WorldWideScience

Sample records for dynamics vibrational coupling

  1. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  2. Dissimilar Dynamics of Coupled Water Vibrations

    NARCIS (Netherlands)

    Jansen, Thomas L. C.; Cringus, Dan; Pshenichnikov, Maxim S.

    2009-01-01

    Dissimilar dynamics of coupled stretch vibrations of a water molecule are revealed by two-dimensional, IR correlation spectroscopy. These are caused by essentially non-Gaussian fluctuations of the electric field exerted by the environment on the individual OH stretch vibrations. Non-Gaussian

  3. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    Science.gov (United States)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  4. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression

    Science.gov (United States)

    Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin

    2017-05-01

    For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.

  5. Dynamic modeling and experiments on the coupled vibrations of building and elevator ropes

    Science.gov (United States)

    Yang, Dong-Ho; Kim, Ki-Young; Kwak, Moon K.; Lee, Seungjun

    2017-03-01

    This study is concerned with the theoretical modelling and experimental verification of the coupled vibrations of building and elevator ropes. The elevator ropes consist of a main rope which supports the cage and the compensation rope which is connected to the compensation sheave. The elevator rope is a flexible wire with a low damping, so it is prone to vibrations. In the case of a high-rise building, the rope length also increases significantly, so that the fundamental frequency of the elevator rope approaches the fundamental frequency of the building thus increasing the possibility of resonance. In this study, the dynamic model for the analysis of coupled vibrations of building and elevator ropes was derived by using Hamilton's principle, where the cage motion was also considered. An experimental testbed was built to validate the proposed dynamic model. It was found that the experimental results are in good agreement with the theoretical predictions thus validating the proposed dynamic model. The proposed model was then used to predict the vibrations of real building and elevator ropes.

  6. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling.

    Science.gov (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W

    2016-10-07

    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  7. Coupled electromechanical model of an imperfect piezoelectric vibrating cylinder gyroscope

    CSIR Research Space (South Africa)

    Loveday, PW

    1996-01-01

    Full Text Available Coupled electromechanical equations of motion, describing the dynamics of a vibrating cylinder gyroscope, are derived using Hamilton's principle and the Rayleigh-Ritz method. The vibrating cylinder gyroscope comprises a thin walled steel cylinder...

  8. Coherent vibrational dynamics

    CERN Document Server

    Lanzani, Guglielmo; De Silvestri, Sandro

    2007-01-01

    Vibrational spectroscopy is a powerful investigation tool for a wide class of materials covering diverse areas in physics, chemistry and biology. The continuous development in the laser field regarding ultrashort pulse generation has led to the possibility of producing light pulses that can follow vibrational motion coupled to the electronic transitions in molecules and solids in real time. Aimed at researchers and graduate students using vibrational spectroscopy, this book provides both introductory chapters as well as more advanced contents reporting on recent progress. It also provides a good starting point for scientists seeking a sound introduction to ultrafast optics and spectroscopic techniques.

  9. Dynamic Model and Vibration Power Flow of a Rigid-Flexible Coupling and Harmonic-Disturbance Exciting System for Flexible Robotic Manipulator with Elastic Joints

    Directory of Open Access Journals (Sweden)

    Yufei Liu

    2015-01-01

    Full Text Available This paper investigates the dynamic of a flexible robotic manipulator (FRM which consists of rigid driving base, flexible links, and flexible joints. With considering the motion fluctuations caused by the coupling effect, such as the motor parameters and mechanism inertias, as harmonic disturbances, the system investigated in this paper remains a parametrically excited system. An elastic restraint model of the FRM with elastic joints (FRMEJ is proposed, which considers the elastic properties of the connecting joints between the flexible arm and the driving base, as well as the harmonic disturbances aroused by the electromechanical coupling effect. As a consequence, the FRMEJ accordingly remains a flexible multibody system which conveys the effects of rigid-flexible couple and electromechanical couple. The Lagrangian function and Hamilton’s principle are used to establish the dynamic model of the FRMEJ. Based on the dynamic model proposed, the vibration power flow is introduced to show the vibration energy distribution. Numerical simulations are conducted to investigate the effect of the joint elasticities and the disturbance excitations, and the influences of the structure parameters and motion parameters on the vibration power flow are studied. The results obtained in this paper contribute to the structure design, motion optimization, and vibration control of FRMs.

  10. Ion-orbital coupling in Car-Parrinello calculations of hydrogen-bond vibrational dynamics: Case study with the NH3-HCl dimer

    Science.gov (United States)

    Ong, S. W.; Lee, B. X. B.; Kang, H. C.

    2011-09-01

    We have performed Car-Parrinello molecular dynamics (CPMD) calculations of the hydrogen-bonded NH3-HCl dimer. Our main aim is to establish how ionic-orbital coupling in CPMD affects the vibrational dynamics in hydrogen-bonded systems by characterizing the dependence of the calculated vibrational frequencies upon the orbital mass in the adiabatic limit of Car-Parrinello calculations. We use the example of the NH3-HCl dimer because of interest in its vibrational spectrum, in particular the magnitude of the frequency shift of the H-Cl stretch due to the anharmonic interactions when the hydrogen bond is formed. We find that an orbital mass of about 100 a.u. or smaller is required in order for the ion-orbital coupling to be linear in orbital mass, and the results for which can be accurately extrapolated to the adiabatic limit of zero orbital mass. We argue that this is general for hydrogen-bonded systems, suggesting that typical orbital mass values used in CPMD are too high to accurately describe vibrational dynamics in hydrogen-bonded systems. Our results also show that the usual application of a scaling factor to the CPMD frequencies to correct for the effects of orbital mass is not valid. For the dynamics of the dimer, we find that the H-Cl stretch and the N-H-Cl bend are significantly coupled, suggesting that it is important to include the latter degree of freedom in quantum dynamical calculations. Results from our calculations with deuterium-substitution show that both these degrees of freedom have significant anharmonic interactions. Our calculated frequency for the H-Cl stretch using the Becke-exchange Lee-Yang-Parr correlation functional compares reasonably well with a previous second-order Møller-Plesset calculation with anharmonic corrections, although it is low compared to the experimental value for the dimer trapped in a neon-matrix.

  11. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Administrator

    + O2 collisions at the experimental collision energy of 23 eV. The quantum dynamics has been performed within the vibrational close-coupling rotational infinite-order sudden approximation frame- work employing our newly obtained quasi-diabatic potential energy surfaces corresponding to the ground and the first excited ...

  12. Contribution to Experimental Validation of Linear and Non-Linear Dynamic Models for Representing Rotor-Blade Parametric Coupled Vibrations

    DEFF Research Database (Denmark)

    Santos, Ilmar; Saracho, C.M.; Smith, J.T.

    2004-01-01

    , it is possible to highlight some dynamic effects and experimentally simulate the structural behavior of a windmill in two dimensions (2D-model). Only lateral displacement of the rotor in the horizontal direction is taken into account. Gyroscopic effect due to rotor angular vibrations is eliminated in the test......This work gives a theoretical and experimental contribution to the problem of rotor-blades dynamic interaction. A validation procedure of mathematical models is carried out with help of a simple test rig, built by a mass-spring system attached to four flexible rotating blades. With this test rig...... linear, non-linear and time-depending terms in a very transparent way. Although neither gyroscopic effect due to rotor angular vibrations nor higher blade mode shapes are considered in the analysis, the equations of motion of the rotor-blades system are still general enough for the purpose of the work...

  13. Signatures of vibronic coupling in two-dimensional electronic-vibrational and vibrational-electronic spectroscopies

    Science.gov (United States)

    Gaynor, James D.; Khalil, Munira

    2017-09-01

    Two-Dimensional Electronic-Vibrational (2D EV) spectroscopy and Two-Dimensional Vibrational-Electronic (2D VE) spectroscopy are new coherent four-wave mixing spectroscopies that utilize both electronically resonant and vibrationally resonant field-matter interactions to elucidate couplings between electronic and vibrational degrees of freedom. A system Hamiltonian is developed here to lay a foundation for interpreting the 2D EV and 2D VE signals that arise from a vibronically coupled molecular system in the condensed phase. A molecular system consisting of one anharmonic vibration and two electronic states is modeled. Equilibrium displacement of the vibrational coordinate and vibrational frequency shifts upon excitation to the first electronic excited state are included in our Hamiltonian through linear and quadratic vibronic coupling terms. We explicitly consider the nuclear dependence of the electronic transition dipole moment and demonstrate that these spectroscopies are sensitive to non-Condon effects. A series of simulations of 2D EV and 2D VE spectra obtained by varying parameters of the system, system-bath, and interaction Hamiltonians demonstrate that one of the following conditions must be met to observe signals: (1) non-zero linear and/or quadratic vibronic coupling in the electronic excited state, (2) vibrational-coordinate dependence of the electronic transition dipole moment, or (3) electronic-state-dependent vibrational dephasing dynamics. We explore how these vibronic interactions are manifested in the positions, amplitudes, and line shapes of the peaks in 2D EV and 2D VE spectroscopies.

  14. A Miniature Coupled Bistable Vibration Energy Harvester

    International Nuclear Information System (INIS)

    Zhu, D; Arthur, D C; Beeby, S P

    2014-01-01

    This paper reports the design and test of a miniature coupled bistable vibration energy harvester. Operation of a bistable structure largely depends on vibration amplitude rather than frequency, which makes it very promising for wideband vibration energy harvesting applications. A coupled bistable structure consists of a pair of mobile magnets that create two potential wells and thus the bistable phenomenon. It requires lower excitation to trigger bistable operation compared to conventional bistable structures. Based on previous research, this work focused on miniaturisation of the coupled bistable structure for energy harvesting application. The proposed bistable energy harvester is a combination of a Duffing's nonlinear structure and a linear assisting resonator. Experimental results show that the output spectrum of the miniature coupled bistable vibration energy harvester was the superposition of several spectra. It had a higher maximum output power and a much greater bandwidth compared to simply the Duffing's structure without the assisting resonator

  15. Multimode vibrational couplings in resonant positron annihilation.

    Science.gov (United States)

    d'A Sanchez, Sergio; Lima, Marco A P; Varella, Márcio T do N

    2011-09-02

    The mechanisms for multimode vibrational couplings in resonant positron annihilation are not well understood. We show that these resonances can arise from positron-induced distortions of the potential energy surface (target response to the positron field). Though these distortions can transfer energy into single- and multiquantum vibrations, they have so far been disregarded as a pathway to resonant annihilation. We also compare the existing annihilation theories and show that the currently accepted model can be cast as a special case of the Feshbach annihilation theory.

  16. Coupled Torsional and Bending Vibrations of Actively Controlled Drillstrings

    Science.gov (United States)

    YIGIT, A. S.; CHRISTOFOROU, A. P.

    2000-06-01

    The dynamics of actively controlled drillstrings is studied. The equations of motion are derived using a lumped parameter model in which the coupling between torsional and bending vibrations is considered. The model also includes the dynamics of the rotary drive system which contains the rotary table, the gearbox and an armature controlled DC motor. The interactions between the drillstring and the borehole which are considered, include the impacts of collars with the borehole wall as well as bit rotation-dependent weight and torque on bit (WOB and TOB). Simulation results obtained by numerically solving the equations of motion are in close qualitative agreement with field and laboratory observations regarding stick-slip oscillations. A linear quadratic regulator (LQR) controller is designed based on a linearized model and is shown to be effective in eliminating this type of oscillations. It is also shown that for some operational parameters the control action may excite large bending vibrations due to coupling with the torsional motion.

  17. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Administrator

    Dedicated to the memory of the late Professor S K Rangarajan. *For correspondence. Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H. +. + O2 collisions at collision energy 23 eV. †. SAIESWARI AMARAN# and SANJAY KUMAR*. Department of Chemistry, Indian Institute of ...

  18. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Quantum mechanical study of vibrational state-resolved differential cross sections and transition probabilities for both the elastic/inelastic and the charge transfer processes have been carried out in the H+ + O2 collisions at the experimental collision energy of 23 eV. The quantum dynamics has been performed within the ...

  19. Vibrational dynamics of crystalline L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Bordallo, H.N.; Eckert, J. [Los Alamos National Lab., NM (United States); Barthes, M. [Univ. Montpellier II (France)

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  20. Nonlinear vibrations analysis of rotating drum-disk coupling structure

    Science.gov (United States)

    Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen

    2018-04-01

    A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.

  1. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers

    Science.gov (United States)

    Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao

    2015-09-01

    This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.

  2. Vibrational frequencies in Car-Parrinello molecular dynamics.

    Science.gov (United States)

    Ong, Sheau Wei; Tok, Eng Soon; Kang, Hway Chuan

    2010-12-07

    Car-Parrinello molecular dynamics (CPMD) are widely used to investigate the dynamical properties of molecular systems. An important issue in such applications is the dependence of dynamical quantities such as molecular vibrational frequencies upon the fictitious orbital mass μ. Although it is known that the correct Born-Oppenheimer dynamics are recovered at zero μ, it is not clear how these dynamical quantities are to be rigorously extracted from CPMD calculations. Our work addresses this issue for vibrational frequencies. We show that when the system is sufficiently close to the ground state the calculated ionic vibrational frequencies are ω(M) = ω(0M)[1 -C(μ/M)] for small μ/M, where ω(0M) is the Born-Oppenheimer ionic frequency, M the ionic mass, and C a constant that depends upon the ion-orbital coupling force constants. Our analysis also provides a quantitative understanding of the orbital oscillation amplitudes, leading to a relationship between the adiabaticity of a system and the ion-orbital coupling constants. In particular, we show that there is a significant systematic dependence of calculated vibrational frequencies upon how close the CPMD trajectory is to the Born-Oppenheimer surface. We verify our analytical results with numerical simulations for N(2), Sn(2), and H/Si(100)-(2×1).

  3. ANALYSIS OF THE IMPACT OF FLEXIBLE COUPLINGS ON GEARBOX VIBRATIONS

    OpenAIRE

    Robert GREGA; Jaroslav HOMIŠIN; Jozef KRAJŇAK; Matej URBANSKÝ

    2016-01-01

    Dangerous vibrations of mechanical systems’ components are causes of failures and reduction in service life, as well lead to negative effects on the environment and the health of operators. In order to reduce these unwanted vibrations, it is necessary to pay attention to the proper design of components in mechanical systems. The aim of this article is based on the experimental measurements and demonstration of the effects of different types of flexible couplings on the size of vibration in a ...

  4. Coupled bending and torsional vibration of a rotor system with nonlinear friction

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Chunli; Cao, Guohua; Zhu, Zhencai [China University of Mining and Technology, Xuzhou (China); Rao, Zhushi; Ta, Na [Shanghai Jiao Tong University, Shanghai (China)

    2017-06-15

    Unacceptable vibrations induced by the nonlinear friction in a rotor system seriously affect the health and reliability of the rotating ma- chinery. To find out the basic excitation mechanism and characteristics of the vibrations, a coupled bending and torsional nonlinear dynamic model of rotor system with nonlinear friction is presented. The dynamic friction characteristic is described with a Stribeck curve, which generates nonlinear friction related to relative velocity. The motion equations of unbalance rotor system are established by the Lagrangian approach. Through numerical calculation, the coupled vibration characteristics of a rotor system under nonlinear friction are well investigated. The influence of main system parameters on the behaviors of the system is discussed. The bifurcation diagrams, waterfall plots, the times series, orbit trails, phase plane portraits and Poincaré maps are obtained to analyze dynamic characteristics of the rotor system and the results reveal multiform complex nonlinear dynamic responses of rotor system under rubbing. These analysis results of the present paper can effectively provide a theoretical reference for structural design of rotor systems and be used to diagnose self- excited vibration faults in this kind of rotor systems. The present research could contribute to further understanding on the self-excited vibration and the bending and torsional coupling vibration of the rotor systems with Stribeck friction model.

  5. Vibrational dynamics of ice in reverse micelles

    NARCIS (Netherlands)

    Dokter, A.M.; Petersen, C.; Woutersen, S.; Bakker, H.J.

    2008-01-01

    he ultrafast vibrational dynamics of HDO:D2O ice at 180 K in anionic reverse micelles is studied by midinfrared femtosecond pump-probe spectroscopy. Solutions containing reverse micelles are cooled to low temperatures by a fast-freezing procedure. The heating dynamics of the micellar solutions is

  6. Methodology for Analysing Controllability and Observability of Bladed Disc Coupled Vibrations

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    to place sensors and actuators so that all vibration levels can be monitored and controlled. Due to the special dynamic characteristics of rotating coupled bladed discs, where disc lateral motion is coupled to blade flexible motion, such analyses become quite complicated. The dynamics is described...... by a time-variant mathematical model, which presents parametric vibration modes and centrifugal stiffening effects resulting in increasing blade natural frequencies. In this framework the objective and contribution of this paper is to present a methodology for analysing the modal controllability...

  7. The coupling vibration of fluid-filled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, X Y; Wang, X; Sheng, G G

    2007-01-01

    Carbon nanotubes (CNTs) have substantial promise as nanocontainers filled with fluid in their hollow cavity in nanotechnology. This paper reports the result of an investigation into the influence of internal fluid on the coupling vibration of fluid-filled CNTs. The coupling vibrational behaviour of fluid-filled CNTs under different supported ends, aspect ratio, surrounding elastic medium, mass density of the fluid and layer number is investigated. The results obtained describe the effect of end condition, aspect ratio, surrounding elastic medium, mass density of the fluid and layer number on the coupling natural frequencies. The new features of the coupling vibration of fluid-filled CNTs and some meaningful and interesting results in this paper are helpful for the application and design of nanostructures conveying fluid in which CNTs act as basic elements

  8. Dynamics and vibrations progress in nonlinear analysis

    CERN Document Server

    Kachapi, Seyed Habibollah Hashemi

    2014-01-01

    Dynamical and vibratory systems are basically an application of mathematics and applied sciences to the solution of real world problems. Before being able to solve real world problems, it is necessary to carefully study dynamical and vibratory systems and solve all available problems in case of linear and nonlinear equations using analytical and numerical methods. It is of great importance to study nonlinearity in dynamics and vibration; because almost all applied processes act nonlinearly, and on the other hand, nonlinear analysis of complex systems is one of the most important and complicated tasks, especially in engineering and applied sciences problems. There are probably a handful of books on nonlinear dynamics and vibrations analysis. Some of these books are written at a fundamental level that may not meet ambitious engineering program requirements. Others are specialized in certain fields of oscillatory systems, including modeling and simulations. In this book, we attempt to strike a balance between th...

  9. Electromechanical coupling vibration characteristics of an AC servomotor-driven translational flexible manipulator

    Directory of Open Access Journals (Sweden)

    Jin-yong Ju

    2016-11-01

    Full Text Available The nonstationary transition status of the motor start-up phase creates great threat against the stable operation of the flexible manipulator system. This article investigates the electromechanical coupling dynamics and vibration response characteristics for a flexible manipulator of an alternating current servomotor-driven linear positioning platform with considering the start-up dynamic characteristics of the motor. Based on the constructed global electromechanical coupling effect and the Lagrange–Maxwell equations, the dynamic model of the whole system is established. The electromechanical coupling vibration mechanism of the flexible manipulator is obtained by analyzing the multiphysical process and multiparameter coupling phenomenon of the whole system. The result demonstrates that the nonstationary transition status of the motor initialization phase is mainly manifested during the disturbance of the three-phase stator current. As the speed of the linear positioning platform increases, the current disturbance, arousing the change of the servo driving force of the linear positioning platform, has dominant frequency shift and frequency amplitude decrease. Then, the vibration response of the flexible manipulator is markedly affected and the variation of the high-order modes vibration response is more obvious. The analysis result is significant for improving the dynamic performance of the motor-driven flexible robot manipulator system.

  10. Tensor-decomposed vibrational coupled-cluster theory

    DEFF Research Database (Denmark)

    Madsen, Niels Kristian; Godtliebsen, Ian Heide; Christiansen, Ove

    Vibrational coupled-cluster (VCC) theory is a highly accurate method for obtaining vibrational spectra and properties of small to medium-sized molecules. Calculating the vibrational energy and wave function requires the solution of a set of non-linear equations. We have implemented an array...... of any VCC calculation is the calculation of the error vector from a set of trial amplitudes. For high-order VCC methods this shows steep polynomial scaling w.r.t. the size of the moleule and the number of one-mode basis functions. Both the computational cost and the memory requirements of the VCC solver...

  11. Vibration dynamics of single atomic nanocontacts

    International Nuclear Information System (INIS)

    Khater, A; Bourahla, B; Tigrine, R

    2007-01-01

    The motivation for this work is to introduce a model for an atomic nanocontact, whereby its mechanical properties can be analysed via the local spectra. The model system consists of two sets of triple parallel semi-infinite atomic chains joined by a single atom in between. We calculate the vibration spectra and the local densities of vibration states, in the harmonic approximation, for the irreducible set of sites that constitute the nanocontact domain. The nanocontact observables are numerically calculated for different cases of elastic hardening and softening, to investigate how the local dynamics can respond to changes in the microscopic environment on the domain. We have also calculated the phonon scattering and coherent conductance at the nanocontact, derived in a Landauer-Buettiker matrix approach. The analysis of the spectra, of the densities of vibration states, and of the phonon conductance, identifies characteristic features and demonstrates the central role of a core subset of sites in the nanocontact domain

  12. Spatial spectrograms of vibrating atomic force microscopy cantilevers coupled to sample surfaces

    International Nuclear Information System (INIS)

    Wagner, Ryan; Raman, Arvind; Proksch, Roger

    2013-01-01

    Many advanced dynamic Atomic Force Microscopy (AFM) techniques such as contact resonance, force modulation, piezoresponse force microscopy, electrochemical strain microscopy, and AFM infrared spectroscopy exploit the dynamic response of a cantilever in contact with a sample to extract local material properties. Achieving quantitative results in these techniques usually requires the assumption of a certain shape of cantilever vibration. We present a technique that allows in-situ measurements of the vibrational shape of AFM cantilevers coupled to surfaces. This technique opens up unique approaches to nanoscale material property mapping, which are not possible with single point measurements alone

  13. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  14. Intermediate coupling vibrational descriptions of odd mass gold isotopes

    CERN Document Server

    Vieu, C; Paar, V

    1976-01-01

    The theoretical analysis of /sup 193-195/Au levels is semi qualitatively performed in the frame of the intermediate coupling vibrational models of Kisslinger-Sorensen and Alaga. From the comparison between the experimental data and the corresponding predictions of the two models, conclusions are drawn on the influence of the clusters and broken pairs.

  15. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    International Nuclear Information System (INIS)

    Mandal, Aritra; Tokmakoff, Andrei

    2015-01-01

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm −1 . We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions

  16. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    vibrational effects have a profound influence on the transport characteristics of a single-molecule contact and play therefore a fundamental role in this transport problem. Our findings demonstrate that vibrationally coupled electron transport through a molecular junction involves two types of processes: (i) transport processes, where an electron tunnels through the molecular bridge from one lead to the other, and (ii) electron-hole pair creation processes, where an electron tunnels from one of the leads onto the molecular bridge and back to the same lead again. Transport processes directly contribute to the electrical current flowing through a molecular contact and involve both excitation and deexcitation processes of the vibrational modes of the junction. Electron-hole pair creation processes do not directly contribute to the electrical current and typically involve only deexcitation processes. Nevertheless, they constitute a cooling mechanism for the vibrational modes of a single-molecule junction that is as important as cooling by transport processes. As the level of vibrational excitation determines the efficiency of electron transport processes, they have an indirect influence on the electrical current flowing through the junction. As we show, however, this influence can be substantial, in particular, if the molecule is coupled asymmetrically to the leads. Accounting for all these processes and their complex interrelationship, we analyze a number of intriguing transport phenomena, including rectification, negative differential resistance, anomalous peak broadening, mode-selective vibrational excitation and vibrationally induced decoherence. Moreover, we show that higher levels of vibrational excitation are obtained for weaker electronic-vibrational coupling. Thus, based on physical grounds, we establish a relation between the weak electronic-vibrational coupling limit and the limit of large bias voltages, where the level of vibrational excitation in a molecular junction

  17. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko; Engel, Volker [Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, Campus Nord, Am Hubland, 97074 Würzburg (Germany); Gomez, Sandra; Sola, Ignacio R. [Departamento de Quimica Fisica, Universidad Complutense, 28040 Madrid (Spain)

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  18. Improving Vibration Energy Harvesting Using Dynamic Magnifier

    Directory of Open Access Journals (Sweden)

    Almuatasim Alomari

    2016-01-01

    Full Text Available This paper reports on the design and evaluation of vibration-based piezoelectric energy-harvesting devices based on a polyvinylidene fluoride unimorph cantilever beam attached to the front of a dynamic magnifier. Experimental studies of the electromechanical frequency response functions are studied for the first three resonance frequencies. An analytical analysis is undertaken by applying the chain matrix in order to predict output voltage and output power with respect to the vibration frequency. The proposed harvester was modeled using MATLAB software and COMSOL multi- physics to study the mode shapes and electrical output parameters. The voltage and power output of the energy harvester with a dynamic magnifier was 2.62 V and 13.68 mW, respectively at the resonance frequency of the second mode. The modeling approach provides a basis to design energy harvesters exploiting dynamic magnification for improved performance and bandwidth. The potential application of such energy harvesting devices in the transport sector include autonomous structural health monitoring systems that often include embedded sensors, data acquisition, wireless communication, and energy harvesting systems.

  19. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer

    Science.gov (United States)

    Peters, William K.; Tiwari, Vivek; Jonas, David M.

    2017-11-01

    The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between

  20. Prediction of dynamic loads and induced vibrations in stall

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J.; Aagaard Madsen, H. [Risoe National Lab. (Denmark); Bjoerck, A. [Aeronautical Research Inst. of Sweden (Sweden); Enevoldsen, P. [Bonus Energy A/S (Denmark); Oeye, S. [The Technical Univ. of Denmark (Denmark); Ganander, H. [Teknikgruppen AB (Sweden); Winkelaar, D. [Netherlands Energy Research Foundation (Netherlands)

    1998-05-01

    Results from research in an EC Joule-III project and from national projects are presented. The objectives are improvement of design methods for stall regulated wind turbines with emphasis on stall induced vibrations and dynamic stall. The primary concern is limitation of the edgewise vibrations in the fundamental blade natural mode shape, which have caused trouble on modern wind turbines of approximate size 500 kW nominal power and 40 m rotor diameter. A theoretical study of quasi-steady aerodynamics confirms that the vibrations are driven basically by energy supplied from the aerodynamic forces during stalled operation. This energy exchange is equivalent to negative aerodynamic damping. The theoretical approach identifies the main parameters controlling the phenomenon. These parameters describe the steady and the dynamic airfoil characteristics, the overall aerodynamic layout of the blade, e.g. chord length and twist, the structural properties of the blade, e.g. structural damping and properties controlling the resulting vibration direction. Furthermore, full aeroelastic calculations and comparison with measurements show that the properties of the supporting structure, i.e. the main shaft, the nacelle and the tower, are important, as the global vibration of the rotor on its support may exchange energy with the blade vibration, when the blade natural frequency is close to one of the frequencies of the coupled rotor tilt-yaw mode shapes, usually denoted the global rotor whirl frequencies. It is confirmed that the influence of changing the primary design parameters can be determined by use of qualified aeroelastic calculations. Presented design guidelines therefore build on both the simple quasi-steady models, which can be used for the preliminary choice of the design variables mentioned above, and on full aeroelastic calculations. The aeroelastic calculations refine the design basis and should be used for choosing the final design variables and for final

  1. Semiclassical quantization in Liouville space for vibrational dynamics.

    Science.gov (United States)

    Gruenbaum, Scott M; Loring, Roger F

    2011-05-12

    Semiclassical approximations to quantum mechanics can include quantum coherence effects in dynamical calculations based on classical mechanics. The Herman-Kluk (HK) semiclassical propagator has been demonstrated to reproduce quantum effects in nonlinear vibrational response functions of anharmonic oscillators but does not provide a practical numerical route to calculations for multiple degrees of freedom. In an HK calculation of a response function, quantum coherence effects enter through interference between pairs of classical trajectories. We have previously elucidated the mechanism by which the HK approximation reproduces quantum effects in response functions in the regime of quasiperiodic dynamics. We have applied this understanding to significantly simplify the semiclassical calculation of response functions in this dynamical regime. The phase space difference between trajectories is treated perturbatively in anharmonicity, allowing integration over these differences to be performed analytically and leaving integration over mean trajectories to be performed numerically. This mean-trajectory (MT) approximation has been applied to linear and nonlinear vibrational response functions for isolated and coupled anharmonic motions. Here, we derive an MT approximation for the Liouville space time evolution operator or superoperator that propagates the density operator. This analysis provides a form of the MT approximation that is readily applicable to other dynamical quantities besides response functions and clarifies the connection between semiclassical quantization of propagators for the wave function and for the density operator.

  2. Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect

    Science.gov (United States)

    Xu, H. L.; He, L.; An, D.

    2017-11-01

    The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.

  3. The photodissociation and reaction dynamics of vibrationally excited molecules

    Energy Technology Data Exchange (ETDEWEB)

    Crim, F.F. [Univ. of Wisconsin, Madison (United States)

    1993-12-01

    This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.

  4. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  5. Dynamic survey of wind turbine vibrations

    Science.gov (United States)

    Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi; Pan, Chieh-Chen; Huang, Chi-Luen; Cheng, Tao-Ming

    2016-04-01

    Six wind turbines were blown to the ground by the wind gust during the attack of Typhoon Soudelor in August 2015. Survey using unmanned aerial vehicle, UAV, found the collapsed wind turbines had been broken at the lower section of the supporting towers. The dynamic behavior of wind turbine systems is thus in need of attention. The vibration of rotor blades and supporting towers of two wind turbine systems have been measured remotely using IBIS, a microwave interferometer. However the frequency of the rotor blade can be analyzed only if the microwave measurements are taken as the wind turbine is parked and secured. Time-frequency analyses such as continuous wavelet transform and reassigned spectrograms are applied to the displacement signals obtained. A frequency of 0.44Hz exists in both turbines B and C at various operating conditions. Possible links between dynamic characteristics and structural integrity of wind turbine -tower systems is discussed.

  6. Vibration analysis of hydropower house based on fluid-structure coupling numerical method

    Directory of Open Access Journals (Sweden)

    Shu-he Wei

    2010-03-01

    Full Text Available By using the shear stress transport (SST model to predict the effect of random flow motion in a fluid zone, and using the Newmark method to solve the oscillation equations in a solid zone, a coupling model of the powerhouse and its tube water was developed. The effects of fluid-structure interaction are considered through the kinematic and dynamic conditions applied to the fluid-structure interfaces (FSI. Numerical simulation of turbulent flow through the whole flow passage of the powerhouse and concrete structure vibration analysis in the time domain were carried out with the model. Considering the effect of coupling the turbulence and the powerhouse structure, the time history response of both turbulent flows through the whole flow passage and powerhouse structure vibration were generated. Concrete structure vibration analysis shows that the displacement, velocity, and acceleration of the dynamo floor respond dramatically to pressure fluctuations in the flow passage. Furthermore, the spectrum analysis suggests that pressure fluctuation originating from the static and dynamic disturbances of hydraulic turbine blades in the flow passage is one of the most important vibration sources.

  7. Dynamic stiffness of suction caissons - vertical vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.; Andersen, Lars

    2006-12-15

    The dynamic response of offshore wind turbines are affected by the properties of the foundation and the subsoil. The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three-dimensional coupled Boundary Element/Finite Element model. Comparisons are made with known analytical and numerical solutions in order to evaluate the static and dynamic behaviour of the Boundary Element/Finite Element model. The vertical frequency dependent stiffness has been determined for different combinations of the skirt length, Poisson's ratio and the ratio between soil stiffness and skirt stiffness. Finally the dynamic behaviour at high frequencies is investigated. (au)

  8. DYNAMIC MODELLING OF VIBRATIONS ASSISTED DRILLING

    Directory of Open Access Journals (Sweden)

    Mathieu LADONNE

    2015-05-01

    Full Text Available The number of multi-materials staking configurations for aeronautical structures is increasing, with the evolution of composite and metallic materials. For drilling the fastening holes, the processes of Vibration Assisted Drilling (VAD expand rapidly, as it permits to improve reliability of drilling operations on multilayer structures. Among these processes of VAD, the solution with forced vibrations added to conventional feed to create a discontinuous cutting is the more developed in industry. The back and forth movement allows to improve the evacuation of chips by breaking it. This technology introduces two new operating parameters, the frequency and the amplitude of the oscillation. To optimize the process, the choice of those parameters requires first to model precisely the operation cutting and dynamics. In this paper, a kinematic modelling of the process is firstly proposed. The limits of the model are analysed through comparison between simulations and measurements. The proposed model is used to develop a cutting force model that allows foreseeing the operating conditions which ensure good chips breaking and tool life improvement.

  9. Design of a Maglev Vibration Test Platform for the Research of Maglev Vehicle-girder Coupled Vibration Problem

    OpenAIRE

    Zhou Danfeng; Wang Lianchun; Li Jie; Yu Peichang

    2017-01-01

    The maglev vehicle-girder coupled vibration problem has been encountered in many maglev test or commercial lines, which significantly degrade the performance of the maglev train. In previous research on the principle of the coupled vibration problem, it has been discovered that the fundamental model of the maglev girder can be simplified as a series of mass-spring resonators of different but related resonance frequencies, and that the stability of the vehicle-girder coupled system can be inve...

  10. Dynamic structure factor of vibrating fractals.

    Science.gov (United States)

    Reuveni, Shlomi; Klafter, Joseph; Granek, Rony

    2012-02-10

    Motivated by novel experimental work and the lack of an adequate theory, we study the dynamic structure factor S(k,t) of large vibrating fractal networks at large wave numbers k. We show that the decay of S(k,t) is dominated by the spatially averaged mean square displacement of a network node, which evolves subdiffusively in time, ((u[over →](i)(t)-u[over →](i)(0))(2))∼t(ν), where ν depends on the spectral dimension d(s) and fractal dimension d(f). As a result, S(k,t) decays as a stretched exponential S(k,t)≈S(k)e(-(Γ(k)t)(ν)) with Γ(k)∼k(2/ν). Applications to a variety of fractal-like systems are elucidated.

  11. Vibrational mechanics nonlinear dynamic effects, general approach, applications

    CERN Document Server

    Blekhman, Iliya I

    2000-01-01

    This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat

  12. Role of vibrational dynamics in resonant positron annihilation on molecules.

    Science.gov (United States)

    Jones, A C L; Danielson, J R; Natisin, M R; Surko, C M

    2013-05-31

    Vibrational Feshbach resonances are dominant features of positron annihilation for incident positron energies in the range of the molecular vibrations. Studies in relatively small molecules are described that elucidate the role of intramolecular vibrational energy redistribution into near-resonant multimode states, and the subsequent coupling of these modes to the positron continuum, in suppressing or enhancing these resonances. The implications for annihilation in other molecular species, and the necessary ingredients of a more complete theory of resonant positron annihilation, are discussed.

  13. Coupled vibrations of rectangular buildings subjected to normally-incident random wind loads

    Science.gov (United States)

    Safak, E.; Foutch, D.A.

    1987-01-01

    A method for analyzing the three-directional coupled dynamic response of wind-excited buildings is presented. The method is based on a random vibration concept and is parallel to those currently used for analyzing alongwind response. Only the buildings with rectangular cross-section and normally-incident wind are considered. The alongwind pressures and their correlations are represented by the well-known expressions that are available in the literature. The acrosswind forces are assumed to be mainly due to vortex shedding. The torque acting on the building is taken as the sum of the torque due to random alongwind forces plus the torque due to asymmetric acrosswind forces. The study shows the following: (1) amplitude of acrosswind vibrations can be several times greater than that of alongwind vibrations; (2) torsional vibrations are significant if the building has large frontal width, and/or it is asymmetric, and/or its torsional natural frequency is low; (3) even a perfectly symmetric structure with normally incident wind can experience significant torsional vibrations due to the randomness of wind pressures. ?? 1987.

  14. Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration

    International Nuclear Information System (INIS)

    Zhou, Shengxi; Cao, Junyi; Wang, Wei; Liu, Shengsheng; Lin, Jing

    2015-01-01

    This paper presents a nonlinear doubly magnet-coupled energy harvesting system (DMEHS) which could exhibit co-bistable and monostable dynamic characteristics. Its various characteristic responses induced by the magnetic force can be conveniently obtained using the adjustable horizontal distance between two coupled harvesters in the DMEHS. In the case of appropriate relative positions, the DMEHS appears in a co-bistable structure which is different from the traditional bistable structure. Additionally, both the inclination angle of endmost magnets and the displacement perpendicular to the vibration direction are taken into account to calculate the nonlinear magnetic force in the nonlinear electromechanical equations. The numerical investigations show good agreement with experimental results with respect to the output voltage response. Each harvester without magnetic coupling is tested independently to compare with the DMEHS. Both numerical and experimental results also demonstrate the frequency bandwidth and performance enhancements by changing the horizontal distance between the two coupled harvesters. (paper)

  15. On the Nonlinear Behavior of the Piezoelectric Coupling on Vibration-Based Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Luciana L. Silva

    2015-01-01

    Full Text Available Vibration-based energy harvesting with piezoelectric elements has an increasing importance nowadays being related to numerous potential applications. A wide range of nonlinear effects is observed in energy harvesting devices and the analysis of the power generated suggests that they have considerable influence on the results. Linear constitutive models for piezoelectric materials can provide inconsistencies on the prediction of the power output of the energy harvester, mainly close to resonant conditions. This paper investigates the effect of the nonlinear behavior of the piezoelectric coupling. A one-degree of freedom mechanical system is coupled to an electrical circuit by a piezoelectric element and different coupling models are investigated. Experimental tests available in the literature are employed as a reference establishing the best matches of the models. Subsequently, numerical simulations are carried out showing different responses of the system indicating that nonlinear piezoelectric couplings can strongly modify the system dynamics.

  16. On-the-fly ab initio semiclassical dynamics for computing vibrationally resolved electronic spectra

    Science.gov (United States)

    Vanicek, Jiri; Wehrle, Marius; Sulc, Miroslav; Oberli, Solene; Laboratory of Theoretical Physical Chemistry Team

    We combine the thawed Gaussian approximation (TGA) with an on-the-fly ab initio (OTF-AI) scheme to calculate the vibrationally resolved emission spectra of oligothiophenes with up to five rings as well as absorption and photoelectron spectra of ammonia. The efficiency of the OTF-AI-TGA permits treating all vibrational degrees of freedom on an equal footing even in pentathiophene with 105 vibrational degrees of freedom, thus obviating the need for the global harmonic approximation, popular for large systems. Besides reproducing almost perfectly the experimental emission spectra, in order to provide a deeper insight into the associated physical and chemical processes, we also develop a novel systematic approach to assess the importance and coupling between individual vibrational degrees of freedom during the dynamics. This allows us to explain how the vibrational line shapes of the oligothiophenes change with increasing number of rings. Swiss National Science Foundation Grant No. 200020 150098.

  17. Tandem strip mill's multi-parameter coupling dynamic modeling based on the thickness control

    Science.gov (United States)

    Peng, Yan; Zhang, Yang; Sun, Jianliang; Zang, Yong

    2015-03-01

    The rolling process is determined by the interaction of a number of different movements, during which the relative movement occurs between the vibrating roll system and the rolled piece, and the roll system's vibration interacts with the strip's deformation and rigid movement. So many parameters being involved leads to a complex mechanism of this coupling effect. Through testing and analyzing the vibration signals of the mill in the rolling process, the rolling mill's coupled model is established with comprehensive consideration of the coupling interaction between the mill's vertical vibration, its torsional vibration and the working roll's horizontal vibration, and vibration characteristics of different forms of rolling mill's vibration are analyzed under the coupling effect. With comprehensive attention to the relationship between the roll system, the moving strip and the rolling parameters' dynamic properties, and also from the strip thickness control point of view, further research is done on the coupling mechanism between the roll system's movement and the moving strip's characteristics in the rolling process. As a result, the law of inertial coupling and the stiffness coupling effect caused by different forms of the roll system's vibration is determined and the existence of nonlinear characteristics caused by the elastic deformation of moving strip is also found. Furthermore, a multi-parameter coupling-dynamic model is established which takes the tandem strip mill as its research object by making a detailed kinematics analysis of the roll system and using the principle of virtual work. The coupling-dynamic model proposes the instruction to describe the roll system's movement, and analyzes its dynamic response and working stability, and provides a theoretical basis for the realization of the strip thickness' dynamic control.

  18. Design for coupled-mode flutter and non-synchronous vibration in turbomachinery

    Science.gov (United States)

    Clark, Stephen Thomas

    This research presents the detailed investigation of coupled-mode flutter and non-synchronous vibration in turbomachinery. Coupled-mode flutter and non-synchronous vibration are two aeromechanical challenges in designing turbomachinery that, when present, can cause engine blade failure. Regarding flutter, current industry design practices calculate the aerodynamic loads on a blade due to a single mode. In response to these design standards, a quasi three-dimensional, reduced-order modeling tool was developed for identifying the aeroelastic conditions that cause multi-mode flutter. This tool predicts the onset of coupled-mode flutter reasonable well for four different configurations, though certain parameters were tuned to agree with experimentation. Additionally, the results of this research indicate that mass ratio, frequency separation, and solidity have an effect on critical rotor speed for flutter. Higher mass-ratio blades require larger rotational velocities before they experience coupled-mode flutter. Similarly, increasing the frequency separation between modes and raising the solidity increases the critical rotor speed. Finally, and most importantly, design guidelines were generated for defining when a multi-mode flutter analysis is required in practical turbomachinery design. Previous work has shown that industry computational fluid dynamics can approximately predict non-synchronous vibration (NSV), but no real understanding of frequency lock-in and blade limit-cycle amplitude exists. Therefore, to understand the causes of NSV, two different reduced-order modeling approaches were used. The first approach uses a van der Pol oscillator to model a non-linear fluid instability. The van der Pol model is then coupled to a structural degree of freedom. This coupled system exhibits the two chief properties seen in experimental and computational non-synchronous vibration. Under various conditions, the fluid instability and the natural structural frequency will lock

  19. Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade

    Directory of Open Access Journals (Sweden)

    Osama N. Alshroof

    2012-01-01

    Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.

  20. Optimization design of high power ultrasonic circular ring radiator in coupled vibration.

    Science.gov (United States)

    Xu, Long; Lin, Shuyu; Hu, Wenxu

    2011-10-01

    This paper presents a new high power ultrasonic (HPU) radiator, which consists of a transducer, an ultrasonic horn, and a metal circular ring. Both the transducer and horn in longitudinal vibrations are used to drive a metal circular ring in a radial-axial coupled vibration. This coupled vibration cannot only generate ultrasound in both the radial and axial directions, but also focus the ultrasound inside the circular ring. Except for the radial-axial coupled vibration mode, the third longitudinal harmonic vibration mode with relative large vibration amplitude is also detected, which can be used as another operation mode. Overall, the HPU with these two vibration modes should have good potential to be applied in liquid processing, such as sonochemistry, ultrasonic cleaning, and Chinese herbal medicine extraction. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations

    Science.gov (United States)

    Zhu, Jin; Zhang, Wei

    2015-04-01

    Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever

  2. The control of drilling vibrations: A coupled PDE-ODE modeling approach

    Directory of Open Access Journals (Sweden)

    Saldivar Belem

    2016-06-01

    Full Text Available The main purpose of this contribution is the control of both torsional and axial vibrations occurring along a rotary oilwell drilling system. The model considered consists of a wave equation coupled to an ordinary differential equation (ODE through a nonlinear function describing the rock-bit interaction. We propose a systematic method to design feedback controllers guaranteeing ultimate boundedness of the system trajectories and leading consequently to the suppression of harmful dynamics. The proposal of a Lyapunov-Krasovskii functional provides stability conditions stated in terms of the solution of a set of linear and bilinear matrix inequalities (LMIs, BMIs. Numerical simulations illustrate the efficiency of the obtained control laws.

  3. Structural dynamics and vibration 1995. PD-Volume 70

    International Nuclear Information System (INIS)

    Ovunc, B.A.; Esat, I.I.; Sabir, A.B.; Karadag, V.

    1995-01-01

    The themes of this symposium focused on: dynamic responses to temperature cycles and wind excitation; the influence of the hydraulic feedback on stability; structural reliability; vibratory stress relief; fault detection by signal processing; dynamic contact in mechanisms; vibration of thick flexible mechanisms; higher order mechanisms in flexible mechanisms; natural circular frequencies by finite element method; elastic buckling, stability, and vibration of linear and nonlinear structures; buckling of stiffened plates and rings; mixed variable optimization; vibration optimization; and optimization in a constrained space. Separate abstracts were prepared for 20 papers in this book

  4. Analytical Kinematics and Coupled Vibrations Analysis of Mechanical System Operated by Solar Array Drive Assembly

    Science.gov (United States)

    Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.

    2017-07-01

    To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.

  5. Design of a Maglev Vibration Test Platform for the Research of Maglev Vehicle-girder Coupled Vibration Problem

    Directory of Open Access Journals (Sweden)

    Zhou Danfeng

    2017-01-01

    Full Text Available The maglev vehicle-girder coupled vibration problem has been encountered in many maglev test or commercial lines, which significantly degrade the performance of the maglev train. In previous research on the principle of the coupled vibration problem, it has been discovered that the fundamental model of the maglev girder can be simplified as a series of mass-spring resonators of different but related resonance frequencies, and that the stability of the vehicle-girder coupled system can be investigated by separately examining the stability of each mass-spring resonator – electromagnet coupled system. Based on this conclusion, a maglev test platform, which includes a single electromagnetic suspension control system, is built for experimental study of the coupled vibration problem. The guideway of the test platform is supported by a number of springs so as to change its flexibility. The mass of the guideway can also be changed by adjusting extra weights attached to it. By changing the flexibility and mass of the guideway, the rules of the maglev vehicle-girder coupled vibration problem are to be examined through experiments, and related theory on the vehicle-girder self-excited vibration proposed in previous research is also testified.

  6. Ultrafast Dynamics of Vibration-Cavity Polariton Modes

    Science.gov (United States)

    Owrutsky, Jeff; Dunkelberger, Adam; Fears, Kenan; Simpkins, Blake; Spann, Bryan

    Vibrational modes of polymers, liquids, and solvated compounds can couple to Fabry-Perot optical cavity modes, creating vibration-cavity polariton modes whose energy tunes with the cavity length and incidence angle. Here we report the pump-probe infrared spectroscopy of vibration-cavity polaritons in cavity-coupled W(CO)6. At very early times, we observe quantum beating between the two polariton states find an anomalously low degree of excitation. After the quantum beating, we directly observe spectroscopic signatures of excited-state absorption from both polariton modes and uncoupled reservoir modes. An analytical expression for cavity transmission reproduces these signatures. The upper polariton mode relaxes ten times more quickly than the uncoupled vibrational mode and the polariton lifetime depends on the angle of incidence of the infrared pulses. Coupling to an optical cavity gives a means of control of the lifetime of vibration-cavity polaritons and could have important implications for chemical reactivity in vibrationally excited molecules.

  7. Universality in the dynamical properties of seismic vibrations

    Science.gov (United States)

    Chatterjee, Soumya; Barat, P.; Mukherjee, Indranil

    2018-02-01

    We have studied the statistical properties of the observed magnitudes of seismic vibration data in discrete time in an attempt to understand the underlying complex dynamical processes. The observed magnitude data are taken from six different geographical locations. All possible magnitudes are considered in the analysis including catastrophic vibrations, foreshocks, aftershocks and commonplace daily vibrations. The probability distribution functions of these data sets obey scaling law and display a certain universality characteristic. To investigate the universality features in the observed data generated by a complex process, we applied Random Matrix Theory (RMT) in the framework of Gaussian Orthogonal Ensemble (GOE). For all these six places the observed data show a close fit with the predictions of RMT. This reinforces the idea of universality in the dynamical processes generating seismic vibrations.

  8. Fluid dynamics and vibration of tube banks in fluid flow

    International Nuclear Information System (INIS)

    Zukauskas, A.; Ulinskas, R.; Katinas, V.

    1988-01-01

    This work presents results derived in fluid dynamics, hydraulic drag and flow-induced vibrations within transverse and yawed tube banks. The studies encompass banks of smooth, rough and finned tubes at Reynolds numbers from 1 to 2x10/sup 6/. Highlighted in the text are fluid dynamic parameters of tube banks measured at inter-tube spaces and tube surfaces

  9. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    1997-01-01

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...

  10. Hydrogen bond dynamics and vibrational spectral diffusion in ...

    Indian Academy of Sciences (India)

    Abstract. We present an ab initio molecular dynamics study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous solution of acetone at room temperature. It is found that the frequencies of OD bonds in the acetone hydration shell have a higher stretch frequency than those in the bulk water. Also, on ...

  11. Vibrational dynamics of solid poly(ethylene oxide)

    OpenAIRE

    Krishnan, M.; Balasubramanian, S.

    2003-01-01

    Molecular dynamics (MD) simulations of crystalline poly(ethylene oxide) (PEO) have been carried out in order to study its vibrational properties. The vibrational density of states has been calculated using a normal mode analysis (NMA) and also through the velocity autocorrelation function of the atoms. Results agree well with experimental spectroscopic data. System size effects in the crystalline state, studied through a comparison between results for 16 unit cells and that for one unit cell ...

  12. Coupled Bending-Torsional Nonlinear Vibration and Bifurcation Characteristics of Spiral Bevel Gear System

    Directory of Open Access Journals (Sweden)

    Jinli Xu

    2017-01-01

    Full Text Available A spiral bevel gear system supported on thrust bearings considering the coupled bending-torsional nonlinear vibration is proposed and an eight degrees of freedom (8DOF lumped parameter dynamic model of the spiral bevel gear system combined with time-varying stiffness, static transmission error, gear backlash, and bearing clearances is investigated. The spiral bevel gear system is analyzed with the equations of motion and the dynamic response is solved using the Runge-Kutta method. The effects of mesh frequency, mesh damping coefficient, load coefficient, and gear backlash are revealed, which describe the true mesh characteristics of the spiral bevel gear system. The bifurcation characteristics as jump discontinuities, periodic windows, and chaos are obtained by studying time histories, phase plane portraits, Poincaré maps, Fourier spectra, and global bifurcation diagrams of the gear system. The results presented in this study provide some useful information for engineers in designing and controlling such gear systems.

  13. Vibration mitigation for in-wheel switched reluctance motor driven electric vehicle with dynamic vibration absorbing structures

    Science.gov (United States)

    Qin, Yechen; He, Chenchen; Shao, Xinxin; Du, Haiping; Xiang, Changle; Dong, Mingming

    2018-04-01

    This paper presents a new approach for vibration mitigation based on a dynamic vibration absorbing structure (DVAS) for electric vehicles (EVs) that use in-wheel switched reluctance motors (SRMs). The proposed approach aims to alleviate the negative effects of vibration caused by the unbalanced electromagnetic force (UMEF) that arises from road excitations. The analytical model of SRMs is first formulated using Fourier series, and then a model of the coupled longitudinal-vertical dynamics is developed taking into consideration the external excitations consisting of the aerodynamic drag force and road unevenness. In addition, numerical simulations for a conventional SRM-suspension system and two novel DVASs are carried out for varying road levels specified by ISO standards and vehicle velocities. The results of the comparison reveal that a 35% improvement in ride comfort, 30% improvement of road handling, and 68% improvement in air gap between rotor and stator can be achieved by adopting the novel DVAS compared to the conventional SRM-suspension system. Finally, multi-body simulation (MBS) is performed using LMS Motion to validate the feasibility of the proposed DVAS. Analysis of the results shows that the proposed method can augment the effective application of SRMs in EVs.

  14. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States); Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan)

    2015-08-14

    Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.

  15. The ABRAVIBE toolbox for teaching vibration analysis and structural dynamics

    DEFF Research Database (Denmark)

    Brandt, A.

    2013-01-01

    Vibration analysis is a subject where students often find it hard to comprehend the fundamental theory. The fact that we have, in general, almost no intuition for dynamic phenomena, means that students need to explore various dynamic phenomena in order to grasp the subject. For this reason......, a MATLAB toolbox (the ABRAVIBE toolbox) has been developed as an accompanying toolbox for the recent book "Noise and Vibration Analysis" by the author. This free, open software, published under GNU Public License, can be used with GNU Octave, if an entirely free software platform is wanted, with a few......). In this paper, an overview of the functionality is given and recommended use in teaching is discussed. It is also shown how the toolbox can be used for general vibration analysis using data from multichannel measurements. Finally, some laboratory exercises for structural dynamics teaching are discussed...

  16. Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress

    OpenAIRE

    Monserrat, Bartomeu; Drummond, N. D.; Needs, R. J.

    2013-01-01

    A unified approach is used to study vibrational properties of periodic systems with first-principles methods and including anharmonic effects. Our approach provides a theoretical basis for the determination of phonon-dependent quantities at finite temperatures. The low-energy portion of the Born-Oppenheimer energy surface is mapped and used to calculate the total vibrational energy including anharmonic effects, electron-phonon coupling, and the vibrational contribution to the stress tensor. W...

  17. Synchronization of coupled chaotic dynamics on networks

    Indian Academy of Sciences (India)

    www.ias.ac.in/article/fulltext/pram/064/03/0455-0464. Keywords. Dynamical systems; linear stability analysis; floating nodes. Abstract. We review some recent work on the synchronization of coupled dynamical systems on a variety of networks.

  18. Lattice dynamics and magneto-elastic coupling in Kondo-insulator YbB12

    International Nuclear Information System (INIS)

    Rybina, A V; Alekseev, P A; Mignot, J M; Nefeodova, E V; Nemkovski, K S; Bewley, R I; Shitsevalova, N Yu; Paderno, Yu B; Iga, F; Takabatake, T

    2007-01-01

    Lattice dynamics and magneto-elastic coupling effects have been studied in the Kondo insulator YbB 12 by means of inelastic neutron scattering. The analysis of the phonon density of states, dispersion, and symmetry properties is presented in connection with a possible magneto-elastic coupling. Manifestation of such effects was found for the phonons corresponding to the vibrations of Yb atoms

  19. A smart dynamic vibration absorber for suppressing the vibration of a string supported by flexible beams

    Science.gov (United States)

    Nambu, Yohsuke; Yamamoto, Shota; Chiba, Masakatsu

    2014-02-01

    This study aims to effectively and robustly suppress the vibration of tension-stabilized structures (TSSs) using a smart dynamic vibration absorber (DVA). In recent years, a strong need has emerged for high-precision and high-functionality space structural systems for realizing advanced space missions. TSSs have attracted attention in this regard as large yet lightweight structural systems with high storage efficiency. A fundamental issue in the application of TSSs is vibration control of strings, of which TSSs are predominantly composed. In particular, the suppression of microvibrations is difficult because the deformation is almost perpendicular to the direction of vibration. A DVA is an effective device for suppressing microvibrations. However, the damping performance is sensitive to changes in dynamic properties. Furthermore, aging degradation and temperature dependence negatively affect DVA performance. This study aimed to develop a smart, active DVA with self-sensing actuation to improve robustness. A small cantilever with a piezoelectric transducer was utilized as a smart DVA. Numerical simulations and experiments showed that a passive DVA and the smart DVA suppressed vibrations but that the smart DVA showed improved effectiveness and robustness.

