effect on the repair of sublethal damage. 10 refs., 2 figs

  5. Allosteric Inhibition of Factor XIIIa. Non-Saccharide Glycosaminoglycan Mimetics, but Not Glycosaminoglycans, Exhibit Promising Inhibition Profile.

    Directory of Open Access Journals (Sweden)

    Rami A Al-Horani

    Full Text Available Factor XIIIa (FXIIIa is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We reasoned that targeting a collection of basic amino acid residues distant from FXIIIa's active site by using sulfated glycosaminoglycans (GAGs or non-saccharide GAG mimetics (NSGMs would lead to the discovery of the first allosteric FXIIIa inhibitors. We tested a library of 22 variably sulfated GAGs and NSGMs against human FXIIIa to discover promising hits. Interestingly, although some GAGs bound to FXIIIa better than NSGMs, no GAG displayed any inhibition. An undecasulfated quercetin analog was found to inhibit FXIIIa with reasonable potency (efficacy of 98%. Michaelis-Menten kinetic studies revealed an allosteric mechanism of inhibition. Fluorescence studies confirmed close correspondence between binding affinity and inhibition potency, as expected for an allosteric process. The inhibitor was reversible and at least 9-fold- and 26-fold selective over two GAG-binding proteins factor Xa (efficacy of 71% and thrombin, respectively, and at least 27-fold selective over a cysteine protease papain. The inhibitor also inhibited the FXIIIa-mediated polymerization of fibrin in vitro. Overall, our work presents the proof-of-principle that FXIIIa can be allosterically modulated by sulfated non-saccharide agents much smaller than GAGs, which should enable the design of selective and safe anticoagulants.

  6. L-Chicoric acid inhibits human immunodeficiency virus type 1 integration in vivo and is a noncompetitive but reversible inhibitor of HIV-1 integrase in vitro

    International Nuclear Information System (INIS)

    Reinke, Ryan A.; Lee, Deborah J.; McDougall, Brenda R.; King, Peter J.; Victoria, Joseph; Mao Yingqun; Lei Xiangyang; Reinecke, Manfred G.; Robinson, W. Edward

    2004-01-01

    The human immunodeficiency virus (HIV) integrase (IN) must covalently join the viral cDNA into a host chromosome for productive HIV infection. L-Chicoric acid (L-CA) enters cells poorly but is a potent inhibitor of IN in vitro. Using quantitative real-time polymerase chain reaction (PCR), L-CA inhibits integration at concentrations from 500 nM to 10 μM but also inhibits entry at concentrations above 1 μM. Using recombinant HIV IN, steady-state kinetic analyses with L-CA were consistent with a noncompetitive or irreversible mechanism of inhibition. IN, in the presence or absence of L-CA, was successively washed. Inhibition of IN diminished, demonstrating that L-CA was reversibly bound to the protein. These data demonstrate that L-CA is a noncompetitive but reversible inhibitor of IN in vitro and of HIV integration in vivo. Thus, L-CA likely interacts with amino acids other than those which bind substrate

  7. The effect of chemical anti-inhibitors on fibrinolytic enzymes and inhibitors

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Jespersen, J; Kluft, C

    1997-01-01

    proteases. We studied the influence of chemical anti-inhibitors (chloramine T, flufenamate, sodium lauryl sulfate, and methylamine) on fibrinolytic serine proteases and fibrinolytic enzyme inhibitors using the physiological substrate fibrin as plasmin substrate. Low concentrations of chloramine T (0.01 mmol......%) and plasminogen activators (apparent recovery > 200%). Sodium lauryl sulfate eliminates the major fibrinolytic enzyme inhibitors, but increases the activity of plasmin (apparent recovery > 200%) and plasminogen activator, urokinase type (apparent recovery 130%). Methylamine affects only plasmin inhibition. We...

  8. Squash inhibitor family of serine proteinases

    International Nuclear Information System (INIS)

    Otlewski, J.; Krowarsch, D.

    1996-01-01

    Squash inhibitors of serine proteinases form an uniform family of small proteins. They are built of 27-33 amino-acid residues and cross-linked with three disulfide bridges. The reactive site peptide bond (P1-P1') is between residue 5 (Lys, Arg or Leu) and 6 (always Ile). High resolution X-ray structures are available for two squash inhibitors complexed with trypsin. NMR solution structures have also been determined for free inhibitors. The major structural motif is a distorted, triple-stranded antiparallel beta-sheet. A similar folding motif has been recently found in a number of proteins, including: conotoxins from fish-hunting snails, carboxypeptidase inhibitor from potato, kalata B1 polypeptide, and in some growth factors (e.g. nerve growth factor, transforming growth factor β2, platelet-derived growth factor). Squash inhibitors are highly stable and rigid proteins. They inhibit a number of serine proteinases: trypsin, plasmin, kallikrein, blood clotting factors: X a and XII a , cathepsin G. The inhibition spectrum can be much broadened if specific amino-acid substitutions are introduced, especially at residues which contact proteinase. Squash inhibitors inhibit proteinases via the standard mechanism. According to the mechanism, inhibitors are substrates which exhibit at neutral pH a high k cat /K m index for hydrolysis and resynthesis of the reactive site, and a low value of the hydrolysis constant. (author)

  9. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    International Nuclear Information System (INIS)

    Hao, Hui-fang; Takaoka, Munenori; Bao, Xiao-hong; Wang, Zhi-gang; Tomono, Yasuko; Sakurama, Kazufumi; Ohara, Toshiaki; Fukazawa, Takuya; Yamatsuji, Tomoki; Fujiwara, Toshiyoshi; Naomoto, Yoshio

    2012-01-01

    Highlights: ► A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. ► TAE226 suppressed proliferation and migration, with a modest effect on adhesion. ► Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. ► TAE226 treatment suppressed the progression of peritoneal dissemination. ► Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken together, a possible strategy for inhibiting peritoneal dissemination by targeting FAK with TAE226 appears to be applicable

  10. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Hui-fang [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Takaoka, Munenori [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan); Bao, Xiao-hong [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Wang, Zhi-gang [College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Hohhot 010021 (China); Tomono, Yasuko [Division of Molecular and Cell Biology, Shigei Medical Research Institute, 2117 Yamada, Okayama 700-0202 (Japan); Sakurama, Kazufumi; Ohara, Toshiaki [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Fukazawa, Takuya; Yamatsuji, Tomoki [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan); Fujiwara, Toshiyoshi [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Naomoto, Yoshio, E-mail: ynaomoto@med.kawasaki-m.ac.jp [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. Black-Right-Pointing-Pointer TAE226 suppressed proliferation and migration, with a modest effect on adhesion. Black-Right-Pointing-Pointer Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. Black-Right-Pointing-Pointer TAE226 treatment suppressed the progression of peritoneal dissemination. Black-Right-Pointing-Pointer Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken

  11. Polyaspartic acid as a green corrosion inhibitor for carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Cui, R. [Department of Chemistry, Hebei Normal University, Shijiazhuang 050016 (China); Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500 (China); Gu, N.; Li, C. [Department of Chemistry, Hebei Normal University, Shijiazhuang 050016 (China)

    2011-04-15

    The inhibitor effect of the environmentally friendly corrosion inhibitor polyaspartic acid (PASP) on the corrosion of carbon steel in 0.5 M H{sub 2}SO{sub 4} was investigated by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). Polarization curve results clearly reveal the fact that PASP is a good anode-type inhibitor. EIS results confirm its corrosion inhibition ability. The inhibition efficiency increases with increasing PASP concentration, and the maximum inhibition efficiency was 80.33% at 10 C. SEM reveals that a protective film forms on the surface of the inhibited sample. The adsorption of this inhibitor is found to follow the Freundlich adsorption isotherm. A mechanism is proposed to explain the inhibitory action of the corrosion inhibitor. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. The histone deacetylase inhibitor, Vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition.

    Directory of Open Access Journals (Sweden)

    Darren M Hutt

    Full Text Available Hypoxia inducible factor 1α (HIF-1α is a master regulator of tumor angiogenesis being one of the major targets for cancer therapy. Previous studies have shown that Histone Deacetylase Inhibitors (HDACi block tumor angiogenesis through the inhibition of HIF-1α expression. As such, Vorinostat (Suberoylanilide Hydroxamic Acid/SAHA and Romidepsin, two HDACis, were recently approved by the Food and Drug Administration (FDA for the treatment of cutaneous T cell lymphoma. Although HDACis have been shown to affect HIF-1α expression by modulating its interactions with the Hsp70/Hsp90 chaperone axis or its acetylation status, the molecular mechanisms by which HDACis inhibit HIF-1α expression need to be further characterized. Here, we report that the FDA-approved HDACi Vorinostat/SAHA inhibits HIF-1α expression in liver cancer-derived cell lines, by a new mechanism independent of p53, prolyl-hydroxylases, autophagy and proteasome degradation. We found that SAHA or silencing of HDAC9 mechanism of action is due to inhibition of HIF-1α translation, which in turn, is mediated by the eukaryotic translation initiation factor--eIF3G. We also highlighted that HIF-1α translation is dramatically inhibited when SAHA is combined with eIF3H silencing. Taken together, we show that HDAC activity regulates HIF-1α translation, with HDACis such as SAHA representing a potential novel approach for the treatment of hepatocellular carcinoma.

  13. Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).

    Science.gov (United States)

    Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B

    Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.

  14. Inhibition of X-ray and doxorubicin-induced apoptosis by butyrolactone I, a CDK-specific inhibitor, in human tumor cells

    International Nuclear Information System (INIS)

    Lu Yanjun; Takebe, Hiraku; Yagi, Takashi

    2000-01-01

    Cell-cycle progression is coordinately regulated by cyclin-dependent kinases (CDKs). The inhibition of CDKs by p21 wafl/Cipl/Sdil prevents the apoptosis of cells treated with DNA-damaging agents. In this study, we found that butyrolactone I, a specific inhibitor of CDC2 family kinases, blocks the X-ray- or doxorubicin-induced apoptosis of DLD1 (p21 +/+) human colorectal carcinoma cells in a dose-dependent manner. We also found that butyrolactone I inhibits the CDK2 activity and enhances cell survival after an X-ray irradiation or doxorubicin treatment in both DLD1 (p21 -/-) and DLD1 (p21 +/+) cells. These findings suggest that butyrolactone I prevents apoptosis by the direct inhibition of CDK and also, possibly, by CDK-inhibition through p53-independent p21-induction. Our findings indicate that CDK activity is required for DNA-damaging agent-induced apoptosis. (author)

  15. Small Quaternary Inhibitors K298 and K524: Cholinesterases Inhibition, Absorption, Brain Distribution, and Toxicity.

    Science.gov (United States)

    Karasova, Jana Zdarova; Hroch, Milos; Musilek, Kamil; Kuca, Kamil

    2016-02-01

    Inhibitors of acetylcholinesterase (AChE) may be used in the treatment of various cholinergic deficits, among them being myasthenia gravis (MG). This paper describes the first in vivo data for promising small quaternary inhibitors (K298 and K524): acute toxicity study, cholinesterase inhibition, absorption, and blood-brain barrier penetration. The newly prepared AChE inhibitors (bis-quinolinium and quinolinium compounds) possess a positive charge in the molecule which ensures that anti-AChE action is restricted to peripheral effect. HPLC-MS was used for determination of real plasma and brain concentration in the pharmacokinetic part of the study, and standard non-compartmental analysis was performed. The maximum plasma concentrations were attained at 30 min (K298; 928.76 ± 115.20 ng/ml) and 39 min (K524; 812.40 ± 54.96 ng/ml) after i.m. Both compounds are in fact able to target the central nervous system. It seems that the difference in the CNS distribution profile depends on an active efflux system. The K524 brain concentration was actively decreased to below an effective level; in contrast, K298 progressively accumulated in brain tissue. Peripheral AChE inhibitors are still first-line treatment in the mild forms of MG. Commonly prescribed carbamates have many severe side effects related to AChE carbamylation. The search for new treatment strategies is still important. Unlike carbamates, these new compounds target AChE via apparent π-π or π-cationic interaction aside at the AChE catalytic site.

  16. Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis

    Science.gov (United States)

    Zhang, Zhenzhen; Wu, Shengnan; Feng, Jie

    2011-01-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-α-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.

  17. Molecular insights into human monoamine oxidase (MAO) inhibition by 1,4-naphthoquinone: evidences for menadione (vitamin K3) acting as a competitive and reversible inhibitor of MAO.

    Science.gov (United States)

    Coelho Cerqueira, Eduardo; Netz, Paulo Augusto; Diniz, Cristiane; Petry do Canto, Vanessa; Follmer, Cristian

    2011-12-15

    Monoamine oxidase (MAO) catalyzes the oxidative deamination of biogenic and exogenous amines and its inhibitors have therapeutic value for several conditions including affective disorders, stroke, neurodegenerative diseases and aging. The discovery of 2,3,6-trimethyl-1,4-naphthoquinone (TMN) as a nonselective and reversible inhibitor of MAO, has suggested 1,4-naphthoquinone (1,4-NQ) as a potential scaffold for designing new MAO inhibitors. Combining molecular modeling tools and biochemical assays we evaluate the kinetic and molecular details of the inhibition of human MAO by 1,4-NQ, comparing it with TMN and menadione. Menadione (2-methyl-1,4-naphthoquinone) is a multitarget drug that acts as a precursor of vitamin K and an inducer of mitochondrial permeability transition. Herein we show that MAO-B was inhibited competitively by 1,4-NQ (K(i)=1.4 μM) whereas MAO-A was inhibited by non-competitive mechanism (K(i)=7.7 μM). Contrasting with TMN and 1,4-NQ, menadione exhibited a 60-fold selectivity for MAO-B (K(i)=0.4 μM) in comparison with MAO-A (K(i)=26 μM), which makes it as selective as rasagiline. Fluorescence and molecular modeling data indicated that these inhibitors interact with the flavin moiety at the active site of the enzyme. Additionally, docking studies suggest the phenyl side groups of Tyr407 and Tyr444 (for MAO-A) or Tyr398 and Tyr435 (for MAO-B) play an important role in the interaction of the enzyme with 1,4-NQ scaffold through forces of dispersion as verified for menadione, TMN and 1,4-NQ. Taken together, our findings reveal the molecular details of MAO inhibition by 1,4-NQ scaffold and show for the first time that menadione acts as a competitive and reversible inhibitor of human MAO. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Discovery of novel PDE9 inhibitors capable of inhibiting Aβ aggregation as potential candidates for the treatment of Alzheimer’s disease

    Science.gov (United States)

    Su, Tao; Zhang, Tianhua; Xie, Shishun; Yan, Jun; Wu, Yinuo; Li, Xingshu; Huang, Ling; Luo, Hai-Bin

    2016-02-01

    Recently, phosphodiesterase-9 (PDE9) inhibitors and biometal-chelators have received much attention as potential therapeutics for the treatment of Alzheimer’s disease (AD). Here, we designed, synthesized, and evaluated a novel series of PDE9 inhibitors with the ability to chelate metal ions. The bioassay results showed that most of these molecules strongly inhibited PDE9 activity. Compound 16 showed an IC50 of 34 nM against PDE9 and more than 55-fold selectivity against other PDEs. In addition, this compound displayed remarkable metal-chelating capacity and a considerable ability to halt copper redox cycling. Notably, in comparison to the reference compound clioquinol, it inhibited metal-induced Aβ1-42 aggregation more effectively and promoted greater disassembly of the highly structured Aβ fibrils generated through Cu2+-induced Aβ aggregation. These activities of 16, together with its favorable blood-brain barrier permeability, suggest that 16 may be a promising compound for treatment of AD.

  19. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Shohei Sakuda

    2014-03-01

    Full Text Available Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control.

  20. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Science.gov (United States)

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  1. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition

    Science.gov (United States)

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D.; Nencioni, Alessio

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use. PMID:25909220

  2. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance.

    Science.gov (United States)

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-30

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells. Three pancreatic cancer-cell lines were used to evaluate the antitumor effect of CG200745 combined with gemcitabine/erlotinib. CG200745 induced the expression of apoptotic proteins (PARP and caspase-3) and increased the levels of acetylated histone H3. CG200745 with gemcitabine/erlotinib showed significant growth inhibition and synergistic antitumor effects in vitro. In vivo, gemcitabine/erlotinib and CG200745 reduced tumor size up to 50%. CG200745 enhanced the sensitivity of gemcitabine-resistant pancreatic cancer cells to gemcitabine, and decreased the level of ATP-binding cassette-transporter genes, especially multidrug resistance protein 3 (MRP3) and MRP4. The novel HDAC inhibitor, CG200745, with gemcitabine/erlotinib had a synergistic anti-tumor effect on pancreatic cancer cells. CG200745 significantly improved pancreatic cancer sensitivity to gemcitabine, with a prominent antitumor effect on gemcitabine-resistant pancreatic cancer cells. Therefore, improved clinical outcome is expected in the future.

  3. A specific and potent inhibitor of glucosylceramide synthase for substrate inhibition therapy of Gaucher disease.

    Science.gov (United States)

    McEachern, Kerry Anne; Fung, John; Komarnitsky, Svetlana; Siegel, Craig S; Chuang, Wei-Lien; Hutto, Elizabeth; Shayman, James A; Grabowski, Gregory A; Aerts, Johannes M F G; Cheng, Seng H; Copeland, Diane P; Marshall, John

    2007-07-01

    An approach to treating Gaucher disease is substrate inhibition therapy which seeks to abate the aberrant lysosomal accumulation of glucosylceramide. We have identified a novel inhibitor of glucosylceramide synthase (Genz-112638) and assessed its activity in a murine model of Gaucher disease (D409V/null). Biochemical characterization of Genz-112638 showed good potency (IC(50) approximately 24nM) and specificity against the target enzyme. Mice that received drug prior to significant accumulation of substrate (10 weeks of age) showed reduced levels of glucosylceramide and number of Gaucher cells in the spleen, lung and liver when compared to age-matched control animals. Treatment of older mice that already displayed significant amounts of tissue glucosylceramide (7 months old) resulted in arrest of further accumulation of the substrate and appearance of additional Gaucher cells in affected organs. These data indicate that substrate inhibition therapy with Genz-112638 represents a viable alternate approach to enzyme therapy to treat the visceral pathology in Gaucher disease.

  4. Administration of PDE4 Inhibitors Suppressed the Pannus-Like Inflammation by Inhibition of Cytokine Production by Macrophages and Synovial Fibroblast Proliferation

    Directory of Open Access Journals (Sweden)

    Katsuya Kobayashi

    2007-01-01

    Full Text Available A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA. Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4 inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1β, TNF-α, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-α and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

  5. Administration of PDE4 inhibitors suppressed the pannus-like inflammation by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

    Science.gov (United States)

    Kobayashi, Katsuya; Suda, Toshio; Manabe, Haruhiko; Miki, Ichiro

    2007-01-01

    A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA). Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4) inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA) were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1beta, TNF-alpha, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-alpha and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

  6. Predicting the Performance of Organic Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    David A. Winkler

    2017-12-01

    Full Text Available The withdrawal of effective but toxic corrosion inhibitors has provided an impetus for the discovery of new, benign organic compounds to fill that role. Concurrently, developments in the high-throughput synthesis of organic compounds, the establishment of large libraries of available chemicals, accelerated corrosion inhibition testing technologies, and the increased capability of machine learning methods have made discovery of new corrosion inhibitors much faster and cheaper than it used to be. We summarize these technical developments in the corrosion inhibition field and describe how data-driven machine learning methods can generate models linking molecular properties to corrosion inhibition that can be used to predict the performance of materials not yet synthesized or tested. We briefly summarize the literature on quantitative structure–property relationships models of small organic molecule corrosion inhibitors. The success of these models provides a paradigm for rapid discovery of novel, effective corrosion inhibitors for a range of metals and alloys in diverse environments.

  7. Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid

    Directory of Open Access Journals (Sweden)

    M. Yadav

    2016-11-01

    Full Text Available The purpose of this paper is to evaluate the protective ability of 1-(2-aminoethyl-2-oleylimidazoline (AEOI and 1-(2-oleylamidoethyl-2-oleylimidazoline (OAEOI as corrosion inhibitors for N80 steel in 15% hydrochloric acid, which may find application as eco-friendly corrosion inhibitors in acidizing processes in petroleum industry. Different concentrations of synthesized inhibitors AEOI and OAEOI were added to the test solution (15% HCl and the corrosion inhibition of N80 steel in hydrochloric acid medium containing inhibitors was tested by weight loss, potentiodynamic polarization and AC impedance measurements. Influence of temperature (298–323 K on the inhibition behavior was studied. Surface studies were performed by using FTIR spectra and SEM. Both the inhibitors, AEOI and OAEOI at 150 ppm concentration show maximum efficiency 90.26% and 96.23%, respectively at 298 K in 15% HCl solution. Both the inhibitors act as mixed corrosion inhibitors. The adsorption of the corrosion inhibitors at the surface of N80 steel is the root cause of corrosion inhibition.

  8. mTOR inhibitors alone and in combination with JAK2 inhibitors effectively inhibit cells of myeloproliferative neoplasms.

    Directory of Open Access Journals (Sweden)

    Costanza Bogani

    Full Text Available BACKGROUND: Dysregulated signaling of the JAK/STAT pathway is a common feature of chronic myeloproliferative neoplasms (MPN, usually associated with JAK2V617F mutation. Recent clinical trials with JAK2 inhibitors showed significant improvements in splenomegaly and constitutional symptoms in patients with myelofibrosis but meaningful molecular responses were not documented. Accordingly, there remains a need for exploring new treatment strategies of MPN. A potential additional target for treatment is represented by the PI3K/AKT/mammalian target of rapamycin (mTOR pathway that has been found constitutively activated in MPN cells; proof-of-evidence of efficacy of the mTOR inhibitor RAD001 has been obtained recently in a Phase I/II trial in patients with myelofibrosis. The aim of the study was to characterize the effects in vitro of mTOR inhibitors, used alone and in combination with JAK2 inhibitors, against MPN cells. FINDINGS: Mouse and human JAK2V617F mutated cell lines and primary hematopoietic progenitors from MPN patients were challenged with an allosteric (RAD001 and an ATP-competitive (PP242 mTOR inhibitor and two JAK2 inhibitors (AZD1480 and ruxolitinib. mTOR inhibitors effectively reduced proliferation and colony formation of cell lines through a slowed cell division mediated by changes in cell cycle transition to the S-phase. mTOR inhibitors also impaired the proliferation and prevented colony formation from MPN hematopoietic progenitors at doses significantly lower than healthy controls. JAK2 inhibitors produced similar antiproliferative effects in MPN cell lines and primary cells but were more potent inducers of apoptosis, as also supported by differential effects on cyclinD1, PIM1 and BcLxL expression levels. Co-treatment of mTOR inhibitor with JAK2 inhibitor resulted in synergistic activity against the proliferation of JAK2V617F mutated cell lines and significantly reduced erythropoietin-independent colony growth in patients with

  9. Inhibition and reversal of nickel-induced transformation by the histone deacetylase inhibitor trichostatin A

    International Nuclear Information System (INIS)

    Zhang Qunwei; Salnikow, Konstantin; Kluz, Thomas; Chen, L.C.; Su, W.C.; Costa, Max

    2003-01-01

    The carcinogenic process initiated by nongenotoxic carcinogens involves modulation of gene expression. Nickel compounds have low mutagenic activity, but are highly carcinogenic. In vitro both mouse and human cells can be efficiently transformed by soluble and insoluble nickel compounds to anchorage-independent growth. Because previous studies have shown that carcinogenic nickel compounds silence genes by inhibiting histone acetylation and enhancing DNA methylation, we investigated the effect of enhancing histone acetylation on cell transformation. The exposure of nickel-transformed cells to the histone deacetylase inhibitor trichostatin A (TSA) resulted in the appearance of significant number of revertants measured by their inability to grow in soft agar. Using the Affymetrix GeneChip we found that the level of expression of a significant number of genes was changed (suppressed or upregulated) in nickel-transformed clones but returned to a normal level in revertants obtained following TSA treatment. Moreover, we found that treatment of cells with TSA inhibited the ability of nickel to transform mouse PW cells to anchorage-independent growth. Treatment with TSA also inhibited the ability of nickel to transform human HOS cells, although to a lesser extent. In contrast, treatment with TSA was not able to revert established cancer cell lines as readily as the nickel-transformed cells. These data indicated that modulation of gene expression is important for nickel-induced transformation

  10. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    Science.gov (United States)

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.

  11. Farnesyltransferase inhibitor tipifarnib (R115777) preferentially inhibits in vitro autonomous erythropoiesis of polycythemia vera patient cells.

    Science.gov (United States)

    Larghero, Jérôme; Gervais, Nathalie; Cassinat, Bruno; Rain, Jean-Didier; Schlageter, Marie-Hélène; Padua, Rose Ann; Chomienne, Christine; Rousselot, Philippe

    2005-05-01

    Polycythemia vera (PV) is an acquired myeloproliferative disorder with primary expansion of the red cell mass leading to an increased risk of thrombosis and less frequently to myelofibrosis and secondary acute leukemia. Standard therapies include cytoreduction with either phlebotomy or chemotherapeutic agents and antithrombotic drugs. Because long-term exposure to cytotoxic chemotherapy may increase the risk of acute transformation, new therapeutic options are needed. Tipifarnib is a nonpeptidomimetic inhibitor of farnesyl transferase that was developed as a potential inhibitor of RAS signaling. In the present study we report that tipifarnib used at pharmacologically achievable concentrations strongly inhibits the erythroid burst-forming unit (BFU-E) autonomous growth that characterizes patients with PV. Moreover, at low tipifarnib concentrations (0.15 muM), the inhibitory effect was preferentially observed in PV BFU-E progenitors and not in normal BFU-E progenitors and was not rescued by erythropoietin (EPO). Thus tipifarnib may specifically target PV stem cells and may be of clinical interest in the treatment of patients with PV.

  12. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fortanet, Jorge Garcia; Chen, Christine Hiu-Tung; Chen, Ying-Nan P.; Chen, Zhouliang; Deng, Zhan; Firestone, Brant; Fekkes, Peter; Fodor, Michelle; Fortin, Pascal D.; Fridrich, Cary; Grunenfelder, Denise; Ho, Samuel; Kang, Zhao B.; Karki, Rajesh; Kato, Mitsunori; Keen, Nick; LaBonte, Laura R.; Larrow, Jay; Lenoir, Francois; Liu, Gang; Liu, Shumei; Lombardo, Franco; Majumdar, Dyuti; Meyer, Matthew J.; Palermo, Mark; Perez, Lawrence; Pu, Minying; Ramsey, Timothy; Sellers, William R.; Shultz, Michael D.; Stams, Travis; Towler, Christopher; Wang, Ping; Williams, Sarah L.; Zhang, Ji-Hu; LaMarche, Matthew J. (Novartis)

    2016-09-08

    SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein–ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.

  13. Didymin Alleviates Hepatic Fibrosis Through Inhibiting ERK and PI3K/Akt Pathways via Regulation of Raf Kinase Inhibitor Protein

    Directory of Open Access Journals (Sweden)

    Xing Lin

    2016-12-01

    Full Text Available Background: Didymin has been reported to have anti-cancer potential. However, the effect of didymin on liver fibrosis remains illdefined. Methods: Hepatic fibrosis was induced by CCl4 in rats. The effects of didymin on liver pathology and collagen accumulation were observed by hematoxylin-eosin and Masson's trichrome staining, respectively. Serum transaminases activities and collagen-related indicators levels were determined by commercially available kits. Moreover, the effects of didymin on hepatic stellate cell apoptosis and cell cycle were analyzed by flow cytometry. Mitochondrial membrane potential was detected by using rhodamine-123 dye. The expression of Raf kinase inhibitor protein (RKIP and the phosphorylation of the ERK/MAPK and PI3K/Akt pathways were assessed by Western blot. Results: Didymin significantly ameliorated chronic liver injury and collagen deposition. It strongly inhibited hepatic stellate cells proliferation, induced apoptosis and caused cell cycle arrest in G2/M phase. Moreover, didymin notably attenuated mitochondrial membrane potential, accompanied by release of cytochrome C. Didymin significantly inhibited the ERK/MAPK and PI3K/Akt pathways. The effects of didymin on the collagen accumulation in rats and on the biological behaviors of hepatic stellate cells were largely abolished by the specific RKIP inhibitor locostatin. Conclusion: Didymin alleviates hepatic fibrosis by inhibiting ERK/MAPK and PI3K/Akt pathways via regulation of RKIP expression.

  14. Natural inhibitors of tumor-associated proteases

    International Nuclear Information System (INIS)

    Magdolen, U.; Krol, J.; Sato, S.; Schmitt, M.; Magdolen, V.; Krueger, A.; Mueller, M.M.; Sperl, S.

    2002-01-01

    The turnover and remodelling of extracellular matrix (ECM) is an essential part of many normal biological processes including development, morphogenesis, and wound healing. ECM turnover also occurs in severe pathological situations like artherosclerosis, fibrosis, tumor invasion and metastasis. The major proteases involved in this turnover are serine proteases (especially the urokinase-type plasminogen activator/plasmin system), matrix metalloproteases (a family of about 20 zinc-dependent endopeptidases including collagenases, gelatinases, stromelysins, and membrane-type metalloproteases), and cysteine proteases. In vivo, the activity of these proteases is tightly regulated in the extracellular space by zymogen activation and/or controlled inhibition. In the present review, we give an overview on the structure and biochemical properties of important tumor-associated protease inhibitors such as plasminogen activator inhibitor type 1 and type 2 (PAI-1, PAI-2), tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4), and the cysteine protease inhibitor cystatin C. Interestingly, some of these inhibitors of tumor-associated proteases display multiple functions which rather promote than inhibit tumor progression, when the presence of inhibitors in the tumor tissue is not balanced. (author)

  15. N-ω-chloroacetyl-l-ornithine, a new competitive inhibitor of ornithine decarboxylase, induces selective growth inhibition and cytotoxicity on human cancer cells versus normal cells.

    Science.gov (United States)

    Medina-Enríquez, Miriam Marlene; Alcántara-Farfán, Verónica; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José Guadalupe; Rodríguez-Páez, Lorena; Vargas-Ramírez, Alba Laura

    2015-06-01

    Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki = 59 µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1 µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500 µM completely inhibited growth of all cancer cells at 48 h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.

  16. Inhibiting cancer cell hallmark features through nuclear export inhibition.

    Science.gov (United States)

    Sun, Qingxiang; Chen, Xueqin; Zhou, Qiao; Burstein, Ezra; Yang, Shengyong; Jia, Da

    2016-01-01

    Treating cancer through inhibition of nuclear export is one of the best examples of basic research translation into clinical application. Nuclear export factor chromosomal region maintenance 1 (CRM1; Xpo1 and exportin-1) controls cellular localization and function of numerous proteins that are critical for the development of many cancer hallmarks. The diverse actions of CRM1 are likely to explain the broad ranging anti-cancer potency of CRM1 inhibitors observed in pre-clinical studies and/or clinical trials (phase I-III) on both advanced-stage solid and hematological tumors. In this review, we compare and contrast the mechanisms of action of different CRM1 inhibitors, and discuss the potential benefit of unexplored non-covalent CRM1 inhibitors. This emerging field has uncovered that nuclear export inhibition is well poised as an attractive target towards low-toxicity broad-spectrum potent anti-cancer therapy.

  17. Treatment with a JNK inhibitor increases, whereas treatment with a p38 inhibitor decreases, H2O2-induced calf pulmonary arterial endothelial cell death.

    Science.gov (United States)

    Park, Woo Hyun

    2017-08-01

    Oxidative stress induces apoptosis in endothelial cells (ECs). Reactive oxygen species (ROS) promote cell death by regulating the activity of various mitogen-activated protein kinases (MAPKs) in ECs. The present study investigated the effects of MAPK inhibitors on cell survival and glutathione (GSH) levels upon H 2 O 2 treatment in calf pulmonary artery ECs (CPAECs). H 2 O 2 treatment inhibited the growth and induced the death of CPAECs, as well as causing GSH depletion and the loss of mitochondrial membrane potential (MMP). While treatment with the MEK or JNK inhibitor impaired the growth of H 2 O 2 -treated CPAECs, treatment with the p38 inhibitor attenuated this inhibition of growth. Additionally, JNK inhibitor treatment increased the proportion of sub-G 1 phase cells in H 2 O 2 -treated CPAECs and further decreased the MMP. However, treatment with a p38 inhibitor reversed the effects of H 2 O 2 treatment on cell growth and the MMP. Similarly, JNK inhibitor treatment further increased, whereas p38 inhibitor treatment decreased, the proportion of GSH-depleted cells in H 2 O 2 -treated CPAECs. Each of the MAPK inhibitors affected cell survival, and ROS or GSH levels differently in H 2 O 2 -untreated, control CPAECs. The data suggest that the exposure of CPAECs to H 2 O 2 caused the cell growth inhibition and cell death through GSH depletion. Furthermore, JNK inhibitor treatment further enhanced, whereas p38 inhibitors attenuated, these effects. Thus, the results of the present study suggest a specific protective role for the p38 inhibitor, and not the JNK inhibitor, against H 2 O 2 -induced cell growth inhibition and cell death.

  18. Endocytosis of HERG is clathrin-independent and involves arf6.

    Directory of Open Access Journals (Sweden)

    Rucha Karnik

    Full Text Available The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6.

  19. Endocytosis of hERG Is Clathrin-Independent and Involves Arf6

    Science.gov (United States)

    Abuarab, Nada; Smith, Andrew J.; Hardy, Matthew E. L.; Elliott, David J. S.; Sivaprasadarao, Asipu

    2013-01-01

    The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6. PMID:24392021

  20. Overcoming imatinib resistance using Src inhibitor CGP76030, Abl inhibitor nilotinib and Abl/Lyn inhibitor INNO-406 in newly established K562 variants with BCR-ABL gene amplification.

    Science.gov (United States)

    Morinaga, Koji; Yamauchi, Takahiro; Kimura, Shinya; Maekawa, Taira; Ueda, Takanori

    2008-06-01

    Because imatinib (IM) resistance in chronic myeloid leukemia is primarily caused by the re-establishment of Abl kinase, new inhibitors may be efficacious. We evaluated 3 new agents against 2 new K562 variants, IM-R1 and IM-R2 cells, which were developed having 7- and 27-fold greater IM resistance, respectively, than the parental K562 cells. Both variants possessed BCR-ABL gene amplification along with elevated levels of its transcript and protein. Greater BCR-ABL gene amplification was observed in IM-R2 cells than in IM-R1 cells, which was consistent with the higher mRNA and protein levels of Bcr-Abl, and ultimately correlated with the greater IM resistance in IM-R2 cells. No mutation in the Abl kinase domain was detected in either variant. Despite the absence of Lyn overexpression, the Src kinase inhibitor CGP76030 showed positive cooperability with IM in inhibiting cell growth of not only K562 cells but also these 2 variants. This might be because of the augmented inhibition of Erk1/2 phosphorylation. The new Abl kinase inhibitor nilotinib was 10-fold more potent than IM in inhibiting the growth of K562 cells. Nilotinib inhibited the growth of IM-R1 and IM-R2 cells as potently as K562 cells. The combination of nilotinib with CGP76030 showed little additivity, because the potency of nilotinib masked the efficacy of CGP76030. The new dual Abl/Lyn inhibitor INNO-406 (formerly NS-187) was slightly more potent than nilotinib in inhibiting the growth of all 3 cell lines. Because BCR-ABL gene amplification occurs in blast crisis, these inhibitors might overcome IM resistance in such patients' leukemia. (c) 2008 Wiley-Liss, Inc.

  1. Invertase proteinaceous inhibitor of Cyphomandra betacea Sendt fruits.

    Science.gov (United States)

    Ordóñez, R M; Isla, M I; Vattuone, M A; Sampietro, A R

    2000-01-01

    This work describes a new invertase proteinaceous inhibitor from Cyphomandra betacea Sendt. (tomate de arbol) fruits. The proteinaceous inhibitor was isolated and purified from a cell wall preparation. The pH stability, kinetics of the inhibition of the C. betacea invertase, inhibition of several higher plant invertases and lectin nature of the inhibitor were studied. The inhibitor structure involves a single polypeptide (Mr = 19000), as shown by gel filtration and SDS-PAGE determinations. N-terminal aminoacid sequence was determined. The properties and some structural features of the inhibitor are compared with the proteinaceous inhibitors from several plant species (Beta vulgaris L., Ipomoea batatas L. and Lycopersicon esculentum Mill.). All these inhibitors share lectinic properties, some common epitopes, some aminoacid sequences and a certain lack of specificity towards invertases of different species, genera and even plant family. In consequence, the inhibitors appear to belong to the same lectin family. It is now known that some lectins are part of the defence mechanism of higher plants against fungi and bacteria and this is a probable role of the proteinaceous inhibitors.

  2. Inhibitors of pan PI3K signaling synergize with BRAF or MEK inhibitors to prevent BRAF-mutant melanoma cell growth

    Directory of Open Access Journals (Sweden)

    Melanie eSweetlove

    2015-06-01

    Full Text Available BRAF and MEK inhibitors have improved outcomes for patients with BRAF-mutant melanoma, but their efficacy is limited by both intrinsic and acquired resistance. Activation of the PI3K pathway can mediate resistance to these agents, providing a strong rationale for combination therapy in melanoma. Here, a panel of 9 low passage human metastatic melanoma cell lines with BRAF mutations were tested in cell proliferation and protein expression assays for sensitivity to inhibitors of MEK (selumetinib and BRAF (vemurafenib as single agents and in combination with inhibitors of pan-PI3K (ZSTK474, pan-PI3K/mTOR (BEZ235, individual PI3K isoforms (p110α, A66; p110β, TGX-221; p110γ, AS-252424; p110δ, idelalisib, or mTORC1/2 (KU-0063794. Selumetinib and vemurafenib potently inhibited cell proliferation in all cell lines, especially in those that expressed low levels of pAKT. ZSTK474 and BEZ235 also inhibited cell proliferation in all cell lines and enhanced the antitumor activity of selumetinib and vemurafenib in the majority of lines by either interacting synergistically or additively to increase potency or by inducing cytotoxicity by significantly increasing the magnitude of cell growth inhibition. Furthermore, ZSTK474 or BEZ235 combined with selumetinib to produce robust inhibition of pERK, pAKT and pS6 expression and synergistic inhibition of NZM20 tumor growth. The inhibitors of individual PI3K isoforms or mTORC1/2 were less effective at inhibiting cell proliferation either as single agents or in combination with selumetinib or vemurafenib, although KU-0063794 synergistically interacted with vemurafenib and increased the magnitude of cell growth inhibition with selumetinib or vemurafenib in certain cell lines. Overall, these results suggest that the sensitivity of BRAF-mutant melanoma cells to BRAF or MEK inhibitors is at least partly mediated by activation of the PI3K pathway and can be enhanced by combined inhibition of the BRAF/MEK and PI3K

  3. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    Science.gov (United States)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  4. Effects of Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 in Radiation-Induced Intestinal Injury

    International Nuclear Information System (INIS)

    Abderrahmani, Rym; Francois, Agnes; Buard, Valerie; Benderitter, Marc; Sabourin, Jean-Christophe; Crandall, David L.; Milliat, Fabien

    2009-01-01

    Purpose: To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. Methods and Materials: Wild-type (Wt) and PAI-1 -/- knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. Results: At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited the radiation-induced gene expression of transforming growth factor β1 (TGF-β1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1 -/- mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. Conclusions: A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.

  5. MK-2206, an AKT Inhibitor, Promotes Caspase-Independent Cell Death and Inhibits Leiomyoma Growth

    Science.gov (United States)

    Sefton, Elizabeth C.; Qiang, Wenan; Serna, Vanida; Kurita, Takeshi; Wei, Jian-Jun; Chakravarti, Debabrata

    2013-01-01

    Uterine leiomyomas (ULs), benign tumors of the myometrium, are the number one indication for hysterectomies in the United States due to a lack of an effective alternative therapy. ULs show activation of the pro-survival AKT pathway compared with normal myometrium; however, substantial data directly linking AKT to UL cell survival are lacking. We hypothesized that AKT promotes UL cell survival and that it is a viable target for inhibiting UL growth. We used the investigational AKT inhibitor MK-2206, currently in phase II trials, on cultured primary human UL and myometrial cells, immortalized leiomyoma cells, and in leiomyoma grafts grown under the kidney capsule in mice. MK-2206 inhibited AKT and PRAS40 phosphorylation but did not regulate serum- and glucocorticoid-induced kinase and ERK1/2, demonstrating its specificity for AKT. MK-2206 reduced UL cell viability and decreased UL tumor volumes. UL cells exhibited disruption of mitochondrial structures and underwent cell death that was independent of caspases. Additionally, mammalian target of rapamycin and p70S6K phosphorylation were reduced, indicating that mammalian target of rapamycin complex 1 signaling was compromised by AKT inhibition in UL cells. MK-2206 also induced autophagy in UL cells. Pretreatment of primary UL cells with 3-methyladenine enhanced MK-2206-mediated UL cell death, whereas knockdown of ATG5 and/or ATG7 did not significantly influence UL cell viability in the presence of MK-2206. Our data provide molecular evidence for the involvement of AKT in UL cell survival and suggest that AKT inhibition by MK-2206 may be a viable option to consider for the treatment of ULs. PMID:24002033

  6. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Peng Zou

    2016-01-01

    Full Text Available Overactive mitochondrial fission was shown to promote cell transformation and tumor growth. It remains elusive how mitochondrial quality is regulated in such conditions. Here, we show that upregulation of mitochondrial fission protein, dynamin related protein-1 (Drp1, was accompanied with increased mitochondrial biogenesis markers (PGC1α, NRF1, and Tfam in breast cancer cells. However, mitochondrial number was reduced, which was associated with lower mitochondrial oxidative capacity in breast cancer cells. This contrast might be owing to enhanced mitochondrial turnover through autophagy, because an increased population of autophagic vacuoles engulfing mitochondria was observed in the cancer cells. Consistently, BNIP3 (a mitochondrial autophagy marker and autophagic flux were significantly upregulated, indicative of augmented mitochondrial autophagy (mitophagy. The upregulation of Drp1 and BNIP3 was also observed in vivo (human breast carcinomas. Importantly, inhibition of Drp1 significantly suppressed mitochondrial autophagy, metabolic reprogramming, and cancer cell viability. Together, this study reveals coordinated increase of mitochondrial biogenesis and mitophagy in which Drp1 plays a central role regulating breast cancer cell metabolism and survival. Given the emerging evidence of PGC1α contributing to tumor growth, it will be of critical importance to target both mitochondrial biogenesis and mitophagy for effective cancer therapeutics.

  7. New in vitro model for proarrhythmia safety screening: IKs inhibition potentiates the QTc prolonging effect of IKr inhibitors in isolated guinea pig hearts.

    Science.gov (United States)

    Kui, Péter; Orosz, Szabolcs; Takács, Hedvig; Sarusi, Annamária; Csík, Norbert; Rárosi, Ferenc; Csekő, Csongor; Varró, András; Papp, Julius Gy; Forster, Tamás; Farkas, Attila S; Farkas, András

    2016-01-01

    Preclinical in vivo QT measurement as a proarrhythmia essay is expensive and not reliable enough. The aim of the present study was to develop a sensitive, cost-effective, Langendorff perfused guinea pig heart model for proarrhythmia safety screening. Low concentrations of dofetilide and cisapride (inhibitors of the rapid delayed rectifier potassium current, IKr) were tested alone and co-perfused with HMR-1556 (inhibitor of the slow delayed rectifier potassium current, IKs) in Langendorff perfused guinea pig hearts. The electrocardiographic rate corrected QT (QTc) interval, the Tpeak-Tend interval and the beat-to-beat variability and instability (BVI) of the QT interval were determined in sinus rhythm. Dofetilide and HMR-1556 alone or co-perfused, prolonged the QTc interval by 20±2%, 10±1% and 55±10%, respectively. Similarly, cisapride and HMR-1556 alone or co-perfused, prolonged the QTc interval by 11±3%, 11±4% and 38±6%, respectively. Catecholamine-induced fast heart rate abolished the QTc prolonging effects of the IKr inhibitors, but augmented the QTc prolongation during IKs inhibition. None of the drug perfusions increased significantly the Tpeak-Tend interval and the sinus BVI of the QT interval. IKs inhibition increased the QTc prolonging effect of IKr inhibitors in a super-additive (synergistic) manner, and the QTc interval was superior to other proarrhythmia biomarkers measured in sinus rhythm in isolated guinea pig hearts. The effect of catecholamines on the QTc facilitated differentiation between IKr and IKs inhibitors. Thus, QTc measurement in Langendorff perfused guinea pig hearts with pharmacologically attenuated repolarization reserve and periodic catecholamine perfusion seems to be suitable for preclinical proarrhythmia screening. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Inhibition of Drp1 protects against senecionine-induced mitochondria-mediated apoptosis in primary hepatocytes and in mice

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2017-08-01

    Full Text Available Pyrrolizidine alkaloids (PAs are a group of compounds found in various plants and some of them are widely consumed in the world as herbal medicines and food supplements. PAs are potent hepatotoxins that cause irreversible liver injury in animals and humans. However, the mechanisms by which PAs induce liver injury are not clear. In the present study, we determined the hepatotoxicity and molecular mechanisms of senecionine, one of the most common toxic PAs, in primary cultured mouse and human hepatocytes as well as in mice. We found that senecionine administration increased serum alanine aminotransferase levels in mice. H&E and TUNEL staining of liver tissues revealed increased hemorrhage and hepatocyte apoptosis in liver zone 2 areas. Mechanistically, senecionine induced loss of mitochondrial membrane potential, release of mitochondrial cytochrome c as well as mitochondrial JNK translocation and activation prior to the increased DNA fragmentation and caspase-3 activation in primary cultured mouse and human hepatocytes. SP600125, a specific JNK inhibitor, and ZVAD-fmk, a general caspase inhibitor, alleviated senecionine-induced apoptosis in primary hepatocytes. Interestingly, senecionine also caused marked mitochondria fragmentation in hepatocytes. Pharmacological inhibition of dynamin-related protein1 (Drp1, a protein that is critical to regulate mitochondrial fission, blocked senecionine-induced mitochondrial fragmentation and mitochondrial release of cytochrome c and apoptosis. More importantly, hepatocyte-specific Drp1 knockout mice were resistant to senecionine-induced liver injury due to decreased mitochondrial damage and apoptosis. In conclusion, our results uncovered a novel mechanism of Drp1-mediated mitochondrial fragmentation in senecionine-induced liver injury. Targeting Drp1-mediated mitochondrial fragmentation and apoptosis may be a potential avenue to prevent and treat hepatotoxicity induced by PAs. Keywords: Senecionine, Drp1

  9. Natural compounds as corrosion inhibitors for highly cycled systems

    Energy Technology Data Exchange (ETDEWEB)

    Quraishi, M.A.; Farooqi, I.H.; Saini, P.A. [Corrosion Research Lab., Aligarh (India)

    1999-11-01

    Strict environmental legislations have led to the development of green inhibitors in recent years. In continuation of the authors` research work on development of green inhibitors, they have investigated the aqueous extracts of three plants namely: Azadirachta indica, Punica Granatum and Momordica charantia as corrosion inhibitors for mild steel in 3% NaCl using weight loss and electrochemical methods. All the investigated compounds exhibited excellent corrosion inhibition properties comparable to that of HEDP. Azadirachta showed better scale inhibition effect than HEDP.

  10. Aurintricarboxylic acid is a potent inhibitor of phosphofructokinase.

    Science.gov (United States)

    McCune, S A; Foe, L G; Kemp, R G; Jurin, R R

    1989-01-01

    Aurintricarboxylic acid (ATA) was found to be a very potent inhibitor of purified rabbit liver phosphofructokinase (PFK), giving 50% inhibition at 0.2 microM. The inhibition was in a manner consistent with interaction at the citrate-inhibitory site of the enzyme. The data suggest that inhibition of PFK by ATA was not due to denaturation of the enzyme or the irreversible binding of inhibitor, since the inhibition could be reversed by addition of allosteric activators of PFK, i.e. fructose 2,6-bisphosphate or AMP. Two other tricarboxylic acids, agaric acid and (-)-hydroxycitrate, were found to inhibit PFK. ATA at much higher concentrations (500 microM) was shown to inhibit fatty acid synthesis from endogenous glycogen in rat hepatocytes; however, protein synthesis was not altered. PMID:2525029

  11. A group-specific inhibitor of lysosomal cysteine proteinases selectively inhibits both proteolytic degradation and presentation of the antigen dinitrophenyl-poly-L-lysine by guinea pig accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    of antigens by guinea pig accessory cells. The proteinase inhibitor benzyloxycarbonyl-phenylalanylalanine-diazomethyl-ketone, which selectively inhibits cysteine proteinases, was used to block this set of enzymes in cultured cells. We demonstrate that the selective inhibition of the cysteine proteinases...

  12. Novel Midkine Inhibitor iMDK Inhibits Tumor Growth and Angiogenesis in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Masui, Masanori; Okui, Tatsuo; Shimo, Tsuyoshi; Takabatake, Kiyofumi; Fukazawa, Takuya; Matsumoto, Kenichi; Kurio, Naito; Ibaragi, Soichiro; Naomoto, Yoshio; Nagatsuka, Hitoshi; Sasaki, Akira

    2016-06-01

    Midkine is a heparin-binding growth factor highly expressed in various human malignant tumors. However, its role in the growth of oral squamous cell carcinoma is not well understood. In this study, we analyzed the antitumor effect of a novel midkine inhibitor (iMDK) against oral squamous cell carcinoma. Administration of iMDK induced a robust antitumor response and suppressed cluster of differentiation 31 (CD31) expression in oral squamous cell carcinoma HSC-2 cells and SAS cells xenograft models. iMDK inhibited the proliferation of these cells dose-dependently, as well as the expression of midkine and phospho-extracellular signal-regulated kinase in HSC-2 and SAS cells. Moreover, iMDK significantly inhibited vascular endothelial growth factor and induced tube growth of human umbilical vein endothelial cells in a dose-dependent fashion. These findings suggest that midkine is critically involved in oral squamous cell carcinoma and iMDK can be effectively used for the treatment of oral squamous cell carcinoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes

    International Nuclear Information System (INIS)

    Pentassuglia, Laura; Graf, Michael; Lane, Heidi; Kuramochi, Yukio; Cote, Gregory; Timolati, Francesco; Sawyer, Douglas B.; Zuppinger, Christian; Suter, Thomas M.

    2009-01-01

    Inhibition of ErbB2 (HER2) with monoclonal antibodies, an effective therapy in some forms of breast cancer, is associated with cardiotoxicity, the pathophysiology of which is poorly understood. Recent data suggest, that dual inhibition of ErbB1 (EGFR) and ErbB2 signaling is more efficient in cancer therapy, however, cardiac safety of this therapeutic approach is unknown. We therefore tested an ErbB1-(CGP059326) and an ErbB1/ErbB2-(PKI166) tyrosine kinase inhibitor in an in-vitro system of adult rat ventricular cardiomyocytes and assessed their effects on 1. cell viability, 2. myofibrillar structure, 3. contractile function, and 4. MAPK- and Akt-signaling alone or in combination with Doxorubicin. Neither CGP nor PKI induced cardiomyocyte necrosis or apoptosis. PKI but not CGP caused myofibrillar structural damage that was additive to that induced by Doxorubicin at clinically relevant doses. These changes were associated with an inhibition of excitation-contraction coupling. PKI but not CGP decreased p-Erk1/2, suggesting a role for this MAP-kinase signaling pathway in the maintenance of myofibrils. These data indicate that the ErbB2 signaling pathway is critical for the maintenance of myofibrillar structure and function. Clinical studies using ErbB2-targeted inhibitors for the treatment of cancer should be designed to include careful monitoring for cardiac dysfunction.

  14. The kunitz protease inhibitor domain of protease nexin-2 inhibits factor XIa and murine carotid artery and middle cerebral artery thrombosis

    Science.gov (United States)

    Wu, Wenman; Li, Hongbo; Navaneetham, Duraiswamy; Reichenbach, Zachary W.; Tuma, Ronald F.

    2012-01-01

    Coagulation factor XI (FXI) plays an important part in both venous and arterial thrombosis, rendering FXIa a potential target for the development of antithrombotic therapy. The kunitz protease inhibitor (KPI) domain of protease nexin-2 (PN2) is a potent, highly specific inhibitor of FXIa, suggesting its possible role in the inhibition of FXI-dependent thrombosis in vivo. Therefore, we examined the effect of PN2KPI on thrombosis in the murine carotid artery and the middle cerebral artery. Intravenous administration of PN2KPI prolonged the clotting time of both human and murine plasma, and PN2KPI inhibited FXIa activity in both human and murine plasma in vitro. The intravenous administration of PN2KPI into WT mice dramatically decreased the progress of FeCl3-induced thrombus formation in the carotid artery. After a similar initial rate of thrombus formation with and without PN2KPI treatment, the propagation of thrombus formation after 10 minutes and the amount of thrombus formed were significantly decreased in mice treated with PN2KPI injection compared with untreated mice. In the middle cerebral artery occlusion model, the volume and fraction of ischemic brain tissue were significantly decreased in PN2KPI-treated compared with untreated mice. Thus, inhibition of FXIa by PN2KPI is a promising approach to antithrombotic therapy. PMID:22674803

  15. Antitumour agents as inhibitors of tryptophan 2,3-dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Pantouris, Georgios; Mowat, Christopher G., E-mail: C.G.Mowat@ed.ac.uk

    2014-01-03

    Highlights: •∼2800 National Cancer Institute USA compounds have been screened as potential inhibitors of TDO and/or IDO. •Seven compounds with anti-tumour properties have been identified as potent inhibitors. •NSC 36398 (taxifolin, dihydroquercetin) is selective for TDO with a K{sub i} of 16 M. •This may help further our understanding of the role of TDO in cancer. -- Abstract: The involvement of tryptophan 2,3-dioxygenase (TDO) in cancer biology has recently been described, with the enzyme playing an immunomodulatory role, suppressing antitumour immune responses and promoting tumour cell survival and proliferation. This finding reinforces the need for specific inhibitors of TDO that may potentially be developed for therapeutic use. In this work we have screened ∼2800 compounds from the library of the National Cancer Institute USA and identified seven potent inhibitors of TDO with inhibition constants in the nanomolar or low micromolar range. All seven have antitumour properties, killing various cancer cell lines. For comparison, the inhibition potencies of these compounds were tested against IDO and their inhibition constants are reported. Interestingly, this work reveals that NSC 36398 (dihydroquercetin, taxifolin), with an in vitro inhibition constant of ∼16 μM, is the first TDO-selective inhibitor reported.

  16. [Arginase inhibitor nor-NOHA induces apoptosis and inhibits invasion and migration of HepG2 cells].

    Science.gov (United States)

    Li, Xiangnan; Zhu, Fangyu; He, Yongsong; Luo, Fang

    2017-04-01

    Objective To investigate the cell inhibitory effect of arginase inhibitor nor-NOHA on HepG2 hepatocellular carcinoma cells and related mechanism. Methods CCK-8 assay was used to detect the cell proliferation and flow cytometry to detect the apoptosis of HepG2 cells treated with (0, 0.5, 1.0, 2.0, 3.0) ng/μL nor-NOHA. The protein levels of arginase 1 (Arg1), P53, matrix metalloproteinase-2 (MMP-2), E-cadherin (ECD) were determined by Western blotting. Real time quantitative PCR was employed to examine the changes in the mRNA level of inducible nitric oxide synthase (iNOS). Griess assay was used to measure the concentration of nitric oxide (NO) in HepG2 cells. Transwell TM assay and wound-healing assay were performed to evaluate the changes of the cell invasion and migration ability, respectively. Results nor-NOHA inhibited the proliferation and induced the apoptosis of HepG2 cells. It also decreased the expression levels of Arg1 and MMP-2, increased the expression levels of P53 and ECD as well as the production of NO; in addition, nor-NOHA inhibited the invasion and migration of HepG2 cells. Conclusion Nor-NOHA can induce cell apoptosis and inhibit the ability of invasion and migration of HepG2 cells by inhibiting Arg1, which is related with the increase of iNOS expression and the high concentration of NO.

  17. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition.

    Science.gov (United States)

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2012-04-01

    API-1 (pyrido[2,3-d]pyrimidines) is a novel small-molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of cellular FLICE-inhibitory protein (c-FLIP) levels and TRAIL-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of death receptor 4 (DR4) or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1 but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Because other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. 2012 AACR

  18. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ajit G.; Rojas, Camilo [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Tanega, Cordelle; Shen, Min; Simeonov, Anton; Boxer, Matthew B.; Auld, Douglas S. [National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850 (United States); Ferraris, Dana V. [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Tsukamoto, Takashi [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Slusher, Barbara S., E-mail: bslusher@jhmi.edu [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States)

    2013-08-23

    Highlights: •Ebselen, chelerythrine and apomorphine were identified as glutaminase inhibitors. •These had greater affinities and efficiency of inhibition than known prototypes. •Their previously reported biological activity could be due to glutaminase inhibition. -- Abstract: Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC{sup 1280})) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease.

  19. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors

    International Nuclear Information System (INIS)

    Thomas, Ajit G.; Rojas, Camilo; Tanega, Cordelle; Shen, Min; Simeonov, Anton; Boxer, Matthew B.; Auld, Douglas S.; Ferraris, Dana V.; Tsukamoto, Takashi; Slusher, Barbara S.

    2013-01-01

    Highlights: •Ebselen, chelerythrine and apomorphine were identified as glutaminase inhibitors. •These had greater affinities and efficiency of inhibition than known prototypes. •Their previously reported biological activity could be due to glutaminase inhibition. -- Abstract: Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC 1280 )) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease

  20. The actions of mdivi-1, an inhibitor of mitochondrial fission, on rapidly activating delayed-rectifier K⁺ current and membrane potential in HL-1 murine atrial cardiomyocytes.

    Science.gov (United States)

    So, Edmund Cheung; Hsing, Chung-Hsi; Liang, Chia-Hua; Wu, Sheng-Nan

    2012-05-15

    Mdivi-1 is an inhibitor of dynamin related protein 1- (drp1)-mediated mitochondrial fission. However, the mechanisms through which this compound interacts directly with ion currents in heart cells remain unknown. In this study, its effects on ion currents and membrane potential in murine HL-1 cardiomyocytes were investigated. In whole-cell recordings, the addition of mdivi-1 decreased the amplitude of tail current (I(tail)) for the rapidly activating delayed-rectifier K⁺ current (I(Kr)) in a concentration-dependent manner with an IC₅₀ value at 11.6 μM, a value that resembles the inhibition requirement for mitochondrial division. It shifted the activation curve of I(tail) to depolarized voltages with no change in the gating charge. However, mdivi-1 did not alter the rate of recovery from current inactivation. In cell-attached configuration, mdivi-1 inside the pipette suppressed the activity of acetylcholine-activated K⁺ channels without modifying the single-channel conductance. Mdivi-1 (30 μM) slightly depressed the peak amplitude of Na⁺ current with no change in the overall current-voltage relationship. Under current-clamp recordings, addition of mdivi-1 resulted in prolongation for the duration of action potentials (APs) and to increase the firing of spontaneous APs in HL-1 cells. Similarly, in pituitary GH₃ cells, mdivi-1 was effective in directly suppressing the amplitude of ether-à-go-go-related gene-mediated K⁺ current. Therefore, the lengthening of AP duration and increased firing of APs caused by mdivi-1 can be primarily explained by its inhibition of these K⁺ channels enriched in heart cells. The observed effects of mdivi-1 on ion currents were direct and not associated with its inhibition of mitochondrial division. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Inhibition of gamma-ray dose-rate effects by D2O and inhibitors of poly(ADP-ribose) synthetase in cultured mammalian L5178Y cells

    International Nuclear Information System (INIS)

    Ueno, A.M.; Tanaka, O.; Matsudaira, H.

    1984-01-01

    Effects of deuterium oxide (D 2 O) and 3-aminobenzamide, an inhibitor of poly(ADP-ribose) synthetase, on cell proliferation and survival were studied in cultured mammalian L5178Y cells under growing conditions and after acute and low-dose-rate irradiation at about 0.1 to 0.4 Gy/hr of γ rays. Growth of irradiated and unirradiated cells was inhibited by 45% D 2 O but not by 3-aminobenzamide at 10mM, except for treatments longer than 30 hr. The presence of these agents either alone or in combination during irradiation at low dose rates suppressed almost totally the decrease in cell killing due to the decrease in dose rate. Among other inhibitors tested, theobromine and theophylline were found to be effective in eliminating the dose-rate effects of γ rays. Possible mechanisms underlying the inhibition are discussed

  2. Inhibition of lipases from Chromobacterium viscosum and Rhizopus oryzae by tetrahydrolipstatin.

    Science.gov (United States)

    Potthoff, A P; Haalck, L; Spener, F

    1998-01-15

    Tetrahydrolipstatin is known as an inhibitor for pancreatic lipase but not for microbial lipases. In this paper we demonstrate that in the presence of water-insoluble substrates like tributyrin or olive oil, tetrahydrolipstatin inhibits the lipases of Chromobacterium viscosum and Rhizopus oryzae, although with different potency. In contrast to porcine pancreatic lipase, which forms an irreversible and covalent enzyme-inhibitor complex with tetrahydrolipstatin, the inhibition of the microbial lipases is reversible as the inhibitor can be removed from the enzyme-inhibitor complex by solvent extraction. Moreover, after inhibition of Chromobacterium viscosum lipase tetrahydrolipstatin remains chemically unchanged.

  3. The Kinetics of Carrier Transport Inhibition

    DEFF Research Database (Denmark)

    Rosenberg, T.; Wilbrandt, Robert Walter

    1962-01-01

    The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing with the subst......The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing...... with the substrate for the enzyme or the carrier or for both, competing with the carrier for the enzyme, or non-competitive) and in the ability of penetrating the membrane. Experiments are reported on the inhibition of glucose and fructose transport across the human red cell membrane by phlorizine, phloretine...... and polyphloretinephosphate. The results of the analysis for these inhibitors indicate a substrate competitive mode of action. The effect of reversing the transport direction by interchanging the substrate concentration has been treated for the case of a non-penetrating substrate competitive inhibitor in the external medium...

  4. pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity.

    Science.gov (United States)

    De Milito, Angelo; Canese, Rossella; Marino, Maria Lucia; Borghi, Martina; Iero, Manuela; Villa, Antonello; Venturi, Giulietta; Lozupone, Francesco; Iessi, Elisabetta; Logozzi, Mariantonia; Della Mina, Pamela; Santinami, Mario; Rodolfo, Monica; Podo, Franca; Rivoltini, Licia; Fais, Stefano

    2010-07-01

    Metastatic melanoma is associated with poor prognosis and still limited therapeutic options. An innovative treatment approach for this disease is represented by targeting acidosis, a feature characterizing tumor microenvironment and playing an important role in cancer malignancy. Proton pump inhibitors (PPI), such as esomeprazole (ESOM) are prodrugs functionally activated by acidic environment, fostering pH neutralization by inhibiting proton extrusion. We used human melanoma cell lines and xeno-transplated SCID mice to provide preclinical evidence of ESOM antineoplastic activity. Human melanoma cell lines, characterized by different mutation and signaling profiles, were treated with ESOM in different pH conditions and evaluated for proliferation, viability and cell death. SCID mice engrafted with human melanoma were used to study ESOM administration effects on tumor growth and tumor pH by magnetic resonance spectroscopy (MRS). ESOM inhibited proliferation of melanoma cells in vitro and induced a cytotoxicity strongly boosted by low pH culture conditions. ESOM-induced tumor cell death occurred via rapid intracellular acidification and activation of several caspases. Inhibition of caspases activity by pan-caspase inhibitor z-vad-fmk completely abrogated the ESOM-induced cell death. ESOM administration (2.5 mg kg(-1)) to SCID mice engrafted with human melanoma reduced tumor growth, consistent with decrease of proliferating cells and clear reduction of pH gradients in tumor tissue. Moreover, systemic ESOM administration dramatically increased survival of human melanoma-bearing animals, in absence of any relevant toxicity. These data show preclinical evidence supporting the use of PPI as novel therapeutic strategy for melanoma, providing the proof of concept that PPI target human melanoma modifying tumor pH gradients.

  5. Cholesteryl ester transfer protein (cetp) inhibition in the treatment of cancer

    KAUST Repository

    Kaur, Mandeep; Esau, Luke E.; Sagar, Sunii

    2016-01-01

    In one embodiment, the invention provides methods of treatment which use therapeutically effective amounts of Choleste ryl Ester Transfer Protein (CETP) inhibitors to treat a variety of cancers. In certain embodiments, the inhibitor is a CETP-inhibiting small molecule, CETP-inhibiting antisense oligonucleotide, CETP-inhibiting siRNA or a CETP- inhibiting antibody. Related pharmaceutical compositions, kits, diagnostics and screens are also provided.

  6. Cholesteryl ester transfer protein (cetp) inhibition in the treatment of cancer

    KAUST Repository

    Kaur, Mandeep

    2016-09-01

    In one embodiment, the invention provides methods of treatment which use therapeutically effective amounts of Choleste ryl Ester Transfer Protein (CETP) inhibitors to treat a variety of cancers. In certain embodiments, the inhibitor is a CETP-inhibiting small molecule, CETP-inhibiting antisense oligonucleotide, CETP-inhibiting siRNA or a CETP- inhibiting antibody. Related pharmaceutical compositions, kits, diagnostics and screens are also provided.

  7. TTP specifically regulates the internalization of the transferrin receptor

    DEFF Research Database (Denmark)

    Tosoni, Daniela; Puri, Claudia; Confalonieri, Stefano

    2005-01-01

    Different plasma membrane receptors are internalized through saturable/noncompetitive pathways, suggesting cargo-specific regulation. Here, we report that TTP (SH3BP4), a SH3-containing protein, specifically regulates the internalization of the transferrin receptor (TfR). TTP interacts...... with endocytic proteins, including clathrin, dynamin, and the TfR, and localizes selectively to TfR-containing coated-pits (CCP) and -vesicles (CCV). Overexpression of TTP specifically inhibits TfR internalization, and causes the formation of morphologically aberrant CCP, which are probably fission impaired....... This effect is mediated by the SH3 of TTP, which can bind to dynamin, and it is rescued by overexpression of dynamin. Functional ablation of TTP causes a reduction in TfR internalization, and reduced cargo loading and size of TfR-CCV. Tyrosine phosphorylation of either TTP or dynamin prevents...

  8. Fluoxetine-induced inhibition of synaptosomal [3H]5-HT release: Possible Ca2+-channel inhibition

    International Nuclear Information System (INIS)

    Stauderman, K.A.; Gandhi, V.C.; Jones, D.J.

    1992-01-01

    Fluoxetine, a selective 5-Ht uptake inhibitor, inhibited 15 mM K + -induced [ 3 H]5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K + used to depolarize the synaptosomes and the concentration of external Ca 2+ . Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of [ 3 H]5-HT release induced by the Ca 2+ -ionophore A 23187 or Ca 2+ -independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K + -induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca 2+ channels and Ca 2+ entry

  9. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands

    DEFF Research Database (Denmark)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe

    2013-01-01

    after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist....... Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown...... fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand...

  10. Finding Potent Sirt Inhibitor in Coffee: Isolation, Confirmation and Synthesis of Javamide-II (N-Caffeoyltryptophan as Sirt1/2 Inhibitor.

    Directory of Open Access Journals (Sweden)

    Jae B Park

    Full Text Available Recent studies suggest that Sirt inhibition may have beneficial effects on several human diseases such as neurodegenerative diseases and cancer. Coffee is one of most popular beverages with several positive health effects. Therefore, in this paper, potential Sirt inhibitors were screened using coffee extract. First, HPLC was utilized to fractionate coffee extract, then screened using a Sirt1/2 inhibition assay. The screening led to the isolation of a potent Sirt1/2 inhibitor, whose structure was determined as javamide-II (N-caffeoyltryptophan by NMR. For confirmation, the amide was chemically synthesized and its capacity of inhibiting Sirt1/2 was also compared with the isolated amide. Javamide-II inhibited Sirt2 (IC50; 8.7 μM better than Sirt1(IC50; 34μM. Since javamide-II is a stronger inhibitor for Sirt2 than Sirt1. The kinetic study was performed against Sirt2. The amide exhibited noncompetitive Sirt2 inhibition against the NAD+ (Ki = 9.8 μM and showed competitive inhibition against the peptide substrate (Ki = 5.3 μM. Also, a docking simulation showed stronger binding pose of javamide-II to Sirt2 than AGK2. In cellular levels, javamide-II was able to increase the acetylation of total lysine, cortactin and histone H3 in neuronal NG108-15 cells. In the same cells, the amide also increased the acetylation of lysine (K382 in p53, but not (K305. This study suggests that Javamide-II found in coffee may be a potent Sirt1/2 inhibitor, probably with potential use in some conditions of human diseases.

  11. Pim kinase inhibition sensitizes FLT3-ITD acute myeloid leukemia cells to topoisomerase 2 inhibitors through increased DNA damage and oxidative stress

    Science.gov (United States)

    Doshi, Kshama A.; Trotta, Rossana; Natarajan, Karthika; Rassool, Feyruz V.; Tron, Adriana E.; Huszar, Dennis; Perrotti, Danilo; Baer, Maria R.

    2016-01-01

    Internal tandem duplication of fms-like tyrosine kinase-3 (FLT3-ITD) is frequent (30 percent) in acute myeloid leukemia (AML), and is associated with short disease-free survival following chemotherapy. The serine threonine kinase Pim-1 is a pro-survival oncogene transcriptionally upregulated by FLT3-ITD that also promotes its signaling in a positive feedback loop. Thus inhibiting Pim-1 represents an attractive approach in targeting FLT3-ITD cells. Indeed, co-treatment with the pan-Pim kinase inhibitor AZD1208 or expression of a kinase-dead Pim-1 mutant sensitized FLT3-ITD cell lines to apoptosis triggered by chemotherapy drugs including the topoisomerase 2 inhibitors daunorubicin, etoposide and mitoxantrone, but not the nucleoside analog cytarabine. AZD1208 sensitized primary AML cells with FLT3-ITD to topoisomerase 2 inhibitors, but did not sensitize AML cells with wild-type FLT3 or remission bone marrow cells, supporting a favorable therapeutic index. Mechanistically, the enhanced apoptosis observed with AZD1208 and topoisomerase 2 inhibitor combination treatment was associated with increased DNA double-strand breaks and increased levels of reactive oxygen species (ROS), and co-treatment with the ROS scavenger N-acetyl cysteine rescued FLT3-ITD cells from AZD1208 sensitization to topoisomerase 2 inhibitors. Our data support testing of Pim kinase inhibitors with topoisomerase 2 inhibitors, but not with cytarabine, to improve treatment outcomes in AML with FLT3-ITD. PMID:27374090

  12. Clathrin-dependent internalization, signaling, and metabolic processing of guanylyl cyclase/natriuretic peptide receptor-A.

    Science.gov (United States)

    Somanna, Naveen K; Mani, Indra; Tripathi, Satyabha; Pandey, Kailash N

    2018-04-01

    Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125 I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand-receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.

  13. Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part II. Integrase inhibition

    International Nuclear Information System (INIS)

    Lee-Huang, Sylvia; Huang, Philip Lin; Zhang Dawei; Lee, Jae Wook; Bao Ju; Sun Yongtao; Chang, Young-Tae; Zhang, John; Huang, Paul Lee

    2007-01-01

    We report molecular modeling and functional confirmation of Ole and HT binding to HIV-1 integrase. Docking simulations identified two binding regions for Ole within the integrase active site. Region I encompasses the conserved D64-D116-E152 motif, while region II involves the flexible loop region formed by amino acid residues 140-149. HT, on the other hand, binds to region II. Both Ole and HT exhibit favorable interactions with important amino acid residues through strong H-bonding and van der Waals contacts, predicting integrase inhibition. To test and confirm modeling predictions, we examined the effect of Ole and HT on HIV-1 integrase activities including 3'-processing, strand transfer, and disintegration. Ole and HT exhibit dose-dependent inhibition on all three activities, with EC 50 s in the nanomolar range. These studies demonstrate that molecular modeling of target-ligand interaction coupled with structural-activity analysis should facilitate the design and identification of innovative integrase inhibitors and other therapeutics

  14. Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor.

    Science.gov (United States)

    Chirivi, R G; Garofalo, A; Crimmin, M J; Bawden, L J; Stoppacciaro, A; Brown, P D; Giavazzi, R

    1994-08-01

    The synthetic matrix metalloproteinase inhibitor batimastat was tested for its ability to inhibit growth and metastatic spread of the B16-BL6 murine melanoma in syngeneic C57BL/6N mice. Intraperitoneal administration of batimastat resulted in a significant inhibition in the number of lung colonies produced by B16-BL6 cells injected i.v. The effect of batimastat on spontaneous metastases was examined in mice inoculated in the hind footpad with B16-BL6 melanoma. The primary tumor was removed surgically after 26-28 days. Batimastat was administered twice a day from day 14 to day 28 (pre-surgery) or from day 26 to day 44 (post-surgery). With both protocols, the median number of lung metastases was not significantly affected, but there was a significant reduction in the weight of the metastases. Finally, the effect of batimastat was examined on s.c. growth of B16-BL6 melanoma. Batimastat administered daily, starting at day of tumor transplantation, resulted in a significant growth delay, whereas treatment starting at advanced stage tumor only reduced tumor growth marginally. Our results indicate that a matrix metalloproteinase inhibitor can not only prevent the colonization of secondary organs by B16-BL6 cells but also limit the growth of solid tumors.

  15. NAD+-dependent HDAC inhibitor stimulates Monascus pigment production but inhibit citrinin.

    Science.gov (United States)

    Hu, Yan; Zhou, Youxiang; Mao, Zejing; Li, Huihui; Chen, Fusheng; Shao, Yanchun

    2017-08-23

    Monascus species are edible fungi due to the production of food colorant and other beneficial compounds. Hence, it has been an attractive thesis to improve their productivities. Increasing numbers of investigations revealed that regulating the activities of histone deacetylases can significantly perturb secondary metabolites (SM) production at a global level. In this study, dihydrocoumarin (DHC, an inhibitor of the Sirtuin family of NAD + -dependent deacetylases) was used to treat Monascus ruber for evaluating its effects on organism growth and SM production. The results revealed that the variation trends of colonial sizes, biomass and mycotoxin were in a dose-dependent manner. Generally, they decreased with the increased DHC concentrations in the designed range. But the variation trend of pigment was different. Comparison of SM profile, three new peaks occurred to the mycelia extractions from DHC-treated strain corresponding to molecular weights 402, 416 and 444, respectively. These three compounds were identified as Monasfluol B, Monascus azaphilone C and acetyl-monasfluol B (a new Monascus chemical pigment structure). In short, DHC can stimulate M. ruber strain to produce more pigment-like polyketides but inhibition of mycotoxin (citrinin).

  16. Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates breast cancer cell metastatic behaviors through inhibition of plasminogen activation and extracellular proteolysis

    International Nuclear Information System (INIS)

    Bazzi, Zainab A.; Lanoue, Danielle; El-Youssef, Mouhanned; Romagnuolo, Rocco; Tubman, Janice; Cavallo-Medved, Dora; Porter, Lisa A.; Boffa, Michael B.

    2016-01-01

    Thrombin activatable fibrinolysis inhibitor (TAFI) is a plasma zymogen, which can be converted to activated TAFI (TAFIa) through proteolytic cleavage by thrombin, plasmin, and most effectively thrombin in complex with the endothelial cofactor thrombomodulin (TM). TAFIa is a carboxypeptidase that cleaves carboxyl terminal lysine and arginine residues from protein and peptide substrates, including plasminogen-binding sites on cell surface receptors. Carboxyl terminal lysine residues play a pivotal role in enhancing cell surface plasminogen activation to plasmin. Plasmin has many critical functions including cleaving components of the extracellular matrix (ECM), which enhances invasion and migration of cancer cells. We therefore hypothesized that TAFIa could act to attenuate metastasis. To assess the role of TAFIa in breast cancer metastasis, in vitro migration and invasion assays, live cell proteolysis and cell proliferation using MDA-MB-231 and SUM149 cells were carried out in the presence of a TAFIa inhibitor, recombinant TAFI variants, or soluble TM. Inhibition of TAFIa with potato tuber carboxypeptidase inhibitor increased cell invasion, migration and proteolysis of both cell lines, whereas addition of TM resulted in a decrease in all these parameters. A stable variant of TAFIa, TAFIa-CIIYQ, showed enhanced inhibitory effects on cell invasion, migration and proteolysis. Furthermore, pericellular plasminogen activation was significantly decreased on the surface of MDA-MB-231 and SUM149 cells following treatment with various concentrations of TAFIa. Taken together, these results indicate a vital role for TAFIa in regulating pericellular plasminogen activation and ultimately ECM proteolysis in the breast cancer microenvironment. Enhancement of TAFI activation in this microenvironment may be a therapeutic strategy to inhibit invasion and prevent metastasis of breast cancer cells

  17. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions

    Directory of Open Access Journals (Sweden)

    Thabo Peme

    2015-09-01

    Full Text Available The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS, Amaranth (AM, Allura Red (AR, Tartrazine (TZ and Fast Green (FG, for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I− ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.

  18. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions.

    Science.gov (United States)

    Peme, Thabo; Olasunkanmi, Lukman O; Bahadur, Indra; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-09-02

    The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS), Amaranth (AM), Allura Red (AR), Tartrazine (TZ) and Fast Green (FG), for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I(-)) ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.

  19. Combination Treatment with PPARγ Ligand and Its Specific Inhibitor GW9662 Downregulates BIS and 14-3-3 Gamma, Inhibiting Stem-Like Properties in Glioblastoma Cells.

    Science.gov (United States)

    Im, Chang-Nim

    2017-01-01

    PPAR γ is a nuclear receptor that regulates differentiation and proliferation and is highly expressed in many cancer cells. Its synthetic ligands, such as rosiglitazone and ciglitazone, and its inhibitor GW9662, were shown to induce cellular differentiation, inhibit proliferation, and lead to apoptosis. Glioblastoma is a common brain tumor with poor survival prospects. Recently, glioblastoma stem cells (GSCs) have been examined as a potential target for anticancer therapy; however, little is known about the combined effect of various agents on GSCs. In this study, we found that cotreatment with PPAR γ ligands and GW9662 inhibited stem-like properties in GSC-like spheres, which significantly express SOX2. In addition, this treatment decreased the activation of STAT3 and AKT and decreased the amounts of 14-3-3 gamma and BIS proteins. Moreover, combined administration of small-interfering RNA (siRNA) transfection with PPAR γ ligands induced downregulation of SOX2 and MMP2 activity together with inhibition of sphere-forming activity regardless of poly(ADP-ribose) polymerase (PARP) cleavage. Taken together, our findings suggest that a combination therapy using PPAR γ ligands and its inhibitor could be a potential therapeutic strategy targeting GSCs.

  20. Combination Treatment with PPARγ Ligand and Its Specific Inhibitor GW9662 Downregulates BIS and 14-3-3 Gamma, Inhibiting Stem-Like Properties in Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Chang-Nim Im

    2017-01-01

    Full Text Available PPARγ is a nuclear receptor that regulates differentiation and proliferation and is highly expressed in many cancer cells. Its synthetic ligands, such as rosiglitazone and ciglitazone, and its inhibitor GW9662, were shown to induce cellular differentiation, inhibit proliferation, and lead to apoptosis. Glioblastoma is a common brain tumor with poor survival prospects. Recently, glioblastoma stem cells (GSCs have been examined as a potential target for anticancer therapy; however, little is known about the combined effect of various agents on GSCs. In this study, we found that cotreatment with PPARγ ligands and GW9662 inhibited stem-like properties in GSC-like spheres, which significantly express SOX2. In addition, this treatment decreased the activation of STAT3 and AKT and decreased the amounts of 14-3-3 gamma and BIS proteins. Moreover, combined administration of small-interfering RNA (siRNA transfection with PPARγ ligands induced downregulation of SOX2 and MMP2 activity together with inhibition of sphere-forming activity regardless of poly(ADP-ribose polymerase (PARP cleavage. Taken together, our findings suggest that a combination therapy using PPARγ ligands and its inhibitor could be a potential therapeutic strategy targeting GSCs.

  1. Heat shock protein 90 inhibitor enhances apoptosis by inhibiting the AKT pathway in thermal-stimulated SK-MEL-2 human melanoma cell line.

    Science.gov (United States)

    Shin, Min Kyung; Jeong, Ki-Heon; Choi, Hyeongwon; Ahn, Hye-Jin; Lee, Mu-Hyoung

    2018-02-08

    Heat shock proteins (Hsps) are chaperone proteins, which are upregulated after various stresses. Hsp90 inhibitors have been investigated as adjuvant therapies for the treatment of melanoma. Thermal ablation could be a treatment option for surgically unresectable melanoma or congenital nevomelanocytic nevi, however, there is a limitation such as the possibility of recurrence. We evaluated apoptosis in a melanoma cell line treated with the Hsp90 inhibitor 17-Dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), in hyperthermic conditions. SK-MEL-2 cells were stimulated at 43 °C for 1 h and treated with 0, 0.1 and 1 μM 17-DMAG. We evaluated the cell viability using MTT and apoptosis with HSP 90 inhibitor. We studied the protein expression of AKT, phospho-AKT, ERK, phospho-ERK, MAPK, and phospho-MAPK, caspase 3,7,9, and anti-poly (ADP-ribose) polymerase. 17-DMAG significantly inhibited the proliferation of the SK-MEL-2 cells at 37 °C (0.1 μM: 44.47% and 1 μM: 61.23%) and 43 °C (0.1 μM: 49.21% and 1 μM: 63.60%), suggesting synergism between thermal stimulation and 17-DMAG. 17-DMAG treatment increased the frequency of apoptotic cell populations to 2.17% (0.1 μM) and 3.05% (1 μM) in 37 °C controls, and 4.40% (0.1 μM) and 4.97% (1 μM) in the group stimulated at 43 °C. AKT phosphorylation were activated by thermal stimulation and inhibited by 17-DMAG. Hsp90 inhibitor treatment may be clinically applicable to enhance the apoptosis of melanoma cells in hyperthermic condition. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  2. Cathepsin E promotes pulmonary emphysema via mitochondrial fission.

    Science.gov (United States)

    Zhang, Xuchen; Shan, Peiying; Homer, Robert; Zhang, Yi; Petrache, Irina; Mannam, Praveen; Lee, Patty J

    2014-10-01

    Emphysema is characterized by loss of lung elasticity and irreversible air space enlargement, usually in the later decades of life. The molecular mechanisms of emphysema remain poorly defined. We identified a role for a novel cathepsin, cathepsin E, in promoting emphysema by inducing mitochondrial fission. Unlike previously reported cysteine cathepsins, which have been implicated in cigarette smoke-induced lung disease, cathepsin E is a nonlysosomal intracellular aspartic protease whose function has been described only in antigen processing. We examined lung tissue sections of persons with chronic obstructive pulmonary disease, a clinical entity that includes emphysematous change. Human chronic obstructive pulmonary disease lungs had markedly increased cathepsin E protein in the lung epithelium. We generated lung epithelial-targeted transgenic cathepsin E mice and found that they develop emphysema. Overexpression of cathepsin E resulted in increased E3 ubiquitin ligase parkin, mitochondrial fission protein dynamin-related protein 1, caspase activation/apoptosis, and ultimately loss of lung parenchyma resembling emphysema. Inhibiting dynamin-related protein 1, using a small molecule inhibitor in vitro or in vivo, inhibited cathepsin E-induced apoptosis and emphysema. To the best of our knowledge, our study is the first to identify links between cathepsin E, mitochondrial fission, and caspase activation/apoptosis in the pathogenesis of pulmonary emphysema. Our data expand the current understanding of molecular mechanisms of emphysema development and may provide new therapeutic targets. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Resorufin: a lead for a new protein kinase CK2 inhibitor

    DEFF Research Database (Denmark)

    Sandholt, Iben Skjøth; Olsen, Birgitte Brinkmann; Guerra, Barbara

    2009-01-01

    Screening a natural compound library led to the identification of resorufin as a highly selective and potent inhibitor of protein kinase CK2. Out of 52 kinases tested, only CK2 was inhibited, in contrast to emodin, a structurally related, known CK2 inhibitor that, in addition to CK2, inhibited te...

  4. Cathepsin D inhibitors

    Directory of Open Access Journals (Sweden)

    M. Gacko

    2007-11-01

    Full Text Available Inhibitors of cathepsin D belong to chemical compounds that estrify carboxyl groups of the Asp33 and Asp231residues of its catalytic site, penta-peptides containing statin, i.e. the amino acid similar in structure to the tetraedric indirectproduct, and polypeptides found in the spare organs of many plants and forming permanent noncovalent complexes withcathepsin. Cathepsin D activity is also inhibited by alpha2-macroglobulin and antibodies directed against this enzyme.Methods used to determine the activity and concentration of these inhibitors and their analytical, preparative and therapeuticapplications are discussed.

  5. Release Properties and Electrochemical Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    Science.gov (United States)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows for the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The total inhibitor content and the release of one of the inhibitors from the microparticles in basic solution was measured. Particles with inhibitor contents of up 60 wt% were synthesized. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, both as the pure materials and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  6. Peptide aldehyde inhibitors of bacterial peptide deformylases.

    Science.gov (United States)

    Durand, D J; Gordon Green, B; O'Connell, J F; Grant, S K

    1999-07-15

    Bacterial peptide deformylases (PDF, EC 3.5.1.27) are metalloenzymes that cleave the N-formyl groups from N-blocked methionine polypeptides. Peptide aldehydes containing a methional or norleucinal inhibited recombinant peptide deformylase from gram-negative Escherichia coli and gram-positive Bacillus subtilis. The most potent inhibitor was calpeptin, N-CBZ-Leu-norleucinal, which was a competitive inhibitor of the zinc-containing metalloenzymes, E. coli and B. subtilis PDF with Ki values of 26.0 and 55.6 microM, respectively. Cobalt-substituted E. coli and B. subtilis deformylases were also inhibited by these aldehydes with Ki values for calpeptin of 9.5 and 12.4 microM, respectively. Distinct spectral changes were observed upon binding of calpeptin to the Co(II)-deformylases, consistent with the noncovalent binding of the inhibitor rather than the formation of a covalent complex. In contrast, the chelator 1,10-phenanthroline caused the time-dependent inhibition of B. subtilis Co(II)-PDF activity with the loss of the active site metal. The fact that calpeptin was nearly equipotent against deformylases from both gram-negative and gram-positive bacterial sources lends further support to the idea that a single deformylase inhibitor might have broad-spectrum antibacterial activity. Copyright 1999 Academic Press.

  7. Second Generation Grp94-Selective Inhibitors Provide Opportunities for the Inhibition of Metastatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Vincent M. [Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Dr. Malott 4070 Lawrence KS 66045 USA; Huard, Dustin J. E. [School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta GA 30332 USA; Lieberman, Raquel L. [School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta GA 30332 USA; Blagg, Brian S. J. [Warren Family Research Center for Drug Discovery and Development, and Department of Chemistry & Biochemistry, University of Notre Dame, 305 McCourtney Hall Notre Dame IN 46556 USA

    2017-09-27

    Glucose regulated protein 94 (Grp94) is the endoplasmic reticulum (ER) resident isoform of the 90 kDa heat shock protein (Hsp90) family and its inhibition represents a promising therapeutic target for the treatment of many diseases. Modification of the first generation cis-amide bioisostere imidazole to alter the angle between the resorcinol ring and the benzyl side chain via cis-amide replacements produced compounds with improved Grp94 affinity and selectivity. Structure–activity relationship studies led to the discovery of compound 30, which exhibits 540 nm affinity and 73-fold selectivity towards Grp94. Grp94 is responsible for the maturation and trafficking of proteins associated with cell signaling and motility, including select integrins. The Grp94-selective inhibitor 30 was shown to exhibit potent anti-migratory effects against multiple aggressive and metastatic cancers.

  8. Furfuryl alcohol as corrosion inhibitor for N80 steel in hydrochloric acid

    International Nuclear Information System (INIS)

    Vishwanatham, S.; Haldar, N.

    2008-01-01

    The ability of furfuryl alcohol (FA) as corrosion inhibitor in controlling corrosion of N80 steel in 15% hydrochloric acid has been investigated. It is found that the percentage inhibition of FA increases almost linearly with its concentration (in the range 10 mM-80 mM) and attains about 91% at 80 mM. FA shows significant inhibition at higher temperatures also (∼82% at 60 deg. C;∼74% at 110 deg. C with 80 mM concentration). FA undergoes acid catalyzed polymerization under the experimental conditions to give polyfurfuryl alcohols (PFA) as evidenced by FTIR and NMR spectral data. Thermodynamic parameters for the corrosion of steel in presence and absence of the inhibitor have been calculated. The inhibitive action may be attributed to adsorption of inhibitor molecules on the active sites of the metal surface following Temkin adsorption isotherm. Potentiodynamic polarization curves indicate that FA acts as mixed type inhibitor. A plausible mechanism for the mode of inhibition has been proposed

  9. Reversible Inhibitors of Monoamine Oxidase-A (RIMAs): Robust, Reversible Inhibition of Human Brain MAO-A by CX157

    Science.gov (United States)

    Fowler, Joanna S; Logan, Jean; Azzaro, Albert J; Fielding, Robert M; Zhu, Wei; Poshusta, Amy K; Burch, Daniel; Brand, Barry; Free, James; Asgharnejad, Mahnaz; Wang, Gene-Jack; Telang, Frank; Hubbard, Barbara; Jayne, Millard; King, Payton; Carter, Pauline; Carter, Scott; Xu, Youwen; Shea, Colleen; Muench, Lisa; Alexoff, David; Shumay, Elena; Schueller, Michael; Warner, Donald; Apelskog-Torres, Karen

    2010-01-01

    Reversible inhibitors of monoamine oxidase-A (RIMA) inhibit the breakdown of three major neurotransmitters, serotonin, norepinephrine and dopamine, offering a multi-neurotransmitter strategy for the treatment of depression. CX157 (3-fluoro-7-(2,2,2-trifluoroethoxy)phenoxathiin-10,10-dioxide) is a RIMA, which is currently in development for the treatment of major depressive disorder. We examined the degree and reversibility of the inhibition of brain monoamine oxidase-A (MAO-A) and plasma CX157 levels at different times after oral dosing to establish a dosing paradigm for future clinical efficacy studies, and to determine whether plasma CX157 levels reflect the degree of brain MAO-A inhibition. Brain MAO-A levels were measured with positron emission tomography (PET) imaging and [11C]clorgyline in 15 normal men after oral dosing of CX157 (20–80 mg). PET imaging was conducted after single and repeated doses of CX157 over a 24-h time course. We found that 60 and 80 mg doses of CX157 produced a robust dose-related inhibition (47–72%) of [11C]clorgyline binding to brain MAO-A at 2 h after administration and that brain MAO-A recovered completely by 24 h post drug. Plasma CX157 concentration was highly correlated with the inhibition of brain MAO-A (EC50: 19.3 ng/ml). Thus, CX157 is the first agent in the RIMA class with documented reversible inhibition of human brain MAO-A, supporting its classification as a RIMA, and the first RIMA with observed plasma levels that can serve as a biomarker for the degree of brain MAO-A inhibition. These data were used to establish the dosing regimen for a current clinical efficacy trial with CX157. PMID:19890267

  10. Deubiquitinase inhibitor b-AP15 activates endoplasmic reticulum (ER) stress and inhibits Wnt/Notch1 signaling pathway leading to the reduction of cell survival in hepatocellular carcinoma cells.

    Science.gov (United States)

    Ding, Youming; Chen, Xiaoyan; Wang, Bin; Yu, Bin; Ge, Jianhui

    2018-04-15

    b-AP15, a potent and selective inhibitor of the ubiquitin-specific peptidase 14 (USP14), displays in vitro and in vivo antitumor abilities on some types of cancer cells. However, the mechanism underlying its action is not well elucidated. The purposes of the present study are to observe the potential impacts of b-AP15 on cell survival of hepatocellular carcinoma cells and to investigate whether and how this compound inhibits some survival-promoting signaling pathways. We found that b-AP15 significantly decreased cell viability and increased cell apoptosis in a dose-dependent manner in hepatocellular carcinoma cells, along with the perturbation of cell cycle and the decreased expressions of cell cycle-related proteins. We also demonstrated that the endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) were enhanced by b-AP15 supplementation. The inhibition of ER stress/UPR only partly attenuated the cytotoxicity of b-AP15 on hepatocellular carcinoma cells. In addition, b-AP15 treatment inhibited Wnt/β-catenin and Notch1 signaling pathways, and suppressed phosphorylation of STAT3, Akt, and Erk1/2, which were not restored by the inhibition of ER stress/UPR. Furthermore, the expression levels of signaling molecules in Notch1 were reduced by specific inhibitor of Wnt/β-catenin pathway. Notably, either Wnt or Notch1 signaling inhibitor mitigated phosphorylation of STAT3, Akt, and Erk1/2, and mimicked the cytotoxicity of b-AP15 on hepatocellular carcinoma cells. These results clearly indicate that b-AP15 induced cytotoxic response to hepatocellular carcinoma cells by augmenting ER stress/UPR and inhibiting Wnt/Notch1 signaling pathways. This new finding provides a novel mechanism by which b-AP15 produces its antitumor therapeutic effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the Listeria monocytogenes PASTA kinase PrkA.

    Science.gov (United States)

    Schaenzer, Adam J; Wlodarchak, Nathan; Drewry, David H; Zuercher, William J; Rose, Warren E; Striker, Rob; Sauer, John-Demian

    2017-10-13

    Bacterial signaling systems such as protein kinases and quorum sensing have become increasingly attractive targets for the development of novel antimicrobial agents in a time of rising antibiotic resistance. The family of bacterial P enicillin-binding-protein A nd S erine/ T hreonine kinase- A ssociated (PASTA) kinases is of particular interest due to the role of these kinases in regulating resistance to β-lactam antibiotics. As such, small-molecule kinase inhibitors that target PASTA kinases may prove beneficial as treatments adjunctive to β-lactam therapy. Despite this interest, only limited progress has been made in identifying functional inhibitors of the PASTA kinases that have both activity against the intact microbe and high kinase specificity. Here, we report the results of a small-molecule screen that identified GSK690693, an imidazopyridine aminofurazan-type kinase inhibitor that increases the sensitivity of the intracellular pathogen Listeria monocytogenes to various β-lactams by inhibiting the PASTA kinase PrkA. GSK690693 potently inhibited PrkA kinase activity biochemically and exhibited significant selectivity for PrkA relative to the Staphylococcus aureus PASTA kinase Stk1. Furthermore, other imidazopyridine aminofurazans could effectively inhibit PrkA and potentiate β-lactam antibiotic activity to varying degrees. The presence of the 2-methyl-3-butyn-2-ol (alkynol) moiety was important for both biochemical and antimicrobial activity. Finally, mutagenesis studies demonstrated residues in the back pocket of the active site are important for GSK690693 selectivity. These data suggest that targeted screens can successfully identify PASTA kinase inhibitors with both biochemical and antimicrobial specificity. Moreover, the imidazopyridine aminofurazans represent a family of PASTA kinase inhibitors that have the potential to be optimized for selective PASTA kinase inhibition.

  12. Corrosion inhibition of mild steel in acidic media using newly synthesized heterocyclic organic molecules: Correlation between inhibition efficiency and chemical structure

    Energy Technology Data Exchange (ETDEWEB)

    Ouici, H. B., E-mail: ouici.houari@yahoo.fr; Guendouzi, A., E-mail: guendouzzi@yahoo.fr [Departement of Chimistry, Faculty of Sciences, University of Saïda (Algeria); Benali, O. [Department of Biology, Faculty of Science, University of Saida (Algeria)

    2015-03-30

    The corrosion inhibition of mild steel in 5% HCl solutions by some new synthesized organic compounds namely 3-(2-methoxyphenyl) 5-mercapto-1. 2. 4-triazole (2-MMT), 3-(3-methoxyphenyl) 5-mercapto-1. 2. 4-triazole (3-MMT) and 3-(2-hydroxyphenyl) 5-mercapto-1. 2. 4-triazole (2-HMT) was investigated using weight loss and potentiostatic polarization techniques. These measurements reveal that the inhibition efficiency obtained by these compounds increased by increasing their concentration. The inhibition efficiency follows the order 2-MMT >3-MMT >2-HMT. Polarization studies show that these compounds are of the mixed type but dominantly act as a cathodic inhibitors for mild steel in 5% HCl solutions. These inhibitors function through adsorption following Langmuir isotherm. Activation energy and Gibbs free energy for adsorption of inhibitors are calculated. Molecular modeling has been conducted to correlate the corrosion inhibition properties with the calculated quantum chemical parameters.

  13. Neural stem cells inhibit melanin production by activation of Wnt inhibitors.

    Science.gov (United States)

    Hwang, Insik; Park, Ju-Hwang; Park, Hang-Soo; Choi, Kyung-Ah; Seol, Ki-Cheon; Oh, Seung-Ick; Kang, Seongman; Hong, Sunghoi

    2013-12-01

    Melanin for skin pigmentation is synthesized from tyrosine via an enzymatic cascade that is controlled by tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase/tyrosinase related protein 2 (Dct/TRP2), which are the targets of microphthalmia-associated transcription factor (MITF). MITF is a master regulator of pigmentation and a target of β-catenin in Wnt/β-catenin signaling during melanocyte differentiation. Stem cells have been used in skin pigmentation studies, but the mechanisms were not determined for the conditioned medium (CM)-mediated effects. In this study, the inhibition and mechanisms of melanin synthesis were elucidated in B16 melanoma cells and UV-B irradiated C57/BL-6 mice that were treated with human neural stem cell-conditioned medium (NSC-CM). B16-F10 melanoma cells (1.5×10(4)cells/well) and the shaved dorsal skin of mice were pretreated with various amount (5, 10, 20, 50, and 100%) of NSC-CM. Melanin contents and TYR activity were measured by a Spectramax spectrophotometer. The expression of TYR, TRP1, Dct/TRP2, MITF, β-catenin and Wnt inhibitors were evaluated by RT-PCR and western blot. The dorsal skin samples were analyzed by immunofluorescence with various antibodies and compared with that control of tissues. Marked decreases were evident in melanin content and TYR, TRP1, DCT/TRP2, MITF, and β-catenin expression in B16 cells and C57/BL-6 mice. NSC-CM negatively regulated Wnt/β-catenin signaling by decreasing the expression of β-catenin protein, which resulted from robust expression of Wnt inhibitors Dickkopf-1 (DKK1) and secreted frizzled-related protein 2 (sFRP2). These results demonstrate that NSC-CM suppresses melanin production in vitro and in vivo, suggesting that factors in NSC-CM may play an important role in deregulation of epidermal melanogenesis. Copyright © 2013 Japanese Society for Investigative Dermatology. All rights reserved.