  20. Piezoelectric Tailoring with Enhanced Electromechanical Coupling for Concurrent Vibration Control of Mistuned Periodic Structures

    National Research Council Canada - National Science Library

    Wang, Kon-Well

    2006-01-01

    The objective of this research is to advance the state of the art of vibration control of mistuned periodic structures utilizing the electromechanical coupling and damping characteristics of piezoelectric networking...

  1. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de [Fakultät Mathematik und Naturwissenschaften, Physikalische und Theoretische Chemie, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Yachmenev, Andrey; Yurchenko, Sergei N. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.

  2. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    Science.gov (United States)

    Adam, Ahmad Y.; Yachmenev, Andrey; Yurchenko, Sergei N.; Jensen, Per

    2015-12-01

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant's equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.

  3. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    International Nuclear Information System (INIS)

    Adam, Ahmad Y.; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2015-01-01

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH 3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH 3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role

  4. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    the model becomes periodic-variant. In order to reduce basis as well as parametric vibrations by means of active control in such systems a time-variant control strategy has to be adopted. This paper presents a methodology for designing an active controller to reduce vibrations in a coupled rotor......-blade system. The main aim is to control blade as well as hub vibrations in such a system by means of active control with focus on reducing the parametric vibration. A periodic state feedback controller is designed by transforming the system into a linear time-invariant form. Using this a controller...

  5. Analysis of Free Pendulum Vibration Absorber Using Flexible Multi-Body Dynamics

    Directory of Open Access Journals (Sweden)

    Emrah Gumus

    2016-01-01

    Full Text Available Structures which are commonly used in our infrastructures are becoming lighter with progress in material science. These structures due to their light weight and low stiffness have shown potential problem of wind-induced vibrations, a direct outcome of which is fatigue failure. In particular, if the structure is long and flexible, failure by fatigue will be inevitable if not designed properly. The main objective of this paper is to perform theoretical analysis for a novel free pendulum device as a passive vibration absorber. In this paper, the beam-tip mass-free pendulum structure is treated as a flexible multibody dynamic system and the ANCF formulation is used to demonstrate the coupled nonlinear dynamics of a large deflection of a beam with an appendage consisting of a mass-ball system. It is also aimed at showing the complete energy transfer between two modes occurring when the beam frequency is twice the ball frequency, which is known as autoparametric vibration absorption. Results are discussed and compared with findings of MSC ADAMS. This novel free pendulum device is practical and feasible passive vibration absorber in the mitigation of large amplitude wind-induced vibrations in traffic signal structures.

  6. Finite Element Vibration and Dynamic Response Analysis of Engineering Structures

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    2000-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings, and theses/dissertations dealing with finite element vibration and dynamic response analysis of engineering structures that were published from 1994 to 1998. It contains 539 citations. The following types of structures are included: basic structural systems; ground structures; ocean and coastal structures; mobile structures; and containment structures.

  7. Influence of Ultrasonic Vibrations on the Static Friction Characteristics of a Rubber/Aluminum Couple

    International Nuclear Information System (INIS)

    Cheng Ting-Hai; Gao Han; Bao Gang

    2011-01-01

    A novel ultrasonic vibration approach is introduced into a chloroprene rubber/aluminum friction couple for improving the static friction properties between rubber and metal. Compared to the test results without vibrations, the static friction force of a chloroprene rubber/aluminum couple decreases observably, leading to the ultimate displacement of rubber. The values of the static friction force and ultimate displacement can be ultimately reduced to 23.1% and 50% of those without ultrasonic vibrations, respectively. (fundamental areas of phenomenology(including applications))

  8. An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer.

    Science.gov (United States)

    Zhang, Qiang; Shi, Shengjun; Chen, Weishan

    2016-03-01

    An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer is proposed. The transducer is a Langevin type transducer which is composed of an exponential horn, four groups of PZT ceramics and a back beam. The exponential horn can focus the vibration energy, and can enlarge vibration amplitude and velocity efficiently. A bending vibration model of the transducer is first constructed, and subsequently an electromechanical coupling model is constructed based on the vibration model. In order to obtain the most suitable excitation position of the PZT ceramics, the effective electromechanical coupling coefficient is optimized by means of the quadratic interpolation method. When the effective electromechanical coupling coefficient reaches the peak value of 42.59%, the optimal excitation position (L1=22.52 mm) is found. The FEM method and the experimental method are used to validate the developed analytical model. Two groups of the FEM model (the Group A center bolt is not considered, and but the Group B center bolt is considered) are constructed and separately compared with the analytical model and the experimental model. Four prototype transducers around the peak value are fabricated and tested to validate the analytical model. A scanning laser Doppler vibrometer is employed to test the bending vibration shape and resonance frequency. Finally, the electromechanical coupling coefficient is tested indirectly through an impedance analyzer. Comparisons of the analytical results, FEM results and experiment results are presented, and the results show good agreement. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Dynamic Characteristics of Vertically Coupled Structures and the Design of a Decoupled Micro Gyroscope

    Science.gov (United States)

    Choi, Bumkyoo; Lee, Seung-Yop; Kim, Taekhyun; Baek, Seog Soon

    2008-01-01

    In a vertical type, vibratory gyroscope, the coupled motion between reference (driving) and sensing vibrations causes the zero-point output, which is the unwanted sensing vibration without angular velocity. This structural coupling leads to an inherent discrepancy between the natural frequencies of the reference and the sensing oscillations, causing curve veering in frequency loci. The coupled motion deteriorates sensing performance and dynamic stability. In this paper, the dynamic characteristics associated with the coupling phenomenon are theoretically analyzed. The effects of reference frequency and coupling factor on the rotational direction and amplitude of elliptic oscillation are determined. Based on the analytical studies on the coupling effects, we propose and fabricate a vertically decoupled vibratory gyroscope with the frequency matching. PMID:27879903

  10. Dynamic Characteristics of Vertically Coupled Structures and the Design of a Decoupled Micro Gyroscope.

    Science.gov (United States)

    Choi, Bumkyoo; Lee, Seung-Yop; Kim, Taekhyun; Baek, Seog Soon

    2008-06-03

    In a vertical type, vibratory gyroscope, the coupled motion between reference (driving) and sensing vibrations causes the zero-point output, which is the unwanted sensing vibration without angular velocity. This structural coupling leads to an inherent discrepancy between the natural frequencies of the reference and the sensing oscillations, causing curve veering in frequency loci. The coupled motion deteriorates sensing performance and dynamic stability. In this paper, the dynamic characteristics associated with the coupling phenomenon are theoretically analyzed. The effects of reference frequency and coupling factor on the rotational direction and amplitude of elliptic oscillation are determined. Based on the analytical studies on the coupling effects, we propose and fabricate a vertically decoupled vibratory gyroscope with the frequency matching.

  11. Advances in molecular vibrations and collision dynamics molecular clusters

    CERN Document Server

    Bacic, Zatko

    1998-01-01

    This volume focuses on molecular clusters, bound by van der Waals interactions and hydrogen bonds. Twelve chapters review a wide range of recent theoretical and experimental advances in the areas of cluster vibrations, spectroscopy, and reaction dynamics. The authors are leading experts, who have made significant contributions to these topics.The first chapter describes exciting results and new insights in the solvent effects on the short-time photo fragmentation dynamics of small molecules, obtained by combining heteroclusters with femtosecond laser excitation. The second is on theoretical work on effects of single solvent (argon) atom on the photodissociation dynamics of the solute H2O molecule. The next two chapters cover experimental and theoretical aspects of the energetics and vibrations of small clusters. Chapter 5 describes diffusion quantum Monte Carlo calculations and non additive three-body potential terms in molecular clusters. The next six chapters deal with hydrogen-bonded clusters, refle...

  12. Dynamic stiffness of horizontally vibrating suction caissons

    DEFF Research Database (Denmark)

    Latini, Chiara; Zania, Varvara; Cisternino, Michele

    2016-01-01

    The promising potential for offshore wind market is on developing wind farms in deeper waters with bigger turbines. In deeper waters the design foundation configuration may consist of jacket structures supported by floating piles or by suction caissons. Taking the soil-structure interaction effects...... into consideration requires the prior estimation of the dynamic impedances of the foundation. Even though numerous studies exist for piles, only limited number of publications can be found for suction caissons subjected to dynamic loads. Therefore, the purpose of this study is to examine the dynamic response...... of this type of foundation using the finite element method (FEM) to account for the interaction with the soil. 3D numerical models for both the soil and the suction caisson are formulated in a frequency domain. The response of the soil surrounding the foundation is considered linear viscoelastic...

  13. DYNAMICS OF VIBRATION FEEDERS WITH A NONLINEAR ELASTIC CHARACTERISTIC

    Directory of Open Access Journals (Sweden)

    V. I. Dyrda

    2017-04-01

    Full Text Available Purpose. Subject to the smooth and efficient operation of each production line, is the use of vehicles transporting high specification. It worked well in practice for transporting construction machines, which are used during the vibration. The use of vibration machines requires optimization of their operation modes. In the form of elastic link in them are increasingly using rubber-metallic elements, which are characterized by nonlinear damping properties. So it is necessary to search for new, more modern, methods of calculation of dynamic characteristics of the vibration machines on the properties of rubber as a cushioning material. Methodology. The dynamics of vibration machine that is as elastic rubber block units and buffer shock absorbers limiting the amplitude of the vibrations of the working body. The method of determining amplitude-frequency characteristics of the vibrating feeder is based on the principle of Voltaire, who in the calculations of the damping properties of the dampers will allow for elastic-hereditary properties of rubber. When adjusting the basic dynamic stiffness of the elastic ties and vibratory buffers, using the principle of heredity rubber properties, determine the dependence of the amplitude of the working body of the machine vibrations. This method is called integro-operator using the fractional-exponential kernels of relaxation. Findings. Using the derived formula for determining the amplitude of the resonance curve is constructed one-mass nonlinear system. It is established that the use of the proposed method of calculation will provide a sufficiently complete description of the damping parameters of rubber-metallic elements and at the same time be an effective means of calculating the amplitude-frequency characteristics of nonlinear vibration systems. Originality. The authors improved method of determining damping characteristics of rubber-metallic elements and the amplitude-frequency characteristics of nonlinear

  14. Sensitivity of molecular vibrational dynamics to energy exchange rate constants

    International Nuclear Information System (INIS)

    Billing, G D; Coletti, C; Kurnosov, A K; Napartovich, A P

    2003-01-01

    The sensitivity of molecular vibrational population dynamics, governing the CO laser operated in fundamental and overtone transitions, to vibration-to-vibration rate constants is investigated. With this aim, three rate constant sets have been used, differing in their completeness (i.e. accounting for single-quantum exchange only, or for multi-quantum exchange with a limited number of rate constants obtained by semiclassical calculations, and, finally, with an exhaustive set of rate constants including asymmetric exchange processes, as well) and in the employed interaction potential. The most complete set among these three is introduced in this paper. An existing earlier kinetic model was updated to include the latter new data. Comparison of data produced by kinetic modelling with the above mentioned sets of rate constants shows that the vibrational distribution function, and, in particular, the CO overtone laser characteristics, are very sensitive to the choice of the model. The most complete model predicts slower evolution of the vibrational distribution, in qualitative agreement with experiments

  15. Relaxation dynamics in quantum dissipative systems: The microscopic effect of intramolecular vibrational energy redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Uranga-Piña, L. [Facultad de Física, Universidad de la Habana, San Lázaro y L, Vedado, 10400 Havana (Cuba); Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany); Tremblay, J. C., E-mail: jean.c.tremblay@gmail.com [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  16. FEMVib, an ab initio multi-dimensional solver for probing vibrational dynamics in polyatomic molecules and free radicals

    Science.gov (United States)

    Xu, Dong

    Accurate prediction of the vibrational spectra in polyatomic molecules and free radicals depends on obtaining high quality solutions to the vibrational Schrodinger equation. The quantum simple harmonic oscillator provides the traditional first approximation for modeling molecular vibrational states. Rarely does a vibrational analysis extend beyond this first approximation, and harmonic energy levels are routinely used to predict the infrared spectra and other dynamical properties of molecules. However, there are many large-amplitude molecular motions that are extremely anharmonic, including internal torsions about atom-atom single bonds, bending and stretching of weak bonds in van der Waals complexes, and isomerization along relocalization coordinates in free radicals. In these cases, the harmonic treatment provided by electronic structure quantum chemistry packages is completely inadequate. Furthermore, the anharmonicity often includes strong coupling among two or more distinct vibrational coordinates, necessitating a multi-dimensional analysis of the vibrational Schrodinger equation along the coupled coordinates. A novel ab initio solver package, FEMVib, is developed within the finite element method (FEM) framework. A mixed programming paradigm that combines C++, Fortran and Python is employed to take advantage of existing numerical libraries. FEMVib has been rigorously tested to resolve the eigenvalues and wavefunctions of hundreds of vibrational energy states to high accuracy and precision. It may be used to calculate the complete vibrational spectra of triatomic molecules or to approximate larger systems through a "relaxed" model that allows complete coupling of up to three selected vibrational coordinates. FEMVib provides physical chemists with a general, robust and accurate computational tool for molecular vibrational analysis.

  17. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    Science.gov (United States)

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-12-01

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment.

  18. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    International Nuclear Information System (INIS)

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-01-01

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment

  19. Dynamics of coupled phantom and tachyon fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahalam, M. [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Pathak, S.D.; Li, Shiyuan [Shandong University, School of Physics, Jinan (China); Myrzakulov, R. [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Wang, Anzhong [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Baylor University, Department of Physics, GCAP-CASPER, Waco, TX (United States)

    2017-10-15

    In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)

  20. Forced vibration test of BWR type nuclear reactor buildings considering through-soil coupling between adjacent buildings

    International Nuclear Information System (INIS)

    Mizuno, Norihiro; Moribe, Isamu; Sugiyama, Nobuo; Tsushima, Yoshiyuki; Kushida, Hiroshi

    1980-01-01

    The forced vibration test on two adjacent BWR type reactor buildings in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., was carried out in 1977. The experiment on No. 1 reactor building had been made in 1973 and 1974 to evaluate the dissipation of vibrational energy to the earth. In 1977, No. 2 reactor building was under construction and nearly completed adjacently to the No. 1 reactor building, in which the reactor has been in operation since 1975. Three large vibration exciters with maximum exciting force of 150 tons each were installed on the 5th floor of the No. 2 reactor building, and the vibration ranging from 1 to 20 Hz was applied to the building in north-south, east-west and vertical directions. For obtaining the responses of the buildings, 24 and 33 pickups were placed on the floors of No. 1 and No. 2 buildings, respectively, and 17 dynamic earth pressure cells buried under the foundation of the No. 2 building were also employed. The natural frequency, viscous damping ratio and natural mode were analyzed by the regression analysis of many degrees of freedom, using the resonance curves with complex forms and many peaks. The vibrational behaviors of two adjacent reactor buildings coupled through the earth were given as the result of experiment. (J.P.N.)

  1. Zero-point vibrational corrections to isotropic hyperfine coupling constants in polyatomic molecules.

    Science.gov (United States)

    Chen, Xing; Rinkevicius, Zilvinas; Cao, Zexing; Ruud, Kenneth; Agren, Hans

    2011-01-14

    The present work addresses isotropic hyperfine coupling constants in polyatomic systems with a particular emphasis on a largely neglected, but a posteriori significant, effect, namely zero-point vibrational corrections. Using the density functional restricted-unrestricted approach, the zero-point vibrational corrections are evaluated for the allyl radical and four of its derivatives. In addition for establishing the numerical size of the zero-point vibrational corrections to the isotropic hyperfine coupling constants, we present simple guidelines useful for identifying hydrogens for which such corrections are significant. Based on our findings, we critically re-examine the computational procedures used for the determination of hyperfine coupling constants in general as well as the practice of using experimental hyperfine coupling constants as reference data when benchmarking and optimizing exchange-correlation functionals and basis sets for such calculations.

  2. Synchronization of coupled chaotic dynamics on networks

    Indian Academy of Sciences (India)

    We review some recent work on the synchronization of coupled dynamical systems on a variety of networks. When nodes show synchronized behaviour, two ... [5], congregations of synchronously flashing fireflies [6], and cricket that chirp in unison [7]. Coupled oscillators were first studied by Winfree [8] and Kuramoto [9].

  3. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    the model becomes periodic-variant. In order to reduce basis as well as parametric vibrations by means of active control in such systems a time-variant control strategy has to be adopted. This paper presents a methodology for designing an active controller to reduce vibrations in a coupled rotor......-blade system. The main aim is to control blade as well as hub vibrations in such a system by means of active control with focus on reducing the parametric vibration. A periodic state feedback controller is designed by transforming the system into a linear time-invariant form. Using this a controller...... is designed and transformed into a time-periodic form by a reverse transformation. The modal matrices used for the transformation are periodic and consist of basis as well as parametric vibration modes of the rotating system. It means that the modal coordinates of the transformed system address both type...

  4. Theoretical and Experimental Study on Electromechanical Coupling Properties of Multihammer Synchronous Vibration System

    Directory of Open Access Journals (Sweden)

    Xin Lai

    2016-01-01

    Full Text Available Industrial simulation of real external load using multiple exciting points or increasing exciting force by synchronizing multiple exciting forces requires multiple vibration hammers to be coordinated and work together. Multihammer vibration system which consists of several hammers is a complex electromechanical system with complex electromechanical coupling. In this paper, electromechanical coupling properties of such a multihammer vibration system were studied in detail using theoretical derivation, numerical simulation, and experiment. A kinetic model of multihammer synchronous vibration system was established, and approximate expressions for electromechanical coupling strength were solved using a small parameter periodic averaging method. Basic coupling rules and reasons were obtained. Self-synchronization and frequency hopping phenomenon were also analyzed. Subsequently, numerical simulations were carried out and electromechanical coupling process was obtained for different parameters. Simulation results verify correctness of the proposed model and results. Finally, experiments were carried out, self-synchronization and frequency hopping phenomenon were both observed, and results agree well with theoretical deduction and simulation results. These results provide theoretical foundations for multihammer synchronous vibration system and its synchronous control.

  5. Dynamic modeling and simulation of a two-stage series-parallel vibration isolation system

    Directory of Open Access Journals (Sweden)

    Rong Guo

    2016-07-01

    Full Text Available A two-stage series-parallel vibration isolation system is already widely used in various industrial fields. However, when the researchers analyze the vibration characteristics of a mechanical system, the system is usually regarded as a single-stage one composed of two substructures. The dynamic modeling of a two-stage series-parallel vibration isolation system using frequency response function–based substructuring method has not been studied. Therefore, this article presents the source-path-receiver model and the substructure property identification model of such a system. These two models make up the transfer path model of the system. And the model is programmed by MATLAB. To verify the proposed transfer path model, a finite element model simulating a vehicle system, which is a typical two-stage series-parallel vibration isolation system, is developed. The substructure frequency response functions and system level frequency response functions can be obtained by MSC Patran/Nastran and LMS Virtual.lab based on the finite element model. Next, the system level frequency response functions are substituted into the transfer path model to predict the substructural frequency response functions and the system response of the coupled structure can then be further calculated. By comparing the predicted results and exact value, the model proves to be correct. Finally, the random noise is introduced into several relevant system level frequency response functions for error sensitivity analysis. The system level frequency response functions that are most sensitive to the random error are found. Since a two-stage series-parallel system has not been well studied, the proposed transfer path model improves the dynamic theory of the multi-stage vibration isolation system. Moreover, the validation process of the model here actually provides an example for acoustic and vibration transfer path analysis based on the proposed model. And it is worth noting that the

  6. Vibrational and orientational dynamics of water in aqueous hydroxide solutions.

    Science.gov (United States)

    Hunger, Johannes; Liu, Liyuan; Tielrooij, Klaas-Jan; Bonn, Mischa; Bakker, Huib

    2011-09-28

    We report the vibrational and orientational dynamics of water molecules in isotopically diluted NaOH and NaOD solutions using polarization-resolved femtosecond vibrational spectroscopy and terahertz time-domain dielectric relaxation measurements. We observe a speed-up of the vibrational relaxation of the O-D stretching vibration of HDO molecules outside the first hydration shell of OH(-) from 1.7 ± 0.2 ps for neat water to 1.0 ± 0.2 ps for a solution of 5 M NaOH in HDO:H(2)O. For the O-H vibration of HDO molecules outside the first hydration shell of OD(-), we observe a similar speed-up from 750 ± 50 fs to 600 ± 50 fs for a solution of 6 M NaOD in HDO:D(2)O. The acceleration of the decay is assigned to fluctuations in the energy levels of the HDO molecules due to charge transfer events and charge fluctuations. The reorientation dynamics of water molecules outside the first hydration shell are observed to show the same time constant of 2.5 ± 0.2 ps as in bulk liquid water, indicating that there is no long range effect of the hydroxide ion on the hydrogen-bond structure of liquid water. The terahertz dielectric relaxation experiments show that the transfer of the hydroxide ion through liquid water involves the simultaneous motion of ~7 surrounding water molecules, considerably less than previously reported for the proton. © 2011 American Institute of Physics

  7. Monitoring Bridge Dynamic Deformation in Vibration by Digital Photography

    Science.gov (United States)

    Yu, Chengxin; Zhang, Guojian; Liu, Xiaodong; Fan, Li; Hai, Hua

    2018-01-01

    This study adopts digital photography to monitor bridge dynamic deformation in vibration. Digital photography in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, we monitor the bridge in static as a zero image. Then, we continuously monitor the bridge in vibration as the successive images. Based on the reference points on each image, PST-TBPM is used to calculate the images to obtain the dynamic deformation values of these deformation points. Results show that the average measurement accuracies are 0.685 pixels (0.51mm) and 0.635 pixels (0.47mm) in X and Z direction, respectively. The maximal deformations in X and Z direction of the bridge are 4.53 pixels and 5.21 pixels, respectively. PST-TBPM is valid in solving the problem that the photographing direction is not perpendicular to the bridge. Digital photography in this study can be used to assess bridge health through monitoring the dynamic deformation of a bridge in vibration. The deformation trend curves also can warn the possible dangers over time.

  8. Measurement of Dynamic Viscoelasticity of Full-Size Wood Composite Panels Using a Vibration Testing Method

    Science.gov (United States)

    Cheng Guan; Houjiang Zhang; John F. Hunt; Lujing Zhou; Dan Feng

    2016-01-01

    The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the...

  9. Joint Labour Supply Dynamics of Older Couples

    NARCIS (Netherlands)

    Michaud, P.C.

    2003-01-01

    This paper studies the labour force participation dynamics of older couples in the United States.Longitudinal data from the five available waves of the Health and Retirement Study (HRS) is used to investigate if the dynamics introduced by considering both spouses' behavior provide additional

  10. Dynamic Model and Vibration Characteristics of Planar 3-RRR Parallel Manipulator with Flexible Intermediate Links considering Exact Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Lianchao Sheng

    2017-01-01

    Full Text Available Due to the complexity of the dynamic model of a planar 3-RRR flexible parallel manipulator (FPM, it is often difficult to achieve active vibration control algorithm based on the system dynamic model. To establish a simple and efficient dynamic model of the planar 3-RRR FPM to study its dynamic characteristics and build a controller conveniently, firstly, considering the effect of rigid-flexible coupling and the moment of inertia at the end of the flexible intermediate link, the modal function is determined with the pinned-free boundary condition. Then, considering the main vibration modes of the system, a high-efficiency coupling dynamic model is established on the basis of guaranteeing the model control accuracy. According to the model, the modal characteristics of the flexible intermediate link are analyzed and compared with the modal test results. The results show that the model can effectively reflect the main vibration modes of the planar 3-RRR FPM; in addition the model can be used to analyze the effects of inertial and coupling forces on the dynamics model and the drive torque of the drive motor. Because this model is of the less dynamic parameters, it is convenient to carry out the control program.

  11. Tensor-decomposed vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure calculations

    Science.gov (United States)

    Madsen, Niels Kristian; Godtliebsen, Ian H.; Losilla, Sergio A.; Christiansen, Ove

    2018-01-01

    A new implementation of vibrational coupled-cluster (VCC) theory is presented, where all amplitude tensors are represented in the canonical polyadic (CP) format. The CP-VCC algorithm solves the non-linear VCC equations without ever constructing the amplitudes or error vectors in full dimension but still formally includes the full parameter space of the VCC[n] model in question resulting in the same vibrational energies as the conventional method. In a previous publication, we have described the non-linear-equation solver for CP-VCC calculations. In this work, we discuss the general algorithm for evaluating VCC error vectors in CP format including the rank-reduction methods used during the summation of the many terms in the VCC amplitude equations. Benchmark calculations for studying the computational scaling and memory usage of the CP-VCC algorithm are performed on a set of molecules including thiadiazole and an array of polycyclic aromatic hydrocarbons. The results show that the reduced scaling and memory requirements of the CP-VCC algorithm allows for performing high-order VCC calculations on systems with up to 66 vibrational modes (anthracene), which indeed are not possible using the conventional VCC method. This paves the way for obtaining highly accurate vibrational spectra and properties of larger molecules.

  12. Dynamics of unidirectionally coupled bistable Henon maps

    International Nuclear Information System (INIS)

    Sausedo-Solorio, J.M.; Pisarchik, A.N.

    2011-01-01

    We study dynamics of two bistable Henon maps coupled in a master-slave configuration. In the case of coexistence of two periodic orbits, the slave map evolves into the master map state after transients, which duration determines synchronization time and obeys a -1/2 power law with respect to the coupling strength. This scaling law is almost independent of the map parameter. In the case of coexistence of chaotic and periodic attractors, very complex dynamics is observed, including the emergence of new attractors as the coupling strength is increased. The attractor of the master map always exists in the slave map independently of the coupling strength. For a high coupling strength, complete synchronization can be achieved only for the attractor similar to that of the master map. -- Highlights: → We study dynamics of two bistable Henon maps coupled in a master-slave configuration. → Synchronization time for periodic orbits obeys a -1/2 power law with respect to coupling. → For a high coupling strength, the slave map remains bistable. → Complete synchronization can be achieved only when both maps stay at the same attractor.

  13. Dynamics of vehicle-road coupled system

    CERN Document Server

    Yang, Shaopu; Li, Shaohua

    2015-01-01

    Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai Univ...

  14. Development of evaluation method on flow-induced vibration and corrosion of components in two-phase flow by coupled analysis. 5. Evaluation of wall thinning rate with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi

    2008-01-01

    Wall thinning rates due to FAC were calculated with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis at the identified danger zone. Anodic and cathodic current densities and ECPs were calculated with the static electrochemistry model and ferrous ion release rate determined by the anodic current density was used as input for the dynamic double oxide layer model. Thickness of oxide film and its characteristics determined by the dynamic double oxide layer model were used for the electrochemistry model to determine the resistances of cathodic current from the bulk to the surface and anodic current from the surface to the bulk. Two models were coupled to determine local corrosion rate and ECP for various corrosive conditions. The calculated results of the coupled models had good agreement with the measured ones. (author)

  15. The Shock and Vibration Bulletin. Part 3. Structural Dynamics, Machinery Dynamics and Vibration Problems

    Science.gov (United States)

    1984-06-01

    and H. B. Lin, Chinese Academy of Space Technology, Beijing, China * - Blast and Ground Shock ASSESSMENT OF SEISMIC SURVIVABILITYR. E. McClellan, The...Vibration Naval Weapon Center, Implementation and Use Information Center, China Lake, CA Washington, DC Thursday, Blast/Ground Mr. William Flathau, Mr...Eelicopter Society. Vol. 26. No. 2, April 1963. pp. 30-36. 3. Pestel . Z.c. * and JAckie. P.R.. Matrix Methods in Elastomechanicf. Mcorew will. 196?. 4

  16. Vibrational dynamics of the host framework in Sn clathrates

    Science.gov (United States)

    Leu, Bogdan M.; Sturza, Mihai; Hu, Michael Y.; Gosztola, David; Baran, Volodymyr; Fässler, Thomas F.; Alp, E. Ercan

    2014-09-01

    We use nuclear resonance inelastic x-ray scattering (NRIXS), a relatively new, synchrotron-based, isotope-specific technique in combination with a more traditional one, Raman spectroscopy, to probe the vibrational dynamics of the host frameworks in two Zintl clathrates: K8Zn4Sn42 (KZS) and Ba8Ga16Sn30 (BGS). From the normalized Sn vibrational density of states obtained from NRIXS, we calculate the stiffness, a mean force constant of the Sn environment, the resilience, a compact way of expressing the temperature dependence of the Sn mean square displacement, and several thermodynamic properties. The stiffness and the resilience are approximately 7% lower in KZS, reflecting its larger unit cell compared to BGS. We emphasize the complementariness between NRIXS and Raman spectroscopy and establish a series of benchmarks for a more quantitative evaluation of the Raman spectra for the numerous clathrates that are still not suitable for NRIXS studies.

  17. Vibrational lifetimes of hydrogen on lead films: An ab initio molecular dynamics with electronic friction (AIMDEF) study

    Energy Technology Data Exchange (ETDEWEB)

    Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam (Germany); Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Juaristi, J. I. [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain); Alducin, M.; Muiño, R. Díez [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Blanco-Rey, M. [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain)

    2014-12-21

    Using density functional theory and Ab Initio Molecular Dynamics with Electronic Friction (AIMDEF), we study the adsorption and dissipative vibrational dynamics of hydrogen atoms chemisorbed on free-standing lead films of increasing thickness. Lead films are known for their oscillatory behaviour of certain properties with increasing thickness, e.g., energy and electron spillout change in discontinuous manner, due to quantum size effects [G. Materzanini, P. Saalfrank, and P. J. D. Lindan, Phys. Rev. B 63, 235405 (2001)]. Here, we demonstrate that oscillatory features arise also for hydrogen when chemisorbed on lead films. Besides stationary properties of the adsorbate, we concentrate on finite vibrational lifetimes of H-surface vibrations. As shown by AIMDEF, the damping via vibration-electron hole pair coupling dominates clearly over the vibration-phonon channel, in particular for high-frequency modes. Vibrational relaxation times are a characteristic function of layer thickness due to the oscillating behaviour of the embedding surface electronic density. Implications derived from AIMDEF for frictional many-atom dynamics, and physisorbed species will also be given.

  18. Study on the coupled vibration of square cylinders in a liquid, 3

    International Nuclear Information System (INIS)

    Kasai, Hiroaki

    1984-01-01

    The through-liquid coupled vibration of a group of square bars with same structural particulars supported in a vessel filled with liquid is under the control by the gap width between the bars, the gap width between the vessel and the bars, the ratio of the density of the bars and the liquid, the viscosity of the liquid and so on. Also the number of the natural frequency and the mode of vibration of the group of bars is 2 x the number of bars. In order to forecast the behavior of heat exchangers, the in-core structures of nuclear reactors and others at the time of earthquakes, the relation among these influencing factors and the vibration characteristics of a group of bars is to be examined. In this study, the vibration response was theoretically examined in the case where the system of many bars arranged two-dimensionally was subjected to forced vibration was examined. First, the method of reducing the equations of fluid force and the equations of motion of bars by using the axisymmetry of vibration mode was considered. Next, the method of approximate calculation under the assumption that fluid force is averaged was proposed. The vibration characteristics of various bar group models were compared by using the exact model and the approximate model, and it was confirmed that this method of approximate calculation can be practically used. (Kako, I.)

  19. Dynamics of Coupled Quantum Spin Chains

    International Nuclear Information System (INIS)

    Schulz, H.J.

    1996-01-01

    Static and dynamical properties of weakly coupled antiferromagnetic spin chains are treated using a mean-field approximation for the interchain coupling and exact results for the resulting effective one-dimensional problem. Results for staggered magnetization, Nacute eel temperature, and spin wave excitations are in agreement with experiments on KCuF 3 . The existence of a narrow longitudinal mode is predicted. The results are in agreement with general scaling arguments, contrary to spin wave theory. copyright 1996 The American Physical Society

  20. Approximating coupled cluster level vibrational frequencies with composite methods.

    Science.gov (United States)

    Fan, Yanping; Ho, Junming; Bettens, Ryan P A

    2006-03-02

    An extensive study of the harmonic frequencies of a large set of small polyatomic closed-shell molecules computed at both single level ab initio and composite approximations is presented here. Using various combinations of basis sets, composite methods are capable of predicting single level ab initio CCSD(T) harmonic frequencies to within 5 cm(-1) on average, which suggests a computationally affordable means of obtaining highly accurate vibrational frequencies compared to the CCSD(T) level. A general approach for calculating the composite level equilibrium geometries and harmonic frequencies for polyatomic systems that uses the Collin's method of interpolating potential energy surfaces is also described here. This approach is further tested on tetrafluoromethane, and an estimation of the potential CPU time savings that may be obtained is also presented. It is envisaged that the findings here will enable theoretical studies of fundamental frequencies and energetics of significantly larger molecular systems.

  1. Coupled Vibration of Unshrouded Centrifugal Compressor Impellers. Part II: Computation of Vibration Behavior

    Directory of Open Access Journals (Sweden)

    Dirk Hagelstein

    2000-01-01

    Full Text Available The increased use of small gas turbines and turbochargers in different technical fields has led to the development of highly-loaded centrifugal compressors with extremely thin blades. Due to high rotational speed and the correspondingly high centrifugal loads, the shape of the impeller hub must also be optimized. This has led to a reduction of the thickness of the impeller disc in the outlet region. The thin parts of the impeller are very sensitive and may be damaged by the excitation of dangerous blade vibrations.

  2. Magnetoelectric coupling of a magnetoelectric flux gate sensor in vibration noise circumstance

    Directory of Open Access Journals (Sweden)

    Zhaoqiang Chu

    2018-01-01

    Full Text Available A magnetoelectric (ME flux gate sensor (MEFGS consisting of piezoelectric PMN-PT single crystals and ferromagnetic amorphous alloy ribbon in a self-differential configuration is featured with the ability of weak magnetic anomaly detection. Here, we further investigated its ME coupling and magnetic field detection performance in vibration noise circumstance, including constant frequency, impact, and random vibration noise. Experimental results show that the ME coupling coefficient of MEFGS is as high as 5700 V/cm*Oe at resonant frequency, which is several orders magnitude higher than previously reported differential ME sensors. It was also found that under constant and impact vibration noise circumstance, the noise reduction and attenuation factor of MEFGS are over 17 and 85.7%, respectively. This work is important for practical application of MEFGS in real environment.

  3. Magnetoelectric coupling of a magnetoelectric flux gate sensor in vibration noise circumstance

    Science.gov (United States)

    Chu, Zhaoqiang; Shi, Huaduo; Gao, Xiangyu; Wu, Jingen; Dong, Shuxiang

    2018-01-01

    A magnetoelectric (ME) flux gate sensor (MEFGS) consisting of piezoelectric PMN-PT single crystals and ferromagnetic amorphous alloy ribbon in a self-differential configuration is featured with the ability of weak magnetic anomaly detection. Here, we further investigated its ME coupling and magnetic field detection performance in vibration noise circumstance, including constant frequency, impact, and random vibration noise. Experimental results show that the ME coupling coefficient of MEFGS is as high as 5700 V/cm*Oe at resonant frequency, which is several orders magnitude higher than previously reported differential ME sensors. It was also found that under constant and impact vibration noise circumstance, the noise reduction and attenuation factor of MEFGS are over 17 and 85.7%, respectively. This work is important for practical application of MEFGS in real environment.

  4. Vibration and Dynamic Response Control of Nonuniform Composite Rotating Blades

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available This paper addresses the free vibration, dynamic response, and the active control of composite rotating pretwisted blades modeled as nonuniform thin-walled beams, fixed at the hub at a setting angle, and incorporating piezoelectrically induced damping capabilities. In this sense, a distributed piezoelectric actuator system activated through the application of an out-of-phase electrical current is used to suppress the dynamic response of the rotating beam subjected to a Heaviside pulse. The blade model incorporates nonclassical effects such as transverse shear, secondary warping, and rotary inertias, and includes the centrifugal and Coriolis force fields. A velocity feedback control law relating the piezoelectrically induced bending moment at the beam tip with appropriately selected kinematical response quantities is used, and the beneficial effects of its implementation upon the closed loop eigenvibration and dynamic characteristics of the blade are highlighted.

  5. Vibration-rotation alchemy in acetylene (12C2H2), ? at low vibrational excitation: from high resolution spectroscopy to fast intramolecular dynamics

    Science.gov (United States)

    Perry, David S.; Miller, Anthony; Amyay, Badr; Fayt, André; Herman, Michel

    2010-04-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), ? with up to 8600 cm-1 of vibrational energy. This comparison is based on the extensive and reliable knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision [B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys. 131, 114301 (2009)]. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities in intramolecular vibrational redistribution (IVR) are first investigated for the v 4 + v 5 and v 3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φ d, the IVR lifetime τ IVR , and the recurrence time τ rec. For the two bright states v 3 + 2v 4 and 7v 4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7v 4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states.

  6. Coherent regimes of globally coupled dynamical systems

    DEFF Research Database (Denmark)

    de Monte, Silvia; D'ovidio, Francesco; Mosekilde, Erik

    2003-01-01

    This Letter presents a method by which the mean field dynamics of a population of dynamical systems with parameter diversity and global coupling can be described in terms of a few macroscopic degrees of freedom. The method applies to populations of any size and functional form in the region of co...... of oscillator death and the route to full locking are examined for chaotic oscillators with time scale mismatch....

  7. Sound transmission of sandwich beams with the dynamic vibration absorbers

    Directory of Open Access Journals (Sweden)

    Bohdan Diveyev

    2015-07-01

    Full Text Available This study aims to predict the sound transmission properties of composite layered beams structures with the system of dynamic vibration absorbers (DVA’s. The effective stiffness constants of equivalent to lamina Timoshenko beam and their damping properties have been determined by using a procedure based on multi-level numerical schemes and eigen-frequencies comparison. The strategy of an anisotropic beam to the Timoshenko beam seem to be such: the raw of models can be applied at different vibration or static conditions of the plate by a suitable analytical ore approximation method, research of sensitiveness in relation to the parameters of fixing and material anisotropy, numerical experiments on identification of elastic modules, practical module identification by exploring different schemes of experimental setup and, finally, posterior analysis of identification quality. The combined method of identification was proposed on the basis of the simultaneous use of information on a homogeneous beam and beam with an internal layer, with identical mechanical properties to the homogeneous beam. Numerical evaluations obtained for the vibration of the equivalent Timoshenko beam have been used to determine the sound transmission properties of laminated composite beams with the system of DVA’s. The optimization of beams-DVA’s system sound absorption properties is performed in the low frequency range.

  8. Effect of heavy hydrogen isotopes on the vibrational line shape for supercritical water through rotational couplings.

    Science.gov (United States)

    Yoshida, Ken; Matubayasi, Nobuyuki; Uosaki, Yasuhiro; Nakahara, Masaru

    2013-04-07

    The rotational couplings, which determine the infrared spectral line shape in the low-density supercritical water, were analyzed as functions of the density and the temperature by applying molecular dynamics simulation to a flexible water model, SPC∕Fw and by varying the moment of inertia of the water through substitution for the H atom in H2O by heavy hydrogen isotopes. The differences in the frequency and the relative intensity between the sharp center peak and the rotational broad side-bands were analyzed for the O-H, O-D, and O-T stretch spectra. The frequency differences between the sharp center peak and the rotational broad side-bands are linearly correlated with the inverse of the moment of inertia of the isotope-substituted water species. The intensity of the sharp peak is associated with the long-time component of the reorientational time correlation function for the stretching bond vector. At 400 °C, where a substantial amount of hydrogen bonds are dynamically persisting, an intensity decrease in the rotational broad side-bands was observed with increasing density from 0.01 to 0.40 g cm(-3), respectively, corresponding to 0.56 and 22.2 M (=mol dm(-3)), orders of magnitude higher than the ideal gas densities. This arises from the decrease in the correlation time of the angular velocity and the rotational couplings due to an increase in the hydrogen-bonding perturbation. The intensity decrease of the rotational side-bands with increasing density is more significant for the water isotopes with heavier hydrogens. At a high temperature of 1200 °C, the rotational side-bands at 0.01 to 0.05 g cm(-3) were more distinct than those at 400 °C, and even at a medium density of 0.40 g cm(-3) a significant signal broadening due to the rotational couplings was clearly observed because of the accelerated rotational momentum. The vibrational spectrum cannot be decomposed into definite chemical clusters for the thermodynamic and kinetic analysis because of the dynamic

  9. Dynamic Electromechanical Coupling of Piezoelectric Bending Actuators

    Directory of Open Access Journals (Sweden)

    Mostafa R. A. Nabawy

    2016-01-01

    Full Text Available Electromechanical coupling defines the ratio of electrical and mechanical energy exchanged during a flexure cycle of a piezoelectric actuator. This paper presents an analysis of the dynamic electromechanical coupling factor (dynamic EMCF for cantilever based piezoelectric actuators and provides for the first time explicit expressions for calculation of dynamic EMCF based on arrangement of passive and active layers, layer geometry, and active and passive materials selection. Three main cantilever layer configurations are considered: unimorph, dual layer bimorph and triple layer bimorph. The actuator is modeled using standard constitutive dynamic equations that relate deflection and charge to force and voltage. A mode shape formulation is used for the cantilever dynamics that allows the generalized mass to be the actual mass at the first resonant frequency, removing the need for numerical integration in the design process. Results are presented in the form of physical insight from the model structure and also numerical evaluations of the model to provide trends in dynamic EMCF with actuator design parameters. For given material properties of the active and passive layers and given system overall damping ratio, the triple layer bimorph topology is the best in terms of theoretically achievable dynamic EMCF, followed by the dual layer bimorph. For a damping ratio of 0.035, the dynamic EMCF for an example dual layer bimorph configuration is 9% better than for a unimorph configuration. For configurations with a passive layer, the ratio of thicknesses for the passive and active layers is the primary geometric design variable. Choice of passive layer stiffness (Young’s modulus relative to the stiffness of the material in the active layer is an important materials related design choice. For unimorph configurations, it is beneficial to use the highest stiffness possible passive material, whereas for triple layer bimorph configurations, the passive

  10. Vibration analysis of multi-span beam system under arbitrary boundary and coupling conditions

    Directory of Open Access Journals (Sweden)

    ZHENG Chaofan

    2017-08-01

    Full Text Available In order to overcome the difficulties of studying the vibration analysis model of a multi-span beam system under various boundary and coupling conditions, this paper constructs a free vibration analysis model of a multi-span beam system on the basis of the Bernoulli-Euler beam theory. The vibration characteristics of a multi-span beam system under arbitrary boundary supports and elastic coupling conditions are investigated using the current analysis model. Unlike most existing techniques, the beam displacement function is generally sought as an improved Fourier cosine series, and four sine terms are introduced to overcome all the relevant discontinuities or jumps of elastic boundary conditions. On this basis, the unknown series coefficients of the displacement function are treated as the generalized coordinates and solved using the Rayleigh-Ritz method, and the vibration problem of multi-span bean systems is converted into a standard eigenvalue problem concerning the unknown displacement expansion coefficient. By comparing the free vibration characteristics of the proposed method with those of the FEA method, the efficiency and accuracy of the present method are validated, providing a reliable and theoretical basis for multi-span beam system structure in engineering applications.

  11. Optimization of Vibration Reduction Ability of Ladder Tracks by FEM Coupled with ACO

    Directory of Open Access Journals (Sweden)

    Hao Jin

    2015-01-01

    Full Text Available Ladder track, which has drawn increased attention in scientific communities, is an effective method for reducing vibrations from underground railways. In order to optimize the vibration reduction ability of ladder track, a new method, that is, the finite element method (FEM coupled with ant colony optimization (ACO, has been proposed in this paper. We describe how to build the FEM model verified by the vibration tests in the Track Vibration Abatement and Control Laboratory and how to couple the FEM with ACO. The density and elasticity modulus of the sleeper pad are optimized using this method. After optimization, the vibration acceleration level of the supporting platform in the 1–200 Hz range was reduced from 102.8 dB to 94.4 dB. The optimized density of the sleeper pad is 620 kg/m3, and the optimized elasticity modulus of the sleeper pad is 6.25 × 106 N/m2.

  12. Similarity-transformed equation-of-motion vibrational coupled-cluster theory

    Science.gov (United States)

    Faucheaux, Jacob A.; Nooijen, Marcel; Hirata, So

    2018-02-01

    A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.

  13. Vibration Characteristics Analysis of Cylindrical Shell-Plate Coupled Structure Using an Improved Fourier Series Method

    Directory of Open Access Journals (Sweden)

    Yipeng Cao

    2018-01-01

    Full Text Available A simple yet accurate solution procedure based on the improved Fourier series method (IFSM is applied to the vibration characteristics analysis of a cylindrical shell-circular plate (S-P coupled structure subjected to various boundary conditions. By applying four types of coupling springs with arbitrary stiffness at the junction of the coupled structure, the mechanical coupling effects are completely considered. Each of the plate and shell displacement functions is expressed as the superposition of a two-dimensional Fourier series and several supplementary functions. The unknown series-expansion coefficients are treated as the generalized coordinates and determined using the familiar Rayleigh-Ritz procedure. Using the IFSM, a unified solution for the S-P coupled structure with symmetrical and asymmetrical boundary conditions can be derived directly without the need to change either the equations of motion or the expressions of the displacements. This solution can be verified by comparing the current results with those calculated by the finite-element method (FEM. The effects of several significant factors, including the restraint stiffness, the coupling stiffness, and the situation of coupling, are presented. The forced vibration behaviors of the S-P coupled structure are also illustrated.

  14. Flow vibrations and dynamic instability of heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Granger, S.; Langre, E. de

    1995-01-01

    This paper presents a review of external-flow-induced vibration of heat exchanger tube bundles. Attention is focused on a dynamic instability, known as ''fluidelastic instability'', which can develop when flow is transverse to the tube axis. The main physical models proposed in the literature are successively reviewed in a critical way. As a consequence, some concepts are clarified, some a priori plausible misinterpretations are rejected and finally, certain basic mechanisms, induced by the flow-structure interaction and responsible for the ultimate onset of fluidelastic instability, are elucidated. Design tools and methods for predictive analysis of industrial cases are then presented. The usual design tool is the ''stability map'', i.e. an empirical correlation which must be interpreted in a conservative way. Of course, when using this approach, the designer must also consider reasonable safety margins. In the area of predictive analysis, the ''unsteady semi-analytical models'' seem to be a promising and efficient methodology. A modern implementation of these ideas mix an original experimental approach for taking fluid dynamic forces into account, together with non-classical numerical methods of mechanical vibration. (authors). 20 refs., 9 figs

  15. Mode coupling and multiquantum vibrational excitations in Feshbach-resonant positron annihilation in molecules

    Science.gov (United States)

    Gribakin, G. F.; Stanton, J. F.; Danielson, J. R.; Natisin, M. R.; Surko, C. M.

    2017-12-01

    The dominant mechanism of low-energy positron annihilation in polyatomic molecules is through positron capture in vibrational Feshbach resonances (VFR). In this paper, we investigate theoretically the effect of anharmonic terms in the vibrational Hamiltonian on positron annihilation rates. Such interactions enable positron capture in VFRs associated with multiquantum vibrational excitations, leading to enhanced annihilation. Mode coupling can also lead to faster depopulation of VFRs, thereby reducing their contribution to the annihilation rates. To analyze this complex picture, we use coupled-cluster methods to calculate the anharmonic vibrational spectra and dipole transition amplitudes for chloroform, chloroform-d1, 1,1-dichloroethylene, and methanol, and use these data to compute positron resonant annihilation rates for these molecules. Theoretical predictions are compared with the annihilation rates measured as a function of incident positron energy. The results demonstrate the importance of mode coupling in both enhancement and suppression of the VFR. There is also experimental evidence for the direct excitation of multimode VFR. Their contribution is analyzed using a statistical approach, with an outlook towards more accurate treatment of this phenomenon.

  16. Fluid-structure coupling between a vibrating cylinder and a narrow annular flow

    International Nuclear Information System (INIS)

    Perotin, L.

    1994-01-01

    This paper presents an analytical investigation of the fluidelastic coupling between an axial annular flow and a flexible vibrating axisymmetrical structure. The model presented is suited to single-phase, incompressible, viscous fluids and to annular flows of variable cross-section, axially symmetrical when the structure is motionless.An experimental validation of this model is presented at the end of the paper: the results obtained with the numerical model are compared with experimental data for an oscillating cylinder free to vibrate under the effect of a variable-cross-section annular flow. ((orig.))

  17. Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface

    Science.gov (United States)

    Bouakline, F.; Lorenz, U.; Melani, G.; Paramonov, G. K.; Saalfrank, P.

    2017-10-01

    a net exponential decay of the time-dependent survival probability for the H-Si initial vibrational state, allowing an easy extraction of the bending mode "lifetime." This is in contrast with the D-Si system, whose survival probability exhibits a non-monotonic decay, making it difficult to define such a lifetime. This different behavior of the vibrational decay is rationalized in terms of the power spectrum of the adsorbate-surface system. In the case of D-Si, it consists of several, non-uniformly distributed peaks around the bending mode frequency, whereas the H-Si spectrum exhibits a single Lorentzian lineshape, whose width corresponds to the calculated lifetime. The present work gives some insight into mechanisms of vibration-phonon coupling at surfaces. It also serves as a benchmark for multidimensional system-bath quantum dynamics, for comparison with approximate schemes such as reduced, open-system density matrix theory (where the bath is traced out and a Liouville-von Neumann equation is solved) or approximate wavefunction methods to solve the combined system-bath Schrödinger equation.

  18. Coupled dynamic analysis of a single gimbal control moment gyro cluster integrated with an isolation system

    Science.gov (United States)

    Luo, Qing; Li, Dongxu; Jiang, Jianping

    2014-01-01

    Control moment gyros (CMGs) are widely used as actuators for attitude control in spacecraft. However, micro-vibrations produced by CMGs will degrade the pointing performance of high-sensitivity instruments on-board the spacecraft. This paper addresses dynamic modelling and performs an analysis on the micro-vibration isolation for a single gimbal CMG (SGCMG) cluster. First, an analytical model was developed to describe both the coupled SGCMG cluster and the multi-axis isolation system that can express the dynamic outputs. This analytical model accurately reflects the mass and inertia properties, the gyroscopic effects and flexible modes of the coupled system, which can be generalized for isolation applications of SGCMG clusters. Second, the analytical model was validated using MSC.NASTRAN software based on the finite element technique. The dynamic characteristics of the coupled system are affected by the mass distribution and the gyroscopic effects of the SGCMGs. The gyroscopic effects produced by the rotary flywheel will stiffen or soften several of the structural modes of the coupled system. In addition, the gyroscopic effect of each SGCMG can interact with or counteract that of others, which induce vibration modes coupled together. Finally, the performance of the passive isolation was analysed. It was demonstrated that the gyroscopic effects should be considered in isolation studies on SGCMG clusters; otherwise, the isolation performance will be underestimated if they are ignored.

  19. Reduced Near-Resonant Vibrational Coupling at the Surfaces of Liquid Water and Ice.

    Science.gov (United States)

    Smit, Wilbert J; Versluis, Jan; Backus, Ellen H G; Bonn, Mischa; Bakker, Huib J

    2018-02-26

    We study the resonant interaction of the OH stretch vibrations of water molecules at the surfaces of liquid water and ice using heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy. By studying different isotopic mixtures of H 2 O and D 2 O, we vary the strength of the interaction, and we monitor the resulting effect on the HD-SFG spectrum of the OH stretch vibrations. We observe that the near-resonant coupling effects are weaker at the surface than in the bulk, both for water and ice, indicating that for both phases of water the OH vibrations are less strongly delocalized at the surface than in the bulk.

  20. Coupled Boundary and Finite Element Analysis of Vibration from Railway Tunnels

    DEFF Research Database (Denmark)

    Andersen, Lars; Jones, C. J. C.

    2004-01-01

    body vibration (about 4 to 80 Hz). A coupled finite element and boundary element scheme is applied in both two and three dimensions. Two tunnel designs are considered: a cut-and-cover tunnel for a double track and a single-track tunnel dug with the New Austrian Tunnelling Method (NATM).......The analysis of vibration from railway tunnels is of growing interest as new and higher-speed railways are built under the ground to address the transport problems of growing modern urban areas around cities. Such analysis can be carried out using numerical methods but models and therefore......-dimensional wave propagation. The aim of this paper is to investigate the quality of the information that can be gained from a two-dimensional model of a railway tunnel. The vibration transmission from the tunnel floor to the ground surface is analysed for the frequency range relevant to the perception of whole...

  1. Coupled Boundary and Finite Element Analysis of Vibration from Railway Tunnels

    DEFF Research Database (Denmark)

    Andersen, Lars; Jones, C.J.C.

    2006-01-01

    body vibration (about 4 to 80 Hz). A coupled finite element and boundary element scheme is applied in both two and three dimensions. Two tunnel designs are considered: a cut-and-cover tunnel for a double track and a single-track tunnel dug with the New Austrian Tunnelling Method (NATM).......The analysis of vibration from railway tunnels is of growing interest as new and higher-speed railways are built under the ground to address the transport problems of growing modern urban areas around cities. Such analysis can be carried out using numerical methods but models and therefore......-dimensional wave propagation. The aim of this paper is to investigate the quality of the information that can be gained from a two-dimensional model of a railway tunnel. The vibration transmission from the tunnel floor to the ground surface is analysed for the frequency range relevant to the perception of whole...