  14. Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580.

    Science.gov (United States)

    Conway, James G; McDonald, Brad; Parham, Janet; Keith, Barry; Rusnak, David W; Shaw, Eva; Jansen, Marilyn; Lin, Peiyuan; Payne, Alan; Crosby, Renae M; Johnson, Jennifer H; Frick, Lloyd; Lin, Min-Hwa Jasmine; Depee, Scott; Tadepalli, Sarva; Votta, Bart; James, Ian; Fuller, Karen; Chambers, Timothy J; Kull, Frederick C; Chamberlain, Stanley D; Hutchins, Jeff T

    2005-11-01

    Colony-stimulating-factor-1 (CSF-1) signaling through cFMS receptor kinase is increased in several diseases. To help investigate the role of cFMS kinase in disease, we identified GW2580, an orally bioavailable inhibitor of cFMS kinase. GW2580 completely inhibited human cFMS kinase in vitro at 0.06 microM and was inactive against 26 other kinases. GW2580 at 1 microM completely inhibited CSF-1-induced growth of mouse M-NFS-60 myeloid cells and human monocytes and completely inhibited bone degradation in cultures of human osteoclasts, rat calvaria, and rat fetal long bone. In contrast, GW2580 did not affect the growth of mouse NS0 lymphoblastoid cells, human endothelial cells, human fibroblasts, or five human tumor cell lines. GW2580 also did not affect lipopolysaccharide (LPS)-induced TNF, IL-6, and prostaglandin E2 production in freshly isolated human monocytes and mouse macrophages. After oral administration, GW2580 blocked the ability of exogenous CSF-1 to increase LPS-induced IL-6 production in mice, inhibited the growth of CSF-1-dependent M-NFS-60 tumor cells in the peritoneal cavity, and diminished the accumulation of macrophages in the peritoneal cavity after thioglycolate injection. Unexpectedly, GW2580 inhibited LPS-induced TNF production in mice, in contrast to effects on monocytes and macrophages in vitro. In conclusion, GW2580's selective inhibition of monocyte growth and bone degradation is consistent with cFMS kinase inhibition. The ability of GW2580 to chronically inhibit CSF-1 signaling through cFMS kinase in normal and tumor cells in vivo makes GW2580 a useful tool in assessing the role of cFMS kinase in normal and disease processes.

  15. Plasminogen-induced aggregation of PANC-1 cells requires conversion to plasmin and is inhibited by endogenous plasminogen activator inhibitor-1.

    Science.gov (United States)

    Deshet, Naamit; Lupu-Meiri, Monica; Espinoza, Ingrid; Fili, Oded; Shapira, Yuval; Lupu, Ruth; Gershengorn, Marvin C; Oron, Yoram

    2008-09-01

    PANC-1 cells express proteinase-activated receptors (PARs)-1, -2, and respond to their activation by transient elevation of cytosolic [Ca(2+)] and accelerated aggregation (Wei et al., 2006, J Cell Physiol 206:322-328). We studied the effect of plasminogen (PGN), an inactive precursor of the PAR-1-activating protease, plasmin (PN) on aggregation of pancreatic adenocarcinoma (PDAC) cells. A single dose of PGN time- and dose-dependently promoted PANC-1 cells aggregation in serum-free medium, while PN did not. PANC-1 cells express urokinase plasminogen activator (uPA), which continuously converted PGN to PN. This activity and PGN-induced aggregation were inhibited by the uPA inhibitor amiloride. PGN-induced aggregation was also inhibited by alpha-antiplasmin and by the PN inhibitor epsilon-aminocaproic acid (EACA). Direct assay of uPA activity revealed very low rate, markedly enhanced in the presence of PGN. Moreover, in PGN activator inhibitor 1-deficient PANC-1 cells, uPA activity and PGN-induced aggregation were markedly potentiated. Two additional human PDAC cell lines, MiaPaCa and Colo347, were assayed for PGN-induced aggregation. Both cell lines responded by aggregation and exhibited PGN-enhanced uPA activity. We hypothesized that the continuous conversion of PGN to PN by endogenous uPA is limited by PN's degradation and negatively controlled by endogenously produced PAI-1. Indeed, we found that PANC-1 cells inactivate PN with t1/2 of approximately 7 h, while the continuous addition of PN promoted aggregation. Our data suggest that PANC-1 cells possess intrinsic, PAI-1-sensitive mechanism for promotion of aggregation and differentiation by prolonged exposure to PGN and, possibly, additional precursors of PARs agonists.

  16. Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters

    Science.gov (United States)

    Ren, Huiwen; Wang, Yanhua; Xing, Yongning; Ran, Jianhua; Liu, Ming; Lei, Tianluo; Zhou, Hong; Li, Runtao; Sands, Jeff M.

    2014-01-01

    Urea transporters (UT) play an important role in the urine concentration mechanism by mediating intrarenal urea recycling, suggesting that UT inhibitors could have therapeutic use as a novel class of diuretic. Recently, we found a thienoquinolin UT inhibitor, PU-14, that exhibited diuretic activity. The purpose of this study was to identify more potent UT inhibitors that strongly inhibit UT-A isoforms in the inner medullary collecting duct (IMCD). Efficient thienoquinolin UT inhibitors were identified by structure-activity relationship analysis. Urea transport inhibition activity was assayed in perfused rat terminal IMCDs. Diuretic activity of the compound was determined in rats and mice using metabolic cages. The results show that the compound PU-48 exhibited potent UT-A inhibition activity. The inhibition was 69.5% with an IC50 of 0.32 μM. PU-48 significantly inhibited urea transport in perfused rat terminal IMCDs. PU-48 caused significant diuresis in UT-B null mice, which indicates that UT-A is the target of PU-48. The diuresis caused by PU-48 did not change blood Na+, K+, or Cl− levels or nonurea solute excretion in rats and mice. No toxicity was detected in cells or animals treated with PU-48. The results indicate that thienoquinolin UT inhibitors induce a diuresis by inhibiting UT-A in the IMCD. This suggests that they may have the potential to be developed as a novel class of diuretics with fewer side effects than classical diuretics. PMID:25298523

  17. Inhibition of gamma-ray dose-rate effects by D/sup 2/O and inhibitors of poly(ADP-ribose) synthetase in cultured mammalian L5178Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, A.M.; Tanaka, O.; Matsudaira, H.

    1984-06-01

    Effects of deuterium oxide (D/sub 2/O) and 3-aminobenzamide, an inhibitor of poly(ADP-ribose) synthetase, on cell proliferation and survival were studied in cultured mammalian L5178Y cells under growing conditions and after acute and low-dose-rate irradiation at about 0.1 to 0.4 Gy/hr of ..gamma.. rays. Growth of irradiated and unirradiated cells was inhibited by 45% D/sub 2/O but not by 3-aminobenzamide at 10mM, except for treatments longer than 30 hr. The presence of these agents either alone or in combination during irradiation at low dose rates suppressed almost totally the decrease in cell killing due to the decrease in dose rate. Among other inhibitors tested, theobromine and theophylline were found to be effective in eliminating the dose-rate effects of ..gamma.. rays. Possible mechanisms underlying the inhibition are discussed.

  18. Blocking the proliferation of human tumor cell lines by peptidase inhibitors from Bauhinia seeds.

    Science.gov (United States)

    Nakahata, Adriana Miti; Mayer, Barbara; Neth, Peter; Hansen, Daiane; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2013-03-01

    In cancer tumors, growth, invasion, and formation of metastasis at a secondary site play a pivotal role, participating in diverse processes in the development of the pathology, such as degradation of extracellular matrix. Bauhinia seeds contain relatively large quantities of peptidase inhibitors, and two Bauhinia inhibitors were obtained in a recombinant form from the Bauhinia bauhinioides species, B. bauhinoides cruzipain inhibitor, which is a cysteine and serine peptidase inhibitor, and B. bauhinioides kallikrein inhibitor, which is a serine peptidase inhibitor. While recombinant B. bauhinoides cruzipain inhibitor inhibits human neutrophil elastase cathepsin G and the cysteine proteinase cathepsin L, recombinant B. bauhinioides kallikrein inhibitor inhibits plasma kallikrein and plasmin. The effects of recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor on the viability of tumor cell lines with a distinct potential of growth from the same tissue were compared to those of the clinical cytotoxic drug 5-fluorouracil. At 12.5 µM concentration, recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor were more efficient than 5-fluorouracil in inhibiting MKN-28 and Hs746T (gastric), HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), and THP-1 and K562 (leukemia) cell lines. Additionally, recombinant B. bauhinoides cruzipain inhibitor inhibited 40 % of the migration of Hs746T, the most invasive gastric cell line, while recombinant B. bauhinioides kallikrein inhibitor did not affect cell migration. Recombinant B. bauhinioides kallikrein inhibitor and recombinant B. bauhinoides cruzipain inhibitor, even at high doses, did not affect hMSC proliferation while 5-fluorouracil greatly reduced the proliferation rates of hMSCs. Therefore, both recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor might be considered for further studies

  19. Inhibition of autophagy initiation potentiates chemosensitivity in mesothelioma.

    Science.gov (United States)

    Follo, Carlo; Cheng, Yao; Richards, William G; Bueno, Raphael; Broaddus, Virginia Courtney

    2018-03-01

    The benefits of inhibiting autophagy in cancer are still controversial, with differences in outcome based on the type of tumor, the context and the particular stage of inhibition. Here, we investigated the impact of inhibiting autophagy at different stages on chemosensitivity using 3-dimensional (3D) models of mesothelioma, including ex vivo human tumor fragment spheroids. As shown by LC3B accumulation, we successfully inhibited autophagy using either an early stage ULK1/2 inhibitor (MRT 68921) or a late stage inhibitor (hydroxychloroquine). We found that inhibition of autophagy at the early stage, but not at late stage, potentiated chemosensitivity. This effect was seen only in those spheroids with high autophagy and active initiation at steady state. Inhibition of autophagy alone, at either early or late stage, did not cause cell death, showing that the inhibitors were non-toxic and that mesothelioma did not depend on autophagy at baseline, at least over 24 h. Using ATG13 puncta analysis, we found that autophagy initiation identified tumors that are more chemosensitive at baseline and after autophagy inhibition. Our results highlight a potential role of autophagy initiation in supporting mesothelioma cells during chemotherapy. Our work also highlights the importance of testing the inhibition of different stages in order to uncover the role of autophagy and the potential of its modulation in the treatment of cancer. © 2017 Wiley Periodicals, Inc.

  20. Some aspects of the role of inhibitors in the corrosion of copper in tap water as observed by cyclic voltammetry

    International Nuclear Information System (INIS)

    Bi, H.; Burstein, G.T.; Rodriguez, B.B.; Kawaley, G.

    2016-01-01

    Highlights: • The presence of Fernox ® inhibits both the anodic and cathodic reactions of copper in tap water, with the anodic reaction more heavily supressed. • Fernox ® is more inhibitive than the individual components, BTA or TEA, and also more inhibitive than a mixture of the two. • BTA is the dominant inhibitive component of Fernox ® . TEA also inhibits the reaction, but less effectively. • The inhibitors show the same degree of inhibition and the same mechanism of inhibition in hard and soft tap water. • A mechanism of inhibition is proposed whereby the inhibitor forms a film on the surface, which is reactive: surface polymerization of the reactive inhibitor is proposed. - Abstract: Cyclic voltammetric examination of the corrosion and inhibition of copper in hard and soft tap-waters in the presence of a commercial inhibitor containing benzotriazole (BTA) and triethanolamine (TEA), or its separate components, is presented. The anodic and cathodic reactions are both strongly inhibited, although the anodic reaction more so. BTA is by far the dominant inhibiting component. The inhibitor forms a polymerized reactive adsorbed surface film. Inhibition of the cathodic reaction (oxygen reduction) is not due to electron resistivity of the inhibitor, but rather, by heavily reduced surface coverage of adsorbed oxygen over a wide range of oxygen reduction overpotential.

  1. Purification, partial characterization, and immunological relationships of multiple low molecular weight protease inhibitors of soybean

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, D L.R.; Lin, K T.D.; Yang, W K; Foard, D E

    1977-01-01

    Five protease inhibitors, I-V, in the molecular weight range 7000-8000 were purified from Tracy soybeans by ammonium sulfate precipitation, gel filtration on Sephadex G-100 and G-75, and column chromatography on DEAE-cellulose. In common with previously described trypsin inhibitors from legumes, I-V have a high content of half-cystine and lack tryptophan. By contrast with other legume inhibitors, inhibitor II contains 3 methionine residues. Isoelectric points range from 6.2 to 4.2 in order from inhibitor I to V. Molar ratios (inhibitor/enzyme) for 50% trypsin inhibition are I = 4.76, II = 1.32, III = 3.22, IV = 2.17, V = 0.97. Only V inhibits chymotrypsin significantly (molar ratio = 1.33 for 50% inhibition). The sequence of the first 16 N-terminal amino acid residues of inhibitor V is identical to that of the Bowman-Birk inhibitor; all other observations also indicate that inhibitor V and Bowman-Birk are identical. The first 20 N-terminal amino acid residues of inhibitor II show high homology to those of Bowman-Birk inhibitor, differing by 1 deletion and 5 substitutions. Immunological tests show that inhibitors I through IV are fully cross-reactive with each other but are distinct from inhibitor V.

  2. Ginger extract as green corrosion inhibitor of mild steel in hydrochloric acid solution

    Science.gov (United States)

    Fidrusli, A.; Suryanto; Mahmood, M.

    2018-01-01

    Ginger extract as corrosion inhibitor from natural resources was studied to prevent corrosion of mild steel in acid media. Ginger rhizome was extracted to produce green corrosion inhibitor (G-1) while ginger powder bought at supermarket was also extract to form green corrosion inhibitor (G-2). Effectiveness of inhibitor in preventing corrosion process of mild steel was studied in 1.0 M of hydrochloric acid. The experiment of weight loss method and polarization technique were conducted to measure corrosion rate and inhibition efficiency of mild steel in solution containing 1.0 M of hydrochloric acid with various concentration of inhibitor at room temperature. The results showed that, the rate of corrosion dropped from 8.09 mmpy in solution containing no inhibitor to 0.72 mmpy in solution containing 150g/l inhibitor while inhibition efficiency up to 91% was obtained. The polarization curve in polarization experiments shows that the inhibition efficiency is 86% with high concentration of inhibitor. The adsorption of ginger extract on the surface of mild steel was observed by using optical microscope and the characterization analysis was done by using pH measurement method. When high concentration of green inhibitor in the acid solution is used, the pH at the surface of steel is increasing.

  3. The selective serotonin reuptake inhibitor, escitalopram, enhances inhibition of prepotent responding and spatial reversal learning

    Science.gov (United States)

    Brown, Holden D.; Amodeo, Dionisio A.; Sweeney, John A.; Ragozzino, Michael E.

    2011-01-01

    Previous findings indicate treatment with a selective serotonin reuptake inhibitor (SSRI) facilitates behavioral flexibility when conditions require inhibition of a learned response pattern. The present experiment investigated whether acute treatment with the SSRI, escitalopram, affects behavioral flexibility when conditions require inhibition of a naturally-biased response pattern (elevated conflict test) and/or reversal of a learned response pattern (spatial reversal learning). An additional experiment was carried out to determine whether escitalopram, at doses that affected behavioral flexibility, also reduced anxiety as tested in the elevated plus-maze. In each experiment, Long-Evans rats received an intraperitoneal injection of either saline or escitalopram (0.03, 0.3 or 1.0 mg/kg) 30 minutes prior to behavioral testing. Escitalopram, at all doses tested, enhanced acquisition in the elevated conflict test, but did not affect performance in the elevated plus-maze. Escitalopram (0.3 and 1.0 mg/kg) did not alter acquisition of the spatial discrimination, but facilitated reversal learning. In the elevated conflict and spatial reversal learning test, escitalopram enhanced the ability to maintain the relevant strategy after being initially selected. The present findings suggest that enhancing serotonin transmission with a SSRI facilitates inhibitory processes when conditions require a shift away from either a naturally-biased response pattern or a learned choice pattern. PMID:22219222

  4. Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance

    Science.gov (United States)

    Rabi, S. Alireza; Laird, Gregory M.; Durand, Christine M.; Laskey, Sarah; Shan, Liang; Bailey, Justin R.; Chioma, Stanley; Moore, Richard D.; Siliciano, Robert F.

    2013-01-01

    HIV-1 protease inhibitors (PIs) are among the most effective antiretroviral drugs. They are characterized by highly cooperative dose-response curves that are not explained by current pharmacodynamic theory. An unresolved problem affecting the clinical use of PIs is that patients who fail PI-containing regimens often have virus that lacks protease mutations, in apparent violation of fundamental evolutionary theory. Here, we show that these unresolved issues can be explained through analysis of the effects of PIs on distinct steps in the viral life cycle. We found that PIs do not affect virion release from infected cells but block entry, reverse transcription, and post–reverse transcription steps. The overall dose-response curves could be reconstructed by combining the curves for each step using the Bliss independence principle, showing that independent inhibition of multiple distinct steps in the life cycle generates the highly cooperative dose-response curves that make these drugs uniquely effective. Approximately half of the inhibitory potential of PIs is manifest at the entry step, likely reflecting interactions between the uncleaved Gag and the cytoplasmic tail (CT) of the Env protein. Sequence changes in the CT alone, which are ignored in current clinical tests for PI resistance, conferred PI resistance, providing an explanation for PI failure without resistance. PMID:23979165

  5. Lansoprazole and carbonic anhydrase IX inhibitors sinergize against human melanoma cells.

    Science.gov (United States)

    Federici, Cristina; Lugini, Luana; Marino, Maria Lucia; Carta, Fabrizio; Iessi, Elisabetta; Azzarito, Tommaso; Supuran, Claudiu T; Fais, Stefano

    2016-01-01

    Proton Pump Inhibitors (PPIs) reduce tumor acidity and therefore resistance of tumors to drugs. Carbonic Anhydrase IX (CA IX) inhibitors have proven to be effective against tumors, while tumor acidity might impair their full effectiveness. To analyze the effect of PPI/CA IX inhibitors combined treatment against human melanoma cells. The combination of Lansoprazole (LAN) and CA IX inhibitors (FC9-399A and S4) has been investigated in terms of cell proliferation inhibition and cell death in human melanoma cells. The combination of these inhibitors was more effective than the single treatments in both inhibiting cell proliferation and in inducing cell death in human melanoma cells. These results represent the first successful attempt in combining two different proton exchanger inhibitors. This is the first evidence on the effectiveness of a new approach against tumors based on the combination of PPI and CA IX inhibitors, thus providing an alternative strategy against tumors.

  6. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  7. Inhibition of PAF-induced expression of CD11b and shedding of L-selectin on human neutrophils and eosinophils by the type IV selective PDE inhibitor, rolipram

    NARCIS (Netherlands)

    Dijkhuizen, B; deMonchy, JGR; Dubois, AEJ; Gerritsen, J; Kauffman, HF

    We quantitatively determined whether the selective phosphodiesterase (PDE) inhibitor, rolipram, inhibits changes in the adhesion molecules CD11b and L-selectin on platelet-activating factor (PAF)-stimulated human neutrophils and eosinophils in vitro. Incubations were performed in human whole blood

  8. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, J. Ishwara [Mangalore Univ., Karnataka (India); Alva, Vijaya D. P. [Shree Devi Institute of Technology, Karnataka (India)

    2014-02-15

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum.

  9. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    International Nuclear Information System (INIS)

    Bhat, J. Ishwara; Alva, Vijaya D. P.

    2014-01-01

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum

  10. Reprogramming the Dynamin 2 mRNA by Spliceosome-mediated RNA Trans-splicing

    Directory of Open Access Journals (Sweden)

    Delphine Trochet

    2016-01-01

    Full Text Available Dynamin 2 (DNM2 is a large GTPase, ubiquitously expressed, involved in membrane trafficking and regulation of actin and microtubule cytoskeletons. DNM2 mutations cause autosomal dominant centronuclear myopathy which is a rare congenital myopathy characterized by skeletal muscle weakness and histopathological features including nuclear centralization in absence of regeneration. No curative treatment is currently available for the DNM2-related autosomal dominant centronuclear myopathy. In order to develop therapeutic strategy, we evaluated here the potential of Spliceosome-Mediated RNA Trans-splicing technology to reprogram the Dnm2-mRNA in vitro and in vivo in mice. We show that classical 3′-trans-splicing strategy cannot be considered as accurate therapeutic strategy regarding toxicity of the pre-trans-splicing molecules leading to low rate of trans-splicing in vivo. Thus, we tested alternative strategies devoted to prevent this toxicity and enhance frequency of trans-splicing events. We succeeded to overcome the toxicity through a 5′-trans-splicing strategy which also allows detection of trans-splicing events at mRNA and protein levels in vitro and in vivo. These results suggest that the Spliceosome-Mediated RNA Trans-splicing strategy may be used to reprogram mutated Dnm2-mRNA but highlight the potential toxicity linked to the molecular tools which have to be carefully investigated during preclinical development.

  11. Promiscuity of MCMV immunoevasin of NKG2D: m138/fcr-1 down-modulates RAE-1epsilon in addition to MULT-1 and H60.

    Science.gov (United States)

    Arapović, Jurica; Lenac Rovis, Tihana; Reddy, Anil Butchi; Krmpotić, Astrid; Jonjić, Stipan

    2009-11-01

    Both human and mouse cytomegalovirus (CMV) encode proteins that inhibit the activation of NK cells by down-regulating the cellular ligands for activating NK cell receptor, NKG2D. MCMV proteins m145, m152 and m155 interfere with the expression of all known NKG2D ligands, MULT-1, RAE-1 family members and H60, respectively, whereas m138 affects the expression of MULT-1 and H60. Here we show that m152 affects the maturation of newly synthesized RAE-1 molecules, but is not sufficient to prevent surface expression of RAE-1varepsilon. We have identified m138 as a main inhibitor of the surface expression of RAE-1varepsilon. In contrast to m152, m138 affects the surface-resident protein leading to its endocytosis, which can be prevented by a dynamin inhibitor. Moreover, we demonstrated that m138 does not need other viral proteins to down-modulate the expression of RAE-1varepsilon.

  12. Glycolytic inhibitors 2-deoxyglucose and 3-bromopyruvate synergize with photodynamic therapy respectively to inhibit cell migration.

    Science.gov (United States)

    Feng, Xiaolan; Wang, Pan; Liu, Quanhong; Zhang, Ting; Mai, Bingjie; Wang, Xiaobing

    2015-06-01

    Most cancer cells have the specially increased glycolytic phenotype, which makes this pathway become an attractive therapeutic target. Although glycolytic inhibitor 2-deoxyglucose (2-DG) has been demonstrated to potentiate the cytotoxicity of photodynamic therapy (PDT), the impacts on cell migration after the combined treatment has never been reported yet. The present study aimed to analyze the influence of glycolytic inhibitors 2-DG and 3-bromopyruvate (3-BP) combined with Ce6-PDT on cell motility of Triple Negative Breast Cancer MDA-MB-231 cells. As determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium-bromide-Tetraz-olium (MTT) assay, more decreased cell viability was observed in 2-DG + PDT and 3-BP + PDT groups when compared with either monotherapy. Under optimal conditions, synergistic potentiation on cell membrane destruction and the decline of cell adhesion and cells migratory ability were observed in both 2-DG + PDT and 3-BP + PDT by electron microscope observation (SEM), wound healing and trans-well assays. Besides, serious microfilament network collapses as well as impairment of matrix metalloproteinases-9 (MMP-9) were notably improved after the combined treatments by immunofluorescent staining. These results suggest that 2-DG and 3-BP can both significantly potentiated Ce6-PDT efficacy of cell migration inhibition.

  13. Inhibition of neurotensin-stimulated mast cell secretion and carboxypeptidase A activity by the peptide inhibitor of carboxypeptidase A and neurotensin-receptor antagonist SR 48692.

    Science.gov (United States)

    Miller, L A; Cochrane, D E; Feldberg, R S; Carraway, R E

    1998-06-01

    Neurotensin (NT), a peptide found in brain and several peripheral tissues, is a potent stimulus for mast cell secretion and its actions are blocked by the specific NT receptor antagonist, SR 48692. Subsequent to stimulation, NT is rapidly degraded by mast cell carboxypeptidase A (CPA). In the experiments described here, we tested for the involvement of CPA activity in the activation of mast cell secretion by the peptide, NT. Mast cells were isolated from the peritoneal and pleural cavities of rats, purified over metrizamide gradients and incubated at 37 degrees C in Locke solution or Locke containing the appropriate inhibitors. For some experiments, media derived from mast cells stimulated by compound 48/80 were used as a source of mast cell CPA activity. Treatment of mast cells with the highly specific peptide inhibitor of CPA derived from potato (PCI) inhibited histamine release in response to NT and NT8-13 (the biologically active region of NT). This inhibition required some 20 min to develop and was only partially reversed by a 20-min wash period. PCI (10 microM) did not inhibit histamine release in response to NT1-12, bradykinin, compound 48/80, the calcium ionophore, A23187, or anti-IgE serum. PCI also inhibited mast cell CPA activity. SR 48692, a highly selective antagonist of the brain NT receptor and of NT-stimulated mast cell secretion, also inhibited mast cell CPA activity as well as bovine pancreatic CPA activity in a concentration-dependent manner. It is suggested that the mast cell binding site for NT and the active site for CPA may share similar characteristics. The results are discussed in terms of NT mechanism of action on the mast cell.

  14. SNX-25a, a novel Hsp90 inhibitor, inhibited human cancer growth more potently than 17-AAG.

    Science.gov (United States)

    Wang, Shaoxiang; Wang, Xiao; Du, Zhan; Liu, Yuting; Huang, Dane; Zheng, Kai; Liu, Kaisheng; Zhang, Yi; Zhong, Xueyun; Wang, Yifei

    2014-07-18

    17-Allylamino-17-demethoxygeldanamycin (17-AAG), a typical Hsp90 inhibitor derived from geldanamycin (GA), has entered Phase III clinical trials for cancer therapy. However, it has several significant limitations such as poor solubility, limited bioavailability and unacceptable hepatotoxicity. In this study, the anticancer activity and mechanism of SNX-25a, a novel Hsp90 inhibitor, was investigated comparing with that of 17-AAG. We showed that SNX-25a triggered growth inhibition more sensitively than 17-AAG against many human cancer cells, including K562, SW-620, A375, Hep-2, MCF-7, HepG2, HeLa, and A549 cell lines, especially at low concentrations (AAG, SNX-25a was more potent in arresting the cell cycle at G2 phase, and displayed more potent effects on human cancer cell apoptosis and Hsp90 client proteins. It also exhibited a stronger binding affinity to Hsp90 than 17-AAG using molecular docking. Considering the superiority effects on Hsp90 affinity, cell growth, cell cycle, apoptosis, and Hsp90 client proteins, SNX-25a is supposed as a potential anticancer agent that needs to be explored in detail. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Corrosion inhibition of aluminum 6063 using some pharmaceutical compounds

    International Nuclear Information System (INIS)

    Fouda, A.S.; Al-Sarawy, A.A.; Ahmed, F.Sh.; El-Abbasy, H.M.

    2009-01-01

    The corrosion inhibition characteristics of some pharmaceutical compounds on aluminum 6063 in 0.5 mol l -1 H 3 PO 4 has been studied using weight loss and galvanostatic polarization techniques. Results showed that the inhibition occurs through adsorption of the inhibitor molecules on the metal surface. The inhibition efficiency increased with increasing inhibitor concentration, but decreased with increasing temperature. The adsorption of first group pharmaceutical compounds on the metal surface is found to obey Frumkin's adsorption isotherm, but the adsorption of second group pharmaceutical compounds is found to obey Temkin's adsorption isotherm. Thermodynamic parameters for adsorption process were determined. Galvanostatic polarization studies showed that first and second groups' pharmaceutical compounds are mixed-type inhibitors and the results obtained from the two techniques are in good agreement

  16. Proton pump inhibitor-induced tumour cell death by inhibition of a detoxification mechanism.

    Science.gov (United States)

    Fais, S

    2010-05-01

    This review presents a possible new approach against cancer, as represented by inhibition of proton pumps, a mechanism used by tumour cells to avoid intracellular accumulation of toxic substances. Proton pump inhibitors (PPIs) belong to a family of pro-drugs that are currently used in the treatment of peptic diseases needing acidity to be activated. PPIs target the acidic tumour mass, where they are metabolized, thus blocking proton traffic. Proton pump inhibition triggers a rapid cell death as a result of intracellular acidification, caspase activation and early accumulation of reactive oxygen species into tumour cells. As a whole, the devastating effect of PPIs on tumour cells suggest the triggering of a fatal cell toxification. Many human tumours, including melanoma, osteosarcoma, lymphomas and various adenocarcinomas are responsive to PPIs. This appears highly conceivable, in as much as almost all human tumours are acidic and express high levels of proton pumps. Paradoxically, metastatic tumours appear to be more responsive to PPIs being more acidic than the majority of primary tumours. However, two clinical trials test the effectiveness of PPIs in chemosensitizing melanoma and osteosarcoma patients. Indeed, tumour acidity represents a very potent mechanism of chemoresistance. A majority of cytotoxic agents, being weak bases, are quickly protonated outside and do not enter the cells, thus preventing drugs to reach specific cellular targets. Clinical data will provide the proof of concept on the use of PPIs as a new class of antitumour agent with a very low level of systemic toxicity as compared with standard chemotherapeutic agents.

  17. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HIV-1 integrase (IN is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.

  18. Corrosion Inhibition of Aluminium in Acid Media By Citrullus Colocynthis Extract

    Directory of Open Access Journals (Sweden)

    Rajkiran Chauhan

    2011-01-01

    Full Text Available Inhibition of corrosion of aluminium in acid solution by methanol extract of Citrullus colocynthis plant has been studied using mass loss and thermometric measurements. It has been found that the plant extract act as a good corrosion inhibitor for aluminium in all concentrations of sulphuric and hydrochloric acid solution. The inhibition action depends on the concentration of acid and inhibitor. Results for mass loss and thermometric measurement indicate that inhibition efficiency increase with increasing inhibitor concentration. The inhibition action of the plant extract is discussed in view of Langmuir adsorption isotherm. It has been observed that the adsorption of the extract on aluminium surface is a spontaneous process. The plant extract provides a good protection to aluminium against corrosion.

  19. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    OpenAIRE

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulat...

  20. Proton pump inhibitors inhibit pancreatic secretion

    DEFF Research Database (Denmark)

    Wang, Jing; Barbuskaite, Dagne; Tozzi, Marco

    2015-01-01

    +/K+-ATPases are expressed and functional in human pancreatic ducts and whether proton pump inhibitors (PPIs) have effect on those. Here we show that the gastric HKα1 and HKβ subunits (ATP4A; ATP4B) and non-gastric HKα2 subunits (ATP12A) of H+/K+-ATPases are expressed in human pancreatic cells. Pumps have similar...... of major ions in secretion follow similar excretory curves in control and PPI treated animals. In addition to HCO3-, pancreas also secretes K+. In conclusion, this study calls for a revision of the basic model for HCO3- secretion. We propose that proton transport is driving secretion, and that in addition...

  1. Quantum chemical studies on the some inorganic corrosion inhibitors

    International Nuclear Information System (INIS)

    Sayin, Koray; Karakaş, Duran

    2013-01-01

    Highlights: •Some quantum chemical parameters are important to determine inhibition efficiency. •Quantum chemical calculations were performed on six inorganic inhibitors. •Five experimental reports were used to explain the theoretical results. •Atomic charges and %contributions were used to determine the atom at protonation process. •For inorganic inhibitors, the best method and basis set were investigated. -- Abstract: Some quantum chemical parameters were calculated by using Hartree–Fock (HF) approximation, Density Functional Theory (DFT/B3LYP) and Møller Plesset perturbation theory (MP3) methods at LANL2DZ, LANL2MB and SDD levels in gas phase and water for dichromate (Cr 2 O 7 2- ), chromate (CrO 4 2- ), tungstate (WO 4 2- ), molybdate (MoO 4 2- ), nitrite (NO 2 - ) and nitrate (NO 3 - ) which are used as inorganic corrosion inhibitors. All theoretical results and experimental inhibition efficiencies of inhibitors were subjected to correlation analyses. In a summary, MP3/SDD level in water was found as the best level. In this level, the inhibition efficiency ranking was found as CrO 4 2- >WO 4 2- >MoO 4 2- >Cr 2 O 7 2- >NO 2 - ≈NO 3 -

  2. Recent advances in botulinum neurotoxin inhibitor development.

    Science.gov (United States)

    Kiris, Erkan; Burnett, James C; Kane, Christopher D; Bavari, Sina

    2014-01-01

    Botulinum neurotoxins (BoNTs) are endopeptidases that target motor neurons and block acetylcholine neurotransmitter release. This action results in the muscle paralysis that defines the disease botulism. To date, there are no FDA-approved therapeutics to treat BoNT-mediated paralysis after intoxication of the motor neuron. Importantly, the rationale for pursuing treatments to counter these toxins is driven by their potential misuse. Current drug discovery efforts have mainly focused on small molecules, peptides, and peptidomimetics that can directly and competitively inhibit BoNT light chain proteolytic activity. Although this is a rational approach, direct inhibition of the Zn(2+) metalloprotease activity has been elusive as demonstrated by the dearth of candidates undergoing clinical evaluation. Therefore, broadening the scope of viable targets beyond that of active site protease inhibitors represents an additional strategy that could move the field closer to the clinic. Here we review the rationale, and discuss the outcomes of earlier approaches and highlight potential new targets for BoNT inhibition. These include BoNT uptake and processing inhibitors, enzymatic inhibitors, and modulators of neuronal processes associated with toxin clearance, neurotransmitter potentiation, and other pathways geared towards neuronal recovery and repair.

  3. Single-molecule supercoil-relaxation assay as a screening tool to determine the mechanism and efficacy of human topoisomerase IB inhibitors

    Science.gov (United States)

    Seol, Yeonee; Zhang, Hongliang; Agama, Keli; Lorence, Nicholas; Pommier, Yves; Neuman, Keir C.

    2015-01-01

    Human nuclear type IB topoisomerase (Top1) inhibitors are widely used and powerful anti-cancer agents. In this study, we introduce and validate a single-molecule supercoil relaxation assay as a molecular pharmacology tool for characterizing therapeutically relevant Top1 inhibitors. Using this assay, we determined the effects on Top1 supercoil relaxation activity of four Top1 inhibitors; three clinically relevant: camptothecin, LMP-400, LMP-776 (both indenoisoquinoline derivatives), and one natural product in preclinical development, lamellarin-D. Our results demonstrate that Top1 inhibitors have two distinct effects on Top1 activity: a decrease in supercoil relaxation rate and an increase in religation inhibition. The type and magnitude of the inhibition mode depend both on the specific inhibitor and on the topology of the DNA substrate. In general, the efficacy of inhibition is significantly higher with supercoiled than with relaxed DNA substrates. Comparing single-molecule inhibition with cell growth inhibition (IC50) measurements showed a correlation between the binding time of the Top1 inhibitors and their cytotoxic efficacy, independent of the mode of inhibition. This study demonstrates that the single-molecule supercoil relaxation assay is a sensitive method to elucidate the detailed mechanisms of Top1 inhibitors and is relevant for the cellular efficacy of Top1 inhibitors. PMID:26351326

  4. Antifungal drugs as corrosion inhibitors for aluminium in 0.1 M HCl

    Energy Technology Data Exchange (ETDEWEB)

    Obot, I.B. [Department of Chemistry, Faculty of Science, University of Uyo, Uyo (Nigeria)], E-mail: proffoime@yahoo.com; Obi-Egbedi, N.O. [Department of Chemistry, University of Ibadan, Ibadan (Nigeria); Umoren, S.A. [Department of Chemistry, Faculty of Science, University of Uyo, Uyo (Nigeria)

    2009-08-15

    The inhibitive capabilities of Clotrimazole (CTM) and Fluconazole (FLC), two antifungal drugs, on the electrochemical corrosion of aluminium in 0.1 M HCl solution has been studied using weight loss measurements at 30 and 50 deg. C. The results indicate that both compound act as inhibitors in the acidic corrodent. At constant acid concentration, the inhibition efficiency (%I) increased with increase in the concentration of the inhibitors. Increase in temperature increased the corrosion rate in the absence and presence of the inhibitors but decreased the inhibition efficiency. CTM and FLC adsorbed on the surface of aluminium according to the Langmuir adsorption isotherm model at all the concentrations and temperatures studied. Phenomenon of physical adsorption is proposed from the activation parameter obtained. Thermodynamic parameters reveal that the adsorption process is spontaneous. The reactivity of these compounds was analyzed through theoretical calculations based on AM1 semi-empirical method to explain the different efficiencies of these compounds as corrosion inhibitors. CTM was found to be a better inhibitor than FLC.

  5. Mechanism of inhibition of myeloperoxidase by anti-inflammatory drugs.

    Science.gov (United States)

    Kettle, A J; Winterbourn, C C

    1991-05-15

    Hypochlorous acid (HOCl) is the most powerful oxidant produced by human neutrophils, and should therefore be expected to contribute to the damage caused by these inflammatory cells. It is produced from H2O2 and Cl- by the heme enzyme myeloperoxidase (MPO). We used a H2O2-electrode to assess the ability of a variety of anti-inflammatory drugs to inhibit conversion of H2O2 to HOCl. Dapsone, mefenamic acid, sulfapyridine, quinacrine, primaquine and aminopyrine were potent inhibitors, giving 50% inhibition of the initial rate of H2O2 loss at concentrations of about 1 microM or less. Phenylbutazone, piroxicam, salicylate, olsalazine and sulfasalazine were also effective inhibitors. Spectral investigations showed that the inhibitors acted by promoting the formation of compound II, which is an inactive redox intermediate of MPO. Ascorbate reversed inhibition by reducing compound II back to the active enzyme. The characteristic properties that allowed the drugs to inhibit MPO reversibly were ascertained by determining the inhibitory capacity of related phenols and anilines. Inhibition increased as substituents on the aromatic ring became more electron withdrawing, until an optimum reduction potential was reached. Beyond this optimum, their inhibitory capacity declined. The best inhibitor was 4-bromoaniline which had an I50 of 45 nM. An optimum reduction potential enables inhibitors to reduce MPO to compound II, but prevents them from reducing compound II back to the active enzyme. Exploitation of this optimum reduction potential will help in targeting drugs against HOCl-dependent tissue damage.

  6. Sodium valproate, a histone deacetylase inhibitor, modulates the vascular endothelial growth inhibitor-mediated cell death in human osteosarcoma and vascular endothelial cells.

    Science.gov (United States)

    Yamanegi, Koji; Kawabe, Mutsuki; Futani, Hiroyuki; Nishiura, Hiroshi; Yamada, Naoko; Kato-Kogoe, Nahoko; Kishimoto, Hiromitsu; Yoshiya, Shinichi; Nakasho, Keiji

    2015-05-01

    The level of vascular endothelial growth inhibitor (VEGI) has been reported to be negatively associated with neovascularization in malignant tumors. The soluble form of VEGI is a potent anti-angiogenic factor due to its effects in inhibiting endothelial cell proliferation. This inhibition is mediated by death receptor 3 (DR3), which contains a death domain in its cytoplasmic tail capable of inducing apoptosis that can be subsequently blocked by decoy receptor 3 (DcR3). We investigated the effects of sodium valproate (VPA) and trichostatin A (TSA), histone deacetylase inhibitors, on the expression of VEGI and its related receptors in human osteosarcoma (OS) cell lines and human microvascular endothelial (HMVE) cells. Consequently, treatment with VPA and TSA increased the VEGI and DR3 expression levels without inducing DcR3 production in the OS cell lines. In contrast, the effect on the HMVE cells was limited, with no evidence of growth inhibition or an increase in the DR3 and DcR3 expression. However, VPA-induced soluble VEGI in the OS cell culture medium markedly inhibited the vascular tube formation of HMVE cells, while VEGI overexpression resulted in enhanced OS cell death. Taken together, the HDAC inhibitor has anti-angiogenesis and antitumor activities that mediate soluble VEGI/DR3-induced apoptosis via both autocrine and paracrine pathways. This study indicates that the HDAC inhibitor may be exploited as a therapeutic strategy modulating the soluble VEGI/DR3 pathway in osteosarcoma patients.

  7. Hydrodynamic Effect on the Inhibition for the Flow Accelerated Corrosion of an Elbow

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, L.; Zhang, G. A.; Guo, X. P. [Huazhong University of Science and Technology, Wuhan (China)

    2017-02-15

    The inhibition effect of thioureido imidazoline inhibitor (TAI) for flow accelerated corrosion (FAC) at different locations for an X65 carbon steel elbow was studied by array electrode and computational fluid dynamics (CFD) simulations. The distribution of the inhibition efficiency measured by electrochemical impedance spectroscopy (EIS) is in good accordance with the distribution of the hydrodynamic parameters at the elbow. The inhibition efficiencies at the outer wall are higher than those at the inner wall meaning that the lower inhibition efficiency is associated with a higher flow velocity, shear stress, and turbulent kinetic energy at the inner wall of the elbow, as well as secondary flow at the elbow rather than the mass transport of inhibitor molecules. Compared to the static condition, the inhibition efficiency of TAI for FAC was relatively low. It is also due to a drastic turbulence flow and high wall shear stress during the FAC test, which prevents the adsorption of inhibitor and/or damages the adsorbed inhibitor film.

  8. Simple model of inhibition of chain-branching combustion processes

    Science.gov (United States)

    Babushok, Valeri I.; Gubernov, Vladimir V.; Minaev, Sergei S.; Miroshnichenko, Taisia P.

    2017-11-01

    A simple kinetic model has been suggested to describe the inhibition and extinction of flame propagation in reaction systems with chain-branching reactions typical for hydrocarbon systems. The model is based on the generalised model of the combustion process with chain-branching reaction combined with the one-stage reaction describing the thermal mode of flame propagation with the addition of inhibition reaction steps. Inhibitor addition suppresses the radical overshoot in flame and leads to the change of reaction mode from the chain-branching reaction to a thermal mode of flame propagation. With the increase of inhibitor the transition of chain-branching mode of reaction to the reaction with straight-chains (non-branching chain reaction) is observed. The inhibition part of the model includes a block of three reactions to describe the influence of the inhibitor. The heat losses are incorporated into the model via Newton cooling. The flame extinction is the result of the decreased heat release of inhibited reaction processes and the suppression of radical overshoot with the further decrease of the reaction rate due to the temperature decrease and mixture dilution. A comparison of the results of modelling laminar premixed methane/air flames inhibited by potassium bicarbonate (gas phase model, detailed kinetic model) with the results obtained using the suggested simple model is presented. The calculations with the detailed kinetic model demonstrate the following modes of combustion process: (1) flame propagation with chain-branching reaction (with radical overshoot, inhibitor addition decreases the radical overshoot down to the equilibrium level); (2) saturation of chemical influence of inhibitor, and (3) transition to thermal mode of flame propagation (non-branching chain mode of reaction). The suggested simple kinetic model qualitatively reproduces the modes of flame propagation with the addition of the inhibitor observed using detailed kinetic models.

  9. Discovery of novel selenium derivatives as Pin1 inhibitors by high-throughput screening

    International Nuclear Information System (INIS)

    Subedi, Amit; Shimizu, Takeshi; Ryo, Akihide; Sanada, Emiko; Watanabe, Nobumoto; Osada, Hiroyuki

    2016-01-01

    Peptidyl prolyl cis/trans isomerization by Pin1 regulates various oncogenic signals during cancer progression, and its inhibition through multiple approaches has established Pin1 as a therapeutic target. However, lack of simplified screening systems has limited the discovery of potent Pin1 inhibitors. We utilized phosphorylation-dependent binding of Pin1 to its specific substrate to develop a screening system for Pin1 inhibitors. Using this system, we screened a chemical library, and identified a novel selenium derivative as Pin1 inhibitor. Based on structure-activity guided chemical synthesis, we developed more potent Pin1 inhibitors that inhibited cancer cell proliferation. -- Highlights: •Novel screening for Pin1 inhibitors based on Pin1 binding is developed. •A novel selenium compound is discovered as Pin1 inhibitor. •Activity guided chemical synthesis of selenium derivatives resulted potent Pin1 inhibitors.

  10. [Influence of a new phosphoramide urease inhibitor on urea-N transformation in different texture soil].

    Science.gov (United States)

    Zhou, Xuan; Wu, Liang Huan; Dai, Feng

    2016-12-01

    Addition of urease inhibitors is one of the important measures to increase nitrogen (N) use efficiency of crop, due to retardant of urea hydrolysis and reduction of ammonia volatilization loss. An incubation experiment was conducted to investigate the urease inhibition effect of a new phosphoramide urease inhibitor, NPPT (N-(n-propyl) thiophosphoric triamide) in different texture soils under dark condition at 25 ℃, and NBPT (N-(n-butyl) thiophosphoric triamide) was obtained to compare the inhibition effect on urease in different soil textures by different dosages of urea adding. Results showed that the effective reaction time of urea was less than 9 d in the loamy and clay soil. Addition of inhibitors for retardation of urea hydrolysis was more than 3 d. In sandy soil, urea decomposition was relatively slow, and adding inhibitor significantly inhibited soil urease acti-vity, and reduced NH 4 + -N content. During the incubation time, the inhibition effect of high dosage urea in the soil was better than that of low dosage. At day 6, the urease inhibition rate of NBPT and NPPT (N 250 mg·kg -1 ) were 56.3% and 53.0% in sandy soil, 0.04% and 0.3% in loamy soil, 4.1% and 6.2% in clay soil; the urease inhibition rate of NBPT and NPPT (N 500 mg·kg -1 ) were 59.4% and 65.8% in sandy soil, 14.5% and 15.1% in loamy soil, 49.1% and 48.1% in clay soil. The urease inhibition effects in different texture soil were in order of sandy soil > clay soil> loamy soil. The soil NH 4 + -N content by different inhibitors during incubation time increased at first and then decreased, while soil NO 3 - -N content and apparent nitrification rate both showed rising trends. Compared with urea treatment, addition of urease inhibitors (NBPT and NPPT) significantly increased urea-N left in the soil and reduced NH 4 + -N content. In short, new urease inhibitor NPPT in different texture is an effective urease inhibitor.

  11. Synthesis and Application of Pyrrolidone-containing Shale Inhibitors

    Science.gov (United States)

    Liu, Yonggui; Hou, Jie; Zhang, Yang; Yan, Jing; Song, Tao; Xu, Yongjun

    2018-03-01

    New generation polyamine inhibitors are amino-terminated polyethers with excellent inhibiting capabilities; they play a key role in borehole stabilization and reservoir protection. However, polyamine inhibitors are limited by their poor thermal stability, which can be attributed to the presence of ether bonds in their molecular structures. We propose a three-step synthesis approach fora novel pyrrolidone-containing polyamine inhibitor (DYNP) by introducing N-vinyl-2-pyrrolidone (NVP) on divinyloxyethane. This polyamine inhibitor exhibits an optimized molecular structure and has enhanced heat resistance. Characterizations by infrared (IR) spectroscopy and evaluation tests demonstrate several advantages of DYNP inhibitors, including excellent inhibiting capability (superior to similar materials such as polyamines), improved heat resistance (reasonable stability at temperatures up to 240°C), and good compatibility with both fresh water and salt water drilling fluids. These can be attributed to the presence of considerable amounts of amino groups in the repeating unit of DYNP molecules. The DYNP inhibitor was applied in over 20 boreholes in tight oil blocks in Daqing Oilfield to relieve hydration of formations with high shale contents. For instance, drilling in the 2033.5m horizontal section of Dragon 2 borehole was smooth, with a borehole diameter expansion ratio below 10%.

  12. Effects of protease inhibitors on radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Little, J.B.

    1981-01-01

    We have investigated the effects of three protease inhibitors, antipain, leupeptin, and soybean trypsin inhibitor, on the induction of oncogenic transformation in mouse C3H10T 1/2 cells by X-rays. The patterns of inhibition by the three protease inhibitors were different. Antipain was the most effective, having the ability to suppress completely radiation transformation as well as radiation transformation enhanced by the phorbol ester promoting agent 12-O-tetradecanoylphorbol-13-acetate. The fact that antipain could suppress transformation when present for only 1 day following irradiation suggests that an effect on a DNA repair process might be important in its action. Leupeptin was less effective than antipain in its inhibition of radiation transformation. Soybean trypsin inhibitor suppressed only the promotional effects of 12-O-tetradecanoylphorbol-13-acetate on transformation. Our results suggest that there may be more than one protease involved in carcinogenesis

  13. Calcineurin inhibitor-induced complement system activation via ERK1/2 signalling is inhibited by SOCS-3 in human renal tubule cells.

    Science.gov (United States)

    Loeschenberger, Beatrix; Niess, Lea; Würzner, Reinhard; Schwelberger, Hubert; Eder, Iris E; Puhr, Martin; Guenther, Julia; Troppmair, Jakob; Rudnicki, Michael; Neuwirt, Hannes

    2018-02-01

    One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Inhibition of SRC-3 enhances sensitivity of human cancer cells to histone deacetylase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhengzhi, E-mail: zouzhengzhi@m.scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Luo, Xiaoyong [Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang 471000 (China); Nie, Peipei [KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510000 (China); Wu, Baoyan; Zhang, Tao; Wei, Yanchun [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Wang, Wenyi [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Geng, Guojun; Jiang, Jie [Xiamen Cancer Center, Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Mi, Yanjun, E-mail: myjgj_77@163.com [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China)

    2016-09-09

    SRC-3 is widely expressed in multiple tumor types and involved in cancer cell proliferation and apoptosis. Histone deacetylase (HDAC) inhibitors are promising antitumor drugs. However, the poor efficacy of HDAC inhibitors in solid tumors has restricted its further clinical application. Here, we reported the novel finding that depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors (SAHA and romidepsin). In contrast, overexpression of SRC-3 decreased SAHA-induced cancer cell apoptosis. Furthermore, we found that SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. The combination of bufalin and SAHA was particular efficient in attenuating AKT activation and reducing Bcl-2 levels. Taken together, these accumulating data might guide development of new breast and lung cancer therapies. - Highlights: • Depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors. • Overexpression of SRC-3 enhanced cancer cell resistance to HDAC inhibitors. • SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. • Bufalin synergized with HDAC inhibitor attenuated AKT activation and reduced Bcl-2 levels in human cancer cell.

  15. Corrosion Inhibition of Aluminium in Acid Media By Citrullus Colocynthis Extract

    OpenAIRE

    Chauhan, Rajkiran; Garg, Urvija; Tak, R. K.

    2011-01-01

    Inhibition of corrosion of aluminium in acid solution by methanol extract of Citrullus colocynthis plant has been studied using mass loss and thermometric measurements. It has been found that the plant extract act as a good corrosion inhibitor for aluminium in all concentrations of sulphuric and hydrochloric acid solution. The inhibition action depends on the concentration of acid and inhibitor. Results for mass loss and thermometric measurement indicate that inhibition efficiency increase wi...

  16. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes.

    Directory of Open Access Journals (Sweden)

    Beth S Zha

    Full Text Available HIV protease inhibitors (PI are core components of Highly Active Antiretroviral Therapy (HAART, the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome.Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/- mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes.Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.

  17. Screening of E. coli β-clamp Inhibitors Revealed that Few Inhibit Helicobacter pylori More Effectively: Structural and Functional Characterization

    Directory of Open Access Journals (Sweden)

    Preeti Pandey

    2018-01-01

    Full Text Available The characteristic of interaction with various enzymes and processivity-promoting nature during DNA replication makes β-clamp an important drug target. Helicobacter pylori (H. pylori have several unique features in DNA replication machinery that makes it different from other microorganisms. To find out whether difference in DNA replication proteins behavior accounts for any difference in drug response when compared to E. coli, in the present study, we have tested E. coli β-clamp inhibitor molecules against H. pylori β-clamp. Various approaches were used to test the binding of inhibitors to H. pylori β-clamp including docking, surface competition assay, complex structure determination, as well as antimicrobial assay. Out of five shortlisted inhibitor molecules on the basis of docking score, three molecules, 5-chloroisatin, carprofen, and 3,4-difluorobenzamide were co-crystallized with H. pylori β-clamp and the structures show that they bind at the protein-protein interaction site as expected. In vivo studies showed only two molecules, 5-chloroisatin, and 3,4-difluorobenzamide inhibited the growth of the pylori with MIC values in micro molar range, which is better than the inhibitory effect of the same drugs on E. coli. Therefore, the evaluation of such drugs against H. pylori may explore the possibility to use to generate species-specific pharmacophore for development of new drugs against H. pylori.

  18. Screening of E. coli β-clamp Inhibitors Revealed that Few Inhibit Helicobacter pylori More Effectively: Structural and Functional Characterization.

    Science.gov (United States)

    Pandey, Preeti; Verma, Vijay; Dhar, Suman Kumar; Gourinath, Samudrala

    2018-01-11

    The characteristic of interaction with various enzymes and processivity-promoting nature during DNA replication makes β-clamp an important drug target. Helicobacter pylori ( H. pylori ) have several unique features in DNA replication machinery that makes it different from other microorganisms. To find out whether difference in DNA replication proteins behavior accounts for any difference in drug response when compared to E. coli , in the present study, we have tested E. coli β-clamp inhibitor molecules against H. pylori β-clamp. Various approaches were used to test the binding of inhibitors to H. pylori β-clamp including docking, surface competition assay, complex structure determination, as well as antimicrobial assay. Out of five shortlisted inhibitor molecules on the basis of docking score, three molecules, 5-chloroisatin, carprofen, and 3,4-difluorobenzamide were co-crystallized with H. pylori β-clamp and the structures show that they bind at the protein-protein interaction site as expected. In vivo studies showed only two molecules, 5-chloroisatin, and 3,4-difluorobenzamide inhibited the growth of the pylori with MIC values in micro molar range, which is better than the inhibitory effect of the same drugs on E. coli . Therefore, the evaluation of such drugs against H. pylori may explore the possibility to use to generate species-specific pharmacophore for development of new drugs against H. pylori .

  19. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    International Nuclear Information System (INIS)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu

    2007-01-01

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-κB activation and nuclear translocation in an IκBα-dependent manner. The inhibitory effects were associated with reduction of inhibitor IκB kinase activity and stabilization of the NF-κB inhibitor IκB. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations

  20. Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor

    International Nuclear Information System (INIS)

    Hansen, Daiane; Macedo-Ribeiro, Sandra; Verissimo, Paula; Yoo Im, Sonia; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2007-01-01

    Bauhinia bauhinioides Cruzipain Inhibitor (BbCI) is a cysteine protease inhibitor highly homologous to plant Kunitz-type inhibitors. However, in contrast to classical Kunitz family inhibitors it lacks cysteine residues and therefore disulfide bridges. BbCI is also distinct in the ability to inactivate enzymes belonging to two different classes, cysteine and serine proteases. Besides inhibiting the cysteine protease cruzipain, BbCI also inhibits cathepsin L and the serine proteases HNE (human neutrophil elastase) and PPE (porcine pancreatic elastase). Monoclinic crystals of the recombinant inhibitor that diffract to 1.7 A resolution were obtained using hanging drop method by vapor diffusion at 18 o C. The refined structure shows the conservative β-trefoil fold features of the Kunitz inhibitors. In BbCI, one of the two characteristic S-S bonds is replaced by the water-mediated interaction between Tyr125 and Gly132. In this work we explore the structural differences between Kunitz-type inhibitors and analyze the essential interactions that maintain the protein structural stability preserving its biological function

  1. ROMK inhibitor actions in the nephron probed with diuretics.

    Science.gov (United States)

    Kharade, Sujay V; Flores, Daniel; Lindsley, Craig W; Satlin, Lisa M; Denton, Jerod S

    2016-04-15

    Diuretics acting on specific nephron segments to inhibit Na + reabsorption have been used clinically for decades; however, drug interactions, tolerance, and derangements in serum K + complicate their use to achieve target blood pressure. ROMK is an attractive diuretic target, in part, because its inhibition is postulated to indirectly inhibit the bumetanide-sensitive Na + -K + -2Cl - cotransporter (NKCC2) and the amiloride- and benzamil-sensitive epithelial Na + channel (ENaC). The development of small-molecule ROMK inhibitors has created opportunities for exploring the physiological responses to ROMK inhibition. The present study evaluated how inhibition of ROMK alone or in combination with NKCC2, ENaC, or the hydrochlorothiazide (HCTZ) target NCC alter fluid and electrolyte transport in the nephron. The ROMK inhibitor VU591 failed to induce diuresis when administered orally to rats. However, another ROMK inhibitor, termed compound A, induced a robust natriuretic diuresis without kaliuresis. Compound A produced additive effects on urine output and Na + excretion when combined with HCTZ, amiloride, or benzamil, but not when coadministered with bumetanide, suggesting that the major diuretic target site is the thick ascending limb (TAL). Interestingly, compound A inhibited the kaliuretic response induced by bumetanide and HCTZ, an effect we attribute to inhibition of ROMK-mediated K + secretion in the TAL and CD. Compound A had no effect on heterologously expressed flow-sensitive large-conductance Ca 2+ -activated K + channels (Slo1/β1). In conclusion, compound A represents an important new pharmacological tool for investigating the renal consequences of ROMK inhibition and therapeutic potential of ROMK as a diuretic target. Copyright © 2016 the American Physiological Society.

  2. Analysis of the interaction between the aspartic peptidase inhibitor SQAPI and aspartic peptidases using surface plasmon resonance.

    Science.gov (United States)

    Farley, Peter C; Christeller, John T; Sullivan, Michelle E; Sullivan, Patrick A; Laing, William A

    2002-01-01

    Aspartic peptidase inhibitors, which are themselves proteins, are strong inhibitors (small inhibition constants) of some aspartic peptidases but not others. However, there have been no studies of the kinetics of the interaction between a proteinaceous aspartic peptidase inhibitor and aspartic peptidases. This paper describes an analysis of rate constants for the interaction between recombinant squash aspartic peptidase inhibitor (rSQAPI) and a panel of aspartic peptidases that have a range of inhibition constants for SQAPI. Purified rSQAPI completely inhibits pepsin at a 1:1 molar ratio of pepsin to rSQAPI monomer (inhibition constant 1 nM). The interaction of pepsin with immobilized rSQAPI, at pH values between 3.0 and 6.0, was monitored using surface plasmon resonance. Binding of pepsin to rSQAPI was slow (association rate constants ca 10(4)M (-1)s(-1)), but rSQAPI was an effective pepsin inhibitor because dissociation of the rSQAPI-pepsin complex was much slower (dissociation rate constants ca 10(-4)s(-1)), especially at low pH values. Similar results were obtained with a His-tagged rSQAPI. Strong inhibition (inhibition constant 3 nM) of one isoform (rSap4) of the family of Candida albicans-secreted aspartic peptidases was, as with pepsin, characterized by slow binding of rSap4 and slower dissociation of the rSap4-inhibitor complex. In contrast, weaker inhibition of the Glomerella cingulata-secreted aspartic peptidase (inhibition constant 7 nM) and the C. albicans rSap1 and Sap2 isoenzymes (inhibition constants 25 and 400 nM, respectively) was, in each case, characterized by a larger dissociation rate constant. Copyright 2002 John Wiley & Sons, Ltd.

  3. Differential regulation of TNF-α and IL-1β production from endotoxin stimulated human monocytes by phosphodiesterase inhibitors

    Directory of Open Access Journals (Sweden)

    K. L. Molnar-Kimber

    1992-01-01

    Full Text Available The effect of selective PDE-I (vinpocetine, PDE-III (milrinone, CI-930, PDE-IV (rolipram, nitroquazone, and PDE-V (zaprinast isozyme inhibitors on TNF-α and IL-1β production from LPS stimulated human monocytes was investigated. The PDE-IV inhibitors caused a concentration dependent inhibition of TNF-α production, but only partially inhibited IL-1β at high concentrations. High concentrations of the PDE-III inhibitors weakly inhibited TNF-α, but had no effect on IL-1β production. PDE-V inhibition was associated with an augmentation of cytokine secretion. Studies with combinations of PDE isozyme inhibitors indicated that PDE-III and PDE-V inhibitors modulate rolipram's suppression of TNF production in an additive manner. These data confirm that TNF-α and IL-1β production from LPS stimulated human monocytes are differentially regulated, and suggest that PDE-IV inhibitors have the potential to suppress TNF levels in man.

  4. Inhibition of cell proliferation by a selective inhibitor of the Ca{sup 2+}-activated Cl{sup -} channel, Ano1

    Energy Technology Data Exchange (ETDEWEB)

    Mazzone, Amelia; Eisenman, Seth T.; Strege, Peter R. [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States); Yao, Zhen [Laboratory of Molecular Genetics, UCSF, San Francisco, CA (United States); Ordog, Tamas; Gibbons, Simon J. [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States); Farrugia, Gianrico, E-mail: farrugia.gianrico@mayo.edu [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer T16A{sub inh}-A01 blocked Ano1 currents in HEK cells expressing Ano1. Black-Right-Pointing-Pointer T16A{sub inh}-A01 reduced proliferation in ICC primary cultures and CFPAC-1 cell line. Black-Right-Pointing-Pointer T16A{sub inh}-A01 reduced proliferation of ICC in intact smooth muscle strips. -- Abstract: Background: Ion channels play important roles in regulation of cellular proliferation. Ano1 (TMEM16A) is a Ca{sup 2+}-activated Cl{sup -} channel expressed in several tumors and cell types. In the muscle layers of the gastrointestinal tract Ano1 is selectively expressed in interstitial cells of Cajal (ICC) and appears to be required for normal gastrointestinal slow wave electrical activity. However, Ano1 is expressed in all classes of ICC, including those that do not generate slow waves suggesting that Ano1 may have other functions. Indeed, a role for Ano1 in regulating proliferation of tumors and ICC has been recently suggested. Recently, a high-throughput screen identified a small molecule, T16A{sub inh}-A01 as a specific inhibitor of Ano1. Aim: To investigate the effect of the T16A{sub inh}-A01 inhibitor on proliferation in ICC and in the Ano1-expressing human pancreatic cancer cell line CFPAC-1. Methods: Inhibition of Ano1 was demonstrated by whole cell voltage clamp recordings of currents in cells transfected with full-length human Ano1. The effect of T16A{sub inh}-A01 on ICC proliferation was examined in situ in organotypic cultures of intact mouse small intestinal smooth muscle strips and in primary cell cultures prepared from these tissues. ICC were identified by Kit immunoreactivity. Proliferating ICC and CFPAC-1 cells were identified by immunoreactivity for the nuclear antigen Ki67 or EdU incorporation, respectively. Results: T16A{sub inh}-A01 inhibited Ca{sup 2+}-activated Cl{sup -} currents by 60% at 10 {mu}M in a voltage-independent fashion. Proliferation of ICC was significantly reduced in primary cultures

  5. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion.

    Science.gov (United States)

    Wang, Shizeng; Li, Hao; Fan, Xiaoguang; Zhang, Jingkun; Tang, Pingwah; Yuan, Qipeng

    2015-09-01

    During xylitol fermentation, Candida tropicalis is often inhibited by inhibitors in hemicellulose hydrolysate. The mechanisms involved in the metabolic responses to inhibitor stress and the resistances to inhibitors are still not clear. To understand the inhibition mechanisms and the metabolic responses to inhibitors, a GC/MS-based metabolomics approach was performed on C. tropicalis treated with and without complex inhibitors (CI, including furfural, phenol and acetic acid). Partial least squares discriminant analysis was used to determine the metabolic variability between CI-treated groups and control groups, and 25 metabolites were identified as possible entities responsible for the discrimination caused by inhibitors. We found that xylose uptake rate and xylitol oxidation rate were promoted by CI treatment. Metabolomics analysis showed that the flux from xylulose to pentose phosphate pathway increased, and tricarboxylic acid cycle was disturbed by CI. Moreover, the changes in levels of 1,3-propanediol, trehalose, saturated fatty acids and amino acids showed different mechanisms involved in metabolic responses to inhibitor stress. The increase of 1,3-propanediol was considered to be correlated with regulating redox balance and osmoregulation. The increase of trehalose might play a role in protein stabilization and cellular membranes protection. Saturated fatty acids could cause the decrease of membrane fluidity and make the plasma membrane rigid to maintain the integrity of plasma membrane. The deeper understanding of the inhibition mechanisms and the metabolic responses to inhibitors will provide us with more information on the metabolism regulation during xylitol bioconversion and the construction of industrial strains with inhibitor tolerance for better utilization of bioresource. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat.

    Science.gov (United States)

    Choi, Sin Young; Kee, Hae Jin; Jin, Li; Ryu, Yuhee; Sun, Simei; Kim, Gwi Ran; Jeong, Myung Ho

    2018-05-01

    Histone deacetylase (HDAC) inhibitors are gaining increasing attention as potential therapeutics for cardiovascular diseases as well as cancer. We recently reported that the class II HDAC inhibitor, MC1568, and the phytochemical, gallic acid, lowered high blood pressure in mouse models of hypertension. We hypothesized that class II HDACs may be involved in the regulation of hypertension. The aim of this study was to determine and compare the effects of well-known HDAC inhibitors (TMP269, panobinostat, and MC1568), phytochemicals (gallic acid, sulforaphane, and piceatannol), and anti-hypertensive drugs (losartan, carvedilol, and furosemide) on activities of class IIa HDACs (HDAC4, 5, 7, and 9). The selective class IIa HDAC inhibitor, TMP269, and the pan-HDAC inhibitor, panobinostat, but not MC1568, clearly inhibited class IIa HDAC activities. Among the three phytochemicals, gallic acid showed remarkable inhibition, whereas sulforaphane presented mild inhibition of class IIa HDACs. Piceatannol inhibited only HDAC7 activity. As expected, the anti-hypertensive drugs losartan, carvedilol, and furosemide did not affect the activity of any class IIa HDAC. In addition, we evaluated the inhibitory effect of several compounds on the activity of class l HDACs (HDAC1, 2, 3, and 8) and class IIb HDAC (HDAC6). MC1568 did not affect the activities of HDAC1, HDAC2, and HDAC3, but it reduced the activity of HDAC8 at concentrations of 1 and 10 μM. Gallic acid weakly inhibited HDAC1 and HDAC6 activities, but strongly inhibited HDAC8 activity with effectiveness comparable to that of trichostatin A. Inhibition of HDAC2 activity by sulforaphane was stronger than that by piceatnnaol. These results indicated that gallic acid is a powerful dietary inhibitor of HDAC8 and class IIa/b HDAC activities. Sulforaphane may also be used as a dietary inhibitor of HDAC2 and class IIa HDAC. Our findings suggest that the class II HDAC inhibitor, MC1568, does not inhibit class IIa HDAC, but inhibits

  7. Corrosion Inhibition of Carbon Steel in HCl Solution by Some Plant Extracts

    Directory of Open Access Journals (Sweden)

    Ambrish Singh

    2012-01-01

    Full Text Available The strict environmental legislations and increasing ecological awareness among scientists have led to the development of “green” alternatives to mitigate corrosion. In the present work, literature on green corrosion inhibitors has been reviewed, and the salient features of our work on green corrosion inhibitors have been highlighted. Among the studied leaves, extract Andrographis paniculata showed better inhibition performance (98% than the other leaves extract. Strychnos nuxvomica showed better inhibition (98% than the other seed extracts. Moringa oleifera is reflected as a good corrosion inhibitor of mild steel in 1 M HCl with 98% inhibition efficiency among the studied fruits extract. Bacopa monnieri showed its maximum inhibition performance to be 95% at 600 ppm among the investigated stem extracts. All the reported plant extracts were found to inhibit the corrosion of mild steel in acid media.

  8. The monoamine oxidase inhibition properties of selected structural analogues of methylene blue

    International Nuclear Information System (INIS)

    Delport, Anzelle; Harvey, Brian H.; Petzer, Anél; Petzer, Jacobus P.

    2017-01-01

    The thionine dye, methylene blue (MB), is a potent inhibitor of monoamine oxidase (MAO) A, a property that may, at least in part, mediate its antidepressant effects in humans and animals. The central inhibition of MAO-A by MB has also been linked to serotonin toxicity (ST) which may arise when MB is used in combination with serotonergic drugs. Structural analogues and the principal metabolite of MB, azure B, have also been reported to inhibit the MAO enzymes, with all compounds exhibiting specificity for the MAO-A isoform. To expand on the structure-activity relationships (SARs) of MAO inhibition by MB analogues, the present study investigates the human MAO inhibition properties of five MB analogues: neutral red, Nile blue, new methylene blue, cresyl violet and 1,9-dimethyl methylene blue. Similar to MB, these analogues also are specific MAO-A inhibitors with cresyl violet (IC 50 = 0.0037 μM), Nile blue (IC 50 = 0.0077 μM) and 1,9-dimethyl methylene blue (IC 50 = 0.018 μM) exhibiting higher potency inhibition compared to MB (IC 50 = 0.07 μM). Nile blue also represents a potent MAO-B inhibitor with an IC 50 value of 0.012 μM. From the results it may be concluded that non-thionine MB analogues (e.g. cresyl violet and Nile blue) also may exhibit potent MAO inhibition, a property which should be considered when using these compounds in pharmacological studies. Benzophenoxazines such as cresyl violet and Nile blue are, similar to phenothiazines (e.g. MB), representative of high potency MAO-A inhibitors with a potential risk of ST. - Highlights: • MB analogues, cresyl violet and Nile blue, are high potency MAO-A inhibitors. • Nile blue also represents a potent MAO-B inhibitor. • Potent MAO-A inhibition should alert to potential serotonin toxicity.

  9. The monoamine oxidase inhibition properties of selected structural analogues of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Delport, Anzelle [Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Harvey, Brian H. [Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Pharmacology, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Petzer, Anél [Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Petzer, Jacobus P., E-mail: jacques.petzer@nwu.ac.za [Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa)

    2017-06-15

    The thionine dye, methylene blue (MB), is a potent inhibitor of monoamine oxidase (MAO) A, a property that may, at least in part, mediate its antidepressant effects in humans and animals. The central inhibition of MAO-A by MB has also been linked to serotonin toxicity (ST) which may arise when MB is used in combination with serotonergic drugs. Structural analogues and the principal metabolite of MB, azure B, have also been reported to inhibit the MAO enzymes, with all compounds exhibiting specificity for the MAO-A isoform. To expand on the structure-activity relationships (SARs) of MAO inhibition by MB analogues, the present study investigates the human MAO inhibition properties of five MB analogues: neutral red, Nile blue, new methylene blue, cresyl violet and 1,9-dimethyl methylene blue. Similar to MB, these analogues also are specific MAO-A inhibitors with cresyl violet (IC{sub 50} = 0.0037 μM), Nile blue (IC{sub 50} = 0.0077 μM) and 1,9-dimethyl methylene blue (IC{sub 50} = 0.018 μM) exhibiting higher potency inhibition compared to MB (IC{sub 50} = 0.07 μM). Nile blue also represents a potent MAO-B inhibitor with an IC{sub 50} value of 0.012 μM. From the results it may be concluded that non-thionine MB analogues (e.g. cresyl violet and Nile blue) also may exhibit potent MAO inhibition, a property which should be considered when using these compounds in pharmacological studies. Benzophenoxazines such as cresyl violet and Nile blue are, similar to phenothiazines (e.g. MB), representative of high potency MAO-A inhibitors with a potential risk of ST. - Highlights: • MB analogues, cresyl violet and Nile blue, are high potency MAO-A inhibitors. • Nile blue also represents a potent MAO-B inhibitor. • Potent MAO-A inhibition should alert to potential serotonin toxicity.

  10. Application of calculated NMR parameters, aromaticity indices and wavefunction properties for evaluation of corrosion inhibition efficiency of pyrazine inhibitors

    Science.gov (United States)

    Behzadi, Hadi; Manzetti, Sergio; Dargahi, Maryam; Roonasi, Payman; Khalilnia, Zahra

    2018-01-01

    In light of the importance of developing novel corrosion inhibitors, a series of quantum chemical calculations were carried out to evaluate 15N chemical shielding CS tensors as well as aromaticity indexes including NICS, HOMA, FLU, and PDI of three pyrazine derivatives, 2-methylpyrazine (MP), 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP). The NICS parameters have been shown in previous studies to be paramount to the prediction of anti-corrosion properties, and have been combined here with HOMA, FLU and PDI and detailed wavefunction analysis to determine the effects from bromination and methylation on pyrazine. The results show that the electron density around the nitrogens, represented by CS tensors, can be good indicators of anti-corrosion efficiency. Additionally, the NICS, FLU and PDI, as aromaticity indicators of molecule, are well correlated with experimental corrosion inhibition efficiencies of the studied inhibitors. Bader sampling and detailed wavefunction analysis shows that the major effects from bromination on the pyrazine derivatives affect the Laplacian of the electron density of the ring, delocalizing the aromatic electrons of the carbon atoms into lone pairs and increasing polarization of the Laplacian values. This feature is well agreement with empirical studies, which show that ABP is the most efficient anti-corrosion compound followed by AP and MP, a property which can be attributed and predicted by derivation of the Laplacian of the electron density of the ring nuclei. This study shows the importance of devising DFT methods for development of new corrosion inhibitors, and the strength of electronic and nuclear analysis, and depicts most importantly how corrosion inhibitors composed of aromatic moieties may be modified to increase anti-corrosive properties.

  11. Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin

    International Nuclear Information System (INIS)

    Noguchi, Miho; Yu, Dong; Hirayama, Ryoichi; Ninomiya, Yasuharu; Sekine, Emiko; Kubota, Nobuo; Ando, Koichi; Okayasu, Ryuichi

    2006-01-01

    In order to investigate the mechanism of radio-sensitization by an Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), we studied repair of DNA double strand breaks (DSBs) in irradiated human cells pre-treated with 17-AAG. DSBs are thought to be the critical target for radiation-induced cell death. Two human tumor cell lines DU145 and SQ-5 which showed clear radio-sensitization by 17-AAG revealed a significant inhibition of DSB repair, while normal human cells which did not show radio-sensitization by the drug indicated no change in the DSB repair kinetics with 17-AAG. We further demonstrated that BRCA2 was a novel client protein for Hsp90, and 17-AAG caused the degradation of BRCA2 and in turn altered the behavior of Rad51, a critical protein for homologous recombination (HR) pathway of DSB repair. Our data demonstrate for the first time that 17-AAG inhibits the HR repair process and could provide a new therapeutic strategy to selectively result in higher tumor cell killing

  12. Hepatocellular Toxicity Associated with Tyrosine Kinase Inhibitors: Mitochondrial Damage and Inhibition of Glycolysis

    Directory of Open Access Journals (Sweden)

    Franziska Paech

    2017-06-01

    Full Text Available Tyrosine kinase inhibitors (TKIs are anticancer drugs with a lesser toxicity than classical chemotherapeutic agents but still with a narrow therapeutic window. While hepatotoxicity is known for most TKIs, underlying mechanisms remain mostly unclear. We therefore aimed at investigating mechanisms of hepatotoxicity for imatinib, sunitinib, lapatinib and erlotinib in vitro. We treated HepG2 cells, HepaRG cells and mouse liver mitochondria with TKIs (concentrations 1–100 μM for different periods of time and assessed toxicity. In HepG2 cells maintained with glucose (favoring glycolysis, all TKIs showed a time- and concentration-dependent cytotoxicity and, except erlotinib, a drop in intracellular ATP. In the presence of galactose (favoring mitochondrial metabolism, imatinib, sunitinib and erlotinib showed a similar toxicity profile as for glucose whereas lapatinib was less toxic. For imatinib, lapatinib and sunitinib, cytotoxicity increased in HepaRG cells induced with rifampicin, suggesting formation of toxic metabolites. In contrast, erlotinib was more toxic in HepaRG cells under basal than CYP-induced conditions. Imatinib, sunitinib and lapatinib reduced the mitochondrial membrane potential in HepG2 cells and in mouse liver mitochondria. In HepG2 cells, these compounds increased reactive oxygen species production, impaired glycolysis, and induced apoptosis. In addition, imatinib and sunitinib impaired oxygen consumption and activities of complex I and III (only imatinib, and reduced the cellular GSH pool. In conclusion, imatinib and sunitinib are mitochondrial toxicants after acute and long-term exposure and inhibit glycolysis. Lapatinib affected mitochondria only weakly and inhibited glycolysis, whereas the cytotoxicity of erlotinib could not be explained by a mitochondrial mechanism.

  13. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    He, Yonghan [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Li, Ying [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhang, Shuocheng [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Perry, Ben [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Zhao, Tiantian [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Psychology, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4 (Canada); Wang, Yanwen, E-mail: yanwen.wang@nrc.ca [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Sun, Changhao, E-mail: sun2002changhao@yahoo.com [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China)

    2013-06-28

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.

  14. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    International Nuclear Information System (INIS)

    He, Yonghan; Li, Ying; Zhang, Shuocheng; Perry, Ben; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-01-01

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR γ ) and CCAAT element binding protein α (C/EBP α ), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins

  15. Inhibition properties of self-assembled corrosion inhibitor talloil diethylenetriamine imidazoline for mild steel corrosion in chloride solution saturated with carbon dioxide

    International Nuclear Information System (INIS)

    Jevremović, Ivana; Singer, Marc; Nešić, Srđan; Mišković-Stanković, Vesna

    2013-01-01

    Highlights: •Corrosion inhibitor talloil diethylenetriamine imidazoline effectively protects mild steel from CO 2 corrosion. •Quartz crystal microbalance measurements were used to the investigate kinetics of corrosion inhibitor adsorption. •Adsorption of talloil diethylenetriamine imidazoline can be described by Langmuir adsorption isotherm. -- Abstract: The inhibition effect of talloil diethylenetriamine imidazoline (TOFA/DETA imidazoline) on corrosion of mild steel in chloride solutions saturated with CO 2 was investigated by weight loss measurements (WL) and atomic force microscopy (AFM). Adsorption mechanism and kinetics of self-assembled (TOFA/DETA imidazoline) monolayers formation on gold were studied using the quartz crystal microbalance measurements (QCM). WL and AFM results demonstrated that TOFA/DETA imidazoline can effectively protect mild steel surface from corrosion. QCM measurements shown that the adsorption of TOFA/DETA imidazoline onto gold follows Langmuir adsorption isotherm and further investigation of the adsorption process will be carried out on a corroding metal surface

  16. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors.

    OpenAIRE

    Rosenthal, P J; Olson, J E; Lee, G K; Palmer, J T; Klaus, J L; Rasnick, D

    1996-01-01

    We evaluated the antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. A number of vinyl sulfones strongly inhibited falcipain, a Plasmodium falciparum cysteine proteinase that is a critical hemoglobinase. In studies of cultured parasites, nanomolar concentrations of three vinyl sulfones inhibited parasite hemoglobin degradation, metabolic activity, and development. The antimalarial effects correlated with the inhibition of falcipain. Our results suggest that vinyl sulfones or...

  17. Glycogen synthase kinase-3 inhibitors suppress the AR-V7-mediated transcription and selectively inhibit cell growth in AR-V7-positive prostate cancer cells.

    Science.gov (United States)

    Nakata, Daisuke; Koyama, Ryokichi; Nakayama, Kazuhide; Kitazawa, Satoshi; Watanabe, Tatsuya; Hara, Takahito

    2017-06-01

    Recent evidence suggests that androgen receptor (AR) splice variants, including AR-V7, play a pivotal role in resistance to androgen blockade in prostate cancer treatment. The development of new therapeutic agents that can suppress the transcriptional activities of AR splice variants has been anticipated as the next generation treatment of castration-resistant prostate cancer. High-throughput screening of AR-V7 signaling inhibitors was performed using an AR-V7 reporter system. The effects of a glycogen synthase kinase-3 (GSK3) inhibitor, LY-2090314, on endogenous AR-V7 signaling were evaluated in an AR-V7-positive cell line, JDCaP-hr, by quantitative reverse transcription polymerase chain reaction. The relationship between AR-V7 signaling and β-catenin signaling was assessed using RNA interference. The effect of LY-2090314 on cell growth in various prostate cancer cell lines was also evaluated. We identified GSK3 inhibitors as transcriptional suppressors of AR-V7 using a high-throughput screen with an AR-V7 reporter system. LY-2090314 suppressed the reporter activity and endogenous AR-V7 activity in JDCaP-hr cells. Because silencing of β-catenin partly rescued the suppression, it was evident that the suppression was mediated, at least partially, via the activation of β-catenin signaling. AR-V7 signaling and β-catenin signaling reciprocally regulate each other in JDCaP-hr cells, and therefore, GSK3 inhibition can repress AR-V7 transcriptional activity by accumulating intracellular β-catenin. Notably, LY-2090314 selectively inhibited the growth of AR-V7-positive prostate cancer cells in vitro. Our findings demonstrate the potential of GSK3 inhibitors in treating advanced prostate cancer driven by AR splice variants. In vivo evaluation of AR splice variant-positive prostate cancer models will help illustrate the overall significance of GSK3 inhibitors in treating prostate cancer. © 2017 Wiley Periodicals, Inc.

  18. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle.

    Science.gov (United States)

    Lai, Yu-Chiang; Liu, Yang; Jacobs, Roxane; Rider, Mark H

    2012-10-01

    PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.

  19. Dipeptidyl peptidase-IV inhibitors used in type-2 diabetes inhibit a phospholipase C: a case of promiscuous scaffolds in proteins [v2; ref status: indexed, http://f1000r.es/4wz

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    2015-01-01

    Full Text Available The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4 inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237 and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff with known structures using serine protease (SPASE motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of

  20. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins [v3; ref status: indexed, http://f1000r.es/51m

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    2015-01-01

    Full Text Available The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4 inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237 and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff with known structures using serine protease (SPASE motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of

  1. Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer

    DEFF Research Database (Denmark)

    Chang, Joan; Lucas, Morghan C; Leonte, Lidia Elena

    2017-01-01

    inhibitor in the MDA-MB-231 human model of breast cancer. We confirmed a functional role for LOXL2 activity in the progression of primary breast cancer. Inhibition of LOXL2 activity inhibited the growth of primary tumors and reduced primary tumor angiogenesis. Dual inhibition of LOXL2 and LOX showed...... a greater effect and also led to a lower overall metastatic burden in the lung and liver. Our data provides the first evidence to support a role for LOXL2 specific small molecule inhibitors as a potential therapy in breast cancer....

  2. MCPIP1 contributes to the toxicity of proteasome inhibitor MG-132 in HeLa cells by the inhibition of NF-κB.

    Science.gov (United States)

    Skalniak, Lukasz; Dziendziel, Monika; Jura, Jolanta

    2014-10-01

    Recently, we have shown that the treatment of cells with proteasome inhibitor MG-132 results in the induction of expression of monocyte chemotactic protein-1 induced protein 1 (MCPIP1). MCPIP1 is a ribonuclease, responsible for the degradation of transcripts encoding certain pro-inflammatory cytokines. The protein is also known as an inhibitor of NF-κB transcription factor. Thanks to its molecular properties, MCPIP1 is considered as a regulator of inflammation, differentiation, and survival. Using siRNA technology, we show here that MCPIP1 expression contributes to the toxic properties of MG-132 in HeLa cells. The inhibition of proteasome by MG-132 and epoxomicin markedly increased MCPIP1 expression. While MG-132 induces HeLa cell death, down-regulation of MCPIP1 expression by siRNA partially protects HeLa cells from MG-132 toxicity and restores Nuclear factor-κB (NF-κB) activity, inhibited by MG-132 treatment. Inversely, overexpression of MCPIP1 decreased constitutive activity of NF-κB and limited the survival of HeLa cells, as we have shown in the previous study. Interestingly, although MG-132 decreased the expression of IκBα and increased p65 phosphorylation, the inhibition of constitutive NF-κB activity was observed in MG-132-treated cells. Since the elevated constitutive activity of NF-κB is one of the mechanisms providing increased survival of cancer cells, including HeLa cells, we propose that death-promoting properties of MCPIP1 in MG-132-treated HeLa cells may, at least partially, derive from the negative effect on the constitutive NF-κB activity.

  3. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors.

    Science.gov (United States)

    Andersen, Jannik N; Sathyanarayanan, Sriram; Di Bacco, Alessandra; Chi, An; Zhang, Theresa; Chen, Albert H; Dolinski, Brian; Kraus, Manfred; Roberts, Brian; Arthur, William; Klinghoffer, Rich A; Gargano, Diana; Li, Lixia; Feldman, Igor; Lynch, Bethany; Rush, John; Hendrickson, Ronald C; Blume-Jensen, Peter; Paweletz, Cloud P

    2010-08-04

    Although we have made great progress in understanding the complex genetic alterations that underlie human cancer, it has proven difficult to identify which molecularly targeted therapeutics will benefit which patients. Drug-specific modulation of oncogenic signaling pathways in specific patient subpopulations can predict responsiveness to targeted therapy. Here, we report a pathway-based phosphoprofiling approach to identify and quantify clinically relevant, drug-specific biomarkers for phosphatidylinositol 3-kinase (PI3K) pathway inhibitors that target AKT, phosphoinositide-dependent kinase 1 (PDK1), and PI3K-mammalian target of rapamycin (mTOR). We quantified 375 nonredundant PI3K pathway-relevant phosphopeptides, all containing AKT, PDK1, or mitogen-activated protein kinase substrate recognition motifs. Of these phosphopeptides, 71 were drug-regulated, 11 of them by all three inhibitors. Drug-modulated phosphoproteins were enriched for involvement in cytoskeletal reorganization (filamin, stathmin, dynamin, PAK4, and PTPN14), vesicle transport (LARP1, VPS13D, and SLC20A1), and protein translation (S6RP and PRAS40). We then generated phosphospecific antibodies against selected, drug-regulated phosphorylation sites that would be suitable as biomarker tools for PI3K pathway inhibitors. As proof of concept, we show clinical translation feasibility for an antibody against phospho-PRAS40(Thr246). Evaluation of binding of this antibody in human cancer cell lines, a PTEN (phosphatase and tensin homolog deleted from chromosome 10)-deficient mouse prostate tumor model, and triple-negative breast tumor tissues showed that phospho-PRAS40(Thr246) positively correlates with PI3K pathway activation and predicts AKT inhibitor sensitivity. In contrast to phosphorylation of AKT(Thr308), the phospho-PRAS40(Thr246) epitope is highly stable in tissue samples and thus is ideal for immunohistochemistry. In summary, our study illustrates a rational approach for discovery of drug

  4. A small molecule inhibitor of signal peptide peptidase inhibits Plasmodium development in the liver and decreases malaria severity.

    Directory of Open Access Journals (Sweden)

    Iana Parvanova

    Full Text Available The liver stage of Plasmodium's life cycle is the first, obligatory step in malaria infection. Decreasing the hepatic burden of Plasmodium infection decreases the severity of disease and constitutes a promising strategy for malaria prophylaxis. The efficacy of the gamma-secretase and signal peptide peptidase inhibitor LY411,575 in targeting Plasmodium liver stages was evaluated both in human hepatoma cell lines and in mouse primary hepatocytes. LY411,575 was found to prevent Plasmodium's normal development in the liver, with an IC(50 of approximately 80 nM, without affecting hepatocyte invasion by the parasite. In vivo results with a rodent model of malaria showed that LY411,575 decreases the parasite load in the liver and increases by 55% the resistance of mice to cerebral malaria, one of the most severe malaria-associated syndromes. Our data show that LY411,575 does not exert its effect via the Notch signaling pathway suggesting that it may interfere with Plasmodium development through an inhibition of the parasite's signal peptide peptidase. We therefore propose that selective signal peptide peptidase inhibitors could be potentially used for preventive treatment of malaria in humans.

  5. Tofacitinib and analogs as inhibitors of the histone kinase PRK1 (PKN1).

    Science.gov (United States)

    Ostrovskyi, Dmytro; Rumpf, Tobias; Eib, Julia; Lumbroso, Alexandre; Slynko, Inna; Klaeger, Susan; Heinzlmeir, Stephanie; Forster, Michael; Gehringer, Matthias; Pfaffenrot, Ellen; Bauer, Silke Mona; Schmidtkunz, Karin; Wenzler, Sandra; Metzger, Eric; Kuster, Bernhard; Laufer, Stefan; Schüle, Roland; Sippl, Wolfgang; Breit, Bernhard; Jung, Manfred

    2016-09-01

    The histone kinase PRK1 has been identified as a potential target to combat prostate cancer but selective PRK1 inhibitors are lacking. The US FDA -approved JAK1-3 inhibitor tofacitinib also potently inhibits PRK1 in vitro. We show that tofacitinib also inhibits PRK1 in a cellular setting. Using tofacitinib as a starting point for structure-activity relationship studies, we identified a more potent and another more selective PRK1 inhibitor compared with tofacitinib. Furthermore, we found two potential PRK1/JAK3-selectivity hotspots. The identified inhibitors and the selectivity hotspots lay the basis for the development of selective PRK1 inhibitors. The identification of PRK1, but also of other cellular tofacitinib targets, has implications on its clinical use and on future development of tofacitinib-like JAK inhibitors. [Formula: see text].

  6. Gradient microfluidics enables rapid bacterial growth inhibition testing.

    Science.gov (United States)

    Li, Bing; Qiu, Yong; Glidle, Andrew; McIlvenna, David; Luo, Qian; Cooper, Jon; Shi, Han-Chang; Yin, Huabing

    2014-03-18

    Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask).

  7. Universal water-dilutable inhibited protective lubricants

    International Nuclear Information System (INIS)

    Mamtseva, M.V.; Kardash, N.V.; Latynina, M.B.

    1993-01-01

    In the interest of environmental protection, improvement of working conditions, and reduced fire hazard in production operations, water-based protective lubricants are now available in a wide assortment, and the production volume has increased greatly. The term water-dilutable inhibited protective lubricants (WDIPL) means water-soluble, water-emulsifiable, or water-dispersible products with the dual function of reducing friction and wear and protecting metal surfaces against corrosion for specified periods of time. According to the standard Unified System of Protection Against Corrosion and Aging (COST 9.103-78), WDIPLs are classed as products for the temporary corrosion protection of metals and end-items. In the general class of WDIPLs one can identify water-dilutable combination corrosion inhibitors, film-forming inhibited petroleum compositions (FIPC-d), detergent-preservative fluids, operational-preservative lubricating-cooling process compounds (ICPC), and, finally, universal multifunctional products. Combined corrosion inhibitors may consist of water-soluble organic and inorganic compounds; water/oil and oil-soluble surfactants - corrosion inhibitors of the chemisorption type or donor and/or acceptor types; shielding inhibitors of the adsorption type; and fast-acting water-displacing components. 23 refs

  8. Tetrahydroisoquinolines as novel histone deacetylase inhibitors for treatment of cancer

    Directory of Open Access Journals (Sweden)

    Danqi Chen

    2016-01-01

    Full Text Available Histone acetylation is a critical process in the regulation of chromatin structure and gene expression. Histone deacetylases (HDACs remove the acetyl group, leading to chromatin condensation and transcriptional repression. HDAC inhibitors are considered a new class of anticancer agents and have been shown to alter gene transcription and exert antitumor effects. This paper describes our work on the structural determination and structure-activity relationship (SAR optimization of tetrahydroisoquinoline compounds as HDAC inhibitors. These compounds were tested for their ability to inhibit HDAC 1, 3, 6 and for their ability to inhibit the proliferation of a panel of cancer cell lines. Among these, compound 82 showed the greatest inhibitory activity toward HDAC 1, 3, 6 and strongly inhibited growth of the cancer cell lines, with results clearly superior to those of the reference compound, vorinostat (SAHA. Compound 82 increased the acetylation of histones H3, H4 and tubulin in a concentration-dependent manner, suggesting that it is a broad inhibitor of HDACs.

  9. HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors

    DEFF Research Database (Denmark)

    Vanangamudi, Murugesan; Poongavanam, Vasanthanathan; Namasivayam, Vigneshwaran

    2017-01-01

    BACKGROUND: Design of inhibitors for HIV-1 reverse transcriptase inhibition (HIV-1 RT) is one of the successful chemotherapies for the treatment of HIV infection. Among the inhibitors available for HIV-1 RT, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have shown to be very promising......: The conformation dependent-alignment based (CoMFA and CoMSIA) methods have been proven very successful ligand based strategy in the drug design. Here, CoMFA and CoMSIA studies reported for structurally distinct NNRTIs including thiazolobenzimidazole, dipyridodiazepinone, 1,1,3-trioxo [1,2,4]-thiadiazine...

  10. Characterization of Encapsulated Corrosion Inhibitors Containing Microparticles for Environmentally Friendly Smart Coatings

    Science.gov (United States)

    Pearman, Benjamin Pieter; Calle, Luz M.

    2015-01-01

    This poster presents the results obtained from experiments designed to evaluate the release properties, as well as the corrosion inhibition effectiveness, of several encapsulated corrosion inhibitors. Microencapsulation has been used in the development of environmentally friendly multifunctional smart coatings. This technique enables the incorporation of autonomous corrosion detection, inhibition and self-healing functionalities into many commercially available coating systems. Select environmentally friendly corrosion inhibitors were encapsulated in organic and inorganic pH-sensitive microparticles and their release in basic solutions was studied. The release rate results showed that the encapsulation can be tailored from fast, for immediate corrosion protection, to slow, which will provide continued long-term corrosion protection. The incorporation of several corrosion inhibitor release profiles into a coating provides effective corrosion protection properties. To investigate the corrosion inhibition efficiency of the encapsulated inhibitors, electrochemical techniques were used to obtain corrosion potential, polarization curve and polarization resistance data. These measurements were performed using the free as well as the encapsulated inhibitors singly or in combinations. Results from these electrochemical tests will be compared to those obtained from weight loss and other accelerated corrosion experiments.

  11. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors.

    Science.gov (United States)

    Thomas, Ajit G; Rojas, Camilo; Tanega, Cordelle; Shen, Min; Simeonov, Anton; Boxer, Matthew B; Auld, Douglas S; Ferraris, Dana V; Tsukamoto, Takashi; Slusher, Barbara S

    2013-08-23

    Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC(1280))) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. FAITH – Fast Assembly Inhibitor Test for HIV

    Energy Technology Data Exchange (ETDEWEB)

    Hadravová, Romana [Institute of Organic Chemistry and Biochemistry IOCB Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague (Czech Republic); Rumlová, Michaela, E-mail: michaela.rumlova@vscht.cz [Institute of Organic Chemistry and Biochemistry IOCB Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague (Czech Republic); Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague (Czech Republic); Ruml, Tomáš, E-mail: tomas.ruml@vscht.cz [Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague (Czech Republic)

    2015-12-15

    Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification of the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. - Highlights: • Allows screening of assembly inhibitors of both mature and immature HIV-1 particles. • Based on Gag-derived proteins with CA in mature or immature conformation. • Simple and sensitive method suitable for high-throughput screening of inhibitors. • Unlike in other HIV assembly methods, works under physiological conditions. • No washing steps are necessary.

  13. FAITH – Fast Assembly Inhibitor Test for HIV

    International Nuclear Information System (INIS)

    Hadravová, Romana; Rumlová, Michaela; Ruml, Tomáš

    2015-01-01

    Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification of the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. - Highlights: • Allows screening of assembly inhibitors of both mature and immature HIV-1 particles. • Based on Gag-derived proteins with CA in mature or immature conformation. • Simple and sensitive method suitable for high-throughput screening of inhibitors. • Unlike in other HIV assembly methods, works under physiological conditions. • No washing steps are necessary.

  14. Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition

    Science.gov (United States)

    Limongelli, Vittorio; Bonomi, Massimiliano; Marinelli, Luciana; Gervasio, Francesco Luigi; Cavalli, Andrea; Novellino, Ettore; Parrinello, Michele

    2010-01-01

    The widely used nonsteroidal anti-inflammatory drugs block the cyclooxygenase enzymes (COXs) and are clinically used for the treatment of inflammation, pain, and cancers. A selective inhibition of the different isoforms, particularly COX-2, is desirable, and consequently a deeper understanding of the molecular basis of selective inhibition is of great demand. Using an advanced computational technique we have simulated the full dissociation process of a highly potent and selective inhibitor, SC-558, in both COX-1 and COX-2. We have found a previously unreported alternative binding mode in COX-2 explaining the time-dependent inhibition exhibited by this class of inhibitors and consequently their long residence time inside this isoform. Our metadynamics-based approach allows us to illuminate the highly dynamical character of the ligand/protein recognition process, thus explaining a wealth of experimental data and paving the way to an innovative strategy for designing new COX inhibitors with tuned selectivity. PMID:20215464

  15. Adsorption and performance of the 2-mercaptobenzimidazole as a carbon steel corrosion inhibitor in EDTA solutions

    International Nuclear Information System (INIS)

    Calderón, J.A.; Vásquez, F.A.; Carreño, J.A.

    2017-01-01

    This study presents a thermodynamic analysis of the adsorption and anti-corrosion performance of 2-mercaptobenzimidazole (2-MBI) on carbon steel in EDTA-Na2 solutions. The adsorption of the inhibitor on the metal surface was studied as a function of the concentration of the inhibiting species and the temperature of the system. The corrosion inhibition efficiency was studied by electrochemical impedance spectroscopy and mass loss tests. The results show that the adsorption of the inhibitor onto the metal surface behaves according to the Langmuir model, following an endothermic process. The inhibitor is chemically adsorbed onto the carbon steel surface. The efficiency of corrosion inhibition was above 93%, which was confirmed by both mass loss tests and the electrochemical impedance technique. The good performance of the corrosion inhibitor was maintained up to 24 h after the inhibitor was added to the corrosive EDTA-Na2 solutions. When the ratio of the volume of solution/exposed area was reduced, a decrease in the area covered by the inhibitor was observed. The best cost/benefit ratio for the corrosion protection of carbon steel was obtained when the number of moles of the inhibitor per surface area was maintained at 2.68 mmol cm"−"2. - Highlights: • Adsorption of the inhibitor on the metal surface is confirmed by thermodynamic data. • Adsorption of the inhibitor onto the metal behaves according to the Langmuir model. • Endothermic adsorption process indicates that the inhibitor is chemically adsorbed. • The efficiency of corrosion inhibition was above 93%. • The good performance of the corrosion inhibitor was maintained up to 24 h.