  2. Numerical Approach of Coupling Vibration Magneto-convection In Nanofluid

    Directory of Open Access Journals (Sweden)

    K Syham

    2016-06-01

    Full Text Available The objective of our work is to visualize numerically the effect of coupling vibratory excitation and magnetic field on cooling an electronic component or a solar cell (originality of our study in arid and semi-arid area. A square cavity of side H filled with Al2O3-water nanofluid where an electronic component is placed on the bottom horizontal wall is maintained at isothermal hot temperature Th. The top horizontal wall is maintained at a cold temperature Tc. The vertical walls are adiabatic. The equations describing the natural convection flow in the square cavity consist of mass conservation, momentum and energy. For the physical parameters of Al2O3-water nanofluid, we use the Brinkman and Wasp model. Transport equations are solved numerically by finite element method. The results are obtained for Rayleigh number Ra= 105, Hartmann numbers between 0 and 100 and vibratory excitation inclination angle between 0° and 90°. The external magnetic field inclination angle varies between 0° and 90° and the Rayleigh number ratio between 0 and 50.  Results are presented in the form of heat transfer flux ratio and maximum absolute value of stream function.

  3. Relationships for electron-vibrational coupling in conjugated π organic systems

    Science.gov (United States)

    O'Neill, L.; Lynch, P.; McNamara, M.; Byrne, H. J.

    2005-06-01

    A series of π conjugated systems were studied by absorption, photoluminescence and vibrational spectroscopy. As is common for these systems, a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Stokes shift also exhibited a well-defined relationship with increasing conjugation length, implying a correlation between the electron-vibrational coupling and chain length. This correlation is further examined using Raman spectroscopy, whereby the integrated Raman scattering is seen to behave superlinearly with chain length. There is a clear indication that the vibrational activity and thus nonradiative decay processes are controllable through molecular structure. The correlations between the Stokes energies and the vibrational structure are also observed in a selection of PPV based polymers and a clear trend of increasing luminescence efficiency with decreasing vibrational activity and Stokes shift is observable. The implications of such structure property relationships in terms of materials design are discussed.

  4. Is the Coupling of C3V Internal Rotation and Normal Vibrations a Tractable Problem?

    Science.gov (United States)

    Pearson, John; Groner, Peter; Daly, Adam M.

    2016-06-01

    The solution of a C3V internal rotation problem for the torsional manifold of an isolated vibrational state such as the ground state is well established. However, once an interacting small amplitude vibrational state is involved the path to a solution becomes far less clear and there is little guidance in the literature on how to proceed. The fundamental challenge is that the torsional problem and the internal axis system are unique to each torsional manifold of a specific vibrational state. In an asymmetric top molecule vibrational angular momentum can be rotated away, but this sort of rotation changes the angle between the internal rotation axis and the principle axis when there is an internal rotor. This means that there is an angle between the internal axis systems of each torsional manifold of a vibrational state. The net result is that the coupling between the two states must account for the difference in internal axis angle and will have some significant consequences to the selection rules and interactions. Two cases will be discussed, methanol and ethyl cyanide.

  5. Robust non-fragile dynamic vibration absorbers with uncertain factors

    Science.gov (United States)

    Zhang, Hui; Shi, Yang; Saadat Mehr, Aryan

    2011-02-01

    In this paper, the design problem for non-fragile dynamic vibration absorbers (DVAs) is investigated. Due to the imprecision of the manufacturing process or the variation during the operation, uncertainty in the parameters of the DVA is unavoidable. The uncertainty may degrade the performance of the designed DVA or even deteriorate the system. Hence, it is practically demanding to propose a design method for a non-fragile DVA, i.e., when the parameters of the DVA vary in an admissible range, an expected vibration suppression level should be guaranteed. The uncertainty of the DVA is feasibly assumed to be norm-bounded. Then, the design problem for the DVA is converted into a static output feedback (SOF) control problem. Sufficient condition for the existence of the non-fragile DVA with a prescribed H∞ level is derived by using a bilinear matrix inequality (BMI). An iterative linear matrix inequality (ILMI) method is employed to solve the BMI condition. Finally, a design example is given to show the effectiveness of the proposed approach.

  6. Ro-vibrational coupling in high temperature thermochemistry of the BBr molecule

    Science.gov (United States)

    Buchowiecki, Marcin

    2018-01-01

    High temperature thermochemistry of the BBr molecule is investigated with the classical approach in the temperature range of 300-20,000 K. The role of ro-vibrational coupling is elucidated. The internal partition function, thermal energy, heat capacity, and entropy are calculated at three levels of approximation, i.e. taking into account bound states on the ground state (1 Σ), including also two excited states (3 Π and 1 Π), and finally adding the resonance and scattering states. The influence of these approximations on studied quantities is investigated. The entropy is found to be the least sensitive to approximations in the ro-vibrational coupling and the heat capacity the most sensitive.

  7. Low-energy vibrational dynamics of cesium borate glasses.

    Science.gov (United States)

    Crupi, C; D'Angelo, G; Vasi, C

    2012-06-07

    Low-temperature specific heat and inelastic light scattering experiments have been performed on a series of cesium borate glasses and on a cesium borate crystal. Raman measurements on the crystalline sample have revealed the existence of cesium rattling modes in the same frequency region where glasses exhibit the boson peak (BP). These localized modes are supposed to overlap with the BP in cesium borate glasses affecting its magnitude. Their influence on the low frequency vibrational dynamics in glassy samples has been considered, and their contribution to the specific heat has been estimated. Evidence for a relation between the changes of the BP induced by the increased amount of metallic oxide and the variations of the elastic medium has been provided.

  8. Vibrational dynamics and band structure of methyl-terminated Ge(111)

    International Nuclear Information System (INIS)

    th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Hund, Zachary M.; th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Nihill, Kevin J.; th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Sibener, S. J.; Campi, Davide; Bernasconi, M.; Wong, Keith T.; Lewis, Nathan S.; Benedek, G.

    2015-01-01

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD 3 -Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH 3 -Ge(111) and CH 3 -Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers

  9. Vibrational dynamics and band structure of methyl-terminated Ge(111)

    Energy Technology Data Exchange (ETDEWEB)

    Hund, Zachary M.; Nihill, Kevin J.; Sibener, S. J., E-mail: s-sibener@uchicago.edu [The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57" t" h Street, Chicago, Illinois 60637 (United States); Campi, Davide; Bernasconi, M. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Wong, Keith T.; Lewis, Nathan S. [Division of Chemistry and Chemical Engineering, Beckman Institute and Kavli Nanoscience Institute, California Institute of Technology, 210 Noyes Laboratory, 127-72, Pasadena, California 91125 (United States); Benedek, G. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Donostia International Physics Center (DIPC), Universidad del País Vasco (EHU), 20018 Donostia/San Sebastian (Spain)

    2015-09-28

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD{sub 3}-Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH{sub 3}-Ge(111) and CH{sub 3}-Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers.

  10. Coupling Vibration Analysis of Trapped-Energy Rectangular Quartz Resonators by Variational Formulation of Mindlin's Theory.

    Science.gov (United States)

    Li, Nian; Wang, Bin; Qian, Zhenghua

    2018-03-26

    Mindlin's two-dimensional theory has been derived and applied to research on quartz resonators for a long time. However, most works have focused on vibrations varying only in two directions, including thickness direction, while the effect of other directions like the length or width direction is normally neglected. Besides, researchers often model quartz resonators as fully electroded plates because of the resulting simplicity. Since a real device is finite in all directions and is only centrally electroded, results obtained in such works cannot offer quantitative information on vibrations with enough accuracy. In this paper, a theoretical analysis of a rectangular trapped-energy resonator of AT-cut quartz is studied using the Ritz method, associated with the variational formulation of Mindlin's first-order equations. Frequency spectra and mode shapes of a real-scaled trapped-energy resonator, which is finite in all directions, are obtained with the consideration of mode couplings among thickness-shear mode, thickness-twist mode, and flexural mode. Results show the existence of an energy-trapping and coupling phenomenon and are helpful for thorough and accurate understanding of quartz resonator vibrations. Detailed discussions on the effects of structural parameters on mode couplings and energy trapping are provided, and the results can helpfully guide the selection of aspect ratio, length/thickness ratio, and electrode inertia in device design.

  11. Vibrational Averaging of the Isotropic Hyperfine Coupling Constants for the Methyl Radical

    Science.gov (United States)

    Adam, Ahmad; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2014-06-01

    Electronic contributions to molecular properties are often considered as the major factor and usually reported in the literature without ro-vibrational corrections. However, there are many cases where the nuclear motion contributions are significant and even larger than the electronic contribution. In order to obtain accurate theoretical predictions, nuclear motion effects on molecular properties need to be taken into account. The computed isotropic hyperfine coupling constants for the nonvibrating methyl radical CH_3 are far from the experimental values. For CH_3, we have calculated the vibrational-state-dependence of the isotropic hyperfine coupling constant in the electronic ground state. The vibrational wavefunctions used in the averaging procedure were obtained variationally with the TROVE program. Analytical representations for the potential energy surfaces and the hyperfine coupling constant surfaces are obtained in least-squares fitting procedures. Thermal averaging has been carried out for molecules in thermal equilibrium, i.e., with Boltzmann-distributed populations. The calculation methods and the results will be discussed in detail.

  12. Synchronization of two homodromy rotors installed on a double vibro-body in a coupling vibration system.

    Directory of Open Access Journals (Sweden)

    Pan Fang

    Full Text Available A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange's equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation.

  13. Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays

    Science.gov (United States)

    Spletzer, Matthew; Raman, Arvind; Sumali, Hartono; Sullivan, John P.

    2008-03-01

    We study the use of vibration localization in large arrays of mechanically coupled, nearly identical microcantilevers for ultrasensitive mass detection and identification. We demonstrate that eigenmode changes in such an array can be two to three orders of magnitude greater than relative changes in resonance frequencies when an analyte mass is added. Moreover, the changes in eigenmodes are unique to the cantilever to which mass is added, thereby providing a characteristic "fingerprint" that identifies the particular cantilever where mass has been added. This opens the door to ultrasensitive detection and identification of multiple analytes with a single coupled array.

  14. Folding-type coupling potentials in the context of the generalized rotation-vibration model

    Science.gov (United States)

    Chamon, L. C.; Morales Botero, D. F.

    2018-03-01

    The generalized rotation-vibration model was proposed in previous works to describe the structure of heavy nuclei. The model was successfully tested in the description of experimental results related to the electron-nucleus elastic and inelastic scattering. In the present work, we consider heavy-ion collisions and assume this model to calculate folding-type coupling potentials for inelastic states, through the corresponding transition densities. As an example, the method is applied to coupled-channel data analyses for the α + 70,72,74,76Ge systems.

  15. Forced vibration and wave propagation in mono-coupled periodic structures

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    1986-01-01

    This paper describes the wave propagation and vibration characteristics of mono-coupled structures which are of spatially periodic nature. The receptance approach to periodic structure theory is applied to study undamped periodic systems with composite structural elements; particular emphasis...... is laid on investigating resonant periodic point loading and its pronounced effect on the propagation of longitudinal waves. General mono-coupled periodic systems are first assumed to be infinite in extent; thereafter reflections caused by arbitrary end terminations of finite structures are considered...

  16. Effect of vibrational excitation on the dynamics of ion-molecule reactions

    International Nuclear Information System (INIS)

    Anderson, S.L.

    1981-11-01

    A new experimental technique for the study of vibrational effects on ion-molecule reaction cross sections is described. Vibrational and collision energy dependent cross sections are presented for proton and H atom transfer, charge transfer and collision induced dissociation reactions in various isotopic H 2 + + H 2 systems. Charge and proton transfer cross sections are presented for the reactions of H 2 + and D 2 + with Ar, N 2 , CO, and O 2 . All the reactions are shown to be highly influenced by avoided crossings between the ground and first excited potential energy surfaces. Because of the nature of the crossings, vibrational motion of the systems can cause both adiabatic and non-adiabatic behavior of the system. This makes the vibrational dependences of the various cross sections a very sensitive probe of the dynamics of the collisions particularly, their behavior in the region of the crossings. Evidence is seen for charge transfer between reagents as they approach each other, transition to and in some cases reactions on excited potential energy surfaces, competition between different channels, and strong coupling of proton and charge transfer channels which occurs only for two of the systems studied (H 2 + + Ar, N 2 ). Oscillatory structure is observed in the collision energy dependence of the endoergic H 2 + (v = 0) + Ar charge transfer reaction for the first time, and a simple model which is commonly used for atom-atom charge transfer is used to fit the peaks. Finally a simple model is used to assess the importance of energy resonance and Franck-Condon effects on molecular charge transfer

  17. Analysis of bifurcation behavior of a piecewise linear vibrator with electromagnetic coupling for energy harvesting applications

    KAUST Repository

    El Aroudi, Abdelali

    2014-05-01

    Recently, nonlinearities have been shown to play an important role in increasing the extracted energy of vibration-based energy harvesting systems. In this paper, we study the dynamical behavior of a piecewise linear (PWL) spring-mass-damper system for vibration-based energy harvesting applications. First, we present a continuous time single degree of freedom PWL dynamical model of the system. Different configurations of the PWL model and their corresponding state-space regions are derived. Then, from this PWL model, extensive numerical simulations are carried out by computing time-domain waveforms, state-space trajectories and frequency responses under a deterministic harmonic excitation for different sets of system parameter values. Stability analysis is performed using Floquet theory combined with Filippov method, Poincaré map modeling and finite difference method (FDM). The Floquet multipliers are calculated using these three approaches and a good concordance is obtained among them. The performance of the system in terms of the harvested energy is studied by considering both purely harmonic excitation and a noisy vibrational source. A frequency-domain analysis shows that the harvested energy could be larger at low frequencies as compared to an equivalent linear system, in particular, for relatively low excitation intensities. This could be an advantage for potential use of this system in low frequency ambient vibrational-based energy harvesting applications. © 2014 World Scientific Publishing Company.

  18. Investigation of coupling between chemistry and discharge dynamics in radio frequency hydrogen plasmas in the Torr regime

    International Nuclear Information System (INIS)

    Kalache, B; Novikova, T; Morral, A Fontcuberta i; Cabarrocas, P Roca i; Morscheidt, W; Hassouni, K

    2004-01-01

    We present the results of a study of a capacitively coupled hydrogen discharge by means of a one-dimensional numerical fluid model and experiments. The model includes a detailed description of the gas-phase chemistry taking into account the production of H - ions by dissociative attachment of H 2 vibrational levels. The population of these levels is described by a Boltzmann vibrational distribution function characterized by a vibrational temperature T V . The effect of the dissociative-attachment reaction on the discharge dynamics was investigated by varying the vibrational temperature, which was used as a model input parameter. Increasing the vibrational temperature from 1000 to 6000 K affects both the chemistry and the dynamics of the electrical discharge. Because of dissociative attachment, the H - ion density increases by seven orders of magnitude and the H - ion density to electron density ratio varies from 10 -7 to 6, while the positive ion density increases slightly. As a consequence, the atomic hydrogen density increases by a factor of three, and the sheath voltage drops from 95 to 75 V. Therefore, clear evidence of a strong coupling between chemistry and electrical dynamics through the production of H - ions is demonstrated. Moreover, satisfactory agreement between computed and measured values of atomic hydrogen and H - ion densities gives further support to the requirement of a detailed description of the hydrogen vibrational kinetics for capacitively coupled radio frequency discharge models in the Torr regime

  19. The dynamic reaction of containment structures (Sarcophagus) to seismic waves and vibrations

    International Nuclear Information System (INIS)

    Nemchinov Marenkov, U.I.

    1995-01-01

    This work deals with the dynamic reaction of containment structures (sarcophagus) to seismic waves and vibrations. It shows the results of experimental vibration measurements of the turbogenerators. It gives an analysis of the level of seismic and vibration effects on the load bearing structures of the sarcophagus and it puts forward recommendations relating to a permissible operating level for any vibroactive machinery which may be used during the reconstruction and transformation of the structure. (O.L.). 6 refs., 3 figs., 2 tabs

  20. Vibration of high-speed rotating rings coupled to space-fixed stiffnesses

    Science.gov (United States)

    Cooley, Christopher G.; Parker, Robert G.

    2014-06-01

    This study investigates the vibration of high-speed rotating rings coupled to space-fixed discrete stiffnesses. The ring radial and tangential deformations are defined using space-fixed (Eulerian) coordinates, where material particles pass through fixed locations in space. Engineering strain is used in the strain energy expression. The derived nonlinear equations from Hamilton's principle are linearized about the steady non-trivial configuration that results from constant ring rotation. Comparisons are made to other models in the literature that use different assumptions. The governing equations are cast in terms of matrix differential operators that reveal the system's standard gyroscopic system structure. The natural frequencies and vibration modes are calculated over a wide-range of rotation speeds for axisymmetric free rings and a non-axisymmetric ring with a space-fixed discrete stiffness element.

  1. Dynamical gauge coupling unification from moduli stabilization

    International Nuclear Information System (INIS)

    Choi, Kiwoon

    2006-01-01

    In D-brane models, different part of the 4-dimensional gauge group might originate from D-branes wrapping different cycles in the internal space, and then the standard model gauge couplings at the compactification scale are determined by different cycle-volume moduli. We point out that those cycle-volume moduli can naturally have universal vacuum expectation values up to small deviations suppressed by 1/8π 2 if they are stabilized by KKLT-type non-perturbative superpotential with properly chosen discrete parameters. This dynamical unification of gauge couplings is independent of the detailed form of the moduli Kahler potential, but relies crucially on the existence of low energy supersymmetry. If supersymmetry is broken by an uplifting brane as in KKLT compactification, again independently of the detailed form of the moduli Kahler potential, the moduli-mediated gaugino masses at the compactification scale are universal also, and are comparable to the anomaly-mediated gaugino masses. As a result, both the gauge coupling unification at high energy scale and the mirage mediation pattern of soft supersymmetry breaking masses are achieved naturally even when the different sets of the standard model gauge bosons originate from D-branes wrapping different cycles in the internal space

  2. Nuclear-Mechanical Coupling: Small Amplitude Mechanical Vibrations and High Amplitude Power Oscillations in Nuclear Reactors

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2008-11-01

    The cores of nuclear reactors, including its structural parts and cooling fluids, are complex mechanical systems able to vibrate in a set of normal modes and frequencies, if suitable perturbed. The cyclic variations in the strain state of the core materials may produce changes in density. Changes in density modify the reactivity. Changes in reactivity modify thermal power. Modifications in thermal power produce variations in temperature fields. Variations in temperature produce variations in strain due to thermal-elastic effects. If the variation of the temperature field is fast enough and if the Doppler Effect and other stabilizing prompt effects in the fuel are weak enough, a fast oscillatory instability could be produced, coupled with mechanical vibrations of small amplitude. A recently constructed, simple mathematical model of nuclear reactor kinetics, that improves the one due to A.S. Thompson, is reviewed. It was constructed in order to study, in a first approximation, the stability of the reactor: a nonlinear nuclear-thermal oscillator (that corresponds to reactor point kinetics with thermal-elastic feedback and with frozen delayed neutron effects) is coupled nonlinearly with a linear mechanical-thermal oscillator (that corresponds to the first normal mode of mechanical vibrations excited by thermo-elastic effects). This mathematical model is studied here from the standpoint of mechanical vibrations. It is shown how, under certain conditions, a suitable mechanical perturbation could elicit fast and growing oscillatory instabilities in the reactor power. Applying the asymptotic method due to Krylov, Bogoliubov and Mitropolsky, analytical formulae that may be used in the calculation of the time varying amplitude and phase of the mechanical oscillations are given, as functions of the mechanical, thermal and nuclear parameters of the reactor. The consequences for the mechanical integrity of the reactor are assessed. Some conditions, mainly, but not exclusively

  3. Developing a Dynamics and Vibrations Course for Civil Engineering Students Based on Fundamental-Principles

    Science.gov (United States)

    Barroso, Luciana R.; Morgan, James R.

    2012-01-01

    This paper describes the creation and evolution of an undergraduate dynamics and vibrations course for civil engineering students. Incorporating vibrations into the course allows students to see and study "real" civil engineering applications of the course content. This connection of academic principles to real life situations is in…

  4. Dynamics of coupled human-landscape systems

    Science.gov (United States)

    Werner, B. T.; McNamara, D. E.

    2007-11-01

    A preliminary dynamical analysis of landscapes and humans as hierarchical complex systems suggests that strong coupling between the two that spreads to become regionally or globally pervasive should be focused at multi-year to decadal time scales. At these scales, landscape dynamics is dominated by water, sediment and biological routing mediated by fluvial, oceanic, atmospheric processes and human dynamics is dominated by simplifying, profit-maximizing market forces and political action based on projection of economic effect. Also at these scales, landscapes impact humans through patterns of natural disasters and trends such as sea level rise; humans impact landscapes by the effect of economic activity and changes meant to mitigate natural disasters and longer term trends. Based on this analysis, human-landscape coupled systems can be modeled using heterogeneous agents employing prediction models to determine actions to represent the nonlinear behavior of economic and political systems and rule-based routing algorithms to represent landscape processes. A cellular model for the development of New Orleans illustrates this approach, with routing algorithms for river and hurricane-storm surge determining flood extent, five markets (home, labor, hotel, tourism and port services) connecting seven types of economic agents (home buyers/laborers, home developers, hotel owners/ employers, hotel developers, tourists, port services developer and port services owners/employers), building of levees or a river spillway by political agents and damage to homes, hotels or port services within cells determined by the passage or depth of flood waters. The model reproduces historical aspects of New Orleans economic development and levee construction and the filtering of frequent small-scale floods at the expense of large disasters.

  5. Vibration analysis of coupled conical-cylindrical-spherical shells using a Fourier spectral element method.

    Science.gov (United States)

    Su, Zhu; Jin, Guoyong

    2016-11-01

    This paper presents a Fourier spectral element method (FSEM) to analyze the free vibration of conical-cylindrical-spherical shells with arbitrary boundary conditions. Cylindrical-conical and cylindrical-spherical shells as special cases are also considered. In this method, each fundamental shell component (i.e., cylindrical, conical, and spherical shells) is divided into appropriate elements. The variational principle in conjunction with first-order shear deformation shell theory is employed to model the shell elements. Since the displacement and rotation components of each element are expressed as a linear superposition of nodeless Fourier sine functions and nodal Lagrangian polynomials, the global equations of the coupled shell structure can be obtained by adopting the assembly procedure. The Fourier sine series in the displacement field is introduced to enhance the accuracy and convergence of the solution. Numerical results show that the FSEM can be effectively applied to vibration analysis of the coupled shell structures. Numerous results for coupled shell structures with general boundary conditions are presented. Furthermore, the effects of geometric parameters and boundary conditions on the frequencies are investigated.

  6. Numerical analysis of dynamic response of vehicle–bridge coupled system on long-span continuous girder bridge

    Directory of Open Access Journals (Sweden)

    Lipeng An

    2016-07-01

    Full Text Available To systematically study the vehicle–bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle–bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the “set-in-right-position” rule. On the basis of the self-compiled Fortran program and bridge engineering, the dynamic response of long-span continuous girder bridge under vehicle load was studied. This study also included the calculation of vehicle impact coefficient, evaluation of vibration comfort, and analysis of dynamic response parameters. Results show the impact coefficient changes with lane number and is larger than the value calculated by the “general code for design of highway bridges and culverts (China”. The Dieckmann index of bridge vibration is also related to lane number, and the vibration comfort evaluation is good in normal conditions. The relevant conclusions from parametric analyses have practical significance to dynamic design and daily operation of long-span continuous girder bridges in expressways. Safety and comfort are expected to improve significantly with further control of the vibration of vehicle–bridge system.

  7. Quantum coherent control of the vibrational dynamics of a ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... Abstract. We simulate adaptive feedback control to coherently shape a femtosecond infrared laser ... The objective was to show that an arbitrarily chosen upper vibrational level, in the ground electronic state ... 2. Theory. A model was developed to describe the kinetics of a single vibrational mode of a poly-.

  8. Coupled CFD/CSM vibration design methodology for Generation IV long-life fuel and component design

    International Nuclear Information System (INIS)

    Weber, D.P; Chen, S.S.; Wang, C.Y.; Wei, T.Y.C.; Jansson, S.

    2000-01-01

    Fluid-structure interaction is a cause of failures experienced in fuel rods and is of particular importance for all reactor components in Generation IV reactors which unanimously adopt a pool configuration. A Nuclear Energy Research Initiative (NERI) project proposal has been submitted to United States Department of Energy (USDOE) to develop an advanced design methodology to model fluid-structure interaction, predict its consequences, and guide the design of reactor components. The proposed design methodology is an integrated experimental/theoretical/numerical technique. Preliminary studies have been performed utilizing the CFD code STAR-CD coupled to a first-order structural mechanics model to explore the issues of coupled dynamic fluid/structure interactions - flow field, fluid forces, and instability of tubes - in the cross flow regime. The coupled tool has been used to predict the characteristics of complex dynamic fluid/structure interactions. It includes flow field in the wake of a tube or tube array, motion-dependent fluid forces for a tube, and fluid elastic instability of tube arrays. Specifically, the following calculated quantities have been compared with published experimental data, (a) Flow Field: flow velocity, fluid pressure, and fluid forces (steady and fluctuating components) of steady flow across a circular cylinder at subcritical and critical regions. (b) Fluidelastic Forces: a tube is excited at a given frequency and amplitude. The resulting flow field and fluid forces acting on the tube are calculated. (c) Fluidelastic Instability of a Tube Row: coupled vibration of a tube row is analyzed as a function of flow velocity. Those predicted quantities which have been compared, agree well with experimental data. (author)

  9. When polarons meet polaritons: Exciton-vibration interactions in organic molecules strongly coupled to confined light fields

    Science.gov (United States)

    Wu, Ning; Feist, Johannes; Garcia-Vidal, Francisco J.

    2016-11-01

    We present a microscopic semianalytical theory for the description of organic molecules interacting strongly with a cavity mode. Exciton-vibration coupling within the molecule and exciton-cavity interaction are treated on an equal footing by employing a temperature-dependent variational approach. The interplay between strong exciton-vibration coupling and strong exciton-cavity coupling gives rise to a hybrid ground state, which we refer to as the lower polaron polariton. Explicit expressions for the ground-state wave function, the zero-temperature quasiparticle weight of the lower polaron polariton, the photoluminescence line strength, and the mean number of vibrational quanta are obtained in terms of the optimal variational parameters. The dependence of these quantities upon the exciton-cavity coupling strength reveals that strong cavity coupling leads to an enhanced vibrational dressing of the cavity mode, and at the same time a vibrational decoupling of the dark excitons, which in turn results in a lower polaron polariton resembling a single-mode dressed bare lower polariton in the strong-coupling regime. Thermal effects on several observables are briefly discussed.

  10. Forced-Vibration Analysis of a Coupled System of SLGSs by Visco- Pasternak Medium Subjected to a Moving Nano-particle

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour-Arani

    2013-06-01

    Full Text Available In this study, forced-vibration analysis of a coupled system of single layered graphene sheets (SLGSs subjected to the moving nano-particle is carried out based on nonlocal elasticity theory of orthotropic plate. Two SLGSs are coupled with elastic medium which is simulated by Pasternak and Visco-Pasternak models. Using Hamilton’s principle, governing differential equations of motion are derived and solved analytically. The effects of small scale, aspect ratio, velocity of nano-particle, time parameter, mechanical properties of graphene sheets, Visco-elastic medium on the maximum dynamic responses of each SLGSs are studied. Results indicate that, if the medium (elastic or visco-elastic medium of coupled system becomes more rigid, the maximum dynamic displacements of both SLGSs will be closer together.

  11. Coupling geodynamic earthquake cycles and dynamic ruptures

    Science.gov (United States)

    van Zelst, Iris; van Dinther, Ylona; Gabriel, Alice-Agnes; Heuret, Arnauld

    2016-04-01

    Studying the seismicity in a subduction zone and its effects on tsunamis requires diverse modelling methods that span spatial and temporal scales. Hundreds of years are necessary to build the stresses and strengths on a fault, while consequent earthquake rupture propagation is determined by both these initial fault conditions and the feedback of seismic waves over periods of seconds up to minutes. This dynamic rupture displaces the sea floor, thereby causing tsunamis. The aim of the ASCETE (Advanced Simulations of Coupled Earthquake and Tsunami Events) project is to study all these aspects and their interactions. Here, we present preliminary results of the first aspects in this modelling chain: the coupling of a seismo-thermo-mechanical (STM) code to the dynamic rupture model SeisSol. STM models of earthquake cycles have the advantage of solving multiple earthquake events in a self-consistent manner concerning stress, strength and geometry. However, the drawback of these models is that they often lack in spatial or temporal resolution and do not include wave propagation. In contrast, dynamic rupture models solve for frictional failure coupled to seismic wave propagation. We use the software package SeisSol (www.seissol.org) based on an ADER-DG discretization allowing high-order accuracy in space and time as well as flexible tetrahedral meshing. However, such simulations require assumptions on the initial fault stresses and strengths and its geometry, which are hard to constrain due to the lack of near-field observations and the complexity of coseismic conditions. By adapting the geometry as well as the stress and strength properties of the self-consistently developing non-finite fault zones from the geodynamic models as initial conditions for the dynamic rupture models, the advantages of both methods are exploited and modelling results may be compared. Our results show that a dynamic rupture can be triggered spontaneously and that the propagating rupture is

  12. Research on rigid–flexible coupling dynamic characteristics of boom system in concrete pump truck

    Directory of Open Access Journals (Sweden)

    Hongbin Tang

    2015-03-01

    Full Text Available Concrete pump truck plays an important role in infrastructure construction and national economic development. In recent years, its boom system becomes longer, and its dynamic and control become more complicated. In order to study the dynamic characteristics of boom system, three dynamic models such as multi-rigid-body model, rigid–flexible coupling model, and rigid–flexible coupling model with equivalent hydraulic cylinder were built in this work. Simulation analysis and experimental analysis were done, and they show that we should not only consider the large-range motion but also consider the small flexible deformation to study the dynamic characteristics of boom system precisely. It provides the theoretical basis to vibration control, trajectory prediction, and life assessment for boom system and such structures.

  13. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics

    DEFF Research Database (Denmark)

    Vendrell, Oriol; Gatti, Fabien; Meyer, Hans-Dieter

    2007-01-01

    the fundamentals and several overtones of the vibrational motion are computed. The spectrum of H5O2+ is shaped to a large extent by couplings of the proton-transfer motion to large amplitude fluxional motions of the water molecules, water bending and water-water stretch motions. These couplings are identified...

  14. Dynamics of nonlinear oscillators with time-varying conjugate coupling

    Indian Academy of Sciences (India)

    We explore the dynamical consequences of time-varying conjugate coupling in a system of nonlinear oscillators. We analyze the behavior of coupled ... Conjugate coupling; time varying coupling. PACS Nos 05.45.Xt. 1. Introduction ..... MDS acknowledges the financial support from DST,. New Delhi. References. [1] L Glass ...

  15. Collective dynamics of delay-coupled limit cycle oscillators

    Indian Academy of Sciences (India)

    We present a brief overview of the effect of time-delayed coupling on the collective dynamics of such coupled systems. Simple model equations describing two oscillators with a discrete time-delayed coupling as well as those describing linear arrays of a large number of oscillators with time-delayed global or local couplings ...

  16. Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows

    Science.gov (United States)

    Shoev, G.; Oblapenko, G.; Kunova, O.; Mekhonoshina, M.; Kustova, E.

    2018-03-01

    The validation of recently developed models of vibration-dissociation coupling is discussed in application to numerical solutions of the Navier-Stokes equations in a two-temperature approximation for a binary N2/N flow. Vibrational-translational relaxation rates are computed using the Landau-Teller formula generalized for strongly non-equilibrium flows obtained in the framework of the Chapman-Enskog method. Dissociation rates are calculated using the modified Treanor-Marrone model taking into account the dependence of the model parameter on the vibrational state. The solutions are compared to those obtained using traditional Landau-Teller and Treanor-Marrone models, and it is shown that for high-enthalpy flows, the traditional and recently developed models can give significantly different results. The computed heat flux and pressure on the surface of a double cone are in a good agreement with experimental data available in the literature on low-enthalpy flow with strong thermal non-equilibrium. The computed heat flux on a double wedge qualitatively agrees with available data for high-enthalpy non-equilibrium flows. Different contributions to the heat flux calculated using rigorous kinetic theory methods are evaluated. Quantitative discrepancy of numerical and experimental data is discussed.

  17. Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Holy, T.E.; Leibler, S.

    1996-01-01

    individual tubulin dimers, an ignored. In this cap model, GTP hydrolysis is assumed to be stochastic and uncoupled to microtubule growth. Different rates of hydrolysis are assumed for GTP in the cap's interior and for GTP at its boundary with hydrolyzed parts of the microtubule. Expectation values...... and probability distributions relating to available experimental data are derived. Caps are found to be short and the total rate of hydrolysis at a microtubule end is found to be dynamically coupled to growth. The so-called catastrophe rate is a simple function of the microtubule growth rare and fits experimental...... of microtubule growth before dilution. The GTP content of microtubules is found and its rare of hydrolysis is determined under the circumstances created in an experiment designed to measure this GTP content. It is concluded that this experiment's failure to register any GTP content is consistent with the model...

  18. Statistical Dynamics of Pressure-Coupled Burgerlence

    Science.gov (United States)

    Fleischer, J.; Diamond, P. H.

    1999-11-01

    The probability distributions of shock structures in pressure-coupled burgerlence are discussed. A Fokker-Planck calculation of these distributions is compared and contrasted with a path integral approach. It is shown that the velocity structures lead to an asymmetric velocity PDF, as in ordinary Burgerlence. Pressure fluctuations, however, are symmetrically distributed. These symmetries are manifested in the generating function (action) of the dynamical system. The extremization of this action (instanton solution) suggests that the system maintains its characteristic directions in steady-state turbulence. Physically, this result implies equi-dissipation, not equipartition, of energy, supporting the earlier results from perturbation theory^1. ^1 J. Fleischer and P.H. Diamond, Phys. Rev. E 58, R2709 (1998).

  19. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  20. The Shock and Vibration Bulletin. Part 2. Measurement Techniques and Data Analysis, Dynamic Measurements, Vibration and Acoustics

    Science.gov (United States)

    1980-09-01

    DAMPING M. M. Wallace and C. W. Bert, The University of Oklahoma, Norman, OK CONTRIBUTIONS TO THE DYNAMIC ANALYSIS OF MAGLEV VEHICLES ON ELEVATED GUIDEWAYS...state transmitted and/oT reflected sound pressure for a coated, submerged flat plate, subject to a train of normally incident harmonic waves...simply make the length of the train of waves as long as you please. It is in 3i07 Main, I, G , Vibrations and Waves in the low frequency problems

  1. Coupled Dynamics of a Rotor-Journal Bearing System Equipped with Thrust Bearings

    Directory of Open Access Journals (Sweden)

    Yu Lie

    1995-01-01

    Full Text Available The rotordynamic coefficients of fixed-pad thrust bearing are introduced and calculated by using the out-domain method, and a general analysis method is developed to investigate the coupled dynamics of a rotor equipped with journal and thrust bearings simultaneously. Considerations include the effects of static tilt parameters of the rotor on rotordynamic coefficients of thrust bearing and the action of thrust bearing on system dynamics. It is shown that thrust bearing changes the load distribution of journal bearings and the static deflection of the rotor and delays the instability of the system considerably in lateral shaft vibration.

  2. Optimization of mixed quantum-classical dynamics: Time-derivative coupling terms and selected couplings

    International Nuclear Information System (INIS)

    Pittner, Jiri; Lischka, Hans; Barbatti, Mario

    2009-01-01

    The usage of time-derivative non-adiabatic coupling terms and partially coupled time-dependent equations are investigated to accelerate non-adiabatic dynamics simulations at multireference configuration interaction (MRCI) level. The quality of the results and computational costs are compared against non-adiabatic benchmark dynamics calculations using non-adiabatic coupling vectors. In the comparison between the time-derivative couplings and coupling vectors, deviations in the adiabatic population of individual trajectories were observed in regions of rapid variation of the coupling terms. They, however, affected the average adiabatic population to only about 5%. For small multiconfiguration spaces, dynamics with time-derivative couplings are significantly faster than those with coupling vectors. This relation inverts for larger configuration spaces. The use of the partially coupled equations approach speeds up the simulations significantly while keeping the deviations in the population below few percent. Imidazole and the methaniminium cation are used as test examples

  3. Wind-excited vibrations - Solution by passive dynamic vibration absorbers of different types

    Czech Academy of Sciences Publication Activity Database

    Fischer, Ondřej

    2007-01-01

    Roč. 95, 9-11 (2007), s. 1028-1039 ISSN 0167-6105. [EACWE 4. Praha, 11.07.2005-15.07.2005] R&D Projects: GA AV ČR(CZ) IAA200710505; GA AV ČR(CZ) IAA2071401; GA ČR(CZ) GA103/06/0099 Institutional research plan: CEZ:AV0Z20710524 Keywords : wind-excited vibrations * slender structures * vibration absorption Subject RIV: JM - Building Engineering Impact factor: 0.959, year: 2007

  4. Optimum Design of a Nonlinear Vibration Absorber Coupled to a Resonant Oscillator: A Case Study

    Directory of Open Access Journals (Sweden)

    H. F. Abundis-Fong

    2018-01-01

    Full Text Available This paper presents the optimal design of a passive autoparametric cantilever beam vibration absorber for a linear mass-spring-damper system subject to harmonic external force. The design of the autoparametric vibration absorber is obtained by using an approximation of the nonlinear frequency response function, computed via the multiple scales method. Based on the solution given by the perturbation method mentioned above, a static optimization problem is formulated in order to determine the optimum parameters (mass and length of the nonlinear absorber which minimizes the steady state amplitude of the primary mass under resonant conditions; then, a PZT actuator is cemented to the base of the beam, so the nonlinear absorber is made active, thus enabling the possibility of controlling the effective stiffness associated with the passive absorber and, as a consequence, the implementation of an active vibration control scheme able to preserve, as possible, the autoparametric interaction as well as to compensate varying excitation frequencies and parametric uncertainty. Finally, some simulations and experimental results are included to validate and illustrate the dynamic performance of the overall system.

  5. LOCALISED MUSCLE TISSUE OXYGENATION DURING DYNAMIC EXERCISE WITH WHOLE BODY VIBRATION

    Directory of Open Access Journals (Sweden)

    Daniel Robbins

    2012-06-01

    Full Text Available Despite increasing use of whole body vibration during exercise an understanding of the exact role of vibration and the supporting physiological mechanisms is still limited. An important aspect of exercise analysis is the utilisation of oxygen, however, there have been limited studies considering tissue oxygenation parameters, particularly during dynamic whole body vibration (WBV exercise. The aim of this study was to determine the effect of adding WBV during heel raise exercises and assessing changes in tissue oxygenation parameters of the lateral gastrocnemius using Near Infra Red Spectroscopy (NIRS. Twenty healthy subjects completed ten alternating sets of 15 heel raises (vibration vs. no vibration. Synchronous oxygenation and motion data were captured prior to exercise to determine baseline levels, for the duration of the exercise and 20 sec post exercise for the recovery period. Both vibration and no vibration conditions elicited a characteristic increase in deoxyhaemoglobin and decreases in oxyhaemoglobin, total haemoglobin, tissue oxygenation index and normalised tissue haemoglobin index which are indicative of local tissue hypoxia. However, the addition of vibration elicited significantly lower (p < 0. 001 depletions in oxyhaemoglobin, total haemoglobin, normalised tissue haemoglobin index but no significant differences in deoxyhaemoglobin. These findings suggest that addition of vibration to exercise does not increase the cost of the exercise for the lateral gastrocnemius muscle, but does decrease the reduction in local muscle oxygenation parameters, potentially resulting from increased blood flow to the calf or a vasospastic response in the feet. However, further studies are needed to establish the mechanisms underlying these findings

  6. The acute effects of stretching with vibration on dynamic flexibility in young female gymnasts.

    Science.gov (United States)

    Johnson, Aaron W; Warcup, Caisa N; Seeley, Matthew K; Eggett, Dennis; Feland, Jeffery B

    2018-01-10

    While stretching with vibration has been shown to improve static flexibility; the effect of stretching with vibration on dynamic flexibility is not well known. The purpose of this study was to examine the effectiveness of stretching with vibration on acute dynamic flexibility and jump height in novice and advanced competitive female gymnasts during a split jump. Female gymnast (n=27, age: 11.5 ± 1.7 years, Junior Olympic levels 5-10) participated in this cross-over study. Dynamic flexibility during gymnastic split jumps were video recorded and analyzed with Dartfish software. All participants completed both randomized stretching protocols with either the vibration platform turned on (VIB) (frequency of 30 Hz and 2 mm amplitude) or off (NoVIB) separated by 48 h. Participants performed 4 sets of three stretches on the vibration platform. Each stretch was held for 30 s with 5 s rest for a total of 7 min of stretch. Split jump flexibility decreased significantly from pre to post measurement in both VIB (-5.8°±5.9°) (pstatic stretching with or without vibration immediately before performance does not alter jump height. Stretching with vibration immediately prior to gymnastics competition decreases split jump flexibility in lower level gymnasts more than upper level gymnasts.

  7. On-the-fly, electric-field-driven, coupled electron-nuclear dynamics.

    Science.gov (United States)

    Jones, Garth A; Acocella, Angela; Zerbetto, Francesco

    2008-10-09

    An on-the-fly, electric field driven, coupled electron-nuclear dynamics approach is developed and applied to model the photodissociation of water in the A((1)B1) excited state. In this method, a quantum propagator evolves the photon-induced electronic dynamics in the ultrafast time scale, and a quasi-classical surface hopping approach describes the nuclear dynamics in the slower time scale. In addition, strong system-field interactions are explicitly included in the electronic propagator. This theoretical development enables us to study rapid photon-induced bond dissociation dynamics and demonstrates the partial breakdown of electronic coherence as well as electronic population trapping in the excited state when the molecular vibrations detune the system with respect to the applied field. The method offers a practical way to use on-the-fly dynamics for modeling light-molecule interactions that lead to interesting photochemical events.

  8. Coupled dynamic systems and Le Chatelier's principle in noise control

    Science.gov (United States)

    Maidanik, G.; Becker, K. J.

    2004-05-01

    Investigation of coupling an externally driven dynamic system-a master dynamic system-to a passive one-an adjunct dynamic system-reveals that the response of the adjunct dynamic system affects the precoupled response of the master dynamic system. The responses, in the two dynamic systems when coupled, are estimated by the stored energies (Es) and (E0), respectively. Since the adjunct dynamic system, prior to coupling, was with zero (0) stored energy, E0s=0, the precoupled stored energy (E00) in the master dynamic system is expected to be reduced to (E0) when coupling is instituted; i.e., one expects E0dynamic system would result from the coupling. It is argued that the change in the disposition of the stored energies as just described may not be the only change. The coupling may influence the external input power into the master dynamic system which may interfere with the expected noise control. Indeed, the coupling may influence the external input power such that the expected beneficial noise control may not materialize. Examples of these kinds of noise control reversals are cited.

  9. Dynamic Analysis and Vibration Attenuation of Cable-Driven Parallel Manipulators for Large Workspace Applications

    Directory of Open Access Journals (Sweden)

    Jingli Du

    2013-01-01

    Full Text Available Cable-driven parallel manipulators are one of the best solutions to achieving large workspace since flexible cables can be easily stored on reels. However, due to the negligible flexural stiffness of cables, long cables will unavoidably vibrate during operation for large workspace applications. In this paper a finite element model for cable-driven parallel manipulators is proposed to mimic small amplitude vibration of cables around their desired position. Output feedback of the cable tension variation at the end of the end-effector is utilized to design the vibration attenuation controller which aims at attenuating the vibration of cables by slightly varying the cable length, thus decreasing its effect on the end-effector. When cable vibration is attenuated, motion controller could be designed for implementing precise large motion to track given trajectories. A numerical example is presented to demonstrate the dynamic model and the control algorithm.

  10. Structural and vibrational dynamics of molecular solids under variable temperature and pressure

    Science.gov (United States)

    Schatschneider, Bohdan Hindulak

    An ultra-high resolution FTIR study (0.01cm-1) coupled with molecular simulations of para-terphenyl (PTP) under variable temperatures and pressures has been conducted in an effort to better understand the molecular dynamics (MD) of organic molecular crystals. PTP's use as an electrooptic material and as a host matrix for single molecular spectroscopy has created significant interest into the systems dynamics under variable conditions. Our high resolution study reveals many structure and dynamics changes in the PTP matrix as a result of changes in temperature and pressure. Further spectroscopic analysis using MD verifies these structural and dynamics alterations. Accurately modeled pressure and temperature phase transitions between the low-temperature low-pressure triclinic phase and the high-pressure high-temperature monoclinic phase of PTP was accomplished by a one-parameter optimization of the torsion potential component of the polymer consistent force field (PCFF) along with incorporation of COMPASS' (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies) non-bond parameters. Initial MD simulations implementing the universal force field COMPASS could not adequately model the experimental crystal structure at 113K, nor could it reproduce the known transition temperature at ambient pressure or yield a well-defined transition pressure at low temperature. Therefore, we needed to create a new potential which was shown to reproduce the solid-solid phase transitions. The previously never simulated pressure induced solid-solid phase transition of PTP at low temperature (20K) and varying pressures (0-1GPa) was modeled. The symmetry based crystal/molecular rearrangement shows a compression and distortion of the unit cell and corresponding angles along with a flattening of the once twisted PTP molecules at high pressures (>0.5GPa). A fourth crystal phase (Phase IV) has been successfully identified through analysis of the individual molecule

  11. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    International Nuclear Information System (INIS)

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-01-01

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper.A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beam which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.

  12. Coupled flexural-longitudinal vibration of delaminated composite beams with local stability analysis

    Science.gov (United States)

    Szekrényes, András

    2014-09-01

    A novel analytical model is developed to solve the problem of free vibration of delaminated composite beams. The beam with a single delamination was modelled by six equivalent single layers by establishing the kinematic continuity in the undelaminated portion of the system. In the delaminated region the layers were captured by the traditional theories. First, Timoshenko beam theory is applied to solve the problem, then by reducing the model, the corresponding Euler-Bernoulli solution is presented. Both the free and constrained models were considered. The most important aspect of the present analysis is that the beams of the delaminated region are subjected to normal forces, as well. That is the essential reason for leading to a coupled flexural-longitudinal vibration problem. It is also concluded that delamination buckling can take place if the normal force is compressive in one of the half-periods of the vibration and reaches a critical value. The problem was also investigated experimentally by modal hammer and sweep excitation tests on beams made of E-glass/polyester in order to measure the natural frequencies and mode shapes. The comparison of the analytical and experimental results indicates the importance of the independent rotations provided by Timoshenko beams over the simple beam theory. The delamination buckling of the beams was captured based on the static stability analysis in the first step. Further results show that the problem is more complex than it was thought before, e.g., some nonlinearity, time-dependent stiffness as well as parametric excitation aspects were discovered during the present analysis.

  13. Is there loss of vibration amplitude across the snap coupling of the bone-anchored hearing aid?

    Science.gov (United States)

    Majdalawieh, Osama; Van Wijhe, Rene G; Bance, Manohar

    2006-04-01

    There is loss of vibration transmission across the snap coupling connecting the Bone-Anchored Hearing Aid transducer to the implanted abutment on the head. The only nonrigid part of the Bone-Anchored Hearing Aid system is the connection between the output of the transducer and the abutment. Vibration losses across the coupling have not been previously measured. If a loss is found, a change in design could improve the efficiency of the Bone-Anchored Hearing Aid. This would be very helpful in borderline cases in which the Bone-Anchored Hearing Aid does not have enough power to achieve adequate hearing threshold levels. A laser Doppler vibrometer was used to measure vibrations on the output stem and four points on the abutment of the Bone-Anchored Hearing Aid. The Bone-Anchored Hearing Aid was coupled to a dry skull through a plexiglas bite bar screwed to the skull. The impedance load was varied by fixing the skull. A control loose coupling was measured. Five Bone-Anchored Hearing Aid Compacts were measured. There was little loss across the Bone-Anchored Hearing Aid snap coupling. At frequencies above 500 Hz, there was no more than 5-dB loss at any frequency. Changing the impedance load by fixing the skull did not change the loss across the coupling. The snap coupling is an efficient means of transmitting vibrations to the skull. There is little loss of vibration attenuation across it. Increases in functional Bone-Anchored Hearing Aid amplification gain cannot be achieved by further optimizing this interface.

  14. Design and Vibration Sensitivity Analysis of a MEMS Tuning Fork Gyroscope with an Anchored Diamond Coupling Mechanism

    Science.gov (United States)

    Guan, Yanwei; Gao, Shiqiao; Liu, Haipeng; Jin, Lei; Niu, Shaohua

    2016-01-01

    In this paper, a new micromachined tuning fork gyroscope (TFG) with an anchored diamond coupling mechanism is proposed while the mode ordering and the vibration sensitivity are also investigated. The sense-mode of the proposed TFG was optimized through use of an anchored diamond coupling spring, which enables the in-phase mode frequency to be 108.3% higher than the anti-phase one. The frequencies of the in- and anti-phase modes in the sense direction are 9799.6 Hz and 4705.3 Hz, respectively. The analytical solutions illustrate that the stiffness difference ratio of the in- and anti-phase modes is inversely proportional to the output induced by the vibration from the sense direction. Additionally, FEM simulations demonstrate that the stiffness difference ratio of the anchored diamond coupling TFG is 16.08 times larger than the direct coupling one while the vibration output is reduced by 94.1%. Consequently, the proposed new anchored diamond coupling TFG can structurally increase the stiffness difference ratio to improve the mode ordering and considerably reduce the vibration sensitivity without sacrificing the scale factor. PMID:27049385

  15. Prediction of high-frequency vibration transmission across coupled, periodic ribbed plates by incorporating tunneling mechanisms.

    Science.gov (United States)

    Yin, Jianfei; Hopkins, Carl

    2013-04-01

    Prediction of structure-borne sound transmission on built-up structures at audio frequencies is well-suited to Statistical Energy Analysis (SEA) although the inclusion of periodic ribbed plates presents challenges. This paper considers an approach using Advanced SEA (ASEA) that can incorporate tunneling mechanisms within a statistical approach. The coupled plates used for the investigation form an L-junction comprising a periodic ribbed plate with symmetric ribs and an isotropic homogeneous plate. Experimental SEA (ESEA) is carried out with input data from Finite Element Methods (FEM). This indicates that indirect coupling is significant at high frequencies where bays on the periodic ribbed plate can be treated as individual subsystems. SEA using coupling loss factors from wave theory leads to significant underestimates in the energy of the bays when the isotropic homogeneous plate is excited. This is due to the absence of tunneling mechanisms in the SEA model. In contrast, ASEA shows close agreement with FEM and laboratory measurements. The errors incurred with SEA rapidly increase as the bays become more distant from the source subsystem. ASEA provides significantly more accurate predictions by accounting for the spatial filtering that leads to non-diffuse vibration fields on these more distant bays.

  16. Nuclear structure and nuclear reaction aspects of Faessler and Greiner's rotation-vibration coupling theory

    International Nuclear Information System (INIS)

    Aspelund, O.

    In the nuclear structure part, the foundations of Faessler and Greiner's rotation-vibration coupling theory are reviewed, whereafter an alternative derivation of Faessler and Greiner's Hamiltonian is presented. A non-spherical quadrupole phonon number N is defined and used in the matrix elements reported for odd-even/even-odd nuclei. These matrix elements are shown to evince oblate-prolate effects that can be exploited for assessing the signs of quadrupole deformations. In the nuclear reaction part, the wave functions emerging from the structure part are applied in a complete and consistent description of elastic and inelastic particle scattering, one-nucleon transfer, and particle/γ-ray angular correlations. The intentions are to demonstrate that anomolous angular distributions and 1=2 j-effects observed in one-nucleon transfer are interrelated phenomena, that can be satisfactorily explained in terms of the elementary vibrational excitation modes inherent in Faessler and Greiner's theory. The latter is regarded as a non-spherical approach to the theory of the quadrupole component of the nuclear potential energy surface. (Auth.)

  17. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms

    Directory of Open Access Journals (Sweden)

    Dashan Zhang

    2016-04-01

    Full Text Available The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.

  18. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    Science.gov (United States)

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  19. Vibration Characteristics of Piezoelectric Microbeams Based on the Modified Couple Stress Theory

    Directory of Open Access Journals (Sweden)

    R. Ansari

    2014-01-01

    Full Text Available The vibration behavior of piezoelectric microbeams is studied on the basis of the modified couple stress theory. The governing equations of motion and boundary conditions for the Euler-Bernoulli and Timoshenko beam models are derived using Hamilton’s principle. By the exact solution of the governing equations, an expression for natural frequencies of microbeams with simply supported boundary conditions is obtained. Numerical results for both beam models are presented and the effects of piezoelectricity and length scale parameter are illustrated. It is found that the influences of piezoelectricity and size effects are more prominent when the length of microbeams decreases. A comparison between two beam models also reveals that the Euler-Bernoulli beam model tends to overestimate the natural frequencies of microbeams as compared to its Timoshenko counterpart.

  20. Nonequilibrium electron-vibration coupling and conductance fluctuations in a C60 junction

    DEFF Research Database (Denmark)

    Ulstrup, Søren; Frederiksen, Thomas; Brandbyge, Mads

    2012-01-01

    displacement. Combined with a vibrational heating mechanism we construct a model from our results that explain the polarity-dependent two-level conductance fluctuations observed in recent scanning tunneling microscopy (STM) experiments [N. Ne´el et al., Nano Lett. 11, 3593 (2011)]. These findings highlight......We investigate chemical bond formation and conductance in a molecular C60 junction under finite bias voltage using first-principles calculations based on density functional theory and nonequilibrium Green's functions (DFT-NEGF). At the point of contact formation we identify a remarkably strong...... coupling between the C60 motion and the molecular electronic structure. This is only seen for positive sample bias, although the conductance itself is not strongly polarity dependent. The nonequilibrium effect is traced back to a sudden shift in the position of the voltage drop with a small C60...

  1. Raman spectroscopic and low-temperature calorimetric investigation of the low-energy vibrational dynamics of hen egg-white lysozyme

    Science.gov (United States)

    Crupi, C.; D'Angelo, G.; Wanderlingh, U.; Vasi, C.

    2011-05-01

    The low-frequency vibrational dynamics of chicken hen egg-white lysozyme were investigated using Raman spectroscopy and low-temperature calorimetry. An amorphous-like behaviour of low-frequency dynamics was observed in this protein. By using inelastic light scattering data and resorting to a fitting procedure, the low-temperature specific heat trend was theoretically reproduced, confirming that, as in disordered systems, the same low-energy excitations give rise to the observed anomalies in low-frequency vibrational and low-temperature thermal properties. A further study of polarised and depolarised Raman spectra has allowed us to infer information about the symmetry of these modes. The frequency dependence of the light-vibrational coupling constant has also been analysed.

  2. Optical vibration measurements of cross coupling effects in capacitive micromachined ultrasonic transducer arrays

    Science.gov (United States)

    Leirset, Erlend; Aksnes, Astrid

    2011-05-01

    Optical vibration measurement systems are excellent tools for characterizing ultrasonic transducers. This paper presents measurements on immersed arrays of capacitive ultrasonic transducers (CMUTs) using a heterodyne interferometer. The interferometer allows measurements of vibrations from DC up to 1 GHz with a noise floor of ~1pm/√Hz. Previously CMUTs have been characterized in air. The transducer is intended for intravascular use. Therefore the CMUTs were characterized in the transparent fluids kerosene and rapeseed oil that have acoustic properties closer to blood. The optical measurements on immersed CMUTs were validated by assessing the measurement errors caused by the acousto optic effects in the fluid. When immersed there is significant cross coupling between individual CMUTs within an array. Simulations presented here indicate that this causes an acoustic wave mode that is bound to the interface between the CMUTs and the fluid. This is confirmed by measurements of the phase velocity and attenuation coefficient of this wave. The measurement results indicate that the wave exists up to a maximum frequency and that the attenuation constant increases with increasing frequency. Rapeseed oil causes a significantly larger attenuation coefficient than kerosene, which most probably is due to a considerable difference in fluid viscosities. There was a mismatch between the simulated and measured phase velocity for low frequencies. It is likely that the cause of this is coupling between the fluid CMUT interface waves and Lamb waves in the substrate of the CMUT array. Measurements performed with the heterodyne interferometer have confirmed the presence of dispersive waves bound to the surface of the transducer by directly showing their propagation along the array. The setup has also characterized the bound waves by measuring dispersion relations.

  3. Effects of phase and coupling between the vibrational modes on selective excitation in coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Patel, Vishesha; Malinovsky, Vladimir S.; Malinovskaya, Svetlana

    2010-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy has been a major tool of investigation of biological structures as it contains the vibrational signature of molecules. A quantum control method based on chirped pulse adiabatic passage was recently proposed for selective excitation of a predetermined vibrational mode in CARS microscopy [Malinovskaya and Malinovsky, Opt. Lett. 32, 707 (2007)]. The method utilizes the chirp sign variation at the peak pulse amplitude and gives a robust adiabatic excitation of the desired vibrational mode. Using this method, we investigate the impact of coupling between vibrational modes in molecules on controllability of excitation of the CARS signal. We analyze two models of two coupled two-level systems (TLSs) having slightly different transitional frequencies. The first model, featuring degenerate ground states of the TLSs, gives robust adiabatic excitation and maximum coherence in the resonant TLS for positive value of the chirp. In the second model, implying nondegenerate ground states in the TLSs, a population distribution is observed in both TLSs, resulting in a lack of selectivity of excitation and low coherence. It is shown that the relative phase and coupling between the TLSs play an important role in optimizing coherence in the desired vibrational mode and suppressing unwanted transitions in CARS microscopy.

  4. Research on Dynamic Coupled Characteristics of A Tracked Vehicle Gearbox

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2011-12-01

    Full Text Available A tracked vehicle gearbox is divided into two subsystems-housing and gear train. Dynamic behaviors of the two subsystems are coupled practically. And the coupled characteristics describe the integrative dynamic behaviors of gearbox. This study proposes a coupled simulation model to investigate the interrelationship between dynamics of two subsystems. Multi-source excitations are numerically calculated to provide boundary conditions. The flexibility of transmission shafts and housing is mathematically described based on mode superposition. The coupled dynamic characteristics are analyzed with dynamics simulation computation. The flexibility of housing is one of the main causes to induce the fluctuation of dynamic responses of transmission shafts. The experimental results show that the proposed method is accurate through comparison of simulation results and test data.

  5. Study on Dynamics of Polygonal Wear of Automotive Tire Caused by Self-Excited Vibration

    Directory of Open Access Journals (Sweden)

    Shuguang Zuo

    2014-01-01

    Full Text Available Considering the underlying reason of tire polygonal wear, a unified mechanical tire model is developed to analyze the different vibration properties between the driving wheel and follower wheel. And the LuGre dynamic friction model is applied to determine the frictional forces between the wheel with a slip angel and the road. Through the stability analysis with Lyapunov theory, it is found that tread self-excited vibration is periodic oscillation caused by Hopf bifurcation. The analysis of the lateral vibration of driving wheel shows that the tread vibration system loses its stability and self-excited vibration occurs when the wheel is rolling at a high speed, is over-loaded, is having a large toe-in angle, or is under a low tire pressure. On this basis, the dynamic behaviors of the driving and follower wheels are distinguished with different slip rates by the numerical simulation. Compared with the dynamic behaviors of the follower wheel under the same condition, the self-excited vibration occurs on the driving wheel with more limited parameter scope, lower oscillation energy, and lower occurrence, which explains why the polygonal wear is less likely to occur on the driving wheel.

  6. Lock threshold deterioration induced by antenna vibration and signal coupling effects in hypersonic vehicle carrier tracking system of Ka band

    Directory of Open Access Journals (Sweden)

    Congying ZHU

    2018-04-01

    Full Text Available The envelope of a hypersonic vehicle is affected by severe fluctuating pressure, which causes the airborne antenna to vibrate slightly. This vibration mixes with the transmitted signals and thus introduces additional multiplicative phase noise. Antenna vibration and signal coupling effects as well as their influence on the lock threshold of the hypersonic vehicle carrier tracking system of the Ka band are investigated in this study. A vibration model is initially established to obtain phase noise in consideration of the inherent relationship between vibration displacement and electromagnetic wavelength. An analytical model of the Phase-Locked Loop (PLL, which is widely used in carrier tracking systems, is established. The coupling effects on carrier tracking performance are investigated and quantitatively analyzed by imposing the multiplicative phase noise on the PLL model. Simulation results show that the phase noise presents a Gaussian distribution and is similar to vibration displacement variation. A large standard deviation in vibration displacement exerts a significant effect on the lock threshold. A critical standard deviation is observed in the PLL of Binary Phase Shift Keying (BPSK and Quadrature Phase Shift Keying (QPSK signals. The effect on QPSK signals is more severe than that on BPSK signals. The maximum tolerable standard deviations normalized by the wavelength of the carrier are 0.04 and 0.02 for BPSK and QPSK signals, respectively. With these critical standard deviations, lock thresholds are increased from −12 and −4 dB to 3 and −2 dB, respectively. Keywords: Antenna vibration, Carrier tracking performance, Lock threshold, Phase locked loop, Tracking Telemetry and Command (TT&C signals

  7. Study of coupling between bending and torsional vibration of cracked rotor system supported by radial active magnetic bearings

    OpenAIRE

    Ferfecki P.

    2007-01-01

    The coupling of bending and torsional vibration due to the presence of transverse fatigue crack in a rotor system supported by radial active magnetic bearings (AMB) is investigated. For this purpose the modified stiffness matrix with six degrees of freedom per node is used and takes into account all the coupling phenomena that exists in a cracked rotor. The partial opening and closing of crack is considered by means of status of stress intensity factor along the crack edge. The equation of mo...

  8. Final Report: Vibrational Dynamics in Photoinduced Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth G. Spears

    2006-04-19

    The objective of this grant was to understand how molecular vibrational states (geometry distortions) are involved in photoinduced electron transfer rates of molecules. This subject is an important component of understanding how molecular absorbers of light convert that energy into charge separation. This is important because the absorption usually excites molecular vibrations in a new electronic state prior to electron transfer to other molecules or semiconductor nanoparticles, as in some types of solar cells. The speeds of charge separation and charge recombination are key parameters that require experiments such as those in this work to test the rules governing electron transfer rates. Major progress was made on this goal. Some of the molecular structures selected for developing experimental data were bimolecular charge transfer complexes that contained metals of cobalt or vanadium. The experiments used the absorption of an ultrafast pulse of light to directly separate charges onto the two different molecular parts of the complex. The charge recombination then proceeds naturally, and one goal was to measure the speed of this recombination for different types of molecular vibrations. We used picosecond and femtosecond duration pulses with tunable colors at infrared wavelengths to directly observe vibrational states and their different rates of charge recombination (also called electron transfer). We discovered that different contact geometries in the complexes had very different electron transfer rates, and that one geometry had a significant dependence on the amount of vibration in the complex. This is the first and only measurement of such rates, and it allowed us to confirm our interpretation with a number of molecular models and test the sensitivity of electron transfer to vibrational states. This led us to develop a general theory, where we point out how molecular distortions can change the electron transfer rates to be much faster than prior theories

  9. Optimization study of dynamic vibration absorbers parameters and distribution for its application on railway tunnels for the reduction of railway-induced vibration

    OpenAIRE

    Cubría Radío, Víctor

    2015-01-01

    The objective of this project is to develop an algorithm able to obtain the optimal distribution of Dynamic Vibration Absorbers (DVAs) in underground railway infrastructures for reduction of railway-induced vibrations. The scope of the project is limited to the application of DVAs on the tunnel's walls. The Green's functions of the superstructure/tunnel/ground/building system and the dynamic response of the train will be input parameters of the algorithm and they will be provided by the resea...

  10. Research on Effective Electric-Mechanical Coupling Coefficient of Sandwich Type Piezoelectric Ultrasonic Transducer Using Bending Vibration Mode

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2015-01-01

    Full Text Available An analytical model on electromechanical coupling coefficient and the length optimization of a bending piezoelectric ultrasonic transducer are proposed. The piezoelectric transducer consists of 8 PZT elements sandwiched between four thin electrodes, and the PZT elements are clamped by a screwed connection between fore beam and back beam. Firstly, bending vibration model of the piezoelectric transducer is built based on the Timoshenko beam theory. Secondly, the analytical model of effective electromechanical coupling coefficient is built based on the bending vibration model. Energy method and electromechanical equivalent circuit method are involved in the modelling process. To validate the analytical model, sandwich type piezoelectric transducer example in second order bending vibration mode is analysed. Effective electromechanical coupling coefficient of the transducer is optimized with simplex reflection technique, and the optimized ratio of length of the transducers is obtained. Finally, experimental prototypes of the sandwich type piezoelectric transducers are fabricated. Bending vibration mode and impedance of the experimental prototypes are tested, and electromechanical coupling coefficient is obtained according to the testing results. Results show that the analytical model is in good agreement with the experimental model.

  11. Vibration of a Coupled Plate/Fluid Interacting System and its implication for Modal Analysis and Vibration Health Monitoring

    Czech Academy of Sciences Publication Activity Database

    Gorman, D. G.; Trendafilova, I.; Mulholland, F.; Horáček, Jaromír

    5-6, - (2006), s. 323-330 ISSN 1660-9336 R&D Projects: GA AV ČR(CZ) IAA2076101 Institutional research plan: CEZ:AV0Z20760514 Keywords : vibrations * vibro-acoustic interaction * structural/acoustic Subject RIV: BI - Acoustics

  12. Spin-Orbit Coupling Drives Femtosecond Nonadiabatic Dynamics in a Transition Metal Compound.

    Science.gov (United States)

    Carbery, William P; Verma, Archana; Turner, Daniel B

    2017-03-16

    Transient absorption measurements conducted using broadband, 6 fs laser pulses reveal unexpected femtosecond dynamics in the [IrBr 6 ] 2- model system. Vibrational spectra and the X-ray crystal structure indicate that these dynamics are not induced by a Jahn-Teller distortion, a type of conical intersection typically associated with the spectral features of transition metal compounds. Two-dimensional electronic spectra of [IrBr 6 ] 2- contain 23 cross peaks, which necessarily arise from spin-orbit coupling. Real-valued 2D spectra support a spectroscopic basis where strong nonadiabatic coupling, ascribed to multiple conical intersections, mediates rapid energy relaxation to the lowest-energy excited state. Subsequent analysis gives rise to a more generalized description of a conical intersection as a degeneracy between two adiabatic states having the same total angular momentum.

  13. Inflationary dynamics of kinetically-coupled gauge fields

    DEFF Research Database (Denmark)

    Ferreira, Ricardo J. Z.; Ganc, Jonathan

    2015-01-01

    We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can be quant......We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can...

  14. FPGA-based fused smart sensor for dynamic and vibration parameter extraction in industrial robot links.

    Science.gov (United States)

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).

  15. FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links

    Directory of Open Access Journals (Sweden)

    Rene de Jesus Romero-Troncoso

    2010-04-01

    Full Text Available Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA.

  16. FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links

    Science.gov (United States)

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345

  17. Evaluation of seismic characteristic of cylindrical water storage tank by vibration test. Dependence of dynamic fluid pressure distribution on input acceleration

    International Nuclear Information System (INIS)

    Maekawa, Akira; Shimizu, Yasutaka; Suzuki, Michiaki; Fujita, Katsuhisa

    2004-01-01

    Large-scale cylindrical water storage tanks with a large ratio of radius to thickness, which means they have thin walls, cause the coupling vibration with the fluid stored in a tank and the tank structure itself. It is important for the seismic-proof design of the water storage tanks to investigate the mechanism and the influence of this coupling vibration. This paper describes the results of a vibration test with a 1/10th scale reduced model of a large scale industrial cylindrical water storage tank, and also refers to the dependence of the dynamic fluid pressure distribution on input acceleration and its influence on the seismic-proof design. First, a seismic excitation experiment was performed for the scale model tank. Secondly, a large amplitude excitation experiment was conducted using sinusoidal wave of the input excitation by various magnitude. Finally, the dynamic fluid pressure distribution, shear force and bending moment measured by the test were compared with the calculation results of the present methods of the seismic-proof design. The results of the vibration test showed the dependence of the dynamic fluid pressure distribution on the input acceleration which meant that the magnitude and the distribution of the measured pressure fluctuate non-linearly. Taking the influence of the varying pressure of the ovaling vibration on the dynamic fluid pressure distribution into consideration, it was found that the measured values of the dynamic fluid pressure distribution were approximately equaled to the calculated ones. The shearing and bending moment of the tanks, which were important on the seismic-proof design evaluation, were in approximate accordance with the results of the present methods regardless of the magnitude of the input acceleration. (author)

  18. Torsion - Vibration Couplings in the CH{_3}OO{\\cdot} Radical

    Science.gov (United States)

    Huang, Meng; Miller, Terry A.; McCoy, Anne B.; Hsu, Kuo-Hsiang; Huang, Yu-Hsuan; Lee, Yuan-Pern

    2016-06-01

    A partially rotationally resolved infrared spectrum of CH{_3}OO{\\cdot} in the CH stretch region has been reported. The rotational contour of the {ν_2} CH stretch band in the experimental spectrum can be simulated with an asymmetric rotor model. The simulation shows good agreement with the experimental spectrum except that the broadening of the Q-branch in the experimental spectrum remains unexplained. This broadening is likely due to the sequence band transitions from the torsionally excited levels populated at room temperature to combination levels involving the CH stretch and the same number of torsional quanta. A four dimension model involving three CH stretches and the CH{_3} torsion is applied to the CH{_3}OO{\\cdot} radical to obtain the frequencies and intensities of the vibrational transitions in the CH stretch region. Based on these calculations, the torsional sequence bands are calculated to be slightly shifted from the origin band, because of the couplings between the CH stretches and CH{_3} torsion, thereby causing the apparent broadening observed for the {ν_2} fundamental. Due to the accidental degeneracy of two different CH stretch and CH{_3} torsion combination levels which differ by one quantum in the torsional excitation, the frequencies of the torsional sequence bands will be very sensitive to details of the potential, which makes the shifts difficult to precisely predict with electronic structure calculations. Complementary analyses are now underway for the other two CH stretch vibrational bands, {ν_1} and {ν_9}. K.-H. Hsu, Y.-H. Huang, Y.-P. Lee, M. Huang, T. A. Miller and A. B. McCoy J. Phys. Chem. A, in press, DOI: 10.1021/acs.jpca.5b12334

  19. Picosecond dynamics of the glutamate receptor in response to agonist-induced vibrational excitation.

    Science.gov (United States)

    Kubo, Minoru; Shiomitsu, Eiji; Odai, Kei; Sugimoto, Tohru; Suzuki, Hideo; Ito, Etsuro

    2004-02-01

    Conformational changes of proteins are dominated by the excitation and relaxation processes of their vibrational states. To elucidate the mechanism of receptor activation, the conformation dynamics of receptors must be analyzed in response to agonist-induced vibrational excitation. In this study, we chose the bending vibrational mode of the guanidinium group of Arg485 of the glutamate receptor subunit GluR2 based on our previous studies, and we investigated picosecond dynamics of the glutamate receptor caused by the vibrational excitation of Arg485 via molecular dynamics simulations. The vibrational excitation energy in Arg485 in the ligand-binding site initially flowed into Lys730, and then into the J-helix at the subunit interface of the ligand-binding domain. Consequently, the atomic displacement in the subunit interface around an intersubunit hydrogen bond was evoked in about 3 ps. This atomic displacement may perturb the subunit packing of the receptor, triggering receptor activation. Copyright 2003 Wiley-Liss, Inc.

  20. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    Science.gov (United States)

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2014-02-01

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]- (FeRu) dissolved in D2O and formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4- (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the νCN modes in the electronic ground state. The FTIR spectra of the νCN modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic νCN modes. The vibrational mode anharmonicities of the individual νCN modes range from 14 to 28 cm-1. The mixed-mode anharmonicities range from 2 to 14 cm-1. In general, the bridging νCN mode is most weakly coupled to the radial νCN mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four νCN modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D2O. The νCN modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm-1. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the νCN modes in cyanide-bridged transition metal mixed valence complexes.

  1. Thermo-dynamical contours of electronic-vibrational spectra simulated using the statistical quantum-mechanical methods

    DEFF Research Database (Denmark)

    Pomogaev, Vladimir; Pomogaeva, Anna; Avramov, Pavel

    2011-01-01

    Three polycyclic organic molecules in various solvents focused on thermo-dynamical aspects were theoretically investigated using the recently developed statistical quantum mechanical/classical molecular dynamics method for simulating electronic-vibrational spectra. The absorption bands of estradi...

  2. A Stepwise Optimal Design of a Dynamic Vibration Absorber with Tunable Resonant Frequency

    Directory of Open Access Journals (Sweden)

    Jiejian DI

    2014-08-01

    Full Text Available A new kind of dynamic vibration absorber (DVA with tunable resonant frequency is presented. The kinematics differential equation about it is built and the stepwise optimization is performed. Firstly, four main system parameters involving the ratios of mass m, natural frequency f, vibration frequency g and damping z are solved by small-step-search method to obtain optimal steady state amplitude. Secondly, the sizing optimization of the dynamic vibration absorber is proceeded to search an optimal damping effect based on the optimal parameters (g, m, z, f. And such the damping effect is simulated in a flat structure, and the results show that the working frequency band and damping effect of the DVA after optimization won 20 % of the effect of ascension compared with that before optimization.

  3. Nonlinear dynamic response and active vibration control for piezoelectric functionally graded plate

    Science.gov (United States)

    Yiqi, Mao; Yiming, Fu

    2010-05-01

    The nonlinear dynamic response and active vibration control of the piezoelectric functionally graded plate are analyzed in this paper. Based on higher-order shear plate theory and elastic piezoelectric theory, the nonlinear geometric and constitutive relations of the piezoelectric functionally graded plate are established, and then the nonlinear motion equations of the piezoelectric functionally graded plate are obtained through Hamilton's variational principle. The nonlinear active vibration control of the structure is carried out with adoption of the negative velocity feedback control algorithm. By applying finite difference method, the whole problem is solved by using iterative method synthetically. In numerical examples, the effects of mechanical load, electric load, the volume fraction and the geometric parameters on the dynamic response and vibration control of the piezoelectric FGM plate are investigated.

  4. Dynamics of microbubble oscillators with delay coupling

    Science.gov (United States)

    Heckman, C. R.; Sah, S. M.; Rand, R. H.

    2010-10-01

    We investigate the stability of the in-phase mode in a system of two delay-coupled bubble oscillators. The bubble oscillator model is based on a 1956 paper by Keller and Kolodner. Delay coupling is due to the time it takes for a signal to travel from one bubble to another through the liquid medium that surrounds them. Using techniques from the theory of differential-delay equations as well as perturbation theory, we show that the equilibrium of the in-phase mode can be made unstable if the delay is long enough and if the coupling strength is large enough, resulting in a Hopf bifurcation. We then employ Lindstedt's method to compute the amplitude of the limit cycle as a function of the time delay. This work is motivated by medical applications involving noninvasive localized drug delivery via microbubbles.

  5. Numerical study on air-structure coupling dynamic characteristics of the axial fan blade

    Science.gov (United States)

    Chen, Q. G.; Xie, B.; Li, F.; Gu, W. G.

    2013-12-01

    In order to understand the dynamic characteristics of the axial-flow fan blade due to the effect of rotating stress and the action of unsteady aerodynamic forces caused by the airflow, a numerical simulation method for air-structure coupling in an axial-flow fan with fixed rear guide blades was performed. The dynamic characteristics of an axial-flow fan rotating blade were studied by using the two-way air-structure coupling method. Based on the standard k-ε turbulence model, and using weak coupling method, the preceding six orders modal parameters of the rotating blade were obtained, and the distributions of stress and strain on the rotating blade were presented. The results show that the modal frequency from the first to the sixth order is 3Hz higher than the modal frequency without considering air-structure coupling interaction; the maximum stress and the maximum strain are all occurred in the vicinity of root area of the blade no matter the air-structure coupling is considered or not, thus, the blade root is the dangerous location subjected to fatigue break; the position of maximum deformation is at the blade tip, so the vibration of the blade tip is significant. This study can provide theoretical references for the further study on the strength analysis and mechanical optimal design.

  6. Vibration mixer

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.

    1983-01-01

    The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.

  7. Numerical Modelling and Simulation of Dynamic Parameters for Vibration Driven Mobile Robot: Preliminary Study

    Science.gov (United States)

    Baharudin, M. E.; Nor, A. M.; Saad, A. R. M.; Yusof, A. M.

    2018-03-01

    The motion of vibration-driven robots is based on an internal oscillating mass which can move without legs or wheels. The oscillation of the unbalanced mass by a motor is translated into vibration which in turn produces vertical and horizontal forces. Both vertical and horizontal oscillations are of the same frequency but the phases are shifted. The vertical forces will deflect the bristles which cause the robot to move forward. In this paper, the horizontal motion direction caused by the vertically vibrated bristle is numerically simulated by tuning the frequency of their oscillatory actuation. As a preliminary work, basic equations for a simple off-centered vibration location on the robot platform and simulation model for vibration excitement are introduced. It involves both static and dynamic vibration analysis of robots and analysis of different type of parameters. In addition, the orientation of the bristles and oscillators are also analysed. Results from the numerical integration seem to be in good agreement with those achieved from the literature. The presented numerical integration modeling can be used for designing the bristles and controlling the speed and direction of the robot.

  8. Complex phase dynamics in coupled bursters

    DEFF Research Database (Denmark)

    Postnov, D.E.; Sosnovtseva, Olga; Malova, S.Y.

    2003-01-01

    The phenomenon of phase multistability in the synchronization of two coupled oscillatory systems typically arises when the systems individually display complex wave forms associated, for instance, with the presence of subharmonic components. Alternatively, phase multistability can be caused...... the number of spikes per train and the proximity of a neighboring equilibrium point can influence the formation of coexisting regimes....

  9. Fractional dynamical model for neurovascular coupling

    KAUST Repository

    Belkhatir, Zehor

    2014-08-01

    The neurovascular coupling is a key mechanism linking the neural activity to the hemodynamic behavior. Modeling of this coupling is very important to understand the brain function but it is at the same time very complex due to the complexity of the involved phenomena. Many studies have reported a time delay between the neural activity and the cerebral blood flow, which has been described by adding a delay parameter in some of the existing models. An alternative approach is proposed in this paper, where a fractional system is used to model the neurovascular coupling. Thanks to its nonlocal property, a fractional derivative is suitable for modeling the phenomena with delay. The proposed model is coupled with the first version of the well-known balloon model, which relates the cerebral blood flow to the Blood Oxygen Level Dependent (BOLD) signal measured using functional Magnetic Resonance Imaging (fMRI). Through some numerical simulations, the properties of the fractional model are explained and some preliminary comparisons to a real BOLD data set are provided. © 2014 IEEE.

  10. The vibrational dynamics of carbon monoxide in a confined space-CO in zeolites

    Czech Academy of Sciences Publication Activity Database

    Nachtigallová, Dana; Bludský, Ota; Areán, C. O.; Bulánek, R.; Nachtigall, Petr

    2006-01-01

    Roč. 8, č. 42 (2006), s. 4849-4852 ISSN 1463-9076 R&D Projects: GA MŠk(CZ) LC512; GA ČR(CZ) GA203/06/0324 Institutional research plan: CEZ:AV0Z40550506 Keywords : vibrational dynamics * IR spectroscopy * modeling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.892, year: 2006

  11. Effect of dynamic visco-elasticity on vertical and torsional vibrations ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Suffixes ω,T relate the values of complex moduli to a given frequency ω and temperature. T . In the present problem, they will be omitted. δ is the damping parameter. The concept of complex moduli allows solution of the problems of dynamic visco-elasticity for stationary vibrations. Here we shall consider three different ...

  12. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    International Nuclear Information System (INIS)

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2013-01-01

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective

  13. Dynamic characteristics of vibration isolation platforms considering the joints of the struts

    Science.gov (United States)

    Zhang, Jingrui; Guo, Zixi; Zhang, Yao

    2016-09-01

    This paper discusses the dynamic characteristics of the impacts and corresponding frictions generated by the clearances of joints of vibration isolation platforms for control moment gyroscopes (CMGs) on spacecraft. A contact force model is applied using a nonlinear contact force model, and the frictions in the joints are considered in the dynamic analysis. First, the dynamic characteristics of a single isolation strut with spherical joints were studied, and joints with different initial clearance sizes were separately analyzed. Then, dynamic models of the vibration isolation platform for a CMG cluster with both perfect joints and joints with clearances were established. During the numeral simulation, joints with different elastic moduli were used to study the nonlinear characteristics. Finally, the distributions of the collision points, which can serve as a reference for the reliability and lifetime of a platform, were given.

  14. Dynamic modeling and adaptive vibration suppression of a high-speed macro-micro manipulator

    Science.gov (United States)

    Yang, Yi-ling; Wei, Yan-ding; Lou, Jun-qiang; Fu, Lei; Fang, Sheng; Chen, Te-huan

    2018-05-01

    This paper presents a dynamic modeling and microscopic vibration suppression for a flexible macro-micro manipulator dedicated to high-speed operation. The manipulator system mainly consists of a macro motion stage and a flexible micromanipulator bonded with one macro-fiber-composite actuator. Based on Hamilton's principle and the Bouc-Wen hysteresis equation, the nonlinear dynamic model is obtained. Then, a hybrid control scheme is proposed to simultaneously suppress the elastic vibration during and after the motor motion. In particular, the hybrid control strategy is composed of a trajectory planning approach and an adaptive variable structure control. Moreover, two optimization indices regarding the comprehensive torques and synthesized vibrations are designed, and the optimal trajectories are acquired using a genetic algorithm. Furthermore, a nonlinear fuzzy regulator is used to adjust the switching gain in the variable structure control. Thus, a fuzzy variable structure control with nonlinear adaptive control law is achieved. A series of experiments are performed to verify the effectiveness and feasibility of the established system model and hybrid control strategy. The excited vibration during the motor motion and the residual vibration after the motor motion are decreased. Meanwhile, the settling time is shortened. Both the manipulation stability and operation efficiency of the manipulator are improved by the proposed hybrid strategy.

  15. Effects of ambient vibrations on heritage buildings: overview and wireless dynamic monitoring application

    International Nuclear Information System (INIS)

    Monti, G.; Quaranta, G.; Fumagalli, F.; Marano, G.C.; Rea, R.; Nazzaro, B.

    2015-01-01

    Growing awareness of the negative effects due to ambient vibrations caused by transportations infrastructures in Historical centres is attributable to the high vulnerability of heritage buildings as a consequence of deterioration phenomena and damages that reduced the structural capacity of such valuable constructions over the past centuries. As the mobility demand increases, several cities hosting heritage buildings are subjected to raising traffic loadings, so that constructions of new infrastructures is often required. Hence, assessing the effects of short-term vibrations due to construction activities or the consequences of the long-term vibrations caused by traffic is very important for the preservation of cultural heritage. An operative approach for evaluating the effects of ambient vibrations based on experimental measurements is a useful tool when a new infrastructure is being built, and can support strategic decisions for the elaboration of transportation plans at the urban level. Therefore, an overview is here presented of existing studies, guidelines and codes that provide pertinent information on this topic. Of special importance is the analysis of existing proposed thresholds, i.e. limit values that, if compiled with, damage due to ambient vibrations is not likely to occur. On the basis of such overview, the selection of threshold values for the Flavian Amphitheater is discussed, along with current efforts towards a wireless dynamic monitoring of its dynamic response.

  16. Dynamical behaviour of the coupled diffusion map lattice

    International Nuclear Information System (INIS)

    Wei Wang; Cerdeira, H.A.

    1993-10-01

    In this paper we report the dynamical study of a coupled diffusive map lattice with the coupling between the elements only through the bifurcation parameter of the mapping function. The diffusive process of the lattice from an initially random distribution state to a homogeneous one and the stable range of the diffusive homogeneous attractor are discussed. For various coupling strengths we find that there are several types of spatio-temporal structures. In addition, the evolution of the lattice into chaos is studied and a largest Lyapunov exponent is used to characterize the dynamical behaviour. (author). 22 refs, 9 figs

  17. Dynamical conductivity of boron carbide: heavily damped plasma vibrations.

    Science.gov (United States)

    Werheit, Helmut; Gerlach, Guido

    2014-10-22

    The FIR reflectivity spectra of boron carbide, measured down to ω~10 cm(-1) between 100 and 800 K, are essentially determined by heavily damped plasma vibrations. The spectra are fitted applying the classical Drude-Lorentz theory of free carriers. The fitting Parameter Π=ωp/ωτ yields the carrier densities, which are immediately correlated with the concentration of structural defects in the homogeneity range. This correlation is proved for band-type and hopping conductivity. The effective mass of free holes in the valence band is estimated at m*/me~2.5. The mean free path of the free holes has the order of the cell parameters.

  18. Dynamic analysis to establish normal shock and vibration of radioactive material shipping packages

    International Nuclear Information System (INIS)

    Fields, S.R.

    1980-01-01

    A computer model, CARDS (Cask-Railcar Dynamic Simulator) was developed to provide input data for a broad range of radioactive material package-tiedown structural assessments. CARDS simulates the dynamic behavior of shipping packages and their transporters during normal transport conditions. The model will be used to identify parameters which significantly affect the normal shock and vibration environments which, in turn, provide the basis for determining the forces transmitted to the packages

  19. Giant resonances: a comparison between TDHF and fluid dynamics in small amplitude vibrations of spherical nuclei

    International Nuclear Information System (INIS)

    Sagawa, Hiroyuki; Holzwarth, G.

    1978-01-01

    Small amplitude vibrations of spherical nuclei are considered in microscopic (RPA) and fluid-dynamical description. Assuming the concentration of transition strength into one collective state, the microscopic result can be brought into close analogy to constrained fluid-dynamical motion. The decisive difference occurs in the contribution of the microscopic kinetic energy to the collective potential energy. It is shown that extension of fluid dynamics to include dynamical distortions of the local Fermi surface is sufficient to reproduce the microscopic results. Numerical examples are given for L=0 and L=2 isoscalar modes for a Skyrme-type nucleon-nucleon force. (auth.)

  20. Application of dynamic stiffness method in numerical free vibration analysis of stiffened plates

    Directory of Open Access Journals (Sweden)

    Damnjanović Emilija

    2017-01-01

    Full Text Available The free vibration analysis of stiffened plate assemblies has been performed in this paper by using the dynamic stiffness method. Rectangular Mindlin plate dynamic stiffness element has been formulated. Using the rotation matrices, dynamic stiffness matrices of single plates have been derived in global coordinate system. The global dynamic stiffness matrix of plate assembly has been derived by using similar assembly procedure as in the finite element method. The natural frequencies of stiffened plate assemblies with different boundary conditions have been computed and validated against the results obtained by using the commercial software package Abaqus. High accuracy of the results has been demonstrated.

  1. Coupling functions: Universal insights into dynamical interaction mechanisms

    Science.gov (United States)

    Stankovski, Tomislav; Pereira, Tiago; McClintock, Peter V. E.; Stefanovska, Aneta

    2017-10-01

    The dynamical systems found in nature are rarely isolated. Instead they interact and influence each other. The coupling functions that connect them contain detailed information about the functional mechanisms underlying the interactions and prescribe the physical rule specifying how an interaction occurs. A coherent and comprehensive review is presented encompassing the rapid progress made recently in the analysis, understanding, and applications of coupling functions. The basic concepts and characteristics of coupling functions are presented through demonstrative examples of different domains, revealing the mechanisms and emphasizing their multivariate nature. The theory of coupling functions is discussed through gradually increasing complexity from strong and weak interactions to globally coupled systems and networks. A variety of methods that have been developed for the detection and reconstruction of coupling functions from measured data is described. These methods are based on different statistical techniques for dynamical inference. Stemming from physics, such methods are being applied in diverse areas of science and technology, including chemistry, biology, physiology, neuroscience, social sciences, mechanics, and secure communications. This breadth of application illustrates the universality of coupling functions for studying the interaction mechanisms of coupled dynamical systems.

  2. Enhancement of Energy Harvesting Performance by a Coupled Bluff Splitter Body and PVEH Plate through Vortex Induced Vibration near Resonance

    Directory of Open Access Journals (Sweden)

    Wei Ken Chin

    2017-09-01

    Full Text Available Inspired by vortex induced vibration energy harvesting development as a new source of renewable energy, a T-shaped design vibration energy harvester is introduced with the aim of enhancing its performance through vortex induced vibration at near resonance conditions. The T-shaped structural model designed consists of a fixed boundary aluminum bluff splitter body coupled with a cantilever piezoelectric vibration energy harvesters (PVEH plate model which is a piezoelectric bimorph plate made of a brass plate sandwiched between 2 lead zirconate titanate (PZT plates. A 3-dimensional Fluid-Structure Interaction simulation analysis is carried out with Reynolds Stress Turbulence Model under wind speed of 7, 10, 12, 14, 16, 18, 19, 20, 22.5, and 25 m/s. The results showed that with 19 m/s wind speed, the model generates 75.758 Hz of vortex frequency near to the structural model’s natural frequency of 76.9 Hz. Resonance lock-in therefore occurred, generating a maximum displacement amplitude of 2.09 mm or a 49.76% increment relatively in vibrational amplitude. Under the effect of resonance at the PVEH plate’s fundamental natural frequency, it is able to generate the largest normalized power of 13.44 mW/cm3g2.

  3. Dynamic performance of slender suspension footbridges under eccentric walking dynamic loads

    Science.gov (United States)

    Huang, Ming-Hui; Thambiratnam, David P.; Perera, Nimal J.

    2007-06-01

    This paper treats the vibration of slender suspension footbridges caused by eccentrically distributed walking dynamic loads. A suspension footbridge model with reverse profiled cables in both the vertical and horizontal planes was used in this conceptual study, while SAP2000 package is adopted in the numerical analysis. The dynamic behaviour of slender footbridges under walking dynamic loads is simulated by resonant vibration caused by synchronous excitations. It is found that slender suspension footbridges with shallow cable profiles often have coupled vibration modes such as coupled lateral-torsional or coupled torsional-lateral modes. When these coupled vibration modes are excited by walking pedestrians, excessive lateral vibration can be induced. Results also show that the effects of the reverse profiled cables on the dynamic performance in different vibration modes are complex. Reverse profiled cables in the horizontal plane can significantly suppress the lateral vibration in coupled lateral-torsional modes, but slightly increase the lateral vibration in coupled torsional-lateral modes.

  4. Interpreting Dynamically-Averaged Scalar Couplings in Proteins

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Best, Robert B.; Vendruscolo, Michele

    2005-01-01

    to be related to the torsion angles of the molecules. As the measured couplings are sensitive to thermal fluctuations, the parameters in the Karplus relationships are better derived from ensembles representing the distributions of dihedral angles present in solution, rather than from single conformations. We......The experimental determination of scalar three-bond coupling constants represents a powerful method to probe both the structure and dynamics of proteins. The detailed structural interpretation of such coupling constants is usually based on Karplus relationships, which allow the measured couplings...

  5. Molecular dynamics simulation studies of dielectric response and vibrational energy relaxation in photoactive yellow protein and green fluorescent protein

    Science.gov (United States)

    Xu, Yao; Gnanasekaran, Ramachandran; Leitner, David

    2012-02-01

    The first step in the photocycle of many proteins involves conformational change of a chromophore or a charge transfer reaction following photoexcitation. To explore the response of the protein and solvent environment to photoexcitation of the chromophore in photoactive yellow protein (PYP) and green fluorescent protein (GFP) we carried out molecular dynamics simulations of the dielectric response and vibrational energy relaxation (VER) from the chromophore to the protein and solvent. In PYP the time scale of the protein response, mainly contributed by Tyr42 and Glu46, to photoexcitation appears prominently between 0.1 and 0.3 picoseconds. The frequency-dependent VER rate also reveals dynamic coupling between the chromophore and residues that hydrogen bond to it. Resonances in the VER rate appear at frequencies comparable to the oscillations observed in recent fluorescence decay studies. In GFP, which undergoes excited state proton transfer about 10 ps following photoexcitation that may be assisted by specific chromophore vibrations, both the protein and water molecules inside the β-barrel surrounding the chromophore mediate the dielectric response.

  6. Semi-active on-off damping control of a dynamic vibration absorber using Coriolis force

    Science.gov (United States)

    La, Viet Duc

    2012-07-01

    A passive dynamic vibration absorber (DVA) moving along a pendulum can cause the nonlinear Coriolis damping to reduce the pendulum swing. This paper proposes a simple semi-active on-off damping controller to improve the passive Coriolis DVA. The aim of the on-off damping control is to amplify the DVA resonance motion to increase the energy dissipated. Moreover, the paper finds the analytical solution of the harmonic vibration of semi-active controlled system. The accuracy of the analytical formulas and the superior performance of the semi-active DVA are verified by numerical simulations.

  7. Entanglement dynamics of two coupled mechanical oscillators in modulated optomechanics

    Science.gov (United States)

    Chakraborty, Subhadeep; Sarma, Amarendra K.

    2018-02-01

    We study the entanglement dynamics of two coupled mechanical oscillators, within a modulated optomechanical system. We find that, depending on the strength of the mechanical coupling, one could observe either a stationary or a dynamical behavior of the mechanical entanglement, which is extremely robust against the oscillator temperature. Moreover, we have shown that this entanglement dynamics is strongly related to the stability of the normal modes. Taking mechanical damping effects into account, an analytical expression corresponding to the critical mechanical coupling strength, where the transition from stationary to dynamical entanglement occurs, is also reported. The proposed scheme is analyzed with experimentally realistic parameters, making it a promising means to realize macroscopic quantum entanglement within current state-of-the-art experimental setups.

  8. Seasonal dynamics of plankton communities coupled with ...

    African Journals Online (AJOL)

    In this study, we studied the influence of the physical-chemical and biological factors (bacterioplankton and phytoplankton abundances) for zooplankton dynamics in a Sidi Saâd reservoir in Centre of Tunisia. The samplings were carried out in spring, summer, autumn and winter (2005 to 2006) in the deepest station (surface ...

  9. Ultrafast vibrational population transfer dynamics in 2-acetylcyclopentanone studied by 2D IR spectroscopy.

    Science.gov (United States)

    Park, Sungnam; Ji, Minbiao

    2011-03-14

    2-Acetylcyclopentanone (2-ACP), which is a β-dicarbonyl compound, undergoes keto-enol isomerization, and its enol tautomers are stabilized by a cyclic intramolecular hydrogen bond. 2-ACP (keto form) has symmetric and asymmetric vibrational modes of the two carbonyl groups at 1748 and 1715 cm(-1) , respectively, which are well separated from the carbonyl modes of its enol tautomers in the FTIR spectrum. We have investigated 2-ACP dissolved in carbon tetrachloride by 2D IR spectroscopy and IR pump-probe spectroscopy. Vibrational population transfer dynamics between the two carbonyl modes were observed by 2D IR spectroscopy. To extract the population exchange dynamics (i.e., the down- and uphill population transfer rate constants), we used the normalized volumes of the cross-peaks with respect to the diagonal peaks at the same emission frequency and the survival and conditional probability functions. As expected, the downhill population transfer time constant (3.2 ps) was measured to be smaller than the uphill population transfer time constant (3.8 ps). In addition, the vibrational population relaxation dynamics of the two carbonyl modes were observed to be the same within the experimental error and were found to be much slower than vibrational population transfer between two carbonyl modes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Exploring of PST-TBPM in Monitoring Bridge Dynamic Deflection in Vibration

    Science.gov (United States)

    Zhang, Guojian; Liu, Shengzhen; Zhao, Tonglong; Yu, Chengxin

    2018-01-01

    This study adopts digital photography to monitor bridge dynamic deflection in vibration. Digital photography used in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, a digital camera is used to monitor the bridge in static as a zero image. Then, the digital camera is used to monitor the bridge in vibration every three seconds as the successive images. Based on the reference system, PST-TBPM is used to calculate the images to obtain the bridge dynamic deflection in vibration. Results show that the average measurement accuracies are 0.615 pixels and 0.79 pixels in X and Z direction. The maximal deflection of the bridge is 7.14 pixels. PST-TBPM is valid in solving the problem-the photographing direction not perpendicular to the bridge. Digital photography used in this study can assess the bridge health through monitoring the bridge dynamic deflection in vibration. The deformation trend curves depicted over time also can warn the possible dangers.

  11. Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models

    Science.gov (United States)

    Steinhaus, Sebastian

    2015-09-01

    The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretization. However, extracting these mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple two-dimensional toy model for Yang-Mills coupled to spin foams, namely an Ising model coupled to so-called intertwiner models defined for SU (2 )k. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretization. We coarse grain this toy model via tensor network renormalization and uncover an interesting dynamics: the Ising phase transition temperature turns out to be sensitive to the background configurations and conversely, the Ising model can induce phase transitions in the background. Moreover, we observe a strong coupling of both systems if close to both phase transitions.

  12. Dynamics of coupled electron-nuclei-systems in laser fields; Dynamik gekoppelter Elektronen-Kern-Systeme in Laserfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Falge, Mirjam

    2012-07-01

    This work aimed at the theoretical analysis of high harmonic generation in molecules and the influence of coupled electron and nuclear dynamics on ultra-short pulse ionization processes. In the first part of this thesis, the isotope effect and influence of vibrational excitation on high harmonic generation were investigated for the isotope pairs H{sub 2}O/D{sub 2}O and H{sub 2}/D{sub 2}. It was shown that on the one hand high harmonic intensities strongly depend on the vibrational quantum number of the initial state of the water molecule and on the other hand the spectra of H{sub 2}O and D{sub 2}O exhibit a clear isotope effect for certain vibrationally excited states. Also it was shown that high harmonics of vibrationally excited states show an even more pronounced isotope effect than the ground state. The second and third part of this work treats the influence of coupled electron and nuclear dynamics on photoelectron spectra. In order to facilitate a numerically exact description of this dynamics, a simple one-dimensional model system (Shin-Metiu model) was used. It consists of only a single electronic and nuclear degree-of-freedom and allows for a switching between adiabatic and strongly non-adiabatic dynamics by its parameterization. This model served for the analysis of the dynamics of three different cases ranging from weak over intermediate to strong electron-nuclear coupling. To investigate the influence of non-adiabatic effects on photoelectron spectra, time-resolved photoelectron spectra were calculated applying two methods: a numerically exact treatment and an adiabatic approach neglecting the electron-nuclear coupling. Subsequently, the dependence of the efficiency of a non-adiabatic transition on the nuclear mass was analysed. To this end, the population dynamics and photoelectron spectra were calculated numerically exactly for a strong electron and nuclear coupling. Thereafter the asymmetry in forward and backward direction of time

  13. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm

    DEFF Research Database (Denmark)

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter

    2012-01-01

    . The absorption spectrum can in this formulation be seen as a matrix function of the characteristic VCC Jacobian response matrix. The asymmetric matrix version of the Lanczos method is used to generate a tridiagonal representation of the VCC response Jacobian. Solving the complex response equations...... in the relevant Lanczos space provides a method for calculating the VCC damped response functions and thereby subsequently the absorption spectra. The convergence behaviour of the algorithm is discussed theoretically and tested for different levels of completeness of the VCC expansion. Comparison is made...... with results from the recently reported [P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, and O. Christiansen, J. Chem. Phys. 132, 164105 (2010)] vibrational configuration interaction damped response function calculated using a symmetric Lanczos algorithm. Calculations of IR spectra of oxazole, cyclopropene...

  14. Dynamic Characteristics Study with Multidegree-of-Freedom Coupling in TBM Cutterhead System Based on Complex Factors

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2013-01-01

    Full Text Available A multidegree-of-freedom coupling dynamic model, which contains a joint cutterhead, an inner ring gear, a support shield body, and pinions, is established, considering the external stochastic excitations, time-varying meshing stiffness, transmission errors, clearance, and so forth. Based on the parameters of an actual project and the strong impact of external excitations, the modal properties and dynamic responses are analyzed, and the cutterhead joint surface loads are obtained and treated by rain flow count. Numerical results indicate that the low natural frequencies are 57 Hz and 61 Hz, and natural vibration modes are pinions-motors rotational mode and translational-overturning coupled mode of cutterhead with inner ring gear correspondingly. Besides, the axial and radial amplitude of dynamic responses are 0.55 mm and 0.25 mm, respectively. The frequencies of radial, torsional, and overturning vibrations are predominantly concentrated in 112 Hz and 120 Hz, which indicates that the vibration responses of cutterhead are mainly affected by the external excitations. Finally, as the rain-flow counting results have shown, the standard deviation of the cutterhead joint surface loads in each direction increases by 12–15 times, compared with that of the external excitations; therefore inertia effect should be considered in cutterhead design. The proposed research lays a foundation for dynamic performance optimization and fatigue crack growth life assessment of cutterhead structure.

  15. Bistability in Coupled Oscillators Exhibiting Synchronized Dynamics

    Science.gov (United States)

    Olusola, O. I.; Vincent, U. E.; Njah, A. N.; Olowofela, J. A.

    2010-05-01

    We report some new results associated with the synchronization behavior of two coupled double-well Duffing oscillators (DDOs). Some sufficient algebraic criteria for global chaos synchronization of the drive and response DDOs via linear state error feedback control are obtained by means of Lyapunov stability theory. The synchronization is achieved through a bistable state in which a periodic attractor co-exists with a chaotic attractor. Using the linear perturbation analysis, the prevalence of attractors in parameter space and the associated bifurcations are examined. Subcritical and supercritical Hopf bifurcations and abundance of Arnold tongues — a signature of mode locking phenomenon are found.

  16. Random Vibration and Dynamic Analysis of a Planetary Gear Train in a Wind Turbine

    Directory of Open Access Journals (Sweden)

    Jianming Yang

    2016-01-01

    Full Text Available Premature failure of gearboxes is a big challenge facing the wind power industry. It highly depends on fully understanding the embedded dynamics to solve this problem. To this end, this paper investigates the random vibration and dynamics of planetary gear trains (PGTs in wind turbines under the excitation of wind turbulence. The turbulence is represented by the Von Karmon spectrum and implemented by passing white noise through a 2nd-order shaping filter. Then, extra equations are formed and added to the original governing equations of motion. With this augmented equation set, a recursive numerical algorithm based on stochastic Newmark scheme is applied to solve for the statistics of the responses starting from initial conditions. After simulation, the variances of the vibration responses and the dynamic meshing forces at gear meshes are obtained.

  17. Dynamic stiffness method in the vibration analysis of circular cylindrical shell

    Directory of Open Access Journals (Sweden)

    Kolarević Nevenka

    2016-01-01

    Full Text Available In this paper the dynamic stiffness method is used for free vibration analysis of a circular cylindrical shell. The dynamic stiffness matrix is formulated on the base of the exact solution for free vibration of a circular cylindrical shell according to the Flügge thin shell theory. The matrix is frequency dependent and, besides the stiffness, includes inertia and damping effects. The derived dynamic stiffness matrix is implemented in the code developed in a Matlab program for computing natural frequencies and mode shapes of a circular cylindrical shell. Several numerical examples are carried out. The obtained results are validated against the results obtained by using the commercial finite element program Abaqus as well as the available analytical solutions from the literature.

  18. Driven Nonlinear Dynamics of Two Coupled Exchange-Only Qubits

    Directory of Open Access Journals (Sweden)

    Arijeet Pal

    2014-01-01

    Full Text Available Inspired by the creation of a fast exchange-only qubit [Medford et al., Phys. Rev. Lett. 111, 050501 (2013], we develop a theory describing the nonlinear dynamics of two such qubits that are capacitively coupled, when one of them is driven resonantly at a frequency equal to its level splitting. We include conditions of strong driving, where the Rabi frequency is a significant fraction of the level splitting, and we consider situations where the splitting for the second qubit may be the same as or different than the first. We demonstrate that coupling between qubits can be detected by reading the response of the second qubit, even when the coupling between them is only of about 1% of their level splittings, and we calculate entanglement between qubits. Patterns of nonlinear dynamics of coupled qubits and their entanglement are strongly dependent on the geometry of the system, and the specific mechanism of interqubit coupling deeply influences dynamics of both qubits. In particular, we describe the development of irregular dynamics in a two-qubit system, explore approaches for inhibiting it, and demonstrate the existence of an optimal range of coupling strength maintaining stability during the operational time.

  19. Vibrational dynamics of aniline (N2)1 clusters in their first excited singlet state

    Science.gov (United States)

    Hineman, M. F.; Kim, S. K.; Bernstein, E. R.; Kelley, D. F.

    1992-04-01

    The first excited singlet state S1 vibrational dynamics of aniline(N2)1 clusters are studied and compared to previous results on aniline(CH4)1 and aniline(Ar)1. Intramolecular vibrational energy redistribution (IVR) and vibrational predissociation (VP) rates fall between the two extremes of the CH4 (fast IVR, slow VP) and Ar (slow IVR, fast VP) cluster results as is predicted by a serial IVR/VP model using Fermi's golden rule to describe IVR processes and a restricted Rice-Ramsperger-Kassel-Marcus (RRKM) theory to describe unimolecular VP rates. The density of states is the most important factor determining the rates. Two product states, 00 and 10b1, of bare aniline and one intermediate state ˜(00) in the overall IVR/VP process are observed and time resolved measurements are obtained for the 000 and ˜(000) transitions. The results are modeled with the serial mechanism described above.

  20. Vibrational dynamics of aniline(Ar)1 and aniline(CH4)1 clusters

    Science.gov (United States)

    Nimlos, M. R.; Young, M. A.; Bernstein, E. R.; Kelley, D. F.

    1989-11-01

    The first excited electronic state (S1) vibrational dynamics of aniline(Ar)1 and aniline(CH4)1 van der Waals (vdW) clusters have been studied using molecular jet and time resolved emission spectroscopic techniques. The rates of intramolecular vibrational energy redistribution (IVR) and vibrational predissociation (VP) as functions of vibrational energy are reported for both clusters. For vibrational energy in excess of the cluster binding energy, both clusters are observed to dissociate. The dispersed emission spectra of these clusters demonstrate that aniline(Ar)1 dissociates to all energetically accessible bare molecule states and that aniline(CH4)1 dissociates selectively to only the bare molecule vibrationless state. The emission kinetics show that in the aniline(Ar)1 case, the initially excited states have nanosecond lifetimes, and intermediate cluster states have very short lifetimes. In contrast, the initially excited aniline(CH4)1 states and other intermediate vibrationally excited cluster states are very short lived (golden rule, and the density of vdW vibrational states is the most important factor in determining the relative [aniline(Ar)1 vs aniline(CH4)1] rates of IVR; (2) IVR among the vdW modes is rapid; and (3) VP rates can be calculated by a restricted vdW mode phase space Rice-Ramsberger-Kassel-Marcus theory. Since the density of vdW states is three orders of magnitude greater for aniline(CH4)1 than aniline(Ar)1 at 700 cm-1, the model predicts that IVR is slow and rate limiting in aniline(Ar)1, whereas VP is slow and rate limiting in aniline(CH4)1. The agreement of these predictions with the experimental results is very good and is discussed in detail.

  1. Dynamic determination of modulus of elasticity of full-size wood composite panels using a vibration method

    Science.gov (United States)

    Cheng Guan; Houjiang Zhang; Lujing Zhou; Xiping Wang

    2015-01-01

    A vibration testing method based on free vibration theory in a ‘‘free–free” support condition was investigated for evaluating the modulus of elasticity (MOE) of full-size wood composite panels (WCPs). Vibration experiments were conducted on three types of WCPs (medium density fibreboard, particleboard, and plywood) to determine the dynamic MOE of the panels. Static...

  2. Hydrogen bond dynamics and vibrational spectral diffusion in ...

    Indian Academy of Sciences (India)

    For example, Chapados and cowork- ers10 carried out Fourier transform infrared attenuated total reflectance spectroscopic studies of acetone–water mixtures. These authors found that the OH stretch band is blue shifted as acetone is added to water. Recently,. Bakker and coworkers16 looked at the dynamical prop-.

  3. Incorporating Vibration Test Results for the Advanced Stirling Convertor into the System Dynamic Model

    Science.gov (United States)

    Meer, David W.; Lewandowski, Edward J.

    2010-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. During these tests, a data system collects several performance-related parameters from the convertor under test for health monitoring and analysis. Recently, an additional sensor recorded the slip table position during vibration testing to qualification level. The System Dynamic Model (SDM) integrates Stirling cycle thermodynamics, heat flow, mechanical mass, spring, damper systems, and electrical characteristics of the linear alternator and controller. This Paper presents a comparison of the performance of the ASC when exposed to vibration to that predicted by the SDM when exposed to the same vibration.