  16. Adsorption and performance of the 2-mercaptobenzimidazole as a carbon steel corrosion inhibitor in EDTA solutions

    Energy Technology Data Exchange (ETDEWEB)

    Calderón, J.A., E-mail: andres.calderon@udea.edu.co [Centro de Investigación, Innovación y Desarrollo de Materiales –CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Vásquez, F.A. [Centro de Investigación, Innovación y Desarrollo de Materiales –CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Carreño, J.A. [Laboratório de H2S, CO2 e Corrosividade, Instituto Nacional De Tecnologia (INT), Av. Venezuela, 82 – Térreo, Anexo 01, Sala 101A, Saúde, Rio de Janeiro, RJ (Brazil)

    2017-01-01

    This study presents a thermodynamic analysis of the adsorption and anti-corrosion performance of 2-mercaptobenzimidazole (2-MBI) on carbon steel in EDTA-Na2 solutions. The adsorption of the inhibitor on the metal surface was studied as a function of the concentration of the inhibiting species and the temperature of the system. The corrosion inhibition efficiency was studied by electrochemical impedance spectroscopy and mass loss tests. The results show that the adsorption of the inhibitor onto the metal surface behaves according to the Langmuir model, following an endothermic process. The inhibitor is chemically adsorbed onto the carbon steel surface. The efficiency of corrosion inhibition was above 93%, which was confirmed by both mass loss tests and the electrochemical impedance technique. The good performance of the corrosion inhibitor was maintained up to 24 h after the inhibitor was added to the corrosive EDTA-Na2 solutions. When the ratio of the volume of solution/exposed area was reduced, a decrease in the area covered by the inhibitor was observed. The best cost/benefit ratio for the corrosion protection of carbon steel was obtained when the number of moles of the inhibitor per surface area was maintained at 2.68 mmol cm{sup −2}. - Highlights: • Adsorption of the inhibitor on the metal surface is confirmed by thermodynamic data. • Adsorption of the inhibitor onto the metal behaves according to the Langmuir model. • Endothermic adsorption process indicates that the inhibitor is chemically adsorbed. • The efficiency of corrosion inhibition was above 93%. • The good performance of the corrosion inhibitor was maintained up to 24 h.

  17. D-Glucosamine inhibits proliferation of human cancer cells through inhibition of p70S6K

    International Nuclear Information System (INIS)

    Oh, Hyun-Ji; Lee, Jason S.; Song, Dae-Kyu; Shin, Dong-Hoon; Jang, Byeong-Churl; Suh, Seong-Il; Park, Jong-Wook; Suh, Min-Ho; Baek, Won-Ki

    2007-01-01

    Although D-glucosamine has been reported as an inhibitor of tumor growth both in vivo and in vitro, the mechanism for the anticancer effect of D-glucosamine is still unclear. Since there are several reports suggesting D-glucosamine inhibits protein synthesis, we examined whether D-glucosamine affects p70S6 K activity, an important signaling molecule involved in protein translation. In the present study, we found D-glucosamine inhibited the activity of p70S6K and the proliferation of DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. D-Glucosamine decreased phosphorylation of p70S6K, and its downstream substrates RPS6, and eIF-4B, but not mTOR and 4EBP1 in DU145 cells, suggesting that D-glucosamine induced inhibition of p70S6K is not through the inhibition of mTOR. In addition, D-glucosamine enhanced the growth inhibitory effects of rapamycin, a specific inhibitor of mTOR. These findings suggest that D-glucosamine can inhibit growth of cancer cells through dephosphorylation of p70S6K

  18. Novel nonpeptidic inhibitors of peptide deformylase.

    Science.gov (United States)

    Jayasekera, M M; Kendall, A; Shammas, R; Dermyer, M; Tomala, M; Shapiro, M A; Holler, T P

    2000-09-15

    A novel series of nonpeptidic compounds structurally related to the known anticholesteremic thyropropic acid were found to inhibit Escherichia coli peptide deformylase (PDF), with IC50 values in the low-micromolar range. Kinetic analysis of [4-(4-hydroxyphenoxy)-3,5-diiodophenyl]acetic acid reveals competitive inhibition, with a Ki value of 0.66 +/- 0.007 microM. A structure-activity relationship study demonstrates that the carboxylate is required for activity, while the distal phenolic function can be methylated without significant effect. Either decreasing the number of iodine atoms on the molecule to one or increasing the number of iodine atoms to four results in the loss of an order of magnitude in potency. These compounds are the first nonpeptidic inhibitors disclosed and represent a template from which better inhibitors might be designed.

  19. Stereoselective Inhibition of CYP2C19 and CYP3A4 by Fluoxetine and Its Metabolite: Implications for Risk Assessment of Multiple Time-Dependent Inhibitor Systems

    Science.gov (United States)

    Lutz, Justin D.; VandenBrink, Brooke M.; Babu, Katipudi N.; Nelson, Wendel L.; Kunze, Kent L.

    2013-01-01

    Recent guidance on drug-drug interaction (DDI) testing recommends evaluation of circulating metabolites. However, there is little consensus on how to quantitatively predict and/or assess the risk of in vivo DDIs by multiple time-dependent inhibitors (TDIs) including metabolites from in vitro data. Fluoxetine was chosen as the model drug to evaluate the role of TDI metabolites in DDI prediction because it is a TDI of both CYP3A4 and CYP2C19 with a circulating N-dealkylated inhibitory metabolite, norfluoxetine. In pooled human liver microsomes, both enantiomers of fluoxetine and norfluoxetine were TDIs of CYP2C19, (S)-norfluoxetine was the most potent inhibitor with time-dependent inhibition affinity constant (KI) of 7 μM, and apparent maximum time-dependent inhibition rate (kinact,app) of 0.059 min−1. Only (S)-fluoxetine and (R)-norfluoxetine were TDIs of CYP3A4, with (R)-norfluoxetine being the most potent (KI = 8 μM, and kinact,app = 0.011 min−1). Based on in-vitro-to-in-vivo predictions, (S)-norfluoxetine plays the most important role in in vivo CYP2C19 DDIs, whereas (R)-norfluoxetine is most important in CYP3A4 DDIs. Comparison of two multiple TDI prediction models demonstrated significant differences between them in in-vitro-to-in-vitro predictions but not in in-vitro-to-in-vivo predictions. Inclusion of all four inhibitors predicted an in vivo decrease in CYP2C19 (95%) and CYP3A4 (60–62%) activity. The results of this study suggest that adequate worst-case risk assessment for in vivo DDIs by multiple TDI systems can be achieved by incorporating time-dependent inhibition by both parent and metabolite via simple addition of the in vivo time-dependent inhibition rate/cytochrome P450 degradation rate constant (λ/kdeg) values, but quantitative DDI predictions will require a more thorough understanding of TDI mechanisms. PMID:23785064

  20. Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End Joining

    Energy Technology Data Exchange (ETDEWEB)

    Oike, Takahiro [Division of Multistep Carcinogenesis, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma (Japan); Ogiwara, Hideaki [Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Torikai, Kohta [Gunma University Heavy Ion Medical Center, Maebashi, Gunma (Japan); Nakano, Takashi [Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma (Japan); Yokota, Jun [Division of Multistep Carcinogenesis, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Kohno, Takashi, E-mail: tkkohno@ncc.go.jp [Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan)

    2012-11-01

    Purpose: Non-homologous end joining (NHEJ), a major pathway used to repair DNA double-strand breaks (DSBs) generated by ionizing radiation (IR), requires chromatin remodeling at DSB sites through the acetylation of histones by histone acetyltransferases (HATs). However, the effect of compounds with HAT inhibitory activities on the DNA damage response (DDR), including the NHEJ and cell cycle checkpoint, as well as on the radiosensitivity of cancer cells, remains largely unclear. Here, we investigated whether garcinol, a HAT inhibitor found in the rinds of Garcinia indica fruit (called mangosteens), has effects on DDR, and whether it can be used for radiosensitization. Methods and Materials: The following assays were used to examine the effect of garcinol on the inhibition of DSB repair, including the following: a conventional neutral comet assay; a cell-based assay recently developed by us, in which NHEJ repair of DSBs on chromosomal DNA was evaluated; the micrococcal nuclease sensitivity assay; and immunoblotting for autophosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We assessed the effect of garcinol on the cell cycle checkpoint after IR treatment by analyzing the phosphorylation levels of checkpoint kinases CHK1 and CHK2 and histone H3, and by cell cycle profile analysis using flow cytometry. The radiosensitizing effect of garcinol was assessed by a clonogenic survival assay, whereas its effects on apoptosis and senescence were examined by annexin V and senescence-associated {beta}-galactosidase (SA-{beta}-Gal) staining, respectively. Results: We found that garcinol inhibits DSB repair, including NHEJ, without affecting cell cycle checkpoint. Garcinol radiosensitized A549 lung and HeLa cervical carcinoma cells with dose enhancement ratios (at 10% surviving fraction) of 1.6 and 1.5, respectively. Cellular senescence induced by IR was enhanced by garcinol. Conclusion: These results suggest that garcinol is a radiosensitizer that

  1. A Qualitative Approach to Enzyme Inhibition

    Science.gov (United States)

    Waldrop, Grover L.

    2009-01-01

    Most general biochemistry textbooks present enzyme inhibition by showing how the basic Michaelis-Menten parameters K[subscript m] and V[subscript max] are affected mathematically by a particular type of inhibitor. This approach, while mathematically rigorous, does not lend itself to understanding how inhibition patterns are used to determine the…

  2. Peptide Inhibitor of Complement C1 (PIC1 Rapidly Inhibits Complement Activation after Intravascular Injection in Rats.

    Directory of Open Access Journals (Sweden)

    Julia A Sharp

    Full Text Available The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1. In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases.

  3. Aromatase inhibitor (anastrozole) affects growth of endometrioma cells in culture.

    Science.gov (United States)

    Badawy, Shawky Z A; Brown, Shereene; Kaufman, Lydia; Wojtowycz, Martha A

    2015-05-01

    To study the effects of aromatase inhibitor (anastrozole) on the growth and estradiol secretion of endometrioma cells in culture. Endometrioma cells are grown in vitro until maximum growth before used in this study. This was done in the research laboratory for tissue culture, in an academic hospital. Testosterone at a concentration of 10 μg/mL was added as a substrate for the intracellular aromatase. In addition, aromatase inhibitor was added at a concentration of 200 and 300 μg/mL. The effect on cell growth and estradiol secretion is evaluated using Student's t-test. The use of testosterone increased estradiol secretion by endometrioma cells in culture. The use of aromatase inhibitor significantly inhibited the growth of endometrioma cells, and estradiol secretion. Aromatase inhibitor (anastrozole) may be an effective treatment for endometriosis due to inhibition of cellular aromatase. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Quercetogetin protects against cigarette smoke extract-induced apoptosis in epithelial cells by inhibiting mitophagy.

    Science.gov (United States)

    Son, Eun Suk; Kim, Se-Hee; Ryter, Stefan W; Yeo, Eui-Ju; Kyung, Sun Young; Kim, Yu Jin; Jeong, Sung Hwan; Lee, Chang Soo; Park, Jeong-Woong

    2018-04-01

    Recent studies demonstrate that the autophagy-dependent turnover of mitochondria (mitophagy) mediates pulmonary epithelial cell death in response to cigarette smoke extract (CSE) exposure, and contributes to emphysema development in vivo during chronic cigarette smoke (CS)-exposure, although the underlying mechanisms remain unclear. Here, we investigated the role of mitophagy in regulating apoptosis in CSE-exposed human lung bronchial epithelial cells. Furthermore, we investigated the potential of the polymethoxylated flavone antioxidant quercetogetin (QUE) to inhibit CSE-induced mitophagy-dependent apoptosis. Our results demonstrate that CSE induces mitophagy in epithelial cells via mitochondrial dysfunction, and causes increased expression levels of the mitophagy-regulator protein PTEN-induced putative kinase-1 (PINK1) and the mitochondrial fission protein dynamin-1-like protein (DRP-1). CSE induced epithelial cell death and increased the expression of the apoptosis-related proteins cleaved caspase-3, -8 and -9. Caspase-3 activity was significantly increased in Beas-2B cells exposed to CSE, and decreased by siRNA-dependent knockdown of DRP-1. Treatment of epithelial cells with QUE inhibited CSE-induced mitochondrial dysfunction and mitophagy by inhibiting phospho (p)-DRP-1 and PINK1 expression. QUE suppressed mitophagy-dependent apoptosis by inhibiting the expression of cleaved caspase-3, -8 and -9 and downregulating caspase activity in human bronchial epithelial cells. These findings suggest that QUE may serve as a potential therapeutic in CS-induced pulmonary diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Characterization and pharmacological properties of a novel multifunctional Kunitz inhibitor from Erythrina velutina seeds.

    Directory of Open Access Journals (Sweden)

    Richele J A Machado

    Full Text Available Inhibitors of peptidases isolated from leguminous seeds have been studied for their pharmacological properties. The present study focused on purification, biochemical characterization and anti-inflammatory and anticoagulant evaluation of a novel Kunitz trypsin inhibitor from Erythrina velutina seeds (EvTI. Trypsin inhibitors were purified by ammonium sulfate (30-60%, fractionation followed by Trypsin-Sepharose affinity chromatography and reversed-phase high performance liquid chromatography. The purified inhibitor showed molecular mass of 19,210.48 Da. Furthermore, a second isoform with 19,228.16 Da was also observed. The inhibitor that showed highest trypsin specificity and enhanced recovery yield was named EvTI (P2 and was selected for further analysis. The EvTI peptide fragments, generated by trypsin and pepsin digestion, were further analyzed by MALDI-ToF-ToF mass spectrometry, allowing a partial primary structure elucidation. EvTI exhibited inhibitory activity against trypsin with IC50 of 2.2×10(-8 mol.L(-1 and constant inhibition (Ki of 1.0×10(-8 mol.L(-1, by a non-competitive mechanism. In addition to inhibit the activity of trypsin, EvTI also inhibited factor Xa and neutrophil elastase, but do not inhibit thrombin, chymotrypsin or peptidase 3. EvTI was investigated for its anti-inflammatory and anti-coagulant properties. Firstly, EvTI showed no cytotoxic effect on human peripheral blood cells. Nevertheless, the inhibitor was able to prolong the clotting time in a dose-dependent manner by using in vitro and in vivo models. Due to anti-inflammatory and anticoagulant EvTI properties, two sepsis models were here challenged. EvTI inhibited leukocyte migration and specifically acted by inhibiting TNF-α release and stimulating IFN-α and IL-12 synthesis. The data presented clearly contribute to a better understanding of the use of Kunitz inhibitors in sepsis as a bioactive agent capable of interfering in blood coagulation and inflammation.

  6. Two pyrazine derivatives as inhibitors of the cold rolled steel corrosion in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Deng Shuduan, E-mail: dengshuduan@163.co [Faculty of Wood Science and Decoration Technology, Southwest Forestry University, Kunming 650224 (China); Li Xianghong; Fu Hui [Department of Fundamental Courses, Southwest Forestry University, Kunming 650224 (China)

    2011-02-15

    Research highlights: Two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) are good inhibitors for the corrosion of steel in 1.0 M HCl solution. The inhibition efficiency follows the order: ABP > AP. The substitution Br of ABP is the additional centre of adsorption and increases the electron density of pyrazine ring, which can facilitate its adsorption on the metal surface. For either ABP or AP, the adsorption obeys Langmuir adsorption isotherm. Both ABP and AP act as mixed-type inhibitors. - Abstract: The inhibition effect of two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) on the corrosion of cold rolled steel (CRS) in 1.0 M hydrochloric acid (HCl) was studied by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results show that both AP and ABP are good inhibitors, and inhibition efficiency follows the order: ABP > AP. The adsorption of each inhibitor on CRS surface obeys Langmuir adsorption isotherm. Potentiodynamic polarization curves show that two pyrazine derivatives act as mixed-type inhibitors. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability.

  7. Two pyrazine derivatives as inhibitors of the cold rolled steel corrosion in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Deng Shuduan; Li Xianghong; Fu Hui

    2011-01-01

    Research highlights: → Two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) are good inhibitors for the corrosion of steel in 1.0 M HCl solution. → The inhibition efficiency follows the order: ABP > AP. The substitution Br of ABP is the additional centre of adsorption and increases the electron density of pyrazine ring, which can facilitate its adsorption on the metal surface. → For either ABP or AP, the adsorption obeys Langmuir adsorption isotherm. → Both ABP and AP act as mixed-type inhibitors. - Abstract: The inhibition effect of two pyrazine derivatives of 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP) on the corrosion of cold rolled steel (CRS) in 1.0 M hydrochloric acid (HCl) was studied by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results show that both AP and ABP are good inhibitors, and inhibition efficiency follows the order: ABP > AP. The adsorption of each inhibitor on CRS surface obeys Langmuir adsorption isotherm. Potentiodynamic polarization curves show that two pyrazine derivatives act as mixed-type inhibitors. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability.

  8. Experimental in vivo and in vitro treatment with a new histone deacetylase inhibitor belinostat inhibits the growth of pancreatic cancer

    International Nuclear Information System (INIS)

    Dovzhanskiy, Dmitriy I; Arnold, Stefanie M; Hackert, Thilo; Oehme, Ina; Witt, Olaf; Felix, Klaus; Giese, Nathalia; Werner, Jens

    2012-01-01

    Treatment options for pancreatic ductal adenocarcinoma (PDAC) are limited. Histone deacetylase inhibitors are a new and promising drug family with strong anticancer activity. The aim of this study was to examine the efficacy of in vitro and in vivo treatment with the novel pan-HDAC inhibitor belinostat on the growth of human PDAC cells. The proliferation of tumour cell lines (T3M4, AsPC-1 and Panc-1) was determined using an MTT assay. Apoptosis was analysed using flow cytometry. Furthermore, p21 Cip1/Waf1 and acetylated histone H4 (acH4) expression were confirmed by immunoblot analysis. The in vivo effect of belinostat was studied in a chimeric mouse model. Antitumoural activity was assessed by immunohistochemistry for Ki-67. Treatment with belinostat resulted in significant in vitro and in vivo growth inhibition of PDAC cells. This was associated with a dose-dependent induction of tumour cell apoptosis. The apoptotic effect of gemcitabine was further enhanced by belinostat. Moreover, treatment with belinostat increased expression of the cell cycle regulator p21 Cip1/Waf1 in Panc-1, and of acH4 in all cell lines tested. The reductions in xenograft tumour volumes were associated with inhibition of cell proliferation. Experimental treatment of human PDAC cells with belinostat is effective in vitro and in vivo and may enhance the efficacy of gemcitabine. A consecutive study of belinostat in pancreatic cancer patients alone, and in combination with gemcitabine, could further clarify these effects in the clinical setting

  9. Release Profile and Inhibition Test of The Nanoparticles A. Paniculata Extract as Inhibitor of α-Glucosidase in The Process of Carbohydrates Breakdown Into Glucose Diabetes Mellitus

    Science.gov (United States)

    Imansari, Farisa; Sahlan, Muhammad; Arbianti, Rita

    2017-07-01

    Andrographis paniculata (A.paniculata) contain the main active substances Andrographolide which helps lower glucose levels in diabetics by inhibiting the enzyme α-glucosidase. The ability of the extract A.paniculata in lowering glucose levels will increase with the technique encapsulation with a coating of composition Chitosan-STPP as a drug delivery to the target organ. This study aimed to get an overview of A.paniculata release profile of nanoparticles in a synthetic fluid media with various concentrations of coating and inhibition testing nasty shard extract in inhibiting the enzyme α-glucosidase. This research resulted in nanoparticles by coating efficiency and loading capacity of chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. The ability of A.paniculata extracts as α-glucosidase enzyme inhibitors has been demonstrated in this study, the percent inhibition of 33.17%.

  10. Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

    OpenAIRE

    I. B. Obot; N. O. Obi-Egbedi

    2010-01-01

    The effect of nizoral (NZR) on the corrosion inhibition of aluminium alloy AA 1060 in 2 M HCl solution was investigated using the mylius thermometric technique. Results of the study revealed that nizoral acts as corrosion inhibitor for aluminium in the acidic medium. In general, at constant acid concentration, the inhibition efficiency increases with increase in the inhibitor concentration. The addition of KI to the inhibitor enhanced the inhibition efficiency to a considerable extent. The ad...

  11. Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors.

    Science.gov (United States)

    Thorsell, Ann-Gerd; Ekblad, Torun; Karlberg, Tobias; Löw, Mirjam; Pinto, Ana Filipa; Trésaugues, Lionel; Moche, Martin; Cohen, Michael S; Schüler, Herwig

    2017-02-23

    Selective inhibitors could help unveil the mechanisms by which inhibition of poly(ADP-ribose) polymerases (PARPs) elicits clinical benefits in cancer therapy. We profiled 10 clinical PARP inhibitors and commonly used research tools for their inhibition of multiple PARP enzymes. We also determined crystal structures of these compounds bound to PARP1 or PARP2. Veliparib and niraparib are selective inhibitors of PARP1 and PARP2; olaparib, rucaparib, and talazoparib are more potent inhibitors of PARP1 but are less selective. PJ34 and UPF1069 are broad PARP inhibitors; PJ34 inserts a flexible moiety into hydrophobic subpockets in various ADP-ribosyltransferases. XAV939 is a promiscuous tankyrase inhibitor and a potent inhibitor of PARP1 in vitro and in cells, whereas IWR1 and AZ-6102 are tankyrase selective. Our biochemical and structural analysis of PARP inhibitor potencies establishes a molecular basis for either selectivity or promiscuity and provides a benchmark for experimental design in assessment of PARP inhibitor effects.

  12. MAPK inhibitors, particularly the JNK inhibitor, increase cell death effects in H2O2-treated lung cancer cells via increased superoxide anion and glutathione depletion.

    Science.gov (United States)

    Park, Woo Hyun

    2018-02-01

    Reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), induce apoptosis in cancer cells by regulating mitogen-activated protein kinase (MAPK) signaling pathways. The present study investigated the effects of MAPK inhibitors on cell growth and death as well as changes in ROS and glutathione (GSH) levels in H2O2-treated Calu-6 and A549 lung cancer cells. H2O2 inhibited growth and induced death of Calu-6 and A549 lung cancer cells. All MAPK inhibitors appeared to enhance growth inhibition in H2O2-treated Calu-6 and A549 lung cancer cells and increased the percentage of Annexin V-FITC-positive cells in these cancer cells. Among the MAPK inhibitors, a JNK inhibitor significantly augmented the loss of mitochondrial membrane potential (MMP; ΔΨm) in H2O2-treated Calu-6 and A549 lung cancer cells. Intracellular ROS levels were significantly increased in the H2O2-treated cells at 1 and 24 h. Only the JNK inhibitor increased ROS levels in the H2O2-treated cells at 1 h and all MAPK inhibitors raised superoxide anion levels in these cells at 24 h. In addition, H2O2 induced GSH depletion in Calu-6 and A549 cells and the JNK inhibitor significantly enhanced GSH depletion in H2O2‑treated cells. Each of the MAPK inhibitors altered ROS and GSH levels differently in the Calu-6 and A549 control cells. In conclusion, H2O2 induced growth inhibition and death in lung cancer cells through oxidative stress and depletion of GSH. The enhanced effect of MAPK inhibitors, especially the JNK inhibitor, on cell death in H2O2-treated lung cancer cells was correlated with increased O2•- levels and GSH depletion.

  13. Analysis of efficacy of SGLT2 inhibitors using semi-mechanistic model

    Directory of Open Access Journals (Sweden)

    Oleg eDemin Jr

    2014-10-01

    Full Text Available Renal sodium-dependent glucose co-transporter 2 (SGLT2 is one of the most promising targets for the treatment of type 2 diabetes. Two SGLT2 inhibitors, dapagliflozin and canagliflozin, have already been approved for use in USA and Europe; several additional compounds are also being developed for this purpose. Based on the in vitro IC50 values and plasma concentration of dapagliflozin measured in clinical trials, the marketed dosage of the drug was expected to almost completely inhibit SGLT2 function and reduce glucose reabsorption by 90%. However, the administration of dapagliflozin resulted in only 30–50% inhibition of reabsorption. This study was aimed at investigating the mechanism underlying the discrepancy between the expected and observed levels of glucose reabsorption. To this end, systems pharmacology models were developed to analyze the time profile of dapagliflozin, canagliflozin, ipragliflozin, empagliflozin, and tofogliflozin in the plasma and urine; their filtration and active secretion from the blood to the renal proximal tubules; reverse reabsorption; urinary excretion; and their inhibitory effect on SGLT2. The model shows that concentration levels of tofogliflozin, ipragliflozin, and empagliflozin are higher than levels of other inhibitors following administration of marketed SGLT2 inhibitors at labeled doses and non-marketed SGLT2 inhibitors at maximal doses (approved for phase 2/3 studies. All the compounds exhibited almost 100% inhibition of SGLT2. Based on the results of our model, two explanations for the observed low efficacy of SGLT2 inhibitors were supported: 1 the site of action of SGLT2 inhibitors is not in the lumen of the kidney’s proximal tubules, but elsewhere (e.g., the kidneys proximal tubule cells; and 2 there are other transporters that could facilitate glucose reabsorption under the conditions of SGLT2 inhibition (e.g., other transporters of SGLT family.

  14. Identification of Leishmania donovani Topoisomerase 1 inhibitors via intuitive scaffold hopping and bioisosteric modification of known Top 1 inhibitors

    Science.gov (United States)

    Mamidala, Rajinikanth; Majumdar, Papiya; Jha, Kunal Kumar; Bathula, Chandramohan; Agarwal, Rahul; Chary, M. Thirumala; Mazumdar, H. K.; Munshi, Parthapratim; Sen, Subhabrata

    2016-05-01

    A library of arylidenefuropyridinediones was discovered as potent inhibitors of Leishmania donovani Topoisomerase 1 (LdTop1) where the active molecules displayed considerable inhibition with single digit micromolar EC50 values. This molecular library was designed via intuitive scaffold hopping and bioisosteric modification of known topoisomerase 1 inhibitors such as camptothecin, edotecarin and etc. The design was rationalized by molecular docking analysis of the compound prototype with human topoisomerase 1 (HTop1) and Leishmania donovani topoisomerase 1(LdTop1). The most active compound 4 displayed no cytotoxicity against normal mammalian COS7 cell line (~100 fold less inhibition at the EC50). Similar to camptothecin, 4 interacted with free LdTop1 as observed in the preincubation DNA relaxation inhibition experiment. It also displayed anti-protozoal activity against Leishmania donovani promastigote. Crystal structure investigation of 4 and its molecular modelling with LdTop1 revealed putative binding sites in the enzyme that could be harnessed to generate molecules with better potency.

  15. Solid Obtained by Electrocoagulation of Vinasse, new Inhibitor for Acid Corrosion of Brass

    Directory of Open Access Journals (Sweden)

    Elaine Ojeda-Armaignac

    2016-07-01

    Full Text Available This work is part of research related to obtaining a corrosion inhibitor from vinasse, whose basic advantages is the possibility of using an industrial waste from distilleries ethyl alcohol as raw material in the production of a solid corrosion inhibitor of national production by electrocoagulation, which implies import substitution and cost reductions. The inhibitory action of the solids obtained by electrocoagulation of vinasse was investigated by potentiodynamic polarization techniques and electrochemical impedance spectroscopy. It was found that the efficiencies of inhibition against the brass into the electrolyte solution were very good, behaving as an efficient inhibitor in acid medium. Inhibition efficiency increases with increasing concentration. The maximum inhibition efficiency was of 93,43 % for the concentration of 2 mg / L of vinasse. Thermodynamic parameters were obtained at the study temperature. It was found that the adsorption of inhibitor molecules on the surface of brass obey the Langmuir isotherm, and the values of adsorción free energy of - 23.06 kJ mol-1 show the spontaneity of adsorption and indicate that the inhibitor is strongly adsorbed on the surface of brass, study of potentiodynamic polarization curves confirmed that it is a mixed type inhibitor, with an anode predominance and there is a predominant mechanism of physical adsorption combined with a chemisorption.

  16. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells

    Science.gov (United States)

    2011-01-01

    Introduction The aim was to determine the effect of the Bruton tyrosine kinase (Btk)-selective inhibitor PCI-32765, currently in Phase I/II studies in lymphoma trials, in arthritis and immune-complex (IC) based animal models and describe the underlying cellular mechanisms. Methods PCI-32765 was administered in a series of murine IC disease models including collagen-induced arthritis (CIA), collagen antibody-induced arthritis (CAIA), reversed passive anaphylactic reaction (RPA), and passive cutaneous anaphylaxis (PCA). Clinical and pathologic features characteristic of each model were examined following treatment. PCI-32765 was then examined in assays using immune cells relevant to the pathogenesis of arthritis, and where Btk is thought to play a functional role. These included proliferation and calcium mobilization in B cells, cytokine and chemokine production in monocytes/macrophages, degranulation of mast cells and its subsequent cytokine/chemokine production. Results PCI-32765 dose-dependently and potently reversed arthritic inflammation in a therapeutic CIA model with an ED50 of 2.6 mg/kg/day. PCI-32765 also prevented clinical arthritis in CAIA models. In both models, infiltration of monocytes and macrophages into the synovium was completely inhibited and importantly, the bone and cartilage integrity of the joints were preserved. PCI-32765 reduced inflammation in the Arthus and PCA assays. In vitro, PCI-32765 inhibited BCR-activated primary B cell proliferation (IC50 = 8 nM). Following FcγR stimulation, PCI-32765 inhibited TNFα, IL-1β and IL-6 production in primary monocytes (IC50 = 2.6, 0.5, 3.9 nM, respectively). Following FcεRI stimulation of cultured human mast cells, PCI-32765 inhibited release of histamine, PGD2, TNF-α, IL-8 and MCP-1. Conclusions PCI-32765 is efficacious in CIA, and in IC models that do not depend upon autoantibody production from B cells. Thus PCI-32765 targets not only B lymphocytes but also monocytes, macrophages and mast cells

  17. Effect of inhibitors on acid production by baker's yeast.

    Science.gov (United States)

    Sigler, K; Knotková, A; Kotyk, A

    1978-01-01

    Glucose-induced acid extrusion, respiration and anaerobic fermentation in baker's yeast was studied with the aid of sixteen inhibitors. Uranyl(2+) nitrate affected the acid extrusion more anaerobically than aerobically; the complexing of Mg2+ and Ca2+ by EDTA at the membrane had no effect. Inhibitors of glycolysis (iodoacetamide, N-ethylmaleimide, fluoride) suppressed acid production markedly, and so did the phosphorylation-blocking arsenate. Fluoroacetate, inhibiting the citric-acid cycle, had no effect. Inhibition by uncouplers depended on their pKa values: 2,4,6-trinitrophenol (pKa 0.4) less than 2,4-dinitrophenol (4.1) less than azide (4.7) less than 3-chlorophenylhydrazonomalononitrile (6.0). Inhibition by trinitrophenol was only slightly increased by its acetylation. Cyanide and nonpermeant oligomycin showed practically no effect; inhibition by dicyclohexylcarbodiimide was delayed but potent. The concentration profiles of inhibition of acid production differed from those of respiration and fermentation. Thus, though the acid production is a metabolically dependent process, it does not reflect the intensity of metabolism, except partly in the first half of glycolysis.

  18. Inhibition of G-Protein-Activated Inwardly Rectifying K+ Channels by the Selective Norepinephrine Reuptake Inhibitors Atomoxetine and Reboxetine

    Science.gov (United States)

    Kobayashi, Toru; Washiyama, Kazuo; Ikeda, Kazutaka

    2010-01-01

    Atomoxetine and reboxetine are commonly used as selective norepinephrine reuptake inhibitors (NRIs) for the treatment of attention-deficit/hyperactivity disorder and depression, respectively. Furthermore, recent studies have suggested that NRIs may be useful for the treatment of several other psychiatric disorders. However, the molecular mechanisms underlying the various effects of NRIs have not yet been sufficiently clarified. G-protein-activated inwardly rectifying K+ (GIRK or Kir3) channels have an important function in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to be a potential treatment for several neuropsychiatric disorders and cardiac arrhythmias. In this study, we investigated the effects of atomoxetine and reboxetine on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2, GIRK2, or GIRK1/GIRK4 subunits, extracellular application of atomoxetine or reboxetine reversibly reduced GIRK currents. The inhibitory effects were concentration-dependent, but voltage-independent, and time-independent during each voltage pulse. However, Kir1.1 and Kir2.1 channels were insensitive to atomoxetine and reboxetine. Atomoxetine and reboxetine also inhibited GIRK currents induced by activation of cloned A1 adenosine receptors or by intracellularly applied GTPγS, a nonhydrolyzable GTP analogue. Furthermore, the GIRK currents induced by ethanol were concentration-dependently inhibited by extracellularly applied atomoxetine but not by intracellularly applied atomoxetine. The present results suggest that atomoxetine and reboxetine inhibit brain- and cardiac-type GIRK channels, revealing a novel characteristic of clinically used NRIs. GIRK channel inhibition may contribute to some of the therapeutic effects of NRIs and adverse side effects related to nervous system and heart function. PMID:20393461

  19. Experimental and molecular dynamics study on the inhibition performance of some nitrogen containing compounds for iron corrosion

    International Nuclear Information System (INIS)

    Khaled, K.F.

    2010-01-01

    A molecular dynamics study for the adsorption of three benzimidazole derivatives and their inhibition characteristics was studied using chemical (weight loss) and electrochemical measurements (potentiodynamic polarization and electrochemical impedance spectroscopy, EIS). Electrochemical measurements results revealed that the inhibition efficiencies increased with the concentration of inhibitors. Results obtained from weight loss, dc polarization and ac impedance measurements are in reasonably good agreement and show increased inhibitor efficiency with increasing inhibitor concentration. The molecular dynamics calculations showed that the higher the binding energy between the inhibitor and metal surface, the higher the inhibition efficiency. Also, the higher the adsorption energy, the higher the inhibition efficiency. The molecular dynamics study revealed that the benzimidazole ring as well as the side chain are the active sites in these inhibitors and they can absorb on Fe surface by donating electrons to Fe d-orbital.

  20. Modulating effects of the protease inhibitor Antipain on x-ray induced transformations

    International Nuclear Information System (INIS)

    Borek, C.; Miller, R.C.

    1979-01-01

    Protease inhibitors have been shown to inhibit the expression of mutations in bacteria and to inhibit the tumor-promoting effect of phorbol esters in mice. We have investigated the effect of the protease inhibitor Antipain on cell transformation by x-irradiation in two in vitro systems; namely short-term cultures of freshly explanted hamster embryo cells and in the 10T1/2 cell line derived and cloned from C3H mouse embryo

  1. Calcineurin-inhibitor pain syndrome.

    Science.gov (United States)

    Prommer, Eric

    2012-07-01

    There has been increased recognition of calcineurin, a phosphoprotein serine/threonine phosphatase enzyme, in the regulation of many physiologic systems. Calcineurin mediates activation of lymphocytes, which play a role in immune response. Widely distributed in the central nervous system, calcinuerin also plays an important role in sensory neural function, via its role in the regulation of newly discovered 2-pore potassium channels, which greatly influence neuronal resting membrane potentials. Calcinuerin inhibition is the mechanism of action of immunomodulatory drugs such as cyclosporine and tacrolimus, which are widely used in transplantation medicine to prevent rejection. While important for immunosuppression, the use of calcineurin inhibitors has been associated with the development of a new pain syndrome called the calcineurin pain syndrome, which appears to be an untoward complication of the interruption of the physiologic function of calcineurin. This is a narrative review focusing on the epidemiology, pathophysiology, characterization of a newly recognized pain syndrome associated with the use of calcineurin inhibitors. The use of immunosuppressants however is associated with several well-known toxicities to which the calcineurin pain syndrome can be added. The development of this syndrome most likely involves altered nociceptive processing due to the effect of calcineurin inhibition on neuronal firing, as well as effects of calcineurin on vascular tone. The most striking aspect of the treatment of this syndrome is the response to calcium channel blockers, which suggest that the effects of calcineurin inhibition on vascular tone play an important role in the development of the calcineurin pain syndrome. The calcineurin syndrome is a newly recognized complication associated with the use of calcineurin inhibitors. There is no standard therapy at this time but anecdotal reports suggest the effectiveness of calcium channel blockers.

  2. Corrosion Inhibition in the Secondary Cooling System of ETRR-2, Egypt

    International Nuclear Information System (INIS)

    Aly, A.H.; Gad, M.M.A.; Abdel-Karim, R.; Abdel-Salam, O.F.

    2003-01-01

    The second Egyptian research reactor (ETRR-2) is a light water type of 22 MW thermal power. Proper cooling water treatment is necessary to set the water chemical characteristics within a specified window to avoid or minimize corrosion problems, scale formation, fouling, and microbiological contamination. Selection of a proper and economic corrosion inhibitor is of great importance. This selection depends, among other factors, on the availability as well as cost. The corrosion behaviour of water of ETRR-2 site and its inhibition by different inhibitors was studied in a special test rig designed for this purpose. Sodium salts of polyphosphate, phosphate, molybdate, and tungstate were used to treat and qualify the cooling water. Results showed that the corrosion resistance of the test material depends on both type and concentration of the applied inhibitor. Using 30-ppm tungstate, molybdate, and phosphate (as anodic inhibitors) reduced the corrosion rate, and inhibitor efficiencies of about 97% 86%, and 68% were achieved respectively. Accordingly, sodium tungstate could be ranked as the best anodic inhibitor used followed by molybdate. Sodium phosphate could be ranked as the least efficient one. Adding the same concentration of sodium polyphosphate (as a cathodic inhibitor) yields almost the same inhibition efficiency as tungstate type. However, at higher concentration(40 ppm), an inhibition efficiency of 100% was obtained, Which corresponds to almost zero-corrosion rate

  3. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium

    International Nuclear Information System (INIS)

    Rajeswari, Velayutham; Kesavan, Devarayan; Gopiraman, Mayakrishnan; Viswanathamurthi, Periasamy; Poonkuzhali, Kaliyaperumal; Palvannan, Thayumanavan

    2014-01-01

    Graphical abstract: - Highlights: • Eleusine aegyptiaca and Croton rottleri are commonly available, less-toxic and eco-friendly inhibitors for cast iron corrosion. • The active constituents present in extracts adsorbed on the iron surface to inhibit the acidic corrosion. • The higher values of E a and ΔH * point out the higher inhibition efficiency noticed for the inhibitors. • Weight loss methods at various temperature and spectral data provides evidence for adsorption mechanism of inhibitors. - Abstract: The adsorption and corrosion inhibition activities of Eleusine aegyptiaca (E. aegyptiaca) and Croton rottleri (C. rottleri) leaf extracts on cast iron corrosion in 1 M hydrochloric acid solution were studied first time by weight loss and electrochemical techniques viz., Tafel polarization and electrochemical impedance spectroscopy. The results obtained from the weight loss and electrochemical methods showed that the inhibition efficiency increased with inhibitor concentrations. It was found that the extracts acted as mixed-type inhibitors. The addition of halide additives (KCl, KBr, and KI) on the inhibition efficiency has also been investigated. The adsorption of the inhibitors on cast iron surface both in the presence and absence of halides follows the Langmuir adsorption isotherm model. The inhibiting nature of the inhibitors was supported by FT-IR, UV–vis, Wide-angle X-ray diffraction and SEM methods

  4. Using high throughput experimental data and in silico models to discover alternatives to toxic chromate corrosion inhibitors

    International Nuclear Information System (INIS)

    Winkler, D.A.; Breedon, M.; White, P.; Hughes, A.E.; Sapper, E.D.; Cole, I.

    2016-01-01

    Highlights: • We screened a large library of organic compounds as replacements for toxic chromates. • High throughput automated corrosion testing was used to assess inhibitor performance. • Robust, predictive machine learning models of corrosion inhibition were developed. • Models indicated molecular features contributing to performance of organic inhibitors. • We also showed that quantum chemistry descriptors do not correlate with performance. - Abstract: Restrictions on the use of toxic chromate-based corrosion inhibitors have created important issues for the aerospace and other industries. Benign alternatives that offer similar or superior performance are needed. We used high throughput experiments to assess 100 small organic molecules as potential inhibitors of corrosion in aerospace aluminium alloys AA2024 and AA7075. We generated robust, predictive, quantitative computational models of inhibitor efficiency at two pH values using these data. The models identified molecular features of inhibitor molecules that had the greatest impact on corrosion inhibition. Models can be used to discover better corrosion inhibitors by screening libraries of organic compounds for candidates with high corrosion inhibition.

  5. Inhibition of urinary calculi -- a spectroscopic study

    Science.gov (United States)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  6. SjAPI, the first functionally characterized Ascaris-type protease inhibitor from animal venoms.

    Directory of Open Access Journals (Sweden)

    Zongyun Chen

    Full Text Available BACKGROUND: Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear. PRINCIPAL FINDINGS: Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI, Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2, Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI, and Buthus martensii Ascaris-type protease inhibitor (BmAPI. The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues "AAV" and might be a useful template to produce new serine protease inhibitors. CONCLUSIONS/SIGNIFICANCE: To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the

  7. Nitrite and nitroso compounds can serve as specific catalase inhibitors.

    Science.gov (United States)

    Titov, Vladimir Yu; Osipov, Anatoly N

    2017-03-01

    We present evidence that nitrite and nitrosothiols, nitrosoamines and non-heme dinitrosyl iron complexes can reversibly inhibit catalase with equal effectiveness. Catalase activity was evaluated by the permanganatometric and calorimetric assays. This inhibition is not the result of chemical transformations of these compounds to a single inhibitor, as well as it is not the result of NO release from these substances (as NO traps have no effect on the extent of inhibition). It was found that chloride and bromide in concentration above 80 mM and thiocyanate in concentration above 20 μM enhance catalase inhibition by nitrite and the nitroso compounds more than 100 times. The inhibition degree in this case is comparable with that induced by azide. We propose that the direct catalase inhibitor is a positively charged NO-group. This group acquires a positive charge in the active center of enzyme by interaction of nitrite or nitroso compounds with some enzyme groups. Halides and thiocyanate protect the NO + group from hydration and thus increase its inhibition effect. It is probable that a comparatively low chloride concentration in many cells is the main factor to protect catalase from inhibition by nitrite and nitroso compounds.

  8. JAK inhibitors in autoinflammation.

    Science.gov (United States)

    Hoffman, Hal M; Broderick, Lori

    2018-06-11

    Interferonopathies are a subset of autoinflammatory disorders with a prominent type I IFN gene signature. Treatment of these patients has been challenging, given the lack of response to common autoinflammatory therapeutics including IL-1 and TNF blockade. JAK inhibitors (Jakinibs) are a family of small-molecule inhibitors that target the JAK/STAT signaling pathway and have shown clinical efficacy, with FDA and European Medicines Agency (EMA) approval for arthritic and myeloproliferative syndromes. Sanchez and colleagues repurposed baricitinib to establish a significant role for JAK inhibition as a novel therapy for patients with interferonopathies, demonstrating the power of translational rare disease research with lifesaving effects.

  9. Structural Basis for the Inhibition of RNase H Activity of HIV-1 Reverse Transcriptase by RNase H Active Site-Directed Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hua-Poo; Yan, Youwei; Prasad, G. Sridhar; Smith, Robert F.; Daniels, Christopher L.; Abeywickrema, Pravien D.; Reid, John C.; Loughran, H. Marie; Kornienko, Maria; Sharma, Sujata; Grobler, Jay A.; Xu, Bei; Sardana, Vinod; Allison, Timothy J.; Williams, Peter D.; Darke, Paul L.; Hazuda, Daria J.; Munshi, Sanjeev (Merck)

    2010-09-02

    HIV/AIDS continues to be a menace to public health. Several drugs currently on the market have successfully improved the ability to manage the viral burden in infected patients. However, new drugs are needed to combat the rapid emergence of mutated forms of the virus that are resistant to existing therapies. Currently, approved drugs target three of the four major enzyme activities encoded by the virus that are critical to the HIV life cycle. Although a number of inhibitors of HIV RNase H activity have been reported, few inhibit by directly engaging the RNase H active site. Here, we describe structures of naphthyridinone-containing inhibitors bound to the RNase H active site. This class of compounds binds to the active site via two metal ions that are coordinated by catalytic site residues, D443, E478, D498, and D549. The directionality of the naphthyridinone pharmacophore is restricted by the ordering of D549 and H539 in the RNase H domain. In addition, one of the naphthyridinone-based compounds was found to bind at a second site close to the polymerase active site and non-nucleoside/nucleotide inhibitor sites in a metal-independent manner. Further characterization, using fluorescence-based thermal denaturation and a crystal structure of the isolated RNase H domain reveals that this compound can also bind the RNase H site and retains the metal-dependent binding mode of this class of molecules. These structures provide a means for structurally guided design of novel RNase H inhibitors.

  10. Partial contribution of Rho-kinase inhibition to the bioactivity of Ganoderma lingzhi and its isolated compounds: insights on discovery of natural Rho-kinase inhibitors.

    Science.gov (United States)

    Amen, Yhiya; Zhu, Qinchang; Tran, Hai-Bang; Afifi, Mohamed S; Halim, Ahmed F; Ashour, Ahmed; Shimizu, Kuniyoshi

    2017-04-01

    Recent studies identified Rho-kinase enzymes (ROCK-I and ROCK-II) as important targets that are involved in a variety of diseases. Synthetic Rho-kinase inhibitors have emerged as potential therapeutic agents to treat disorders such as hypertension, stroke, cancer, diabetes, glaucoma, etc. Our study is the first to screen the total ethanol extract of the medicinal mushroom Ganoderma lingzhi with thirty-five compounds for Rho-kinase inhibitory activity. Moreover, a molecular binding experiment was designed to investigate the binding affinity of the compounds at the active sites of Rho-kinase enzymes. The structure-activity relationship analysis was investigated. Our results suggest that the traditional uses of G. lingzhi might be in part due to the ROCK-I and ROCK-II inhibitory potential of this mushroom. Structure-activity relationship studies revealed some interesting features of the lanostane triterpenes that potentiate their Rho-kinase inhibition. These findings would be helpful for further studies on the design of Rho-kinase inhibitors from natural sources and open the door for contributions from other researchers for optimizing the development of natural Rho-kinase inhibitors.

  11. Inhibition of the complement system by saliva of Anopheles (Nyssorhynchus) aquasalis.

    Science.gov (United States)

    Mendes-Sousa, Antonio Ferreira; Vale, Vladimir Fazito; Queiroz, Daniel Costa; Pereira-Filho, Adalberto Alves; da Silva, Naylene Carvalho Sales; Koerich, Leonardo Barbosa; Moreira, Luciano Andrade; Pereira, Marcos Horácio; Sant'Anna, Maurício Roberto; Araújo, Ricardo Nascimento; Andersen, John; Valenzuela, Jesus Gilberto; Gontijo, Nelder Figueiredo

    2018-01-01

    Anopheline mosquitoes are vectors of malaria parasites. Their saliva contains anti-hemostatic and immune-modulator molecules that favor blood feeding and parasite transmission. In this study, we describe the inhibition of the alternative pathway of the complement system (AP) by Anopheles aquasalis salivary gland extracts (SGE). According to our results, the inhibitor present in SGE acts on the initial step of the AP blocking deposition of C3b on the activation surfaces. Properdin, which is a positive regulatory molecule of the AP, binds to SGE. When SGE was treated with an excess of properdin, it was unable to inhibit the AP. Through SDS-PAGE analysis, A. aquasalis presented a salivary protein with the same molecular weight as recombinant complement inhibitors belonging to the SG7 family described in the saliva of other anopheline species. At least some SG7 proteins bind to properdin and are AP inhibitors. Searching for SG7 proteins in the A. aquasalis genome, we retrieved a salivary protein that shared an 85% identity with albicin, which is the salivary alternative pathway inhibitor from A. albimanus. This A. aquasalis sequence was also very similar (81% ID) to the SG7 protein from A. darlingi, which is also an AP inhibitor. Our results suggest that the salivary complement inhibitor from A. aquasalis is an SG7 protein that can inhibit the AP by binding to properdin and abrogating its stabilizing activity. Albicin, which is the SG7 from A. albimanus, can directly inhibit AP convertase. Given the high similarity of SG7 proteins, the SG7 from A. aquasalis may also directly inhibit AP convertase in the absence of properdin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Research of small quaternary AChE inhibitors as pretreatment of OP poisoning

    International Nuclear Information System (INIS)

    Musilek, K.; Komloova, M.; Holas, O.; Opletalova, V.; Pohanka, M.; Kuca, K.

    2009-01-01

    Small quaternary AChE inhibitors are used (e.g. pyridostigmine) or scoped (e.g. SAD-128) for pretreatment against organophosphate intoxication [1]. The pretreatment is based on competitive inhibition of AChE prior to organophosphate (OP) poisoning. Consequently, the OP can not influence the inhibited AChE and is degraded by other esterases. Although various competitive inhibitors are used globally, pyridostigmine still remains the most broaden. Its side effects including gastrointestinal effects (nausea, intestinal obstruction), increased bronchial secretion, cardiac arrhythmia or cholinergic crisis are well described. Moreover, some bisquaternary competitive inhibitors (e.g. SAD-128) were used to decrease lethal effects of OP poisoning in vivo. The further studies dealing with SAD-128 showed its increased ability to interact with brain muscarinic acetylcholine receptors as allosteric inhibitors [2]. The small molecules derived from quaternized pyridine, quinoline and isoquinoline were designed as AChE inhibitors. Their ability to inhibit AChE or BChE was determined in vitro using IC50. The IC50 data were compared within each group of compounds with emphasis on selectivity AChE versus BChE. The overall study will be presented. The work was supported by Ministry of Defence of Czech Republic No. OVUOFVZ200805.(author)

  13. Hsp90 inhibitor 17-AAG inhibits progression of LuCaP35 xenograft prostate tumors to castration resistance.

    Science.gov (United States)

    O'Malley, Katherine J; Langmann, Gabrielle; Ai, Junkui; Ramos-Garcia, Raquel; Vessella, Robert L; Wang, Zhou

    2012-07-01

    Advanced prostate cancer is currently treated with androgen deprivation therapy (ADT). ADT initially results in tumor regression; however, all patients eventually relapse with castration-resistant prostate cancer. New approaches to delay the progression of prostate cancer to castration resistance are in desperate need. This study addresses whether targeting Heat shock protein 90 (HSP90) regulation of androgen receptor (AR) can inhibit prostate cancer progression to castration resistance. The HSP90 inhibitor 17-AAG was injected intraperitoneally into nude mice bearing LuCaP35 xenograft tumors to determine the effect of HSP90 inhibition on prostate cancer progression to castration resistance and host survival. Administration of 17-AAG maintained androgen-sensitivity, delayed the progression of LuCaP35 xenograft tumors to castration resistance, and prolonged the survival of host. In addition, 17-AAG prevented nuclear localization of endogenous AR in LuCaP35 xenograft tumors in castrated nude mice. Targeting Hsp90 or the mechanism by which HSP90 regulates androgen-independent AR nuclear localization and activation may lead to new approaches to prevent and/or treat castration-resistant prostate cancer. Copyright © 2011 Wiley Periodicals, Inc.