  4. Chaotic Dynamics-Based Analysis of Broadband Piezoelectric Vibration Energy Harvesting Enhanced by Using Nonlinearity

    Directory of Open Access Journals (Sweden)

    Zhongsheng Chen

    2016-01-01

    Full Text Available Nonlinear magnetic forces are always used to enlarge resonant bandwidth of vibration energy harvesting systems with piezoelectric cantilever beams. However, how to determine properly the distance between two magnets is one of the key engineering problems. In this paper, the Melnikov theory is introduced to overcome it. Firstly, the Melnikov state-space model of the nonlinear piezoelectric vibration energy harvesting (PVEH system is built. Based on it, chaotic dynamics mechanisms of achieving broadband PVEH by nonlinearity are exposed by potential function of the unperturbed nonlinear PVEH system. Then the corresponding Melnikov function of the nonlinear PVEH system is defined, based on which two Melnikov necessary conditions of determining the distance are obtained. Finally, numerical simulations are done to testify the theoretic results. The results demonstrate that the distance is closely related to the excitation amplitude and frequency once geometric and material parameters are fixed. Under a single-frequency excitation, the nonlinear PVEH system can generate a periodic vibration around a stable point, a large-amplitude vibration around two stable points, or a chaotic vibration. The proposed method is very valuable for optimally designing and utilizing nonlinear broadband PVEH devices in engineering applications.

  5. Optimization of Sensing and Feedback Control for Vibration/Flutter of Rotating Disk by PZT Actuators via Air Coupled Pressure

    Directory of Open Access Journals (Sweden)

    Bingfeng Ju

    2011-03-01

    Full Text Available In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.

  6. On a finite dynamic element method for free vibration analysis of structures

    Science.gov (United States)

    Gupta, K. K.

    1976-01-01

    This paper explores the concept of finite dynamic elements involving higher order dynamic correction terms in the associated stiffness and mass matrices. Such matrices are then developed for a rectangular prestressed membrane element. Next, efficient analysis techniques for the eigenproblem solution of the resulting quadratic matrix equations are described in detail. These are followed by suitable numerical examples which indicate that employment of such dynamic elements in conjunction with an efficient quadratic matric solution technique will result in a most significant economy in the free vibration analysis of structures.

  7. Measurement of dynamic interaction between a vibrating fuel element and its support

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, N.J.; Tromp, J.H.; Smith, B.A.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada). Chalk River Labs.

    1996-12-01

    Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.

  8. Free vibration of functionally graded beams and frameworks using the dynamic stiffness method

    Science.gov (United States)

    Banerjee, J. R.; Ananthapuvirajah, A.

    2018-05-01

    The free vibration analysis of functionally graded beams (FGBs) and frameworks containing FGBs is carried out by applying the dynamic stiffness method and deriving the elements of the dynamic stiffness matrix in explicit algebraic form. The usually adopted rule that the material properties of the FGB vary continuously through the thickness according to a power law forms the fundamental basis of the governing differential equations of motion in free vibration. The differential equations are solved in closed analytical form when the free vibratory motion is harmonic. The dynamic stiffness matrix is then formulated by relating the amplitudes of forces to those of the displacements at the two ends of the beam. Next, the explicit algebraic expressions for the dynamic stiffness elements are derived with the help of symbolic computation. Finally the Wittrick-Williams algorithm is applied as solution technique to solve the free vibration problems of FGBs with uniform cross-section, stepped FGBs and frameworks consisting of FGBs. Some numerical results are validated against published results, but in the absence of published results for frameworks containing FGBs, consistency checks on the reliability of results are performed. The paper closes with discussion of results and conclusions.

  9. Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics

    NARCIS (Netherlands)

    Alling, B.; Kormann, F.H.W.; Grabowski, B; Glensk, A; Abrikosov, I.A.

    2016-01-01

    We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite

  10. Calculation of vibrational frequencies through a variational reduced-coupling approach.

    Science.gov (United States)

    Scribano, Yohann; Benoit, David M

    2007-10-28

    In this study, we present a new method to perform accurate and efficient vibrational configuration interaction computations for large molecular systems. We use the vibrational self-consistent field (VSCF) method to compute an initial description of the vibrational wave function of the system, combined with the single-to-all approach to compute a sparse potential energy surface at the chosen ab initio level of theory. A Davidson scheme is then used to diagonalize the Hamiltonian matrix built on the VSCF virtual basis. Our method is applied to the computation of the OH-stretch frequency of formic acid and benzoic acid to demonstrate the efficiency and accuracy of this new technique.

  11. Nonlinear Coupled Dynamics of a Rod Fastening Rotor under Rub-Impact and Initial Permanent Deflection

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2016-10-01

    Full Text Available A nonlinear coupled dynamic model of a rod fastening rotor under rub-impact and initial permanent deflection was developed in this paper. The governing motion equation was derived by the D’Alembert principle considering the contact characteristic between disks, nonlinear oil-film force, rub-impact force, unbalance mass, etc. The contact effects between disks was modeled as a flexural spring with cubical nonlinear stiffness. The coupled nonlinear dynamic phenomena of the rub-impact rod fastening rotor bearing system with initial permanent deflection were investigated by the fourth-order Runge-Kutta method. Bifurcation diagram, vibration waveform, frequency spectrum, shaft orbit and Poincaré map are used to illustrate the rich diversity of the system response with complicated dynamics. The studies indicate that the coupled dynamic responses of the rod fastening rotor bearing system under rub-impact and initial permanent deflection exhibit a rich nonlinear dynamic diversity, synchronous periodic-1 motion, multiple periodic motion, quasi-periodic motion and chaotic motion can be observed under certain conditions. Larger radial stiffness of the stator will simplify the system motion and make the oil whirl weaker or even disappear at a certain rotating speed. With the increase of initial permanent deflection length, the instability speed of the system gradually rises, and the chaotic motion region gets smaller and smaller. The corresponding results can provide guidance for the fault diagnosis of a rub-impact rod fastening rotor with initial permanent deflection and contribute to the further understanding of the nonlinear dynamic characteristics of the rod fastening rotor bearing system.

  12. Tinamit: Making coupled system dynamics models accessible to stakeholders

    Science.gov (United States)

    Malard, Julien; Inam Baig, Azhar; Rojas Díaz, Marcela; Hassanzadeh, Elmira; Adamowski, Jan; Tuy, Héctor; Melgar-Quiñonez, Hugo

    2017-04-01

    Model coupling is increasingly used as a method of combining the best of two models when representing socio-environmental systems, though barriers to successful model adoption by stakeholders are particularly present with the use of coupled models, due to their high complexity and typically low implementation flexibility. Coupled system dynamics - physically-based modelling is a promising method to improve stakeholder participation in environmental modelling while retaining a high level of complexity for physical process representation, as the system dynamics components are readily understandable and can be built by stakeholders themselves. However, this method is not without limitations in practice, including 1) inflexible and complicated coupling methods, 2) difficult model maintenance after the end of the project, and 3) a wide variety of end-user cultures and languages. We have developed the open-source Python-language software tool Tinamit to overcome some of these limitations to the adoption of stakeholder-based coupled system dynamics - physically-based modelling. The software is unique in 1) its inclusion of both a graphical user interface (GUI) and a library of available commands (API) that allow users with little or no coding abilities to rapidly, effectively, and flexibly couple models, 2) its multilingual support for the GUI, allowing users to couple models in their preferred language (and to add new languages as necessary for their community work), and 3) its modular structure allowing for very easy model coupling and modification without the direct use of code, and to which programming-savvy users can easily add support for new types of physically-based models. We discuss how the use of Tinamit for model coupling can greatly increase the accessibility of coupled models to stakeholders, using an example of a stakeholder-built system dynamics model of soil salinity issues in Pakistan coupled with the physically-based soil salinity and water flow model

  13. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  14. Dynamics of order parameters for globally coupled oscillators

    DEFF Research Database (Denmark)

    De Monte, Silvia; D'ovidio, Francesco

    2002-01-01

    The equation of motion for the centroid of globally coupled oscillators with natural frequency mismatch is obtained through a series expansion in order parameters, valid for any population size. In the case of strong coupling and narrow-frequency distribution the first-order expansion (correspond......The equation of motion for the centroid of globally coupled oscillators with natural frequency mismatch is obtained through a series expansion in order parameters, valid for any population size. In the case of strong coupling and narrow-frequency distribution the first-order expansion...... (corresponding to a system where the centroid is coupled to a second macroscopic variable), predicts transient and asymptotic properties of the dynamics of the centroid. Phase transitions appear as macroscopic bifurcations. Collective properties arising in the transient, and particularly critical perturbations...

  15. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra.

    Science.gov (United States)

    Woys, Ann Marie; Almeida, Aaron M; Wang, Lu; Chiu, Chi-Cheng; McGovern, Michael; de Pablo, Juan J; Skinner, James L; Gellman, Samuel H; Zanni, Martin T

    2012-11-21

    Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent

  16. A comparison of ultrafast vibrational dynamics in liquids, glasses, and proteins

    Science.gov (United States)

    Rector, Kirk Davin

    Some good demonstrations of the powerful scientific uses of the vibrational echo technique are demonstrated in this thesis. The vibrational echo pulse technique, combined with pump probe or transient absorption experiments, probe molecular motions on their time scale allowing scientists to gain insights into the important inter- and intramolecular interactions. The interactions on this time scale ultimately control many classes of chemical reactions and processes. Vibrational echo and pump-probe experiments require ultrafast, tunable infrared laser pulses. Data is presented performed using the Stanford Medical Free Electron Laser and using a Ti:Sapphire based optical parametric amplifier system. Similarities and differences between these two very different experimental systems are discussed. Complete temperature dependent vibrational echo studies are presented on Rh(CO)2acac and W(CO)6 in dibutyl plithalate. The mechanism attributing to the low temperature dephasing of both chromophores is phonon assisted tunneling between two level systems. At high temperatures, thermal activation of the M-C (M=Rh,W) mode, and the resulting change in backbonding, is the dominant source of dephasing. A series of vibrational echo studies of CO at the active site of the proteins myoglobin and hemoglobin are presented. In the protein studies, the dephasing mechanism at low temperature is essentially the same as for the Rh(CO)2acac and W(CO)6. However, myoglobin studies in a variety of solvents indicated that at high temperature, the protein undergoes a transition that enables motions which cause a temperature dependent dephasing different from the power laws or Arrhenius behavior seen in the inorganic systems. Studies of two myoglobin mutants suggests that it is the fluctuating electric fields felt at the heme that cause the dephasing. The use of the vibrational echo technique to measure spectra, rather than dynamics is illustrated theoretically and experimentally. The time evolution

  17. Nonlinear dynamic behaviour of a rotor-foundation system coupled through passive magnetic bearings with magnetic anisotropy - Theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar F.

    2016-01-01

    In this work, the nonlinear dynamic behaviour of a vertical rigid rotor interacting with a flexible foundation by means of two passive magnetic bearings is quantified and evaluated. The quantification is based on theoretical and experimental investigation of the non-uniformity (anisotropy......-coupling between the two orthogonal directions, especially during counter-phase motion between shaft and bearings. The clear nonlinear behaviour is facilitated by the lack of damping resulting in relatively large vibrations. The overall nonlinear dynamic behaviour is well captured by the theoretical model, thereby...

  18. Site-Specific Measurement of Water Dynamics in the Substrate Pocket of Ketosteroid Isomerase Using Time-Resolved Vibrational Spectroscopy

    Science.gov (United States)

    Jha, Santosh Kumar; Ji, Minbiao; Gaffney, Kelly J.; Boxer, Steven G.

    2012-01-01

    Little is known about the reorganization capacity of water molecules at the active sites of enzymes and how this couples to the catalytic reaction. Here, we study the dynamics of water molecules at the active site of a highly proficient enzyme, Δ5-3-ketosteroid isomerase (KSI), during a light-activated mimic of its catalytic cycle. Photo-excitation of a nitrile containing photo-acid, coumarin183 (C183), mimics the change in charge density that occurs at the active site of KSI during the first step of the catalytic reaction. The nitrile of C183 is exposed to water when bound to the KSI active site, and we used time-resolved vibrational spectroscopy as a site-specific probe to study the solvation dynamics of water molecules in the vicinity of the nitrile. We observed that water molecules at the active site of KSI are highly rigid, during the light-activated catalytic cycle, compared to the solvation dynamics observed in bulk water. Based upon this result we hypothesize that rigid water dipoles at the active site might help in the maintenance of the pre-organized electrostatic environment required for efficient catalysis. The results also demonstrate the utility of nitrile probes in measuring the dynamics of local (H-bonded) water molecules in contrast to the commonly used fluorescence methods which measure the average behavior of primary and subsequent spheres of solvation. PMID:22931297

  19. Synchronization and Stability of Elasticity Coupling Two Homodromy Rotors in a Vibration System

    Directory of Open Access Journals (Sweden)

    Yongjun Hou

    2016-01-01

    Full Text Available The mechanical model of an elasticity coupling 1-DOF system is proposed to implement synchronization; the simplified model is composed of a rigid body, two induction motors, and a connecting spring. Based on the Lagrange equations, the dynamic equation of the system is established. Moreover, a typical analysis method, the Poincare method, is applied to study the synchronization characteristics, and the balanced equations and stability criterion of the system are obtained. Obviously, it can be seen that many parameters affect the synchronous state of the system, especially the stiffness of the support spring, the stiffness of the connecting spring, and the installation location of the motors. Meanwhile, choose a suitable stiffness of the connecting spring (k, which would play a significant role in engineering. Finally, computer simulations are used to verify the correctness of the theoretical analysis.

  20. Effects of quadriceps strength after static and dynamic whole-body vibration exercise.

    Science.gov (United States)

    Bush, Jill A; Blog, Gabriel L; Kang, Jie; Faigenbaum, Avery D; Ratamess, Nicholas A

    2015-05-01

    Numerous studies have shown performance benefits including whole-body vibration (WBV) as a training modality or an acute exercise protocol when used as a component of the resistance training program. Some studies have indicated that performing dynamic exercises as compared with static position exercises while exposed to WBV might be beneficial; however, evidence is lacking. Thus, the purpose of this study was to determine if an acute bout of dynamic versus static squats performed during WBV results in increase in quadriceps force production by means of dynamic isokinetic knee extension and flexion exercise. Nonresistance-trained healthy young men and women (N = 21) of 18-25 years participated in 4 protocols with 2-week rest in-between. Protocol 1 consisted of 5 sets of 10 dynamic squats without vibration; Protocol 2: 5 sets of 30-second static squats without vibration; Protocol 3: 5 sets of 10 dynamic squats with 30-Hz WBV for a total of 2.5 minutes; and Protocol 4: 5 sets of 30-second static squats with 30-Hz WBV for a total of 2.5 minutes. Prestrength tests (1 set of 4 repetitions at 100° · s(-1) for the knee extension exercise) was performed within 5 minutes of starting each protocol, and poststrength testing was performed within 1 minute of completing each protocol. Strength outcomes were analyzed by repeated measures analysis of variance with a significance level set at p ≤ 0.05. A significant decrease in strength was observed after dynamic and static squats without WBV (p = 0.002); an increase in strength after dynamic squats with WBV (p = 0.003); and a decrease in strength after static squats with WBV (p = 0.003). The inclusion of WBV to dynamic resistance exercise can be an added modality to increase strength. Whole-body vibration can have varied effects in altering muscle strength in untrained individuals according to the type of resistance training performed. As a dynamic squat with WBV seems to immediately potentiate neuromuscular functioning, the

  1. Magnetic suspension motorized spindle-cutting system dynamics analysis and vibration control review

    Directory of Open Access Journals (Sweden)

    Xiaoli QIAO

    2016-10-01

    Full Text Available The performance of high-speed spindle directly determines the development of high-end machine tools. The cutting system's dynamic characteristics and vibration control effect are inseparable with the performance of the spindle,which influence each other, synergistic effect together the cutting efficiency, the surface quality of the workpiece and tool life in machining process. So, the review status on magnetic suspension motorized spindle, magnetic suspension bearing-flexible rotor system dynamics modeling theory and status of active control technology of flexible magnetic suspension motorized spindle rotor vibration are studied, and the problems which present in the magnetic suspension flexible motorized spindle rotor systems are refined, and the development trend of magnetic levitation motorized spindle and the application prospect is forecasted.

  2. Torsional vibration of crankshaft in an engine propeller nonlinear dynamical system

    Science.gov (United States)

    Zhang, X.; Yu, S. D.

    2009-01-01

    Theoretical and experimental studies on torsional vibration of an aircraft engine-propeller system are presented in this paper. Two system models—a rigid body model and a flexible body model, are developed for predicting torsional vibrations of the crankshaft under different engine powers and propeller pitch settings. In the flexible body model, the distributed torsional flexibility and mass moment of inertia of the crankshaft are considered using the finite element method. The nonlinear autonomous equations of motion for the engine-propeller dynamical system are established using the augmented Lagrange equations, and solved using the Runge-Kutta method after a degrees of freedom reduction scheme is applied. Experiments are carried out on a three-cylinder four-stroke engine. Both theoretical and experimental studies reveal that the crankshaft flexibility has significant influence on the system dynamical behavior.

  3. Dynamic characteristics of heat exchanger tubes vibrating in a tube support plate inactive mode

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.

    1985-01-01

    Tubes in shell-and-tube heat exchangers, including nuclear plant steam generators, derive their support from longitudinally positioned tube support plates (TSPs). Typically there is a clearance between the tube and TSP hole. Depending on design and fabrication tolerances, the tube may or may not contact all of the TSPs. Noncontact results in an inactive TSP which can lead to detrimental flow induced tube vibrations under certain conditions dependent on the resulting tube-TSP interaction dynamics and the fluid excitation forces. The purpose of this study is to investigate the tube-TSP interaction dynamics. Results of an experimental study of damping and natural frequency as functions of tube-TSP diametral clearance and TSP thickness are reported. Calculated values of damping ratio and frequency of a tube vibrating within an inactive TSP are also presented together with a comparison of calculated and experimetnal quantities

  4. Dynamic Properties of the Painter Street Overpass at Different Levels of Vibration

    DEFF Research Database (Denmark)

    Ventura, C. E.; Brincker, Rune; Andersen, P.

    2005-01-01

    This paper describes the results from a series of ambient vibration studies conducted on the Painter Street Overpass in Rio Dell, California. Painter Street is a two-span, skewed reinforced concrete bridge with two single piers near the middle and monolithic abutments, typical of bridge overpasses...... in California. Strong motion instruments were installed on the bridge in 1977, and since then it has recorded the motions from more than ten significant earthquakes. Because of the valuable amount of strong motion data available, the aim of the ambient vibration tests was to determine the dynamic...... from analyses of selected strong motion records. The magnitude of the events investigated ranges from ML=4.4 to ML=6.9, which produced accelerations of up to 0.54g at the free field site, 1.3g at the abutments, and 0.86g on the deck. The results of this study indicate that the overall dynamic...

  5. Comparison of dynamical aspects of nonadiabatic electron, proton, and proton-coupled electron transfer reactions

    International Nuclear Information System (INIS)

    Hatcher, Elizabeth; Soudackov, Alexander; Hammes-Schiffer, Sharon

    2005-01-01

    The dynamical aspects of a model proton-coupled electron transfer (PCET) reaction in solution are analyzed with molecular dynamics simulations. The rate for nonadiabatic PCET is expressed in terms of a time-dependent probability flux correlation function. The impact of the proton donor-acceptor and solvent dynamics on the probability flux is examined. The dynamical behavior of the probability flux correlation function is dominated by a solvent damping term that depends on the energy gap correlation function. The proton donor-acceptor motion does not impact the dynamical behavior of the probability flux correlation function but does influence the magnitude of the rate. The approximations previously invoked for the calculation of PCET rates are tested. The effects of solvent damping on the proton donor-acceptor vibrational motion are found to be negligible, and the short-time solvent approximation, in which only equilibrium fluctuations of the solvent are considered, is determined to be valid for these types of reactions. The analysis of PCET reactions is compared to previous analyses of single electron and proton transfer reactions. The dynamical behavior is qualitatively similar for all three types of reactions, but the time scale of the decay of the probability flux correlation function is significantly longer for single proton transfer than for PCET and single electron transfer due to a smaller solvent reorganization energy for proton transfer

  6. Simple method for measuring vibration amplitude of high power airborne ultrasonic transducer: using thermo-couple.

    Science.gov (United States)

    Saffar, Saber; Abdullah, Amir

    2014-03-01

    Vibration amplitude of transducer's elements is the influential parameters in the performance of high power airborne ultrasonic transducers to control the optimum vibration without material yielding. The vibration amplitude of elements of provided high power airborne transducer was determined by measuring temperature of the provided high power airborne transducer transducer's elements. The results showed that simple thermocouples can be used both to measure the vibration amplitude of transducer's element and an indicator to power transmission to the air. To verify our approach, the power transmission to the air has been investigated by other common method experimentally. The experimental results displayed good agreement with presented approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. selective excitation of vibrational modes of polyatomic molecule

    Indian Academy of Sciences (India)

    Abstract. Mode-selective dynamics of triatomic molecule in the electronic ground state under continuous wave laser pulse is investigated for the discrete vibrational bound states. A non-perturbative approach has been used to analyse the vibrational couplings and dynamics of the molecule. Keywords. Polyatomic molecule ...

  8. Vibrational dynamics and heat capacity of polyglycine I.

    Science.gov (United States)

    Porwal, Vikas; Misra, Radha Mohan; Tandon, Poonam; Gupta, Vishwambhar Dayal

    2004-02-01

    Earlier works on polyglycine I suffer from several infirmities, such as the dynamic methylene group being replaced by a mass unit and the use of poorly resolved inelastic neutron spectra, which have resulted in wrong assignments and imprecise profile of dispersion curves. In addition, the density-of-states and heat capacity variation as a function of temperature are being reported for the first time. The heat capacity is in good agreement with the measurements reported earlier by Roles and Wunderlich within a certain range (230-350 K). Deviations set in beyond this could be due to the presence of two crystalline states (I and II) in the sample used for the heat capacity measurements.

  9. Dynamics Analysis and Experiment of Vibrating Screen for Asphalt Mixing Equipment

    Directory of Open Access Journals (Sweden)

    He ZHAO-XIA

    2014-04-01

    Full Text Available A dynamics model of vibration screen for asphalt mixing equipment is established in order to investigate the working performance of the system, which combines the lumped parameter method and substructure method in this paper. In order to acquire accurate results, the spring support stiffness, bearing stiffness and torsional stiffness of connecting link are considered in this model. The mass and stiffness matrixes of link are transformed to the master nodes according to the substructure method. Then the part is combined with the whole dynamics model by support points. Furthermore, the differential equations of motion are given by the Newton Second Law, and it is solved by Newmark time integration method. The centroid trajectory of vibrating screen is computed. At the same time, the reaction force of support springs and bearings are also acquired. And the strength of the product can meet the requirements of design by simulations. A vibration experiment is executed in factory, and the dynamics model is validated by comparing the results.

  10. Multiscality in the Dynamics of Coupled Chaotic Systems

    DEFF Research Database (Denmark)

    Pavlov, A.N.; Sosnovtseva, Olga; Ziganshin, A.R.

    2002-01-01

    We investigate the scaling features of complex motions in systems of two coupled chaotic oscillators by means of the wavelet-transform modulus maxima method and the detrended fluctuation analysis. We show that the transition from asynchronous to synchronous dynamics typically reduces the degree o...

  11. Dynamical hysteresis and spatial synchronization in coupled non ...

    Indian Academy of Sciences (India)

    behavior of complex biological systems, e.g. seizures in the epileptic brain can be viewed as transitions between different dynamical phases caused by time dependence in the brain's internal coupling. Keywords. Hysteresis; multistability; spatial synchronization; spatio-temporal chaos. PACS Nos 05.45.Xt; 05.45.tp; 05.45.

  12. Development of Approaches to Creation of Active Vibration Control System in Problems of the Dynamics for Granular Media

    Directory of Open Access Journals (Sweden)

    Khomenko Andrei P.

    2018-01-01

    Full Text Available The article deals with the development of mathematical models and evaluation criteria of the vibration field in the dynamic interactions of the elements of the vibrational technological machines for the processes of vibrational strengthening of long-length parts with help of a steel balls working medium. The study forms a theoretical understanding of the modes of motions of material particles in interaction with a vibrating surface of the working body of the vibration machine. The generalized approach to the assessment of the dynamic quality of the work of vibrating machines in multiple modes of tossing, when the period of free flight of particles is a multiple of the period of the surface oscillations of the working body, is developed in the article. For the correction of vibration field of the working body, the characteristics of dynamic interactions of granular elements of the medium are taken into account using original sensors. The sensors that can detect different particularities of interaction of the granular medium elements at different points of the working body are proposed to evaluate the deviation from a homogeneous and one-dimensional mode of vibration field. Specially developed sensors are able to register interactions between a single granule, a system of granules in filamentous structures, and multipoint interactions of the elements in a close-spaced cylindrical structure. The system of regularization of the structure of vibration fields based on the introduction of motion translation devices is proposed using the multi-point sensor locations on the working body. The article refers to analytical approaches of the theory of vibration displacements. For the experimental data assessment, the methods of statistical analysis are applied. It is shown that the peculiar features of the motion of granular medium registered by the sensors can be used to build active control systems of field vibration.

  13. Exponential Synchronization of Uncertain Complex Dynamical Networks with Delay Coupling

    International Nuclear Information System (INIS)

    Wang Lifu; Kong Zhi; Jing Yuanwei

    2010-01-01

    This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown coupling functions but bounded. Novel delay-dependent linear controllers are designed via the Lyapunov stability theory. Especially, it is shown that the controlled networks are globally exponentially synchronized with a given convergence rate. An example of typical dynamical network of this class, having the Lorenz system at each node, has been used to demonstrate and verify the novel design proposed. And, the numerical simulation results show the effectiveness of proposed synchronization approaches. (general)

  14. Flexible dynamics of two quorum-sensing coupled repressilators

    Science.gov (United States)

    Hellen, Edward H.; Volkov, Evgeny

    2017-02-01

    Genetic oscillators play important roles in cell life regulation. The regulatory efficiency usually depends strongly on the emergence of stable collective dynamic modes, which requires designing the interactions between genetic networks. We investigate the dynamics of two identical synthetic genetic repressilators coupled by an additional plasmid which implements quorum sensing (QS) in each network thereby supporting global coupling. In a basic genetic ring oscillator network in which three genes inhibit each other in unidirectional manner, QS stimulates the transcriptional activity of chosen genes providing for competition between inhibitory and stimulatory activities localized in those genes. The "promoter strength", the Hill cooperativity coefficient of transcription repression, and the coupling strength, i.e., parameters controlling the basic rates of genetic reactions, were chosen for extensive bifurcation analysis. The results are presented as a map of dynamic regimes. We found that the remarkable multistability of the antiphase limit cycle and stable homogeneous and inhomogeneous steady states exists over broad ranges of control parameters. We studied the antiphase limit cycle stability and the evolution of irregular oscillatory regimes in the parameter areas where the antiphase cycle loses stability. In these regions we observed developing complex oscillations, collective chaos, and multistability between regular limit cycles and complex oscillations over uncommonly large intervals of coupling strength. QS coupling stimulates the appearance of intrachaotic periodic windows with spatially symmetric and asymmetric partial limit cycles which, in turn, change the type of chaos from a simple antiphase character into chaos composed of pieces of the trajectories having alternating polarity. The very rich dynamics discovered in the system of two identical simple ring oscillators may serve as a possible background for biological phenotypic diversification, as well

  15. Quench dynamics of two coupled zig-zag ion chains

    International Nuclear Information System (INIS)

    Klumpp, Andrea; Liebchen, Benno; Schmelcher, Peter

    2016-01-01

    We explore the non-equilibrium dynamics of two coupled zig-zag chains of trapped ions in a double well potential. Following a quench of the potential barrier between both wells, the induced coupling between both chains due to the long-range interaction of the ions leads to the complete loss of order in the radial direction. The resulting dynamics is however not exclusively irregular but leads to phases of motion during which various ordered structures appear with ions arranged in arcs, lines and crosses. We quantify the emerging order by introducing a suitable measure and complement our analysis of the ion dynamics using a normal mode analysis showing a decisive population transfer between only a few distinguished modes. - Highlights: • Novel dynamical phenomenology of two coupled zig-zag ion chains following a trap quench is explored. • Transient ordered ion configurations are unraveled in non-equilibrium dynamics dominated by irregular behavior. • A measure for the diagnosis of this transient order is introduced and applied. • Energy transfer between a few eigen modes is identified as the key mechanism for the occurrence of the ordered configurations.

  16. Two-level bulk microfabrication of a mechanical broadband vibration amplitude-amplifier with ten coupled resonators

    Science.gov (United States)

    Müller, Michelle; Maiwald, Verena; Thiele, Lothar; Beutel, Jan; Roman, Cosmin; Hierold, Christofer

    2018-04-01

    A micromechanical broadband vibration amplitude-amplifier for low power detection of acoustic emission signals is presented. It is based on a coupled mass-spring system and was fabricated in a two-level bulk microfabrication process. The device consists of ten resonators coupled in series, which decrease in mass by a factor of three each, to achieve a high amplification over a broad bandwidth. The fabrication process for this multiscale device is based on front- and backside etching of a silicon-on-insulator wafer. It enables coupling MEMS resonators of two different thicknesses with a weight ratio from largest to smallest mass of 26’244 and reduces die size by resonator stacking. The first ten eigenmodes of the device are in-plane and unidirectional. Steady-state and transient response of the device in comparison to a 1D lumped element model is presented. An average amplitude amplification of 295 over a bandwidth of 10.7 kHz (4.4–15.1 kHz) is achieved and can be reached in less than 1 ms. Applications are low-power detection of short broadband vibration signals e.g. for structural health monitoring (cliffs, pipelines, bridges).

  17. Study of coupling between bending and torsional vibration of cracked rotor system supported by radial active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Ferfecki P.

    2007-11-01

    Full Text Available The coupling of bending and torsional vibration due to the presence of transverse fatigue crack in a rotor system supported by radial active magnetic bearings (AMB is investigated. For this purpose the modified stiffness matrix with six degrees of freedom per node is used and takes into account all the coupling phenomena that exists in a cracked rotor. The partial opening and closing of crack is considered by means of status of stress intensity factor along the crack edge. The equation of motion of rotor system is nonlinear due to response dependent non-linear breathing crack model and nonlinear force coupling introduced by AMB. A response of the rotor system is obtained by direct integration of nonlinear equation of motion. When the torsional harmonic excitation is applied to the rotor system with the crack then the sum and difference of torsional frequency around a bending natural frequency is observed in the lateral vibration spectrum. Influence of different values of crack parametersfor two different speeds of rotor is investigated with help of frequency spectra.

  18. System-Level Coupled Modeling of Piezoelectric Vibration Energy Harvesting Systems by Joint Finite Element and Circuit Analysis

    Directory of Open Access Journals (Sweden)

    Congcong Cheng

    2016-01-01

    Full Text Available A practical piezoelectric vibration energy harvesting (PVEH system is usually composed of two coupled parts: a harvesting structure and an interface circuit. Thus, it is much necessary to build system-level coupled models for analyzing PVEH systems, so that the whole PVEH system can be optimized to obtain a high overall efficiency. In this paper, two classes of coupled models are proposed by joint finite element and circuit analysis. The first one is to integrate the equivalent circuit model of the harvesting structure with the interface circuit and the second one is to integrate the equivalent electrical impedance of the interface circuit into the finite element model of the harvesting structure. Then equivalent circuit model parameters of the harvesting structure are estimated by finite element analysis and the equivalent electrical impedance of the interface circuit is derived by circuit analysis. In the end, simulations are done to validate and compare the proposed two classes of system-level coupled models. The results demonstrate that harvested powers from the two classes of coupled models approximate to theoretic values. Thus, the proposed coupled models can be used for system-level optimizations in engineering applications.

  19. Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments

    Science.gov (United States)

    Huang, Xiao-Lin; Shen, Hui-Shen

    2006-01-01

    This paper deals with the nonlinear vibration and dynamic response of a functionally graded material (FGM) plate with surface-bonded piezoelectric layers in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the plate surface and varied in the thickness direction of the plate, and the electric field is assumed to be the transverse component Ez only. Material properties of the substrate FGM layer are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents, whereas the material properties of piezoelectric layers are assumed to be independent of the temperature and the electric field. The nonlinear formulations are based on the higher-order shear deformation plate theory and general von Kármán-type equation, which includes thermo-piezoelectric effects. The numerical illustrations concern nonlinear vibration characteristics of functional graded plates with fully covered piezoelectric actuators under different sets of thermal and electric loading conditions. The effects of temperature change, control voltage and volume fraction distribution on the nonlinear vibration and dynamic response are examined in detail.

  20. Dynamic signaling cascades: reversible covalent reaction-coupled molecular switches.

    Science.gov (United States)

    Ren, Yulong; You, Lei

    2015-11-11

    The research of systems chemistry exploring complex mixtures of interacting synthetic molecules has been burgeoning recently. Herein we demonstrate for the first time the coupling of molecular switches with a dynamic covalent reaction (DCR) and the modulation of created chemical cascades with a variety of inputs, thus closely mimicking a biological signaling system. A novel Michael type DCR of 10-methylacridinium perchlorate and monothiols exhibiting excellent regioselectivity and tunable affinity was discovered. A delicate balance between the unique reactivity of the reactant and the stability of the adduct leads to the generation of a strong acid in a thermodynamically controlled system. The dynamic cascade was next created via coupling of the DCR and a protonation-induced configurational switch (E/Z isomerization) through a proton relay. Detailed examination of the interdependence of the equilibrium enabled us to rationally optimize the cascade and also shed light on the possible intermediate of the switching process. Furthermore, relative independence of the coupled reactions was verified by the identification of stimuli that are able to facilitate one reaction but suppress the other. To further enhance systematic complexity, a second DCR of electrophilic aldehydes and thiols was employed for the reversible inhibition of the binary system, thus achieving the interplay of multiple equilibria. Finally, a fluorescence switch was turned on through coupling with the DCR, showcasing the versatility of our strategy. The results described herein should pave the way for the exploitation of multifunctional dynamic covalent cascades.

  1. Continual approach to the dynamics problems of tanks containing rod bundles or particle groups and fluid at vibrational actions

    International Nuclear Information System (INIS)

    Fedotovskii, V.S.

    1988-02-01

    The vibration of tanks with liquid and non deformed cylindrical or spherical inclusions are considered. It is shown that for calculating dynamic characteristics of such systems it is advisable to use continual approach i.e. consider-heterogeneous media formed by liquid and weighted inclusions in it as homogeneous media with effective or vibroreological properties. On the base of the problem on vibrations of the tank, containing liquid and localized inclusions, rod assemblies vibrations are considered and relationships for the added mass and resistance coefficient determining dynamic characteristics of such systems are obtained. Considered are also liquid tank vibrations containing spherical inclusions. The results obtained are used for calculating dynamic characteristics of two-phase flow pipelines at bubble and annular flow mode. The theoretical relationships are compared with available experimental data [fr

  2. Dynamic Characteristics of the Amphitheatrum Flavium northern wall from traffic-induced vibrations

    Directory of Open Access Journals (Sweden)

    Giovanni Bongiovanni

    2017-07-01

    Full Text Available The effects of the traffic-induced vibrations on the external northern wall of the Amphitheatrum Flavium are studied with the two objectives of analyzing the amplitudes of such vibrations and extracting the dynamic characteristics of the structure as part of preservation effort. The results obtained in two experimental campaigns, carried out in 1985 and 2014, respectively, are analyzed also as a starting point for future extensive experimental measurements. Data processing consisted in the time domain and frequency domain analyses, in which Fourier transform, power spectral density and cross spectral density were used to extract resonance frequencies, modal shapes and damping. The not always significant values of phase factors and coherence functions pointed out the presence of complex modes and of the nonlinear behavior, which in conjunction with the complex geometry of the structure and its size make the interpretation of the experimental data quite difficult.

  3. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mehralian, Fahimeh [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Tadi Beni, Yaghoub, E-mail: tadi@eng.sku.ac.ir [Faculty of Engineering, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Karimi Zeverdejani, Mehran [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of)

    2017-06-01

    Featured by two small length scale parameters, nonlocal strain gradient theory is utilized to investigate the free vibration of nanotubes. A new size-dependent shell model formulation is developed by using the first order shear deformation theory. The governing equations and boundary conditions are obtained using Hamilton's principle and solved for simply supported boundary condition. As main purpose of this study, since the values of two small length scale parameters are still unknown, they are calibrated by the means of molecular dynamics simulations (MDs). Then, the influences of different parameters such as nonlocal parameter, scale factor, length and thickness on vibration characteristics of nanotubes are studied. It is also shown that increase in thickness and decrease in length parameters intensify the effect of nonlocal parameter and scale factor.

  4. Influence of intra-pigment vibrations on dynamics of photosynthetic exciton

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yoshihiro, E-mail: sato.yoshihiro77@nihon-u.ac.jp, E-mail: ysato.colby@gmail.com; Doolittle, Brian [Department of Physics and Astronomy, Colby College, Waterville, Maine 04901 (United States)

    2014-11-14

    We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency.

  5. A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations

    KAUST Repository

    Neumann, Philipp

    2012-06-01

    We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm as well as parallel execution of the hybrid simulation. We describe the implementational concept of the tool and its parallel extensions. We particularly focus on the parallel execution of particle insertions into dense molecular systems and propose a respective parallel algorithm. Our implementations are validated for serial and parallel setups in two and three dimensions. © 2012 IEEE.

  6. The dynamics of two linearly coupled Goodwin oscillators

    Science.gov (United States)

    Antonova, A. O.; Reznik, S. N.; Todorov, M. D.

    2017-10-01

    In this paper the Puu model of the interaction of Goodwin's business cycles for two regions is reconsidered. We investigated the effect of the accelerator coefficients and the Hicksian 'ceiling' and 'floor' parameters on the time dynamics of incomes for different values of marginal propensity to import. The cases when the periods of isolated Goodwin's cycles are close, and when they differ approximately twice are considered. By perturbation theory we obtained the formulas for slowly varying amplitudes and phase difference of weakly nonlinear coupled Goodwin oscillations. The coupled oscillations of two Goodwin's cycles with piecewise linear accelerators with only 'floor' are considered.

  7. Nonlinear dynamics and control strategies: On a energy harvester vibrating system with a linear form to non-ideal motor torquet

    Directory of Open Access Journals (Sweden)

    de Pontes B. R.

    2012-07-01

    Full Text Available In this paper, we deal with the research of a vibrating model of an energy harvester device, including the nonlinearities in the model of the piezoelectric coupling and the non-ideal excitation. We show, using numerical simulations, in the analysis of the dynamic responses, that the harvested power is influenced by non-linear vibrations of the structure. Chaotic behavior was also observed, causing of the loss of energy throughout the simulation time. Using a perturbation technique, we find an approximate analytical solution for the non-ideal system. Then, we apply both two control techniques, to keep the considered system, into a stable condition. Both the State Dependent Ricatti Equation (SDRE control as the feedback control by changing the energy of the oscillator, were efficient in controlling of the considered non-ideal system.

  8. Vibrational dynamics of thiocyanate and selenocyanate bound to horse heart myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Michał; Oh, Younjun; Park, Kwanghee; Lee, Jooyong; Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of); Kwak, Kyung-Won [Department of Chemistry, Chung-Ang University, Seoul 156-756, SouthKorea (Korea, Republic of)

    2014-06-21

    The structure and vibrational dynamics of SCN- and SeCN-bound myoglobin have been investigated using polarization-controlled IR pump-probe measurements and quantum chemistry calculations. The complexes are found to be in low and high spin states, with the dominant contribution from the latter. In addition, the Mb:SCN high spin complex exhibits a doublet feature in the thiocyanate stretch IR absorption spectra, indicating two distinct molecular conformations around the heme pocket. The binding mode of the high spin complexes was assigned to occur through the nitrogen atom, contrary to the binding through the sulfur atom that was observed in myoglobin derived from Aplysia Limacina. The vibrational energy relaxation process has been found to occur substantially faster than those of free SCN{sup −} and SeCN{sup −} ions and neutral SCN- and SeCN-derivatized molecules reported previously. This supports the N-bound configurations of MbNCS and MbNCSe, because S- and Se-bound configurations are expected to have significantly long lifetimes due to the insulation effect by heavy bridge atom like S and Se in such IR probes. Nonetheless, even though their lifetimes are much shorter than those of corresponding free ions in water, the vibrational lifetimes determined for MbNCS and MbNCSe are still fairly long compared to those of azide and cyanide myoglobin systems studied before. Thus, thiocyanate and selenocyanate can be good local probes of local electrostatic environment in the heme pocket. The globin dependence on binding mode and vibrational dynamics is also discussed.

  9. Vibrational dynamics of thiocyanate and selenocyanate bound to horse heart myoglobin.

    Science.gov (United States)

    Maj, Michał; Oh, Younjun; Park, Kwanghee; Lee, Jooyong; Kwak, Kyung-Won; Cho, Minhaeng

    2014-06-21

    The structure and vibrational dynamics of SCN- and SeCN-bound myoglobin have been investigated using polarization-controlled IR pump-probe measurements and quantum chemistry calculations. The complexes are found to be in low and high spin states, with the dominant contribution from the latter. In addition, the Mb:SCN high spin complex exhibits a doublet feature in the thiocyanate stretch IR absorption spectra, indicating two distinct molecular conformations around the heme pocket. The binding mode of the high spin complexes was assigned to occur through the nitrogen atom, contrary to the binding through the sulfur atom that was observed in myoglobin derived from Aplysia Limacina. The vibrational energy relaxation process has been found to occur substantially faster than those of free SCN(-) and SeCN(-) ions and neutral SCN- and SeCN-derivatized molecules reported previously. This supports the N-bound configurations of MbNCS and MbNCSe, because S- and Se-bound configurations are expected to have significantly long lifetimes due to the insulation effect by heavy bridge atom like S and Se in such IR probes. Nonetheless, even though their lifetimes are much shorter than those of corresponding free ions in water, the vibrational lifetimes determined for MbNCS and MbNCSe are still fairly long compared to those of azide and cyanide myoglobin systems studied before. Thus, thiocyanate and selenocyanate can be good local probes of local electrostatic environment in the heme pocket. The globin dependence on binding mode and vibrational dynamics is also discussed.

  10. Nonequilibrium electron-vibration coupling and conductance fluctuations in a C60 junction

    DEFF Research Database (Denmark)

    Ulstrup, Søren; Frederiksen, Thomas; Brandbyge, Mads

    2012-01-01

    displacement. Combined with a vibrational heating mechanism we construct a model from our results that explain the polarity-dependent two-level conductance fluctuations observed in recent scanning tunneling microscopy (STM) experiments [N. Ne´el et al., Nano Lett. 11, 3593 (2011)]. These findings highlight...

  11. Network synchronization of time-delayed coupled nonlinear systems using predictor-based diffusive dynamic couplings.

    Science.gov (United States)

    Murguia, C; Fey, Rob H B; Nijmeijer, H

    2015-02-01

    We study the problem of controlled network synchronization of coupled semipassive systems in the case when the outputs (the coupling variables) and the inputs are subject to constant time-delay (as it is often the case in a networked context). Predictor-based dynamic output feedback controllers are proposed to interconnect the systems on a given network. Using Lyapunov-Krasovskii functional and the notion of semipassivity, we prove that under some mild assumptions, the solutions of the interconnected systems are globally ultimately bounded. Sufficient conditions on the systems to be interconnected, on the network topology, on the coupling dynamics, and on the time-delays that guarantee global state synchronization are derived. A local analysis is provided in which we compare the performance of our predictor-based control scheme against the existing static diffusive couplings available in the literature. We show (locally) that the time-delay that can be induced to the network may be increased by including the predictors in the loop. The results are illustrated by computer simulations of coupled Hindmarsh-Rose neurons.

  12. Network synchronization of time-delayed coupled nonlinear systems using predictor-based diffusive dynamic couplings

    Science.gov (United States)

    Murguia, C.; Fey, Rob H. B.; Nijmeijer, H.

    2015-02-01

    We study the problem of controlled network synchronization of coupled semipassive systems in the case when the outputs (the coupling variables) and the inputs are subject to constant time-delay (as it is often the case in a networked context). Predictor-based dynamic output feedback controllers are proposed to interconnect the systems on a given network. Using Lyapunov-Krasovskii functional and the notion of semipassivity, we prove that under some mild assumptions, the solutions of the interconnected systems are globally ultimately bounded. Sufficient conditions on the systems to be interconnected, on the network topology, on the coupling dynamics, and on the time-delays that guarantee global state synchronization are derived. A local analysis is provided in which we compare the performance of our predictor-based control scheme against the existing static diffusive couplings available in the literature. We show (locally) that the time-delay that can be induced to the network may be increased by including the predictors in the loop. The results are illustrated by computer simulations of coupled Hindmarsh-Rose neurons.

  13. Vibrational relaxation dynamics of SD molecules in As{sub 2}S{sub 3}: Observation of an anomalous isotope effect

    Energy Technology Data Exchange (ETDEWEB)

    Engholm, J.R.; Happek, U. [Univ. of Georgia, Athens, GA (United States); Rella, C.W. [Stanford Univ., CA (United States)] [and others

    1995-12-31

    It is generally assumed that the vibrational relaxation of molecular impurities in crystals and glasses mainly depends on the order of the decay process, with lower order processes leading to more rapid relaxation (a behavior that is known under the term {open_quotes}gap-law{close_quotes}). Here we present measurements that contradict this assumption. Using high intensity psec pulses of the Stanford FEL we measured the relaxation rate of the SD vibrational stretch mode (at a frequency of 1800 cm) by applying a pump-probe technique. We find relaxation rates on the order of 2x10{sup 9} sec{sup -1}, which are a factor of 2 lower than those found for the isotope molecule SH (at a frequency of about 2500 cm{sup - 1}) in the same host{sup 1}. We recall that the relaxation of the SD vibrational stretch mode is controlled by a lower order process as compared to the SH molecule, which is due to the smaller number of host vibrational quanta to match the energy of the stretch mode; a fact we have confirmed experimentally by temperature dependent relaxation measurements. Thus our remits are in marked contrast to the so-called {open_quotes}Gap-Law{close_quotes} and emphasize the importance of the molecule - host coupling in the relaxation dynamics.

  14. Coupled disease-behavior dynamics on complex networks: A review

    Science.gov (United States)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  15. Coupled disease-behavior dynamics on complex networks: A review.

    Science.gov (United States)

    Wang, Zhen; Andrews, Michael A; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Balancing Vibrations at Harmonic Frequencies by Injecting Harmonic Balancing Signals into the Armature of a Linear Motor/Alternator Coupled to a Stirling Machine

    Science.gov (United States)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.

  17. Collective Rabi dynamics of electromagnetically coupled quantum-dot ensembles

    Science.gov (United States)

    Glosser, Connor; Shanker, B.; Piermarocchi, Carlo

    2017-09-01

    Rabi oscillations typify the inherent nonlinearity of optical excitations in quantum dots. Using an integral kernel formulation to solve the three-dimensional Maxwell-Bloch equations in ensembles of up to 104 quantum dots, we observe features in Rabi oscillations due to the interplay of nonlinearity, nonequilibrium excitation, and electromagnetic coupling between the dots. This approach allows us to observe the dynamics of each dot in the ensemble without resorting to spatial averages. Our simulations predict synchronized multiplets of dots that exchange energy, dots that dynamically couple to screen the effect of incident external radiation, localization of the polarization due to randomness and interactions, as well as wavelength-scale regions of enhanced and suppressed polarization.

  18. A dynamic allocation mechanism of delivering capacity in coupled networks

    International Nuclear Information System (INIS)

    Du, Wen-Bo; Zhou, Xing-Lian; Zhu, Yan-Bo; Zheng, Zheng

    2015-01-01

    Traffic process is ubiquitous in many critical infrastructures. In this paper, we introduce a mechanism to dynamically allocate the delivering capacity into the data-packet traffic model on the coupled Internet autonomous-system-level network of South Korea and Japan, and focus on its effect on the transport efficiency. In this mechanism, the total delivering capacity is constant and the lowest-load node will give one unit delivering capacity to the highest-load node at each time step. It is found that the delivering capacity of busy nodes and non-busy nodes can be well balanced and the effective betweenness of busy nodes with interconnections is significantly reduced. Consequently, the transport efficiency such as average traveling time and packet arrival rate is remarkably improved. Our work may shed some light on the traffic dynamics in coupled networks.

  19. Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory

    Science.gov (United States)

    Ghadiri, Majid; Safarpour, Hamed

    2016-09-01

    In this paper, size-dependent effect of an embedded magneto-electro-elastic (MEE) nanoshell subjected to thermo-electro-magnetic loadings on free vibration behavior is investigated. Also, the surrounding elastic medium has been considered as the model of Winkler characterized by the spring. The size-dependent MEE nanoshell is investigated on the basis of the modified couple stress theory. Taking attention to the first-order shear deformation theory (FSDT), the modeled nanoshell and its equations of motion are derived using principle of minimum potential energy. The accuracy of the presented model is validated with some cases in the literature. Finally, using the Navier-type method, an analytical solution of governing equations for vibration behavior of simply supported MEE cylindrical nanoshell under combined loadings is presented and the effects of material length scale parameter, temperature changes, external electric potential, external magnetic potential, circumferential wave numbers, constant of spring, shear correction factor and length-to-radius ratio of the nanoshell on natural frequency are identified. Since there has been no research about size-dependent analysis MEE cylindrical nanoshell under combined loadings based on FSDT, numerical results are presented to be served as benchmarks for future analysis of MEE nanoshells using the modified couple stress theory.

  20. Molecular couplings and energy exchange between DNA and water mapped by femtosecond infrared spectroscopy of backbone vibrations

    Directory of Open Access Journals (Sweden)

    Yingliang Liu

    2017-07-01

    Full Text Available Molecular couplings between DNA and water together with the accompanying processes of energy exchange are mapped via the ultrafast response of DNA backbone vibrations after OH stretch excitation of the water shell. Native salmon testes DNA is studied in femtosecond pump-probe experiments under conditions of full hydration and at a reduced hydration level with two water layers around the double helix. Independent of their local hydration patterns, all backbone vibrations in the frequency range from 940 to 1120 cm–1 display a quasi-instantaneous reshaping of the spectral envelopes of their fundamental absorption bands upon excitation of the water shell. The subsequent reshaping kinetics encompass a one-picosecond component, reflecting the formation of a hot ground state of the water shell, and a slower contribution on a time scale of tens of picoseconds. Such results are benchmarked by measurements with resonant excitation of the backbone modes, resulting in distinctly different absorption changes. We assign the fast changes of DNA absorption after OH stretch excitation to structural changes in the water shell which couple to DNA through the local electric fields. The second slower process is attributed to a flow of excess energy from the water shell into DNA, establishing a common heated ground state in the molecular ensemble. This interpretation is supported by theoretical calculations of the electric fields exerted by the water shell at different temperatures.

  1. Numerical simulation of an elementary Vortex-Induced-Vibration problem by using fully-coupled fluid solid system computation

    Directory of Open Access Journals (Sweden)

    M Pomarède

    2016-09-01

    Full Text Available Numerical simulation of Vortex-Induced-Vibrations (VIV of a rigid circular elastically-mounted cylinder submitted to a fluid cross-flow has been extensively studied over the past decades, both experimentally and numerically, because of its theoretical and practical interest for understanding Flow-Induced-Vibrations (FIV problems. In this context, the present article aims to expose a numerical study based on fully-coupled fluid-solid computations compared to previously published work [34], [36]. The computational procedure relies on a partitioned method ensuring the coupling between fluid and structure solvers. The fluid solver involves a moving mesh formulation for simulation of the fluid structure interface motion. Energy exchanges between fluid and solid models are ensured through convenient numerical schemes. The present study is devoted to a low Reynolds number configuration. Cylinder motion magnitude, hydrodynamic forces, oscillation frequency and fluid vortex shedding modes are investigated and the “lock-in” phenomenon is reproduced numerically. These numerical results are proposed for code validation purposes before investigating larger industrial applications such as configurations involving tube arrays under cross-flows [4].

  2. Forced versus coupled dynamics in Earth system modelling and prediction

    Directory of Open Access Journals (Sweden)

    B. Knopf

    2005-01-01

    Full Text Available We compare coupled nonlinear climate models and their simplified forced counterparts with respect to predictability and phase space topology. Various types of uncertainty plague climate change simulation, which is, in turn, a crucial element of Earth System modelling. Since the currently preferred strategy for simulating the climate system, or the Earth System at large, is the coupling of sub-system modules (representing, e.g. atmosphere, oceans, global vegetation, this paper explicitly addresses the errors and indeterminacies generated by the coupling procedure. The focus is on a comparison of forced dynamics as opposed to fully, i.e. intrinsically, coupled dynamics. The former represents a particular type of simulation, where the time behaviour of one complex systems component is prescribed by data or some other external information source. Such a simplifying technique is often employed in Earth System models in order to save computing resources, in particular when massive model inter-comparisons need to be carried out. Our contribution to the debate is based on the investigation of two representative model examples, namely (i a low-dimensional coupled atmosphere-ocean simulator, and (ii a replica-like simulator embracing corresponding components.Whereas in general the forced version (ii is able to mimic its fully coupled counterpart (i, we show in this paper that for a considerable fraction of parameter- and state-space, the two approaches qualitatively differ. Here we take up a phenomenon concerning the predictability of coupled versus forced models that was reported earlier in this journal: the observation that the time series of the forced version display artificial predictive skill. We present an explanation in terms of nonlinear dynamical theory. In particular we observe an intermittent version of artificial predictive skill, which we call on-off synchronization, and trace it back to the appearance of unstable periodic orbits. We also

  3. Relationship dynamics around depression in gay and lesbian couples.

    Science.gov (United States)

    Thomeer, Mieke Beth; Reczek, Corinne; Umberson, Debra

    2015-12-01

    Research on intimate relationship dynamics around depression has primarily focused on heterosexual couples. This body of work shows that wives are more likely than husbands to offer support to a depressed spouse. Moreover, when wives are depressed, they are more likely than husbands to try and shield their spouse from the stress of their own depression. Yet, previous research has not examined depression and relationship dynamics in gay and lesbian couples. We analyze in-depth interviews with 26 gay and lesbian couples (N = 52 individuals) in which one or both partners reported depression. We find evidence that dominant gender scripts are both upheld and challenged within gay and lesbian couples, providing important insight into how gender operates in relation to depression within same-sex contexts. Our results indicate that most gay and lesbian partners offer support to a depressed partner, yet lesbian couples tend to follow a unique pattern in that they provide support both as the non-depressed and depressed partner. Support around depression is sometimes viewed as improving the relationship, but if the support is intensive or rejected, it is often viewed as contributing to relationship strain. Support is also sometimes withdrawn by the non-depressed partner because of caregiver exhaustion or the perception that the support is unhelpful. This study points to the importance of considering depression within gay and lesbian relational contexts, revealing new ways support sustains and strains intimate partnerships. We emphasize the usefulness of deploying couple-level approaches to better understand depression in sexual minority populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Dynamic characteristics of osteoporotic lumbar spine under vertical vibration after cement augmentation.