  14. Pullulan as a potent green inhibitor for corrosion mitigation of aluminum composite: Electrochemical and surface studies.

    Science.gov (United States)

    B P, Charitha; Rao, Padmalatha

    2018-06-01

    This work emphasizes the corrosion inhibition ability of pullulan, an environmentally benign fungal polysaccharide on acid corrosion of 6061Aluminum-15% (v) SiC (P) composite material (Al-CM). The electrochemical measurements such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) studies were carried out for the corrosion inhibition studies. Conditions were optimized to obtain maximum inhibition efficiency, by performing the experiment at varying concentrations of inhibitor, in the temperature range of 308K- 323K. Surface morphology studies were done to reaffirm the adsorption of inhibitor on the surface of composite material. Pullulan acted as mixed type of inhibitor with a maximum efficiency of 89% at 303K for the addition of 1.0 gL -1 of inhibitor. Evaluation of kinetic and thermodynamic parameters revealed that inhibitor underwent physical adsorption onto the surface of Al-CM and obeyed Freundlich adsorption isotherm. The surface characterization like SEM-EDX, AFM confirmed the adsorption of pullulan molecule. Pullulan can be considered as effective, eco friendly green inhibitor for the corrosion control of Al-CM. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Inhibition of multiple pathogenic pathways by histone deacetylase inhibitor SAHA in a corneal alkali-burn injury model

    Science.gov (United States)

    Li, Xinyu; Zhou, Qinbo; Hanus, Jakub; Anderson, Chastain; Zhang, Hongmei; Dellinger, Michael; Brekken, Rolf; Wang, Shusheng

    2013-01-01

    Neovascularization (NV) in the cornea is a major cause of vision impairment and corneal blindness. Hemangiogenesis and lymphangiogenesis induced by inflammation underlie the pathogenesis of corneal NV. The current mainstay treatment, corticosteroid, treats the inflammation associated with corneal NV, but is not satisfactory due to such side effects as cataract and the increase in intraocular pressure. It is imperative to develop a novel therapy that specifically targets the hemangiogenesis, lymphangiogenesis and inflammation pathways underlying corneal NV. Histone deacetylase inhibitors (HDACi) have been in clinical trials for cancer and other diseases. In particular, HDACi suberoylanilide hydroxamic acid (SAHA, vorinostat, Zolinza) has been approved by the FDA for the treatment of cutaneous T-cell lymphoma. The functional mechanism of SAHA in cancer and especially in corneal NV remains unclear. Here, we show that topical application of SAHA inhibits neovascularization in an alkali-burn corneal injury model. Mechanistically, SAHA inhibits corneal NV by repressing hemangiogenesis, inflammation pathways and previously overlooked lymphangiogenesis. Topical SAHA is well tolerated on the ocular surface. In addition, the potency of SAHA in corneal NV appears to be comparable to the current steroid therapy. SAHA may possess promising therapeutic potential in alkali-burn corneal injury and other inflammatory neovascularization disorders. PMID:23186311

  16. Laboratory study of reinforcement protection with corrosion inhibitors

    International Nuclear Information System (INIS)

    Stefanescu, D.; Mihalache, M.; Mogosan, S.

    2013-01-01

    Concrete is a durable material and its performance as part of the containment function in NPPs has been good. However, experience shows that degradation of the reinforced concrete structures caused by the corrosion of the reinforcing steel represents more than 80% of all damages in the world. Much effort has been made to develop a corrosion inhibition process to prolong the life of existing structures and minimize corrosion damages in new structures. Migrating Corrosion Inhibitor technology was developed to protect the embedded steel rebar/concrete structure. These inhibitors can be incorporated as an admixture or can be surface impregnated on existing concrete structures. The effectiveness of two inhibitors (ethanolamine and diethanolamine) mixed in the reinforced concrete was evaluated by gravimetric measurements. The corrosion behavior of the steel rebar and the inhibiting effects of the amino alcohol chemistry in an aggressive environment were monitored using electrochemical measurements and scanning electron microscopy (SEM) investigations. (authors)

  17. Developing selective histone deacetylases (HDACs) inhibitors through ebselen and analogs.

    Science.gov (United States)

    Wang, Yuren; Wallach, Jason; Duane, Stephanie; Wang, Yuan; Wu, Jianghong; Wang, Jeffrey; Adejare, Adeboye; Ma, Haiching

    2017-01-01

    Histone deacetylases (HDACs) are key regulators of gene expression in cells and have been investigated as important therapeutic targets for cancer and other diseases. Different subtypes of HDACs appear to play disparate roles in the cells and are associated with specific diseases. Therefore, substantial effort has been made to develop subtype-selective HDAC inhibitors. In an effort to discover existing scaffolds with HDAC inhibitory activity, we screened a drug library approved by the US Food and Drug Administration and a National Institutes of Health Clinical Collection compound library in HDAC enzymatic assays. Ebselen, a clinical safe compound, was identified as a weak inhibitor of several HDACs, including HDAC1, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, and HDAC9 with half maximal inhibitory concentrations approximately single digit of µM. Two ebselen analogs, ebselen oxide and ebsulfur (a diselenide analog of ebselen), also inhibited these HDACs, however with improved potencies on HDAC8. Benzisothiazol, the core structure of ebsulfur, specifically inhibited HDAC6 at a single digit of µM but had no inhibition on other HDACs. Further efforts on structure-activity relationship based on the core structure of ebsulfur led to the discovery of a novel class of potent and selective HDAC6 inhibitors with RBC-2008 as the lead compound with single-digit nM potency. This class of histone deacetylase inhibitor features a novel pharmacophore with an ebsulfur scaffold selectively targeting HDAC6. Consistent with its inhibition on HDAC6, RBC-2008 significantly increased the acetylation levels of α-tubulin in PC-3 cells. Furthermore, treatment with these compounds led to cell death of multiple tumor cell lines in a dose-dependent manner. These results demonstrated that ebselen and ebsulfur analogs are inhibitors of HDACs, supporting further preclinical development of this class of compounds for potential therapeutic applications.

  18. A novel method for screening the glutathione transferase inhibitors

    Directory of Open Access Journals (Sweden)

    Węgrzyn Grzegorz

    2009-03-01

    Full Text Available Abstract Background Glutathione transferases (GSTs belong to the family of Phase II detoxification enzymes. GSTs catalyze the conjugation of glutathione to different endogenous and exogenous electrophilic compounds. Over-expression of GSTs was demonstrated in a number of different human cancer cells. It has been found that the resistance to many anticancer chemotherapeutics is directly correlated with the over-expression of GSTs. Therefore, it appears to be important to find new GST inhibitors to prevent the resistance of cells to anticancer drugs. In order to search for glutathione transferase (GST inhibitors, a novel method was designed. Results Our results showed that two fragments of GST, named F1 peptide (GYWKIKGLV and F2 peptide (KWRNKKFELGLEFPNL, can significantly inhibit the GST activity. When these two fragments were compared with several known potent GST inhibitors, the order of inhibition efficiency (measured in reactions with 2,4-dinitrochlorobenzene (CDNB and glutathione as substrates was determined as follows: tannic acid > cibacron blue > F2 peptide > hematin > F1 peptide > ethacrynic acid. Moreover, the F1 peptide appeared to be a noncompetitive inhibitor of the GST-catalyzed reaction, while the F2 peptide was determined as a competitive inhibitor of this reaction. Conclusion It appears that the F2 peptide can be used as a new potent specific GST inhibitor. It is proposed that the novel method, described in this report, might be useful for screening the inhibitors of not only GST but also other enzymes.

  19. High-Resolution Inhibition Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of PTP1B Inhibitors from Vietnamese Plants.

    Science.gov (United States)

    Trinh, Binh Thi Dieu; Jäger, Anna K; Staerk, Dan

    2017-07-20

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator in insulin signal transduction by deactivating the insulin receptor. Thus, PTP1B inhibition has emerged as a potential therapeutic strategy for curing insulin resistance. In this study, 40 extracts from 18 different plant species were investigated for PTP1B inhibitory activity in vitro. The most promising one, the EtOAc extract of Ficus racemosa , was investigated by high-resolution PTP1B inhibition profiling combined with HPLC-HRMS-SPE-NMR analysis. This led to the identification of isoderrone ( 1 ), derrone ( 2 ), alpinumisoflavone ( 3 ) and mucusisoflavone B ( 4 ) as PTP1B inhibitors. IC 50 of these compounds were 22.7 ± 1.7, 12.6 ± 1.6, 21.2 ± 3.8 and 2.5 ± 0.2 µM, respectively. Kinetics analysis revealed that these compounds inhibited PTP1B non-competitively with K i values of 21.3 ± 2.8, 7.9 ± 1.9, 14.3 ± 2.0, and 3.0 ± 0.5 µM, respectively. These findings support the important role of F. racemosa as a novel source of new drugs and/or as a herbal remedy for treatment of type 2 diabetes.

  20. High-Resolution Inhibition Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of PTP1B Inhibitors from Vietnamese Plants

    Directory of Open Access Journals (Sweden)

    Binh Thi Dieu Trinh

    2017-07-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B plays a key role as a negative regulator in insulin signal transduction by deactivating the insulin receptor. Thus, PTP1B inhibition has emerged as a potential therapeutic strategy for curing insulin resistance. In this study, 40 extracts from 18 different plant species were investigated for PTP1B inhibitory activity in vitro. The most promising one, the EtOAc extract of Ficus racemosa, was investigated by high-resolution PTP1B inhibition profiling combined with HPLC-HRMS-SPE-NMR analysis. This led to the identification of isoderrone (1, derrone (2, alpinumisoflavone (3 and mucusisoflavone B (4 as PTP1B inhibitors. IC50 of these compounds were 22.7 ± 1.7, 12.6 ± 1.6, 21.2 ± 3.8 and 2.5 ± 0.2 µM, respectively. Kinetics analysis revealed that these compounds inhibited PTP1B non-competitively with Ki values of 21.3 ± 2.8, 7.9 ± 1.9, 14.3 ± 2.0, and 3.0 ± 0.5 µM, respectively. These findings support the important role of F. racemosa as a novel source of new drugs and/or as a herbal remedy for treatment of type 2 diabetes.

  1. Binding of the Inhibitor Protein IF1 to Bovine F1-ATPase

    Science.gov (United States)

    Bason, John V.; Runswick, Michael J.; Fearnley, Ian M.; Walker, John E.

    2011-01-01

    In the structure of bovine F1-ATPase inhibited with residues 1–60 of the bovine inhibitor protein IF1, the α-helical inhibitor interacts with five of the nine subunits of F1-ATPase. In order to understand the contributions of individual amino acid residues to this complex binding mode, N-terminal deletions and point mutations have been introduced, and the binding properties of each mutant inhibitor protein have been examined. The N-terminal region of IF1 destabilizes the interaction of the inhibitor with F1-ATPase and may assist in removing the inhibitor from its binding site when F1Fo-ATPase is making ATP. Binding energy is provided by hydrophobic interactions between residues in the long α-helix of IF1 and the C-terminal domains of the βDP-subunit and βTP-subunit and a salt bridge between residue E30 in the inhibitor and residue R408 in the C-terminal domain of the βDP-subunit. Several conserved charged amino acids in the long α-helix of IF1 are also required for establishing inhibitory activity, but in the final inhibited state, they are not in contact with F1-ATPase and occupy aqueous cavities in F1-ATPase. They probably participate in the pathway from the initial interaction of the inhibitor and the enzyme to the final inhibited complex observed in the structure, in which two molecules of ATP are hydrolysed and the rotor of the enzyme turns through two 120° steps. These findings contribute to the fundamental understanding of how the inhibitor functions and to the design of new inhibitors for the systematic analysis of the catalytic cycle of the enzyme. PMID:21192948

  2. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2017-01-01

    Full Text Available Serine protease inhibitors (serpins are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum, was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.

  3. Some aromatic hydrazone derivatives as inhibitors for the corrosion of C-steel in phosphoric acid solution.

    Science.gov (United States)

    Fouda, Abd El-Aziz S; Al-Sarawy, Ahmed A; Radwan, Mohamed S

    2006-01-01

    The effect of furfural benzoylhydrazone and its derivatives (I-VII) as corrosion inhibitors for C-steel in 1M phosphoric acid solution has been studied by weight-loss and galvanostatic polarization techniques. A significant decrease in the corrosion rate of C-steel was observed in the presence of the investigated inhibitors. This study revealed that, the inhibition efficiency increases with increasing the inhibitor concentration, and the addition of iodide ions enhances it to a considerable extent. The effect of temperature on the inhibition efficiency of these compounds was studied using weight-loss method. Activation energy (E(a)*) and other thermodynamic parameters for the corrosion process were calculated and discussed. The galvanostatic polarization data indicated that, the inhibitors were of mixed-type, but the cathode is more polarized than the anode. The adsorption of these compounds on C-steel surface has been found to obey Frumkin's adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.

  4. 2-acetylphenol analogs as potent reversible monoamine oxidase inhibitors

    Directory of Open Access Journals (Sweden)

    Legoabe LJ

    2015-07-01

    Full Text Available Lesetja J Legoabe,1 Anél Petzer,1 Jacobus P Petzer1,21Centre of Excellence for Pharmaceutical Sciences, 2Department of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South AfricaAbstract: Based on a previous report that substituted 2-acetylphenols may be promising leads for the design of novel monoamine oxidase (MAO inhibitors, a series of C5-substituted 2-acetylphenol analogs (15 and related compounds (two were synthesized and evaluated as inhibitors of human MAO-A and MAO-B. Generally, the study compounds exhibited inhibitory activities against both MAO-A and MAO-B, with selectivity for the B isoform. Among the compounds evaluated, seven compounds exhibited IC50 values <0.01 µM for MAO-B inhibition, with the most selective compound being 17,000-fold selective for MAO-B over the MAO-A isoform. Analyses of the structure–activity relationships for MAO inhibition show that substitution on the C5 position of the 2-acetylphenol moiety is a requirement for MAO-B inhibition, and the benzyloxy substituent is particularly favorable in this regard. This study concludes that C5-substituted 2-acetylphenol analogs are potent and selective MAO-B inhibitors, appropriate for the design of therapies for neurodegenerative disorders such as Parkinson’s disease.Keywords: monoamine oxidase, MAO, inhibition, 2-acetylphenol, structure–activity relationship

  5. A fusion-inhibiting peptide against Rift Valley fever virus inhibits multiple, diverse viruses.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    Full Text Available For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III based on the protein sequence and structure. For Rift Valley fever virus (RVFV, the glycoprotein Gc (Class II fusion protein mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus, Class II (Andes virus, or Class III (vesicular stomatitis virus fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.

  6. Synthesis and application of polyaminoamide as new paraffin inhibitor from vegetable oil

    OpenAIRE

    Chen, Gang; Tang, Ying; Zhang, Jie

    2011-01-01

    Abstract In this work, a series of novel paraffin inhibitor, polyaminoamide (PAA), was designed and prepared by aminolysis and poly-condensation using soybean oil and canola oil as the raw material. The property of the PAAs as paraffin inhibitor was investigated, the results show several PAA samples are potent in paraffin inhibition, and PPC-2 is the most effective one. Besides, the paraffin crystal morphology analysis was carried out to provide the mechanism of paraffin inhibition.

  7. Identification of hematein as a novel inhibitor of protein kinase CK2 from a natural product library

    International Nuclear Information System (INIS)

    Hung, Ming-Szu; Xu, Zhidong; Lin, Yu-Ching; Mao, Jian-Hua; Yang, Cheng-Ta; Chang, Pey-Jium; Jablons, David M; You, Liang

    2009-01-01

    Casein kinase 2 (CK2) is dysregulated in various human cancers and is a promising target for cancer therapy. To date, there is no small molecular CK2 inhibitor in clinical trial yet. With the aim to identify novel CK2 inhibitors, we screened a natural product library. We adopted cell-based proliferation and CK2 kinase assays to screen CK2 inhibitors from a natural compound library. Dose-dependent response of CK2 inhibitors in vitro was determined by a radioisotope kinase assay. Western blot analysis was used to evaluate down stream Akt phosphorylation and apoptosis. Apoptosis was also evaluated by annexin-V/propidium iodide (PI) labeling method using flow cytometry. Inhibition effects of CK2 inhibitors on the growth of cancer and normal cells were evaluated by cell proliferation and viability assays. Hematein was identified as a novel CK2 inhibitor that is highly selective among a panel of kinases. It appears to be an ATP non-competitive and partially reversible CK2 inhibitor with an IC 50 value of 0.55 μM. In addition, hematein inhibited cancer cell growth partially through down-regulation of Akt phosphorylation and induced apoptosis in these cells. Furthermore, hematein exerted stronger inhibition effects on the growth of cancer cells than in normal cells. In this study, we showed that hematein is a novel selective and cell permeable small molecule CK2 inhibitor. Hematein showed stronger growth inhibition effects to cancer cells when compared to normal cells. This compound may represent a promising class of CK2 inhibitors

  8. Structural Mechanism of the Pan-BCR-ABL Inhibitor Ponatinib (AP24534): Lessons for Overcoming Kinase Inhibitor Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng; Wang, Yihan; Thomas, Mathew; Keats, Jeff; Xu, Qihong; Rivera, Victor M.; Shakespeare, William C.; Clackson, Tim; Dalgarno, David C.; Zhu, Xiaotian (ARIAD)

    2012-01-20

    The BCR-ABL inhibitor imatinib has revolutionized the treatment of chronic myeloid leukemia. However, drug resistance caused by kinase domain mutations has necessitated the development of new mutation-resistant inhibitors, most recently against the T315I gatekeeper residue mutation. Ponatinib (AP24534) inhibits both native and mutant BCR-ABL, including T315I, acting as a pan-BCR-ABL inhibitor. Here, we undertook a combined crystallographic and structure-activity relationship analysis on ponatinib to understand this unique profile. While the ethynyl linker is a key inhibitor functionality that interacts with the gatekeeper, virtually all other components of ponatinib play an essential role in its T315I inhibitory activity. The extensive network of optimized molecular contacts found in the DFG-out binding mode leads to high potency and renders binding less susceptible to disruption by single point mutations. The inhibitory mechanism exemplified by ponatinib may have broad relevance to designing inhibitors against other kinases with mutated gatekeeper residues.

  9. JAK-inhibitor tofacitinib suppresses interferon alfa production by plasmacytoid dendritic cells and inhibits arthrogenic and antiviral effects of interferon alfa.

    Science.gov (United States)

    Boor, Patrick P C; de Ruiter, Petra E; Asmawidjaja, Patrick S; Lubberts, Erik; van der Laan, Luc J W; Kwekkeboom, Jaap

    2017-10-01

    Tofacitinib is an oral Janus kinase inhibitor that is effective for the treatment of rheumatoid arthritis and shows encouraging therapeutic effects in several other autoimmune diseases. A prominent adverse effect of tofacitinib therapy is the increased risk of viral infections. Despite its advanced stage of clinical development, the modes of action that mediate the beneficial and adverse effects of tofacitinib in autoimmune diseases remain unclear. Interferon alfa (IFNα) produced by plasmacytoid dendritic cells (PDCs) is critically involved in the pathogenesis of many systemic autoimmune diseases and in immunity to viral infections. Using in vitro culture models with human cells, we studied the effects of tofacitinib on PDC survival and IFNα production, and on arthrogenic and antiviral effects of IFNα. Tofacitinib inhibited the expression of antiapoptotic BCL-A1 and BCL-XL in human PDC and induced PDC apoptosis. TLR7 stimulation upregulated the levels of antiapoptotic Bcl-2 family members and prevented the induction of PDC apoptosis by tofacitinib. However, tofacitinib robustly inhibited the production of IFNα by toll like receptor-stimulated PDC. In addition, tofacitinib profoundly suppressed IFNα-induced upregulation of TLR3 on synovial fibroblasts, thereby inhibiting their cytokine and protease production in response to TLR3 ligation. Finally, tofacitinib counteracted the suppressive effects of IFNα on viral replication. Tofacitinib inhibits PDC survival and IFNα production and suppresses arthrogenic and antiviral effects of IFNα signaling. Inhibition of the IFNα pathway at 2 levels may contribute to the beneficial effects of tofacitinib in autoimmune diseases and explain the increased viral infection rates observed during tofacitinib treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    Energy Technology Data Exchange (ETDEWEB)

    Muchir, Antoine, E-mail: a.muchir@institut-myologie.org [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Wu, Wei [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Sera, Fusako; Homma, Shunichi [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Worman, Howard J., E-mail: hjw14@columbia.edu [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States)

    2014-10-03

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  11. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    International Nuclear Information System (INIS)

    Muchir, Antoine; Wu, Wei; Sera, Fusako; Homma, Shunichi; Worman, Howard J.

    2014-01-01

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna H222P/H222P mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna H222P/H222P mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna H222P/H222P mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna H222P/H222P mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left ventricular fractional

  12. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides.

    Science.gov (United States)

    Wang, Zhiling; Zhao, Zhong; Cheng, Xiaofei; Liu, Suqi; Wei, Qin; Scott, Ian M

    2016-02-01

    Detoxification by glutathione S-transferases (GSTs) and esterases are important mechanisms associated with insecticide resistance. Discovery of novel GST and esterase inhibitors from phytochemicals could provide potential new insecticide synergists. Conifer tree species contain flavonoids, such as taxifolin, that inhibit in vitro GST activity. The objectives were to test the relative effectiveness of taxifolin as an enzyme inhibitor and as an insecticide synergist in combination with the organophosphorous insecticide, Guthion (50% azinphos-methyl), and the botanical insecticide, pyrethrum, using an insecticide-resistant Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say) strain. Both taxifolin and its isomer, quercetin, increased the mortality of 1(st) instar CPB larvae after 48h when combined with Guthion, but not pyrethrum. Taxifolin had greater in vitro esterase inhibition compared with the commonly used esterase inhibitor, S, S, S-tributyl phosphorotrithioate (DEF). An in vivo esterase and GST inhibition effect after ingestion of taxifolin was measured, however DEF caused a greater suppression of esterase activity. This study demonstrated that flavonoid compounds have both in vitro and in vivo esterase inhibition, which is likely responsible for the insecticide synergism observed in insecticide-resistant CPB. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  13. Bisulfite compounds as metabolic inhibitors: nonspecific effects on membranes

    Energy Technology Data Exchange (ETDEWEB)

    Luettge, U; Osmond, C B; Ball, E; Brinckmann, E; Kinze, G

    1972-01-01

    Bisulfite compounds are shown to be nonspecific inhibitors of photosynthetic processes and of ion transport in green tissues. CO/sub 2/ fixation and light-dependent transient changes in external pH are inhibited about 50% by 5 x 10/sup -4/M glyoxal-Na-bisulfite. Chloride uptake in the light and in the dark is inhibited to the same extent at this concentration. At 5 x 10/sup -3/M the inhibitor reduces ATP levels in the light and in the dark, and the effects on glycolate oxidase and PEP carboxylase are observed. The extent of inhibition is dependent on time of treatment with glyoxal-Na-bisulfite and freshly prepared NaHSO/sub 3/ is equally as effective as the addition compound. Possible explanations of the bisulfite effects and the relationships to SO/sub 2/ effects on photosynthesis are discussed.

  14. Inhibition of NADH-ubiquinone reductase activity by N,N'-dicyclohexylcarbodiimide and correlation of this inhibition with the occurrence of energy-coupling site 1 in various organisms

    International Nuclear Information System (INIS)

    Yagi, T.

    1987-01-01

    The NADH-ubiquinone reductase activity of the respiratory chains of several organisms was inhibited by the carboxyl-modifying reagent N,N'-dicyclohexylcarbodiimide (DCCD). This inhibition correlated with the presence of an energy-transducing site in this segment of the respiratory chain. Where the NADH-quinone reductase segment involved an energy-coupling site (e.g., in bovine heart and rat liver mitochondria, and in Paracoccus denitrificans, Escherichia coli, and Thermus thermophilus HB-8 membranes), DCCD acted as an inhibitor of ubiquinone reduction by NADH. By contrast, where energy-coupling site 1 was absent (e.g., in Saccharomyces cerevisiae mitochondria and BacilLus subtilis membranes), there was no inhibition of NADH-ubiquinone reductase activity by DCCD. In the bovine and P. denitrificans systems, DCCD inhibition was pseudo first order with respect to incubation time, and reaction order with respect to inhibitor concentration was close to unity, indicating that inhibition resulted from the binding of one inhibitor molecule per active unit of NADH-ubiquinone reductase. In the bovine NADH-ubiquinone reductase complex (complex I), [ 14 C]DCCD was preferentially incorporated into two subunits of molecular weight 49,000 and 29,000. The time course of labeling of the 29,000 molecular weight subunit with [ 14 C]DCCD paralleled the time course of inhibition of NADH-ubiquinone reductase activity

  15. Agonist-induced down-regulation of endogenous protein kinase c α through an endolysosomal mechanism.

    Science.gov (United States)

    Lum, Michelle A; Pundt, Krista E; Paluch, Benjamin E; Black, Adrian R; Black, Jennifer D

    2013-05-03

    Protein kinase C (PKC) isozymes undergo down-regulation upon sustained stimulation. Previous studies have pointed to the existence of both proteasome-dependent and -independent pathways of PKCα processing. Here we demonstrate that these down-regulation pathways are engaged in different subcellular compartments; proteasomal degradation occurs mainly at the plasma membrane, whereas non-proteasomal processing occurs in the perinuclear region. Using cholesterol depletion, pharmacological inhibitors, RNA interference, and dominant-negative mutants, we define the mechanisms involved in perinuclear accumulation of PKCα and identify the non-proteasomal mechanism mediating its degradation. We show that intracellular accumulation of PKCα involves at least two clathrin-independent, cholesterol/lipid raft-mediated pathways that do not require ubiquitination of the protein; one is dynamin-dependent and likely involves caveolae, whereas the other is dynamin- and small GTPase-independent. Internalized PKCα traffics through endosomes and is delivered to the lysosome for degradation. Supportive evidence includes (a) detection of the enzyme in EEA1-positive early endosomes, Rab7-positive late endosomes/multivesicular bodies, and LAMP1-positive lysosomes and (b) inhibition of its down-regulation by lysosome-disrupting agents and leupeptin. Only limited dephosphorylation of PKCα occurs during trafficking, with fully mature enzyme being the main target for lysosomal degradation. These studies define a novel and widespread mechanism of desensitization of PKCα signaling that involves endocytic trafficking and lysosome-mediated degradation of the mature, fully phosphorylated protein.

  16. Characteristics of the digestive vacuole membrane of the alga-bearing ciliate Paramecium bursaria.

    Science.gov (United States)

    Kodama, Yuuki; Fujishima, Masahiro

    2012-07-01

    Cells of the ciliate Paramecium bursaria harbor symbiotic Chlorella spp. in their cytoplasm. To establish endosymbiosis with alga-free P. bursaria, symbiotic algae must leave the digestive vacuole (DV) to appear in the cytoplasm by budding of the DV membrane. This budding was induced not only by intact algae but also by boiled or fixed algae. However, this budding was not induced when food bacteria or India ink were ingested into the DVs. These results raise the possibility that P. bursaria can recognize sizes of the contents in the DVs. To elucidate this possibility, microbeads with various diameters were mixed with alga-free P. bursaria and traced their fate. Microbeads with 0.20μm diameter did not induce budding of the DVs. Microbeads with 0.80μm diameter produced DVs of 5-10μm diameter at 3min after mixing; then the DVs fragmented and became vacuoles of 2-5μm diameter until 3h after mixing. Each microbead with a diameter larger than 3.00μm induced budding similarly to symbiotic Chlorella. These observations reveal that induction of DV budding depends on the size of the contents in the DVs. Dynasore, a dynamin inhibitor, greatly inhibited DV budding, suggesting that dynamin might be involved in DV budding. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells.

    Science.gov (United States)

    Alshehri, Abdullah; Grabowska, Anna; Stolnik, Snow

    2018-02-28

    Design of an efficient delivery system is a generally recognised bottleneck in translation of siRNA technology into clinic. Despite research efforts, cellular processes that determine efficiency of siRNA silencing achieved by different delivery formulations remain unclear. Here, we investigated the mechanism(s) of cellular internalisation of a model siRNA-loaded liposome system in a correlation to the engagement of delivered siRNA with its target and consequent silencing by adopting siRNA molecular beacon technology. Probing of cellular internalisation pathways by a panel of pharmacological inhibitors indicated that clathrin-mediated (dynamin-dependent) endocytosis, macropinocytosis (dynamine independent), and cell membrane cholesterol dependent process(es) (clathrin and caveolea-independent) all play a role in the siRNA-liposomes internalization. The inhibition of either of these entry routes was, in general, mirrored by a reduction in the level of siRNA engagement with its target mRNA, as well as in a reduction of the target gene silencing. A dramatic increase in siRNA engagement with its target RNA was observed on disruption of endosomal membrane (by chloroquine), accompanied with an increased silencing. The work thus illustrates that employing molecular beacon siRNA technology one can start to assess the target RNA engagement - a stage between initial cellular internalization and final gene silencing of siRNA delivery systems.

  18. A dual-specificity isoform of the protein kinase inhibitor PKI produced by alternate gene splicing.

    Science.gov (United States)

    Kumar, Priyadarsini; Walsh, Donal A

    2002-03-15

    We have previously shown that the protein kinase inhibitor beta (PKIbeta) form of the cAMP-dependent protein kinase inhibitor exists in multiple isoforms, some of which are specific inhibitors of the cAMP-dependent protein kinase, whereas others also inhibit the cGMP-dependent enzyme [Kumar, Van Patten and Walsh (1997), J. Biol. Chem. 272, 20011-20020]. We have now demonstrated that the switch from a cAMP-dependent protein kinase (PKA)-specific inhibitor to one with dual specificity arises as a consequence of alternate gene splicing. We have confirmed using bacterially produced pure protein that a single inhibitor species has dual specificity for both PKA and cGMP-dependent protein kinase (PKG), inhibiting each with very high and closely similar inhibitory potencies. The gene splicing converted a protein with 70 amino acids into one of 109 amino acids, and did not change the inhibitory potency to PKA, but changed it from a protein that had no detectable PKG inhibitory activity to one that now inhibited PKG in the nanomolar range.

  19. Identification of antifungal H+-ATPase inhibitors with effect on the plasma membrane potential

    DEFF Research Database (Denmark)

    Kjellerup, Lasse; Gordon, Sandra; Cohrt, Karen O'Hanlon

    2017-01-01

    to depolarize the membrane and inhibit extracellular acidification in intact fungal cells, concomitant with a significant increase in intracellular ATP levels. Collectively, we suggest these effects may be a common feature for Pma1 inhibitors. Additionally, the work uncovered a dual mechanism for the previously......The plasma membrane H(+)-ATPase (Pma1) is an essential fungal protein and a proposed target for new antifungal medications. A small-molecule library containing ∼191,000 commercially available compounds was screened for inhibition of S. cerevisiae plasma membranes containing Pma1. The overall hit...... identified cationic peptide BM2, revealing fungal membrane disruption in addition to Pma1 inhibition. The methods presented here provide a solid platform for the evaluation of Pma1-specific inhibitors in a drug development setting. The present inhibitors could serve as a starting point for the development...

  20. Analysis of the efficacy of SGLT2 inhibitors using semi-mechanistic model

    Science.gov (United States)

    Demin, Oleg; Yakovleva, Tatiana; Kolobkov, Dmitry; Demin, Oleg

    2014-01-01

    The Renal sodium-dependent glucose co-transporter 2 (SGLT2) is one of the most promising targets for the treatment of type 2 diabetes. Two SGLT2 inhibitors, dapagliflozin, and canagliflozin, have already been approved for use in USA and Europe; several additional compounds are also being developed for this purpose. Based on the in vitro IC50 values and plasma concentration of dapagliflozin measured in clinical trials, the marketed dosage of the drug was expected to almost completely inhibit SGLT2 function and reduce glucose reabsorption by 90%. However, the administration of dapagliflozin resulted in only 30–50% inhibition of reabsorption. This study was aimed at investigating the mechanism underlying the discrepancy between the expected and observed levels of glucose reabsorption. To this end, systems pharmacology models were developed to analyze the time profile of dapagliflozin, canagliflozin, ipragliflozin, empagliflozin, and tofogliflozin in the plasma and urine; their filtration and active secretion from the blood to the renal proximal tubules; reverse reabsorption; urinary excretion; and their inhibitory effect on SGLT2. The model shows that concentration levels of tofogliflozin, ipragliflozin, and empagliflozin are higher than levels of other inhibitors following administration of marketed SGLT2 inhibitors at labeled doses and non-marketed SGLT2 inhibitors at maximal doses (approved for phase 2/3 studies). All the compounds exhibited almost 100% inhibition of SGLT2. Based on the results of our model, two explanations for the observed low efficacy of SGLT2 inhibitors were supported: (1) the site of action of SGLT2 inhibitors is not in the lumen of the kidney's proximal tubules, but elsewhere (e.g., the kidneys proximal tubule cells); and (2) there are other transporters that could facilitate glucose reabsorption under the conditions of SGLT2 inhibition (e.g., other transporters of SGLT family). PMID:25352807

  1. A serine palmitoyltransferase inhibitor blocks hepatitis C virus replication in human hepatocytes.

    Science.gov (United States)

    Katsume, Asao; Tokunaga, Yuko; Hirata, Yuichi; Munakata, Tsubasa; Saito, Makoto; Hayashi, Hitohisa; Okamoto, Koichi; Ohmori, Yusuke; Kusanagi, Isamu; Fujiwara, Shinya; Tsukuda, Takuo; Aoki, Yuko; Klumpp, Klaus; Tsukiyama-Kohara, Kyoko; El-Gohary, Ahmed; Sudoh, Masayuki; Kohara, Michinori

    2013-10-01

    Host cell lipid rafts form a scaffold required for replication of hepatitis C virus (HCV). Serine palmitoyltransferases (SPTs) produce sphingolipids, which are essential components of the lipid rafts that associate with HCV nonstructural proteins. Prevention of the de novo synthesis of sphingolipids by an SPT inhibitor disrupts the HCV replication complex and thereby inhibits HCV replication. We investigated the ability of the SPT inhibitor NA808 to prevent HCV replication in cells and mice. We tested the ability of NA808 to inhibit SPT's enzymatic activity in FLR3-1 replicon cells. We used a replicon system to select for HCV variants that became resistant to NA808 at concentrations 4- to 6-fold the 50% inhibitory concentration, after 14 rounds of cell passage. We assessed the ability of NA808 or telaprevir to inhibit replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in mice with humanized livers (transplanted with human hepatocytes). NA808 was injected intravenously, with or without pegylated interferon alfa-2a and HCV polymerase and/or protease inhibitors. NA808 prevented HCV replication via noncompetitive inhibition of SPT; no resistance mutations developed. NA808 prevented replication of all HCV genotypes tested in mice with humanized livers. Intravenous NA808 significantly reduced viral load in the mice and had synergistic effects with pegylated interferon alfa-2a and HCV polymerase and protease inhibitors. The SPT inhibitor NA808 prevents replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in cultured hepatocytes and in mice with humanized livers. It might be developed for treatment of HCV infection or used in combination with pegylated interferon alfa-2a or HCV polymerase or protease inhibitors. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi-Scharber, Mika, E-mail: maoyagi@bmrn.com [BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949 (United States); Gardberg, Anna S. [Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110 (United States); Yip, Bryan K.; Wang, Bing; Shen, Yuqiao; Fitzpatrick, Paul A. [BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949 (United States)

    2014-08-29

    BMN 673, a novel PARP1/2 inhibitor in clinical development with substantial tumor cytotoxicity, forms extensive hydrogen-bonding and π-stacking in the nicotinamide pocket, with its unique disubstituted scaffold extending towards the less conserved edges of the pocket. These interactions might provide structural insight into the ability of BMN 673 to both inhibit catalysis and affect DNA-binding activity. Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2), which are involved in DNA damage response, are targets of anticancer therapeutics. BMN 673 is a novel PARP1/2 inhibitor with substantially increased PARP-mediated tumor cytotoxicity and is now in later-stage clinical development for BRCA-deficient breast cancers. In co-crystal structures, BMN 673 is anchored to the nicotinamide-binding pocket via an extensive network of hydrogen-bonding and π-stacking interactions, including those mediated by active-site water molecules. The novel di-branched scaffold of BMN 673 extends the binding interactions towards the outer edges of the pocket, which exhibit the least sequence homology among PARP enzymes. The crystallographic structural analyses reported here therefore not only provide critical insights into the molecular basis for the exceptionally high potency of the clinical development candidate BMN 673, but also new opportunities for increasing inhibitor selectivity.

  3. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone

    International Nuclear Information System (INIS)

    Aoyagi-Scharber, Mika; Gardberg, Anna S.; Yip, Bryan K.; Wang, Bing; Shen, Yuqiao; Fitzpatrick, Paul A.

    2014-01-01

    BMN 673, a novel PARP1/2 inhibitor in clinical development with substantial tumor cytotoxicity, forms extensive hydrogen-bonding and π-stacking in the nicotinamide pocket, with its unique disubstituted scaffold extending towards the less conserved edges of the pocket. These interactions might provide structural insight into the ability of BMN 673 to both inhibit catalysis and affect DNA-binding activity. Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2), which are involved in DNA damage response, are targets of anticancer therapeutics. BMN 673 is a novel PARP1/2 inhibitor with substantially increased PARP-mediated tumor cytotoxicity and is now in later-stage clinical development for BRCA-deficient breast cancers. In co-crystal structures, BMN 673 is anchored to the nicotinamide-binding pocket via an extensive network of hydrogen-bonding and π-stacking interactions, including those mediated by active-site water molecules. The novel di-branched scaffold of BMN 673 extends the binding interactions towards the outer edges of the pocket, which exhibit the least sequence homology among PARP enzymes. The crystallographic structural analyses reported here therefore not only provide critical insights into the molecular basis for the exceptionally high potency of the clinical development candidate BMN 673, but also new opportunities for increasing inhibitor selectivity

  4. Dual mTORC1/C2 inhibitors suppress cellular geroconversion (a senescence program).

    Science.gov (United States)

    Leontieva, Olga V; Demidenko, Zoya N; Blagosklonny, Mikhail V

    2015-09-15

    In proliferating cells, mTOR is active and promotes cell growth. When the cell cycle is arrested, then mTOR converts reversible arrest to senescence (geroconversion). Rapamycin and other rapalogs suppress geroconversion, maintaining quiescence instead. Here we showed that ATP-competitive kinase inhibitors (Torin1 and PP242), which inhibit both mTORC1 and TORC2, also suppressed geroconversion. Despite inhibition of proliferation (in proliferating cells), mTOR inhibitors preserved re-proliferative potential (RP) in arrested cells. In p21-arrested cells, Torin 1 and PP242 detectably suppressed geroconversion at concentrations as low as 1-3 nM and 10-30 nM, reaching maximal gerosuppression at 30 nM and 300 nM, respectively. Near-maximal gerosuppression coincided with inhibition of p-S6K(T389) and p-S6(S235/236). Dual mTOR inhibitors prevented senescent morphology and hypertrophy. Our study warrants investigation into whether low doses of dual mTOR inhibitors will prolong animal life span and delay age-related diseases. A new class of potential anti-aging drugs can be envisioned.

  5. The multi-targeted kinase inhibitor sorafenib inhibits enterovirus 71 replication by regulating IRES-dependent translation of viral proteins.

    Science.gov (United States)

    Gao, Meng; Duan, Hao; Liu, Jing; Zhang, Hao; Wang, Xin; Zhu, Meng; Guo, Jitao; Zhao, Zhenlong; Meng, Lirong; Peng, Yihong

    2014-06-01

    The activation of ERK and p38 signal cascade in host cells has been demonstrated to be essential for picornavirus enterovirus 71 (EV71) replication and up-regulation of virus-induced cyclooxygenase-2 (COX-2)/prostaglandins E2 (PGE2) expression. The aim of this study was to examine the effects of sorafenib, a clinically approved anti-cancer multi-targeted kinase inhibitor, on the propagation and pathogenesis of EV71, with a view to its possible mechanism and potential use in the design of therapy regimes for Hand foot and mouth disease (HFMD) patients with life threatening neurological complications. In this study, non-toxic concentrations of sorafenib were shown to inhibit the yield of infectious progeny EV71 (clinical BC08 strain) by about 90% in three different cell types. A similar inhibitory effect of sorafenib was observed on the synthesis of both viral genomic RNA and the VP1 protein. Interestingly, sorafenib exerted obvious inhibition of the EV71 internal ribosomal entry site (IRES)-mediated translation, the first step in picornavirus replication, by linking it to a firefly luciferase reporter gene. Sorafenib was also able to prevent both EV71-induced CPE and the activation of ERK and p38, which contributes to up-regulation COX-2/PGE2 expression induced by the virus. Overall, this study shows that sorafenib strongly inhibits EV71 replication at least in part by regulating viral IRES-dependent translation of viral proteins, indicating a novel potential strategy for the treatment of HFMD patients with severe neurological complications. To our knowledge, this is the first report that investigates the mechanism by which sorafenib inhibits EV71 replication. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. HDAC inhibitor L-carnitine and proteasome inhibitor bortezomib synergistically exert anti-tumor activity in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hongbiao Huang

    Full Text Available Combinations of proteasome inhibitors and histone deacetylases (HDAC inhibitors appear to be the most potent to produce synergistic cytotoxicity in preclinical trials. We have recently confirmed that L-carnitine (LC is an endogenous HDAC inhibitor. In the current study, the anti-tumor effect of LC plus proteasome inhibitor bortezomib (velcade, Vel was investigated both in cultured hepatoma cancer cells and in Balb/c mice bearing HepG2 tumor. Cell death and cell viability were assayed by flow cytometry and MTS, respectively. Gene, mRNA expression and protein levels were detected by gene microarray, quantitative real-time PCR and Western blot, respectively. The effect of Vel on the acetylation of histone H3 associated with the p21(cip1 gene promoter was examined by using ChIP assay and proteasome peptidase activity was detected by cell-based chymotrypsin-like (CT-like activity assay. Here we report that (i the combination of LC and Vel synergistically induces cytotoxicity in vitro; (ii the combination also synergistically inhibits tumor growth in vivo; (iii two major pathways are involved in the synergistical effects of the combinational treatment: increased p21(cip1 expression and histone acetylation in vitro and in vivo and enhanced Vel-induced proteasome inhibition by LC. The synergistic effect of LC and Vel in cancer therapy should have great potential in the future clinical trials.

  7. Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, {alpha}-D-Glucose and Tannic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Ostovari, A. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of)], E-mail: A.Ostovari@gmail.com; Hoseinieh, S.M.; Peikari, M. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Shadizadeh, S.R. [Petroleum Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Hashemi, S.J. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of)

    2009-09-15

    The inhibitive action of henna extract (Lawsonia inermis) and its main constituents (lawsone, gallic acid, {alpha}-D-Glucose and tannic acid) on corrosion of mild steel in 1 M HCl solution was investigated through electrochemical techniques and surface analysis (SEM/EDS). Polarization measurements indicate that all the examined compounds act as a mixed inhibitor and inhibition efficiency increases with inhibitor concentration. Maximum inhibition efficiency (92.06%) is obtained at 1.2 g/l henna extract. Inhibition efficiency increases in the order: lawsone > henna extract > gallic acid > {alpha}-D-Glucose > tannic acid. Also, inhibition mechanism and thermodynamic parameters are discussed.

  8. Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-D-Glucose and Tannic acid)

    International Nuclear Information System (INIS)

    Ostovari, A.; Hoseinieh, S.M.; Peikari, M.; Shadizadeh, S.R.; Hashemi, S.J.

    2009-01-01

    The inhibitive action of henna extract (Lawsonia inermis) and its main constituents (lawsone, gallic acid, α-D-Glucose and tannic acid) on corrosion of mild steel in 1 M HCl solution was investigated through electrochemical techniques and surface analysis (SEM/EDS). Polarization measurements indicate that all the examined compounds act as a mixed inhibitor and inhibition efficiency increases with inhibitor concentration. Maximum inhibition efficiency (92.06%) is obtained at 1.2 g/l henna extract. Inhibition efficiency increases in the order: lawsone > henna extract > gallic acid > α-D-Glucose > tannic acid. Also, inhibition mechanism and thermodynamic parameters are discussed.

  9. Binary Mixtures of Nonyl Phenol with Alkyl Substituted Anilines as Corrosion Inhibitors for Mild Steel in Acidic Medium

    Directory of Open Access Journals (Sweden)

    H. S. Shukla

    2012-01-01

    Full Text Available The present study deals with the evaluation of the corrosion inhibition effectiveness of the two binary mixtures of nonyl phenol (NPH with 2, 4 dimethyl aniline (DMA and 2 ethyl aniline (EA at different concentration ratios (from 1:7 to 7:1 for mild steel in H2SO4 (pH=1 solution by weight loss and potentiodynamic polarization method. Corrosion inhibition ability of the compounds has been tested at different exposure periods (6 h to 24 h and at different temperatures (303 K to 333 K. The binary mixture of NPH and EA (at 7:1 concentration ratio has afforded maximum inhibition (IE% 93.5% at 6 h exposure period and at room temperature. The adsorption of both the inhibitors is found to accord with Temkin adsorption isotherm. Potentiodynamic polarization study reveals that the tested inhibitors are mixed type inhibitor and preferentially act on cathodic areas. Electrochemical impedance study suggests formation of an inhibition layer by the adsorption of the inhibitors on the metal surface. An adsorption model of the inhibitor molecules on the metal surface has been proposed after immersion test in the inhibited acid showed characteristic shift of N-H and O-H bond frequencies towards lower side compared to that of the respective pure samples which indicated the donation of electron pair through N and O atom of the inhibitor molecule in the surface adsorption phenomena. SEM study has revealed formation of semi globular inhibitor products on the metal surface. The comparisons of the protection efficiencies of these compounds according to their relative electron density on the adsorption centre and projected molecular area of the inhibitor molecules have been made.

  10. Kinetics Investigation on Mushroom Tyrosinase Inhibition of Proso Millet

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2018-01-01

    Full Text Available Proso millet (Panicum miliaceum is rich in nutritive components and is widely used as a human food, feed and forage for animals, and fuel. This study investigated the effect of a proso millet extract on the inhibition of tyrosinase, a key enzyme in melanogenesis. High performance liquid chromatography analysis indicated that the proso millet extract contained phenolic tyrosinase inhibitors, such as syringic acid, p-coumaric acid, and ferulic acid. The extract had an IC50 for inhibition of tyrosinase activity of 14.02 mg/mL. A Lineweaver-Burk double reciprocal plot showed that the proso millet extract functioned as a mixed competitive and noncompetitive inhibitor. Proso millet has potential as a tyrosinase inhibitor that may have applications in the cosmetics industry.

  11. Saururus cernuus lignans-Potent small molecule inhibitors of hypoxia-inducible factor-1

    International Nuclear Information System (INIS)

    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R.; Zhang Lei; Bruick, Richard K.; Mohammed, Kaleem A.; Agarwal, Ameeta K.; Nagle, Dale G.; Zhou Yudong

    2005-01-01

    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related inactive compounds. In a T47D cell-based reporter assay, manassantin B 1 , manassantin A, and 4-O-methylsaucerneol inhibited hypoxia-induced HIF-1 activation with IC 50 values of 3, 3, and 20 nM, respectively. All three compounds are relatively hypoxia-specific inhibitors of HIF-1 activation, in comparison to other stimuli. The hypoxic induction of HIF-1 target genes CDKN1A, VEGF, and GLUT-1 were also inhibited. These compounds inhibit HIF-1 by blocking hypoxia-induced nuclear HIF-1α protein accumulation without affecting HIF-1α mRNA levels. In addition, preliminary structure-activity studies suggest specific structural requirements for this class of HIF-1 inhibitors

  12. Inhibition study of alanine aminotransferase enzyme using sequential online capillary electrophoresis analysis.

    Science.gov (United States)

    Liu, Lina; Chen, Yuanfang; Yang, Li

    2014-12-15

    We report the study of several inhibitors on alanine aminotransferase (ALT) enzyme using sequential online capillary electrophoresis (CE) assay. Using metal ions (Na(+) and Mg(2+)) as example inhibitors, we show that evolution of the ALT inhibition reaction can be achieved by automatically and simultaneously monitoring the substrate consumption and product formation as a function of reaction time. The inhibition mechanism and kinetic constants of ALT inhibition with succinic acid and two traditional Chinese medicines were derived from the sequential online CE assay. Our study could provide valuable information about the inhibition reactions of ALT enzyme. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Cholinesterase inhibitor (Altenuene) from an endophytic fungus Alternaria alternata: optimization, purification and characterization.