    Science.gov (United States)

    Su, Xinlin; Shen, Hao; Shi, Weidong; Yang, Huilin; Lv, Feng; Lin, Jun

    2017-01-01

    Being beneficial in restoring stability and stiffness of osteoporotic vertebraes, cement augmentation techniques including vertebroplasty (VP) and kyphoplasty (KP) have been demonstrated to be effective for the treatment of patients with osteoporotic vertebral compressive fractures (OVCFs). However, it is unclear the influence of cement augmentation on the dynamics of pathologic and adjacent vertebraes under vibration condition. In this study, we developed a three-dimensional (3D) finite-element (FE) model of the spinal T12-Pelvis segment by using CT scan data of lumbar spine of an adult woman with no physical abnormalities. By modulating model parameters we further simulated osteoporotic conditions of the T12-Pelvis FE model with or without polymethyl methacrylate (PMMA) augmentation. Dynamic characteristics of the osteoporotic T12-Pelvis model were detected at the first order of vertical resonant frequencies (FOVRFs) under vertical vibration, which included vertical axial displacements, anteroposterior (AP) displacements and rotational angles of each vertebrae and intervertebral disc (IVD). The results showed that axial and AP displacements of both vertebraes and IVDs decreased in some point after PMMA augmentation. Axial displacements of the L4-L5 motion segment decreased most significantly and the changing ratios ranged from 20% to 30%. AP displacements of L5, D 1-2 (the IVD between vertebraes L1 and L2) and D 3-4 reduced most obviously after 1, 2 or 3 levels PMMA augmentation. No significant difference of axial or AP displacements of each vertebrae and IVD was observed between one-level and multilevel PMMA augmentation. Thus, we demonstrated that PMMA augmentation could reduce vertical axial and AP deformations of the osteoporotic lumbar motion segments under vertical vibration, especially for the inferior adjacent motion segments. However, the influence of the number of vertebraes with PMMA augmentation on the dynamics of osteoporotic lumbar spine was

  5. Vibration reduction of beams under successive traveling loads by means of linear and nonlinear dynamic absorbers

    Science.gov (United States)

    Samani, Farhad S.; Pellicano, Francesco

    2012-05-01

    The goal of the present work is to assess the performances of dynamic vibration absorbers (DVA) in suppressing the vibrations of a simply supported beam subjected to an infinite sequence of regularly spaced concentrated moving loads. In particular, several types of DVA are considered: linear, cubic, higher odd-order monomials and piecewise linear stiffness; linear, cubic and linear-quadratic viscous damping. The purpose is to clarify if nonlinear DVAs show improvements with respect to the classical linear devices. The dynamic scenario is deeply investigated in a wide range of operating conditions, spanning the parameter space of the DVA (damping, stiffness). Nonlinear stiffness can lead to complex dynamics such as quasi-periodic, chaotic and sub-harmonic responses; moreover, acting on the stiffness nonlinearity no improvement is found with respect to the linear DVA. A nonlinear non-symmetric dissipation in the DVA leads to a great reduction of the beam response, the reduction is larger with respect to the linear DVA.

  6. Dynamic damping of vibrations of technical object with two degrees of freedom

    Science.gov (United States)

    Khomenko, A. P.; Eliseev, S. V.; Artyunin, A. I.

    2017-10-01

    Approach to the solution of problems of dynamic damping for the technical object with two degrees of freedom on the elastic supports is developed. Such tasks are typical for the dynamics of technological vibrating machines, machining machine tools and vehicles. The purpose of the study is to justify the possibility of obtaining regimes of simultaneous dynamic damping of oscillations in two coordinates. The achievement of the goal is based on the use of special devices for the transformation of motion, introduced parallel to the elastic element. The dynamic effect is provided by the possibility of changing the relationships between the reduced masses of devices for transforming motion. The method of structural mathematical modeling is used, in which the mechanical oscillatory system is compared, taking into account the principle of dynamic analogies, the dynamically equivalent structural diagram of the automatic control system. The concept of transfer functions of systems interpartial relations and generalized ideas about the partial frequencies and frequencies dynamic damping is applied. The concept of a frequency diagram that determines the mutual distribution of graphs of frequency characteristics in the interaction of the elements of the system is introduced.

  7. Low-temperature vibrational dynamics of fused silica and binary silicate glasses

    Science.gov (United States)

    Cai, Ling; Shi, Ying; Hrdina, Ken; Moore, Lisa; Wu, Jingshi; Daemen, Luke L.; Cheng, Yongqiang

    2018-02-01

    Inelastic neutron scattering was used to study the vibrational dynamics of fused silica and its mixed binary glasses that were doped with either TiO2 or K2O . The energy transfer was measured from zero to 180 meV where the so-called Boson peaks (BP) at low energy and molecular vibrations at high energy are included. Although most of the vibrational spectra at the high energy resemble those reported in earlier literature, a defect-mode-like peak is observed for the doped binary systems near 120 meV . At very low temperature, the BP intensity increases rapidly with temperature and then, at higher temperature, the peak intensity decreases. As a result, a maximum is observed in the temperature dependence of the BP intensity. This maximum was shown in all four samples, but the pure SiO2 sample shows the highest intensity peak and the lowest temperature for peak position. Broadband energy spectra reveal a shift of intensity from BP to the more localized modes at higher energy. Temperature evolution of BP and its relationship with heat conduction and thermal expansion are discussed.

  8. Mastoid vibration affects dynamic postural control during gait in healthy older adults

    Science.gov (United States)

    Chien, Jung Hung; Mukherjee, Mukul; Kent, Jenny; Stergiou, Nicholas

    2017-01-01

    Vestibular disorders are difficult to diagnose early due to the lack of a systematic assessment. Our previous work has developed a reliable experimental design and the result shows promising results that vestibular sensory input while walking could be affected through mastoid vibration (MV) and changes are in the direction of motion. In the present paper, we wanted to extend this work to older adults and investigate how manipulating sensory input through mastoid vibration (MV) could affect dynamic postural control during walking. Three levels of MV (none, unilateral, and bilateral) applied via vibrating elements placed on the mastoid processes were combined with the Locomotor Sensory Organization Test (LSOT) paradigm to challenge the visual and somatosensory systems. We hypothesized that the MV would affect sway variability during walking in older adults. Our results revealed that MV significantly not only increased the amount of sway variability but also decreased the temporal structure of sway variability only in anterior-posterior direction. Importantly, the bilateral MV stimulation generally produced larger effects than the unilateral. This is an important finding that confirmed our experimental design and the results produced could guide a more reliable screening of vestibular system deterioration.

  9. Integrable Problems of the Dynamics of Coupled Rigid Bodies

    Science.gov (United States)

    Bogoyavlenskiĭ, O. I.

    1993-06-01

    Several classical problems of dynamics are shown to be integrable for the special systems of coupled rigid bodies introduced in this paper and called Ck-central configurations. It is proved that the dynamics of an arbitrary Ck-central configuration in the Newtonian gravitational field with an arbitrary quadratic potential is integrable in the Liouville sense and in theta-functions of Riemann surfaces. A hidden symmetry of the inertial dynamics of these configurations is found, and reductions of the corresponding Lagrange equations to the Euler equations on the direct sums of Lie coalgebras SO(3) are obtained. Reductions and integrable cases of the equations for the rotation of a heavy Ck-central configuration about a fixed point are indicated. Separation of rotations of a space station type orbiting system, which is a Ck-central configuration of rigid bodies, is proved. This result leads to the possibility of independent stabilization of rotations of the rigid bodies in such orbiting configurations. Integrability of the inertial dynamics of CRn-central configurations of coupled gyrostats is proved.

  10. Diagnostics of a crack in a load coupling of a gas turbine using the machine model and the analysis of the shaft vibrations

    Science.gov (United States)

    Pennacchi, Paolo; Vania, Andrea

    2008-07-01

    The diagnostics of malfunctions that can cause catastrophic failures has to be made in early stage in the industrial environment. Often flexible couplings are employed in industrial rotating machines when gearboxes and heavy thermal gradients are present. The hot and cold alignment of these couplings can be very different. Severe misalignments can generate cracks in the stub shafts, which can propagate in operating condition. Owing to the flexural flexibility of the load coupling, the shaft vibrations may be not noticeably affected by some typical symptoms that usually point out the presence of a crack, like twice per revolution harmonics in the vibration spectrum. Anyhow, suitable diagnostic strategies can detect clear fault symptoms, while model-based methods can confirm the occurrence of the shaft bow induced by the progressive yielding of a load coupling due to a crack. This paper shows as a model-based diagnostic methodology would have allowed a crack in a load coupling of a gas turbine to be identified before a serious failure happened by means of the shaft vibration analysis under operating conditions and rated speed. Finally, the vibrations caused by the shaft bow due to the propagation of a crack in the stub shaft of the coupling have been simulated using suitable equivalent excitations, the magnitude and phase of which have been estimated by means of a model-based identification method.

  11. Coupling population dynamics with earth system models: the POPEM model.

    Science.gov (United States)

    Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J

    2017-09-16

    Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.

  12. Vibrational dynamics (IR, Raman, NRVS) and DFT study of new antitumor tetranuclearstannoxanecluster, Sn(IV)$-$oxo$-${di$-$o$-$vanillin} dimethyl dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Arjmand, F. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Sharma, S. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Usman, M. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Leu, B. M. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Hu, M. Y. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Toupet, L. [Univ. de Rennes, Rennes (France). Inst. de Physique de Rennes; Gosztola, David J. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Tabassum, S. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry

    2016-06-21

    The vibrational dynamics of a newly synthesized tetrastannoxane was characterized with a combination of experimental (Raman, IR and tin-based nuclear resonance vibrational spectroscopy) and computational (DFT/B3LYP) methods, with an emphasis on the vibrations of the tin sites. The cytotoxic activity revealed a significant regression selectively against the human pancreatic cell lines.

  13. The effect of classical and quantum dynamics on vibrational frequency shifts of H2 in clathrate hydrates

    International Nuclear Information System (INIS)

    Plattner, Nuria; Meuwly, Markus

    2014-01-01

    Vibrational frequency shifts of H 2 in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H 2 in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies, calculations of vibrational frequency shifts in different clathrate environments are required. In this study, a combination of classical molecular dynamics simulations, electronic structure calculations, and quantum dynamical simulation is used to calculate relative vibrational frequencies of H 2 in clathrate hydrates. This approach allows us to assess dynamical effects and simulate the change of vibrational frequencies with temperature and pressure. The frequency distributions of the H 2 vibrations in the different clathrate cage types agree favorably with experiment. Also, the simulations demonstrate that H 2 in the 5 12 cage is more sensitive to the details of the environment and to quantum dynamical effects, in particular when the cage is doubly occupied. We show that for the 5 12 cage quantum effects lead to frequency increases and double occupation is unlikely. This is different for the 5 12 6 4 cages for which higher occupation numbers than one H 2 per cage are likely

  14. The effect of classical and quantum dynamics on vibrational frequency shifts of H{sub 2} in clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Plattner, Nuria, E-mail: nuria.plattner@fu-berlin.de [Department of Mathematics and Computer Science, Free University Berlin, Arnimallee 6, 14195 Berlin (Germany); Meuwly, Markus, E-mail: m.meuwly@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland and Chemistry Department, Brown University, Providence, Rhode Island 02912 (United States)

    2014-01-14

    Vibrational frequency shifts of H{sub 2} in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H{sub 2} in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies, calculations of vibrational frequency shifts in different clathrate environments are required. In this study, a combination of classical molecular dynamics simulations, electronic structure calculations, and quantum dynamical simulation is used to calculate relative vibrational frequencies of H{sub 2} in clathrate hydrates. This approach allows us to assess dynamical effects and simulate the change of vibrational frequencies with temperature and pressure. The frequency distributions of the H{sub 2} vibrations in the different clathrate cage types agree favorably with experiment. Also, the simulations demonstrate that H{sub 2} in the 5{sup 12} cage is more sensitive to the details of the environment and to quantum dynamical effects, in particular when the cage is doubly occupied. We show that for the 5{sup 12} cage quantum effects lead to frequency increases and double occupation is unlikely. This is different for the 5{sup 12}6{sup 4} cages for which higher occupation numbers than one H{sub 2} per cage are likely.

  15. Structural vibration and acoustic radiation of coupled propeller-shafting and submarine hull system due to propeller forces

    Science.gov (United States)

    Qu, Yegao; Su, Jinpeng; Hua, Hongxing; Meng, Guang

    2017-08-01

    This paper investigates the structural and acoustic responses of a coupled propeller-shafting and submarine pressure hull system under different propeller force excitations. The entire system, which consists of a rigid propeller, a main shaft, two bearings and an orthogonally stiffened pressure hull, is submerged in a heavy fluid. The shaft is elastically connected to the pressure hull by a radial bearing and a thrust bearing. The theoretical model of the structural system is formulated based on a modified variational method, in which the propeller, the main shaft and the bearings are treated as a lumped mass, an elastic beam and spatially distributed spring-damper systems, respectively. The rings and stringers in the pressure hull are modeled as discrete structural elements. The acoustic field generated by the hull is calculated using a spectral Kirchhoff-Helmholtz integral formulation. A strongly coupled structure-acoustic interaction analysis is employed to achieve reasonable solutions for the coupled system. The displacement of the pressure hull and the sound pressure of the fluid are expanded in the form of a double mixed series using Fourier series and Chebyshev orthogonal polynomials, providing a flexible way for the present method to account for the individual contributions of circumferential wave modes to the vibration and acoustic responses of the pressure hull in an analytical manner. The contributions of different circumferential wave modes of the pressure hull to the structural and acoustic responses of the coupled system under axial, transversal and vertical propeller forces are investigated. Computed results are compared with those solutions obtained from the coupled finite element/boundary element method. Effects of the ring and the bearing stiffness on the acoustic responses of the coupled system are discussed.

  16. Dynamic Response Analysis of an Asymmetric Coupled Vehicle-Track System Generated by Voided Elastic Two-Block Sleeper

    Directory of Open Access Journals (Sweden)

    Zhenxing He

    2016-01-01

    Full Text Available Based on vehicle-track coupled dynamic theory, a three-dimensional asymmetric vehicle-track coupling vibration model is developed to investigate the effect of voided elastic two-block sleepers on vehicle and track system dynamic responses. For the vehicle system, one car body, two frames, and four wheel sets are assumed to be rigid, with 35 degrees of freedom (DOF. For the track system, the rails and the concrete two-block sleepers are the main vibration components. The rails are modelled as Timoshenko beams, and the concrete two-block sleepers are assumed to be rigid mass with vertical and lateral movement. The pads under the rails and the rubber boots under the sleepers provide greater vertical and lateral elasticity for the track. The Hertz nonlinear elastic contact theory is used to calculate the normal wheel/rail force. The wheel/rail tangent creep force is first calculated using Kalker’s linear creep theory and then modified by the Shen-Hedrick-Elkins theory. The results show that the asymmetric voided elastic two-block sleepers have greater effects on the dynamic responses for fasteners and sleepers than on the car body and the wheel/rail forces under measured geometric irregularity and random irregularity. Two or more voided sleepers will greatly affect the vehicle running safety.

  17. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    DEFF Research Database (Denmark)

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-01-01

    in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been...

  18. Experimental Investigations on the Dynamic Behaviour of O-Type Wire-Cable Vibration Isolators

    Directory of Open Access Journals (Sweden)

    Hong-Xia Wang

    2015-01-01

    Full Text Available A series of periodic loading experiments were carried out on the O-type wire-cable vibration isolators. The isolators were loaded under shear, roll, and tension-compression loadings. When subjected to shear and roll loads, the restoring force-deformation curves generated by the isolators formed symmetric hysteresis loops. However, when the isolators were loaded with tension-compression loads, the isolator produced asymmetric hysteresis loops. It is found through the experiment that the dynamic characteristics of the isolator are determined by the loading amplitude as well as the geometric parameters of the isolator while they are almost independent of loading frequency within the testing frequency range. Based on the experimental data, the dynamic response of the isolator was modeled by a modified normalized Bouc-Wen model. The parameters of this model were identified through an identification procedure that does not involve any nonlinear iterative algorithms. Comparison between the identification results and the experimental data suggests that the identification method is effective. With the model and the identified parameters, the frequency response of an O-type wire-cable vibration isolator-mass system was evaluated. Typical nonlinear response behaviors were found when the isolator was used in tension-compression mode while the response appears to be similar to that of a linear system when the isolator was used in shear and roll mode.

  19. Design of three-element dynamic vibration absorber for damped linear structures

    Science.gov (United States)

    Anh, N. D.; Nguyen, N. X.; Hoa, L. T.

    2013-09-01

    The standard type of dynamic vibration absorber (DVA) called the Voigt DVA is a classical model and has long been investigated. In the paper, we will consider an optimization problem of another model of DVA that is called three-element type DVA for damped primary structures. Unlike the standard absorber configuration, the three-element DVA contains two spring elements in which one is connected to a dashpot in series and the other is placed in parallel. There have been some studies on the design of the three-element DVA for undamped primary structures. Those studies have shown that the three-element DVA produces better performance than the Voigt DVA does. When damping is present at the primary system, to the best knowledge of the authors, there has been no study on the three-element dynamic vibration absorber. This work presents a simple approach to determine the approximate analytical solutions for the H∞ optimization of the three-element DVA attached to the damped primary structure. The main idea of the study is based on the criteria of the equivalent linearization method in order to replace approximately the original damped structure by an equivalent undamped one. Then the approximate analytical solution of the DVA's parameters is given by using known results for the undamped structure obtained. The comparisons have been done to verify the effectiveness of the obtained results.

  20. Proximity-interference wake-induced vibration at subcritical Re: Mechanism analysis using a linear dynamic model

    Science.gov (United States)

    Li, Xintao; Zhang, Weiwei; Gao, Chuanqiang

    2018-03-01

    Wake-induced vibration (WIV) contains rich and complex phenomena due to the flow interference between cylinders. The aim of the present study is to gain physical insight into the intrinsic dynamics of WIV via linear stability analysis (LSA) of the fluid-structure interaction (FSI) system. A reduced-order-model-based linear dynamic model, combined with the direct computational fluid dynamics/computational structural dynamics simulation method, is adopted to investigate WIV in two identical tandem cylinders at low Re. The spacing ratio L/D, with L as the center-to-center distance and D as the diameter of cylinders, is selected as 2.0 to consider the effect of proximity flow interference. Results show that extensive WIV along with the vortex shedding could occur at subcritical Re conditions due to the instability of one coupled mode (i.e., coupled mode I, CM-I) of the FSI system. The eigenfrequency of CM-I transfers smoothly from close to the reduced natural frequency of structure to the eigenfrequency of uncoupled wake mode as the reduced velocity U* increases. Thus, CM-I characterizes as the structure mode (SM) at low U*, while it characterizes as the wake mode (WM) at large U*. Mode conversion of CM-I is the primary cause of the "frequency transition" phenomenon observed in WIV responses. Furthermore, LSA indicates that there exists a critical mass ratio mcr*, below which no upper instability boundary of CM-I exists (Uup p e r *→∞ ). The unbounded instability of CM-I ultimately leads to the "infinite WIV" phenomenon. The neutral stability boundaries for WIV in the (Re, U*) plane are determined through LSA. It is shown that the lowest Re possible for WIV regarding the present configuration is R el o w e s t≈34 . LSA accurately captures the dynamics of WIV at subcritical Re and reveals that it is essentially a fluid-elastic instability problem. This work lays a good foundation for the investigation of WIV at supercritical high Re and gives enlightenment to the

  1. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    2016-03-01

    Full Text Available It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM, especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  2. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bo; Zhao, Hongwei, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com; Zhao, Dan; Zhang, Peng; Yang, Yihan; Han, Lei [School of Mechanical Science and Engineering, Jilin University, 5988 Renmin Street, Changchun, Jilin 130025 (China); Kui, Hailin, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com [School of Transportation, Jilin University, 5988 Renmin Street, Changchun, Jilin 130025 (China)

    2016-03-15

    It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM), especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD) model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM) potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  3. Dynamics of coupled bosonic systems with applications to preheating

    International Nuclear Information System (INIS)

    Cormier, Daniel; Heitmann, Katrin; Mazumdar, Anupam

    2002-01-01

    Coupled, multifield models of inflation can provide several attractive features unavailable in the case of a single inflaton field. These models have a rich dynamical structure resulting from the interaction of the fields and their associated fluctuations. We present a formalism to study the nonequilibrium dynamics of coupled scalar fields. This formalism solves the problem of renormalizing interacting models in a transparent way using dimensional regularization. The evolution is generated by a renormalized effective Lagrangian which incorporates the dynamics of the mean fields and their associated fluctuations at one-loop order. We apply our method to two problems of physical interest: (i) a simple two-field model which exemplifies applications to reheating in inflation, and (ii) a supersymmetric hybrid inflation model. This second case is interesting because inflation terminates via a smooth phase transition which gives rise to a spinodal instability in one of the fields. We study the evolution of the zero mode of the fields and the energy density transfer to the fluctuations from the mean fields. We conclude that back reaction effects can be significant over a wide parameter range. In particular for the supersymmetric hybrid model we find that particle production can be suppressed due to these effects

  4. General dynamical properties of cosmological models with nonminimal kinetic coupling

    Science.gov (United States)

    Matsumoto, Jiro; Sushkov, Sergey V.

    2018-01-01

    We consider cosmological dynamics in the theory of gravity with the scalar field possessing the nonminimal kinetic coupling to curvature given as η Gμνphi,μphi,ν, where η is an arbitrary coupling parameter, and the scalar potential V(phi) which assumed to be as general as possible. With an appropriate dimensionless parametrization we represent the field equations as an autonomous dynamical system which contains ultimately only one arbitrary function χ (x)= 8 π | η | V(x/√8 π) with x=√8 πphi. Then, assuming the rather general properties of χ(x), we analyze stationary points and their stability, as well as all possible asymptotical regimes of the dynamical system. It has been shown that for a broad class of χ(x) there exist attractors representing three accelerated regimes of the Universe evolution, including de Sitter expansion (or late-time inflation), the Little Rip scenario, and the Big Rip scenario. As the specific examples, we consider a power-law potential V(phi)=M4(phi/phi0)σ, Higgs-like potential V(phi)=λ/4(phi2‑phi02)2, and exponential potential V(phi)=M4 e‑phi/phi0.

  5. Social strain, couple dynamics and gender differences in gambling problems: evidence from Chinese married couples.

    Science.gov (United States)

    Cheung, Nicole W T

    2015-02-01

    Knowledge of the influence of couple dynamics on gender differences in gambling behavior remains meager. Building on general strain theory from the sociology of deviance and stress crossover theory from social psychology, we argue that the strain encountered by one partner in a social setting may affect his or her spouse. For instance, the wife of a man under more social strain may experience more strain in turn and thus be at a higher risk of developing disordered gambling than the wife of a man under less social strain. Using community survey data of 1620 Chinese married couples, we performed multilevel dyad analyses to address social strain and couple dynamics, in addition to their roles as predictors of gambling behavior in both spouses. This was a community survey of Hong Kong and therefore was not representative of China. Based on the DSM-IV screen, the rates of probable problem gambling and pathological gambling among male partners (12.8% vs. 2.5%) were twice those among female partners (5.2% vs. 0.3%). We also found that the social strain experienced by a male partner significantly predicted both his and his wife's likelihood of developing gambling problems. Although a female partner's exposure to social strain was a significant correlate of her gambling problem, it had no significant association with her husband's gambling behavior. These results suggest that the cross-spouse transference of social strain may be a gendered process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Isotopic labeling as a tool to establish intramolecular vibrational coupling: The reaction of 2-propanol on Mo(110)

    International Nuclear Information System (INIS)

    Uvdal, P.; Wiegand, B.C.; Serafin, J.G.; Friend, C.M.

    1992-01-01

    The reactions of 2-propanol on Mo(110) were investigated using temperature programmed reaction, high resolution electron energy loss, and x-ray photoelectron spectroscopies. 2-Propanol forms 2-propoxide upon adsorption at 120 K on Mo(110). The 2-propoxide intermediate deoxygenates via selective γ C--H bond scission to eliminate propene as well as C--O bond hydrogenolysis to form trace amounts of propane. The C--O bond of 2-propoxide is estimated to be nearly perpendicular to the surface. Selective isotopic labeling was used to establish the coupling between the C--O stretch and modes associated with the hydrocarbon framework. The degree of coupling was strongly affected by bonding to the surface, primarily due to weakening of the C--O bond when 2-propoxide is bound to Mo(110). Selective isotopic labeling was, therefore, essential in making vibrational assignments and in identifying key reaction steps. Only a small kinetic isotope effect was observed during reaction of (CD 3 )(CH 3 )CHOH, consistent with a substantial component of C--O bond breaking in the transition state for propene elimination. Coupling of the C--O stretch to motion of the methyl group is also suggested to be important in the transition state for propene elimination

  7. Electro-thermal vibration of a smart coupled nanobeam system with an internal flow based on nonlocal elasticity theory

    Energy Technology Data Exchange (ETDEWEB)

    Atabakhshian, V.; Shooshtari, A.; Karimi, M., E-mail: karimi_mh@yahoo.com

    2015-01-01

    In this study, nonlinear vibration and stability of a fluid-conveying nanotube (FCNT), elastically coupled to a smart piezoelectric polymeric beam (PPB) is investigated based on nonlocal elasticity theory, Euler–Bernoulli beam model and energy approach. In order to obtain an active instability control of FCNT, the PPB is longitudinally polarized as an actuator while in the absence of an imposed electric field it is also possible to be used as an alarm biosensor. Simulating the above smart coupled nanobeam system alike the double nanobeam systems (which are relatively developed by other authors) leads to obtain nonlinear differential equations of motion. The linear natural and damping frequencies are achieved by ignoring all the system nonlinearities which are then considered to obtain nonlinear frequencies using an iterative method. The effects of geometric nonlinearity, small scale parameter, coupled medium constants, Knudsen number, temperature change, aspect ratio and external applied voltage on critical flow velocity are studied in details. It is concluded that applying an electric voltage on PPB will increase the stability of FCNT. It is hoped that this research will provide a new approach to smart instability control of FCNTs which is no yet reported.

  8. Influence of slab length on dynamic characteristics of subway train-steel spring floating slab track-tunnel coupled system

    Directory of Open Access Journals (Sweden)

    Qing-yuan Xu

    Full Text Available A subway train-steel spring floating slab track-tunnel coupling dynamic model, considering short and middle-long wavelength random track irregularities, and longitudinal connection between adjacent slabs of steel spring floating slab track, was developed. And the influence of slab length on dynamic characteristics of the system under different track conditions and train speeds are theoretically studied. The calculated results show: (1 In general, the acceleration of each component of the coupled system decreases with the increase of slab length under the perfectly smooth track condition; (2 Slab length has different influence laws on acceleration of each component of subway train-steel spring floating slab track-tunnel coupled system under random irregularity of track condition. The lower the dominant frequency distribution of vibration acceleration is, the higher influence slab length has; (3 With the increase of slab length, the force of rail, fastener and steel spring also decreases significantly, which helps to lengthen the service life of these components; (4 With the increase of slab length, the longitudinal bending moment of slab increases sharply at first, then it begins to drop slightly. When slab length exceeds the distance between two bogies of a vehicle, the longitudinal bending moment of slab changes little; (5 Slab length has significant influence on the dynamic force and displacement of the coupled system when train speed is higher.

  9. Dynamic Analysis of the High Speed Train and Slab Track Nonlinear Coupling System with the Cross Iteration Algorithm

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lei

    2016-01-01

    Full Text Available A model for dynamic analysis of the vehicle-track nonlinear coupling system is established by the finite element method. The whole system is divided into two subsystems: the vehicle subsystem and the track subsystem. Coupling of the two subsystems is achieved by equilibrium conditions for wheel-to-rail nonlinear contact forces and geometrical compatibility conditions. To solve the nonlinear dynamics equations for the vehicle-track coupling system, a cross iteration algorithm and a relaxation technique are presented. Examples of vibration analysis of the vehicle and slab track coupling system induced by China’s high speed train CRH3 are given. In the computation, the influences of linear and nonlinear wheel-to-rail contact models and different train speeds are considered. It is found that the cross iteration algorithm and the relaxation technique have the following advantages: simple programming; fast convergence; shorter computation time; and greater accuracy. The analyzed dynamic responses for the vehicle and the track with the wheel-to-rail linear contact model are greater than those with the wheel-to-rail nonlinear contact model, where the increasing range of the displacement and the acceleration is about 10%, and the increasing range of the wheel-to-rail contact force is less than 5%.

  10. Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

    2006-03-01

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of

  11. A microscopic approach based on particle-vibration coupling: application to charge-exchange transitions and multiplets in odd nuclei

    Directory of Open Access Journals (Sweden)

    Colò Gianluca

    2016-01-01

    Full Text Available In this contribution, we shall describe a formalism that goes beyond the simple time-dependent mean field and is based on particle-vibration coupling (PVC. Such a formalism has been developed with the idea of being self-consistent. It makes use of Skyrme effective forces, and has been used for several applications. We will focus on charge-exchange transitions, namely we will show that our model describes well both the Gamow-Teller giant resonance width, and the low-lying transitions associated with β-decay. In this latter case, including PVC produces a significant improvement of the half-lives obtained at mean-field level, and leads to a good agreement with experimental data. We will end by discussing particle-phonon multiplets in odd nuclei.

  12. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    Science.gov (United States)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  13. Robustness and dynamics of networks of coupled modules

    Science.gov (United States)

    Bagrow, James; Ahn, Yong-Yeol; Lehmann, Sune

    2011-03-01

    Many systems, from power grids and the internet, to the brain and society, can be modeled using networks of coupled overlapping modules. The elements of these networks perform individual and collective tasks such as generating and consuming electrical load or transmitting data. We study the robustness of these systems using percolation theory: a random fraction of the elements fail which may cause the network to lose global connectivity. We show that the modules themselves can become isolated or uncoupled (non-overlapping) well before the network falls apart. This has important structural and dynamical consequences for these networks and may explain how missing information hides pervasive overlap between communities in real networks.

  14. A variational formulation for linear models in coupled dynamic thermoelasticity

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Moura, C.A. de.

    1981-07-01

    A variational formulation for linear models in coupled dynamic thermoelasticity which quite naturally motivates the design of a numerical scheme for the problem, is studied. When linked to regularization or penalization techniques, this algorithm may be applied to more general models, namely, the ones that consider non-linear constraints associated to variational inequalities. The basic postulates of Mechanics and Thermodynamics as well as some well-known mathematical techniques are described. A thorough description of the algorithm implementation with the finite-element method is also provided. Proofs for existence and uniqueness of solutions and for convergence of the approximations are presented, and some numerical results are exhibited. (Author) [pt

  15. Effect of vibrating electrode on temperature profiles, fluid flow, and pool shape in ESR system based on a comprehensive coupled model

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2015-07-01

    Full Text Available The vibrating electrode method was proposed in the electro-slag remelting (ESR process in this paper, and the effect of vibrating electrode on the solidification structure of ingot was studied. A transient three-dimensional (3D coupled mathematical model was established to simulate the electromagnetic phenomenon, fluid flow as well as pool shape in the ESR process with the vibrating electrode. The finite element volume method is developed to solve the electromagnetic field using ANSYS mechanical APDL software. Moreover, the electromagnetic force and Joule heating are interpolated as the source term of the momentum and energy equations. The multi-physical fields have been investigated and compared between the traditional electrode and the vibrating electrode in the ESR process. The results show that the drop process of metal droplets with the traditional electrode is scattered randomly. However, the drop process of metal droplets with the vibrating electrode is periodic. The highest temperature of slag layer with the vibrating electrode is higher than that with the traditional electrode, which can increase the melting rate due to the enhanced heat transfer in the vicinity of the electrode tip. The results also show that when the amplitude and frequency of the vibrating electrode increase, the cycle of drop process of metal droplets decreases significantly.

  16. Collective dynamics of simple liquids: A mode-coupling description

    Directory of Open Access Journals (Sweden)

    W.Schirmacher

    2008-03-01

    Full Text Available We use the mode-coupling theory (MCT, which has been highly successful in accounting for the anomalous relaxation behaviour near the liquid-to-glass transition, for describing the dynamics of simple (i.e. monatomic liquids away from the glass formation regime. We find that the dynamical structure factor predicted by MCT compares well to experimental findings and results of computer simulations. The memory function exhibits a two-step decay as found frequently in experimental and simulation data. The long-time relaxation regime, in which the relaxation rate strongly depends on the density and is identified as the α relaxation. At high density this process leads the glass instability. The short-time relaxation rate is fairly independent of density.

  17. Nonlinearly coupled dynamics of irregularities in the equatorial electrojet

    International Nuclear Information System (INIS)

    Atul, J.K.; Sarkar, S.; Singh, S.K.

    2016-01-01

    Kinetic wave description is used to study the nonlinear influence of background Farley Buneman (FB) modes on the Gradient Drift (GD) modes in the equatorial electrojet ionosphere. The dominant nonlinearity is mediated through the electron flux term in the governing fluid equation which further invokes a turbulent current into the system. Electron dynamics reveals the modification in electron collision frequency and inhomogeneity scale length. It is seen that the propagation and growth rate of GD modes get modified by the background FB modes. Also, a new quasimode gets excited through the quadratic dispersion relation. Physical significance of coupled dynamics between the participating modes is also discussed. - Highlights: • Nonlinear influence of Farley Buneman mode on the Gradient drift mode, is investigated. • Electron collision frequency and density gradient scale length get modified. • A new quasimode gets excited due to the competition between these modes. • It seems to be important for modelling of Equatorial Electrojet current system.

  18. Dynamic stabilization of a coupled ultracold atom-molecule system.

    Science.gov (United States)

    Li, Sheng-Chang; Ye, Chong

    2015-12-01

    We numerically demonstrate the dynamic stabilization of a strongly interacting many-body bosonic system which can be realized by coupled ultracold atom-molecule gases. The system is initialized to an unstable equilibrium state corresponding to a saddle point in the classical phase space, where subsequent free evolution gives rise to atom-molecule conversion. To control and stabilize the system, periodic modulation is applied that suddenly shifts the relative phase between the atomic and the molecular modes and limits their further interconversion. The stability diagram for the range of modulation amplitudes and periods that stabilize the dynamics is given. The validity of the phase diagram obtained from the time-average calculation is discussed by using the orbit tracking method, and the difference in contrast with the maximum absolute deviation analysis is shown as well. A brief quantum analysis shows that quantum fluctuations can put serious limitations on the applicability of the mean-field results.

  19. Spin-coupled charge dynamics in layered manganite crystals

    CERN Document Server

    Tokura, Y; Ishikawa, T

    1998-01-01

    Anisotropic charge dynamics has been investigated for single crystals of layered manganites, La sub 2 sub - sub 2 sub x Sr sub 1 sub + sub 2 sub x Mn sub 2 O sub 7 (0.3<=X<=0.5). Remarkable variations in the magnetic structure and in the charge-transport properties are observed by changing the doping level x . A crystal with x = 0.3 behaves like a 2-dimensional ferromagnetic metal in the temperature region between approx 90 K and approx 270 K and shows an interplane tunneling magnetoresistance at lower temperatures which is sensitive to the interplane magnetic coupling between the adjacent MnO sub 2 bilayers. Optical probing of these layered manganites has also clarified the highly anisotropic and incoherent charge dynamics.

  20. The free vibration of free-clamped fluid-coupled coaxial cylindrical shells

    International Nuclear Information System (INIS)

    Tani, Junji; Haiji, Hirohisa

    1986-01-01

    The linear free vibration of free-clamped coaxial cylinders partially filled with incompressible, inviscid liquid in the annular gap is investigated theoretically on the basis of the Donnell-type equations for cylinders and the velocity potential theory for liquid motion. The problem is solved by the modified Galerkin method. The initial axisymmetric deformation of the shell due to the static liquid pressure as well as the boundary condition on the free liquid surface are fully taken into consideration. It is found that the static liquid pressure and the liquid surface condition have a significant effect on the natural frequency, and that the interactive effect of the coaxial cylinders becomes small and the mode shape changes with an increase in the wave number and the annular gap. (author)

  1. Fully-Coupled Fluid/Structure Vibration Analysis Using MSC/NASTRAN

    Science.gov (United States)

    Fernholz, Christian M.; Robinson, Jay H.

    1996-01-01

    MSC/NASTRAN's performance in the solution of fully-coupled fluid/structure problems is evaluated. NASTRAN is used to perform normal modes (SOL 103) and forced-response analyses (SOL 108, 111) on cylindrical and cubic fluid/structure models. Bulk data file cards unique to the specification of a fluid element are discussed and analytic partially-coupled solutions are derived for each type of problem. These solutions are used to evaluate NASTRAN's solutions for accuracy. Appendices to this work include NASTRAN data presented in fringe plot form, FORTRAN source code listings written in support of this work, and NASTRAN data file usage requirements for each analysis.

  2. Numerical tests of a fixed vibrational basis/gaussian bath theory for small molecule dynamics in low-temperature media.

    Science.gov (United States)

    Chapman, Craig T; Cheng, Xiaolu; Cina, Jeffrey A

    2011-04-28

    A recently framed quantum/semiclassical treatment for the internal nuclear dynamics of a small molecule and the induced small-amplitude coherent motion of a low-temperature host medium (Chapman, C. T.; Cina, J. A. J. Chem. Phys.2007,127, 114502) is further analyzed and subjected to initial tests of its numerical implementation. In the illustrative context of a 1D system interacting with a 1D medium, we rederive the fixed vibrational basis/gaussian bath (FVB/GB) equations of motion for the parameters defining the gaussian bath wave packet accompanying each of the energy eigenkets of the quantum mechanical system. The conditions of validity for the gaussian-bath approximation are shown to coincide with those supporting approximate population conservation. We perform initial numerical tests of the FVB/GB scheme and illustrate the semiclassical description it provides of coherent motion in the medium by comparing its predictions with the exact results for a high-frequency system harmonic oscillator bilinearly coupled to a lower-frequency bath oscillator. Linear vibronic absorption spectra or, equivalently, ultrafast wave packet interferometry signals are shown to be readily and accurately calculable within the FVB/GB framework.

  3. Modeling and experimental investigation of thermal-mechanical-electric coupling dynamics in a standing wave ultrasonic motor

    Science.gov (United States)

    Li, Xiang; Yao, Zhiyuan; He, Yigang; Dai, Shichao

    2017-09-01

    Ultrasonic motor operation relies on high-frequency vibration of a piezoelectric vibrator and interface friction between the stator and rotor/slider, which can cause temperature rise of the motor under continuous operation, and can affect motor parameters and performance in turn. In this paper, an integral model is developed to study the thermal-mechanical-electric coupling dynamics in a typical standing wave ultrasonic motor. Stick-slip motion at the contact interface and the temperature dependence of material parameters of the stator are taken into account in this model. The elastic, piezoelectric and dielectric material coefficients of the piezoelectric ceramic, as a function of temperature, are determined experimentally using a resonance method. The critical parameters in the model are identified via measured results. The resulting model can be used to evaluate the variation in output characteristics of the motor caused by the thermal-mechanical-electric coupling effects. Furthermore, the dynamic temperature rise of the motor can be accurately predicted under different input parameters using the developed model, which will contribute to improving the reliable life of a motor for long-term running.

  4. Coupled dynamic analysis of subsea pipe laying operations

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Danilo Machado Lawinscky da; Jacob, Breno Pinheiro [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Civil. Lab. of Computational Methods and Offshore Systems

    2009-12-19

    It is recognized that deep water offshore oil exploitation activities requires the use of sophisticated computational tools to predict the behavior of floating offshore systems under the action of environmental loads. These computational tools should be able to perform coupled dynamic analyses, considering the non-linear interaction of the hydrodynamic behavior of the platform with the structural/hydrodynamic behavior of the mooring lines and risers, represented by Finite Element models. The use of such a sophisticated computational tool becomes mandatory not only for the design of production platforms, but also for the simulation of offshore installation operations. For instance, in the installation of submarine pipelines, the wall thickness design may not be governed by the pressure containment requirements of the pipeline during the operation, but by the installation process, specifically the combined action of bending, tension and hydrostatic pressure acting on the pipeline, that is also submitted to the motions of the lay barge. Therefore, the objective of this work is to present the results of numerical simulations of S-lay installation procedures using a computational tool that performs dynamic analysis coupling the structural behavior of the pipe with the hydrodynamic behavior of the vessel motions under environmental conditions. This tool rigorously considers the contact between the pipeline and its supports (lay barge, stinger, seabed). The results are compared to traditional pipe laying simulations based on RAO motions. (author)

  5. Probabilistic assessment of the dynamic interaction between multiple pedestrians and vertical vibrations of footbridges

    Science.gov (United States)

    Tubino, Federica

    2018-03-01

    The effect of human-structure interaction in the vertical direction for footbridges is studied based on a probabilistic approach. The bridge is modeled as a continuous dynamic system, while pedestrians are schematized as moving single-degree-of-freedom systems with random dynamic properties. The non-dimensional form of the equations of motion allows us to obtain results that can be applied in a very wide set of cases. An extensive Monte Carlo simulation campaign is performed, varying the main non-dimensional parameters identified, and the mean values and coefficients of variation of the damping ratio and of the non-dimensional natural frequency of the coupled system are reported. The results obtained can be interpreted from two different points of view. If the characterization of pedestrians' equivalent dynamic parameters is assumed as uncertain, as revealed from a current literature review, then the paper provides a range of possible variations of the coupled system damping ratio and natural frequency as a function of pedestrians' parameters. Assuming that a reliable characterization of pedestrians' dynamic parameters is available (which is not the case at present, but could be in the future), the results presented can be adopted to estimate the damping ratio and natural frequency of the coupled footbridge-pedestrian system for a very wide range of real structures.

  6. Rigid-flexible coupling dynamic modeling and investigation of a redundantly actuated parallel manipulator with multiple actuation modes

    Science.gov (United States)

    Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying

    2017-09-01

    A systematic dynamic modeling methodology is presented to develop the rigid-flexible coupling dynamic model (RFDM) of an emerging flexible parallel manipulator with multiple actuation modes. By virtue of assumed mode method, the general dynamic model of an arbitrary flexible body with any number of lumped parameters is derived in an explicit closed form, which possesses the modular characteristic. Then the completely dynamic model of system is formulated based on the flexible multi-body dynamics (FMD) theory and the augmented Lagrangian multipliers method. An approach of combining the Udwadia-Kalaba formulation with the hybrid TR-BDF2 numerical algorithm is proposed to address the nonlinear RFDM. Two simulation cases are performed to investigate the dynamic performance of the manipulator with different actuation modes. The results indicate that the redundant actuation modes can effectively attenuate vibration and guarantee higher dynamic performance compared to the traditional non-redundant actuation modes. Finally, a virtual prototype model is developed to demonstrate the validity of the presented RFDM. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and controller design of other planar flexible parallel manipulators, especially the emerging ones with multiple actuation modes.

  7. Parameters Optimization for a Kind of Dynamic Vibration Absorber with Negative Stiffness

    Directory of Open Access Journals (Sweden)

    Yongjun Shen

    2016-01-01

    Full Text Available A new type of dynamic vibration absorber (DVA with negative stiffness is studied in detail. At first, the analytical solution of the system is obtained based on the established differential motion equation. Three fixed points are found in the amplitude-frequency curves of the primary system. The design formulae for the optimum tuning ratio and optimum stiffness ratio of DVA are obtained by adjusting the three fixed points to the same height according to the fixed-point theory. Then, the optimum damping ratio is formulated by minimizing the maximum value of the amplitude-frequency curves according to H∞ optimization principle. According to the characteristics of negative stiffness element, the optimum negative stiffness ratio is also established and it could still keep the system stable. In the end, the comparison between the analytical and the numerical solutions verifies the correctness of the analytical solution. The comparisons with three other traditional DVAs under the harmonic and random excitations show that the presented DVA performs better in vibration absorption. This result could provide theoretical basis for optimum parameters design of similar DVAs.

  8. Dynamics and vibration suppression of space structures with control moment gyroscopes

    Science.gov (United States)

    Hu, Quan; Jia, Yinghong; Xu, Shijie

    2014-03-01

    This paper presents a new and effective approach for vibration suppression of large space structures. Collocated pairs of control moment gyroscope (CMG) and angular rate sensor are adopted as actuators/sensors. The equations of motion of a flexible structure with a set of arbitrarily distributed CMGs are developed. The detailed dynamics of the CMGs and their interactions between the flexibilities of the structure are incorporated in the formulation. Then, the equations of motion are linearized to describe the small-scale motion of the system. The optimal placement problem of the actuators/sensors on the flexible structures is solved from the perspective of system controllability and observability. The controller for the vibration suppression is synthesized using the angular rates of the locations where the CMGs are mounted and the gimbal angles of the CMGs. The stability of the controller is proved by the Lyapunov theorem. Numerical examples of a beam structure and a plate structure validate the efficacy of the proposed method.

  9. On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix

    Directory of Open Access Journals (Sweden)

    Omar Gaber

    2014-01-01

    Full Text Available The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM method, where the bearings flexibility is represented by massless linear spring elements with tuneable stiffness. A dedicated MATLAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions. The developed method is applied to an illustrative example of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value. The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.

  10. Dynamics of Transition Regime in Bi-stable Vibration Energy Harvesters

    KAUST Repository

    Ibrahim, Alwathiqbellah

    2017-04-20

    Vibration energy harvesting can be an effective method for scavenging wasted mechanical energy for use by wireless sensors that have limited battery life. Two major goals in designing energy harvesters are enhancing the power scavenged at low frequency and improving efficiency by increasing the frequency bandwidth. To achieve these goals, we derived a magneto-elastic beam operated at the transition between mono- and bi-stable regions. By improving the mathematical model of the interaction of magnetic force and beam dynamics, we obtained a precise prediction of natural frequencies as the distance of magnets varies. Using the shooting technique for the improved model, we present a fundamental understanding of interesting combined softening and hardening responses that happen at the transition between the two regimes. The transition regime is proposed as the optimal region for energy conversion in terms of frequency bandwidth and output voltage. Using this technique, low frequency vibration energy harvesting at around 17 Hz was possible. The theoretical results were in good agreement with the experimental results. The target application is to power wildlife bio-logging devices from bird flights that have consistent high power density around 16 Hz [1].

  11. A Framework for Occupancy Tracking in a Building via Structural Dynamics Sensing of Footstep Vibrations

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Poston

    2017-11-01

    Full Text Available Counting the number of occupants in building areas over time—occupancy tracking—provides valuable information for responding to emergencies, optimizing thermal conditions or managing personnel. This capability is distinct from tracking individual building occupants as they move within a building, has lower complexity than conventional tracking algorithms require, and avoids privacy concerns that tracking individuals may pose. The approach proposed here is a novel combination of data analytics applied to measurements from a building’s structural dynamics sensors (e.g., accelerometers or geophones. Specifically, measurements of footstep-generated structural waves provide evidence of occupancy in a building area. These footstep vibrations can be distinguished from other vibrations, and, once identified, the footsteps can be located. These locations, in turn, form the starting point of estimating occupancy in an area. In order to provide a meaningful occupancy count, however, it is first necessary to associate discrete footsteps with individuals. The proposed framework incorporates a tractable algorithm for this association task. The proposed algorithms operate online, updating occupancy count over time as new footsteps are detected. Experiments with measurements from a public building illustrate the operation of the proposed framework. This approach offers an advantage over others based on conventional technologies by avoiding the cost of a separate sensor system devoted to occupancy tracking.

  12. Coupling dynamics in speech gestures: amplitude and rate influences.

    Science.gov (United States)

    van Lieshout, Pascal H H M

    2017-08-01

    Speech is a complex oral motor function that involves multiple articulators that need to be coordinated in space and time at relatively high movement speeds. How this is accomplished remains an important and largely unresolved empirical question. From a coordination dynamics perspective, coordination involves the assembly of coordinative units that are characterized by inherently stable coupling patterns that act as attractor states for task-specific actions. In the motor control literature, one particular model formulated by Haken et al. (Biol Cybern 51(5):347-356, 1985) or HKB has received considerable attention in the way it can account for changes in the nature and stability of specific coordination patterns between limbs or between limbs and external stimuli. In this model (and related versions), movement amplitude is considered a critical factor in the formation of these patterns. Several studies have demonstrated its role for bimanual coordination and similar types of tasks, but for speech motor control such studies are lacking. The current study describes a systematic approach to evaluate the impact of movement amplitude and movement duration on coordination stability in the production of bilabial and tongue body gestures for specific vowel-consonant-vowel strings. The vowel combinations that were used induced a natural contrast in movement amplitude at three speaking rate conditions (slow, habitual, fast). Data were collected on ten young adults using electromagnetic articulography, recording movement data from lips and tongue with high temporal and spatial precision. The results showed that with small movement amplitudes there is a decrease in coordination stability, independent from movement duration. These findings were found to be robust across all individuals and are interpreted as further evidence that principles of coupling dynamics operate in the oral motor control system similar to other motor systems and can be explained in terms of coupling

  13. Structural Design Optimization On Thermally Induced Vibration

    International Nuclear Information System (INIS)

    Gu, Yuanxian; Chen, Biaosong; Zhang, Hongwu; Zhao, Guozhong

    2002-01-01

    The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in application software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal induced vibration coupled with both linear and nonlinear transient heat conduction is firstly proposed. Based on the finite element method, the structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat conduction. In the thermal analysis model, the nonlinear heat conduction considered is result from the radiation and temperature-dependent materials. The sensitivity analysis of transient linear and nonlinear heat conduction is performed with the precise time integration method. And then, the sensitivity analysis of structural transient dynamics is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration, and there are two adjoint vectors of structure and heat conduction respectively. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. The methods proposed have been implemented in the application software JIFEX of structural design optimization, and numerical examples are given to illustrate the methods and usage of structural design optimization on thermally induced vibration

  14. Theoretical study of molecular vibrations in electron momentum spectroscopy experiments on furan: An analytical versus a molecular dynamical approach

    Energy Technology Data Exchange (ETDEWEB)

    Morini, Filippo; Deleuze, Michael S., E-mail: michael.deleuze@uhasselt.be [Center of Molecular and Materials Modelling, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek (Belgium); Watanabe, Noboru; Takahashi, Masahiko [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

    2015-03-07

    The influence of thermally induced nuclear dynamics (molecular vibrations) in the initial electronic ground state on the valence orbital momentum profiles of furan has been theoretically investigated using two different approaches. The first of these approaches employs the principles of Born-Oppenheimer molecular dynamics, whereas the so-called harmonic analytical quantum mechanical approach resorts to an analytical decomposition of contributions arising from quantized harmonic vibrational eigenstates. In spite of their intrinsic differences, the two approaches enable consistent insights into the electron momentum distributions inferred from new measurements employing electron momentum spectroscopy and an electron impact energy of 1.2 keV. Both approaches point out in particular an appreciable influence of a few specific molecular vibrations of A{sub 1} symmetry on the 9a{sub 1} momentum profile, which can be unravelled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  15. Molecular dynamics simulations of Leidenfrost droplets on a vibrating nano ratchet

    Science.gov (United States)

    Kumar, Abhishek; Lavrik, Nickolay; Fuentes-Cabrera, Miguel

    Asymmetrically nanostructured surfaces can function as Brownian ratchets, that is, create a bias in mass or energy flows in response to thermal noise or in a more general case, isotropic excitations. Recently, experimental studies have shown that it is possible to induce directional movement of water droplets deposited on a vertically vibrating hydrophobic substrate made of inclined nanopillars. To investigate this issue, we have performed large-scale molecular dynamics (MD) simulations of a water droplet on a pillared graphitic substrate. We have found that our results not only reproduce the experimental behavior but also reveal new phenomena. In particular, it was found that at certain critical amplitude and frequency, the motion of the droplet transits from circular to linear-oscillatory along the substrate. The transition ultimately depends on the relative size of droplet and pillars, suggesting new ways of controlling the movement of water droplets on superhydrophobic substrates.

  16. Flexoelectric Effect on Vibration of Piezoelectric Microbeams Based on a Modified Couple Stress Theory

    Directory of Open Access Journals (Sweden)

    Xingjia Li

    2017-01-01

    Full Text Available A novel electric Gibbs function was proposed for the piezoelectric microbeams (PMBs by employing a modified couple stress theory. Based on the new Gibbs function and the Euler-Bernoulli beam theory, the governing equations which incorporate the effects of couple stress, flexoelectricity, and piezoelectricity were derived for the mechanics of PMBs. The analysis of the effective bending rigidity shows the effects of size and flexoelectricity can greaten the stiffness of PMBs so that the natural frequency increases significantly compared with the Euler-Bernoulli beam, and then the mechanical and electrical properties of PMBs are enhanced compared to the classical beam. This study can guide the design of microscale piezoelectric/flexoelectric structures which may find potential applications in the microelectromechanical systems (MEMS.

  17. Male Same Sex Couple Dynamics and Received Social Support for HIV Medication Adherence

    OpenAIRE

    Wrubel, Judith; Stumbo, Scott; Johnson, Mallory O.

    2010-01-01

    This qualitative study examines received social support by analyzing relationship dynamics concerning antiretroviral therapy (ART) adherence among HIV+ seroconcordant and serodiscordant male couples. Using narrative data from forty participants (20 couples interviewed separately), we describe patterns of relationship dynamics and support preferences. One group viewed adherence as a Personal Responsibility. A second group viewed adherence as a Couple Responsibility and integrated support for m...

  18. Large mass hierarchies from strongly-coupled dynamics

    Science.gov (United States)

    Athenodorou, Andreas; Bennett, Ed; Bergner, Georg; Elander, Daniel; Lin, C.-J. David; Lucini, Biagio; Piai, Maurizio

    2016-06-01

    Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio R between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in which (non-perturbative) large anomalous dimensions arise dynamically, we show indications that this mass ratio can be large, with R>5. Moreover,our results suggest that R might be related to universal properties of the IR fixed point. Our findings provide an interesting step towards understanding large mass ratios in the non-perturbative regime of quantum field theories with (near) IR conformal behaviour.

  19. Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment

    Science.gov (United States)

    Liang, Feng; Yang, Xiao-Dong; Zhang, Wei; Qian, Ying-Jing

    2018-03-01

    In this paper, a dynamical model of simply-supported spinning pipes conveying fluid with axial deployment is proposed and the transverse free vibration and stability for such a doubly gyroscopic system involving time-dependent parameters are investigated. The partial differential equations of motion are derived by the extended Hamilton principle and then truncated by the Galerkin technique. The time-variant frequencies, mode shapes and responses to initial conditions are comprehensively investigated to reveal the dynamical essence of the system. It is indicated that the qualitative stability evolution of the system mainly depends on the effect of fluid-structure interaction (FSI), while the spinning motion will enhance the pipe rigidity and eliminate the buckling instability. The dynamical evolution of a retracting pipe is almost inverse to that of the deploying one. The pipe possesses different mode configurations of spatial curves as the pipe length increases and some modal and response characteristics of the present system are found rather distinct from those of deploying cantilevered structures.

  20. Dynamic Finite Element Analysis of Bending-Torsion Coupled Beams Subjected to Combined Axial Load and End Moment

    Directory of Open Access Journals (Sweden)

    Mir Tahmaseb Kashani

    2015-01-01

    Full Text Available The dynamic analysis of prestressed, bending-torsion coupled beams is revisited. The axially loaded beam is assumed to be slender, isotropic, homogeneous, and linearly elastic, exhibiting coupled flexural-torsional displacement caused by the end moment. Based on the Euler-Bernoulli bending and St. Venant torsion beam theories, the vibration and stability of such beams are explored. Using the closed-form solutions of the uncoupled portions of the governing equations as the basis functions of approximation space, the dynamic, frequency-dependent, interpolation functions are developed, which are then used in conjunction with the weighted residual method to develop the Dynamic Finite Element (DFE of the system. Having implemented the DFE in a MATLAB-based code, the resulting nonlinear eigenvalue problem is then solved to determine the coupled natural frequencies of illustrative beam examples, subjected to various boundary and load conditions. The proposed method is validated against limited available experimental and analytical data, those obtained from an in-house conventional Finite Element Method (FEM code and FEM-based commercial software (ANSYS. In comparison with FEM, the DFE exhibits higher convergence rates and in the absence of end moment it produces exact results. Buckling analysis is also carried out to determine the critical end moment and compressive force for various load combinations.

  1. H-infinity optimization of a variant design of the dynamic vibration absorber—Revisited and new results

    Science.gov (United States)

    Cheung, Y. L.; Wong, W. O.

    2011-08-01

    The H∞ optimum parameters of a dynamic vibration absorber (DVA) with ground-support are derived to minimize the resonant vibration amplitude of a single degree-of-freedom (sdof) system under harmonic force excitation. The optimum parameters which are derived based on the classical fixed-points theory and reported in literature for this non-traditional DVA are shown to be not leading to the minimum resonant vibration amplitude of the controlled mass. A new procedure is proposed for the H∞ optimization of such a dynamic vibration absorber. A new set of optimum tuning frequency and damping of the absorber is derived, thereby resulting in lower maximum amplitude responses than those reported in the literature. The proposed optimized variant DVA is also compared to a ground-hooked damper of the same damping capacity of the damper in the DVA. It is proved that the proposed optimized DVA has better suppression of the resonant vibration amplitude of the controlled system than both the traditional DVA and also the ground-hooked damper if the proposed design procedure of the variant DVA is followed.

  2. Controllable parametric excitation effect on linear and nonlinear vibrational resonances in the dynamics of a buckled beam

    Science.gov (United States)

    Djomo Mbong, T. L. M.; Siewe Siewe, M.; Tchawoua, C.

    2018-01-01

    In this study, the effect of a controllable parametric excitation on both linear and nonlinear vibrational resonances on the dynamic of a buckled beam excited by a combination of uncontrollable low- and high-frequency periodic forces are investigated. First of all, the beam dynamic is assumed to be constrained by two periodic and independent ambient solicitations, such as wind and earthquake. An axial load of the beam represented by a periodic and parametric excitation is used to control the vibrational resonance phenomenon, induced by the presence of the two external excitations. Approximate analytical expressions for the linear response and the high-frequency force amplitude at which linear vibrational resonance occurs are obtained. An analytical expression of the amplitude of the nonlinear response at the superharmonic equal to the double of the low-frequency, is obtained. For all these expressions, we show the effect of the parametric excitation. We compare all the obtained results with the ones of the case where, the parametric force is absent. It is shown that, the presence of the parametric excitation permit the suppression of both linear and nonlinear vibrational resonances. Moreover, the vibration amplitudes of the buckled beam are significantly reduced, around certain threshold values for the amplitude and the frequency of the parametric excitation.

  3. Trimethylamine-N-oxide: its hydration structure, surface activity, and biological function, viewed by vibrational spectroscopy and molecular dynamics simulations.

    Science.gov (United States)

    Ohto, Tatsuhiko; Hunger, Johannes; Backus, Ellen H G; Mizukami, Wataru; Bonn, Mischa; Nagata, Yuki

    2017-03-08

    The osmolyte molecule trimethylamine-N-oxide (TMAO) stabilizes the structure of proteins. As functional proteins are generally found in aqueous solutions, an important aspect of this stabilization is the interaction of TMAO with water. Here, we review, using vibrational spectroscopy and molecular dynamics simulations, recent studies on the structure and dynamics of TMAO with its surrounding water molecules. This article ends with an outlook on the open questions on TMAO-protein and TMAO-urea interactions in aqueous environments.

  4. Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2002-01-01

    We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems both...... in vacuum or air, and in aqueous solution under electrochemical potential control. Multifarious patterns of rectified electron flow from the negatively to the positively biased electrode arise. The electronic interaction between the donor and acceptor fragments, mutually and with the electrodes, can be weak...

  5. Dynamic structure factor of vibrating fractals: proteins as a case study.

    Science.gov (United States)

    Reuveni, Shlomi; Klafter, Joseph; Granek, Rony

    2012-01-01

    We study the dynamic structure factor S(k,t) of proteins at large wave numbers k, kR(g)≫1, where R(g) is the gyration radius. At this regime measurements are sensitive to internal dynamics, and we focus on vibrational dynamics of folded proteins. Exploiting the analogy between proteins and fractals, we perform a general analytic calculation of the displacement two-point correlation functions, )(i)(t)-u(−>)(j)(0)](2)>. We confront the derived expressions with numerical evaluations that are based on protein data bank (PDB) structures and the Gaussian network model (GNM) for a few proteins and for the Sierpinski gasket as a controlled check. We use these calculations to evaluate S(k,t) with arrested rotational and translational degrees of freedom, and show that the decay of S(k,t) is dominated by the spatially averaged mean-square displacement of an amino acid. The latter has been previously shown to evolve subdiffusively in time, )(i)(t)-u(−>)(i)(0)](2)> ~t(ν), where ν is the anomalous diffusion exponent that depends on the spectral dimension d(s) and fractal dimension d(f). As a result, for wave numbers obeying k(2))(2)>≳1, S(k,t) effectively decays as a stretched exponential S(k,t)≃S(k)e(-(Γ(k)t)(β)) with β≃ν, where the relaxation rate is Γ(k)~(k(B)T/mω(o)(2))(1/β)k(2/β), T is the temperature, and mω(o)(2) the GNM effective spring constant describing the interaction between neighboring amino acids. The static structure factor is dominated by the fractal character of the native fold, S(k)~k(-d(f)), with negligible to marginal influence of vibrations. The analytical expressions are first confronted with numerically based calculations on the Sierpinski gasket, and very good agreement is found between simulations and theory. We then perform PDB-GNM-based numerical calculations for a few proteins, and an effective stretched exponential decay of the dynamic structure factor is found, albeit their relatively small size. However, when rotational and

  6. Dynamics of neuro-effector coupling at 'cardiac sympathetic' synapses.

    Science.gov (United States)

    Prando, Valentina; Da Broi, Francesca; Franzoso, Mauro; Plazzo, Anna Pia; Pianca, Nicola; Francolini, Maura; Basso, Cristina; Kay, Matthew W; Zaglia, Tania; Mongillo, Marco

    2018-03-10

    Cardiac sympathetic neurons (SNs) finely tune the rate and strength of heart contractions to match the blood demand, both at rest and during acute stresses, through the release of norepinephrine (NE). Junctional sites at the interface between the two cell types have been observed, but whether direct neuro-cardiac coupling has a role in heart physiology has not thus far been clearly demonstrated. We investigated the dynamics of SN/cardiomyocyte intercellular signalling, both by FRET-based imaging of cAMP in co-cultures, as a readout of cardiac β-AR activation, and in vivo, using optogenetics in transgenic mice with SN-specific expression of Channelrhodopsin-2. We demonstrate that SNs and cardiomyocytes interact at specific sites both in the human and rodent heart, and in co-cultures. Accordingly, neuronal activation elicited intracellular cAMP increases only in directly contacted myocytes and cell-cell coupling utilized a junctional extracellular signalling domain with elevated NE concentration. In the living mouse, optogenetic activation of cardiac SNs innervating the sino-atrial node resulted in an instantaneous chronotropic effect, which shortened the heartbeat interval with single beat precision. Remarkably, inhibition of the optogenetically elicited chronotropic responses required a high dose of propranolol (20-50 mg/Kg), suggesting that sympathetic neurotransmission in the heart occurs at locally elevated NE concentration. Our in vitro and in vivo data suggest that the control of cardiac function, by SNs, occurs via direct intercellular coupling due to the establishment of a specific junctional-site. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Assessing Coupling Dynamics from an Ensemble of Time Series

    Directory of Open Access Journals (Sweden)

    Germán Gómez-Herrero

    2015-04-01

    Full Text Available Finding interdependency relations between time series provides valuable knowledge about the processes that generated the signals. Information theory sets a natural framework for important classes of statistical dependencies. However, a reliable estimation from information-theoretic functionals is hampered when the dependency to be assessed is brief or evolves in time. Here, we show that these limitations can be partly alleviated when we have access to an ensemble of independent repetitions of the time series. In particular, we gear a data-efficient estimator of probability densities to make use of the full structure of trial-based measures. By doing so, we can obtain time-resolved estimates for a family of entropy combinations (including mutual information, transfer entropy and their conditional counterparts, which are more accurate than the simple average of individual estimates over trials. We show with simulated and real data generated by coupled electronic circuits that the proposed approach allows one to recover the time-resolved dynamics of the coupling between different subsystems.

  8. Static and Dynamic Amplification Using Strong Mechanical Coupling

    KAUST Repository

    Ilyas, Saad

    2016-07-28

    Amplifying the signal-to-noise ratio of resonant sensors is vital toward the effort to miniaturize devices into the sub-micro and nano regimes. In this paper, we demonstrate theoretically and experimentally, amplification through mechanically coupled microbeams. The device is composed of two identical clamped-clamped beams, made of polyimide, connected at their middle through a third beam, which acts as a mechanical coupler. Each of the clamped-clamped microbeams and the coupler are designed to be actuated separately, hence providing various possibilities of actuation and sensing. The coupled resonator is driven into resonance near its first resonance mode and its dynamic behavior is explored via frequency sweeps. The results show significant amplification in the resonator amplitude when the signal is measured at the midpoint of the coupler compared with the response of the individual uncoupled beams. The static pull-in characteristics of the resonator are also studied. It is shown that the compliant mechanical coupler can serve as a low-power radio frequency switch actuated at low voltage loads. [2016-0100

  9. Dynamics and Control of Lateral Tower Vibrations in Offshore Wind Turbines by Means of Active Generator Torque

    Directory of Open Access Journals (Sweden)

    Zili Zhang

    2014-11-01

    Full Text Available Lateral tower vibrations of offshore wind turbines are normally lightly damped, and large amplitude vibrations induced by wind and wave loads in this direction may significantly shorten the fatigue life of the tower. This paper proposes the modeling and control of lateral tower vibrations in offshore wind turbines using active generator torque. To implement the active control algorithm, both the mechanical and power electronic aspects have been taken into consideration. A 13-degrees-of-freedom aeroelastic wind turbine model with generator and pitch controllers is derived using the Euler–Lagrangian approach. The model displays important features of wind turbines, such as mixed moving frame and fixed frame-defined degrees-of-freedom, couplings of the tower-blade-drivetrain vibrations, as well as aerodynamic damping present in different modes of motions. The load transfer mechanisms from the drivetrain and the generator to the nacelle are derived, and the interaction between the generator torque and the lateral tower vibration are presented in a generalized manner. A three-dimensional rotational sampled turbulence field is generated and applied to the rotor, and the tower is excited by a first order wave load in the lateral direction. Next, a simple active control algorithm is proposed based on active generator torques with feedback from the measured lateral tower vibrations. A full-scale power converter configuration with a cascaded loop control structure is also introduced to produce the feedback control torque in real time. Numerical simulations have been carried out using data calibrated to the referential 5-MW NREL (National Renewable Energy Laboratory offshore wind turbine. Cases of drivetrains with a gearbox and direct drive to the generator are considered using the same time series for the wave and turbulence loadings. Results show that by using active generator torque control, lateral tower vibrations can be significantly mitigated for

  10. Physical model study of neutron noise induced by vibration of reactor internals

    International Nuclear Information System (INIS)

    Liu Jinhui; Gu Fangyu

    1999-01-01

    The author presents a physical model of neutron noise induced by reactor internals vibration in frequency domain. Based on system control theory, the reactor dynamic equations are coupled with random vibration equation, and non-linear terms are also taken into accounted while treating the random vibration. Experiments carried out on a zero-power reactor show that the model can be used to describe dynamic character of neutron noise induced by internals' vibration. The model establishes a method to help to determine internals'vibration features, and to diagnosis anomalies through neutron noise

  11. Coupled magneto-electro-mechanical lumped parameter model for a novel vibration-based magneto-electro-elastic energy harvesting systems

    Science.gov (United States)

    Shirbani, Meisam Moory; Shishesaz, Mohammad; Hajnayeb, Ali; Sedighi, Hamid Mohammad

    2017-06-01

    The objective of this paper is to present a coupled magneto-electro-mechanical (MEM) lumped parameter model for the response of the proposed magneto-electro-elastic (MEE) energy harvesting systems under base excitation. The proposed model can be used to create self-powering systems, which are not limited to a finite battery energy. As a novel approach, the MEE composites are used instead of the conventional piezoelectric materials in order to enhance the harvested electrical power. The considered structure consists of a MEE layer deposited on a layer of non-MEE material, in the framework of unimorph cantilever bars (longitudinal displacement) and beams (transverse displacement). To use the generated electrical potential, two electrodes are connected to the top and bottom surfaces of the MEE layer. Additionally, a stationary external coil is wrapped around the vibrating structure to induce a voltage in the coil by the magnetic field generated in the MEE layer. In order to simplify the design procedure of the proposed energy harvester and obtain closed form solutions, a lumped parameter model is prepared. As a first step in modeling process, the governing constitutive equations, Gauss's and Faraday's laws, are used to derive the coupled MEM differential equations. The derived equations are then solved analytically to obtain the dynamic behavior and the harvested voltages and powers of the proposed energy harvesting systems. Finally, the influences of the parameters that affect the performance of the MEE energy harvesters such as excitation frequency, external resistive loads and number of coil turns are discussed in detail. The results clearly show the benefit of the coil circuit implementation, whereby significant increases in the total useful harvested power as much as 38% and 36% are obtained for the beam and bar systems, respectively.

  12. The rate parameters for coupled vibration-dissociation in a generalized SSH approximation. [Schwarz, Slawsky, and Herzfeld

    Science.gov (United States)

    Sharma, Surendra P.; Huo, Winifred M.; Park, Chul

    1988-01-01

    A theoretical study of vibrational excitations and dissociations of nitrogen undergoing a nonequilibrium relaxation process upon heating and cooling is reported. The rate coefficients for collisional induced vibrational transitions and transitions from a bound vibrational state into a dissociative state have been calculated using an extension of the theory originally proposed by Schwarz (SSH) et al. (1952). High-lying vibrational states and dissociative states were explicitly included but rotational energy transfer was neglected. The transition probabilities calculated from the SSH theory were fed into the master equation, which was integrated numerically to determine the population distribution of the vibrational states as well as bulk thermodynamic properties. The results show that: (1) the transition rates have a minimum near the middle of the bound vibrational levels, causing a bottleneck in the vibrational relaxation and dissociation rates; (2) high vibrational states are always in equilibrium with the dissociative state; (3) for the heating case, only the low vibrational states relax according to the Landau-Teller theory; (4) for the cooling case, vibrational relaxation cannot be described by a rate equation; (5) Park's (1985, 1988) two-temperature model is approximately valid; and (6) the average vibrational energy removed in dissociation is about 30 percent of the dissociation energy.

  13. Effects of Precast Cladding Systems on Dynamic Characteristics of Steel Frame Buildings by Ambient and Free Vibration Tests

    Directory of Open Access Journals (Sweden)

    Jun Ma

    2017-01-01

    Full Text Available Full-scale tests on a one-story steel frame structure with a typical precast cladding system using ambient and free vibration methods are described in detail. The cladding system is primarily composed of ALC (Autoclaved Lightweight Concrete external wall cladding panels, gypsum plasterboard interior linings, and window glazing systems. Ten test cases including the bare steel frame and the steel frame with addition of different parts of the precast cladding system are prepared for detailed investigations. The amplitude-dependent dynamic characteristics of the test cases including natural frequencies and damping ratios determined from the tests are presented. The effects of the ALC external wall cladding panels, the gypsum plasterboard interior linings, and the window glazing systems on the stiffness and structural damping of the steel frame are discussed in detail. The effect of the precast cladding systems on the amplitude dependency of the dynamic characteristics and the tendencies of the dynamic parameters with respect to the structural response amplitude are investigated over a wide range. Furthermore, results estimated from the ambient vibration method are compared with those from the free vibration tests to evaluate the feasibility of the ambient vibration method.

  14. Vibrational dynamics in dendridic oligoarylamines by Raman spectroscopy and incoherent inelastic neutron scattering.

    Science.gov (United States)

    Kulszewicz-Bajer, Irena; Louarn, Guy; Djurado, David; Skorka, Lukasz; Szymanski, Marek; Mevellec, Jean Yves; Rols, Stephane; Pron, Adam

    2014-05-15

    Vibrational dynamics in triarylamine dendrimers was studied in a complementary way by Raman and infrared (IR) spectroscopies and incoherent inelastic neutron scattering (IINS). Three molecules were investigated, namely, unsubstituted triarylamine dendrimer of the first generation and two dendrimers of the first and second generation, substituted in the crown with butyl groups. To facilitate the assignment of the observed IR and Raman modes as well as the IINS peaks, vibrational models, based on the general valence force field method (GVFF), were calculated for all three compounds studied. A perfect consistency between the calculated and experimental results was found. Moreover, an important complementarity of the vibrational spectroscopies and IINS was established for the investigated dendrimers. The IINS peaks originating mainly from the C-H motions were not restricted by particular selection rules and only dependent on the IINS cross section. To the contrary, Raman and IR bands were imposed by the selection rules and the local geometry of the dendrimers yielding mainly C-C and C-N deformation modes with those of C-H nature of much lower intensity. Raman spectroscopy was also applied to the studies of the oxidation of dendrimers to their cationic forms. A strong Raman resonance effect was observed, since the spectra of the studied compounds, registered at different levels of their oxidation, strongly depended on the position of the excitation line with respect to their electronic spectrum. In particular, the blue (458 nm) excitation line turned out to be insensitive toward the cationic forms yielding very limited spectral information. To the contrary, the use of the red (647 nm) and infrared (1064 nm) excitation lines allowed for an unambiguous monitoring of the spectral changes in dendrimers oxidized to nominally monocationic and tricationic states. The analysis of oxidation-induced spectral changes in the tricationic state indicated that the charge storage

  15. Identification of Dynamic Characteristics of Bridge Crossing Sungai Simpang Kiri Using Free Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Mat Yusoff Siti Mas Ayu

    2016-01-01

    Full Text Available This paper presents a free vibration analysis (FVA of a reinforced concrete bridge crossing Sungai Simpang Kiri, located at Batu Pahat. The bridge consists of three simple spans with a total length of 70meter (20 m + 30 m + 20 m. The concrete deck of the bridge is supported by concrete tensioned pre-stressed T-beam. The girders are sitting on two abutments at both ends and two piers as internal supports. The base of the piers is considered as fixed base and the abutments were free to move. The structural dynamic characteristics of the bridge in terms of fundamental frequency and mode shapes were obtained analytically using SAP2000 three-dimensional finite element modeling software. It is very important to evaluate the dynamic characteristics of reinforced concrete bridges that can lead to the detection of stiffness reduction or damage of the structure. From the analysis, the fundamental frequency of the bridge was 1.94 Hz with fundamental mode shape is critical in transverse bending mode.

  16. Influence of metal ions intercalation on the vibrational dynamics of water confined between MXene layers

    Science.gov (United States)

    Osti, Naresh C.; Naguib, Michael; Ganeshan, Karthik; Shin, Yun K.; Ostadhossein, Alireza; van Duin, Adri C. T.; Cheng, Yongqiang; Daemen, Luke L.; Gogotsi, Yury; Mamontov, Eugene; Kolesnikov, Alexander I.

    2017-11-01

    Two-dimensional (2D) carbides and nitrides of early transition metals (MXenes) combine high conductivity with hydrophilic surfaces, which make them promising for energy storage, electrocatalysis, and water desalination. The effects of intercalated metal ions on the vibrational states of water confined in Ti3C2Tx MXenes have been explored using inelastic neutron scattering (INS) and molecular-dynamics simulations to better understand the mechanisms that control MXenes' behavior in aqueous electrolytes, water purification, and other important applications. We observe an INS signal from water in all samples, pristine and with lithium, sodium, or potassium ions intercalated between the 2D Ti3C2Tx layers. However, only a small amount of water is found to reside in Ti3C2Tx intercalated with metal ions. Water in pristine Ti3C2Tx is more disordered, with bulklike characteristics, in contrast to intercalated Ti3C2Tx , where water is more ordered, irrespective of the metal ions used for intercalation. The ordering of the confined water increases with the ion size. This finding is further confirmed from molecular-dynamics simulation, which showed an increase in interference of water molecules with increasing ion size resulting in a concomitant decrease in water mobility, therefore providing guidance to tailor MXene properties for energy and environmental applications.

  17. Coupled rotational dynamics of Jupiter's thermosphere and magnetosphere

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2009-01-01

    Full Text Available We describe an axisymmetric model of the coupled rotational dynamics of the thermosphere and magnetosphere of Jupiter that incorporates self-consistent physical descriptions of angular momentum transfer in both systems. The thermospheric component of the model is a numerical general circulation model. The middle magnetosphere is described by a simple physical model of angular momentum transfer that incorporates self-consistently the effects of variations in the ionospheric conductivity. The outer magnetosphere is described by a model that assumes the existence of a Dungey cycle type interaction with the solar wind, producing at the planet a largely stagnant plasma flow poleward of the main auroral oval. We neglect any decoupling between the plasma flows in the magnetosphere and ionosphere due to the formation of parallel electric fields in the magnetosphere. The model shows that the principle mechanism by which angular momentum is supplied to the polar thermosphere is meridional advection and that mean-field Joule heating and ion drag at high latitudes are not responsible for the high thermospheric temperatures at low latitudes on Jupiter. The rotational dynamics of the magnetosphere at radial distances beyond ~30 RJ in the equatorial plane are qualitatively unaffected by including the detailed dynamics of the thermosphere, but within this radial distance the rotation of the magnetosphere is very sensitive to the rotation velocity of the thermosphere and the value of the Pedersen conductivity. In particular, the thermosphere connected to the inner magnetosphere is found to super-corotate, such that true Pedersen conductivities smaller than previously predicted are required to enforce the observed rotation of the magnetosphere within ~30 RJ. We find that increasing the Joule heating at high latitudes by adding a component due to rapidly fluctuating electric fields is unable to explain the high equatorial temperatures. Adding a component of Joule

  18. Effect of Magnetohydrodynamic Couple Stresses on Dynamic Characteristics of Exponential Slider Bearing

    Directory of Open Access Journals (Sweden)

    N.B. Naduvinamani

    2017-05-01

    Full Text Available The effect of couple stresses on static and dynamic characteristics of exponential slider bearing in the presence of magnetic field considering squeeze action is theoretically analyzed in this paper. The modified magnetohydrodynamic couple stress Reynolds type equation is derived on the basis of Stokes couple stress model and closed form expressions are obtained for static and dynamic character coefficients. Comparing with bearing lubricated with non-conducting Newtonian lubricants, the magnetohydrodynamic couple stress lubrication provides the higher steady load carrying capacity, dynamic stiffness and damping coefficient. The exponential bearing shows higher efficiency for small film thickness at higher value of couple stress parameter and Hartmann number.

  19. Stability and vibration characteristics of a rotor-gas foil bearings system with high-static-low-dynamic-stiffness supports

    Science.gov (United States)

    Gu, Yongpeng; Ma, Yanhui; Ren, Gexue

    2017-06-01

    Supporting gas bearings with proper flexible supports can improve the stability performance of a rotor-bearings system. Many researchers had successfully applied O-rings to stabilize the high-speed rotor mounted on the rigid surface gas bearings. However, no systematic investigation on dynamic characteristics of gas foil bearing with flexible supports is available so far. Furthermore, how the support properties affect the unbalance and shock vibration characteristics has not been fully investigated yet. There may well be this case that a trade-off between stability, unbalance and shock vibration reduction performances exists. So this research aims to synthetically study the effects of support stiffness and damping on dynamic characteristics of the rotor-gas foil bearing system, i.e., stability, unbalance and shock vibration characteristics. In addition, high-static-low-dynamic stiffness (HSLDS) type springs are used as flexible supports to improve the dynamic performances of the system. Parameter studies of support stiffness and damping on dynamic performances provide guidance for the design of HSLDS. Simulation results demonstrated the effectiveness of the application of well-designed HSLDS.

  20. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  1. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy

    Science.gov (United States)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2015-05-01

    Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.

  2. Role of vibrationally excited HBr in a HBr/He inductively coupled plasma used for etching of silicon

    Science.gov (United States)

    Tinck, Stefan; Bogaerts, Annemie

    2016-06-01

    In this work, the role of vibrationally excited HBr (HBr(vib)) is computationally investigated for a HBr/He inductively coupled plasma applied for Si etching. It is found that at least 50% of all dissociations of HBr occur through HBr(vib). This additional dissociation pathway through HBr(vib) makes the plasma significantly more atomic. It also results in a slightly higher electron temperature (i.e. about 0.2 eV higher compared to simulation results where HBr(vib) is not included), as well as a higher gas temperature (i.e. about 50 K higher than without including HBr(vib)), due to the enhanced Franck-Condon heating through HBr(vib) dissociation, at the conditions investigated. Most importantly, the calculated etch rate with HBr(vib) included in the model is a factor 3 higher than in the case without HBr(vib), due to the higher fluxes of etching species (i.e. H and Br), while the chemical composition of the wafer surface shows no significant difference. Our calculations clearly show the importance of including HBr(vib) for accurate modeling of HBr-containing plasmas.

  3. Particle-vibration coupling and exchange-current effects on the magnetic electron-scattering form factor

    Energy Technology Data Exchange (ETDEWEB)

    Krewald, S.; Lallena, A.M.; Dehesa, J.S.

    1986-02-03

    Inelastic electron-scattering form factors of magnetic states in closed-shell nuclei are calculated taking into account the combined effect of the mesonic degrees of freedom and the two-particle-two-hole components of the nuclear wave functions which come from the particle-core vibration coupling. The one-body nucleon- and two-body meson-exchange current contribution to the form factor are evaluated with the same realistic mean field. Application to various high-spin magnetic states of oxygen and lead is made. The comparison with experiment shows an excellent agreement for the states 14/sup -/(6.74 MeV) and 12/sup -/sub(t)(7.06 MeV) in lead, while such is not the case for the second 12/sup -//sub 2/(6.43 MeV) state in lead and the 4/sup -/(18.98 MeV) state in oxygen essentially due to mixing configuration effects and the non-consideration of 3p3h excitations, respectively. (orig.).

  4. Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM

    Science.gov (United States)

    Ghadiri, Majid; Shafiei, Navvab; Alireza Mousavi, S.

    2016-09-01

    Due to having difficulty in solving governing nonlinear differential equations of a non-uniform microbeam, a few numbers of authors have studied such fields. In the present study, for the first time, the size-dependent vibration behavior of a rotating functionally graded (FG) tapered microbeam based on the modified couple stress theory is investigated using differential quadrature element method (DQEM). It is assumed that physical and mechanical properties of the FG microbeam are varying along the thickness that will be defined as a power law equation. The governing equations are determined using Hamilton's principle, and DQEM is presented to obtain the results for cantilever and propped cantilever boundary conditions. The accuracy and validity of the results are shown in several numerical examples. In order to display the influence of size on the first two natural frequencies and consequently changing of some important microbeam parameters such as material length scale, rate of cross section, angular velocity and gradient index of the FG material, several diagrams and tables are represented. The results of this article can be used in designing and optimizing elastic and rotary-type micro-electro-mechanical systems like micro-motors and micro-robots including rotating parts.

  5. Tracking molecular structure deformation of nitrobenzene and its torsion-vibration coupling by intense pumping CARS

    Science.gov (United States)

    Wang, Chang; Wu, Hong-Lin; Song, Yun-Fei; He, Xing; Yang, Yan-Qiang; Tan, Duo-Wang

    2016-11-01

    The structural deformation induced by intense laser field of liquid nitrobenzene (NB) molecule, a typical molecule with restricting internal rotation, is tracked by time- and frequency-resolved coherent anti-Stokes. Raman spectroscopy (CARS) technique with an intense pump laser. The CARS spectra of liquid NB show that the NO2 torsional mode couples with the NO2 symmetric stretching mode, and the NB molecule undergoes ultrafast structural deformation with a relaxation time of 265 fs. The frequency of NO2 torsional mode in liquid NB (42 cm-1) at room temperature is found from the sum and difference combination bands involving the NO2 symmetric stretching mode and torsional mode in time- and frequency-resolved CARS spectra. Project supported by the National Natural Science Foundation of China (Grant Nos. 21173063 and 21203047), the Foundation of Heilongjiang Bayi Agricultural University, China (Grant No. XZR2014-16), NSAF (Grant No. U1330106), and the Special Research Project of National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics (Grant No. 2012-S-07).

  6. Vibrationally quantum-state-specific dynamics of the reactions of CN radicals with organic molecules in solution

    Science.gov (United States)

    Rose, Rebecca A.; Greaves, Stuart J.; Oliver, Thomas A. A.; Clark, Ian P.; Greetham, Gregory M.; Parker, Anthony W.; Towrie, Michael; Orr-Ewing, Andrew J.

    2011-06-01

    The dynamics of reactions of CN radicals with cyclohexane, d12-cyclohexane, and tetramethylsilane have been studied in solutions of chloroform, dichloromethane, and the deuterated variants of these solvents using ultraviolet photolysis of ICN to initiate a reaction. The H(D)-atom abstraction reactions produce HCN (DCN) that is probed in absorption with sub-picosecond time resolution using ˜500 cm-1 bandwidth infrared (IR) pulses in the spectral regions corresponding to C-H (or C-D) and C≡N stretching mode fundamental and hot bands. Equivalent IR spectra were obtained for the reactions of CN radicals with the pure solvents. In all cases, the reaction products are formed at early times with a strong propensity for vibrational excitation of the C-H (or C-D) stretching (v3) and H-C-N (D-C-N) bending (v2) modes, and for DCN products there is also evidence of vibrational excitation of the v1 mode, which involves stretching of the C≡N bond. The vibrationally excited products relax to the ground vibrational level of HCN (DCN) with time constants of ˜130-270 ps (depending on molecule and solvent), and the majority of the HCN (DCN) in this ground level is formed by vibrational relaxation, instead of directly from the chemical reaction. The time-dependence of reactive production of HCN (DCN) and vibrational relaxation is analysed using a vibrationally quantum-state specific kinetic model. The experimental outcomes are indicative of dynamics of exothermic reactions over an energy surface with an early transition state. Although the presence of the chlorinated solvent may reduce the extent of vibrational excitation of the nascent products, the early-time chemical reaction dynamics in these liquid solvents are deduced to be very similar to those for isolated collisions in the gas phase. The transient IR spectra show additional spectroscopic absorption features centered at 2037 cm-1 and 2065 cm-1 (in CHCl3) that are assigned, respectively, to CN-solvent complexes and

  7. The Effect of Single-Level Disc Degeneration on Dynamic Response of the Whole Lumbar Spine to Vertical Vibration.

    Science.gov (United States)

    Guo, Li-Xin; Fan, Wei

    2017-09-01

    The objective of this study was to investigate the effect of single-level disc degeneration on dynamic response of the whole lumbar spine to vertical whole body vibration that is typically present when driving vehicles. Ligamentous finite element models of the lumbar L1-S1 motion segment in different grades of degeneration (healthy, mild, and moderate) at the L4-L5 level were developed with consideration of changing disc height and material properties of the nucleus pulpous. All models were loaded with a compressive follower preload of 400 N and a sinusoidal vertical vibration load of ±40 N. After transient dynamic analyses, computational results for the 3 models in terms of disc bulge, von-Mises stress in annulus ground substance, and nucleus pressure were plotted as a function of time and compared. All the predicted results showed a cyclic response with time. At the degenerated L4-L5 disc level, as degeneration progressed, maximum value of the predicted response showed a decrease in disc bulge and von-Mises stress in annulus ground substance but a slight increase in nucleus pressure, and their vibration amplitudes were all decreased. At the adjacent levels of the degenerated disc, there was a slight decrease in maximum value and vibration amplitude of these predicted responses with the degeneration. The results indicated that single-level disc degeneration can alter vibration characteristics of the whole lumbar spine especially for the degenerated disc level, and increasing the degeneration did not deteriorate the effect of vertical vibration on the spine. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Integration Design and Optimization Control of a Dynamic Vibration Absorber for Electric Wheels with In-Wheel Motor

    Directory of Open Access Journals (Sweden)

    Mingchun Liu

    2017-12-01

    Full Text Available This paper presents an integration design scheme and an optimization control strategy for electric wheels to suppress the in-wheel vibration and improve vehicle ride comfort. The in-wheel motor is considered as a dynamic vibration absorber (DVA, which is isolated from the unsprung mass by using a spring and a damper. The proposed DVA system is applicable for both the inner-rotor motor and outer-rotor motor. Parameters of the DVA system are optimized for the typical conditions, by using the particle swarm optimization (PSO algorithm, to achieve an acceptable vibration performance. Further, the DVA actuator force is controlled by using the alterable-domain-based fuzzy control method, to adaptively suppress the wheel vibration and reduce the wallop acting on the in-wheel motor (IWM as well. In addition, a suspension actuator force is also controlled, by using the linear quadratic regulator (LQR method, to enhance the suspension performance and meanwhile improve vehicle ride comfort. Simulation results demonstrate that the proposed DVA system effectively suppresses the wheel vibration and simultaneously reduces the wallop acting on the IWM. Also, the alterable-domain-based fuzzy control method performs better than the conventional ones, and the LQR-based suspension exhibits excellent performance in vehicle ride comfort.

  9. An analysis of nonlinear vibrations of coupled thickness-shear and flexural modes of quartz crystal plates with the homotopy analysis method.

    Science.gov (United States)

    Wu, Rongxing; Wang, Ji; Du, Jianke; Huang, Dejin; Yan, Wei; Hu, Yuantai

    2012-01-01

    We investigated the nonlinear vibrations of the coupled thickness-shear and flexural modes of quartz crystal plates with the nonlinear Mindlin plate equations, taking into consideration the kinematic and material nonlinearities. The nonlinear Mindlin plate equations for strongly coupled thickness- shear and flexural modes have been established by following Mindlin with the nonlinear constitutive relations and approximation procedures. Based on the long thickness-shear wave approximation and aided by corresponding linear solutions, the nonlinear equation of thickness-shear vibrations of quartz crystal plate has been solved by the combination of the Galerkin and homotopy analysis methods. The amplitude frequency relation we obtained showed that the nonlinear frequency of thickness-shear vibrations depends on the vibration amplitude, thickness, and length of plate, which is significantly different from the linear case. Numerical results from this study also indicated that neither kinematic nor material nonlinearities are the main factors in frequency shifts and performance fluctuation of the quartz crystal resonators we have observed. These efforts will result in applicable solution techniques for further studies of nonlinear effects of quartz plates under bias fields for the precise analysis and design of quartz crystal resonators. © 2012 IEEE

  10. Femtosecond investigation of electronic and vibrational dynamics of metal nano-objects and local order in glasses

    International Nuclear Information System (INIS)

    Burgin, Julien

    2007-01-01

    In this Ph.D. work we have investigated the electronic and vibrational properties of metallic nano objects as a function of their size, shape and composition, and studied the vibrational modes in glasses, using femtosecond time-resolved spectroscopy. In mono-metallic copper clusters, acceleration of the electron-lattice energy exchanges for sizes smaller than 10 nm has been demonstrated, confirming previous results in gold and silver clusters. The small size regime, i.e., nanoparticles smaller than 2 nm, has been addressed. The results show the limit of the classical confined material approach. In bi-metallic clusters, electron-lattice interaction has been shown to reflect their composition for gold-silver materials, but exhibits a more complex behavior in the case of segregated nickel-silver particles. The impact of shape, structure and environment on the acoustic vibrations of metallic nano-objects has also been studied. Measurements performed in ensemble or pairs of prisms yielded evidence for local fluctuations of their coupling with the substrate. Nano-structuration effects have been demonstrated in nano-columns and segregated components. The vibrational modes associated to local order in glasses have been investigated using a high sensitivity impulsive stimulated Raman scattering technique. The 'defect modes' of normal and densified silica, associated to vibrations of ring structures, have been observed and characterized, yielding information on the evolution of the ring density. Performing similar measurements in germania, we have demonstrated the existence of a vibrational mode due to a similar ring structure and determined its characteristics [fr

  11. Dynamics of vibration isolation system with a quasi-isochronous roller shock absorber

    Science.gov (United States)

    Legeza, V. P.

    2011-09-01

    The low-frequency vibrations of a vibration isolation system of rigid bodies (roller shock absorber and carrying body) under external harmonic loading are considered. The working surface of the absorber has the form of a brachistochrone. The equations describing the slip-free motion of the absorber over the hinged roller and the motion of the carrying body are derived. A graphical method for optimizing the parameters of the roller absorber as a component of the vibration isolation system is proposed

  12. Nonlinear Dynamic Analysis on the Rain-Wind-Induced Vibration of Cable Considering the Equilibrium Position of Rivulet

    Directory of Open Access Journals (Sweden)

    Xijun Liu

    2013-01-01

    Full Text Available The nonlinear dynamic behavior of rain-wind-induced vibration of inclined cable is investigated with the consideration of the equilibrium position of the moving rivulet. The partial differential governing equations of three-degree-of-freedom on the model of rain-wind-induced cable vibration are established, which are proposed for describing the nonlinear interactions among the in-plane, out-of-plane vibration of the cable and the oscillation of the moving rivulet. The Galerkin method is applied to discretize the partial differential governing equations. The approximately analytic solution is obtained by using the method of averaging. The unique correspondence between the wind and the equilibrium position of the rivulet is ascertained. The presence of rivulet at certain positions on the surface of cable is then proved to be one of the trigger for wind-rain-induced cable vibration. The nonlinear dynamic phenomena of the inclined cable subjected to wind and rain turbulence are then studied by varying the parameters including mean wind velocity, Coulomb damping force, damping ratio, the span length, and the initial tension of the inclined cable on the model. The jump phenomenon is also observed which occurs when there are multiple solutions in the system.

  13. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    Directory of Open Access Journals (Sweden)

    Mo Yang

    2018-03-01

    Full Text Available Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM, this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool. Keywords: CFRP drive-line system, Dynamic behavior, Transfer matrix, Vibration measurement

  14. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  15. Wealth distribution of simple exchange models coupled with extremal dynamics

    Science.gov (United States)

    Bagatella-Flores, N.; Rodríguez-Achach, M.; Coronel-Brizio, H. F.; Hernández-Montoya, A. R.

    2015-01-01

    Punctuated Equilibrium (PE) states that after long periods of evolutionary quiescence, species evolution can take place in short time intervals, where sudden differentiation makes new species emerge and some species extinct. In this paper, we introduce and study the effect of punctuated equilibrium on two different asset exchange models: the yard sale model (YS, winner gets a random fraction of a poorer player's wealth) and the theft and fraud model (TF, winner gets a random fraction of the loser's wealth). The resulting wealth distribution is characterized using the Gini index. In order to do this, we consider PE as a perturbation with probability ρ of being applied. We compare the resulting values of the Gini index at different increasing values of ρ in both models. We found that in the case of the TF model, the Gini index reduces as the perturbation ρ increases, not showing dependence with the agents number. While for YS we observe a phase transition which happens around ρc = 0.79. For perturbations ρ <ρc the Gini index reaches the value of one as time increases (an extreme wealth condensation state), whereas for perturbations greater than or equal to ρc the Gini index becomes different to one, avoiding the system reaches this extreme state. We show that both simple exchange models coupled with PE dynamics give more realistic results. In particular for YS, we observe a power low decay of wealth distribution.

  16. On the Dynamics of Edge-core Coupling

    International Nuclear Information System (INIS)

    Hahm, T.S.; Diamond, P.H.; Lin, Z.; Rewoldt, G.; Gurcan, O.; Ethier, S.

    2005-01-01

    One of the nagging, unresolved questions in fusion theory is concerned with the extent of the edge. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the Gyrokinetic Toroidal Code (GTC) [Z. Lin et al., Science 281, 1835 (1998)] and its related dynamical model have been extended to a system with radially varying ion temperature gradient, in order to study the inward spreading of edge turbulence toward the core plasma. Due to such spreading, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only, and the precise boundary of the edge region is blurred. Even when the core gradient is within the Dimits shift regime (i.e., dominated by self-generated zonal flows which reduce the transport to a negligible value), a significant level of turbulence can penetrate to the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from a nonlinear diffusion model than from one based on linear toroidal coupling

  17. An assumed mode method and finite element method investigation of the coupled vibration in a flexible-disk rotor system with lacing wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shui-Ting; Huang, Hong-Wu [Hunan University, Changsha (China); Chiu, Yi-Jui; Yu, Guo-Fei [Xiamen University of Technology, Xiamen (China); Yang, Chia-Hao [Taipei Chengshih University of Science and Technology, Taipei (China); Jian, Sheng-Rui [I-Shou University, Kaohsiung (China)

    2017-02-15

    The Assumed mode method (AMM) and Finite element method (FEM) were used. Their results were compared to investigate the coupled shaft-torsion, disk-transverse, and blade-bending vibrations in a flexible-disk rotor system. The blades were grouped with a spring. The flexible-disk rotor system was divided into three modes of coupled vibrations: Shaft-disk-blade, disk-blade, and blade-blade. Two new modes of coupled vibrations were introduced, namely, lacing wires-blade and lacing wires-disk-blade. The patterns of change of the natural frequencies and mode shapes of the system were discussed. The results showed the following: first, mode shapes and natural frequencies varied, and the results of the AMM and FEM differed; second, numerical calculation results showed three influencing factors on natural frequencies, namely, the lacing wire constant, the lacing wire location, and the flexible disk; lastly, the flexible disk could affect the stability of the system as reflected in the effect of the rotational speed.

  18. Vibrational dynamics of plant light-harvesting complex LHC II investigated by quasi- and inelastic neutron scattering

    Directory of Open Access Journals (Sweden)

    Golub Maksym

    2015-01-01

    Full Text Available Vibrational dynamics of the light-harvesting complex II (LHC II from spinach was investigated by quasi- and inelastic neutron scattering (QENS and INS at three different temperatures of 80, 160, and 285 K. QENS/INS spectra of solubilised LHC II and of the corresponding buffer solution were obtained separately and exhibit characteristic inelastic features. After subtraction of the buffer contribution, the INS spectrum of LHC II reveals a distinct Boson peak at ∼ 2.5 meV at 80 K that shifts towards lower energies if the temperature is increased to 285 K. This effect is interpreted in terms of a “softening” of the protein matrix along with the dynamical transition at ∼ 240 K. Our findings indicate that INS is a valuable method to obtain the density of vibrational states not only at cryogenic, but also at physiological temperatures.

  19. PREFACE: Vibrations at surfaces Vibrations at surfaces

    Science.gov (United States)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  20. Dynamic of Ising model with transverse field for two coupled sublattices in disordered phase

    International Nuclear Information System (INIS)

    Sa Motta, C.E.H. de.

    1984-02-01

    The dynamics of the two coupled sublattices tridimensional Ising model in a transverse field was studied by means of a continued fraction expansion for coupled operators. The static Correlation Functions necessary for studying the dynamics were calculated with the Green's Functions Method in the Random Phase Approximation (RPA). The spectral function was calculated in the region T c → . (Author) [pt

  1. Adaptive control of structural balance for complex dynamical networks based on dynamic coupling of nodes

    Science.gov (United States)

    Gao, Zilin; Wang, Yinhe; Zhang, Lili

    2018-02-01

    In the existing research results of the complex dynamical networks controlled, the controllers are mainly used to guarantee the synchronization or stabilization of the nodes’ state, and the terms coupled with connection relationships may affect the behaviors of nodes, this obviously ignores the dynamic common behavior of the connection relationships between the nodes. In fact, from the point of view of large-scale system, a complex dynamical network can be regarded to be composed of two time-varying dynamic subsystems, which can be called the nodes subsystem and the connection relationships subsystem, respectively. Similar to the synchronization or stabilization of the nodes subsystem, some characteristic phenomena can be also emerged in the connection relationships subsystem. For example, the structural balance in the social networks and the synaptic facilitation in the biological neural networks. This paper focuses on the structural balance in dynamic complex networks. Generally speaking, the state of the connection relationships subsystem is difficult to be measured accurately in practical applications, and thus it is not easy to implant the controller directly into the connection relationships subsystem. It is noted that the nodes subsystem and the relationships subsystem are mutually coupled, which implies that the state of the connection relationships subsystem can be affected by the controllable state of nodes subsystem. Inspired by this observation, by using the structural balance theory of triad, the controller with the parameter adaptive law is proposed for the nodes subsystem in this paper, which may ensure the connection relationship matrix to approximate a given structural balance matrix in the sense of the uniformly ultimately bounded (UUB). That is, the structural balance may be obtained by employing the controlling state of the nodes subsystem. Finally, the simulations are used to show the validity of the method in this paper.

  2. The effect of finite response–time in coupled dynamical systems

    Indian Academy of Sciences (India)

    Abstract. The paper investigates synchronization in unidirectionally coupled dynamical systems wherein the influence of drive on response is cumulative: coupling signals are integrated over a time interval τ. A major consequence of integrative coupling is that the onset of the generalized and phase synchronization occurs ...

  3. The effect of finite response–time in coupled dynamical systems

    Indian Academy of Sciences (India)

    Corresponding author. E-mail: gsaxena2006@yahoo.co.in. Abstract. The paper investigates synchronization in unidirectionally coupled dynamical systems wherein the influence of drive on response is cumulative: coupling signals are integrated over a time interval τ. A major consequence of integrative coupling is that the ...

  4. Effect of dynamic visco-elasticity on vertical and torsional vibrations ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    in terms of the complex shear modulus, the vertical vibrations of a visco-elastic half-space as well as that of a mass in ... mechanics and applied mathematics. In particular, torsional vibration of a ... Suffixes ω,T relate the values of complex moduli to a given frequency ω and temperature. T . In the present problem, they will be ...

  5. The Shock and Vibration Bulletin. Part 4. Dynamic Properties of Materials, Applications of Materials, Shock and Blast, Fragments

    Science.gov (United States)

    1980-09-01

    ELEMENTS WITH MATERIAL DAMPING M. M. Wallace and C. W. Bert. The University of Oklahoma, Noman, OK CONTRIBUTIONS TO THE DYNAMIC ANALYSIS OP MAGLEV ...Fourier transform in the desired frequency regions of interest or other spectra shapes as desired. These force pulse trains generate high output...band vibration testing. There are a number of papers concerning the techniques used to optimize a pulse train to provide a particular spectral

  6. Dynamic Characteristics of Magnetic Coupling in Horizontal Axis Wave Energy Device

    Directory of Open Access Journals (Sweden)

    Zhang Jian

    2017-11-01

    Full Text Available To solve the dynamic response problems of magnetic coupling in the horizontal axis wave energy device, this has researched the dynamic characteristicsof magnetic coupling. The fitting formula about torque and angle of the magnetic coupling is obtained through experiments. The mathematical models of the magnetic coupling torque transmission are established. The steady state error of the magnetic coupling and the transfer function of the output angle are obtained. The analytical solution of the step response of the output angle in time domain is derived. The influence of the torsional rigidity, the damping coefficient and the driven rotor’s rotational inertia on dynamic characteristics of the magnetic coupling isanalyzed. According to the analysis results, the design rules of magnetic coupling are proposed.

  7. Dynamic Characteristics of Flow Induced Vibration in a Rotor-Seal System

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2011-01-01

    Full Text Available Flow induced vibration is an important factor affecting the performance of the rotor-seal system. From the point of view of flow induced vibration, the nonlinear models of the rotor-seal system are presented for the analysis of the fluid force, which is induced by the interaction between the unstable fluid flow in the seal and the vibrating rotor. The nonlinear characteristics of flow induced vibration in the rotor-seal system are analyzed, and the nonlinear phenomena in the unbalanced rotor-seal system are investigated using the nonlinear models. Various nonlinear phenomena of flow induced vibration in the rotor-seal system, such as synchronization phenomenon and amplitude mutation, are reproduced.

  8. Effect of collision duration on the chaotic dynamics of a ball bouncing on a vertically vibrating plate

    Science.gov (United States)

    Jiang, Z. H.; Liang, Z. J.; Wu, A. C.; Zheng, R. H.

    2018-03-01

    Experiments have been performed to study the chaotic dynamics of a ball bouncing on a vertically vibrating plate. The velocity dependence of collision duration and coefficient of restitution is determined, and phase portraits of chaotic structures for the flight time and the relative collision velocities are obtained. Numerical calculations are carried out to examine the effects of velocity-dependent collision duration on the ball dynamics. It is revealed that when the collision is instantaneous, sticking solutions are always observed, whereas when the collision duration is taken into account, sticking solutions are destroyed and thereby chaos behaviors are induced.

  9. Wind Turbine Loads Induced by Terrain and Wakes: An Experimental Study through Vibration Analysis and Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Francesco Castellani

    2017-11-01

    Full Text Available A wind turbine is a very well-known archetype of energy conversion system working at non-stationary regimes. Despite this, a deep mechanical comprehension of wind turbines operating in complicated conditions is still challenging, especially as regards the analysis of experimental data. In particular, wind turbines in complex terrain represent a very valuable testing ground because of the possible combination of wake effects among nearby turbines and flow accelerations caused by the terrain morphology. For these reasons, in this work, a cluster of four full-scale wind turbines from a very complex site is studied. The object of investigation is vibrations, at the level of the structure (tower and drive-train. Data collected by the on-board condition monitoring system are analyzed and interpreted in light of the knowledge of wind conditions and operating parameters collected by the Supervisory Control And Data Acquisition (SCADA. A free flow Computational Fluid Dynamics (CFD simulation is also performed, and it allows one to better interpret the vibration analysis. The main outcome is the interpretation of how wakes and flow turbulences appear in the vibration signals, both at the structural level and at the drive-train level. Therefore, this wind to gear approach builds a connection between flow phenomena and mechanical phenomena in the form of vibrations, representing a precious tool for assessing loads in different working conditions.

  10. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay.

    Science.gov (United States)

    Liu, Dong; Sun, Changzheng; Xiong, Bing; Luo, Yi

    2014-03-10

    We report rich nonlinear dynamics in integrated coupled lasers with ultra-short coupling delay. Mutually stable locking, period-1 oscillation, frequency locking, quasi-periodicity and chaos are observed experimentally. The dynamic behaviors are reproduced numerically by solving coupled delay differential equations that take the variation of both frequency detuning and coupling phase into account. Moreover, it is pointed out that the round-trip frequency is not involved in the above nonlinear dynamical behaviors. Instead, the relationship between the frequency detuning Δν and the relaxation oscillation frequency νr under mutual injection are found to be critical for the various observed dynamics in mutually coupled lasers with very short delay.

  11. Dynamics of hydration water and coupled protein sidechains around a polymerase protein surface

    Science.gov (United States)

    Qin, Yangzhong; Yang, Yi; Wang, Lijuan; Zhong, Dongping

    2017-09-01

    Water-protein coupled interactions are essential to the protein structural stability, flexibility and dynamic functions. The ultimate effects of the hydration dynamics on the protein fluctuations remain substantially unexplored. Here, we investigated the dynamics of both hydration water and protein sidechains at 13 different sites around the polymerase β protein surface using a tryptophan scan with femtosecond spectroscopy. Three types of hydration-water relaxations and two types of protein sidechain motions were determined, reflecting a highly dynamic water-protein interactions fluctuating on the picosecond time scales. The hydration-water dynamics dominate the coupled interactions with higher flexibility.

  12. Energy Band and Josephson Dynamics of Spin-Orbit Coupled Bose-Einstein Condensates

    Science.gov (United States)

    Zhang, Xin; Yu, Zi-Fa; Xue, Ju-Kui

    2015-10-01

    We theoretically investigate the energy band structure and Josephson dynamics of a spin-orbit coupled Bose-Einstein condensate in a double-well potential. We study the energy band structure and the corresponding tunneling dynamics of the system by properly adjusting the SO coupling, Raman coupling, Zeeman field and atomic interactions. The coupled effects of SO coupling, Raman coupling, Zeeman field and atomic interactions lead to the appearance of complex energy band structure including the loop structure. Particularly, the emergence of the loop structure in energy band also depends on SO coupling, Raman coupling, Zeeman field and atomic interactions. Correspondingly, the Josephson dynamics of the system are strongly related to the energy band structure. Especially, the emergence of the loop structure results in complex tunneling dynamics, including suppression-revival transitions and self-trapping of atoms transfer between two spin states and two wells. This engineering provides a possible means for studying energy level and corresponding dynamics of two-species SO coupled BECs. Supported by the National Natural Science Foundation of China under Grant Nos. 11274255 and 11305132, by Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20136203110001, by the Natural Science Foundation of Gansu province under Grant No. 2011GS04358, and by Creation of Science and Technology of Northwest Normal University under Grant Nos. NWNU-KJCXGC-03-48, NWNU-LKQN-12-12

  13. Mixed quantum-classical dynamics of an amide-I vibrational excitation in a protein α -helix

    Science.gov (United States)

    Freedman, Holly; Martel, Paulo; Cruzeiro, Leonor

    2010-11-01

    Adenosine triphosphate (ATP) is known to be the main energy currency of the living cell, and is used as a coenzyme to generate energy for many cellular processes through hydrolysis to adenosine diphosphate (ADP), although the mechanism of energy transfer is not well understood. It has been proposed that following hydrolysis of the ATP cofactor bound to a protein, up to two quanta of amide-I vibrational energy are excited and utilized to bring about important structural changes in the protein. To study whether, and how, amide-I vibrational excitations are capable of leading to protein structural changes, we have added components arising from quantum-mechanical amide-I vibrational excitations to the total energy and force terms within a molecular-dynamics simulation. This model is applied to helical deca-alanine as a test case to investigate how its dynamics differs in the presence or absence of an amide-I excitation. We find that the presence of an amide-I excitation can bias the structure toward a more helical state.