    Science.gov (United States)

    Bhagat, J; Kaur, A; Kaur, R; Yadav, A K; Sharma, V; Chadha, B S

    2016-10-01

    The aim of this study was to screen endophytic fungi isolated from Vinca rosea for their potential to produce acetylcholinesterase (AChE) inhibitors. Endophytic fungi isolated from V. rosea (Catharanthus roseus), were screened for AChE inhibitor production using Ellman's method. Maximum inhibition against AChE (78%) was observed in an isolate VS-10, identified to be Alternaria alternata on morphological and molecular basis. The isolate also inhibited butyrylcholinesterase (73%). Significant increase (1·3 fold) was achieved after optimization of process parameters using one variable at time approach. The inhibitor was purified using chromatographic techniques. The structure elucidation of the inhibitor was carried out using spectroscopic techniques and was identified to be 'altenuene'. The purified inhibitor possessed antioxidant potential as revealed by dot blot assay. The insecticidal potential of purified inhibitor was evaluated by feeding Spodoptora litura on diet amended with inhibitor. It evinced significant larval mortality. Endophytic A. alternata can serve as a source of dual cholinesterase inhibitor 'altenuene' with significant antioxidant and insecticidal activity. This is the first report on acetylcholinestearse inhibitory activity of altenuene. Alternaria alternata has the potential to produce a dual ChE inhibitor with antioxidant activity useful in the treatment of neurodegenerative disorders and in agriculture as biocontrol agent. © 2016 The Society for Applied Microbiology.

  14. Eco-Friendly Inhibitors for Copper Corrosion in Nitric Acid: Experimental and Theoretical Evaluation

    Science.gov (United States)

    Savita; Mourya, Punita; Chaubey, Namrata; Singh, V. K.; Singh, M. M.

    2016-02-01

    The inhibitive performance of Vitex negundo, Adhatoda vasica, and Saraka asoka leaf extracts on corrosion of copper in 3M HNO3 solution was investigated using gravimetric, potentiodynamic polarization, and electrochemical impedance spectroscopic techniques. Potentiodynamic polarization studies indicated that these extracts act as efficient and predominantly cathodic mixed inhibitor. Thermodynamic parameters revealed that the adsorption of these inhibitors on copper surface was spontaneous, controlled by physiochemical processes and occurred according to the Langmuir adsorption isotherm. AFM examination of copper surface confirmed that the inhibitor prevented corrosion by forming protective layer on its surface. The correlation between inhibitive effect and molecular structure was ascertained by density functional theory data.

  15. Inhibiting prenylation augments chemotherapy efficacy in renal cell carcinoma through dual inhibition on mitochondrial respiration and glycolysis.

    Science.gov (United States)

    Huang, Jiangrong; Yang, Xiaoyu; Peng, Xiaochun; Huang, Wei

    2017-11-18

    Prenylation is a posttranslational lipid modification required for the proper functions of a number of proteins involved in cell regulation. Here, we show that prenylation inhibition is important for renal cell carcinoma (RCC) growth, survival and response to chemotherapy, and its underlying mechanism may be contributed to mitochondrial dysfunction. We first demonstrated that a HMG-CoA reductase inhibitor pitavastatin inhibited mevalonate pathway and thereby prenylation in RCC cells. In addition, pitavastatin is effective in inhibiting growth and inducing apoptosis in a panel of RCC cell lines. Combination of pitavastatin and paclitaxel is significantly more effective than pitavastatin or paclitaxel alone as shown by both in vitro cell culture system and in vivo RCC xenograft model. Importantly, pitavastatin treatment inhibits mitochondrial respiration via suppressing mitochondrial complex I and II enzyme activities. Interestingly, different from mitochondrial inhibitor phenformin that inhibits mitochondrial respiration but activates glycolytic rate in RCC cells, pitavastatin significantly decreases glycolytic rate. The dual inhibitory action of pitavastatin on mitochondrial respiration and glycolysis results in remarkable energy depletion and oxidative stress in RCC cells. In addition, inhibition of prenylation by depleting Isoprenylcysteine carboxylmethyltransferase (Icmt) also mimics the inhibitory effects of pitavastatin in RCC cells. Our work demonstrates the previously unappreciated association between prenylation inhibition and energy metabolism in RCC, which can be therapeutically exploited, likely in tumors that largely rely on energy metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. THE INHIBITION OF DEOXYRIBONUCLEASS I BY HYDEOXY-PIPHENYLS

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, J.M.; Adams, N.H.; El-Badry, A.M.; Moses, V.; Calvin,M.

    1970-09-01

    DNA extracted with certain commercial brands of phenol is resistant to hydrolysis by the endonuclease DNAase I, while DNA extracted with other brands, or prepared by sodium chloride extraction, is susceptible to hydrolysis. The agent responsible for inhibition has been shown to be an oxidation product produced in some phenols. The inhibitor has been separated from other impurities in phenol by paper chromatography, and, by means of infrared and ultraviolet spectroscopy, it has been identified as o-hydroxybiphenyl. The kinetics of inhibition have been studied, and it was found that inhibition arises from direct action on the DNA rather than on the enzyme. Several hydroxybiphenyls and related compounds have been tested for inhibition, and a theory of molecular structure versus inhibitory effectiveness is suggested from this data. From studies on the chemical reversal of inhibition, as well as from ultraviolet spectral studies (in both absorption and circular dichroism), it appears that the mode of action of the inhibitors is hydrogen bonding to, and intercalation between, the basis of the nucleic acid.

  17. Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Bertran-Alamillo, Jordi; Molina, Miguel Angel

    2017-01-01

    Non-small-cell lung cancer patients with activating epidermal growth factor receptor (EGFR) mutations typically benefit from EGFR tyrosine kinase inhibitor treatment. However, virtually all patients succumb to acquired EGFR tyrosine kinase inhibitor resistance that occurs via diverse mechanisms....... The diversity and unpredictability of EGFR tyrosine kinase inhibitor resistance mechanisms presents a challenge for developing new treatments to overcome EGFR tyrosine kinase inhibitor resistance. Here, we show that Akt activation is a convergent feature of acquired EGFR tyrosine kinase inhibitor resistance......, across a spectrum of diverse, established upstream resistance mechanisms. Combined treatment with an EGFR tyrosine kinase inhibitor and Akt inhibitor causes apoptosis and synergistic growth inhibition in multiple EGFR tyrosine kinase inhibitor-resistant non-small-cell lung cancer models. Moreover...

  18. Detecting and treating breast cancer resistance to EGFR inhibitors

    Science.gov (United States)

    Moonlee, Sun-Young; Bissell, Mina J.; Furuta, Saori; Meier, Roland; Kenny, Paraic A.

    2016-04-05

    The application describes therapeutic compositions and methods for treating cancer. For example, therapeutic compositions and methods related to inhibition of FAM83A (family with sequence similarity 83) are provided. The application also describes methods for diagnosing cancer resistance to EGFR inhibitors. For example, a method of diagnosing cancer resistance to EGFR inhibitors by detecting increased FAM83A levels is described.

  19. A review of research on the problem of aggression inhibitors (Part II

    Directory of Open Access Journals (Sweden)

    Kalashnikova A.S.

    2014-09-01

    Full Text Available Many researchers in the genesis of the formation of aggressive behavior inextricably consider proagressive and constraining, or inhibiting, aggressive manifestations of structure. The second part of the article deals with a theoretical overview of the problem of aggression inhibitors, which covers the latest Russian and foreign research aimed at studying the individual manifestations of factors deterring aggression. For basis for the analysis we chose classification of personality structures inhibiting aggressive manifestations, proposed by F.S. Safuanov, which includes values, socio-normative, dispositional, emotional, communicative, intellectual restraining structure and psychological protective mechanisms. We made conclusion that the problem of aggression inhibitors currently stands on the threshold of a new phase of the study, that is to provide a holistic model, including illegal aggressive behavior, taking into account not only the socio-psychological characteristics of "aggressor" and his victims, and personality structures that promote and inhibiting aggression, but also covering a wide range of inhibitors of aggression, acting through different psychological mechanisms.

  20. Strategies for the inhibition of gingipains for the potential treatment of periodontitis and associated systemic diseases

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2014-08-01

    Full Text Available Gingipains are the major virulence factors of Porphyromonas gingivalis, the main periodontopathogen. It is expected that inhibition of gingipain activity in vivo could prevent or slow down the progression of adult periodontitis. To date, several classes of gingipain inhibitors have been recognized. These include gingipain N-terminal prodomains, synthetic compounds, inhibitors from natural sources, antibiotics, antiseptics, antibodies, and bacteria. Several synthetic compounds are potent gingipain inhibitors but inhibit a broad spectrum of host proteases and have undesirable side effects. Synthetic compounds with high specificity for gingipains have unknown toxicity effects, making natural inhibitors more promising as therapeutic gingipain blockers. Cranberry and rice extracts interfere with gingipain activity and prevent the growth and biofilm formation of periodontopathogens. Although the ideal gingipain inhibitor has yet to be discovered, gingipain inhibition represents a novel approach to treat and prevent periodontitis. Gingipain inhibitors may also help treat systemic disorders that are associated with periodontitis, including cardiovascular disease, rheumatoid arthritis, aspiration pneumonia, pre-term birth, and low birth weight.

  1. A novel approach to inhibit bone resorption

    DEFF Research Database (Denmark)

    Panwar, Preety; Søe, Kent; Guido, Rafael VC

    2016-01-01

    BACKGROUND AND PURPOSE: Cathepsin K (CatK) is a major drug target for the treatment of osteoporosis. Potent active site-directed inhibitors have been developed and showed variable success in clinical trials. These inhibitors block the entire activity of CatK and thus may interfere with other...... pathways. The present study investigates the antiresorptive effect of an exosite inhibitor that selectively inhibits only the therapeutically relevant collagenase activity of CatK. EXPERIMENTAL APPROACH: Human osteoclasts and fibroblasts were used to analyse the effect of the exosite inhibitor, ortho......-dihydrotanshinone (DHT1), and the active site inhibitor, odanacatib (ODN), on bone resorption and TGF-ß1 degradation. Cell cultures, Western blot, light and scanning electron microscopy as well as energy dispersive X-ray spectroscopy, molecular modelling and enzymatic assays were used to evaluate the inhibitors. KEY...

  2. SGLT2 inhibitors.

    Science.gov (United States)

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Determination of activities of human carbonic anhydrase II inhibitors ...

    African Journals Online (AJOL)

    Purpose: To evaluate the activities of new curcumin analogs as carbonic anhydrase II (CA-II) inhibitor. Methods: Carbonic anhydrase II (CA-II) inhibition was determined by each ligand capability to inhibit the esterase activity of CA-II using 4-NPA as a substrate in 96-well plates. Dimethyl sulfoxide was used to dissolve each ...

  4. Overlapping binding sites for trypsin and papain on a Kunitz-type proteinase inhibitor from Prosopis juliflora.

    Science.gov (United States)

    Franco, Octávio L; Grossi de Sá, Maria F; Sales, Maurício P; Mello, Luciane V; Oliveira, Adeliana S; Rigden, Daniel J

    2002-11-15

    Proteinase inhibitors are among the most promising candidates for expression by transgenic plants and consequent protection against insect predation. However, some insects can respond to the threat of the proteinase inhibitor by the production of enzymes insensitive to inhibition. Inhibitors combining more than one favorable activity are therefore strongly favored. Recently, a known small Kunitz trypsin inhibitor from Prosopis juliflora (PTPKI) has been shown to possess unexpected potent cysteine proteinase inhibitory activity. Here we show, by enzyme assay and gel filtration, that, unlike other Kunitz inhibitors with dual activities, this inhibitor is incapable of simultaneous inhibition of trypsin and papain. These data are most readily interpreted by proposing overlapping binding sites for the two enzymes. Molecular modeling and docking experiments favor an interaction mode in which the same inhibitor loop that interacts in a canonical fashion with trypsin can also bind into the papain catalytic site cleft. Unusual residue substitutions at the proposed interface can explain the relative rarity of twin trypsin/papain inhibition. Other changes seem responsible for the relative low affinity of PTPKI for trypsin. The predicted coincidence of trypsin and papain binding sites, once confirmed, would facilitate the search, by phage display for example, for mutants highly active against both proteinases. Copyright 2002 Wiley-Liss, Inc.

  5. Does SGLT2 inhibition with dapagliflozin overcome individual therapy resistance to RAAS inhibition?

    NARCIS (Netherlands)

    Petrykiv, Sergei; Laverman, Gozewijn D.; de Zeeuw, Dick; Heerspink, Hiddo J. L.

    Individual patients show a large variation in their response to renin-angiotensin-aldosteron system (RAAS) inhibition (RAASi), both in surrogates such as albuminuria and in hard renal outcomes. Sodium-glucose co-transporter 2 inhibitors (SGLT2) have been shown to lower albuminuria and to confer

  6. Flavonoids as Inhibitors of Human Butyrylcholinesterase Variants

    Directory of Open Access Journals (Sweden)

    Maja Katalinić

    2014-01-01

    Full Text Available The inhibition of butyrylcholinesterase (BChE, EC 3.1.1.8 appears to be of interest in treating diseases with symptoms of reduced neurotransmitter levels, such as Alzheimer’s disease. However, BCHE gene polymorphism should not be neglected in research since it could have an effect on the expected outcome. Several well-known cholinergic drugs (e.g. galantamine, huperzine and rivastigmine originating from plants, or synthesised as derivatives of plant compounds, have shown that herbs could serve as a source of novel target-directed compounds. We focused our research on flavonoids, biologically active polyphenolic compounds found in many plants and plant-derived products, as BChE inhibitors. All of the tested flavonoids: galangin, quercetin, fisetin and luteolin reversibly inhibited usual, atypical, and fluoride-resistant variants of human BChE. The inhibition potency increased in the following order, identically for all three BChE variants: luteolininhibitor dissociation constants (Ki ranged from 10 to 170 mmol/L. We showed that no significant change in the inhibition potency of selected flavonoids exists in view of BChE polymorphism. Our results suggested that flavonoids could assist the further development of new BChE-targeted drugs for treating symptoms of neurodegenerative diseases and dementia.

  7. The Janus kinase inhibitor tofacitinib inhibits TNF-α-induced gliostatin expression in rheumatoid fibroblast-like synoviocytes.

    Science.gov (United States)

    Kawaguchi, Yohei; Waguri-Nagaya, Yuko; Tatematsu, Naoe; Oguri, Yusuke; Kobayashi, Masaaki; Nozaki, Masahiro; Asai, Kiyofumi; Aoyama, Mineyoshi; Otsuka, Takanobu

    2018-01-15

    Gliostatin (GLS) is known to have angiogenic and arthritogenic activity, and GLS expression levels in serum from patients with rheumatoid arthritis (RA) are significantly correlated with the disease activity. Tofacitinib is a novel oral Janus kinase (JAK) inhibitor and is effective in treating RA. However, the mechanism of action of tofacitinib in fibroblast-like synoviocytes (FLSs) has not been elucidated. The purpose of this study was to investigate the modulatory effects of tofacitinib on serum GLS levels in patients with RA and GLS production in FLSs derived from patients with RA. Six patients with RA who had failed therapy with at least one TNF inhibitor and were receiving tofacitinib therapy were included in the study. Serum samples were collected to measure CRP, MMP-3 and GLS expression. FLSs derived from patients with RA were cultured and stimulated by TNFα with or without tofacitinib. GLS expression levels were determined using reverse transcription-polymerase chain reaction (RT-PCR), EIA and immunocytochemistry, and signal transducer and activator of transcription (STAT) protein phosphorylation levels were determined by western blotting. Treatment with tofacitinib decreased serum GLS levels in all patients. GLS mRNA and protein expression levels were significantly increased by treatment with TNF-α alone, and these increases were suppressed by treatment with tofacitinib, which also inhibited TNF-α-induced STAT1 phosphorylation. JAK/STAT activation plays a pivotal role in TNF-α-mediated GLS up-regulation in RA. Suppression of GLS expression in FLSs has been suggested to be one of the mechanisms through which tofacitinib exerts its anti-inflammatory effects.

  8. Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid

    OpenAIRE

    M. Yadav; Debasis Behera; Usha Sharma

    2016-01-01

    The purpose of this paper is to evaluate the protective ability of 1-(2-aminoethyl)-2-oleylimidazoline (AEOI) and 1-(2-oleylamidoethyl)-2-oleylimidazoline (OAEOI) as corrosion inhibitors for N80 steel in 15% hydrochloric acid, which may find application as eco-friendly corrosion inhibitors in acidizing processes in petroleum industry. Different concentrations of synthesized inhibitors AEOI and OAEOI were added to the test solution (15% HCl) and the corrosion inhibition of N80 steel in hydroch...

  9. Assessment of vandetanib as an inhibitor of various human renal transporters: inhibition of multidrug and toxin extrusion as a possible mechanism leading to decreased cisplatin and creatinine clearance.

    Science.gov (United States)

    Shen, Hong; Yang, Zheng; Zhao, Weiping; Zhang, Yueping; Rodrigues, A David

    2013-12-01

    Vandetanib was evaluated as an inhibitor of human organic anion transporter 1 (OAT1), OAT3, organic cation transporter 2 (OCT2), and multidrug and toxin extrusion (MATE1 and MATE2K) transfected (individually) into human embryonic kidney 293 cells (HEK293). Although no inhibition of OAT1 and OAT3 was observed, inhibition of OCT2-mediated uptake of 1-methyl-4-phenylpyridinium (MPP(+)) and metformin was evident (IC(50) of 73.4 ± 14.8 and 8.8 ± 1.9 µM, respectively). However, vandetanib was an even more potent inhibitor of MATE1- and MATE2K-mediated uptake of MPP(+) (IC(50) of 1.23 ± 0.05 and 1.26 ± 0.06 µM, respectively) and metformin (IC(50) of 0.16 ± 0.05 and 0.30 ± 0.09 µM, respectively). Subsequent cytotoxicity studies demonstrated that transport inhibition by vandetanib (2.5 µM) significantly decreased the sensitivity [right shift in concentration of cisplatin giving rise to 50% cell death; IC(50(CN))] of MATE1-HEK and MATE2K-HEK cells to cisplatin [IC(50(CN)) of 1.12 ± 0.13 versus 2.39 ± 0.44 µM; 0.85 ± 0.09 versus 1.99 ± 0.16 µM; P cisplatin nephrotoxicity (reduced cisplatin clearance), in some subjects receiving vandetanib therapy.

  10. AT13148, a first-in-class multi-AGC kinase inhibitor, potently inhibits gastric cancer cells both in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Yu [Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008 (China); Niu, Jianhua [Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008 (China); Shen, Yun [Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008 (China); Li, Dongmei [Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008 (China); Peng, Xinyu, E-mail: pppengxinyu@sina.com [Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008 (China); Wu, Xiangwei, E-mail: wuxiangweiys@126.com [Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008 (China)

    2016-09-09

    The AGC kinase family is important cell proliferation and survival. Dysregulation of this family contributes to gastric cancer progression. Here, we evaluated the potential activity of AT13148, a first-in-class multi-AGC kinase inhibitor, against gastric cancer cells. Our results showed that AT13148 exerted potent cytotoxic and anti-proliferative activities against a panel human gastric cancer cell lines (HGC-27, AGS, SNU-601, N87 and MKN-28), possibly via inducing cancer cell apoptotic death. Apoptosis inhibition by the Caspase blockers dramatically attenuated AT13148-caused cytotoxicity against gastric cancer cells. Intriguingly, same AT13148 treatment was not cytotoxic/pro-apoptotic to the non-cancerous human gastric epithelial GEC-1 cells. At the signaling level, AT13148 treatment in gastric cancer cells dramatically suppressed activation of multiple AGC kinases, including Akt (at p-Thr-308), p70S6 kinase (p70S6K), glycogen synthase kinase 3β (GSK-3β) and p90 ribosomal S6 kinase (RSK). Our in vivo studies demonstrated that daily oral gavage of AT13148 at well-tolerated doses significantly inhibited HGC27 xenograft tumor growth in nude mice. AGC activity was also dramatically decreased in AT13148-administrated HGC27 tumors. Therefore, targeting AGC kinases by AT13148 demonstrates superior anti-gastric cancer activity both in vitro and in vivo. The preclinical results of this study support the progression of this molecule into future evaluation as a valuable anti-gastric cancer candidate. - Highlights: • AT13148 is cytotoxic and anti-proliferative to human gastric cancer cells. • AT13148 induces gastric cancer cell apoptotic death, inhibited by Caspase inhibitors. • AT13148 inactivates multiple AGC kinases in human gastric cancer cells. • AT13148 oral administration suppresses HGC27 xenograft growth in nude mice. • AT13148 oral administration inhibits multiple AGC kinases in HGC27 xenograft tumors.

  11. Phosphodiesterase inhibitors enhance object memory independent of cerebral blood flow and glucose utilization in rats.

    Science.gov (United States)

    Rutten, Kris; Van Donkelaar, Eva L; Ferrington, Linda; Blokland, Arjan; Bollen, Eva; Steinbusch, Harry Wm; Kelly, Paul At; Prickaerts, Jos Hhj

    2009-07-01

    Phosphodiesterase (PDE) inhibitors prevent the breakdown of the second messengers, cyclic AMP (cAMP) and cyclic GMP (cGMP), and are currently studied as possible targets for cognitive enhancement. Earlier studies indicated beneficial effects of PDE inhibitors in object recognition. In this study we tested the effects of three PDE inhibitors on spatial memory as assessed in a place and object recognition task. Furthermore, as both cAMP and cGMP are known vasodilators, the effects of PDE inhibition on cognitive functions could be explained by enhancement of cerebrovascular function. We examined this possibility by measuring the effects of PDE5 and PDE4 inhibitor treatment on local cerebral blood flow and glucose utilization in rats using [14C]-iodoantipyrine and [14C]-2-deoxyglucose quantitative autoradiography, respectively. In the spatial location task, PDE5 inhibition (cGMP) with vardenafil enhanced only early phase consolidation, PDE4 inhibition (cAMP) with rolipram enhanced only late phase consolidation, and PDE2 inhibition (cAMP and cGMP) with Bay 60-7550 enhanced both consolidation processes. Furthermore, PDE5 inhibition had no cerebrovascular effects in hippocampal or rhinal areas. PDE4 inhibition increased rhinal, but not hippocampal blood flow, whereas it decreased glucose utilization in both areas. In general, PDE5 inhibition decreased the ratio between blood flow and glucose utilization, indicative of general oligaemia; whereas PDE4 inhibition increased this ratio, indicative of general hyperemia. Both oligaemic and hyperemic conditions are detrimental for brain function and do not explain memory enhancement. These results underscore the specific effects of cAMP and cGMP on memory consolidation (object and spatial memory) and provide evidence that the underlying mechanisms of PDE inhibition on cognition are independent of cerebrovascular effects.

  12. Computational methods for analysis and inference of kinase/inhibitor relationships

    Directory of Open Access Journals (Sweden)

    Fabrizio eFerrè

    2014-06-01

    Full Text Available The central role of kinases in virtually all signal transduction networks is the driving motivation for the development of compounds modulating their activity. ATP-mimetic inhibitors are essential tools for elucidating signaling pathways and are emerging as promising therapeutic agents. However, off-target ligand binding and complex and sometimes unexpected kinase/inhibitor relationships can occur for seemingly unrelated kinases, stressing that computational approaches are needed for learning the interaction determinants and for the inference of the effect of small compounds on a given kinase. Recently published high-throughput profiling studies assessed the effects of thousands of small compound inhibitors, covering a substantial portion of the kinome. This wealth of data paved the road for computational resources and methods that can offer a major contribution in understanding the reasons of the inhibition, helping in the rational design of more specific molecules, in the in silico prediction of inhibition for those neglected kinases for which no systematic analysis has been carried yet, in the selection of novel inhibitors with desired selectivity, and offering novel avenues of personalized therapies.

  13. FoxM1 is a general target for proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Uppoor G Bhat

    2009-08-01

    Full Text Available Proteasome inhibitors are currently in the clinic or in clinical trials, but the mechanism of their anticancer activity is not completely understood. The oncogenic transcription factor FoxM1 is one of the most overexpressed genes in human tumors, while its expression is usually halted in normal non-proliferating cells. Previously, we established that thiazole antibiotics Siomycin A and thiostrepton inhibit FoxM1 and induce apoptosis in human cancer cells. Here, we report that Siomycin A and thiostrepton stabilize the expression of a variety of proteins, such as p21, Mcl-1, p53 and hdm-2 and also act as proteasome inhibitors in vitro. More importantly, we also found that well-known proteasome inhibitors such as MG115, MG132 and bortezomib inhibit FoxM1 transcriptional activity and FoxM1 expression. In addition, overexpression of FoxM1 specifically protects against bortezomib-, but not doxorubicin-induced apoptosis. These data suggest that negative regulation of FoxM1 by proteasome inhibitors is a general feature of these drugs and it may contribute to their anticancer properties.

  14. Macrocyclic Peptoid–Peptide Hybrids as Inhibitors of Class I Histone Deacetylases

    DEFF Research Database (Denmark)

    Olsen, Christian Adam; Montero, Ana; Leman, Luke J.

    2012-01-01

    We report the design, synthesis, and biological evaluation of the first macrocyclic peptoid-containing histone deacetylase (HDAC) inhibitors. The compounds selectively inhibit human class I HDAC isoforms in vitro, with no inhibition of the tubulin deacetylase activity associated with class IIb HDAC...

  15. Xanthium strumarium leaves extracts as a friendly corrosion inhibitor of low carbon steel in hydrochloric acid: Kinetics and mathematical studies

    Directory of Open Access Journals (Sweden)

    Anees A. Khadom

    2018-06-01

    Full Text Available Corrosion inhibition of low carbon steel in 1 M HCl was investigated in absence and presence of Xanthium strumarium leaves (XSL extracts as a friendly corrosion inhibitor. The effect of temperature and inhibitor concentration was studied using weight loss method. The result obtained shown that Xanthium strumarium leaves extracts act as an inhibitor for low carbon steel in HCl and reduces the corrosion rate. The inhibition efficiency was found to increases with increase in inhibitor concentration and temperature. Higher inhibition efficiency was 94.82% at higher level of inhibitor concentration and temperature. The adsorption of Xanthium strumarium leaves extracts was found to obey Langmuir adsorption isotherm model. The values of the free energy of adsorption was more than −20 kJ/mol, which is indicative of mixed mode of physical and chemical adsorption. Keywords: Corrosion, Green inhibitor, Natural extracts, Low carbon steel, Acid, Adsorption

  16. Synthesis and study of thiocarbonate derivatives of choline as potential inhibitors of acetylcholinesterase.

    Science.gov (United States)

    Boyle, N A; Talesa, V; Giovannini, E; Rosi, G; Norton, S J

    1997-09-12

    Fourteen alkyl and aryl thiocarbonate derivatives of choline were synthesized and studied as potential inhibitors of acetylcholinesterase (AChE). Twelve of the compounds inhibited AChEs derived from calf forebrain, human red blood cells, and octopus brain ranging from low to moderately high inhibition potency. The concentration of each inhibitory compound giving 50% inhibition of enzyme activity (IC50 values, which ranged from 1 x 10(-2) to 8 x 10(-7) M) was determined and is reported; inhibitor constants (Ki values) for the most inhibitory compounds, (1-pentylthiocarbonyl)choline chloride and (1-heptylthiocarbonyl)choline chloride, were calculated from kinetic data and are also reported. The inhibitors are competitive with substrate, and they are not hydrolyzed by the AChE activities. Certain of these new compounds may provide direction for the development of new drugs that have anticholinesterase activity and may be used for the treatment of Alzheimer's disease.

  17. Identification and development of novel indazole derivatives as potent bacterial peptidoglycan synthesis inhibitors

    Directory of Open Access Journals (Sweden)

    Prasanthi Malapati

    2018-01-01

    Full Text Available Background: Tuberculosis is well-known airborne disease caused by Mycobacterium tuberculosis. Available treatment regimen was unsuccessful in eradicating the deaths caused by the disease worldwide. Owing to the drawbacks such as prolonged treatment period, side effects, and drug tolerance, there resulted in patient noncompliance. In the current study, we attempted to develop inhibitors against unexplored key target glutamate racemase. Methods: Lead identification was done using thermal shift assay from in-house library; inhibitors were developed by lead derivatization technique and evaluated using various biological assays. Results: In indazole series, compounds 11 (6.32 ± 0.35 μM and 22 (6.11 ± 0.51 μM were found to be most promising potent inhibitors among all. These compounds also showed their inhibition on replicating and nonreplicating bacteria. Conclusion: We have developed the novel inhibitors against M. tuberculosis capable of inhibiting active and dormant bacteria, further optimization of inhibitor derivatives can results in better compounds for eradicating tuberculosis.

  18. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  19. Inhibition of platelet [3H]- imipramine binding by human plasma protein fractions

    International Nuclear Information System (INIS)

    Strijewski, A.; Chudzik, J.; Tang, S.W.

    1988-01-01

    Inhibition of high-affinity [ 3 H]-imipramine binding to platelet membranes by human plasma fractions and isolated plasma proteins was investigated. Several plasma proteins were found to contribute to the observed apparent inhibition and this contribution was assessed in terms of inhibitor units. Alpha 1 acid glycoprotein, high density and low density lipoprotein, IgG and α 1 -antitrypsin were identified as effective non-specific inhibitors. Alpha-1-acid glycoprotein was confirmed to be the most potent plasma protein inhibitor. Cohn fractions were evaluated for the presence of the postulated endocoid of [ 3 H]-imipramine binding site

  20. Development of Radiosensitizer using farnesyltransferase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong Seok; Choe, Yong Kyung; Han, Mi Young; Kim, Kwang Dong [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    1999-03-01

    We selected some compounds that were reported to have an activity of farneyltransferase inhibitor and tested the hypothesis that they might be used to radiosensitize cells transformed by ras oncogenes. The inhibition of ras processing using some, but not all, inhibitors resulted in higher levels of cell death after {gamma}-irradiation and increased radiosensitivity in H-ras-transformed NIH3T3 cells and MCF-10A human tumor cells. They did not induce additional cell death in control cells that doe not have ras mutation. Furthermore, the treatment of inhibitors alone induced a weak G0/G1 block, whereas inhibitors in combination with {gamma}-irradiation induced an additional enrichment in the G2/M phase of the cell cycle that typically represents irradiation-induced growth arrest. At present, the underling mechanism by which the farnesylltransferase inhibitors exert radiosensitizing effect is not known. In summary, our results suggest and lead to the possibility that some of farnesylation inhibitors may prove clinically useful not only as antitumor agents, but also radiosensitizers of tumors whose growth is dependent on ras function. (author). 15 refs., 10 figs., 4 tabs.

  1. Discovery of Dengue Virus NS4B Inhibitors

    Science.gov (United States)

    Wang, Qing-Yin; Dong, Hongping; Zou, Bin; Karuna, Ratna; Wan, Kah Fei; Zou, Jing; Susila, Agatha; Yip, Andy; Shan, Chao; Yeo, Kim Long; Xu, Haoying; Ding, Mei; Chan, Wai Ling; Gu, Feng; Seah, Peck Gee; Liu, Wei; Lakshminarayana, Suresh B.; Kang, CongBao; Lescar, Julien; Blasco, Francesca; Smith, Paul W.

    2015-01-01

    ABSTRACT The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50, >20 μM). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients. IMPORTANCE Dengue virus (DENV) threatens up to 2.5 billion people and is now spreading in many regions in the world where it was not previously endemic. While there are several promising vaccine candidates in clinical trials, approved vaccines or antivirals are not yet available. Here we describe the identification and characterization of a spiropyrazolopyridone as a novel inhibitor of DENV by targeting the viral NS4B protein. The compound potently inhibits two of the four serotypes of DENV (DENV-2 and -3) both in vitro and in vivo. Our

  2. Development of Classification Models for Identifying “True” P-glycoprotein (P-gp Inhibitors Through Inhibition, ATPase Activation and Monolayer Efflux Assays

    Directory of Open Access Journals (Sweden)

    Anna Maria Bianucci

    2012-06-01

    Full Text Available P-glycoprotein (P-gp is an efflux pump involved in the protection of tissues of several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug resistance and in the progression of many neurodegenerative diseases. The development of new and more effective therapeutics targeting P-gp thus represents an intriguing challenge in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to overcome drug resistance to many kinds of tumours characterized by the over-expression of this protein. This study aims to develop classification models from a unique dataset of 59 compounds for which there were homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer efflux. For each experiment, the dataset was split into a training and a test set comprising 39 and 20 molecules, respectively. Rational splitting was accomplished using a sphere-exclusion type algorithm. After a two-step (internal/external validation, the best-performing classification models were used in a consensus predicting task for the identification of compounds named as “true” P-gp inhibitors, i.e., molecules able to inhibit P-gp without being effluxed by P-gp itself and simultaneously unable to activate the ATPase function.

  3. Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor.

    Science.gov (United States)

    Sagi, Yotam; Weinstock, Marta; Youdim, Moussa B H

    2003-07-01

    (R)-[(N-propargyl-(3R) aminoindan-5-yl) ethyl methyl carbamate] (TV3326) is a novel cholinesterase and brain-selective monoamine oxidase (MAO)-A/-B inhibitor. It was developed for the treatment of dementia co-morbid with extra pyramidal disorders (parkinsonism), and depression. On chronic treatment in mice it attenuated striatal dopamine depletion induced by MPTP and prevented the reduction in striatal tyrosine hydroxylase activity, like selective B and non-selective MAO inhibitors. TV3326 preferentially inhibits MAO-B in the striatum and hippocampus, and the degree of MAO-B inhibition correlates with the prevention of MPTP-induced dopamine depletion. Complete inhibition of MAO-B is not necessary for full protection from MPTP neurotoxicity. Unlike that seen after treatment with other MAO-A and -B inhibitors, recovery of striatal and hippocampal MAO-A and -B activities from inhibition by TV3326 did not show first-order kinetics. This has been attributed to the generation of a number of metabolites by TV3326 that cause differential inhibition of these enzymes. Inhibition of brain MAO-A and -B by TV3326 resulted in significant elevations of dopamine, noradrenaline and serotonin in the striatum and hippocampus. This may explain its antidepressant-like activity, resembling that of moclobemide in the forced-swim test in rats.

  4. Glyceroneogenesis is inhibited through HIV protease inhibitor-induced inflammation in human subcutaneous but not visceral adipose tissue

    Science.gov (United States)

    Leroyer, Stéphanie; Vatier, Camille; Kadiri, Sarah; Quette, Joëlle; Chapron, Charles; Capeau, Jacqueline; Antoine, Bénédicte

    2011-01-01

    Glyceroneogenesis, a metabolic pathway that participates during lipolysis in the recycling of free fatty acids to triglycerides into adipocytes, contributes to the lipid-buffering function of adipose tissue. We investigated whether glyceroneogenesis could be affected by human immunodeficiency virus (HIV) protease inhibitors (PIs) responsible or not for dyslipidemia in HIV-infected patients. We treated explants obtained from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depots from lean individuals. We observed that the dyslipidemic PIs nelfinavir, lopinavir and ritonavir, but not the lipid-neutral PI atazanavir, increased lipolysis and decreased glyceroneogenesis, leading to an increased release of fatty acids from SAT but not from VAT. At the same time, dyslipidemic PIs decreased the amount of perilipin and increased interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secretion in SAT but not in VAT. Parthenolide, an inhibitor of the NFκB pathway, counteracted PI-induced increased inflammation and decreased glyceroneogenesis. IL-6 (100 ng) inhibited the activity of phosphoenolpyruvate carboxykinase, the key enzyme of glyceroneogenesis, in SAT but not in VAT. Our data show that dyslipidemic but not lipid-neutral PIs decreased glyceroneogenesis as a consequence of PI-induced increased inflammation in SAT that could have an affect on adipocytes and/or macrophages. These results add a new link between fat inflammation and increased fatty acids release and suggest a greater sensitivity of SAT than VAT to PI-induced inflammation. PMID:21068005

  5. Effect of kinase inhibitors on the therapeutic properties of monoclonal antibodies.

    Science.gov (United States)

    Duong, Minh Ngoc; Matera, Eva-Laure; Mathé, Doriane; Evesque, Anne; Valsesia-Wittmann, Sandrine; Clémenceau, Béatrice; Dumontet, Charles

    2015-01-01

    Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated.

  6. Corrosion Inhibition and Adsorption Properties of Ethanolic Extract of Calotropis for Corrosion of Aluminium in Acidic Media

    OpenAIRE

    Sudesh Kumar; Suraj Prakash Mathur

    2013-01-01

    The corrosion inhibition of aluminium in sulfuric acid solution in the presence of different plant parts, namely, leaves, latex, and fruit was studied using weight loss method and thermometric method. The ethanolic extracts of Calotropis procera and Calotropis gigantea act as an inhibitor in the acid environment. The inhibition efficiency increases with increase in inhibitor concentration. The plant parts inhibit aluminium, and inhibition is attributed, due to the adsorption of the plant part...

  7. Targeting Ongoing DNA Damage in Multiple Myeloma: Effects of DNA Damage Response Inhibitors on Plasma Cell Survival

    Directory of Open Access Journals (Sweden)

    Ana Belén Herrero

    2017-05-01

    Full Text Available Human myeloma cell lines (HMCLs and a subset of myeloma patients with poor prognosis exhibit high levels of replication stress (RS, leading to DNA damage. In this study, we confirmed the presence of DNA double-strand breaks (DSBs in several HMCLs by measuring γH2AX and RAD51 foci and analyzed the effect of various inhibitors of the DNA damage response on MM cell survival. Inhibition of ataxia telangiectasia and Rad3-related protein (ATR, the main kinase mediating the response to RS, using the specific inhibitor VE-821 induced more cell death in HMCLs than in control lymphoblastoid cells and U266, an HMCL with a low level of DNA damage. The absence of ATR was partially compensated by ataxia telangiectasia-mutated protein (ATM, since chemical inhibition of both kinases using VE-821 and KU-55933 significantly increased the death of MM cells with DNA damage. We found that ATM and ATR are involved in DSB repair by homologous recombination (HR in MM. Inhibition of both kinases resulted in a stronger inhibition that may underlie cell death induction, since abolition of HR using two different inhibitors severely reduced survival of HMCLs that exhibit DNA damage. On the other hand, inhibition of the other route involved in DSB repair, non-homologous end joining (NHEJ, using the DNA-PK inhibitor NU7441, did not affect MM cell viability. Interestingly, we found that NHEJ inhibition did not increase cell death when HR was simultaneously inhibited with the RAD51 inhibitor B02, but it clearly increased the level of cell death when HR was inhibited with the MRE11 inhibitor mirin, which interferes with recombination before DNA resection takes place. Taken together, our results demonstrate for the first time that MM cells with ongoing DNA damage rely on an intact HR pathway, which thereby suggests therapeutic opportunities. We also show that inhibition of HR after the initial step of end resection might be more appropriate for inducing MM cell death, since it

  8. Enhancing Immune Checkpoint Inhibitor Therapy in Kidney Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0141 TITLE: Enhancing Immune Checkpoint Inhibitor therapy in Kidney Cancer PRINCIPAL INVESTIGATOR: Hans-Joerg Hammers...SUBTITLE Enhancing Immune Checkpoint Inhibitor therapy in Kidney Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 15-1-0141 5c. PROGRAM ELEMENT NUMBER...immune checkpoint inhibition in kidney cancer . The work is designed to test different strategies to induce or enhance the abscopal in a kidney cancer

  9. PARP Inhibition Restores Extrinsic Apoptotic Sensitivity in Glioblastoma

    Science.gov (United States)

    Karpel-Massler, Georg; Pareja, Fresia; Aimé, Pascaline; Shu, Chang; Chau, Lily; Westhoff, Mike-Andrew; Halatsch, Marc-Eric; Crary, John F.; Canoll, Peter; Siegelin, Markus D.

    2014-01-01

    Background Resistance to apoptosis is a paramount issue in the treatment of Glioblastoma (GBM). We show that targeting PARP by the small molecule inhibitors, Olaparib (AZD-2281) or PJ34, reduces proliferation and lowers the apoptotic threshold of GBM cells in vitro and in vivo. Methods The sensitizing effects of PARP inhibition on TRAIL-mediated apoptosis and potential toxicity were analyzed using viability assays and flow cytometry in established GBM cell lines, low-passage neurospheres and astrocytes in vitro. Molecular analyses included western blots and gene silencing. In vivo, effects on tumor growth were examined in a murine subcutaneous xenograft model. Results The combination treatment of PARP inhibitors and TRAIL led to an increased cell death with activation of caspases and inhibition of formation of neurospheres when compared to single-agent treatment. Mechanistically, pharmacological PARP inhibition elicited a nuclear stress response with up-regulation of down-stream DNA-stress response proteins, e.g., CCAAT enhancer binding protein (C/EBP) homology protein (CHOP). Furthermore, Olaparib and PJ34 increased protein levels of DR5 in a concentration and time-dependent manner. In turn, siRNA-mediated suppression of DR5 mitigated the effects of TRAIL/PARP inhibitor-mediated apoptosis. In addition, suppression of PARP-1 levels enhanced TRAIL-mediated apoptosis in malignant glioma cells. Treatment of human astrocytes with the combination of TRAIL/PARP inhibitors did not cause toxicity. Finally, the combination treatment of TRAIL and PJ34 significantly reduced tumor growth in vivo when compared to treatment with each agent alone. Conclusions PARP inhibition represents a promising avenue to overcome apoptotic resistance in GBM. PMID:25531448

  10. Developing selective histone deacetylases (HDACs inhibitors through ebselen and analogs

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-05-01

    Full Text Available Yuren Wang,1 Jason Wallach,2 Stephanie Duane,1 Yuan Wang,1 Jianghong Wu,1 Jeffrey Wang,1 Adeboye Adejare,2 Haiching Ma1 1Reaction Biology Corp., Malvern, 2Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA Abstract: Histone deacetylases (HDACs are key regulators of gene expression in cells and have been investigated as important therapeutic targets for cancer and other diseases. Different subtypes of HDACs appear to play disparate roles in the cells and are associated with specific diseases. Therefore, substantial effort has been made to develop subtype-selective HDAC inhibitors. In an effort to discover existing scaffolds with HDAC inhibitory activity, we screened a drug library approved by the US Food and Drug Administration and a National Institutes of Health Clinical Collection compound library in HDAC enzymatic assays. Ebselen, a clinical safe compound, was identified as a weak inhibitor of several HDACs, including HDAC1, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, and HDAC9 with half maximal inhibitory concentrations approximately single digit of µM. Two ebselen analogs, ebselen oxide and ebsulfur (a diselenide analog of ebselen, also inhibited these HDACs, however with improved potencies on HDAC8. Benzisothiazol, the core structure of ebsulfur, specifically inhibited HDAC6 at a single digit of µM but had no inhibition on other HDACs. Further efforts on structure–activity relationship based on the core structure of ebsulfur led to the discovery of a novel class of potent and selective HDAC6 inhibitors with RBC-2008 as the lead compound with single-digit nM potency. This class of histone deacetylase inhibitor features a novel pharmacophore with an ebsulfur scaffold selectively targeting HDAC6. Consistent with its inhibition on HDAC6, RBC-2008 significantly increased the acetylation levels of α-tubulin in PC-3 cells. Furthermore, treatment with these compounds led to

  11. Purification and characterization of a trypsin inhibitor from the seeds of Artocarpus heterophyllus Lam.

    Science.gov (United States)

    Lyu, Junchen; Liu, Yuan; An, Tianchen; Liu, Yujun; Wang, Manchuriga; Song, Yanting; Zheng, Feifei; Wu, Dan; Zhang, Yingxia; Deng, Shiming

    2015-05-01

    A proteinaceous inhibitor against trypsin was isolated from the seeds of Artocarpus heterophyllus Lam. by successive ammonium sulfate precipitation, ion-exchange, and gel-filtration chromatography. The trypsin inhibitor, named as AHLTI (A. heterophyllus Lam. trypsin inhibitor), consisted of a single polypeptide chain with a molecular weight of 28.5 kDa, which was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel-filtration chromatography. The N-terminal sequence of AHLTI was DEPPSELDAS, which showed no similarity to other known trypsin inhibitor sequence. AHLTI completely inhibited bovine trypsin at a molar ratio of 1:2 (AHLTI:trypsin) analyzed by native polyacrylamide gel electrophoresis, inhibition activity assay, and gel-filtration chromatography. Moreover, kinetic enzymatic studies were carried out to understand the inhibition mechanism of AHLTI against trypsin. Results showed that AHLTI was a competitive inhibitor with an equilibrium dissociation constant (Ki) of 3.7 × 10(-8) M. However, AHLTI showed weak inhibitory activity toward chymotrypsin and elastase. AHLTI was stable over a broad range of pH 4-8 and temperature 20-80°C. The reduction agent, dithiothreitol, had no obvious effect on AHLTI. The trypsin inhibition assays of AHLTI toward digestive enzymes from insect pest guts in vitro demonstrated that AHLTI was effective against enzymes from Locusta migratoria manilensis (Meyen). These results suggested that AHLTI might be a novel trypsin inhibitor from A. heterophyllus Lam. belonging to Kunitz family, and play an important role in protecting from insect pest. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  12. Bcl-XL represents a druggable molecular vulnerability during aurora B inhibitor-mediated polyploidization.

    Science.gov (United States)

    Shah, O Jameel; Lin, Xiaoyu; Li, Leiming; Huang, Xiaoli; Li, Junling; Anderson, Mark G; Tang, Hua; Rodriguez, Luis E; Warder, Scott E; McLoughlin, Shaun; Chen, Jun; Palma, Joann; Glaser, Keith B; Donawho, Cherrie K; Fesik, Stephen W; Shen, Yu

    2010-07-13

    Aurora kinase B inhibitors induce apoptosis secondary to polyploidization and have entered clinical trials as an emerging class of neocytotoxic chemotherapeutics. We demonstrate here that polyploidization neutralizes Mcl-1 function, rendering cancer cells exquisitely dependent on Bcl-XL/-2. This "addiction" can be exploited therapeutically by combining aurora kinase inhibitors and the orally bioavailable BH3 mimetic, ABT-263, which inhibits Bcl-XL, Bcl-2, and Bcl-w. The combination of ABT-263 with aurora B inhibitors produces a synergistic loss of viability in a range of cell lines of divergent tumor origin and exhibits more sustained tumor growth inhibition in vivo compared with aurora B inhibitor monotherapy. These data demonstrate that Bcl-XL/-2 is necessary to support viability during polyploidization in a variety of tumor models and represents a druggable molecular vulnerability with potential therapeutic utility.

  13. Iminopyrimidinones: A novel pharmacophore for the development of orally active renin inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    McKittrick, Brian A.; Caldwell, John P.; Bara, Thomas; Boykow, George; Chintala, Madhu; Clader, John; Czarniecki, Michael; Courneya, Brandy; Duffy, Ruth; Fleming, Linda; Giessert, Rachel; Greenlee, William J.; Heap, Charles; Hong, Liwu; Huang, Ying; Iserloh, Ulrich; Josien, Hubert; Khan, Tanweer; Korfmacher, Walter; Liang, Xian; Mazzola, Robert; Mitra, Soumya; Moore, Kristina; Orth, Peter; Rajagopalan, Murali; Roy, Sudipta; Sakwa, Samuel; Strickland, Corey; Vaccaro, Henry; Voigt, Johannes; Wang, Hongwu; Wong, Jesse; Zhang, Rumin; Zych, Andrew (Merck); (Albany MR)

    2015-04-01

    The development of renin inhibitors with favorable oral pharmacokinetic profiles has been a longstanding challenge for the pharmaceutical industry. As part of our work to identify inhibitors of BACE1, we have previously developed iminopyrimidinones as a novel pharmacophore for aspartyl protease inhibition. In this letter we describe how we modified substitution around this pharmacophore to develop a potent, selective and orally active renin inhibitor.

  14. Platelet GP II b/III a inhibitors in neurointervention therapeutics

    International Nuclear Information System (INIS)

    Wang Kuizhong; Huang Qinghai; Liu Jianmin

    2007-01-01

    The platelet glucoprotein (GP) II b/III a inhibitors prossess inhibiting platelet aggregation effectly. As new drugs of antiplatelet, they are different in mechanism with action, application and dosage between the II b/III a inhibitors and other tradional antiplatelet drugs such as aspirin or clopidogrel. In familiar with the pharmacologic action and clinical application of II b/III a inhibitors is important for endovascular interventional radiology, especially with important significance for obtaining high quality neuro-endovascular stenting in the perioperative period. (authors)

  15. Galectin-1 Inhibitor OTX008 Induces Tumor Vessel Normalization and Tumor Growth Inhibition in Human Head and Neck Squamous Cell Carcinoma Models.

    Science.gov (United States)

    Koonce, Nathan A; Griffin, Robert J; Dings, Ruud P M

    2017-12-09

    Galectin-1 is a hypoxia-regulated protein and a prognostic marker in head and neck squamous cell carcinomas (HNSCC). Here we assessed the ability of non-peptidic galectin-1 inhibitor OTX008 to improve tumor oxygenation levels via tumor vessel normalization as well as tumor growth inhibition in two human HNSCC tumor models, the human laryngeal squamous carcinoma SQ20B and the human epithelial type 2 HEp-2. Tumor-bearing mice were treated with OTX008, Anginex, or Avastin and oxygen levels were determined by fiber-optics and molecular marker pimonidazole binding. Immuno-fluorescence was used to determine vessel normalization status. Continued OTX008 treatment caused a transient reoxygenation in SQ20B tumors peaking on day 14, while a steady increase in tumor oxygenation was observed over 21 days in the HEp-2 model. A >50% decrease in immunohistochemical staining for tumor hypoxia verified the oxygenation data measured using a partial pressure of oxygen (pO₂) probe. Additionally, OTX008 induced tumor vessel normalization as tumor pericyte coverage increased by approximately 40% without inducing any toxicity. Moreover, OTX008 inhibited tumor growth as effectively as Anginex and Avastin, except in the HEp-2 model where Avastin was found to suspend tumor growth. Galectin-1 inhibitor OTX008 transiently increased overall tumor oxygenation via vessel normalization to various degrees in both HNSCC models. These findings suggest that targeting galectin-1-e.g., by OTX008-may be an effective approach to treat cancer patients as stand-alone therapy or in combination with other standards of care.

  16. Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition.

    Science.gov (United States)

    Trotta, Andrew P; Gelles, Jesse D; Serasinghe, Madhavika N; Loi, Patrick; Arbiser, Jack L; Chipuk, Jerry E

    2017-07-14

    The mitochondrial network is a major site of ATP production through the coupled integration of the electron transport chain (ETC) with oxidative phosphorylation. In melanoma arising from the V600E mutation in the kinase v-RAF murine sarcoma viral oncogene homolog B (BRAF V600E ), oncogenic signaling enhances glucose-dependent metabolism while reducing mitochondrial ATP production. Likewise, when BRAF V600E is pharmacologically inhibited by targeted therapies ( e.g. PLX-4032/vemurafenib), glucose metabolism is reduced, and cells increase mitochondrial ATP production to sustain survival. Therefore, collateral inhibition of oncogenic signaling and mitochondrial respiration may help enhance the therapeutic benefit of targeted therapies. Honokiol (HKL) is a well tolerated small molecule that disrupts mitochondrial function; however, its underlying mechanisms and potential utility with targeted anticancer therapies remain unknown. Using wild-type BRAF and BRAF V600E melanoma model systems, we demonstrate here that HKL administration rapidly reduces mitochondrial respiration by broadly inhibiting ETC complexes I, II, and V, resulting in decreased ATP levels. The subsequent energetic crisis induced two cellular responses involving cyclin-dependent kinases (CDKs). First, loss of CDK1-mediated phosphorylation of the mitochondrial division GTPase dynamin-related protein 1 promoted mitochondrial fusion, thus coupling mitochondrial energetic status and morphology. Second, HKL decreased CDK2 activity, leading to G 1 cell cycle arrest. Importantly, although pharmacological inhibition of oncogenic MAPK signaling increased ETC activity, co-treatment with HKL ablated this response and vastly enhanced the rate of apoptosis. Collectively, these findings integrate HKL action with mitochondrial respiration and shape and substantiate a pro-survival role of mitochondrial function in melanoma cells after oncogenic MAPK inhibition.

  17. Application of a cosmetic additive as an eco-friendly inhibitor for mild steel corrosion in HCl solution.

    Science.gov (United States)

    Liao, Liu Li; Mo, Shi; Lei, Jing Lei; Luo, Hong Qun; Li, Nian Bing

    2016-07-15

    The use of the cosmetic ingredient cocamidopropylamine oxide (CAO) to inhibit the corrosion of steel in 0.5mol/LHCl is investigated. Electrochemical and weight loss methods were used to evaluate the inhibiting effect of CAO and the influences of inhibitor concentration and temperature were determined. It was found that CAO acted as a mix-type inhibitor and was adsorbed chemically onto the steel in HCl solution, and the maximum inhibition efficiency was found at critical micelle concentration (CMC) of CAO in tested corrosive media. Moreover, it was speculated that relationships of the two adsorption sites of the inhibitor and steel surface were different. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.

    Directory of Open Access Journals (Sweden)

    Lanlan Liu

    Full Text Available Emerging evidence suggests that tumor-initiating cells (TICs are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC cells. Reactive oxygen species (ROS initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

  19. An ibuprofen-antagonized plasmin inhibitor released by human endothelial cells.

    Science.gov (United States)

    Rockwell, W B; Ehrlich, H P

    1991-02-01

    Serum-free culture medium harvested from endothelial cell monolayer cultures derived from human scars and dermis was examined for inhibition of fibrinolysis using a fibrin plate assay. Human cultured fibroblasts and smooth muscle cells did not produce any detectable inhibitory activity. The inhibitor is spontaneously released from the cultured endothelial cells over time. In the fibrin plate assay of plasmin-induced fibrinolysis, one nonsteroidal antiinflammatory (NSAI) drug, ibuprofen, was demonstrated to antagonize the inhibition of fibrinolysis. The antagonistic activity of ibuprofen appears unrelated to its NSAI drug activity because other NSAI drugs such as indomethacin and tolmetin have minimal antagonistic activity. Heating the cultured endothelial cells to 42 degrees C stimulates greater release of the inhibitor in a shorter period of time. This plasmin inhibitor, which is produced by endothelial cells, may contribute to postburn vascular occlusion, leading to secondary progressive necrosis in burn-traumatized patients.

  20. Steroid sulfatase inhibition success and limitation in breast cancer clinical assays: an underlying mechanism.

    Science.gov (United States)

    Sang, Xiaoye; Han, Hui; Poirier, Donald; Lin, Sheng Xiang

    2018-05-24

    Steroid sulfatase is detectable in most hormone-dependent breast cancers. STX64, an STS inhibitor, induced tumor reduction in animal assay. Despite success in phase І clinical trial, the results of phase II trial were not that significant. Breast Cancer epithelial cells (MCF-7 and T47D) were treated with two STS inhibitors (STX64 and EM1913). Cell proliferation, cell cycle, and the concentrations of estradiol and 5α-dihydrotestosterone were measured to determine the endocrinological mechanism of sulfatase inhibition. Comparisons were made with inhibitions of reductive 17β-hydroxysteroid dehydrogenases (17β-HSDs). Proliferation studies showed that DNA synthesis in cancer cells was modestly decreased (approximately 20%), accompanied by an up to 6.5% in cells in the G0/G1 phase and cyclin D1 expression reduction. The concentrations of estradiol and 5α-dihydrotestosterone were decreased by 26% and 3% respectively. However, supplementation of 5α-dihydrotestosterone produced a significant increase (approximately 35.6%) in the anti-proliferative effect of sulfatase inhibition. This study has clarified sex-hormone control by sulfatase in BC, suggesting that the different roles of estradiol and 5α-dihydrotestosterone can lead to a reduction in the effect of sulfatase inhibition when compared with 17β-HSD7 inhibition. This suggests that combined treatment of sulfatase inhibitors with 17β-HSD inhibitors such as the type7 inhibitor could hold promise for hormone-dependent breast cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. PLANTS AS A SOURCE OF GREEN CORROSION INHIBITORS ...

    African Journals Online (AJOL)

    Mgina

    Acacia senegal) exhibit good inhibition characteristics to corrosion on mild steel under fresh water medium and the ... as corrosion inhibitors for metals in various corrosive media ..... alloy corrosion in chloride solution", J. Appl. Electrochem.

  2. Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition.

    Directory of Open Access Journals (Sweden)

    Kevin Bray

    Full Text Available mTOR inhibitors are used clinically to treat renal cancer but are not curative. Here we show that autophagy is a resistance mechanism of human renal cell carcinoma (RCC cell lines to mTOR inhibitors. RCC cell lines have high basal autophagy that is required for survival to mTOR inhibition. In RCC4 cells, inhibition of mTOR with CCI-779 stimulates autophagy and eliminates RIP kinases (RIPKs and this is blocked by autophagy inhibition, which induces RIPK- and ROS-dependent necroptosis in vitro and suppresses xenograft growth. Autophagy of mitochondria is required for cell survival since mTOR inhibition turns off Nrf2 antioxidant defense. Thus, coordinate mTOR and autophagy inhibition leads to an imbalance between ROS production and defense, causing necroptosis that may enhance cancer treatment efficacy.

  3. Red wine contains a potent inhibitor of phenolsulphotransferase.

    Science.gov (United States)

    Littlewood, J T; Glover, V; Sandler, M

    1985-01-01

    Many ethanolic drinks, especially red wine, contain potent inhibitors of phenolsulphotransferase. At a dilution of 1/75 from the original beverage, extracts from six types of red wine inhibited human platelet phenolsulphotransferase P by a mean of 99% and human platelet phenolsulphotransferase M by 12%. Such extracts had no significant effect on rat liver monoamine oxidase A or human platelet monoamine oxidase B. The inhibitors, which have not yet been identified, can be extracted into ethyl acetate at acid or neutral pH. Thus, they are not monoamines. Flavonoid phenols are plausible candidates. As phenolsulphotransferase M and P are involved in the metabolism of many phenols, including drugs, the inhibition of these enzymes could result in the enhancement of pharmacological potency and have important clinical consequences. PMID:3857069

  4. Antipsychotic potential of quinazoline ErbB1 inhibitors in a schizophrenia model established with neonatal hippocampal lesioning.

    Science.gov (United States)

    Mizuno, Makoto; Iwakura, Yuriko; Shibuya, Masako; Zheng, Yingjun; Eda, Takeyoshi; Kato, Taisuke; Takasu, Yohei; Nawa, Hiroyuki

    2010-01-01

    Hyper-signaling of the epidermal growth factor receptor family (ErbB) is implicated in the pathophysiology of schizophrenia. Various quinazoline inhibitors targeting ErbB1 or ErbB2 - 4 have been developed as anti-cancer agents and might be useful for antipsychotic treatment. In the present study, we used an animal model of schizophrenia established by neonatal hippocampal lesioning and evaluated the neurobehavioral consequences of ErbB1-inhibitor treatment. Subchronic administration of the ErbB1 inhibitor ZD1839 to the cerebroventricle of rats receiving neonatal hippocampal lesioning ameliorated deficits in prepulse inhibition as well as those in the latent inhibition of tone-dependent fear learning. There were no apparent adverse effects on basal learning scores or locomotor activity, however. The administration of other ErbB1 inhibitors, PD153035 and OSI-774, similarly attenuated the prepulse inhibition impairment of this animal model. In parallel, there were decreases in ErbB1 phosphorylation in animals treated with ErbB1 inhibitors. These results indicate an antipsychotic potential of quinazoline ErbB1 inhibitors. ErbB receptor tyrosine kinases may be novel therapeutic targets for schizophrenia or its related psychotic symptoms.

  5. Structural Characterization of LRRK2 Inhibitors

    NARCIS (Netherlands)

    Gilsbach, Bernd K; Messias, Ana C; Ito, Genta; Sattler, Michael; Alessi, Dario R; Wittinghofer, Alfred; Kortholt, Arjan

    2015-01-01

    Kinase inhibition is considered to be an important therapeutic target for LRRK2 mediated Parkinson's disease (PD). Many LRRK2 kinase inhibitors have been reported but have yet to be optimized in order to qualify as drug candidates for the treatment of the disease. In order to start a

  6. Synergistic Effect on Corrosion Inhibition Efficiency of Ginger Affinale Extract in Controlling Corrosion of Mild Steel in Acid Medium

    International Nuclear Information System (INIS)

    Subramanian, Ananth Kumar; Arumugam, Sankar; Mallaiya, Kumaravel; Subramaniam, Rameshkumar

    2013-01-01

    The corrosion inhibition nature of Ginger affinale extract for the corrosion of mild steel in 0.5N H 2 SO 4 was investigated using weight loss, electrochemical impedance and potentiodynamic polarization methods. The results revealed that Ginger affinale extract acts as a good corrosion inhibitor in 0.5N H 2 SO 4 medium. The inhibition efficiency increased with an increase in inhibitor concentration. The inhibition could be attributed to the adsorption of the inhibitor on the steel surface

  7. A haploid genetic screen identifies the G1/S regulatory machinery as a determinant of Wee1 inhibitor sensitivity.

    Science.gov (United States)

    Heijink, Anne Margriet; Blomen, Vincent A; Bisteau, Xavier; Degener, Fabian; Matsushita, Felipe Yu; Kaldis, Philipp; Foijer, Floris; van Vugt, Marcel A T M

    2015-12-08

    The Wee1 cell cycle checkpoint kinase prevents premature mitotic entry by inhibiting cyclin-dependent kinases. Chemical inhibitors of Wee1 are currently being tested clinically as targeted anticancer drugs. Wee1 inhibition is thought to be preferentially cytotoxic in p53-defective cancer cells. However, TP53 mutant cancers do not respond consistently to Wee1 inhibitor treatment, indicating the existence of genetic determinants of Wee1 inhibitor sensitivity other than TP53 status. To optimally facilitate patient selection for Wee1 inhibition and uncover potential resistance mechanisms, identification of these currently unknown genes is necessary. The aim of this study was therefore to identify gene mutations that determine Wee1 inhibitor sensitivity. We performed a genome-wide unbiased functional genetic screen in TP53 mutant near-haploid KBM-7 cells using gene-trap insertional mutagenesis. Insertion site mapping of cells that survived long-term Wee1 inhibition revealed enrichment of G1/S regulatory genes, including SKP2, CUL1, and CDK2. Stable depletion of SKP2, CUL1, or CDK2 or chemical Cdk2 inhibition rescued the γ-H2AX induction and abrogation of G2 phase as induced by Wee1 inhibition in breast and ovarian cancer cell lines. Remarkably, live cell imaging showed that depletion of SKP2, CUL1, or CDK2 did not rescue the Wee1 inhibition-induced karyokinesis and cytokinesis defects. These data indicate that the activity of the DNA replication machinery, beyond TP53 mutation status, determines Wee1 inhibitor sensitivity, and could serve as a selection criterion for Wee1-inhibitor eligible patients. Conversely, loss of the identified S-phase genes could serve as a mechanism of acquired resistance, which goes along with development of severe genomic instability.

  8. The c-Met Inhibitor MSC2156119J Effectively Inhibits Tumor Growth in Liver Cancer Models

    Energy Technology Data Exchange (ETDEWEB)

    Bladt, Friedhelm, E-mail: Friedhelm.Bladt@merckgroup.com; Friese-Hamim, Manja; Ihling, Christian; Wilm, Claudia; Blaukat, Andree [EMD Serono, and Merck Serono Research and Development, Merck KGaA, Darmstadt 64293 (Germany)

    2014-08-19

    The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase with hepatocyte growth factor (HGF) as its only high-affinity ligand. Aberrant activation of c-Met is associated with many human malignancies, including hepatocellular carcinoma (HCC). We investigated the in vivo antitumor and antimetastatic efficacy of the c-Met inhibitor MSC2156119J (EMD 1214063) in patient-derived tumor explants. BALB/c nude mice were inoculated with MHCC97H cells or with tumor fragments of 10 patient-derived primary liver cancer explants selected according to c-Met/HGF expression levels. MSC2156119J (10, 30, and 100 mg/kg) and sorafenib (50 mg/kg) were administered orally as single-agent treatment or in combination, with vehicle as control. Tumor response, metastases formation, and alpha fetoprotein (AFP) levels were measured. MSC2156119J inhibited tumor growth and induced complete regression in mice bearing subcutaneous and orthotopic MHCC97H tumors. AFP levels were undetectable after 5 weeks of MSC2156119J treatment, and the number of metastatic lung foci was reduced. Primary liver explant models with strong c-Met/HGF activation showed increased responsiveness to MSC2156119J, with MSC2156119J showing similar or superior activity to sorafenib. Tumors characterized by low c-Met expression were less sensitive to MSC2156119J. MSC2156119J was better tolerated than sorafenib, and combination therapy did not improve efficacy. These findings indicate that selective c-Met/HGF inhibition with MSC2156119J is associated with marked regression of c-Met high-expressing tumors, supporting its clinical development as an antitumor treatment for HCC patients with active c-Met signaling.

  9. A high throughput screening assay for identifying glycation inhibitors on MALDI-TOF target.

    Science.gov (United States)

    Zhang, Qiuting; Tu, Zongcai; Wang, Hui; Fan, Liangliang; Huang, Xiaoqin; Xiao, Hui

    2015-03-01

    The Maillard reaction plays an important role in the food industry, however, the deleterious effects generated by the advanced glycation end-products (AGEs) have been well recognized. Many efforts have been made to seek new AGE inhibitors, in particular those natural ones without adverse effect. We have developed a rapid, mass spectrometry based, on-plate screening assay for novel AGE inhibitors. The glycation reaction, inhibition feedback as well as the subsequent MALDI mass spectrometric analysis occurred on one single MALDI plate. At 1:10 M ratio of peptide to sugar, as little as 4h incubation time allowed the screening test to be ready for analysis. DSP, inhibition and IC50 were calculated to evaluate selected inhibitors and resulting inhibition efficiencies were consistent with available references. We demonstrated that this method provide a potential high throughput screening assay to analyze and identify the anti-glycation agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Reduced RAC1 activity inhibits cell proliferation and induces apoptosis in neurofibromatosis type 2(NF2)-associated schwannoma.

    Science.gov (United States)

    Wang, Ying; Wang, Bo; Li, Peng; Zhang, Qi; Liu, Pinan

    2017-12-01

    Objective To study the function and potential mechanism of RAC1 inhibitors in NF2-associated schwannoma. Methods In this study, we the downregulation of RAC1 activity and tumor cell phenotypes by RAC1 inhibitor NSC23766 in vitro. And we further validated the anti-proliferation effect by this RAC1 inhibitor in subcutaneous xenograft tumor model and sciatic nerve model. Results Pharmacological inhibition of RAC1 could significantly inhibit the proliferation of both RT4 cells and human NF2-associated primary schwannoma cells by inducing apoptosis. Pharmacological inhibition of RAC1 effectively reduced Rac1 activity and down-regulated the pathway downstream of Rac. Moreover, pharmacological inhibition of RAC1 showed a potential antitumor effect, with low toxicity in vivo. Conclusion RAC1 inhibitors may play a therapeutic role in patients with schwannoma.

  11. Fragment growing and linking lead to novel nanomolar lactate dehydrogenase inhibitors.

    Science.gov (United States)

    Kohlmann, Anna; Zech, Stephan G; Li, Feng; Zhou, Tianjun; Squillace, Rachel M; Commodore, Lois; Greenfield, Matthew T; Lu, Xiaohui; Miller, David P; Huang, Wei-Sheng; Qi, Jiwei; Thomas, R Mathew; Wang, Yihan; Zhang, Sen; Dodd, Rory; Liu, Shuangying; Xu, Rongsong; Xu, Yongjin; Miret, Juan J; Rivera, Victor; Clackson, Tim; Shakespeare, William C; Zhu, Xiaotian; Dalgarno, David C

    2013-02-14

    Lactate dehydrogenase A (LDH-A) catalyzes the interconversion of lactate and pyruvate in the glycolysis pathway. Cancer cells rely heavily on glycolysis instead of oxidative phosphorylation to generate ATP, a phenomenon known as the Warburg effect. The inhibition of LDH-A by small molecules is therefore of interest for potential cancer treatments. We describe the identification and optimization of LDH-A inhibitors by fragment-based drug discovery. We applied ligand based NMR screening to identify low affinity fragments binding to LDH-A. The dissociation constants (K(d)) and enzyme inhibition (IC(50)) of fragment hits were measured by surface plasmon resonance (SPR) and enzyme assays, respectively. The binding modes of selected fragments were investigated by X-ray crystallography. Fragment growing and linking, followed by chemical optimization, resulted in nanomolar LDH-A inhibitors that demonstrated stoichiometric binding to LDH-A. Selected molecules inhibited lactate production in cells, suggesting target-specific inhibition in cancer cell lines.

  12. Pharmacophore Selection and Redesign of Non-nucleotide Inhibitors of Anthrax Edema Factor

    Directory of Open Access Journals (Sweden)

    Maria Estrella Jimenez

    2012-11-01

    Full Text Available Antibiotic treatment may fail to protect individuals, if not started early enough, after infection with Bacillus anthracis, due to the continuing activity of toxins that the bacterium produces. Stable and easily stored inhibitors of the edema factor toxin (EF, an adenylyl cyclase, could save lives in the event of an outbreak, due to natural causes or a bioweapon attack. The toxin’s basic activity is to convert ATP to cAMP, and it is thus in principle a simple phosphatase, which means that many mammalian enzymes, including intracellular adenylcyclases, may have a similar activity. While nucleotide based inhibitors, similar to its natural substrate, ATP, were identified early, these compounds had low activity and specificity for EF. We used a combined structural and computational approach to choose small organic molecules in large, web-based compound libraries that would, based on docking scores, bind to residues within the substrate binding pocket of EF. A family of fluorenone-based inhibitors was identified that inhibited the release of cAMP from cells treated with EF. The lead inhibitor was also shown to inhibit the diarrhea caused by enterotoxigenic E. coli (ETEC in a murine model, perhaps by serving as a quorum sensor. These inhibitors are now being tested for their ability to inhibit Anthrax infection in animal models and may have use against other pathogens that produce toxins similar to EF, such as Bordetella pertussis or Vibrio cholera.

  13. Pharmacophore selection and redesign of non-nucleotide inhibitors of anthrax edema factor.

    Science.gov (United States)

    Schein, Catherine H; Chen, Deliang; Ma, Lili; Kanalas, John J; Gao, Jian; Jimenez, Maria Estrella; Sower, Laurie E; Walter, Mary A; Gilbertson, Scott R; Peterson, Johnny W

    2012-11-08

    Antibiotic treatment may fail to protect individuals, if not started early enough, after infection with Bacillus anthracis, due to the continuing activity of toxins that the bacterium produces. Stable and easily stored inhibitors of the edema factor toxin (EF), an adenylyl cyclase, could save lives in the event of an outbreak, due to natural causes or a bioweapon attack. The toxin's basic activity is to convert ATP to cAMP, and it is thus in principle a simple phosphatase, which means that many mammalian enzymes, including intracellular adenylcyclases, may have a similar activity. While nucleotide based inhibitors, similar to its natural substrate, ATP, were identified early, these compounds had low activity and specificity for EF. We used a combined structural and computational approach to choose small organic molecules in large, web-based compound libraries that would, based on docking scores, bind to residues within the substrate binding pocket of EF. A family of fluorenone-based inhibitors was identified that inhibited the release of cAMP from cells treated with EF. The lead inhibitor was also shown to inhibit the diarrhea caused by enterotoxigenic E. coli (ETEC) in a murine model, perhaps by serving as a quorum sensor. These inhibitors are now being tested for their ability to inhibit Anthrax infection in animal models and may have use against other pathogens that produce toxins similar to EF, such as Bordetella pertussis or Vibrio cholera.

  14. Potential role of recombinant secretory leucoprotease inhibitor in the prevention of neutrophil mediated matrix degradation.

    Science.gov (United States)

    Llewellyn-Jones, C G; Lomas, D A; Stockley, R A

    1994-06-01

    Neutrophil elastase is able to degrade connective tissue matrices and is thought to be involved in the pathogenesis of destructive lung diseases. The ability of recombinant secretory leucoprotease inhibitor (rSLPI) to inhibit neutrophil mediated degradation of fibronectin in vitro is demonstrated and its efficacy compared with native alpha-1-proteinase inhibitor (n alpha 1-PI), recombinant alpha-1-proteinase inhibitor (r alpha 1-PI), and the chemical elastase inhibitor ICI 200,355. When preincubated with neutrophils both rSLPI and r alpha 1-PI were effective inhibitors of fibronectin degradation although n alpha 1-PI and ICI 200,355 were less effective. Recombinant SLPI was the most effective inhibitor when the cells were allowed to adhere to fibronectin before the addition of the inhibitors. Preincubation of rSLPI (0.1 mumol/l) with the fibronectin plate resulted in almost total inhibition of fibronectin degradation (reduced to 3.3 (SE 0.9)% of control). Pretreating the fibronectin plate with 1 mumol/l rSLPI, r alpha 1-PI and ICI 200,355 followed by thorough washing before the addition of cells resulted in no inhibition of fibronectin degradation with r alpha 1-PI and the ICI inhibitor, but rSLPI retained its inhibitory effect. This effect could be reduced by adding rSLPI in high pH buffer or 2 mol/1 NaCl. It is postulated that rSLPI binds to fibronectin to form a protective layer which prevents its degradation by neutrophil elastase. It may prove to be the most useful therapeutic agent in the prevention of neutrophil mediated lung damage.

  15. Extinction Generates Outcome-Specific Conditioned Inhibition.

    Science.gov (United States)

    Laurent, Vincent; Chieng, Billy; Balleine, Bernard W

    2016-12-05

    Extinction involves altering a previously established predictive relationship between a cue and its outcome by repeatedly presenting that cue alone. Although it is widely accepted that extinction generates some form of inhibitory learning [1-4], direct evidence for this claim has been lacking, and the nature of the associative changes induced by extinction have, therefore, remained a matter of debate [5-8]. In the current experiments, we used a novel behavioral approach that we recently developed and that provides a direct measure of conditioned inhibition [9] to compare the influence of extinguished and non-extinguished cues on choice between goal-directed actions. Using this approach, we provide direct evidence that extinction generates outcome-specific conditioned inhibition. Furthermore, we demonstrate that this inhibitory learning is controlled by the infralimbic cortex (IL); inactivation of the IL using M4 DREADDs abolished outcome-specific inhibition and rendered the cue excitatory. Importantly, we found that context modulated this inhibition. Outside its extinction context, the cue was excitatory and functioned as a specific predictor of its previously associated outcome, biasing choice toward actions earning the same outcome. In its extinction context, however, the cue acted as a specific inhibitor and biased choice toward actions earning different outcomes. Context modulation of these excitatory and inhibitory memories was mediated by the dorsal hippocampus (HPC), suggesting that the HPC and IL act in concert to control the influence of conditioned inhibitors on choice. These findings demonstrate for the first time that extinction turns a cue into a net inhibitor that can influence choice via counterfactual action-outcome associations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The kunitz protease inhibitor form of the amyloid precursor protein (KPI/APP) inhibits the proneuropeptide processing enzyme prohormone thiol protease (PTP). Colocalization of KPI/APP and PTP in secretory vesicles.

    Science.gov (United States)

    Hook, V Y; Sei, C; Yasothornsrikul, S; Toneff, T; Kang, Y H; Efthimiopoulos, S; Robakis, N K; Van Nostrand, W

    1999-01-29

    Proteolytic processing of proenkephalin and proneuropeptides is required for the production of active neurotransmitters and peptide hormones. Variations in the extent of proenkephalin processing in vivo suggest involvement of endogenous protease inhibitors. This study demonstrates that "protease nexin 2 (PN2)," the secreted form of the kunitz protease inhibitor (KPI) of the amyloid precursor protein (APP), potently inhibited the proenkephalin processing enzyme known as prohormone thiol protease (PTP), with a Ki,app of 400 nM. Moreover, PTP and PN2 formed SDS-stable complexes that are typical of kunitz protease inhibitor interactions with target proteases. In vivo, KPI/APP (120 kDa), as well as a truncated form of KPI/APP that resembles PN2 in apparent molecular mass (110 kDa), were colocalized with PTP and (Met)enkephalin in secretory vesicles of adrenal medulla (chromaffin granules). KPI/APP (110-120 kDa) was also detected in pituitary secretory vesicles that contain PTP. In chromaffin cells, calcium-dependent secretion of KPI/APP with PTP and (Met)enkephalin demonstrated the colocalization of these components in functional secretory vesicles. These results suggest a role for KPI/APP inhibition of PTP in regulated secretory vesicles. In addition, these results are the first to identify an endogenous protease target of KPI/APP, which is developmentally regulated in aging and Alzheimer's disease.

  17. Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors

    International Nuclear Information System (INIS)

    Zhou, Biner; Wang, Yishan; Zuo, Yu

    2015-01-01

    Highlights: • Inhibition effect of LaCl 3 and SDBS for AA 2024 in NaCl solution (pH 10) was studied. • At the beginning the active polarization behavior of the alloy changed to passivation. • The passive behavior gradually disappeared with time and pitting happened at S-phases. • The compounded inhibitors showed good inhibition but cannot totally inhibit pitting. • The adsorption of SDBS played the key role for inhibition to the corrosion process. - Abstract: The evolution of the corrosion process of AA 2024-T3 in 0.58 g L −1 NaCl solution (pH 10) with sodium dodecylbenzenesulfonate (SDBS) and lanthanum chloride inhibitors was studied with electrochemical and surface analysis methods. With the addition of the compounded LaCl 3 and SDBS inhibitors, in the early stage the polarization behavior of AA 2024-T3 changed from active corrosion to passivation, and both the general corrosion and pitting corrosion were inhibited. However, with the immersion time extended, the passive behavior gradually disappeared and pitting happened at the Cu-rich phases. After 24 h immersion, the compounded inhibitors still showed good inhibition for general corrosion, but the polarization curve again presented the characteristic similar to active polarization. The compounded inhibitors also inhibited the pitting corrosion to some extent. The acting mechanism of the inhibitors SDBS and La 3 Cl on the corrosion process of AA 2024-T3 in the test solution was discussed.

  18. The Role of Factor XIa (FXIa) Catalytic Domain Exosite Residues in Substrate Catalysis and Inhibition by the Kunitz Protease Inhibitor Domain of Protease Nexin 2*

    Science.gov (United States)

    Su, Ya-Chi; Miller, Tara N.; Navaneetham, Duraiswamy; Schoonmaker, Robert T.; Sinha, Dipali; Walsh, Peter N.

    2011-01-01

    To select residues in coagulation factor XIa (FXIa) potentially important for substrate and inhibitor interactions, we examined the crystal structure of the complex between the catalytic domain of FXIa and the Kunitz protease inhibitor (KPI) domain of a physiologically relevant FXIa inhibitor, protease nexin 2 (PN2). Six FXIa catalytic domain residues (Glu98, Tyr143, Ile151, Arg3704, Lys192, and Tyr5901) were subjected to mutational analysis to investigate the molecular interactions between FXIa and the small synthetic substrate (S-2366), the macromolecular substrate (factor IX (FIX)) and inhibitor PN2KPI. Analysis of all six Ala mutants demonstrated normal Km values for S-2366 hydrolysis, indicating normal substrate binding compared with plasma FXIa; however, all except E98A and K192A had impaired values of kcat for S-2366 hydrolysis. All six Ala mutants displayed deficient kcat values for FIX hydrolysis, and all were inhibited by PN2KPI with normal values of Ki except for K192A, and Y5901A, which displayed increased values of Ki. The integrity of the S1 binding site residue, Asp189, utilizing p-aminobenzamidine, was intact for all FXIa mutants. Thus, whereas all six residues are essential for catalysis of the macromolecular substrate (FIX), only four (Tyr143, Ile151, Arg3704, and Tyr5901) are important for S-2366 hydrolysis; Glu98 and Lys192 are essential for FIX but not S-2366 hydrolysis; and Lys192 and Tyr5901 are required for both inhibitor and macromolecular substrate interactions. PMID:21778227

  19. Barley alpha-amylase/subtilisin inhibitor: structure, biophysics and protein engineering

    DEFF Research Database (Denmark)

    Nielsen, P.K.; Bønsager, Birgit Christine; Fukuda, Kenji

    2004-01-01

    Bifunctional alpha-amylase/subtilisin inhibitors have been implicated in plant defence and regulation of endogenous alpha-amylase action. The barley alpha-amylase/subtilisin inhibitor (BASI) inhibits the barley alpha-amylase 2 (AMY2) and subtilisin-type serine proteases. BASI belongs to the Kunitz...... Ca2+-modulated kinetics of the AMY2/BASl interaction and found that the complex formation involves minimal structural changes. The modulation of the interaction by calcium ions makes it unique among the currently known binding mechanisms of proteinaceous alpha-amylase inhibitors....

  20. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.; Szklarz, Marta; Knapp, Stefan; Tesmer, John J.G. [Michigan; (Oxford)

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.

  1. Palmitoylethanolamide Inhibits Glutamate Release in Rat Cerebrocortical Nerve Terminals

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    2015-03-01

    Full Text Available The effect of palmitoylethanolamide (PEA, an endogenous fatty acid amide displaying neuroprotective actions, on glutamate release from rat cerebrocortical nerve terminals (synaptosomes was investigated. PEA inhibited the Ca2+-dependent release of glutamate, which was triggered by exposing synaptosomes to the potassium channel blocker 4-aminopyridine. This release inhibition was concentration dependent, associated with a reduction in cytosolic Ca2+ concentration, and not due to a change in synaptosomal membrane potential. The glutamate release-inhibiting effect of PEA was prevented by the Cav2.1 (P/Q-type channel blocker ω-agatoxin IVA or the protein kinase A inhibitor H89, not affected by the intracellular Ca2+ release inhibitors dantrolene and CGP37157, and partially antagonized by the cannabinoid CB1 receptor antagonist AM281. Based on these results, we suggest that PEA exerts its presynaptic inhibition, likely through a reduction in the Ca2+ influx mediated by Cav2.1 (P/Q-type channels, thereby inhibiting the release of glutamate from rat cortical nerve terminals. This release inhibition might be linked to the activation of presynaptic cannabinoid CB1 receptors and the suppression of the protein kinase A pathway.

  2. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Weiwei Guo

    Full Text Available Heat shock protein 90 (HSP90 inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70 family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.

  3. Impact of sodium–glucose cotransporter 2 inhibitors on blood pressure

    Science.gov (United States)

    Reed, James W

    2016-01-01

    SGLT2 inhibitors are glucose-lowering agents used to treat type 2 diabetes mellitus (T2DM). These agents target the kidney to promote urinary glucose excretion, resulting in improved blood glucose control. SGLT2-inhibitor therapy is also associated with weight loss and blood pressure (BP) lowering. Hypertension is a common comorbidity in patients with T2DM, and is associated with excess morbidity and mortality. This review summarizes data on the effect of SGLT2 inhibitors marketed in the US (namely canagliflozin, dapagliflozin, or empagliflozin) on BP in patients with T2DM. Boolean searches were conducted that included terms related to BP or hypertension with terms for SGLT2 inhibitors, canagliflozin, dapagliflozin, or empagliflozin using PubMed, Google, and Google Scholar. Data from numerous randomized controlled trials of SGLT2 inhibitors in patients with T2DM demonstrated clinically relevant reductions in both systolic and diastolic BP, assessed via seated office measurements and 24-hour ambulatory BP monitoring. Observed BP lowering was not associated with compensatory increases in heart rate. Circadian BP rhythm was also maintained. The mechanism of SGLT2 inhibitor-associated BP reduction is not fully understood, but is assumed to be related to osmotic diuresis and natriuresis. Other factors that may also contribute to BP reduction include SGLT2 inhibitor-associated decreases in body weight and reduced arterial stiffness. Local inhibition of the renin–angiotensin–aldosterone system secondary to increased delivery of sodium to the juxtaglomerular apparatus during SGLT2 inhibition has also been postulated. Although SGLT2 inhibitors are not indicated as BP-lowering agents, the modest decreases in systolic and diastolic BP observed with SGLT2 inhibitors may provide an extra clinical advantage for the majority of patients with T2DM, in addition to improving blood glucose control. PMID:27822054

  4. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    Science.gov (United States)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  5. Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

    Directory of Open Access Journals (Sweden)

    I. B. Obot

    2010-01-01

    Full Text Available The effect of nizoral (NZR on the corrosion inhibition of aluminium alloy AA 1060 in 2 M HCl solution was investigated using the mylius thermometric technique. Results of the study revealed that nizoral acts as corrosion inhibitor for aluminium in the acidic medium. In general, at constant acid concentration, the inhibition efficiency increases with increase in the inhibitor concentration. The addition of KI to the inhibitor enhanced the inhibition efficiency to a considerable extent. The adsorption of nizoral onto the aluminium surface was found to obey the Fruendlich adsorption isotherm. The value of the free energy for the adsorption process shows that the process is spontaneous.

  6. A metal-based inhibitor of NEDD8-activating enzyme.

    Directory of Open Access Journals (Sweden)

    Hai-Jing Zhong

    Full Text Available A cyclometallated rhodium(III complex [Rh(ppy(2(dppz](+ (1 (where ppy=2-phenylpyridine and dppz=dipyrido[3,2-a:2',3'-c]phenazine dipyridophenazine has been prepared and identified as an inhibitor of NEDD8-activating enzyme (NAE. The complex inhibited NAE activity in cell-free and cell-based assays, and suppressed the CRL-regulated substrate degradation and NF-κB activation in human cancer cells with potency comparable to known NAE inhibitor MLN4924. Molecular modeling analysis suggested that the overall binding mode of 1 within the binding pocket of the APPBP1/UBA3 heterodimer resembled that for MLN4924. Complex 1 is the first metal complex reported to suppress the NEDDylation pathway via inhibition of the NEDD8-activating enzyme.

  7. SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis.

    Science.gov (United States)

    Ferreira, Viviana P; Fazito Vale, Vladimir; Pangburn, Michael K; Abdeladhim, Maha; Mendes-Sousa, Antonio Ferreira; Coutinho-Abreu, Iliano V; Rasouli, Manoochehr; Brandt, Elizabeth A; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Pereira, Marcos Horácio; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M C; Gontijo, Nelder F; Collin, Nicolas; Valenzuela, Jesus G

    2016-01-13

    Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.

  8. Rational Design of Rho Protein Inhibitors

    National Research Council Canada - National Science Library

    Rojas, Rafael J

    2006-01-01

    ... nucleotide exchange factors (RhoGEFs). We have developed a high throughput screening strategy identify novel inhibitors of Rho activation are currently following up on several compounds which appear to selectively inhibit Rho activation. These compounds may form the basis of future drug development strategies for the treatment of metastatic breast cancer.

  9. Rational Design of Rho Protein Inhibitors

    National Research Council Canada - National Science Library

    Rojas, Rafael J

    2005-01-01

    ... nucleotide exchange factors (RhoGEFs). We have developed a high throughput screening strategy identify novel inhibitors of Rho activation are currently following up on several compounds which appear to selectively inhibit Rho activation. These compounds may form the basis of future drug development strategies for the treatment of metastatic breast cancer.

  10. An Additional Method for Analyzing the Reversible Inhibition of an 
Enzyme Using Acid Phosphatase as a Model.

    Science.gov (United States)

    Baumhardt, Jordan M; Dorsey, Benjamin M; McLauchlan, Craig C; Jones, Marjorie A

    2015-08-01

    Using wheat germ acid phosphatase and sodium orthovanadate as a competitive inhibitor, a novel method for analyzing reversible inhibition was carried out. Our alternative approach involves plotting the initial velocity at which product is formed as a function of the ratio of substrate concentration to inhibitor concentration at a constant enzyme concentration and constant assay conditions. The concept of initial concentrations driving equilibrium leads to the chosen axes. Three apparent constants can be derived from this plot: K max , K min , and K inflect . K max and K min represent the substrate to inhibitor concentration ratio for complete inhibition and minimal inhibition, respectively. K inflect represents the substrate to inhibitor concentration ratio at which the enzyme-substrate complex is equal to the inhibitory complex. These constants can be interpolated from the graph or calculated using the first and second derivative of the plot. We conclude that a steeper slope and a shift of the line to the right (increased x-axis values) would indicate a better inhibitor. Since initial velocity is not a linear function of the substrate/inhibitor ratio, this means that inhibition changes more quickly with the change in the [S]/ [I] ratio. When preincubating the enzyme with substrate before the addition of inhibitor, preincubating the enzyme with inhibitor before the addition of substrate or with concurrent addition of both substrate and inhibitor, modest changes in the slopes and y-intercepts were obtained. This plot appears useful for known competitive and non-competitive inhibitors and may have general applicability.

  11. Synergistic Effect on Corrosion Inhibition Efficiency of Ginger Affinale Extract in Controlling Corrosion of Mild Steel in Acid Medium

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Ananth Kumar; Arumugam, Sankar [Kandaswami Kandar' s College, Namakkal (India); Mallaiya, Kumaravel; Subramaniam, Rameshkumar [PSG College of Technology Peelamedu, Coimbatore (India)

    2013-12-15

    The corrosion inhibition nature of Ginger affinale extract for the corrosion of mild steel in 0.5N H{sub 2}SO{sub 4} was investigated using weight loss, electrochemical impedance and potentiodynamic polarization methods. The results revealed that Ginger affinale extract acts as a good corrosion inhibitor in 0.5N H{sub 2}SO{sub 4} medium. The inhibition efficiency increased with an increase in inhibitor concentration. The inhibition could be attributed to the adsorption of the inhibitor on the steel surface.

  12. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Wellington, Samantha; Nag, Partha P.; Michalska, Karolina; Johnston, Stephen E.; Jedrzejczak, Robert P.; Kaushik, Virendar K.; Clatworthy, Anne E.; Siddiqi, Noman; McCarren, Patrick; Bajrami, Besnik; Maltseva, Natalia I.; Combs, Senya; Fisher, Stewart L.; Joachimiak, Andrzej; Schreiber, Stuart L.; Hung, Deborah T.

    2017-07-03

    New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes—primarily those involved in macromolecular synthesis—are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB a–b-subunit interface and affects multiple steps in the enzyme’s overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.

  13. Blue tetrazolium as a novel corrosion inhibitor for cold rolled steel in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Li Xianghong; Deng Shuduan; Fu Hui

    2010-01-01

    The inhibition effect of blue tetrazolium (BT) on the corrosion of cold rolled steel (CRS) in 1.0 M HCl solution at 20 o C was investigated by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) methods. The results show that BT is a very good inhibitor, and the adsorption of BT on CRS surface obeys Langmuir adsorption isotherm. Polarization curves reveal that BT acts as a mixed-type inhibitor. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability. The inhibition action of BT is also evidenced by SEM images.

  14. Macrocarpal C isolated from Eucalyptus globulus inhibits dipeptidyl peptidase 4 in an aggregated form.

    Science.gov (United States)

    Kato, Eisuke; Kawakami, Kazuhiro; Kawabata, Jun

    2018-12-01

    Dipeptidyl peptidase 4 (DPP-4) inhibitors are used for the treatment of type-2 diabetes mellitus. Various synthetic inhibitors have been developed to date, and plants containing natural DPP-4 inhibitors have also been identified. Here, 13 plant samples were tested for their DPP-4 inhibitory activity. Macrocarpals A-C were isolated from Eucalyptus globulus through activity-guided fractionation and shown to be DPP-4 inhibitors. Of these, macrocarpal C showed the highest inhibitory activity, demonstrating an inhibition curve characterised by a pronounced increase in activity within a narrow concentration range. Evaluation of macrocarpal C solution by turbidity, nuclear magnetic resonance spectroscopy and mass spectrometry indicated its aggregation, which may explain the characteristics of the inhibition curve. These findings will be valuable for further study of potential small molecule DPP-4 inhibitors.

  15. Lactate dehydrogenase inhibition: exploring possible applications beyond cancer treatment.

    Science.gov (United States)

    Di Stefano, Giuseppina; Manerba, Marcella; Di Ianni, Lorenza; Fiume, Luigi

    2016-04-01

    Lactate dehydrogenase (LDH) inhibition is considered a worthwhile attempt in the development of innovative anticancer strategies. Unfortunately, in spite of the involvement of several research institutions and pharma-companies, the discovery of LDH inhibitors with drug-like properties seems a hardly resolvable challenge. While awaiting new advancements, in the present review we will examine other pathologic conditions characterized by increased glycolysis and LDH activity, which could potentially benefit from LDH inhibition. The rationale for targeting LDH activity in these contexts is the same justifying the LDH-based approach in anticancer therapy: because of the enzyme position at the end of glycolytic pathway, LDH inhibitors are not expected to hinder glucose metabolism of normal cells. Moreover, we will summarize the latest contributions in the discovery of enzyme inhibitors and try to glance over the reasons underlying the complexity of this research.

  16. Cysteine peptidases and their inhibitors in breast and genital cancer.

    Directory of Open Access Journals (Sweden)

    Magdalena Milan

    2010-11-01

    Full Text Available Cysteine proteinases and their inhibitors probably play the main role in carcinogenesis and metastasis. The metastasis process need external proteolytic activities that pass several barriers which are membranous structures of the connective tissue which includes, the basement membrane of blood vessels. Activities of the proteinases are regulated by endogenous inhibitors and activators. The imbalance between cysteine proteinases and cystatins seems to be associated with an increase in metastatic potential in some tumors. It has also been reported that proteinase inhibitors, specific antibodies for these enzymes and inhibition of the urokinase receptor may prevent cancer cell invasion. Some proteinase inhibitor could serve as agents for cancer treatment.

  17. The Effect of Adding Corrosion Inhibitors into an Electroless Nickel Plating Bath for Magnesium Alloys

    Science.gov (United States)

    Hu, Rong; Su, Yongyao; Liu, Hongdong; Cheng, Jiang; Yang, Xin; Shao, Zhongcai

    2016-10-01

    In this work, corrosion inhibitors were added into an electroless nickel plating bath to realize nickel-phosphorus (Ni-P) coating deposition on magnesium alloy directly. The performance of five corrosion inhibitors was evaluated by inhibition efficiency. The results showed that only ammonium hydrogen fluoride (NH4HF2) and ammonium molybdate ((NH4)2MoO4) could be used as corrosion inhibitors for magnesium alloy in the bath. Moreover, compounding NH4HF2 and (NH4)2MoO4, the optimal concentrations were both at 1.5 ~ 2%. The deposition process of Ni-P coating was observed by using a scanning electron microscope (SEM). It showed corrosion inhibitors inhibited undesired dissolution of magnesium substrate during the electroless plating process. In addition, SEM observation indicated that the corrosion inhibition reaction and the Ni2+ replacement reaction were competitive at the initial deposition time. Both electrochemical analysis and thermal shock test revealed that the Ni-P coating exhibited excellent corrosion resistance and adhesion properties in protecting the magnesium alloy.

  18. SGLT2 inhibitors: molecular design and potential differences in effect.

    Science.gov (United States)

    Isaji, Masayuki

    2011-03-01

    The physiological and pathological handling of glucose via sodium-glucose cotransporter-2 (SGLT2) in the kidneys has been evolving, and SGLT2 inhibitors have been focused upon as a novel drug for treating diabetes. SGLT2 inhibitors enhance renal glucose excretion by inhibiting renal glucose reabsorption. Consequently, SGLT2 inhibitors reduce plasma glucose insulin independently and improve insulin resistance in diabetes. To date, various SGLT2 inhibitors have been developed and evaluated in clinical studies. The potency and positioning of SGLT2 inhibitors as an antidiabetic drug are dependent on their characteristic profile, which induces selectivity, efficacy, pharmacokinetics, and safety. This profile decides which SGLT2 inhibitors can be expected for application of the theoretical concept of reducing renal glucose reabsorption for the treatment of diabetes. I review the structure and advancing profile of various SGLT2 inhibitors, comparing their similarities and differences, and discuss the expected SGLT2 inhibitors for an emerging category of antidiabetic drugs.

  19. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells.

    Science.gov (United States)

    Ge, Peng-Fei; Zhang, Ji-Zhou; Wang, Xiao-Fei; Meng, Fan-Kai; Li, Wen-Chen; Luan, Yong-Xin; Ling, Feng; Luo, Yi-Nan

    2009-07-01

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy. Due to the dual roles of autophagy in tumor cell survival and death, the effect of autophagy on the destiny of glioma cells remains unclear. In this study, we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells. The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells, and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA. Cell viability was measured by MTT assay. Apoptosis and cell cycle were detected by flow cytometry. The expression of autophagy related proteins was determined by Western blot. MG-132 inhibited cell proliferation, induced cell death and cell cycle arrest at G(2)/M phase, and activated autophagy in SHG-44 glioma cells. The expression of autophagy-related Beclin-1 and LC3-I was significantly up-regulated and part of LC3-I was converted into LC3-II. However, when SHG-44 glioma cells were co-treated with MG-132 and 3-MA, the cells became less viable, but cell death and cell numbers at G(2)/M phase increased. Moreover, the accumulation of acidic vesicular organelles was decreased, the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-II from LC3-I was also inhibited. Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells, and inhibition of autophagy increases cell death. This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.Acta Pharmacologica Sinica (2009) 30: 1046-1052; doi: 10.1038/aps.2009.71.

  20. Ticlopidine in Its Prodrug Form Is a Selective Inhibitor of Human NTPDase1

    Directory of Open Access Journals (Sweden)

    Joanna Lecka

    2014-01-01

    Full Text Available Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, like other ectonucleotidases, controls extracellular nucleotide levels and consequently their (pathophysiological responses such as in thrombosis, inflammation, and cancer. Selective NTPDase1 inhibitors would therefore be very useful. We previously observed that ticlopidine in its prodrug form, which does not affect P2 receptor activity, inhibited the recombinant form of human NTPDase1 (Ki=14 μM. Here we tested whether ticlopidine can be used as a selective inhibitor of NTPDase1. We confirmed that ticlopidine inhibits NTPDase1 in different forms and in different assays. The ADPase activity of intact HUVEC as well as of COS-7 cells transfected with human NTPDase1 was strongly inhibited by 100 µM ticlopidine, 99 and 86%, respectively. Ticlopidine (100 µM completely inhibited the ATPase activity of NTPDase1 in situ as shown by enzyme histochemistry with human liver and pancreas sections. Ticlopidine also inhibited the activity of rat and mouse NTPDase1 and of potato apyrase. At 100 µM ticlopidine did not affect the activity of human NTPDase2, NTPDase3, and NTPDase8, nor of NPP1 and NPP3. Weak inhibition (10–20% of NTPDase3 and -8 was observed at 1 mM ticlopidine. These results show that ticlopidine is a specific inhibitor of NTPDase1 that can be used in enzymatic and histochemistry assays.