  14. Oscillatory and Steady Dynamics of a Cylindrical Body Near the Border of Vibrating Cavity Filled with Liquid

    Science.gov (United States)

    Schipitsyn, V. D.; Kozlov, V. G.

    2018-02-01

    The results of experimental study of vibrational dynamics of cylindrical solid in a rectangular cavity filled with viscous incompressible fluid are generalized. The cavity performs high-frequency translational oscillations in a horizontal plane. Experiments are carried out with bodies of different relative density: more or less than liquid's density. The cylinder oscillates in the cavity under the influence of oscillating inertia force. An averaged force repels the body from the boundary and holds a heavy body over the bottom of the cavity and the light one at some distance from the ceiling. The vibrational lift force depends on the amplitude and frequency of vibrations as well as on the properties of liquid. It is shown that the value of the averaged lift force decreases with increasing dimensionless amplitude. Special attention is paid to the oscillatory behavior of a solid. The rotational oscillations of the body, observed in experiments simultaneously with the translational ones, and fluid motion, excited by an oscillating body, are investigated. The different modes of interaction of the body with the container's boundary were found. The oscillatory dynamics of bodies with different relative density is studied by high-speed video-registration.

  15. The toluene-Ar complex: S0 and S1 van der Waals modes, changes to methyl rotation, and torsion-van der Waals vibration coupling

    Science.gov (United States)

    Gascooke, Jason R.; Lawrance, Warren D.

    2013-02-01

    The methyl rotor and van der Waals vibrational levels in the S1 and S0 states of toluene-Ar have been investigated by the technique of two-dimensional laser induced fluorescence (2D-LIF). The S0 van der Waals and methyl rotor levels are reported for the first time, while improved S1 values are presented. The correlations seen in the 2D-LIF images between the S0 and S1 states lead to a reassignment of key features in the S1 ← S0 excitation spectrum. This reassignment reveals that there are significant changes in the methyl rotor levels in the complex compared with those in bare toluene, particularly at low m. The observed rotor energies are explained by the introduction of a three-fold, V3, term in the torsion potential (this term is zero in toluene) and a reduction in the height of the six-fold, V6, barriers in S0 and S1 from their values in bare toluene. The V3 term is larger in magnitude than the V6 term in both S0 and S1. The constants determined are |V3(S1)| = 33.4 ± 1.0 cm-1, |V3(S0)| = 20.0 ± 1.0 cm-1, V6(S1) = -10.7 ± 1.0 cm-1, and V6(S0) = -1.7 ± 1.0 cm-1. The methyl rotor is also found to couple with van der Waals vibration; specifically, the m″ = 2 rotor state couples with the combination level involving one quantum of the long axis bend and m″ = 1. The coupling constant is determined to be 1.9 cm-1, which is small compared with the values typically reported for torsion-vibration coupling involving ring modes.

  16. Influence of ultrasonic vibrations on thermal diffuse scattering in X-ray dynamical diffraction conditions

    CERN Document Server

    Kovalchuk, M V; Nosik, V L

    2001-01-01

    A theory of thermal diffuse scattering (TDS) in a crystal disturbed by high frequency ultrasonic vibrations is considered. In this case additional X-ray reflexes (satellites) are formed which can be used for obtaining information about vibrational excitations in a crystal. By varying the incident angle one can excite all the satellites one after another and detect the variation in the TDS yield. The possibilities of the experimental observation of these phenomena will also be discussed.

  17. Dynamic analysis of ITER tokamak. Based on results of vibration test using scaled model

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka

    2005-01-01

    The vibration experiments of the support structures with flexible plates for the ITER major components such as toroidal field coil (TF coil) and vacuum vessel (VV) were performed using small-sized flexible plates aiming to obtain its basic mechanical characteristics such as dependence of the stiffness on the loading angle. The experimental results were compared with the analytical ones in order to estimate an adequate analytical model for ITER support structure with flexible plates. As a result, the bolt connection of the flexible plates on the base plate strongly affected on the stiffness of the flexible plates. After studies of modeling the connection of the bolts, it is found that the analytical results modeling the bolts with finite stiffness only in the axial direction and infinite stiffness in the other directions agree well with the experimental ones. Based on this, numerical analysis regarding the actual support structure of the ITER VV and TF coil was performed. The support structure composed of flexible plates and connection bolts was modeled as a spring composed of only two spring elements simulating the in-plane and out-of-plane stiffness of the support structure with flexible plates including the effect of connection bolts. The stiffness of both spring models for VV and TF coil agree well with that of shell models, simulating actual structures such as flexible plates and connection bolts based on the experimental results. It is therefore found that the spring model with the only two values of stiffness enables to simplify the complicated support structure with flexible plates for the dynamic analysis of the VV and TF coil. Using the proposed spring model, the dynamic analysis of the VV and TF coil for the ITER were performed to estimate the integrity under the design earthquake. As a result, it is found that the maximum relative displacement of 8.6 mm between VV and TF coil is much less than 100 mm, so that the integrity of the VV and TF coil of the

  18. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... and physics. This edition includes a new chapter on the useful effects of fast vibrations and many new exercise problems. Written for: Students in mechanical or structural engineering. Keywords: Nonlinear Vibrations, Bifurcations, Chaotic Vibrations, Vibrations and Stability....

  19. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... and physics. This edition includes a new chapter on the useful effects of fast vibrations and many new exercise problems. Written for: Students in mechanical or structural engineering. Keywords: Nonlinear Vibrations, Bifurcations, Chaotic Vibrations, Vibrations and Stability.......About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...

  20. Coupled channel analysis of the 142Ce (α,α)142Ce* reaction: study of a vibrational-rotational transition nucleus

    International Nuclear Information System (INIS)

    Appoloni, C.R.

    1983-01-01

    The angular distribution of the elastic and inelastic scattering of a particles corresponding to the excitation of the low-lying collective states of 142 Ce were measured at an incident energy of 18.0 MeV. The angular distribution of the following excited states were obtained: 641, 1.219, 1.450, 1.536, 1.653, 1.742, 2.004, 2.043, 2.114, 2.125, 2.279, 2.364, 2.542, 2.604 e 3.067 MeV. The angular distributions of the ground state and the first six excited states were analysed within the flamework of the Anharmonic Vibrational and Symmetric Rotational Models, with the Coupled Channel Theory. The Anharmonic Vibrational Model gave the best and most complete description of the experimental data. The wave functions and the deformation parameters of the analysed states were determined. (Author) [pt

  1. Dynamic simulation of friction-induced vibrations in a light railway bogie while curving compared with measurement results

    Science.gov (United States)

    Kurzeck, Bernhard; Hecht, Markus

    2010-12-01

    It is a frequently observed phenomenon that curving of railway vehicles can involve friction-induced oscillations. The study presented in this paper investigates vibrations with a frequency of 80 Hz occurring at a light rail vehicle in Stuttgart in curves with radii between 50 and 200 m. The aim of the investigation was to identify the oscillation and transmission mechanism, and the dominant parameters within this. As the cause could not be clearly identified from the measurements, a multi-body simulation in the time domain was used. The model consisted of both vehicle and track and considered the structural dynamics of the wheelset and bogie frame up to 200 Hz. The system was modelled using the commercial MBS software SIMPACK. The identified model describes the oscillations observed at the real vehicle. The results proved to be useful in minimising the vibrations at the real vehicles.

  2. Dynamical couplings, dynamical vacuum energy and confinement/deconfinement from R2-gravity

    International Nuclear Information System (INIS)

    Guendelman, Eduardo; Kaganovich, Alexander; Nissimov, Emil; Pacheva, Svetlana

    2013-01-01

    We study within Palatini formalism an f(R)-gravity with f(R)=R+αR 2 interacting with a dilaton and a special kind of nonlinear gauge field system containing a square-root of the standard Maxwell term, which is known to produce confinement in flat space–time. Reformulating the model in the physical Einstein frame we find scalar field effective potential with a flat region where the confinement dynamics disappears, while in other regions it remains intact. The effective gauge couplings as well as the induced cosmological constant become dynamical. In particular, a conventional Maxwell kinetic term for the gauge field is dynamically generated even if absent in the original theory. We find few interesting classes of explicit solutions: (i) asymptotically (anti-)de Sitter black holes of non-standard type with additional confining vacuum electric potential even for the electrically neutral ones; (ii) non-standard Reissner–Nordström black holes with additional constant vacuum electric field and having non-flat-space–time “hedgehog” asymptotics; (iii) generalized Levi-Civita–Bertotti–Robinson “tube-like” space–times.

  3. Vibrational Coupling Pathways in the CH Stretch Region of CH_3OH and CH_3OD as Revealed by IR and Ftmw-Ir Spectroscopies

    Science.gov (United States)

    Twagirayezu, Sylvestre; Wang, Xiaoliang; Perry, David S.; Neill, Justin L.; Muckle, Matt T.; Pate, Brooks H.; Xu, Li-Hong

    2011-06-01

    Infrared spectra of jet-cooled CH_3OD and CH_3OH in the CH stretch region are observed by coherence-converted population transfer Fourier transform microwave-infrared (CCPT-FTMW-IR) spectroscopy (E torsional species only) and by slit-jet single resonance spectroscopy (both A and E torsional species, CH_3OH only). Previously, we reported the analysis of ν_3 symmetric CH stretch region (2750-2900 Cm-1), and the present work extends the analysis to higher frequency (2900-3020 Cm-1). The overall observed spectra contain 17 interacting vibrational bands for CH_3OD and 28 for CH_3OH. The signs and magnitudes of the torsional tunneling splittings are deduced for three CH fundamentals (ν_3, ν_9, ν_2) of both molecules and are compared to a model calculation and to ab initio theory. The number and distribution of observed vibrational bands indicate that the CH stretch bright states couple first to doorway states that are binary combinations of bending modes. In the parts of the spectrum where doorway states are present, the observed density of coupled states is comparable to the total density of vibrational states in the molecule, but where there are no doorway states, only the CH stretch fundamentals are observed. A time-dependent interpretation of the present FTMW-IR spectra indicates a fast (˜ 200 fs) initial decay of the bright state followed by second, slower redistribution (˜ 1-3 ps). The qualitative agreement of the present data with the time-dependent experiments of Iwaki and Dlott provides further support for the similarity of the fastest vibrational relaxation processes in the liquid and gas phases. Twagirayezu, S.; Clasp, T. N.; Perry, D. S.; Neill, J. L.; Muckle, M. T.; Pate, B. H. J. Phys. Chem. A 2010, 114, 6818 Iwaki, L. K.; Dlott, D. D. J. Phys. Chem. A 2000, 104, 9101

  4. Molecular states of HeH+. Energies and dynamical couplings

    International Nuclear Information System (INIS)

    Macias, A.; Riera, A.; Yanez, M.

    1983-01-01

    We complete the molecular results reported in a previous paper by presenting additional energies (for /sup 1,3/μ states) and radial couplings (between 'μ states) of the HeH + system. These results are needed to treat elastic and inelastic charge-exchange processes when full account is taken of momentum-transfer problems. We also present a formalism to calculate radial couplings between wave functions computed with the use of different variational methods and basis sets. The detailed form of the radial couplings is discussed and related to the Barat-Lichten correlation diagram. The effect of using finite basis sets in calculatig degenerate molecular energies is also discussed

  5. Multimode dynamics in a network with resource mediated coupling

    DEFF Research Database (Denmark)

    Postnov, D.E.; Sosnovtseva, Olga; Scherbakov, P.

    2008-01-01

    state of the individual unit. With this coupling, a spatially inhomogenous state with mixed high and lowamplitude oscillations in the individual units can arise. To examine generic phenomena associated with this type of interaction we consider a chain of resistively coupled electronic oscillators...... connected to a common power supply. The two- oscillator system displays antiphase synchronization, and it is interesting to note that two- mode oscillations continue to exist outside of the parameter range in which oscillations occur for the individual unit. At low coupling strengths, the multioscillator...... system shows high dimensional quasiperiodicity with little tendency for synchronization. At higher coupling strengths, one typically observes spatial clustering involving a few oscillating units. We describe three different scenarios according to which the cluster can slide along the chain as the bias...

  6. Compact Vibration Damper

    Science.gov (United States)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  7. Dynamic properties of one-component strongly coupled plasmas: The sum-rule approach

    International Nuclear Information System (INIS)

    Arkhipov, Yu. V.; Askaruly, A.; Davletov, A. E.; Ballester, D.; Tkachenko, I. M.; Zwicknagel, G.

    2010-01-01

    The dynamic characteristics of strongly coupled one-component plasmas are studied within the moment approach. Our results on the dynamic structure factor and the dynamic local-field correction satisfy the sum rules and other exact relations automatically. A quantitative agreement is obtained with numerous simulation data on the plasma dynamic properties, including the dispersion and decay of collective modes. Our approach allows us to correct and complement the results previously found with other treatments.

  8. Wide dynamic range microwave planar coupled ring resonator for sensing applications

    Science.gov (United States)

    Zarifi, Mohammad Hossein; Daneshmand, Mojgan

    2016-06-01

    A highly sensitive, microwave-coupled ring resonator with a wide dynamic range is studied for use in sensing applications. The resonator's structure has two resonant rings and, consequently, two resonant frequencies, operating at 2.3 and 2.45 GHz. Inductive and capacitive coupling mechanisms are explored and compared to study their sensing performance. Primary finite element analysis and measurement results are used to compare the capacitive and inductive coupled ring resonators, demonstrating sensitivity improvements of up to 75% and dynamic range enhancement up to 100% in the capacitive coupled structure. In this work, we are proposing capacitive coupled planar ring resonators as a wide dynamic range sensing platform for liquid sensing applications. This sensing device is well suited for low-cost, real-time low-power, and CMOS compatible sensing technologies.

  9. One- and two-cluster synchronized dynamics of non-diffusively coupled Tchebycheff map networks

    International Nuclear Information System (INIS)

    Schäfer, Mirko; Greiner, Martin

    2012-01-01

    We use the master stability formalism to discuss one- and two-cluster synchronization of coupled Tchebycheff map networks. For diffusively coupled map systems, the one-cluster synchronized dynamics is given by the behaviour of the individual maps, and the coupling only determines the stability of the coherent state. For the case of non-diffusive coupling and for two-cluster synchronization, the synchronized dynamics on networks is different from the behaviour of the single individual map. Depending on the coupling, we study numerically the characteristics of various forms of the resulting synchronized dynamics. The stability properties of the respective one-cluster synchronized states are discussed for arbitrary network structures. For the case of two-cluster synchronization on bipartite networks we also present analytical expressions for fixed points and zig-zag patterns, and explicitly determine the linear stability of these orbits for the special case of ring-networks.

  10. Development and application of coupled system dynamics and game theory: A dynamic water conflict resolution method.

    Directory of Open Access Journals (Sweden)

    Mehdi Zomorodian

    Full Text Available Conflicts over water resources can be highly dynamic and complex due to the various factors which can affect such systems, including economic, engineering, social, hydrologic, environmental and even political, as well as the inherent uncertainty involved in many of these factors. Furthermore, the conflicting behavior, preferences and goals of stakeholders can often make such conflicts even more challenging. While many game models, both cooperative and non-cooperative, have been suggested to deal with problems over utilizing and sharing water resources, most of these are based on a static viewpoint of demand points during optimization procedures. Moreover, such models are usually developed for a single reservoir system, and so are not really suitable for application to an integrated decision support system involving more than one reservoir. This paper outlines a coupled simulation-optimization modeling method based on a combination of system dynamics (SD and game theory (GT. The method harnesses SD to capture the dynamic behavior of the water system, utilizing feedback loops between the system components in the course of the simulation. In addition, it uses GT concepts, including pure-strategy and mixed-strategy games as well as the Nash Bargaining Solution (NBS method, to find the optimum allocation decisions over available water in the system. To test the capability of the proposed method to resolve multi-reservoir and multi-objective conflicts, two different deterministic simulation-optimization models with increasing levels of complexity were developed for the Langat River basin in Malaysia. The later is a strategic water catchment that has a range of different stakeholders and managerial bodies, which are however willing to cooperate in order to avoid unmet demand. In our first model, all water users play a dynamic pure-strategy game. The second model then adds in dynamic behaviors to reservoirs to factor in inflow uncertainty and adjust the

  11. Development and application of coupled system dynamics and game theory: A dynamic water conflict resolution method.

    Science.gov (United States)

    Zomorodian, Mehdi; Lai, Sai Hin; Homayounfar, Mehran; Ibrahim, Shaliza; Pender, Gareth

    2017-01-01

    Conflicts over water resources can be highly dynamic and complex due to the various factors which can affect such systems, including economic, engineering, social, hydrologic, environmental and even political, as well as the inherent uncertainty involved in many of these factors. Furthermore, the conflicting behavior, preferences and goals of stakeholders can often make such conflicts even more challenging. While many game models, both cooperative and non-cooperative, have been suggested to deal with problems over utilizing and sharing water resources, most of these are based on a static viewpoint of demand points during optimization procedures. Moreover, such models are usually developed for a single reservoir system, and so are not really suitable for application to an integrated decision support system involving more than one reservoir. This paper outlines a coupled simulation-optimization modeling method based on a combination of system dynamics (SD) and game theory (GT). The method harnesses SD to capture the dynamic behavior of the water system, utilizing feedback loops between the system components in the course of the simulation. In addition, it uses GT concepts, including pure-strategy and mixed-strategy games as well as the Nash Bargaining Solution (NBS) method, to find the optimum allocation decisions over available water in the system. To test the capability of the proposed method to resolve multi-reservoir and multi-objective conflicts, two different deterministic simulation-optimization models with increasing levels of complexity were developed for the Langat River basin in Malaysia. The later is a strategic water catchment that has a range of different stakeholders and managerial bodies, which are however willing to cooperate in order to avoid unmet demand. In our first model, all water users play a dynamic pure-strategy game. The second model then adds in dynamic behaviors to reservoirs to factor in inflow uncertainty and adjust the strategies for

  12. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    Science.gov (United States)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  13. Fractal Theory and Contact Dynamics Modeling Vibration Characteristics of Damping Blade

    Directory of Open Access Journals (Sweden)

    Ruishan Yuan

    2014-01-01

    Full Text Available The contact surface structure of dry friction damper is complicate, irregular, and self-similar. In this paper, contact surface structure is described with the fractal theory and damping blade is simplified as 2-DOF cantilever beam model with lumped masses. By changing the position of the damper, lacing and shroud structure are separately simulated to study vibration absorption effect of damping blade. The results show that both shroud structure and lacing could not only dissipate energy but also change stiffness of blade. Under the same condition of normal pressure and contact surface, the damping effect of lacing is stronger than that of shroud structure. Meanwhile, the effect on changing blade stiffness of shroud structure is stronger than that of lacing. This paper proposed that there is at least one position of the blade, at which the damper dissipates the most vibration energy during a vibration cycle.

  14. Anharmonic bend-stretch coupling in neat liquid water

    NARCIS (Netherlands)

    Lindner, Joerg; Cringus, Dan; Pshenichnikov, Maxim S.; Voehringer, Peter

    2007-01-01

    Femtosecond mid-IR spectroscopy is used to study the vibrational relaxation dynamics in neat liquid water. By exciting the bending vibration and probing the stretching mode, it is possible to reliably determine the bending and librational lifetimes of water. The anharmonic coupling between the

  15. Coupled spin, elastic and charge dynamics in magnetic nanostructures

    NARCIS (Netherlands)

    Kamra, A.

    2015-01-01

    In this Thesis, I address the interaction of magnetic degrees of freedom with charge current and elastic dynamics in hybrid systems composed of magnetic and non-magnetic materials. The objective, invariably, is to control and study spin dynamics using charge and elastic degrees of freedom. In

  16. Dynamical hysteresis and spatial synchronization in coupled non ...

    Indian Academy of Sciences (India)

    ... via mutual synchronization indices reveals that one attractor corresponds to spatially synchronized oscillators, while the other corresponds to desynchronized oscillators. Dynamical hysteresis may thus help to understand critical aspects of the dynamical behavior of complex biological systems, e.g. seizures in the epileptic ...

  17. Comparison Study on the Exact Dynamic Stiffness Method for Free Vibration of Thin and Moderately Thick Circular Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    Xudong Chen

    2016-01-01

    Full Text Available Comparison study on free vibration of circular cylindrical shells between thin and moderately thick shell theories when using the exact dynamic stiffness method (DSM formulation is presented. Firstly, both the thin and moderately thick dynamic stiffness formulations are examined. Based on the strain and kinetic energy, the vibration governing equations are expressed in the Hamilton form for both thin and moderately thick circular cylindrical shells. The dynamic stiffness is assembled in a similar way as that in classic skeletal theory. With the employment of the Wittrick-Williams algorithm, natural frequencies of circular cylindrical shells can be obtained. A FORTRAN code is written and used to compute the modal characteristics. Numerical examples are presented, verifying the proposed computational framework. Since the DSM is an exact approach, the advantages of high accuracy, no-missing frequencies, and good adaptability to various geometries and boundary conditions are demonstrated. Comprehensive parametric studies on the thickness to radius ratio (h/r and the length to radius ratio (L/r are performed. Applicable ranges of h/r are found for both thin and moderately thick DSM formulations, and influences of L/r on frequencies are also investigated. The following conclusions are reached: frequencies of moderately thick shells can be considered as alternatives to those of thin shells with high accuracy where  h/r is small and L/r is large, without any observation of shear locking.

  18. Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers

    OpenAIRE

    Soriano, Miguel C.; Garcia-Ojalvo, Jordi; Mirasso, Claudio R.; Fischer, Ingo

    2013-01-01

    Complex phenomena in photonics, in particular, dynamical properties of semiconductor lasers due to delayed coupling, are reviewed. Although considered a nuisance for a long time, these phenomena now open interesting perspectives. Semiconductor laser systems represent excellent test beds for the study of nonlinear delay-coupled systems, which are of fundamental relevance in various areas. At the same time delay-coupled lasers provide opportunities for photonic applications. In this review an i...

  19. An investigation of algebraic quantum dynamics for mesoscopic coupled electric circuits with mutual inductance

    International Nuclear Information System (INIS)

    Pahlavani, H.; Kolur, E. Rahmanpour

    2016-01-01

    Based on the electrical charge discreteness, the Hamiltonian operator for the mutual inductance coupled quantum mesoscopic LC circuits has been found. The persistent current on two driven coupled mesoscopic electric pure L circuits (two quantum loops) has been obtained by using algebraic quantum dynamic approach. The influence of the mutual inductance on energy spectrum and quantum fluctuations of the charge and current for two coupled quantum electric mesoscopic LC circuits have been investigated.

  20. Decay of Rabi Oscillations by Dipolar-Coupled Dynamical Spin Environments

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Hanson, R.; Awschalom, D.D.

    2009-01-01

    We study the Rabi oscillations decay of a spin decohered by a spin bath whose internal dynamics is caused by dipolar coupling between the bath spins. The form and rate of decay as a function of the intrabath coupling is obtained analytically, and confirmed numerically. The complex form of decay

  1. Advanced dynamic modeling of three-phase mutually-coupled switched reluctance machine

    NARCIS (Netherlands)

    Dong, J.; Howey, Brock; Danen, Benjamin; Lin, Jianing; Weisheng Jiang, James; Bilgin, Berker; Emadi, Ali

    2018-01-01

    This paper proposes an advanced dynamic modelling approach of the mutually coupled switched reluctance motor (MCSRM) in the dq reference system that can consider saturation, cross-coupling, and spatial harmonics. Different topologies and their operating principles are investigated and an idealized

  2. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    Science.gov (United States)

    Yang, Mo; Gui, Lin; Hu, Yefa; Ding, Guoping; Song, Chunsheng

    2018-03-01

    Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA) show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool.

  3. Dynamics of rotating and vibrating thin hemispherical shell with mass and damping imperfections and parametrically driven by discrete electrodes

    CSIR Research Space (South Africa)

    Shatalov, M

    2009-05-01

    Full Text Available stream_source_info Shatalov2_2009.pdf.txt stream_content_type text/plain stream_size 22572 Content-Encoding UTF-8 stream_name Shatalov2_2009.pdf.txt Content-Type text/plain; charset=UTF-8 1 DYNAMICS OF ROTATING... AND VIBRATING THIN HEMISPHERICAL SHELL WITH MASS AND DAMPING IMPERFECTIONS AND PARAMETRICALLY DRIVEN BY DISCRETE ELECTRODES Michael Shatalov1,2 and Charlotta Coetzee2 1Sensor Science and Technology (SST) of CSIR Material Science and Manufacturing (MSM...

  4. Coupling dynamic analysis of spacecraft with multiple cylindrical tanks and flexible appendages

    Science.gov (United States)

    Wu, Wen-Jun; Yue, Bao-Zeng; Huang, Hua

    2016-02-01

    This paper is mainly concerned with the coupling dynamic analysis of a complex spacecraft consisting of one main rigid platform, multiple liquid-filled cylindrical tanks, and a number of flexible appendages. Firstly, the carrier potential function equations of liquid in the tanks are deduced according to the wall boundary conditions. Through employing the Fourier-Bessel series expansion method, the dynamic boundaries conditions on a curved free-surface under a low-gravity environment are transformed to general simple differential equations and the rigid-liquid coupled sloshing dynamic state equations of liquid in tanks are obtained. The state vectors of rigid-liquid coupled equations are composed with the modal coordinates of the relative potential function and the modal coordinates of wave height. Based on the Bernoulli-Euler beam theory and the D'Alembert's principle, the rigid-flexible coupled dynamic state equations of flexible appendages are directly derived, and the coordinate transform matrixes of maneuvering flexible appendages are precisely computed as time-varying. Then, the coupling dynamics state equations of the overall system of the spacecraft are modularly built by means of the Lagrange's equations in terms of quasi-coordinates. Lastly, the coupling dynamic performances of a typical complex spacecraft are studied. The availability and reliability of the presented method are also confirmed.

  5. Coupled problems in transient fluid and structural dynamics in nuclear engineering

    International Nuclear Information System (INIS)

    Krieg, R.

    1978-01-01

    Some important problems in coupled fluid-structural dynamics which occur in safety investigations of liquid metal fast breeder reactors (LMFBR). light water reactors and nuclear reprocessing plants are discussed and a classification of solution methods is introduced. A distinction is made between the step by step solution procedure, where available computer codes in fluid and structural dynamics are coupled, and advanced simultaneous solution methods, where the coupling is carried out at the level of the fundamental equations. Results presented include the transient deformation of a two-row pin bundle surrounded by an infinite fluid field, vapour explosions in a fluid container and containment distortions due to bubble collapse in the pressure suppression system of a boiling water reactor. A recently developed simultaneous solution method is presented in detail. Here the fluid dynamics (inviscid, incompressible fluid) is described by a singularity method which reduces the three-dimensional fluid dynamics problems to a two-dimensional formulation. In this way the three-dynamics fluid dynamics as well as the structural (shell) dynamics can be described essentially by common unknowns at the fluid-structural interface. The resulting equations for the coupled fluid-structural dynamics are analogous to to the equations of motion of the structural dynamics alone. (author)

  6. On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions.

    Science.gov (United States)

    Ahmed, Mohammed; Namboodiri, V; Singh, Ajay K; Mondal, Jahur A

    2014-10-28

    The hydration energy of an ion largely resides within the first few layers of water molecules in its hydration shell. Hence, it is important to understand the transformation of water properties, such as hydrogen-bonding, intermolecular vibrational coupling, and librational freedom in the hydration shell of ions. We investigated these properties in the hydration shell of mono- (Cl(-) and I(-)) and bivalent (SO4(2-) and CO3(2-)) anions by using Raman multivariate curve resolution (Raman-MCR) spectroscopy in the OH stretch, HOH bend, and [bend+librational] combination bands of water. Raman-MCR of aqueous Na-salt (NaCl, NaI, Na2SO4, and Na2CO3) solutions provides ion-correlated spectra (IC-spectrum) which predominantly bear the vibrational characteristics of water in the hydration shell of respective anions. Comparison of these IC-spectra with the Raman spectrum of bulk water in different spectral regions reveals that the water is vibrationally decoupled with its neighbors in the hydration shell. Hydrogen-bond strength and librational freedom also vary with the nature of anion: hydrogen-bond strength, for example, decreases as CO3(2-) > SO4(2-) > bulk water ≈ Cl(-) > I(-); and the librational freedom increases as CO3(2-) ≈ SO4(2-) water water in the hydration shell of anions.

  7. An experimental and statistical study of the behavior of the vibration field in two coupled lightweight wooden joist floors

    DEFF Research Database (Denmark)

    Sjökvist, Lars-Göran; Brunskog, Jonas

    2013-01-01

    The aim of this study was to evaluate the vibration level attenuation of a common wooden floor structure and to present the results together with the statistical precision of the evaluation. Linear regression was used to determine the attenuation rate in the two main directions of the floor...

  8. Dynamics of nonlinear oscillators with time-varying conjugate coupling

    Indian Academy of Sciences (India)

    1Department of Physics, Central University of Rajasthan, Ajmer 305 817, India. 2The Institute of Mathematical Science, CIT Campus, .... Now, based on the choice of k1 and k2, we consider two cases, (1) C1: both k1 and k2 ... 2.5, coupled systems show multiple transitions between synchronized and unsynchronized states.

  9. Dynamics of coupled field solitons: A collective coordinate approach

    Indian Academy of Sciences (India)

    In this paper we consider a class of systems of two coupled real scalar fields in bidimensional space-time, with the main motivation of studying classical stability of soliton solutions using collective coordinate approach. First, we present the class of systems of the collective coordinate equations which are derived using the ...

  10. Dynamic coupling between heart rate and ventricular repolarisation

    Czech Academy of Sciences Publication Activity Database

    Halámek, Josef; Jurák, Pavel; Villa, M.; Souček, M.; Fráňa, P.; Nykodym, J.; Eisenberger, M.; Leinveber, P.; Vondra, Vlastimil; Somers, V. K.; Kára, T.

    2007-01-01

    Roč. 52, č. 3 (2007), s. 255-263 ISSN 0013-5585 R&D Projects: GA ČR(CZ) GA102/05/0402 Institutional research plan: CEZ:AV0Z20650511 Keywords : QT/RR coupling * transfer function Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 0.593, year: 2007

  11. Dynamics of delayed-coupled chaotic logistic maps: Influence of ...

    Indian Academy of Sciences (India)

    Abstract. We review our recent work on the synchronization of a network of delay- coupled maps, focusing on the interplay of the network topology and the delay times that take into account the finite velocity of propagation of interactions. We assume that the elements of the network are identical (N logistic maps in the regime ...

  12. Dynamics of coupled field solitons: A collective coordinate approach

    Indian Academy of Sciences (India)

    mensional space-time, with the main motivation of studying classical stability of soliton solutions using collective coordinate ... presented in some previous works [1,2] which where motivated by investigations intro- duced in [3,4], ... The collision of coupled field solitons leads to resonance structure depending on the energy ...

  13. Final Technical Report Structural Dynamics in Complex Liquids Studied with Multidimensional Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Univ. of Chicago, IL (United States); Fiechtner, Gregory J. [Univ. of Chicago, IL (United States)

    2015-12-10

    This grant supported work in the Tokmakoff lab at the University of Chicago aimed at understanding the fundamental properties of water at a molecular level, and how water participates in proton transport in aqueous media. The physical properties of water and aqueous solutions are inextricably linked with efforts to develop new sustainable energy sources. Energy conversion, storage, and transduction processes, particularly those that occur in biology and soft matter, make use of water for the purpose of storing and moving charge. Water’s unique physical and chemical properties depend on the ability of water molecules to participate in up to four hydrogen bonds, and the rapid fluctuations and ultrafast energy dissipation of its hydrogenbonded networks. Our work during the grant period led to advances in four areas: (1) the generation of short pulses of broadband infrared light (BBIR) for use in time-resolved twodimensional spectroscopy (2D IR), (2) the investigation of the spectroscopy and transport of excess protons in water, (3) the study of aqueous hydroxide to describe the interaction of the ion and water and the dynamics of proton transfer, and (4) the coupled motion of water and its hydrogen-bonding solutes.

  14. Dynamics of coupled mode solitons in bursting neural networks

    Science.gov (United States)

    Nfor, N. Oma; Ghomsi, P. Guemkam; Moukam Kakmeni, F. M.

    2018-02-01

    Using an electrically coupled chain of Hindmarsh-Rose neural models, we analytically derived the nonlinearly coupled complex Ginzburg-Landau equations. This is realized by superimposing the lower and upper cutoff modes of wave propagation and by employing the multiple scale expansions in the semidiscrete approximation. We explore the modified Hirota method to analytically obtain the bright-bright pulse soliton solutions of our nonlinearly coupled equations. With these bright solitons as initial conditions of our numerical scheme, and knowing that electrical signals are the basis of information transfer in the nervous system, it is found that prior to collisions at the boundaries of the network, neural information is purely conveyed by bisolitons at lower cutoff mode. After collision, the bisolitons are completely annihilated and neural information is now relayed by the upper cutoff mode via the propagation of plane waves. It is also shown that the linear gain of the system is inextricably linked to the complex physiological mechanisms of ion mobility, since the speeds and spatial profiles of the coupled nerve impulses vary with the gain. A linear stability analysis performed on the coupled system mainly confirms the instability of plane waves in the neural network, with a glaring example of the transition of weak plane waves into a dark soliton and then static kinks. Numerical simulations have confirmed the annihilation phenomenon subsequent to collision in neural systems. They equally showed that the symmetry breaking of the pulse solution of the system leaves in the network static internal modes, sometime referred to as Goldstone modes.

  15. Dynamic Vibration Analysis of Heavy Vehicle Truck Transmission Gearbox Housing Using FEA

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar

    2014-09-01

    Full Text Available The main objective of this original research article is to study the loose fixture mounting affect of heavy vehicle transmission gearbox housing. The studies were completed in three phases. In first phase the aim was to find the actual suitable boundary condition. After finding the boundary condition in second phase the fixture bolts were loosened to monitor the affect of looseness and in third phase the positional looseness based study were completed. The looseness of transmission housing causes heavy vibration and noise. In order to prevent this noise and vibration the transmission housing is tightly mounted on the chassis frame using bolts. In our design transmission housing is constraint on chassis frame using 37 bolts. Truck transmission system determines the level of noise together with the chassis, engine and bodywork. Vehicle transmissions under torsional vibration condition caused rattling and clattering noises. Reciprocity Principle was used to determine the failure frequencies for transmission housing. In reciprocity principle gear and shafts are suppressed and all the forces transmitted through the bearings are applied on the empty housing. FEA based ANSYS 14.5 has been used as analysis tool. The free vibration frequency for zero displacement condition varies from 1669 Hz to 2865 Hz and for loose transmission casing frequency varies from 1311 Hz to 3110 Hz. The analysis have theoretical and practical aspects and useful for transmission housing structure optimization.

  16. Effects of reagent translational and vibrational energy on the dynamics of endothermic reactions

    International Nuclear Information System (INIS)

    Krajnovich, D.; Zhang, Z.; Huisken, F.; Shen, Y.R.; Lee, Y.T.

    1981-07-01

    The endothermic reactions Br + CH 3 I → CH 3 + IBr (ΔH 0 0 = 13 kcal/mole) and Br + CF 3 I → CF 3 + IBr (ΔH 0 0 = 11 kcal/mole) have been studied by the crossed molecular beams method. Detailed center-of-mass contour maps of the IBr product flux as a function of recoil velocity and scattering angle are derived. For both systems it is found that the IBr product is sharply backward scattered with respect to the incident Br dirction, and that most of the available energy goes into product translation. Vibrational enhancement of the Br + CF 3 I reaction was investigated by using the infrared multiphoton absorption process to prepare highly vibrationally excited CF 3 I. At a collision energy of 31 kcal/mole (several times the barrier height), reagent vibrational energy appears to be less effective than an equivalent amount of (additional) translational energy in promoting reaction. More forward scattered IBr is produced in reactions of Br with vibrationally hot CF 3 I

  17. Effects of reagent translational and vibrational energy on the dynamics of endothermic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Krajnovich, D.; Zhang, Z.; Huisken, F.; Shen, Y.R.; Lee, Y.T.

    1981-07-01

    The endothermic reactions Br + CH/sub 3/I ..-->.. CH/sub 3/ + IBr (..delta..H/sub 0//sup 0/ = 13 kcal/mole) and Br + CF/sub 3/I ..-->.. CF/sub 3/ + IBr (..delta..H/sub 0//sup 0/ = 11 kcal/mole) have been studied by the crossed molecular beams method. Detailed center-of-mass contour maps of the IBr product flux as a function of recoil velocity and scattering angle are derived. For both systems it is found that the IBr product is sharply backward scattered with respect to the incident Br dirction, and that most of the available energy goes into product translation. Vibrational enhancement of the Br + CF/sub 3/I reaction was investigated by using the infrared multiphoton absorption process to prepare highly vibrationally excited CF/sub 3/I. At a collision energy of 31 kcal/mole (several times the barrier height), reagent vibrational energy appears to be less effective than an equivalent amount of (additional) translational energy in promoting reaction. More forward scattered IBr is produced in reactions of Br with vibrationally hot CF/sub 3/I.

  18. First principles study of vibrational dynamics of ceria-titania hybrid clusters

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul, E-mail: abdulmajid40@yahoo.com; Bibi, Maryam [University of Gujrat, Department of Physics (Pakistan)

    2017-04-15

    Density functional theory based calculations were performed to study vibrational properties of ceria, titania, and ceria-titania hybrid clusters. The findings revealed the dominance of vibrations related to oxygen when compared to those of metallic atoms in the clusters. In case of hybrid cluster, the softening of normal modes related to exterior oxygen atoms in ceria and softening/hardening of high/low frequency modes related to titania dimmers are observed. The results calculated for monomers conform to symmetry predictions according to which three IR and three Raman active modes were detected for TiO{sub 2}, whereas two IR active and one Raman active modes were observed for CeO{sub 2}. The comparative analysis indicates that the hybrid cluster CeTiO{sub 4} contains simultaneous vibrational fingerprints of the component dimmers. The symmetry, nature of vibrations, IR and Raman activity, intensities, and atomic involvement in different modes of the clusters are described in detail. The study points to engineering of CeTiO{sub 4} to tailor its properties for technological visible region applications in photocatalytic and electrochemical devices.

  19. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    International Nuclear Information System (INIS)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH 3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam

  20. Dynamic Analysis of a non-linear vibrating circular cylindrical shell ...

    African Journals Online (AJOL)

    We investigated in this paper the effect of non-linear vibration of a circular cylindrical shell subject to axially symmetric loading. We consider the approximation of the equation using the regular perturbation technique and thereby solving the resulting linear equation analytically. The result indicates an exponential decay ...

  1. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V{yields}T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V{yields}T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH{sub 3} production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam.

  2. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Pamela Mei-Ying [Univ. of California, Berkeley, CA (United States)

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam.

  3. Not just a time-out: change dynamics of prayer for religious couples in conflict situations.

    Science.gov (United States)

    Butler, M H; Gardner, B C; Bird, M H

    1998-01-01

    For religious couples, the spiritual domain stands alongside biological, psychological, and systemic domains as an influence upon interaction and mechanism for change. A qualitative methodology consisting of structured interviews of religious spouses was used to investigate effects of prayer on couple interaction during conflict. A reliable description of the dynamics of prayer across spouse interviews was extracted by four analysts using a group interpretive procedure. Findings suggest that prayer invokes a couple-God system, which significantly influences couple interaction during conflict. Overall, prayer appears to be a significant "softening" event for religious couples, facilitating reconciliation and problem solving. Prayer 1) invokes an experience of relationship with Deity; 2) deescalates hostile emotions and reduces emotional reactivity; 3) enhances relationship and partner orientation and behavior; 4) facilitates empathy and unbiased perspective; 5) increases self-change focus; and 6) encourages couple responsibility for reconciliation and problem solving. Therapists' support of religious couples' use of prayer as a change mechanism is considered.

  4. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  5. Adaptive synchronization of the complex dynamical network with non-derivative and derivative coupling

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teachers' College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Sun Wen [School of Mathematics and Information, Yangtze University, Hubei Jingzhou 434023 (China)

    2010-04-05

    This Letter investigates the synchronization of a general complex dynamical network with non-derivative and derivative coupling. Based on LaSalle's invariance principle, adaptive synchronization criteria are obtained. Analytical result shows that under the designed adaptive controllers, a general complex dynamical network with non-derivative and derivative coupling can asymptotically synchronize to a given trajectory, and several useful criteria for synchronization are given. What is more, the coupling matrix is not assumed to be symmetric or irreducible. Finally, simulations results show the method is effective.

  6. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units

    Science.gov (United States)

    Van Dyke, Michael B.

    2013-01-01

    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  7. On Kinetics Modeling of Vibrational Energy Transfer

    Science.gov (United States)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  8. Generation of scenarios from calibrated ensemble forecasts with a dynamic ensemble copula coupling approach

    DEFF Research Database (Denmark)

    Ben Bouallègue, Zied; Heppelmann, Tobias; Theis, Susanne E.

    2015-01-01

    . The new approach which preserves the dynamical development of the ensemble members is called dynamic ensemble copula coupling (d-ECC). The ensemble based empirical copulas, ECC and d-ECC, are applied to wind forecasts from the high resolution ensemble system COSMO-DEEPS run operationally at the German...

  9. Dynamic coupling design for nonlinear output agreement and time-varying flow control

    NARCIS (Netherlands)

    Buerger, Mathias; De Persis, Claudio

    This paper studies the problem of output agreement in networks of nonlinear dynamical systems under time-varying disturbances, using dynamic diffusive couplings. Necessary conditions are derived for general networks of nonlinear systems, and these conditions are explicitly interpreted as conditions

  10. Free vibration analysis of elastic structures submerged in an infinite or semi-infinite fluid domain by means of a coupled FE-BE solver

    Science.gov (United States)

    Zheng, Chang-Jun; Bi, Chuan-Xing; Zhang, Chuanzeng; Gao, Hai-Feng; Chen, Hai-Bo

    2018-04-01

    The vibration behavior of thin elastic structures can be noticeably influenced by the surrounding water, which represents a kind of heavy fluid. Since the feedback of the acoustic pressure onto the structure cannot be neglected in this case, a strong coupled scheme between the structural and fluid domains is usually required. In this work, a coupled finite element and boundary element (FE-BE) solver is developed for the free vibration analysis of structures submerged in an infinite fluid domain or a semi-infinite fluid domain with a free water surface. The structure is modeled by the finite element method (FEM). The compressibility of the fluid is taken into account, and hence the Helmholtz equation serves as the governing equation of the fluid domain. The boundary element method (BEM) is employed to model the fluid domain, and a boundary integral formulation with a half-space fundamental solution is used to satisfy the Dirichlet boundary condition on the free water surface exactly. The resulting nonlinear eigenvalue problem (NEVP) is converted into a small linear one by using a contour integral method. Adequate modifications are suggested to improve the efficiency of the contour integral method and avoid missing the eigenfrequencies of interest. The Burton-Miller method is used to filter out the fictitious eigenfrequencies of the boundary integral formulations. Numerical examples are given to demonstrate the accuracy and applicability of the developed eigensolver, and also show that the fluid-loading effect strongly depends on both the water depth and the mode shapes.

  11. Vibration and buckling of orthotropic functionally graded micro-plates on the basis of a re-modified couple stress theory

    Directory of Open Access Journals (Sweden)

    Zihao Yang

    Full Text Available A microstructure-dependent model for the free vibration and buckling analysis of an orthotropic functionally graded micro-plate was proposed on the basis of a re-modified couple stress theory. The macro- and microscopic anisotropy were simultaneously taken into account by introducing two material length scale parameters. The material attributes were assumed to vary continuously through the thickness direction by a power law. The governing equations and corresponding boundary conditions were derived through Hamilton’s principle. The Navier method was used to calculate the natural frequencies and buckling loads of a simply supported micro-plate. The numerical results indicated that the present model predicts higher natural frequencies and critical buckling loads than the classical model, particular when the geometric size of the micro-plates is comparable to the material length scale parameters, i.e., the scale effect is well represented. The scale effect becomes more noticeable as the material length scale parameters increase, the anisotropy weaken or the power law index increases, and vice versa. Keywords: Free vibration, Buckling, Functionally graded materials, Modified couple stress theory, Scale effect

  12. Technicolor dynamics corrections to Wt-barb coupling

    International Nuclear Information System (INIS)

    Yue Chongxing; Huang Jinshu; Lu Gongru; Yang Zhengtao

    1998-01-01

    The authors consider the contributions of new gauge bosons to Wt-barb coupling in one generation technicolor (OGTC) model and topcolor assisted multiscale technicolor (TOPCMTC) model. The authors find that the exchange of diagonal extended technicolor (ETC) gauge boson has no contribution to Wt-barb coupling. Using the LEP value of R b , the authors calculate the corrections to the CKM matrix element V tb which arise from the sideways ETC gauge boson in OGTC model and the sideways ETC gauge bosons and color exchange in TOPCMTC model. The authors find that the δV tb is significantly large for a certain set of the parameters of either OGTC model or TOPCMTC model which might be detected in the Fermilab Tevatron Run 3 experiments

  13. Dynamics of globally coupled inhibitory neurons with heterogeneity

    Science.gov (United States)

    Golomb, David; Rinzel, John

    1993-12-01

    A model of many heterogeneous excitable neurons with a global slowly decaying inhibitory coupling is studied. When neuronal intrinsic excitability parameters are randomly distributed, the system exhibits four regimes of behavior. In addition to synchronized periodic and asynchronous regimes, we obtain two aperiodic regimes, with bursting rate a staircaselike function of neuron excitability. In one regime, the system is partially synchronized and in the second, partially antisynchronized. The transition between these two regimes is discontinuous as the disorder increases.

  14. Observer-based synchronization in complex dynamical networks with nonsymmetric coupling

    Science.gov (United States)

    Wu, Jianshe; Jiao, Licheng

    2007-12-01

    Based on a general complex dynamical network model with nonsymmetric coupling, some criteria for synchronization are proposed based on the approach of state observer design. Unlike the nonobserver-based dynamical networks, where the coupling between two connected nodes is defined by an inner coupling matrix and full state coupling is typically needed, in this paper, smaller amount of coupling variables or even only a scalar output signal of each node is needed to synchronize the network. Unlike the commonly researched complex network model, where the coupling between nodes is symmetric, here, in our network model, the coupling configuration matrix is not assumed to be symmetric and may have complex eigenvalues. The matrix Jordan canonical formalization method is used instead of the matrix diagonalization method, so in our synchronization criteria, the coupling configuration matrix is not required to be diagonalizable. Especially, the proposed step-by-step approach is simpler in computation than the existent ones, which usually rely heavily on numerical toolbox, and may be done by hand completely. An example is given to illustrate the step-by-step approach, in which each node is a two-dimensional dynamical limit cycle oscillator system consisting of a two-cell cellular neural network, and numerical simulations are also done to verify the results of design.

  15. Vortex dynamics in coherently coupled Bose-Einstein condensates

    Science.gov (United States)

    Calderaro, Luca; Fetter, Alexander L.; Massignan, Pietro; Wittek, Peter

    2017-02-01

    In classical hydrodynamics with uniform density, vortices move with the local fluid velocity. This description is rewritten in terms of forces arising from the interaction with other vortices. Two such positive straight vortices experience a repulsive interaction and precess in a positive (anticlockwise) sense around their common centroid. A similar picture applies to vortices in a two-component, two-dimensional uniform Bose-Einstein condensate (BEC) coherently coupled through rf Rabi fields. Unlike the classical case, however, the rf Rabi coupling induces an attractive interaction and two such vortices with positive signs now rotate in the negative (clockwise) sense. Pairs of counter-rotating vortices are instead found to translate with uniform velocity perpendicular to the line joining their cores. This picture is extended to a single vortex in a two-component trapped BEC. Although two uniform vortex-free components experience familiar Rabi oscillations of particle-number difference, such behavior is absent for a vortex in one component because of the nonuniform vortex phase. Instead the coherent Rabi coupling induces a periodic vorticity transfer between the two components.

  16. Dynamic Control of Plasmon-Exciton Coupling in Au Nanodisk–J-Aggregate Hybrid Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing

    2009-01-01

    We report the dynamic control of plasmon-exciton coupling in Au nanodisk arrays adsorbed with J-aggregate molecules by incident angle of light. The angle-resolved spectra of an array of bare Au nanodisks exhibit continuous shifting of localized surface plasmon resonances. This characteristic enables the production of real-time, controllable spectral overlaps between molecular and plasmonic resonances, and the efficient measurement of plasmon-exciton coupling as a function of wavelength with one or fewer nanodisk arrays. Experimental observations of varying plasmon-exciton coupling match with coupled dipole approximation calculations.

  17. Strange attractors and synchronization dynamics of coupled Van der Pol-Duffing oscillators

    International Nuclear Information System (INIS)

    Yamapi, R.; Filatrella, G.

    2006-07-01

    We consider in this paper the dynamics and synchronization of coupled chaotic Van der Pol-Duffing systems. The stability of the synchronization process between two coupled autonomous Van der Pol model is first analyzed analytically and numerically, before following the problem of synchronizing chaos both on the same and different chaotic orbits of two coupled Van der Pol-Duffing systems. The stability boundaries of the synchronization process are derived and the effects of the amplitude of the periodic perturbation of the coupling parameter on these boundaries are analyzed. The results are provided on the stability map in the (q, K) plane. (author)

  18. Cluster dynamics modelling of materials: A new hybrid deterministic/stochastic coupling approach

    Science.gov (United States)

    Terrier, Pierre; Athènes, Manuel; Jourdan, Thomas; Adjanor, Gilles; Stoltz, Gabriel

    2017-12-01

    Deterministic simulations of the rate equations governing cluster dynamics in materials are limited by the number of equations to integrate. Stochastic simulations are limited by the high frequency of certain events. We propose a coupling method combining deterministic and stochastic approaches. It allows handling different time scale phenomena for cluster dynamics. This method, based on a splitting of the dynamics, is generic and we highlight two different hybrid deterministic/stochastic methods. These coupling schemes are highly parallelizable and specifically designed to treat large size cluster problems. The proof of concept is made on a simple model of vacancy clustering under thermal ageing.

  19. Simulasi Aplikasi Dynamic Vibration Absorber Sebagai Peredam Getaran Pada Mesin Ignitor Cooling Fan Di PT. PJB UP Gresik

    Directory of Open Access Journals (Sweden)

    Cathlea Selly Ersandi

    2013-09-01

    Full Text Available Semua mesin yang sedang beroperasi pasti akan menghasilkan getaran (vibrasi. Namun seiring dengan bertambahnya usia mesin mengakibatkan getaran yang semakin besar dapat menyebabkan kerusakan pada konstruksi mesin itu sendiri dan pondasi yang menopang mesin tersebut. Untuk dapat meredam getaran pada mesin tersebut dapat dilakukan dengan menambahkan peredam getaran untuk meminimalkan gaya eksitasi yang dihasilkan mesin. Salah satu metode peredaman getaran adalah dengan memasangkan Dynamic Vibration Absorber (DVA pada bagian sistem tersebut. Pada tugas akhir ini akan dilakukan simulasi peredaman getaran menggunakan Dynamic Vibration Absorber (DVA pada mesin Ignitor Cooling Fan di PT. PJB UP Gresik. Simulasi dilakukan dengan mengubah nilai parameter DVA yaitu m, k dan c sehingga didapatkan respon sistem yang terbaik yakni memiliki nilai amplitudo simpangan yang paling rendah. Berdasarkan simulasi yang telah dilakukan diketahui bahwa semakin besar nilai massa maka semakin kecil amplitudo, sebaliknya semakin besar nilai konstanta pegas (k dan redaman (c maka semakin besar nilai amplitudonya. Respon optimumnya berada nilai amplitudo simpangan terendah 0,286. Nilai parameter getaran pada respon tersebut adalah pada massa (M 500 kg, konstanta pegas (k 3000 N/m dan redaman (c 400 N.s/m. Dimana pada nilai paremeter tersebut dapat menurunkan amplitudo simpangan sebesar 63,84%.

  20. Dyadic dynamics of perceived social support in couples facing infertility.

    Science.gov (United States)

    Martins, M V; Peterson, B D; Almeida, V; Mesquita-Guimarães, J; Costa, M E

    2014-01-01

    Is perceived social support from partner, family, and friends associated with increased infertility-related stress? While men's perceived support did not seem to influence their partners' stress, women's perceptions of spousal and familial support can affect the way men deal with the challenge of infertility. Previous studies showed that low levels of social support are associated with poor psychosocial adjustment and treatment termination in women and men. Studies examining the impact of social support using the couple as unit of analysis are lacking. A cross-sectional sample of 613 Portuguese patients participated in the research, online over a 3-month period, and in a public fertility clinic over 11 months. The final sample comprised 213 married or cohabiting couples (191 from the fertility clinic) who were actively attempting to have a child, were seeking infertility treatment and had not undergone previous preimplantation genetic diagnosis. Perceived social support was assessed through the Multidimensional Scale of Perceived Social Support and infertility-related stress was assessed with the fertility problem inventory. Hypotheses were tested by applying the actor-partner interdependence model using structural equation modeling. Couples had been living together for an average (±SD) of 6 ± 3.5 years, and attempting a pregnancy for 3.8 ± 2.6 years. Nearly half of the couples had undergone infertility treatment (41.3%). Infertility stress was found to be associated with low family support for women (β = -0.27, P = .003), and low partner support for both men (β = -0.29, P = .001) and women (β = -0.45, P = .006). Both women and men's perceived friend support were not significantly related to male or female infertility stress. Men infertility stress was also associated with their partners low levels of partner (β = -0.24, P = .049) and family support (β = -0.23, P perception of infertility-specific supportive behaviors was not assessed and differential